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1Chapter

Introduction

Historically, supersymmetry appeared from a way to circumvent the no-go theorem of
Coleman and Mandula [1]. This theorem states that, under some assumptions, the most
general Lie algebra of the S-matrix is that of the direct product of Poincaré and internal
symmetry groups. One can relax the assumptions in which the Coleman-Mandula theorem
is based, for example, we find conformal field theories whose symmetry group is an ex-
tension of the Poincaré group, but these theories are not described in terms of S-matrices
and, hence, the Coleman-Mandula theorem does not apply as it relies in an S-matrix
description. Haag, Sohnius and Lopuszanski [2] had already pointed out this, but more
importantly, they generalized the Coleman-Mandula theorem by relaxing the statement of
“Lie algebra”, they considered the generalization of the notion of a Lie algebra to include
commutators and anti-commutators to what it is known as a superalgebra or graded Lie
algebra.

Then, apart from the usual Poincaré generators satisfying the usual commutation
relations we also have additional complex Weyl spinor generators, QIα (α = 1, 2 and
I = 1, . . . ,N ), and its conjugates, (QIα)† = Q̄Iα̇, obeying the anticommutation relations

{QIα, QJβ} = ǫαβZ
IJ , {Q̄Iα̇, Q̄Jβ̇} = ǫα̇β̇(ZIJ)∗ . (1.1)

The non-trivial extension of the Poincarè group comes from the anticommutator

{QIα, Q̄Jα̇} = 2σµαα̇Pµδ
IJ , (1.2)

which generates translations. We are using the notation

σµαα̇ = (Iαα̇, σ
i
αα̇) , σ̄µα̇α = (Iα̇α,−σiα̇α) (1.3)

where σi are the usual Pauli matrices. The supersymmetry algebra closes with the follow-
ing commutators:

[Mµν , Q
I
α] = i(σµν) β

α QIβ , [Mµν , Q̄
Iα̇] = −i(σ̄µν)α̇

β̇
Q̄Iβ̇ ,

[Pµ, Q
I
α] = [Pµ, Q̄

J
α̇] = 0 .

(1.4)

1



2 Chapter 1. Introduction

The ZIJ = −ZJI in (1.1) are the central charges of the superalgebra, which appear in the
case of extended supersymmetry N > 1. σµν are the spin 1/2 Lorentz generators given by

σµν =
i

4
(σµσ̄ν − σν σ̄µ) . (1.5)

The upshot of the Haag-Sohnius-Lopuszanski theorem is that supersymmetry is the
unique non-trivial way to extend the Poincaré group as a symmetry of the S-matrix.
Therefore, supersymmetry has to be seriously considered as a possible new fundamental
symmetry of nature. In addition, supersymmetry has been postulated as a candidate to
address the following issues:

Naturalness: Let us compute the Standard Model leading contribution to the Higgs
mass, which comes from its Yukawa coupling to the top quark,

L = − yt√
2
Ht̄LtR + h.c. (1.6)

the rest of the contributions does not alter the subsequent discussion. Then, the one-loop
mass diagram, with top quarks running inside the loop, contributes to the Higgs mass by

δm2
∣

∣

top
= −iNc

∫

d4k

(2π)4
Tr

[−iyt√
2

i

✓k −mt

−iy∗
t√

2

i

✓k −mt

]

= −Nc
|yt|2
8π2

∫ Λ2

0
k2
Edk2

E

k2
E −m2

t

(k2
E +m2

t )
2

= −Nc
|yt|2
8π2

[

Λ2 − 3m2
t log

(

Λ2 +m2
t

m2
t

)

+
2m2

tΛ
2

Λ2 +m2
t

]

, (1.7)

where, after going to Euclidean space, we have introduced a cut-off Λ that represents
the energy scale where new physics is supposed to emerge, let us say the Planck scale
∼ 1019 GeV. Thus we see that the physical Higgs mass, m2

H = m2
0 + δm2, requires, due

to the quadratic dependence in the cut-off, a severe fine-tuning between the bare term
and one-loop corrections to get its actual value around 126 GeV. This is the naturalness
problem. Then the only two possibilities are that the Standard Model is unnatural, or some
new physics must enter at the order of the TeV scale in a particular way that renders the
theory natural. This new physics cannot be an arbitrary particle that cancels out the one-
loop quadratic divergence, since the cancellation does not hold all orders in perturbation
theory. This new physics could be supersymmetry, since superpartner contributions enter
in the precise way to cancel out these divergences.

Dark Matter: Supersymmetry provides some candidates for Dark Matter. Between
many supersymmetric models, the most studied Dark Matter candidate is the lightest
neutralino [3]. For example, let us consider the R-parity preserving MSSM (Minimal Su-
persymmetric Standard Model), whose field content is just that of the Standard Model
supplemented with an extra Higgs doublet and the corresponding superpartners. Four
neutralinos appear as a linear combination of the superpartners of the hypercharge gauge
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boson, B, the neutral component of the SU(2)L gauge triplet, W 3, and the neutral com-
ponents of the two Higgs doublets. Depending on the particular model, the lightest of
these neutralinos can be the lightest supersymmetric particle and hence, a candidate for
Dark Matter, since unbroken R-parity forbids it to decay into Standard Model particles.
Of course, there are other supersymmetric candidates for Dark Matter [4].

Gauge coupling unification: The combination of grand unified theories with super-
symmetry works very nicely, since supersymmetry can achieve an accurate unification
of the Standard Model gauge couplings, while grand unified theories based on Standard
Model particle content do not manage a precise gauge coupling unification at any scale.
For more details see, for instance, reference [5].

Supersymmetry might or might not be found at the LHC, even worse, it might not
be realized as fundamental symmetry of nature at all. Nevertheless, supersymmetry still
provides many valuable tools and this is the main topic of this thesis, to provide some novel
examples of applications of supersymmetry beyond the construction of phenomenological
models where it plays the role of a fundamental symmetry of nature. Along this thesis we
will try to give examples of the following applications:

Dualities: Among various supersymmetric theories, several dualities arise that relate
two of these theories. These dualities typically are of the form weak/strong coupling,
which is a very remarkable property because it allows the study of a strongly coupled
theory by doing perturbative computations in its weakly coupled dual theory. Although
these theories might not be realized in nature, these dualities are a very remarkable feature
that allow us to improve our knowledge of strongly coupled gauge theories in general.

Among these dualities we find, for example, the celebrated AdS/CFT or gauge/gravity
duality [6]. Beyond the shadow of a doubt, this duality has revealed itself as a major source
for the improvement of our understanding of quantum gravity and strongly coupled gauge
theories. As originally stated, AdS/CFT conjectures an equivalence between type IIB
superstring theory in AdS5×S5 space-time and the conformal field theory N = 4 SU(N)
super Yang-Mills. This conjecture has been generalized to accommodate other gauge
theories and other gravity theories in asymptotically anti de Sitter spaces.

Strictly speaking, the gauge/gravity duality is not a duality provided by supersymme-
try in itself, but the theories involved in the duality heavily rely on supersymmetry and
for sure it plays an important role as we will see.

Another remarkable duality is Seiberg duality [7]. As originally proposed, this is an
infrared duality between super QCD-like theories with different gauge group ranks. This
is again a duality between weakly and strongly coupled gauge theories and thus, it allows
us to extract information about the strongly coupled regime.

Exact results: Supersymmetry plays an important role in this strong/weak coupling
dualities, which are an extraordinary tool to understand the challenging strongly coupled
regime of gauge theories. But, in some cases, supersymmetry also allows to compute some
exact results in the gauge coupling! For this purpose we have localization techniques [8].
To apply localization to a certain theory it is essential the presence of a Grassmann-odd
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symmetry, for this reason, supersymmetric field theories seem to be a good candidate for
the application of localization. Indeed, supersymmetric localization has turned out to be
a very fruitful partnership and it has allowed to perform important test of the AdS/CFT
conjecture [9].

Condensed Matter: Between the areas of condensed matter physics to which super-
symmetry has something to contribute, we find random magnetic fields in Ising-like models,
branched and linear polymers, electron localization in disordered media and so on [10].
Recently, supersymmetry has appeared in the context of superconductivity through the
AdS/CFT correspondence [11]. It is in the field of superconductivity where we will give
new applications of supersymmetry.

Although we will provide examples in these three areas in which supersymmetry ap-
pears as a relevant actor, we can find more applications to other areas like nuclear physics
[12,13], optics [14] and others.

Organization of the thesis

This thesis is based on the results presented at:

[15] A. Barranco, E. Pallante and J. G. Russo,

N = 1 SQCD-like theories with Nf massive flavors from AdS/CFT and
beta functions,

JHEP 1109 (2011) 086, [arXiv:1107.4002].

[16] A. Barranco and J. G. Russo,

Supersymmetric BCS,

JHEP 1206 (2012) 104, [arXiv:1204.4157].

[17] A. Barranco,

Supersymmetric BCS: Effects of an external magnetic field and spatial
fluctuations of the gap,

JHEP 1307 (2013) 172, [arXiv:1301.0691].

[18] A. Barranco, J. Gaillard, N. T. Macpherson, C. Núñez and D. C. Thompson,

G-structures and Flavouring non-Abelian T-duality,

JHEP 1308 (2013) 018, [arXiv:1305.7229].

[19] A. Barranco and J. G. Russo,

Large N phase transitions in supersymmetric Chern-Simons theory with
massive matter,

JHEP 1403 (2014) 012, [arXiv:1401.3672].

http://xxx.lanl.gov/abs/1107.4002
http://xxx.lanl.gov/abs/1204.4157
http://xxx.lanl.gov/abs/1301.0691
http://xxx.lanl.gov/abs/1305.7229
http://xxx.lanl.gov/abs/1401.3672
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This thesis can be divided in three parts according to the three areas where we will use
supersymmetry as mentioned above.

The first of these parts would correspond to chapter 2, devoted to the illustration of how
we can obtain certain exact results in a supersymmetric theory by means of localization
techniques. In particular, we will study the N = 2 super Chern-Simons theory with Nf

flavors on a three-sphere, we will see how localization allows us to compute exactly its
partition function in terms of a matrix integral and using this result, we will find that this
theory presents two phase transitions in a certain decompactification limit [19].

The next three chapters, 3, 4 and 5, would make the second part of this thesis, where
we will work with the gauge/gravity duality, with emphasis in the role played by super-
symmetry.

Chapter 3 must be understood as a brief presentation of the AdS/CFT duality as
originally proposed by Maldacena. We will also present the conditions that a supergravity
solution must fulfill in order to preserve some supersymmetry. These conditions can be
nicely expressed in terms of G-structures. This chapter is necessary to understand the
following two chapters.

In chapter 4 we will try to extract some physics from a supergravity background claimed
to be dual to N = 1 super QCD with Nf massive flavors and a quartic superpotential,
according to the gauge/gravity correspondence. Departing from the Maldacena-Núñez
supergravity background which, letting aside some subtleties, it is designed to be dual
to pure N = 1 super Yang-Mills, we will give detailed information on how the addition
of massless flavors in first place and massive flavors in second place is realized. We will
pay special attention to how to extract the dual gauge theory physics provided by these
backgrounds, in particular we will compute the β-functions of the dual field theories with
focus on the emergence of fixed points in the RG flow [15]. We will find that Seiberg
duality is realized in these backgrounds as well.

In chapter 5 we present the results obtained in [18]. We will compute the non-Abelian
T-dual of the Klebanov-Witten supergravity background with and without flavors. The
ideal objective would be to understand what is the effect of the application of a non-
Abelian T-dual transformation in the dual gauge theory. However, we will pursue much
modest goals, on the one hand, we will study the effects of non-Abelian T-duality on the
G-structures of these supersymmetry preserving backgrounds. On the other hand, we will
consider the application of non-Abelian T-duality for the construction of new flavoured
solutions of supergravity. Contrary to chapter 4, in this chapter we will focus on the
supersymmetry conditions satisfied by the generated backgrounds, rather than paying
much attention to the physical properties.

Chapter 6 is the last application we are going to show and would correspond to the third
part of this thesis. There we will review the construction of the first supersymmetric model
of BCS superconductivity, as presented in [16], as well as some of its phenomenological
consequences [17].

Finally, to comply with the rules of the University of Barcelona we end up with a
summary also available in Spanish.





2Chapter

Exact results in Chern-Simons theory

The study of strongly coupled gauge theories is a challenge for which we have very few
tools. Among these tools we find localization techniques, which not only do they allow the
exploration of strongly coupled regimes of field theories, but they also provide with exact
results for interacting field theories.

For observables with a sufficient amount of supersymmetry, localization provides final
expressions given in terms of a matrix integral. This integral is in general complicated,
although much simpler and much more under control than the original functional integral.
In the multicolor limit, the integral is dominated by a saddle-point and in some cases the
saddle-point equations can be solved exactly.

Supersymmetric localization has led to the exact computation of the Euclidean par-
tition function and vacuum expectation values of Wilson loop operators in many super-
symmetric gauge theories in various dimensions. In the pioneering work by Pestun [8],
the method of localization was used to obtain exact formulas for N = 2 super Yang-
Mills (SYM) theories on a four-sphere with arbitrary gauge group and matter content.
Soon after the method was applied to the calculation of Euclidean path integrals in three-
dimensional supersymmetric Chern-Simons theories on a three-sphere [20] and, since then,
many other interesting examples have been worked out.

As we said, from supersymmetric localization we can obtain exact results in terms of
the gauge coupling. Thus, it is very interesting to apply localization to gauge theories
with known gravity dual. In this way, we can compare the results obtained from both
the localization and the holographic approach in the strong coupling regime to test the
gauge/gravity duality.

For example, using the previous ideas, the large N behavior of the free energy and
Wilson loops in ABJM theory were determined [9]. ABJM [21,22] is a three dimensional
conformal field theory, built out of two copies of U(N) Chern-Simons theory with opposite
levels (couplings), k, and with bifundamental matter. The gravity dual of this theory is
AdS4 × S7/Zk. Applying holographic methods to this AdS4/CFT3 correspondence, one
finds that the free energy scales with N3/2 in the strong ’t Hooft coupling regime, whereas
perturbation theory at weak coupling tells us that the free energy behaves as N2. The
localization computation in [9] perfectly interpolates between these two different behaviors,

7
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leading to a striking test of the AdS/CFT correspondence.
The large-N master field (i.e. the eigenvalue distribution that solves the corresponding

matrix model) of several four-dimensional N = 2 U(N) super Yang-Mills theories has
been also determined (for a recent review and references, see [23]). Among the different
results that arise from this study, perhaps the most intriguing one is the emergence of
large N quantum phase transitions [24, 25], which seem to be generic features of massive
N = 2 theories in the decompactification limit. This phenomenon was shown explicitly
for N = 2∗ SYM –obtained by the unique mass deformation of N = 4 SYM preserving
two supersymmetries– and N = 2 SQCD with 2Nf flavors, with Nf < N . Large N phase
transitions are familiar in gauge theories and they are due to singularities associated with
the finite radius of convergence of planar perturbation theory [26, 27]. However, for the
supersymmetric observables computed in [24,25], the physical origin of the phase transition
appears to be different. When the coupling crosses a critical value, field configurations
with extra massless multiplets contribute to the saddle-point, leading to discontinuities in
vacuum expectation values of supersymmetric observables.

Similarly, one may expect that massive three-dimensional N = 2 supersymmetric
gauge theories on S3 also exhibit interesting large N physics. In particular, one would
like to know if Chern-Simons (CS) theories coupled to massive matter undergo quantum
weak/strong coupling phase transitions. In this chapter, we will illustrate the power
of supersymmetry to provide exact results for any value of the coupling. We will use
localization results [20] and matrix model techniques [9, 28, 29] to address the previous
question and study the large N limit of U(N) N = 2 super Chern-Simons theory with
2Nf massive flavors on the three-sphere (other studies of Chern-Simons matter theories
at large N can be found in e.g. [30–32]).

We will start by reviewing the particular Chern-Simons matter theory in which we
are interested. Next, we will review the localization technique and we will compute, as
an example, how to obtain the matrix model from the path integral partition function of
pure super Chern-Simons theory without matter. We will briefly outline how to build the
matrix model in the more complicated case in which massive matter is included. Finally,
we will solve the matrix model by saddle-point at large N and we will show that this
theory exhibits phase transitions in a specific decompactification limit of the theory. For
the first two sections we will mainly follow [20, 28]. We will use the conventions in [28]
through all over this chapter and we collect them in the appendix.

2.1 Chern-Simons theory

Physics in 2 + 1 dimensions has many interesting results different from those in the usual
3 + 1 case. An example of these differences is the Chern-Simons theory. Consider the
familiar Maxwell gauge theory in 3+ 1 dimensions (or its non-Abelian version, Yang-Mills
theory),

L = −1

4
FµνF

µν −AµJµ , (2.1)

where Fµν is the field strength and J is a conserved matter current. The immediate
generalization of this theory to any space-time dimension, let us say d, is to allow the
indices to run over 0, . . . , d− 1. However, for d = 3 we find another gauge theory, namely
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Chern-Simons theory. This theory complies with all the sensible requirements of being
Lorentz invariant, gauge invariant and local. The Abelian CS Lagrangian is given by

LCS =
k

4π
ǫµνρAµ∂νAρ −AµJµ . (2.2)

Although this Lagrangian does not seem at first sight gauge invariant, because it is ex-
pressed in terms of the gauge field instead of the manifestly gauge invariant field strength,
when computing how the previous Lagrangian changes under a gauge transformation
(Aµ → Aµ + ∂µΛ) we find

δLCS =
k

4π
∂µ (Λ(ǫµνρ∂νAρ − Jµ)) , (2.3)

i.e. the Lagrangian is gauge invariant up to a total derivative. Hence, if we can discard
boundary terms, the action remains gauge invariant. However, this might not always be
possible, but in the case we will be considering these boundary terms will not play any
role.

One feature of CS theory worth remarking is that it is first-order in derivatives, this
makes its canonical structure very different from that of Maxwell or Yang-Mills theory.
Extensions of this theory to 3 + 1 dimensions are not possible, because indices do not
match up, although one can extend this theory to any odd space-time dimension.

It is possible to generalize the Lagrangian (2.2) to non-Abelian gauge symmetries. The
non-Abelian CS theory is described by the Lagrangian

LCS =
k

4π
ǫµνρ Tr

(

Aµ∂νAρ + i
2

3
AµAνAρ

)

. (2.4)

Under a gauge transformation Aµ → U−1AµU − iU−1∂µU , described by an element U of
the gauge group, the variation of the previous Lagrangian is

δLCS = i
k

4π
ǫµνρ∂µ Tr

(

∂νUU
−1Aρ

)

+
k

12π
ǫµνρ Tr

(

U−1∂µUU
−1∂νUU

−1∂ρU
)

, (2.5)

where we identify a total derivative, as in the Abelian case, and an extra term. This new
term is known as the winding number density of the group element U ,

w(U) =
1

24π2
ǫµνρ Tr

(

U−1∂µUU
−1∂νUU

−1∂ρU
)

. (2.6)

The integral of this expression, with appropriate boundary conditions, is an integer. There-
fore, under a large gauge transformation, i.e. one with non trivial winding number n, the
action changes by

δSCS = 2πkn (2.7)

and then, to have a gauge invariant theory, we must require k to be quantized, k ∈ Z.
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2.1.1 N = 2 supersymmetric theories in three dimensions

We are interested in coupling Chern-Simons theory to matter fields. To this purpose,
it is convenient to have a description of super Chern-Simons theory in terms of off-shell
supermultiplets. This was done in [33] for N = 1, 2, 4, but we will only consider the N = 2
case and how this theory couples to matter fields [34]. We will also show the N = 2 super
Yang-Mills action in three dimensions, since it will be necessary for the application of
localization.

When considering the supersymmetric extension of Chern-Simons theory we have to
deal with spinors in 3 dimensions. Eventually we will be interested in considering these
theories on S3, and so it is convenient to work on Euclidean space. The relevant rotation
group is then SO(3), or more precisely its universal cover SU(2). As opposed to the stan-
dard Lorentz algebra in four dimensions, su(2)× su(2), in 3-dimensional Euclidean space
the algebra is just su(2) and then all spinors transform under the same representation.
Thus, in three dimensions we do not distinguish between dotted and undotted spinor in-
dices, as opposed to what we would do in four dimensions in order to refer to one su(2)
or the other.

As opposed to Minkowski space in three dimensions, where we can build Majorana
spinors, in the Euclidean counterpart we cannot. Then, in Euclidean space, the spinorial
generators will be Dirac spinors. For N = 2 supersymmetry we have two independent
spinor generators ǫ and ǭ. If we relate them by the usual hermitian conjugation, this
would take us to the N = 1 case, where we have the minimum amount of supersymmetry
given by just a single complex spinor. In this sense, the N = 1 supersymmetric algebra
in 3-dimensional Euclidean space is more similar to the N = 2 supersymmetric algebra in
3-dimensional Minkowski space than its N = 1 counterpart.

We summarize the spinor conventions we use in appendix 2.A.

Before considering the aforementioned actions we first need to describe the basic build-
ing blocks to construct them, i.e. the N = 2 supermultiplets in three dimensions. These
are familiar from the point of view of the 4-dimensional N = 1 supersymmetric algebra,
since they can be obtained from dimensional reduction to three dimensions.

Vector hypermultiplet: The usual 4-dimensional N = 1 vector multiplet contains a
gauge field Aµ, a four-component Majorana spinor, χ, and a real auxiliary scalar field,
D. When we dimensional reduce to three dimensions, the gauge field decomposes into a
three-vector gague field, Aµ, and a real scalar field, σ, corresponding to the A3 component
in four dimensions. The 4-dimensional spinor splits into complex two-component spinors,
λ and λ̄, in three dimensions. In three dimensions we still keep the auxiliary field D. All
these fields are valued in the Lie algebra of the gauge group, which we will take to be
U(N).

Under a supersymmetric transformation generated by the spinors ǫ and ǭ, these com-
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ponent fields transform in the following way:

δAµ =
i

2
(ǭγµλ− λ̄γµǫ) ,

δσ =
1

2
(ǭλ− λ̄ǫ) ,

δλ =

(

−1

2
γµνFµν −D + iγµDµσ

)

ǫ ,

δλ̄ =

(

−1

2
γµνFµν +D − iγµDµσ

)

ǭ ,

δD = − i
2

(ǭγµDµλ+Dµλ̄γ
µǫ) +

i

2
(ǭ[λ, σ] + [λ̄, σ]ǫ) .

(2.8)

where Dµ = ∂µ+ i[Aµ, ·] is the usual gauge covariant derivative and Fµν = ∂µAν −∂νAµ+
i[Aµ, Aν ] is the field strength.

With the vector supermultiplet we can write the supersymmetric Chern-Simons action

SN =2
CS = − k

4π

∫

d3xTr

[

ǫµνρ
(

Aµ∂νAρ + i
2

3
AµAνAρ

)

− λ̄λ+ 2Dσ

]

, (2.9)

where Tr is the trace in the fundamental representation. Of course, there is another
supersymmetric, gauge invariant action we can write, the super Yang-Mills action,

SN =2
YM =

∫

d3xTr

(

1

4
FµνF

µν +
1

2
DµσD

µσ +
1

2
D2 +

i

2
λ̄γµDµλ+

i

2
λ̄[σ, λ]

)

. (2.10)

One can check that these actions are invariant under (2.8).
If we also want to couple vector superfields to matter we have to consider chiral mul-

tiplets.

Chiral hypermultiplets: The three dimensional N = 2 chiral multiplet is made of a
complex scalar field, φ, a two component complex spinor, ψ, and an auxiliary complex
scalar, F . The supersymmetric transformations for these component fields are, when
coupled to the vector supermultiplet:

δφ = ǭψ , δφ̄ = ǫψ̄ ,

δψ = (iγµDµφ+ iσφ)ǫ+ F ǭ , δψ̄ = (iγµDµφ̄+ iφ̄σ)ǭ+ F̄ ǫ , (2.11)

δF = ǫ(iγµDµψ − iλφ− iσψ) , δF̄ = ǭ(iγµDµψ̄ + iφ̄λ̄− iψ̄σ) .

Hence, out of this multiplet, we can build the following supersymmetric action,

SN =2
matter =

∫

d3x
(

Dµφ̄D
µφ− iψ̄γµDµψ + F̄F

+ φ̄σ2φ+ iφ̄Dφ+ iψ̄σψ + iψ̄λφ− iφ̄λ̄ψ +WF + W̄F

)

, (2.12)

where, for example, by ψ̄σψ we mean ψ̄aσα(Tα)baψb and α is an index over the Lie algebra,
Tα are its generators, and the indices a and b are indices of the representation R in which
the chiral multiplet is.
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If we want to preserve scale invariance, the superpotential has to be quartic in the
superfield [34], however, we will not consider any superpotential and thus we will take
W = 0 in the previous action. In any case, conformal symmetry we will be broken when
adding mass terms.

In terms of N = 2 superspace, the matter action (2.12) with W = 0 can be written as

Smatter =

∫

d3xd2θd2θ̄ Φ̄e2V Φ , (2.13)

where Φ is the chiral hypermultiplet and V is the vector hypermultiplet of the form
described above. If we want to work with massive chiral multiplets [35], we can add mass
terms by considering the coupling of the chiral multiplet to a background vector multiplet,
Vm, just in the form shown in action (2.13), with V replaced by Vm. The conditions for
the vanishing of the fermion variations of the background vector multiplet set σm = m,
and the remaining background fields vanish. Then we just have to add the terms

+ φ̄m2φ+ iψ̄mψ (2.14)

to equation (2.12) to consider massive chiral superfields.

2.1.2 N = 2 supersymmetric theories on the 3-sphere

To carry out localization we will work on a compact manifold M, in particular a three
sphere, S3, with radius R. Working on a compact manifold provides an IR regulator for
the theory, in this way some observables, like the free energy, are well defined.

The generalization of Chern-Simons theory to S3 is straightforward,

SS
3

CS = − k

4π

∫

d3xǫµνρ Tr

[

Aµ∂νAρ + i
2

3
AµAνAρ

]

− k

4π

∫

d3x
√

− det gTr
[

−λ̄λ+ 2Dσ
]

.

(2.15)

The super Yang-Mills action and the matter action acquire new terms due to couplings
of the scalars to the curvature. They are given by

SS
3

YM =

∫

d3x
√

− det gTr

[

1

4
FµνF

µν +
1

2
DµσD

µσ +
i

2
λ̄γµDµλ

+
i

2
λ̄[σ, λ] +

1

2

(

D +
σ

R

)2

− 1

4R
λ̄λ

]

, (2.16)

SS
3

matter =

∫

d3x
√

− det g
[

Dµφ̄D
µφ− iψ̄γµDµψ + iψ̄σψ + iψ̄λφ

− iφ̄λ̄ψ + iφ̄Dφ+ φ̄σ2φ+ F̄F +
3

4

1

R2
φ̄φ
]

, (2.17)

where now the Dµ derivatives are covariant with respect to both the gauge field and the
metric on S3. We will use ∇µ for covariant derivatives only with respect to the metric.
We have also supposed canonical dimensions for fields in the matter supermultiplet. It
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can be checked that these actions are invariant under the supersymmetric transformations
(2.8) and (2.11) adapted to the three sphere:

δλ =

(

−1

2
γµνFµν −D + iγµDµσ

)

ǫ+ i
2

3
σγµ∇µǫ ,

δλ̄ =

(

−1

2
γµνFµν +D − iγµDµσ

)

ǭ− i2
3
σγµ∇µǭ ,

δD = − i
2

(ǭγµDµλ+Dµλ̄γ
µǫ) +

i

2
(ǭ[λ, σ] + [λ̄, σ]ǫ)

− i

6

(

∇µǭγµλ+ λ̄γµ∇µǫ
)

,

(2.18)

and

δψ = (iγµDµφ+ iσφ)ǫ+ F ǭ+
i

3
γµ∇µǫφ ,

δψ̄ = (iγµDµφ̄+ iφ̄σ)ǭ+ F̄ ǫ+
i

3
φ̄γµ∇µǭ ,

(2.19)

where we have only shown the transformations that receive corrections for being on the
three sphere. We must stress again that these transformations are for fields with canonical
dimensions, since for non-canonical ones, these transformations change. We also have to
require ǫ and ǭ to be Killing spinors to preserve supersymmetry, i.e. they must satisfy the
condition

∇µǫ = γµǫ
′ (2.20)

for an arbitrary spinor ǫ′ (we will see similar conditions in section 3.2). In our case, these
are three equations, one of which determines ǫ′ and the remaining two equations impose
conditions on the Killing spinors. On the sphere the conformal Killing spinor equation
can be written as

∇µǫ = ± i
2
γµǫ , (2.21)

each of which admits two solutions. In our case, we will take ǫ and ǭ to be the Killing
spinors solving the previous equation with positive sign.

If we split the δ-transformations (2.8) and (2.11) or their S3 analog, (2.18) and (2.19),
as δ = δǫ + δǭ we can write the actions (2.16) and (2.17) in a δ-exact form,

ǭǫLS3

YM = δǭδǫ Tr

(

1

2
λ̄− 2Dσ

)

, (2.22)

ǭǫLS3

matter = δǭδǫ

(

ψ̄ψ − 2iφ̄σφ− 1

R
φ̄φ

)

. (2.23)

This fact will be important for localization.

Another possible way to obtain these theories on S3 is the following [36]:
In first place, we have to find the 4-dimensional N = 1 supersymmetric theory on

S3×R. This is done starting with the corresponding Lagrangian in flat space and coupling
it to off-shell supergravity in the old minimal formalism, where the gravity multiplet
consists of: the metric; the gravitino, Ψ; and two auxiliary fields, M and bµ, a complex
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scalar and a real vector respectively. The gravity multiplet enters as a background, so we
do not consider its own action and all fermionic fields in the supergravity multiplet are
turned to zero from the beginning.

Besides, the bosonic fields, either auxiliary or not, are set to arbitrary background val-
ues and do not need to satisfy the equations of motion. This method is used to obtain rigid
supersymmetric theories on curved manifolds, even non-Lorentzian theories, in that case
the auxiliary fields do not need to satisfy the reality conditions that one would impose in a
Lorentzian theory and bµ, M and M̄ are considered to be independent complex functions
(although at the end of the day, for the Lorentzian manifold S3 × R, the auxiliary fields
will satisfy the reality conditions). The only requirement is that the resulting Lagrangian
respects some amount of supersymmetry of the original flat space theory.

The resulting Lagrangian depends on the original fields plus the metric and the aux-
iliary bosonic fields M , M̄ and bµ. For this Lagrangian to be supersymmetric, we must
impose the supersymmetric variations of the gravitino to vanish, (more on this in section
3.2)

δΨ(bµ,M, ζ, ζ̄) = 0 , δΨ̄(bµ, M̄ , ζ, ζ̄) = 0 . (2.24)

where ζ and ζ̄ are Killing spinors. Since bµ, M and M̄ can be considered independent
complex functions, we must impose both δΨ and δΨ̄ to vanish. Then, any solution with
non-zero ζ, ζ̄ to equation (2.24) guarantees that the resulting Lagrangian preserves some
supersymmetry.

In this way, one can build the N = 1 supersymmetric matter action on S3 × R. To
obtain the theory on the three-sphere, one first rotates to Euclidean time the R direction
and compactifies it to S3 × S1 (now b4 = 3i/R, with R the S3 radius, and as anticipated
the reality condition is not satisfied). The final step is to take the radius of S1 to zero to
end up with a three dimensional N = 2 supersymmetric theory on S3, as we were looking
for.

2.2 Localization

Consider an action S(Φ), depending on a set of fields, Φ, invariant under the Grassmann-
odd symmetry δ, i.e.

δS(Φ) = 0 . (2.25)

Then δ2 = δB is a Grassmann-even symmetry made of other possible symmetries of S.
Since we are dealing with Lorentz and gauge invariant theories, this δB symmetry has to
be made of combinations of gauge and Lorentz transformations.

Now consider the partition function corresponding to the previous action perturbed
by a δ-exact term,

Z =

∫

DΦ e−S−tδV , (2.26)

where V is a fermionic functional, invariant under the symmetry δB . Then, it is easy to
prove that the partition function is independent of the parameter t:

dZ

dt
= −

∫

DΦ δV e−S−tδV = −δ
(∫

DΦV e−S−tδV
)

= 0 , (2.27)
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in the second equality we have integrated by parts and the missing term vanishes because
of the properties δS = δ2V = 0. We have also supposed that the δ-symmetry leaves
the path integral measure invariant, that is, it must not suffer from anomalies. In the
last equality we have used the fact that δ is a symmetry of the path integral, however,
this result may not hold if the boundary term does not decay sufficiently fast in field
configurations, but in most cases this does not happen.

The same derivation applies for the expectation value of an operator preserving the
δ-symmetry, δO = 0. Perturbing it with the term −tδV we again find

d

dt
〈O〉t =

d

dt

∫

DΦOe−S−tδV = −δ
(∫

DΦOV e−S−tδV
)

= 0 . (2.28)

If the partition function or the expectation value of the operator O do not depend on
the parameter t, we can compute them for several values of t and all of them coincide with
the original t = 0 integrals. Typically, one takes the limit t → ∞, where simplifications
usually occur. For instance, if δV has a positive definite bosonic part, (δV )B , the partition
function path integral “localizes” to a submanifold of field configurations with

(δV )B = 0 . (2.29)

And it turns out that, in many cases, this localized set of field configurations leads to a
finite-dimensional integral.

As we see, the fact that S has to be invariant under a Grassman-odd symmetry makes
supersymmetric theories the ideal context in which to apply these techniques. To illustrate
the use of localization, we are going to compute in the next section the localized partition
function of pure N = 2 Chern-Simons theory on S3.

2.2.1 Localization of Chern-Simons

Now we want to compute the partition function of pure N = 2 super Chern-Simons theory
with U(N) gauge group on S3 applying the localization methods described in the previous
section.

We start by considering the CS action SS
3

CS given in (2.15) and we perturb it with the

term −tSS3

YM (2.16). We saw in (2.22) that the super Yang-Mills action is δ-exact, then it
is appropriate as the perturbation term in localization. It also has positive definite bosonic
part, therefore, in the t → ∞ limit, bosonic fields must take classical values that ensure
the vanishing of the bosonic part. Then, our theory localizes to

Fµν = 0 , Dµσ = 0 , D +
σ

R
= 0 . (2.30)

The first of these equations implies that the gauge connection Aµ is flat and, since we are
on a simply connected manifold, the only flat connection is Aµ = 0. In consequence, we
are left with the classical background

Aµ = 0 , σ = σ0 , D = −σ0

R
, (2.31)

where σ0 is constant. In the t→∞ limit, the partition function becomes, up to an overall
constant,

Z =

∫

dσ0 Z1-loop[σ0]eiScl[σ0] , (2.32)
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with a classical contribution coming from the CS action evaluated at (2.31),

Scl =
k

2πR
vol(S3) Tr(σ2

0) (2.33)

and a one-loop contribution coming from fluctuations of the fields that appears in the
Yang-Mills action taking values around the locus (2.31),

σ → σ0 +
1√
t
σ ,

D → −σ0

R
+

1√
t
D ,

Φ→ 1√
t
Φ ,

(2.34)

here Φ stands for any other field different than σ and D. The 1/
√
t factors have been

introduced for convenience, these remove the overall t factor of the perturbation term and
the t→∞ limit only allows us to maintain quadratic fluctuations of the fields.

To compute the one-loop contribution one has to perform a gauge-fixing. To be pre-
cise, we should have carried out the localization procedure on the gauge-fixed action.
However, as shown in [8,20], one can redefine the Grassmann odd symmetry employed in
the localization computation by considering the BRST symmetry

δ → δSUSY + δBRST . (2.35)

Then, instead of using the Yang-Mills action alone, one perturb the gauge-fixed CS action
with an additional term −tδ(c̄(1

2ξb−∇µAµ)), which produces the usual gauge fixing terms

∂µc̄D
µc− 1

2
ξb2 + b∇µAµ , (2.36)

where t has been absorbed with the appropriate rescaling, just as we did in (2.34). b is
the Lautrup-Nakanishi auxiliary field. Integrating out the b-field leads to the usual Rξ-
gauge fixing terms. We will work in the Landau gauge ξ = 0, then we can consider b as a
Lagrange multiplier imposing Lorenz gauge condition.

After performing the expansion to quadratic order in the fields, the Yang-Mills action
with gauge fixing terms becomes

SYM =
1

2

∫

d3x
√

− det gTr
(

−Aµ∆Aµ − [Aµ, σ0]2 + ∂µσ∂
µσ +

(

D +
σ

R

)2

+ iλ̄γµ∇µλ+ iλ̄[σ0, λ]− 1

2R
λ̄λ+ ∂µc̄∂

µc+ b∇µAµ
)

, (2.37)

where ∆ is the Laplacian and we have replaced the covariant derivative of c by an ordinary
one once we neglect suppressed terms in t.

Now, we want to perform the path integral of the partition function corresponding to
this action. First consider the term (D + σ/r)2, σ can be absorbed after a redefinition of
D and integration of the later just eliminates the (D + σ/r)2 term.
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Next we split the gauge field into a divergence and a divergenceless part,

Aµ = ∂µφ+Bµ , with ∇µBµ = 0 . (2.38)

Integration over b imposes the constrain ∇2φ = 0 and the integration of the fields φ, c
and σ generate some determinants of ∇2 on the sphere, each one to the appropriate power
according to the field statistics. At the end of the day, these determinants cancel each
other out. In any case, the integration over these fields produces contributions to the
partition function independent of σ0. At this point we are left with

Z =

∫

dσ0 e
iπkR2 Trσ2

0

∫

DBDλDλ̄ e
∫

d3x
√− det gL , (2.39)

where L is an abreviation for

L =
1

2
Tr
(−Bµ∆Bµ − [Bµ, σ0]2 + iλ̄γµ∇µλ+ iλ̄[σ0, λ]− 1

2R
λ̄λ
)

. (2.40)

The integrand in equation (2.32) is gauge invariant, then we can use this to choose σ0 to
be in the Cartan subalgebra of the Lie group. This simplifies the integration, since we end
up with ordinary fields as opposed to matrix valued fields. However, we have to introduce
the Vandermonde determinant that accounts for this change. It is computed in appendix
2.B, it gives:

N
∏

i<j

(λi − λj)2 , (2.41)

where λi are are the eigenvalues of σ0. In general, for a gauge group G, the Vandermonde
determinant becomes a product over the roots of G,

∏

α

α(σ0) . (2.42)

For the gauge group U(N) the roots are given by λi−λj and we recover expression (2.41).
There is also a residual gauge symmetry given by the Weyl group, so we should divide the
partition function by the order of the gauge group, but as it is a factor independent of σ0

we will ignore it.

If now we apply the Cartan decomposition to Bµ (and in the same way for λ),

Bµ =
∑

α

Bα
µEα +Hµ , (2.43)

i.e. we express it as a sum of elements in the Cartan subalgebra, Hµ, and “ladder opera-
tors”, Eα. These elements satisfy

[H,H ′] = 0 , [H,Eα] = α(H)Eα , [Eα, Eβ ] =











NαβEα+β if α+ β is a root
Hα if α+ β = 0
0 otherwise

Tr[EαEβ ] = δα+β,0 ,

(2.44)
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where we have chosen the standard normalization for the last identity. Then as σ0 is in
the Cartan subalgebra and using these relations we are left with (2.39), where now L is

L =
1

2

∑

α

(

Bµ
−α(−∆ + α(σ0)2)Bα + λ̄−α(iγµ∇µ + iα(σ0)− 1

2R
)λα

)

. (2.45)

After carrying out the remaining path integrals we are left with the determinant of the
vector Laplacian on S3. The eigenvalues and degeneracy of the vector Laplacian acting
on the divergenceless part of a vector field are:

eigenvalues: − 1

R2
(l + 1)2 , degeneracy: 2l(l + 2) ; (2.46)

while those of the Dirac operator iγµ∇µ acting on fermionic modes are:

eigenvalues: ± 1

R

(

l +
1

2

)

, degeneracy: l(l + 1) , (2.47)

with l = 1, 2, . . . in both cases. Then we can write the one loop contribution as

Z1-loop =
∏

α

∞
∏

l=1

det(fermions)
√

det(bosons)
=
∏

α

∞
∏

l=1

((l + iα(σ0))(−l − 1 + iα(σ0)))l(l+1)

((l + 1)2 + α(σ0)2)l(l+2)
, (2.48)

where we are setting R = 1, which can be easily recovered. After cancelations between
factors in the numerator and in the denominator and using the fact that roots come in
positive-negative pairs we get

Z1-loop =

( ∞
∏

l=1

l4
)

∏

α>0

∞
∏

l=1

(

1 +
α(σ0)2

l2

)2

. (2.49)

The infinite product appearing in first place can be regularized by means of zeta function
regularization, which gives 2 as a result. The remaining product in l is the infinite product
representation of the sinh function. Therefore, we have

Z1-loop =
∏

α>0

(

2 sinh(πα(σ0))

πα(σ0)

)2

, (2.50)

up to a σ0-independent factor. Putting the classical and 1-loop contributions together,
we find that the Vandermonde determinant cancels out the denominator of the previous
formula, thus we are left with

Z =

∫

dµ
∏

i<j

4 sinh2 µi − µj
2

e− 1
2g

∑

i
µ2

i , (2.51)

where we have already used that the Lie algebra of U(N) has roots λi− λj. We have also
rescaled the eigenvalues of σ0,

λ =
µ

2π
(2.52)

and redefined the coupling constant,

g ≡ 2πi

k
. (2.53)
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At this point we have seen how to obtain the matrix model partition function of pure
Chern-Simons theory, however, we are interested in Chern-Simons theories coupled to
matter. To obtain the corresponding matrix model one has to proceed in an analogous
way to the one we have followed in this section. When considering the addition of matter,
we can take advantage of the fact that the matter Lagrangian can be written as a δ-exact
term, (2.23), so we can perturb the action in the partition function with both −tSYM and
the additional term −tSmatter and proceed in a similar way to what we did in the absence
of matter. Finally one obtains the following recipe to build the matrix model:

• The classical values of the fields are those shown in (2.31), while any other is set to
zero.

• For each vector multiplet there is a factor

Zvector
1-loop =

∏

α>0

(

2 sinh(πα(σ0))

πα(σ0)

)2

. (2.54)

This is the contribution we have just computed.

• For every chiral hypermultiplet in a representation R, with mass given by a back-
ground vector multiplet as explained in equation (2.13), we have the contribution

Zchiral
1-loop =

∏

ρ

1

2 cosh(πρ(σ0 +m))
, (2.55)

where now the product is over the weights of the representation R. For example, in
the fundamental representation of U(N) we have

Zchiral
1-loop =

N
∏

i=1

1

2 cosh(π(λi −m))
. (2.56)

• Add the Vandermonde determinant,

∏

α>0

α(σ0)2 , (2.57)

to account for the gauge fixing of the matrix model to the Cartan subalgebra.

• Divide by the order of the Weyl group, this accounts for the remaining residual gauge
symmetry after the gauge fixing to the Cartan subalgebra.

2.2.2 Wilson-Loop

Another observable that can be computed with localization is the vacuum expectation
value (vev) of the 1/2 supersymmetric circular Wilson loop of a big circle of S3 [20,37].

Let us consider the following operator

W (C) =

〈

1

N
Tr P exp

(∮

C
dτ (iAµẋ

µ + σ|ẋ|)
)〉

, (2.58)
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where the contour C is, for the moment, an arbitrary closed path on S3. As we have
seen, to apply localization we need some supersymmetry. Therefore, the variation of the
operator (2.58) under the supersymmetric transformation (2.8),

δW (C) ∝ ǭ(−γµẋµ + |ẋ|)λ+ λ̄(γµẋ
µ − |ẋ|)ǫ , (2.59)

must vanish, i.e.

ǭ(−γµẋµ + |ẋ|) = 0 , (2.60)

(γµẋ
µ − |ẋ|)ǫ = 0 , (2.61)

for at least one non-trivial Killing spinor. We saw in (2.21) that the conformal Killing
spinor equation on the three sphere is

∇µǫ = +
i

2
γµǫ , (2.62)

which admits two solutions. There is another conformal Killing spinor equation with the
opposite sign which admits two more solutions but it is sufficient to consider the equation
(2.62). If the Killing spinor ǫ satisfies equation (2.61), or what it is the same

γµẋ
µǫ = ǫ , (2.63)

if we take τ to be the arc length. This condition can be only fulfilled for constant γµẋ
µ.

This means that ẋµ can be expressed as a linear combination of the orthonormal frame on
the three-sphere, which we can take, for example, the SU(2) left invariant forms. Then
we can choose our loop to be parallel to one vector of the frame, this means that the loop
C is a big circle of S3. Then we are left with the condition

γµǫ = ǫ , (2.64)

for a given µ. This condition is fulfilled by one of the solutions to the Killing equation
(2.62), while we must take the remaining spinor equal to zero. As only half of the original
Killing spinors take non-trivial values, this Wilson loop is 1/2 BPS.

Then the computation we did for the partition function is minimally changed for the
computation of the expectation value of this Wilson loop. It does not change the localizing
locus (2.31), neither it changes the computation of the one-loop contribution. Its difference
comes from the classical contribution.

Then the vev of the Wilson loop localizes to a matrix integral obtained by replacing
the fields by their classical values. For a U(N) fundamental Wilson loop this amounts to
insert the piece

∑

i

eµi (2.65)

in the partition function.
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2.3 U(N) Chern-Simons with 2Nf massive flavors

Let us consider the N = 2 supersymmetric Chern-Simons theory with gauge group U(N)
on S3 and level k, with a matter content given by 2Nf chiral multiplets of mass m/2π (Nf

fundamentals and Nf antifundamentals). For m = 0, the theory is superconformal for any
Nf [34,37]. The mass deformation for the chiral multiplets explicitly breaks classical scale
invariance and hence conformal invariance. Applying the localization recipe given at the
end of section 2.2.1, one finds that the partition function localizes to

Z
U(N)
Nf

=

∫

dNµ

(2π)N

∏

i<j 4 sinh2(1
2(µi − µj)) e− 1

2g

∑

i
µ2

i

∏

i

(

4 cosh(1
2 (µi +m)) cosh(1

2(µi −m))
)Nf

, (2.66)

where remember that

g =
2πi

k
. (2.67)

The scalar field σ has mass dimensions, therefore, in (2.66) both µ and m scale with the
radius of the three-sphere, R. The radius has been set to one for notational convenience.
The dependence on the radius will be restored when considering the decompactification
limit. Calculations will be performed for a real parameter g > 0, which ensures the
convergence of the integral. The dependence on k can be recovered in the final expressions
for the supersymmetric observables by analytic continuation.

In the infinite N limit, the partition function can be determined by a saddle-point
calculation. Here we will consider the Veneziano limit, where the ’t Hooft coupling,

t ≡ gN , (2.68)

and the Veneziano parameter,

ζ ≡ Nf

N
, (2.69)

are kept fixed as N →∞. It is useful to define the potential as

V (µi) =
N
∑

i=1

(

µ2
i

2
+ gNf log

[

2 cosh
µi +m

2

]

+ gNf log

[

2 cosh
µi −m

2

]

)

. (2.70)

The saddle-point equations are then

1

N

∑

j 6=i
coth

µi − µj
2

=
1

t
V ′(µi) =

µi
t

+
ζ

2
tanh

µi +m

2
+
ζ

2
tanh

µi −m
2

. (2.71)

Introducing as usual the eigenvalue density

ρ(µ) =
1

N

N
∑

i=1

δ(µ− µi) , (2.72)

the saddle-point equation (2.71) is converted into a singular integral equation:

−
∫

dν ρ(ν) coth
µ− ν

2
=
µ

t
+
ζ

2
tanh

µ+m

2
+
ζ

2
tanh

µ−m
2

, (2.73)
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where the integral is defined by the principal value prescription. This matrix model can
be solved exactly. The solution is explicitly constructed in section 2.5. For clarity, we will
first discuss the solution directly in the decompactification limit, where, as we will see, the
model exhibits the presence of quantum phase transitions.

Another observable in which we are interested is the vacuum expectation value of the
Wilson loop explained in section 2.2.2, which localizes to the matrix integral,

W (C) =

〈

1

N

∑

i

eµi

〉

. (2.74)

In the large N limit, this vacuum expectation value is just given by the average computed
with the density function (2.72),

W (C) =

∫

dµ ρ(µ) eµ . (2.75)

2.4 Large N solution in the decompactification limit

Consider the integral equation (2.73). The term coth(1
2(µ−ν)) represents a repulsive force

among eigenvalues. For t > 0, the term µ/t is an harmonic force pushing the eigenvalues
towards the origin. The last two terms, proportional to tanh(1

2 (µ±m)), are forces pushing
the eigenvalues towards ∓m, respectively.

If t≫ 1, the harmonic force is negligible. If, in addition, m≫ 1, then the potential is
flat until µ = O(m). As a result, the eigenvalues scale with m. Restoring the dependence
on the radius R of S3, we can make this limit precise introducing the coupling λ ≡ t/mR
and taking the decompactification limit at fixed λ, i.e.

m→ mR , µ→ µR , with R→∞

t ≡ gN →∞ , λ ≡ t

mR
= fixed . (2.76)

It is worth stressing that t is dimensionless and a priori there is no reason why it should be
scaled with mR. However, if the decompactification limit is taken at fixed t≪ mR, then
its only effect is to decouple the matter fields, as this is equivalent to sending the masses
to infinity. This may be compared with four-dimensional N = 2 SYM theory coupled
to massive matter, e.g. N = 2∗ SYM or N = 2 SCFT∗ which can be viewed as a UV
regularization of pure N = 2 SYM theory [25]. In that case, the limit of masses M →∞
at fixed ’t Hooft coupling λ does not decouple the massive fields. In order to decouple the

massive fields one needs to take at the same time λ→ 0 with fixed MRe
1

β0λ , where β0 < 0
is the one-loop β function coefficient in βλ = β0λ

2. In other words, λ → 0 is required
to renormalize a one-loop divergence, viewing M as UV cutoff. In Chern-Simons-matter
theory, the ’t Hooft coupling does not renormalize because it is proportional to a rational
number, N/k. Thus, in the limit mR → ∞ with fixed t, matter fields are decoupled and
the theory just flows to pure N = 2 Chern-Simons theory. In what follows we will refer to
“decompactification limit” to the specific limit (2.76) where the most interesting physics
arises. We will shortly see that this limit defines a regular limit of the theory.
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We shall assume a one-cut solution where ρ(µ) is supported in an interval µ ∈ [−A,A],
with unit normalization,

∫ A

−A
ρ(µ)dµ = 1 . (2.77)

In the limit (2.76), the large N saddle-point equation simplifies to

∫ A

−A
dν ρ(ν)sign(µ− ν) =

µ

mλ
+
ζ

2
(sign(µ +m) + sign(µ−m)) , (2.78)

where the dependence on R has completely canceled out and µ, m and λ can now take
arbitrary values.

The solutions to (2.78) are different according to the value of the coupling λ. Consider
first the case 0 < ζ < 1. This gives rise to three phases.

Phase I: λ < 1

This phase arises when A < m, implying that |µ| < m for any µ. Under these conditions,
the sign functions on the right hand side of equation (2.78) cancel out. Flavors do not
play any role and we find a uniform eigenvalue density:

ρI(µ) =
1

2mλ
, (2.79)

supported in the interval µ ∈ [−mλ,mλ].

Phase II: 1 < λ < (1− ζ)−1

In this interval of the coupling the eigenvalue density takes the form

ρII(µ) =
1

2mλ
+

1

2λ
(λ− 1) (δ(µ +m) + δ(µ−m)) , µ ∈ [−m,m] , (2.80)

with A = m. The coefficients of the Dirac-δ functions are implied by the normalization
condition (2.77), once A = m is assumed. A further justification of this solution requires
a regularization, which is provided automatically by the finite R exact solution presented
below. We shall return to this solution in section 2.5.

Phase III: λ > (1− ζ)−1

In this case the saddle-point equation is solved by the eigenvalue density

ρIII(µ) =
1

2mλ
+
ζ

2
(δ(µ +m) + δ(µ−m)) , µ ∈ [−mλ(1− ζ),mλ(1− ζ)] . (2.81)

This is the solution that one would obtain by formal differentiation of (2.78) with respect
to µ. In order for the δ functions to contribute to the integral in (2.78), we must require
A > m, i.e. λ > (1− ζ)−1.

The above three solutions ρI, ρII and ρIII will be reproduced in the next section by
taking the decompactification limit in the general solution. They apply in three different
intervals of the coupling λ and represent three different phases of the theory.
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Thus, the picture is as follows. When λ < 1, the eigenvalues are uniformly distributed
in the interval [−mλ,mλ]. The width of the eigenvalue distribution therefore increases
with λ, until λ = 1, where the eigenvalue distribution is extended in the interval [−m,m].
Beyond λ = 1, there is still a uniform distribution in the interval [−m,m], now with fixed
width and a density that decreases as 1/λ. At the same time, some eigenvalues begin
to accumulate at µ = ±m. The width of the distribution stays fixed until λ overcomes
(1−ζ)−1. Beyond this point, eigenvalues are uniformly distributed in an interval [−mλ(1−
ζ),mλ(1−ζ)], which expands as λ increases, but now with a fixed numberNf of eigenvalues
accumulated at ±m.

In the case ζ ≥ 1, i.e. Nf ≥ N , the third phase disappears. The system has two
phases I and II, represented by the solutions (2.79), (2.80), where now phase II holds in
the interval λ ∈ (1,∞).

2.4.1 Free energy and critical behavior

The order of the phase transition is defined as usual by the analytic properties of the free
energy:

F = − 1

N2
logZ . (2.82)

We first consider 0 < ζ < 1 and compute its derivative with respect to the coupling, which
is related to the second moment of the eigenvalue density,

∂λF = − R

2mλ2
〈µ2〉 =















−mR
6 Phase I

−mR
6λ3 (3λ− 2) Phase II

−mR
6λ2

(

λ2(1− ζ)3 + 3ζ
)

Phase III

(2.83)

This implies a discontinuity in the third derivative at both critical points, λ = 1 and
λ = (1− ζ)−1:

∂3
λ(FI − FII)

∣

∣

∣

λ=1
= −mR , ∂3

λ(FII − FIII)
∣

∣

∣

λ=(1−ζ)−1
= mR(1− ζ)5 . (2.84)

Therefore, both phase transitions are third order. The free energy in the three phases is
given by:

FI =
mR

6
(6ζ − λ) , (2.85)

FII =
mR

6λ2

(

3(2ζ − 1)λ2 + 3λ− 1
)

, (2.86)

FIII =
mR

6λ

(

(ζ − 1)3λ2 + 3ζ2λ+ 3ζ
)

, (2.87)

up to a common numerical constant. Note that the free energy is complex upon ana-
lytic continuation to imaginary g. This is expected as the partition function (2.66) with
imaginary g is complex.

In the case ζ ≥ 1, the expressions for the free energies FI and FII are the same, but,
as explained, phase III disappears and phase II extends up to λ =∞.
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2.4.2 Wilson loop analyticity

We now compute (2.58) in the large R limit using the density functions (2.79), (2.80) and
(2.81). We obtain (0 < ζ < 1)

W (C) = 〈eµR〉 ∼















emRλ Phase I

emR Phase II

emRλ(1−ζ) Phase III

(2.88)

It follows a perimeter law, just like in massive (or asymptotically free) four-dimensional
N = 2 SYM theories [24,25,38,39]. At the two critical points,

∂λ logW (C) ∼















mR Phase I

0 Phase II

mR(1− ζ) Phase III

(2.89)

Thus there is a discontinuity in the first derivative.1

2.5 Large N solution at finite R

2.5.1 General solution

The integral equation (2.73) can be solved in general for finite R using standard methods
[28,29]. It is convenient to make the following change of integration variables:

zi = ceµi , c ≡ et(1−ζ) . (2.90)

Now we use the relations:

dNµ
∏

i<j

4 sinh2 µi − µj
2

= dNz

∏

i<j(zi − zj)2

∏

i z
N
i

, (2.91)

∏

i

(

4 cosh
µi +m

2
cosh

µi −m
2

)

= cN
∏

i

z−1
i

(

1 + zi
e+m

c

)(

1 + zi
e−m

c

)

, (2.92)

The partition function becomes

Z
U(N)
Nf

= e− t
2
N2(1−ζ2)

∫

dNz
∏

i<j

(zi − zj)2 e− 1
g

∑

i
V (zi) , (2.93)

which now exhibits a factor representing the Vandermonde determinant. The potential is
given by

V (z) =
1

2
(log z)2 + tζ log

[(

1 + z
e+m

c

)(

1 + z
e−m

c

)]

. (2.94)

1Power-like factors in W (2.88) are not meaningful, since they are affected by subleading corrections
which were discarded in the saddle-point equation (2.78). A formal calculation using the densities (2.79)-
(2.81) including the power factors gives a W with discontinuities in the second derivatives. The disconti-
nuity in the first derivative then appears in the infinite R limit.
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Therefore, we have a usual matrix model with logarithmic terms in the potential. In these
new variables, the saddle-point equation becomes

−
∫ b

a
dz ρ̂(z)

1

p − z =
1

2t
V ′(p) , (2.95)

where ρ̂(z)dz = ρ(µ)dµ. To compute the eigenvalue density one defines the auxiliary
“resolvent” function as

ω(p) =
1

N

〈

N
∑

i=1

1

p− zi

〉

, (2.96)

whose expression in the large N limit is

ω(p) =

∫

dz
ρ̂(z)

p− z . (2.97)

For a generic potential V (z), the resolvent is then given by [28,29]

ω(p) =
1

2t

∮

C

dz

2πi

V ′(z)
p − z

(

(p− a)(p − b)
(z − a)(z − b)

)1/2

, (2.98)

where C is a path enclosing the branch cut defined by the branch points a and b.2 Then
the eigenvalue density is obtained from the discontinuity of the resolvent across the branch
cut,

ρ̂(p) = − 1

2πi
(ω(p+ iǫ)− ω(p− iǫ)) . (2.99)

This can be easily seen since, according to (2.97),

ω(p± iε) =

∫

R

dz
ρ̂(z)

p± iǫ− z = P

∫

dz
ρ̂(z)

p− z +

∫

C∓
ε

dz
ρ̂(z)

p− z

= P

∫

dz
ρ̂(z)

p− z ∓ iπρ̂(p) , (2.100)

where C+
ε (C−

ε ) is the contour around the pole z = p in the upper (lower) half plane with
(anti) clockwise orientation. By similar arguments one can see that the resolvent can be
written as

ω(p) =
1

2t
V ′(p)− 1

2t
M(p)

√

(p − a)(p − b) , (2.101)

with

M(p) =

∮

∞

dz

2πi

V ′(z)
z − p

1
√

(z − a)(z − b) , (2.102)

where the integral is done over the same path C, but enclosing the point at infinity. These
expressions immediately follow from equation (2.98).

The integral defining M(p) contains two contributions, M = M1 + M2: M1 coming
from the potential term (log z)2, which is the one that appears in the pure Chern-Simons
matrix model. This integral is computed in [29], we repeat here its computation for
completeness. First of all, we cannot apply equation (2.102) directly, we need to deform
the contour of integration as sketched in figure 2.1, surrounding the logarithm branch cut
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C C

a b a b

C Cε

Figure 2.1: Integration contour for M1.

in the negative real axis and the singularity at z = 0. Then we are left with the integral
along the small circle Cε and that coming from the logarithmic jump when crossing the
negative real axis,

M1(p) = −
∮

Cε

dz

2πi

log z

z(z − p)
1

√

(z − a)(z − b) −
∫ −ε

−∞
dz

1

z(z − p)
1

√

(z − a)(z − b) . (2.103)

Both integrals in M1 are divergent in the limit ε → 0, however, singularities cancel out
between both integrals and we are left with

M1(p) =
1

p
√

(p− a)(p − b) log

(√
a
√
p− b−

√
b
√
p− a)2

p
(√
p− a−√p− b)2

+
2

p
√
ab

log

√
a+
√
b

2
√
ab

. (2.104)

The second piece M2 is

M2(p) = tζ

∮

∞

dz

2πi

1

z − p
1

√

(z − a)(z − b)

(

1

cem + z
+

1

ce−m + z

)

. (2.105)

There is no contribution from the residue at z =∞, the only contributions come from the
simple poles at z = −ce±m. We find

M2(p) = −tζ
(

1

p+ cem
1

√

(a+ cem)(b+ cem)
+ (m↔ −m)

)

. (2.106)

Let us combine this with the contribution coming from the (log z)2 term. We write ω =
ω(1) + ω(2), where

ω(1)(p) = − 1

2tp
log

(√
a
√
p− b−

√
b
√
p− a)2

p2
(√
p− a−√p− b)2

−
√

(p− a)(p − b)
tp
√
ab

log

√
a+
√
b

2
√
ab

, (2.107)

ω(2)(p) =
ζ

2

(

1

cem + p
+

1

ce−m + p

)

− 1

2t
M2(p)

√

(p− a)(p − b) . (2.108)

According to (2.97), the resolvent obeys the following boundary condition:

ω(p) ∼ 1

p
, for p→∞ . (2.109)

2Multi-cut solutions are not supported by the numerical results.
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Imposing this asymptotic condition to the solution (2.107) and (2.108), we obtain two
equations that determine the branch points a and b,

0 =
ζ

2

(

1
√

(a+ cem)(b+ cem)
+ (m↔ −m)

)

− 1

t
√
ab

log

√
a+
√
b

2
√
ab

, (2.110)

1 = ζ − ζ

2

(

cem + 1
2(a+ b)

√

(a+ cem)(b+ cem)
+ (m↔ −m)

)

+
(
√
a+
√
b)2

2t
√
ab

log

√
a+
√
b

2
√
ab

+
1

t
log
√
ab . (2.111)

Now, using the reflection symmetry of the original potential (2.70) prior to the change of
variable (2.90), we find that a and b obey the relation,

ab = c2 ≡ e2t(1−ζ) . (2.112)

As a result, one of the two equations (2.110) or (2.111) becomes redundant. The solution
for the eigenvalue density takes the form

ρ̂(z) =
1

πtz

√
z − a

√
b− z√

ab
log

(√
a+
√
b

2
√
ab

)

+
1

πtz
tan−1

(√
z − a

√
b− z

z +
√
ab

)

− ζ

2π

( √
z − a

√
b− z

(cem + z)
√
a+ cem

√
b+ cem

+ (m→ −m)

)

, (2.113)

with z ∈ (a, b), b = c2a−1 and a defined by one of the conditions (2.110) or (2.111).
The expression for the eigenvalue density takes a simpler form in terms of the original

µ variable:

ρ(µ) =
1

πt
tan−1

(√
coshA− cosh µ√

2 cosh µ
2

)

+
ζ

π

cosh µ
2 cosh m

2

cosh µ+ coshm

√
coshA− cosh µ√
coshA+ coshm

(2.114)

supported on the interval µ ∈ (−A,A), where A is given by the condition

log

(

cosh
A

2

)

=
1

2
t(1− ζ) +

tζ cosh m
2√

2
√

coshA+ coshm
, (2.115)

for any ζ ≥ 0.
In the massless m = 0 case, the eigenvalue density becomes

ρ(µ) =
1

πt
tan−1

(√
coshA− cosh µ√

2 cosh µ
2

)

+
ζ

2π

√

2
sech

µ

2
−

2
sech

A

2
(2.116)

logX = − t
2

(1− ζ + ζX) , X ≡ sech
A

2
. (2.117)

In particular, if ζ = 0, i.e. pure N = 2 CS theory without matter, this reproduces the
result of [28,29]. This provides a check of our assumption that, for real g, eigenvalues lie
on one cut in the real axes. For imaginary g, the cut lies in the complex plane.3

3It is simpler to perform the continuation to imaginary g after computing observables.
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As the coupling t is gradually increased from zero, the eigenvalue density behaves as
follows. At weak coupling, the classical force term µ/t in the saddle-point equation (2.73)
is dominant, squeezing the eigenvalue distribution towards the origin. All eigenvalues
are small and the kernel in the integral of equation (2.73) approaches the Hilbert kernel,
leading to the Wigner semicircular distribution,

ρ(µ) ≈ 1

2πt

√

4t− µ2 µ ∈
[

−2
√
t, 2
√
t
]

, t≪ 1 . (2.118)

Indeed, this expression can be obtained directly from (2.114). In fig. 2.2 we show this
distribution as compared to the finite N eigenvalue density obtained numerically from eq.
(2.71).
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Figure 2.2: At t≪ 1 the eigenvalue density approaches the Wigner distribution (t = 0.1,
m = 50, ζ = 0.25). Solid line: eigenvalue distribution obtained analytically. Dots:
numerical solution to (2.71) with N = 100.

As t is further increased, the eigenvalue distribution expands and gets flattened forming
a plateau, until t gets close to t . m, when two peaks around µ ≈ ±m begin to form (fig.
2.3). For finite R, small peaks begin to show up already at t . m.
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Figure 2.3: Eigenvalue density in phase I for m = 50, ζ = 0.25 and (a) t = 47, (b) t = 49.
Solid line: analytic solution. Dashed line: solution in the decompactification limit. Dots:
numerical solution to (2.71) with N = 100.
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As the coupling is increased beyond t = m, eigenvalues begin to accumulate around
µ = ±m, enhancing the peaks and maintaining the plateau between them (this is shown in
fig. 2.4). This would correspond to phase II in the decompactification limit, where peaks
turn into Dirac delta functions. For ζ ≥ 1 this phase holds up to t = ∞: the eigenvalue
distribution is uniform with support in a fixed interval (−m,m), with a density decreasing
as 1/t, and with two peaks at µ = ±m, whose amplitudes increase until all eigenvalues
get on the top of µ = ±m as t→∞.
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Figure 2.4: Eigenvalue density in phase II for m = 50 and (a) t = 60, ζ = 0.25, (b)
t = 150, ζ = 2 (same conventions as in fig. 2.3).

When 0 < ζ < 1, phase II holds only in the interval m < t < m/(1 − ζ). For
t > m/(1 − ζ), the plateau begins to extend beyond the peaks at µ = ±m, as shown in
fig. 2.5. Each peak now contains Nf/2 eigenvalues. This reproduces the behavior found
in section 2.4 for phase III.

Note that fig.2.4b and 2.5 display the eigenvalue density for the same value of t = 150
but different ζ. They illustrate the fact that when ζ ≥ 1 eigenvalues lie on the interval
[−m,m] for all t > m, whereas when ζ < 1 the eigenvalue distribution extends beyond
µ = ±m as soon as t overcomes m/(1− ζ).
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Figure 2.5: Eigenvalue density in phase III for m = 50, t = 150, ζ = 0.25 (same conven-
tions as in fig. 2.3).



2.5. Large N solution at finite R 31

Using the eigenvalue density (2.114), we can obtain the expression for the Wilson loop
at finite R,

W (C) =
1

t
sinh2 A

2
+
ζ

2

√
1 + coshm√

coshA+ coshm

×
(

coshA− 1 + 2 coshm

(

1−
√

coshA+ coshm√
1 + coshm

))

. (2.119)

2.5.2 Decompactification limit

Let us examine the general formula for the eigenvalue density (2.114), (2.115) in the large
R limit. It is convenient to restore the R dependence by the scaling m→ mR, A→ AR,
µ→ µR. For large R, (2.115) simplifies to the following form

A− 1

R
log 4 = mλ(1− ζ) +

mλζ
√

e(A−m)R + 1
, (2.120)

where, again, we have introduced the parameter λ ≡ t/mR. We now solve this equation
in the three different phases:

• λ < 1: Let us assume that A < m. In this case we can neglect the exponential inside
the square root of (2.120). This gives A ≈ mλ. Thus the A < m phase appears
when λ < 1.

• 1 < λ < (1− ζ)−1: In this interval the solution is of the form:

A = m+
1

R
log

[

λ2ζ2

(1− λ(1 − ζ))2
− 1

]

+O(R−2) . (2.121)

As we will shortly see, the O(R−1) term is important in determining the density at
R→∞. When ζ ≥ 1, this solution for A is real for any λ > 1, and in this case this
phase extends up to λ = ∞. When 0 < ζ < 1, (2.121) solves (2.120) with real A
provided 1 < λ < (1− ζ)−1.

• λ > (1 − ζ)−1: Let us now assume that A > m. In this case the last term of eq.
(2.120) can be neglected and we end up with

A ≈ mλ(1− ζ) . (2.122)

Thus the solution arises only when ζ < 1 and A > m requires λ > (1 − ζ)−1, in
concordance with the analysis of section 2.4.

Consider now the eigenvalue density (2.114). The first term gives

1

πmλ
tan−1

(√
coshAR− cosh µR√

2 cosh µR
2

)

−→
R→∞

{

0 , |µ| = A ,
1

2mλ , |µ| < A .
(2.123)

Therefore this is the term which gives the plateau, reproducing the same result of section
2.4.



32 Chapter 2. Exact results in Chern-Simons theory

Consider now the second term in (2.114). When A < m, this term vanishes at large
R. If, instead, A > m, then this term generates two Dirac delta functions centered on ±m
with normalization ζ/2. For a trial function f(µ), one numerically finds that

R

∫ A

−A
dµ

2

π

cosh µR
2 cosh mR

2

cosh µR+ coshmR

√
coshAR− cosh µR√
coshAR+ coshmR

f(µ) −→ f(m)+f(−m) , (2.124)

at large R.

Finally, consider the intermediate case, phase II, where A is given by (2.121). We find a
similar result as (2.124), but with an extra overall coefficient (λ−1)/(ζλ). This coefficient
is produced by the correction of order O(R−1) in A. Thus the resulting ρ exactly matches
the solution (2.80).

2.6 Comments

In summary, we have seen how supersymmetry can provide with interesting exact results,
by making use of the localization methods. These methods allow us to reduce a compli-
cated path integral to a simpler matrix model integral, which in some cases, as the one
presented here, can be solved exactly.

As an example, we have studied N = 2 Chern-Simons theory with massive matter on a
three sphere. We have seen that in a particular decompactification limit mass deformations
lead to new physics involving large N quantum phase transitions, like in N = 2 massive
four-dimensional SYM theories. These phase transitions produce non-analytic behavior in
supersymmetric observables, like discontinuities in the first derivatives of the vev of the
circular Wilson loop, which can be computed explicitly.

It is worth mentioning here that the partition function for this system can be computed
exactly at finite N . This is done in [40], where different behaviors for the partition function
are found depending on the relative values of the mass and the coupling parameters. This
already gives evidence at finite N of the large N phase transitions studied here.

We have not included Fayet-Iliopoulos (FI) parameters. We can introduce a FI param-
eter, η, for each U(1) factor of the gauge group. The addition of each of these FI terms
translates into the addition of the classical term

SFI
cl = 2πiη Trσ0 (2.125)

in the matrix model [35]. Including both FI and mass parameters may shed new light
on the properties of these phase transitions. In particular, the exchange of mass and
FI parameters exchanges mirror pairs of three-dimensional supersymmetric field theories
[35, 41]. This indicates that certain massless theories deformed by FI parameters may
also exhibit large N phase transitions in some limit. It would be interesting to study the
consequences of this interplay in more detail.

It would also be interesting to perform similar studies to the one presented here for
other mass deformations of three dimensional theories. For instance, in [42] they study
the mass-deformed ABJM model on the three sphere, whose partition function is given in
[35] and its mirror theory is the low energy limit of U(N) N = 8 super Yang-Mills.
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In [42] they solve the saddle-point equation of this theory in a similar decompactifica-
tion limit to the one presented here. As we do, they rescale the ’t Hooft coupling with the
radius R and study the theory at R → ∞ with the rescaled ’t Hooft coupling fixed. As
in many localization computations like the one we have shown in this chapter, they solve
the saddle-point equations of this model by analytically continuing the couplings to the
complex plane. They do it in two possible ways, the analytic continuation is done for the
rank of the gauge groups or in the Chern-Simons level. At large N , the density functions
that solve the saddle point equations take a multiple step form an they undergo an infinite
series of third order phase transitions that accumulate at strong coupling. However, the
connection to the original ABJM theory that undoes the analytical continuation poses
some problems and it still is an issue to be considered.

2.A Spinor conventions

In three dimensional Euclidean space, the Clifford algebra is defined by

{γµ, γν} = 2gµν , (2.126)

where in our case gµν is just the Euclidean metric δµν . If the Pauli matrices are given by

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

, (2.127)

a possible choice of the Dirac matrices is then

γµ = γµ = σµ . (2.128)

and now we have

γµν ≡ 1

2
[γµ, γν ] = iǫµνργρ . (2.129)

We will work with complex, two-component spinors, which are in the fundamental repre-
sentation of the spin group SU(2),

ψα =

(

ψ1

ψ2

)

. (2.130)

The SU(2) indices are raised or lowered with

ǫαβ = −ǫβα = −ǫαβ =

(

0 −1
1 0

)

; ψα = ǫαβψβ , ψα = ǫαβψ
β . (2.131)

This allows to define the SU(2) inner product

ψχ ≡ ψαχα = ψαǫαβχ
β (2.132)

and then, for example, we have

ψχ = χψ , ψγµχ = ψα(γµ) β
α χβ = −χγµψ . (2.133)

We also define

γµν ≡ 1

2
[γµ, γν ] = iǫµνργρ . (2.134)
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2.B The Vandermonde determinant

Here we are going to show how the Vandermonde determinant appears in the partition
function of a U(N) gauge invariant matrix model. We will follow [29,43].

Let us consider the matrix model partition function

Z =
1

vol(U(N))

∫

dMe−S(M) , (2.135)

where M is an N × N hermitian matrix and the action is invariant under the adjoint
action of gauge group U(N), i.e.

S(MU ) = S(M) , with MU = UMU−1 . (2.136)

The measure dM is the Haar measure, given by

dM =
N
∏

i=1

dMii

∏

i<j

d(ReMij)d(ImMij) . (2.137)

In a matrix model it is usually convenient to work with diagonal matrices, so that the
partition function becomes

Z =

∫ N
∏

i=1

dλiJ(Λ)e−S(Λ) , (2.138)

where Λ is the diagonalized M matrix,

M = V ΛV † , with Λij = λiδij (2.139)

and V is the element of U(N) that diagonalizes M . We have to determine J(Λ), this can
be done by considering the choice of a diagonal M , namely Λ, as a gauge fixing condition
and applying standard Faddev-Popov techniques. So let us introduce the quantity

∆−1(M) =

∫

dU
∏

i<j

δ[Re(MU )ij]δ[Im(MU )ij ] , (2.140)

where dU is the Haar integration measure over the gauge group, which, of course, is gauge
invariant. Then we can write the original partition function as

Z =

∫

dMe−S(M)∆(M)

∫

dU
∏

i<j

δ[Re(MU )ij]δ[Im(MU )ij ] . (2.141)

Both dM and ∆(M) are gauge invariant, hence, if we change M →MU−1
, we end up with

Z = ΩN

∫

dMe−S(M)∆(M)
∏

i<j

δ[Re(M)ij ]δ[Im(M)ij ] , (2.142)

where

ΩN =

∫

dU (2.143)
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is the integral over the unitary group. As we say in the main text, we are not interested
in the overall constant in the partition function, however, for completeness, we show here
the result for the previous integral,

ΩN

vol(U(N))
=

1

N !

1

(2π)N
. (2.144)

Therefore, it only remains to compute the quantity ∆(M). If we describe the gauge fixing
condition by

F (M) = 0 , i.e. Mij = 0 for i 6= j , (2.145)

then ∆(M) is the standard Faddeev-Popov determinant,

∆(M) = det
δF (MU )

δA
, (2.146)

for an infinitesimal gauge transformation, where A is the infinitesimal anti-hermitean
matrix appearing in U = eA. Then

Fij(Λ
U ) = (UΛ U †)ij = [A,Λ]ij + . . . = Aij(λj − λi) + . . . (2.147)

and the determinant (2.146) gives the square of the Vandermonde determinant:

∆(Λ) =
∏

i<j

(λi − λj)2 . (2.148)





3Chapter

Supersymmetry and Gauge/Gravity
duality

In this chapter we move away from the applications presented in the previous chapter. In
the next two chapters we will work in the context of the gauge/gravity duality. For this
reason, we are going to review in first place the original AdS/CFT conjecture of Maldacena.
Here and in the subsequent two chapters we will be interested in generalizations where
the supergravity solutions look like a product of four uncompactified external dimensions
and six compact internal dimensions. These solutions have to preserve supersymmetry,
therefore, in the second part of this chapter we will review the concept of G-structures,
in terms of which we can express the supersymmetry conditions that the backgrounds
have to satisfy. It turns out that solving these supersymmetry conditions is simpler than
solving the supergravity equations of motion and it can be proved that solutions to the
supersymmetry conditions supplemented with Bianchi identities automatically satisfy the
full set of equations of motion. We will also comment on how to find supersymmetric
embeddings of D-branes by introducing the concept of calibrations.

3.1 AdS/CFT in a nutshell

In this section we are going to sketch the original AdS/CFT duality proposed by Maldacena
[6]. This duality establishes a complete equivalence between N = 4 SU(N) super Yang-
Mills theory and type IIB string theory on AdS5 × S5.1 When making use of this duality
one usually considers a regime leading to a weaker but more practical version of the
duality, where it is enough to consider the low energy limit of the string theory, type IIB
supergravity. Therefore, it is appropriate to present these two theories first.

1In the seminal paper of Maldacena [6] he also conjectures other dualities between certain conformal
field theories of different dimensionality, d, and type IIB or M-theory gravity theories on AdSd+1 × MD,
with MD a certain manifold of D = 9 − d or 10 − d dimensions depending on whether we are in type IIB
string theory or M -theory respectively.

37
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3.1.1 N = 4 super Yang-Mills

N = 4 super Yang-Mills theory is made of a single N = 4 vector hypermultiplet in the
adjoint representation of the gauge group SU(N). The N = 4 hypermultiplet can be
considered from the point of view of N = 1 supermultiplets as being made of one vector
supermultiplet and three chiral supermultiplets. In consequence, the field content of this
hypermultiplet is a vector field Aµ, six real scalars Φi (i = 1, . . . , 6) and four Weyl fermions

λaα, λ†ā
α̇ . α and α̇ are chiral indices and a = 1, . . . , 4 and ā are in the 4 and 4̄ representation

of the global R-symmetry group SU(4)R ≃ SO(6)R. The Lagrangian for this theory is
given by [44],

LN =4 SYM = Tr

[

− 1

2g2
YM

FµνF
µν +

θYM

16π2
ǫµνρσFµνFρσ

− i
∑

a

λ̄aσ̄µDµλa −
1

g2
YM

∑

i

DµΦiDµΦi

+





∑

a,b,i

Cabi λa[Φ
i, λb] + h.c.



 +
1

2g2
YM

∑

i,j

[Φi,Φj]2
]

, (3.1)

in terms of two parameters: the coupling constant, gYM, and the theta angle, θYM. The
constants Cabi are related to the Dirac matrices associated to the Clifford representation
of the R-symmetry group.

Apart from the R-symmetry and the supersymmetries, this theory also posesses the
additional global symmetries:

• The β-function for this theory is exactly zero to all orders and, thus, the theory has
conformal symmetry SO(2, 4) ≃ SU(2, 2). This symmetry is generated by transla-
tions, Lorentz rotations, dilatations and special conformal transformations.

• Supersymmetry transformations and special conformal transformations do not com-
mute, therefore, their commutator generates a new symmetry called “special confor-
mal supersymmetry”.

3.1.2 Type II supergravity

In this section we will briefly review both type IIA and type IIB supergravity, which are
the low energy limit of type IIA/IIB string theory. Although the gravity dual of N = 4
super Yang-Mills involves type IIB supergravity or string theory, the gauge/gravity duality
is not something specific of these two theories, it also applies to other field theories and
gravity theories. For example, one can find dualities between certain field theories and
type IIA supergravity. This possibility will appear in chapter 5, for this reason we review
both IIA and IIB supergravity theories here.

Type II supergravity is a ten dimensional theory with 32 supersymmetries generated
by two 16 component Majorana-Weyl spinors, ǫ1 and ǫ2. Whether these spinors have the
same or opposite chirality corresponds to type IIB or type IIA supergravity respectively.

For the bosonic content of both type IIA and type IIB we distinguish two sectors
inherited from string theory, depending on fields satisfying NS-NS (from Neveu-Schwarz)
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or R-R (from Ramond) boundary conditions. On the one hand, the bosonic NS content
of both type IIA and type IIB is given by the metric g, the dilaton scalar field Φ and a
three form H. On the other hand, in the RR sector we find the n-form fields, Fn, with
n = 0, 2, 4 for type IIA and n = 1, 3, 5 for type IIB. The bosonic parts of the actions for
both type IIB and type IIA supergravity are

SIIB =
1

2κ2
10

∫

M10

√

− det g

[

e−2Φ

(

R+ 4(∂Φ)2 − H2

12

)

− 1

2

(

F 2
1 +

F 2
3

3!
+

1

2

F 2
5

5!

)]

− 1

2
(C4 ∧H ∧ dC2) , (3.2)

SMassive IIA =
1

2κ2
10

∫

M10

√

− det g

[

e−2Φ

(

R+ 4(∂Φ)2 − H2

12

)

− 1

2

(

F 2
0 +

F 2
2

2
+
F 2

4

4!

)]

− 1

2

(

dC3 ∧ dC3 ∧B +
1

3
F0dC3 ∧B3 +

1

20
F 2

0B
5
)

, (3.3)

where κ10 = 8π7/2gsl
4
s is given in terms of the string coupling, gs, and the string length,

ls =
√
α′.

In type IIA supergravity, F0 does not have any propagating degrees of freedom, the
equations of motion force it to take a constant value, F0 = m, called the Roman mass [45]
(and hence we use the name “Massive type IIA” supergravity when it is included). For
type IIB supergravity, F5 must fulfill the self duality condition

⋆ F5 = F5 , (3.4)

where the Hodge star operator is defined such that

⋆ ⋆Fn = (−1)n+1Fn . (3.5)

Problems in writing the type IIB supergravity action including this self duality condition
are well known, here we must impose the self duality condition by hand.

The fluxes are defined in terms of potentials in the following way

H = dB . (3.6)

Type IIB: F1 = dC0 , F3 = dC2 −H ∧ C0 , F5 = dC4 −H ∧C2 . (3.7)

Type IIA: F0 = m , F2 = dC1 + F0B , F4 = dC3 −H ∧C1 +
1

2
F0B ∧B . (3.8)

In the absence of sources this leads to the following Bianchi identities

dH = 0 . (3.9)

Type IIB: dF1 = 0 , dF3 −H ∧ F1 = 0 , dF5 −H ∧ F3 = 0 . (3.10)

Type IIA: dF0 = 0 , dF2 − F0H = 0 , dF4 −H ∧ F2 = 0 . (3.11)

The dual fluxes, are related to the previous ones by the expression

Fn = (−1)(n−1)(n−2)/2 ⋆ F10−n (3.12)
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and they are defined in terms of potentials as:

Type IIB: ⋆ F5 = F5 , F7 = dC6 −H ∧ C4 , F9 = dC8 −H ∧ C6 . (3.13)

Type IIA: F6 = dC5 −H ∧ C3 +
1

3!
F0B

3 , F8 = dC7 −H ∧ C5 +
1

4!
F0B

4 ,

F10 = dC9 −H ∧ C7 +
1

5!
F0B

5 .

(3.14)

with the following equations of motion

Type IIB: d ⋆ F1 +H ∧ ⋆F3 = 0 , d ⋆ F3 +H ∧ F5 = 0 . (3.15)

Type IIA: d ⋆ F2 +H ∧ ⋆F4 = 0 , d ⋆ F4 +H ∧ F4 = 0 . (3.16)

All this can be expressed in terms of polyforms (sum of forms of different degree) in the
following compact way

FIIB = d−HCIIB , FIIA = d−HCIIA + F0e
B , (3.17)

with the combined Bianchi identities

d−HFIIB = 0 , d−HFIIA = 0 , (3.18)

where dH = d +H∧ is the nilpotent (d2
H = 0) H-twisted exterior derivative acting on the

polyforms

FIIB = F1 + F3 + F5 + F7 + F9 , CIIB = C0 + C2 + C4 + C6 + C8 , (3.19)

FIIA = F0 + F2 + F4 + F6 + F8 + F10 , CIIA = C1 + C3 + C5 + C7 + C9 . (3.20)

D-branes

In II supergravity there are also non-perturbative (p + 1)-dimensional extended objects
called Dp-branes [46]. These are solitonic solutions of the supergravity equations of motion.
These solitons are also present as sources for closed strings in the high energy completion
of supergravity provided by string theory. In addition, D-branes can be also considered
from the point of view of perturbative open string theory. These objects can be found
quantizing the open string with Dirichlet boundary conditions (and hence the name “D-
brane”) so that they appear as hypersurfaces where open strings can end. The AdS/CFT
duality heavily relies on this doubled description of D-branes.

The D-brane action is given by the sum of a Dirac-Born-Infeld (DBI) and a Wess-
Zumino (WZ) term. The bosonic part of this action for a single Dp-brane wrapping a
submanifold Σ is given by

SDp = −TDp
∫

Σ
dp+1ξ e−Φ

√

|det(g
∣

∣

Σ
+ F)| + TDp

∫

Σ
C
∣

∣

Σ
∧ eF , (3.21)

where |Σ denotes the pull-back to the Dp-brane world volume Σ, for instance

gµν
∣

∣

Σ
=
∂XM

∂ξµ
∂XN

∂ξν
gMN , (3.22)
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where ξ are coordinates on the world-volume of the brane, whereas X are coordinates
on the target space. Hence, gMN is the target space metric. Moreover, we also find the
quantity

F = B
∣

∣

Σ
+ 2πl2sF (3.23)

made of of the sum of the pull-back of the NS two form potential, B, plus the field strength
of a U(1) world-volume gauge field, F = dA. Under a gauge transformation, these fields
transform as

B → B + dΛ , A→ A− 1

2πl2s
Λ
∣

∣

Σ
, (3.24)

leaving the gauge invariant combination F unchanged. Finally, TDp is the tension of the
Dp-brane

TDp =
1

(2π)pgsl
p+1
s

. (3.25)

Eventually, we will consider type II supergravity sourced by D-branes. Therefore, we will
have to consider the previous supergravity actions (3.2) or (3.3) plus the DBI and WZ
actions (3.21) of D-branes. Then, in the presence of sources, the Bianchi identities for
RR-fields are modified to something of the form

dHF = −2κ2
10 jsources , (3.26)

and the equation of motion for H

d(e−2Φ ⋆ H) =
1

2

∑

n

⋆Fn ∧ Fn−2 + 2κ2
10

δSDp
δB

. (3.27)

Finally, the Einstein equations and the dilaton equations of motion are

Dilaton: ∇2Φ− dΦ · dΦ +
1

4
R− 1

8
H ·H − 1

4

κ2
10e

2Φ

√− det g

δSDp
δΦ

= 0 (3.28)

Einstein: RMN + 2∇M∇NΦ− 1

2
HMHN −

1

4
e2ΦFMFN

−κ2
10e

2Φ
(

TMN +
gMN

2
√− det g

δSDp
δΦ

)

= 0 (3.29)

where TMN is the energy-momentum tensor associated to the sources

TMN = − 2√− det g

δSDp
δgMN

. (3.30)

Actions (3.2) and (3.3) do not have the standard Einstein-Hilbert term, since we find
the scalar curvature multiplied by the factor exp(−2Φ). Nevertheless, through a redefini-
tion of the metric,

gsMN = eΦ/2gEMN , (3.31)

we can recover the standard Einstein-Hilbert term. We have labelled the metric to distin-
guish the metric gsMN in the string frame, as given in (3.2) or (3.3), or in the Einstein frame,
gEMN , after the previous redefinition. We will choose to work in the string frame, because
later on, in chapter 5, we will consider T -dual transformations of supergravity backgrounds
and these transformations are more conveniently expressed in the string frame. In chapter
5 we will also find explicit expressions for the equations of motion in presence of sources.



42 Chapter 3. Supersymmetry and Gauge/Gravity duality

3.1.3 The Maldacena conjecture

To motivate the Maldacena conjecture let us start by considering a Dp-brane. Roughly
speaking, one can view the Dp-brane from two points of view, one can consider its world
volume action (3.21), or one can consider the geometry generated when this Dp-brane
is placed in flat space. In the last case, the Dp-brane corresponds to a solution of type
IIB supergravity action with the RR supergravity field Fp+2 turned on. The equations of
motion following from this action admit the supersymmetry preserving solution2

ds2 = H−1/2
p dx2

1,p +H1/2
p

(

dr2 + r2dΩ2
8−p
)

, (3.32)

with

Hp(r) = 1 +
L7−p

r7−p and L7−p =
2κ2

10TDp
(7− p)vol(S8−p)

, (3.33)

where dx2
1,p is the (p+1)-dimensional Minkowski space and dΩ2

q is the metric of a q-sphere
of radius one. This is the metric for an extremal black p-brane with horizon at r = 0 and
represents the geometry generated by the Dp-brane.

The remaining pieces of the solution, the RR-form and the dilaton, are given by

Fp+2 = dH−1
p ∧ dx0 ∧ . . . ∧ dxp , eΦ = gsH

(3−p)/4
p . (3.34)

At r → ∞ the warping factor disappears, Hp → 1, and we identify gs with the string
coupling at infinity in the last formula. There we can appreciate the importance of the
p = 3 case, where the dilaton is constant and the previous identification holds for all r.

The RR charge of the D-brane can be ascertained from

Qp =
1√
2κ10

∫

S8−p
⋆Fp+2 =

√
2κ10TDp , (3.35)

Eventually, we will be interested in the geometry generated by a stack of N coincident
Dp-branes, this can be obtained by the replacement

Qp → NQp . (3.36)

and therefore, L7−p → NL7−p.
The solution (3.32)-(3.34) describing the geometry of a Dp-brane is a classical gravita-

tional solution requiring a quantum gravity completion at high energies. This completion
is provided by string theory and therefore, this solution describes the dynamics at low
energy of excitations of massless closed strings.

Consider now a stack of N coincident D3-branes (in this case we must impose the self
duality condition on the RR 5-form, F5), the system interpolates between ten dimensional
Minkowski space at r ≫ L and the near horizon geometry at r ≪ L, given by

ds2 ∼ r2

L2
dx2

1,3 +
L2

r2
dr2 + L2dΩ2

5 , (3.37)

2As we will see in section 3.2, it is enough to solve the equations resulting from setting the gravitino and
the dilatino supersymmetric transformations to zero to obtain supersymmetric solutions to the equations
of motion.
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where we identify an AdS5×S5 geometry, with both the AdS-space and the 5-sphere with
the same radius

L = (4πgsN)1/4 ls . (3.38)

We can consider this system from a different point of view. In the presence of the stack
of N D3-branes on flat space, type IIB string theory contains closed strings as excitations
of empty space (bulk) or open strings, with both ends on the brane, as excitations of the
D-branes. In the low energy limit only massless excitations remain and we can write an
effective action describing the brane modes, the bulk modes and the interaction between
them,

S = Sbrane + Sbulk + Sint. . (3.39)

Consider then the action Sbrane that would correspond to a single Dp-brane. At low
energies the effective action describing the dynamics of massless open strings is given by
(3.21). Let us consider the simple case in which we place it in flat space without any RR
field nor the NS B-field turned on. Then we can write the action (3.21) as

S = −TDp
∫

dp+1ξ
√

|det(ηµν + 2πl2sFµν)| . (3.40)

Now, if the energy is below the string length scale E ≪ 1/ls, we can perform an ls
expansion and we get the following action

S = −
(

2πl2s

)2
TDp

∫

dp+1ξ

(

1

4
FµνF

µν + . . .

)

, (3.41)

where we identify the Maxwell action. In particular, we identify the gauge coupling with

g2
Maxwell = (2π)p−2gsl

p−3
s . (3.42)

Therefore, we find that D-branes support a gauge theory on their world-volume.
Actually, we are interested in a stack of N coincident Dp-branes, however, the complete

expression of this multiple brane generalization of the DBI action is problematic. Problems
arise when expanding the action and trying to include higher powers of fields due to the
fact that the DBI action is supposed to be in the regime of slow varying background and
world-volume fields, while strong fields are allowed. In this regime of validity one can drop
terms involving derivatives of world-volume fields, but we encounter terms like

[Dµ,Dν ] ∼ Fµν , (3.43)

and whether discarding this type of terms or not becomes ambiguous. There are pre-
scriptions like [47], that try to avoid this ambiguity. However, we will just consider
the straightforward generalization of the one-brane action result (3.41) to a non-abelian
SU(N) gauge theory. Actually, the gauge group is U(N), however, the extra gauge group
factor, U(1) = U(N)/SU(N), accounts for the overall position of the branes and can be
ignored. This generalization is not so straightforward, since we can consider engineering
the stack of N -branes by taking them from infinity to their actual position. Suppose
then, that we already have N branes, if we add another brane and we suppose it does
not backreact, it would probe the geometry (3.32)-(3.34), therefore we have to consider
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the action (3.21) in the background (3.32)-(3.34) and after performing the ls expansion
promote fields to those of a non-Abelian SU(N) gauge theory.

It is convenient to work in the static gauge, according to which one uses diffeomorphism
symmetry to set the first p+1 coordinates of the target space, XM , equal to world-volume
coordinates ξµ, and the remaining 9 − p coordinates are identified with world-volume
scalar fields 2πα′Φi. After the ls expansion and promoting fields to the non-abelian gauge
symmetry (for which we must introduce a 1/2 factor due to the normalization of the
generators of the gauge group), the DBI-WZ action takes the form

S = −1

2

(

2πl2s

)2
TDp

∫

Σ
dp+1ξTr

(

1

2
FµνF

µν + ∂µΦi∂µΦi + . . .

)

, (3.44)

plus an unimportant constant term that we have already neglected. We identify the Yang-
Mills coupling as

g2
YM = 2(2π)p−2gsl

p−3
s . (3.45)

The theta term of Yang-Mills theory would be identified with the Wess-Zumino term

TDp

∫

Cp−3 ∧ F ∧ F . (3.46)

Given that we do not have the field Cp−3 turned on, we infer that θYM = 0.
The case of D3-branes is specially relevant, because, in addition to a SU(N) gauge

field, we find 6 scalar fields living in a 3 + 1-dimensional world-volume. This is exactly
the bosonic content of N = 4 super Yang-Mills. After completing the D3-brane action
(3.21) with the fermionic content to have a supersymmetric theory, we end up with the
full N = 4 super Yang-Mills theory.

In addition to Sbrane, we also have the actions Sbulk and Sint.. Sbulk describes the
dynamics of closed string modes in the bulk and Sint. describes the interaction between
brane and bulk modes. Then, in the so called decoupling limit, ls → 0, these interaction
terms vanish, as well as higher derivative corrections of the bulk and brane actions. We
are left out with two decoupled theories, on the one hand, the previously obtained N = 4
super Yang-Mills theory and on the other hand free supergravity in ten dimensional flat
space.

What is the precise counterpart of the low energy or decoupling limit in the geometric
view of the D-branes? If we just take the limit ls → 0 in the geometry (3.32) (with p = 3)
we may naively conclude that we just get free gravity in flat space, however this is not
what happens. Due to the redshifted relation between the proper energy of an object at
position r and its energy as seen from an asymptotic observer

E∞ = Ep
/

H
1/4
3 , (3.47)

we can have very energetic excitations in the near horizon region although seen as low
energy excitations from the asymptotic observer. The right way to take the decoupling
limit in the near horizon region consists of taking the ls → 0 limit while keeping u ≡ r/l2s
fixed. Therefore, the near horizon metric scales with α′ and the proper energy in string
units lsEp is kept fixed so that string excitations survive this limit. Then we are left with
type IIB strings in a AdS5 × S5 and, again, free gravity in flat space.
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Therefore, we find that the D3-branes are described by two sets of two decoupled
theories. In both sets of theories we find free supergravity in flat space, therefore it seems
natural to identify the remaining theories. These and other considerations suggest the
so called AdS/CFT or Maldacena conjecture, which states a duality between a theory of
gravity,

• Type IIB superstring theory on AdS5 × S5. The parameters entering in this theory
are the string coupling gs and string length ls =

√
α′, the integer flux of the F5 form,

N =
∫

S5 F5, and the radius for both the anti de Sitter space and the sphere, L.

And a gauge theory in absence of gravity,

• N = 4 super Yang-Mills in four dimensions with gauge group SU(N) and Yang-
Mills coupling gYM in the superconformal phase, i.e. 〈Φ〉 = 0 without spontaneous
symmetry breaking.

Apart from the identification of the rank of the gauge group and the flux of the F5 form,
the Yang-Mills and the string coupling are also identified according to (3.45),

g2
YM = 4πgs (3.48)

and therefore, according to (3.38), we also encounter the following relation between the
AdS radius and the ’t Hooft coupling λ ≡ g2

YMN ,

L

ls
= λ1/4 . (3.49)

As presented here, this is the strongest version of the duality, supposed to hold for
generic values of these parameters. However, it is very hard to use this duality in its full
generality and, usually, one takes limits where it becomes more tractable. For example,
we do not know how to treat string theory at strong coupling, then it is logic to restrict
ourselves to the weak coupling regime gs → 0 with ls/L fixed. According to the identifica-
tion of the parameters, this amounts to consider the ’t Hooft limit N →∞ with ’t Hooft
coupling λ fixed. Even in this limit we do not know how to study string theory in curved
backgrounds with RR-fluxes, hence, the next limit to take is the low energy limit, where
string theory is replaced by supergravity. This amounts to neglect stringy corrections by
taking the ls/L→ 0 limit, whose gauge theory counterpart is the strong ’t Hooft coupling
limit, λ→∞. All these regimes are summarized in table 3.1.

Although the duality in the last regime is the weakest one, it still is extremely useful,
since it provides a weak-strong coupling relation between two different theories, in such a
way that it allows to obtain information of a gauge theory in the strong coupling regime
from supergravity computations. Moreover, this weaker version of the duality is the most
worked out and where one finds a vast amount of supporting evidence. In the next chapters
we will work with some extensions of this AdS/CFT duality, always working in this low
energy regime of validity.
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Exact equivalence

Type IIB string theory on
AdS5 × S5 ∀ gs, ls/L

N = 4 SU(N) SYM in 4D
∀ gYM, N

4πgs = g2
YM (L/ls)

4 = λ ≡ g2
YMN

Classical limit

Classical string theory
gs → 0 with ls/L fixed

t’ Hooft limit
gYM → 0 with λ fixed

Low energy limit

Type IIB supergravity
gs → 0 ls/L→ 0

Large ’t Hooft coupling
gYM → 0 λ→∞

Table 3.1: The different regimes of the AdS/CFT conjecture.

3.1.4 Matching of the symmetries

One of the first checks of this duality is the matching of global symmetries of both theories.
For example, we saw that N = 4 super Yang-Mills, being a conformal theory, must

remain invariant under dilatations

D : xµ → Λxµ , (3.50)

for a given constant Λ and xµ are the gauge theory coordinates. Now consider the metric
(3.37). The coordinates xµ can be considered as the world-volume coordinates of the D3-
branes, and hence they are identify with the gauge theory coordinates, while r and the
coordinates characterizing the five sphere are those transverse to the brane.

As expected, the metric (3.37) remains invariant under the transformation (3.50),
supplemented with the additional transformation

r → r/Λ (3.51)

and consequently, we see that short distances or the UV regime of the gauge theory
correspond to physics near the boundary (r →∞) of AdS and the way round, the IR regime
of the gauge theory corresponds to physics near the horizon (r → 0) of AdS. This leads
to the identification of the RG flow of the gauge theory with the r coordinate of the AdS
space-time. Although the RG flow is trivial in the present case of N = 4 super Yang-Mills
because it is a conformal theory, the Maldacena conjecture can be generalized for non-
conformal theories with non-trivial RG flow and a UV fixed point, but the identification
of the RG flow with the radial coordinate still holds. In that case, in the gravity side we
no longer have an AdS space-time but an asymptotically AdS one, in such a way that the
dilatation (3.50)-(3.51) (and the whole transformations of the conformal group) remains
an isometry only at the boundary of the asymptotically AdS space-time. This case will
be studied in the next chapter.

Not only is N = 4 super Yang-Mills invariant under dilatations but it also is invariant
under the conformal group SO(2, 4). This is precisely the isometry group of the AdS5
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space, which can be easily seen when writing the AdS5 space as an hyperboloid,

X2
0 +X2

5 −
4
∑

i=1

X2
i = L2 , (3.52)

embedded in the p+ 1-dimensional flat space with metric

ds2 = −dX2
0 − dX2

5 +
4
∑

i=1

dX2
i . (3.53)

The SO(6) R-symmetry group of N = 4 super Yang-Mills also matches the isometry of
the S5 part of the metric (3.37).

An analogous matching occurs for fermionic symmetries. AdS5 × S5 is a maximally
supersymmetric solution of type IIB supergravity and thus it has 32 supercharges, the
same as N = 4 super Yang-Mills, where one finds 16 Poincaré supercharges supplemented
up to 32 superconformal charges by the whole superconformal group.

3.1.5 Field/Operator correspondence

The Maldacena conjecture as stated so far lacks of a prescription to relate in a precise
way the two theories involved in the duality. That prescription was proposed in [48, 49]
and relates correlation functions of gauge invariant operators of N = 4 super Yang-Mills,
O(x), sourced by a function φ0(x), to those of a dual field propagating in AdS5 × S5

space, φ(x, r), whose boundary value is precisely φ0(x). This prescription is given by the
following formula:

〈

e
∫

d4xφ0(x)O(x)
〉

CFT
= Zstring

[

φ(x, r)
∣

∣

∂AdS
= φ0(x)

]

. (3.54)

Correlation functions in the gauge theory can be obtained from the previous formula by
differentiation with respect to φ0. However, the right-hand side of this equation is not
easy to compute and, as explained above, one usually takes the more tractable large N
and large λ limit. In that case, the right hand side of (3.54) can be substituted by

Zstring ≈ e−Ssugra , (3.55)

where Ssugra is the on-shell supergravity action.

As an example of this duality between operators in the gauge theory and AdS bulk
fields, consider the Yang-Mills term g−2

YM TrF 2. Thinking of the coupling constant as
a spurious field, we identify, according to the formula (3.54), the operator O = TrF 2,
sourced by φ0 = g−2

YM. On the other hand we have seen that the Yang-Mills coupling is
equivalent to the string coupling and the latter is identified with the dilaton value at the
boundary of AdS. Therefore, the field that would appear in the right-hand side of (3.54),
dual to TrF 2, is the dilaton.
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3.2 Supersymmetry conditions

Beyond the shadow of a doubt, extending the previous duality between N = 4 super
Yang-Mills and supergravity in AdS5 × S5 to other theories is a desirable objective. For
example, it would be interesting to reduce the amount of supersymmetry, in particular,
we will be interested in dualities for N = 1 four dimensional gauge theories. Another
interesting feature would be to break conformal invariance allowing a non-trivial RG flow,
in such a way that the duality would allow to study this RG flow, these will be the purpose
of next chapter.

In the present section we will describe the conditions that the ten-dimensional super-
gravity background needs to satisfy to host a N = 1 supersymmetric gauge theory in four
dimensions.

In section 3.1.2 we have presented just the bosonic content of type II supergravity.
This is enough because we will be interested in bosonic solutions, where just the bosonic
fields are turned on, while the fermion fields are set to zero. Schematically, the form of
supersymmetric transformations is

δǫBosons = Fermions ǫ , (3.56)

δǫFermions = Bosons ǫ , (3.57)

where ǫ is the parameter of the supersymmetric transformation. To have some supersym-
metry, there must exist some ǫ’s that satisfy the system (3.56)-(3.57). For the setup in
which just bosonic fields are turned on the first set of equations (3.56) is automatically
fulfilled, while we must impose the second set of equations (3.57).

The fermionic content of type II supergravity consists of a doublet of gravitini, ψM ,
and a doublet of dilatini, λ, where each member of the doublet has opposed or the same
chirality depending on whether we are in type IIA or type IIB supergravity, respectively.
The supersymmetric transformations of these fields, which must be set to zero, are

δψ1
M =

(

∇M −
1

4
✚✚HM

)

ǫ1 +
1

16
eΦ

��FΓMΓ(10)ǫ
2 , (3.58)

δψ2
M =

(

∇M +
1

4
✚✚HM

)

ǫ2 − 1

16
eΦ

✟✟✟σ(F )ΓMΓ(10)ǫ
1 , (3.59)

δλ1 =

(

✓∂Φ− 1

2
✚✚H

)

ǫ1 +
1

16
eΦΓM��FΓMΓ(10)ǫ

2 , (3.60)

δλ2 =

(

✓∂Φ +
1

2
✚✚H

)

ǫ2 − 1

16
eΦΓM✟✟✟σ(F )ΓMΓ(10)ǫ

1 , (3.61)

where Γ(10) is the 10-dimensional chirality operator, F is the FIIA or FIIB polyform and σ
is an operator that when acting on a p-form reverts its indices, explicitly

Cp =
1

p!
Ci1...ipdxi1 ∧ . . . ∧ dxip ⇒ σ(Cp) =

1

p!
Ci1...ipdxip ∧ . . . ∧ dxi1 = (−1)p(p−1)/2Cp .

(3.62)
Finally, the slash notation means contraction with antisymmetrized product of gamma
matrices, for example,

��Cp =
1

p!
CM1...MpΓM1...Mp . (3.63)
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Suppose now that we want to build a solution to type II supergravity of the form
of a warped product of four-dimensional Minkowski space and a six-dimensional internal
manifold M ,

ds2
10 = e2A(y)ds2

1,3 + gmn(y)dymdyn , (3.64)

with all background fluxes preserving the Poincaré symmetry of R
1,3. This forces them

to depend only on the internal coordinates ym, moreover, the NS H-field can only have
indices in the internal space and the RR polyform is decomposed as follows:

F = vol4 ∧ e4AF̃ + F̂ , (3.65)

where vol4 is the volume form of the unwarped Minkowski part of the space-time. F̂ and
F̃ have only internal indices and they are related by F̃ = ⋆6σ(F̂ ).

According to the ansatz for the metric and the fluxes, the Lorentz group is broken to
SO(1, 3)×SO(6) and the ten dimensional spinors of supersymmetric transformations are
split into Spin(1, 3) Weyl spinors, ζi, and Spin(6) Weyl spinors, ηia,

ǫ1 = ζ1 ⊗
∑

a

η1
a + c.c. , (3.66)

ǫ2 = ζ2 ⊗
∑

a

η2
a + c.c. . (3.67)

To have four-dimensional N = 1 theory there should exist a single four-dimensional con-
served spinor and two internal spinors. Then, the ten-dimensional Majorana-Weyl spinors
of type II supergravity can be decomposed in the following way:

ǫ1 = ζ+ ⊗ η1
+ + ζ− ⊗ η1

− ,

ǫ2 = ζ+ ⊗ η2
∓ + ζ− ⊗ η2

± ,
(3.68)

for type IIA/IIB supergravity3. The signs ± refer to the chirality of the spinors and we
choose a basis in which (η+)∗ = η−. One further requires the internal spinors to be globally
defined, this requirement can be translated into the language of G-structures.

3.2.1 G-structures

The two internal spinors η1
+ and η2

+ define for the ansatz (3.64) an SU(3)×SU(3) structure.
We will be interested in the two extreme cases in which these spinors are always parallel,
corresponding to an SU(3) structure, and the case when they are nowhere parallel, this
corresponds to an SU(2) structure. Let us clarify what this means.

Definition of G-structure

To this purpose let us define what a G-structure is. Consider a compact manifold M
of dimension d, which in our case will be the internal manifold in (3.64) (hence d = 6),
with some patches Uα and Uβ. Consider the tangent bundle TM , with fiber in each point
p ∈M the space of tangent vectors TpM (later we will consider the dual cotangent bundle

3Here and from now on, upper signs will refer to type IIA and lower signs to IIB supergravity.
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T ∗M). Then the tangent frame bundle FM is the bundle over M with fiber in each point
p ∈ M the set of ordered bases of the tangent space TpM . This just means that in each
point of a patch Uα we have the set of d independent vectors

ea = eia
∂

∂xi
, (3.69)

forming a basis of TpM . If we consider a different patch Uβ the new frames e′
a, defined

over points p ∈ Uβ, must be related with the previous ones on the overlap of the two
patches Uα ∩ Uβ through the expression

e′i
a =

∂x′i

∂xj
eja . (3.70)

The relation between both frames can also be expressed in terms of the transition functions
tβα(p) ∈ GL(d,R),

e′i
a = eib(tβα)ba , (3.71)

which satisfy the consistency relations

tαβtβα = 1 , tαβtβγ = tαγ , (3.72)

the last one for a triple overlap of patches. Therefore, the transition functions form a
group called the structure group, for the moment GL(d,R). However, if we can choose the
local frame in the different patches in such a way that it is possible to reduce the structure
group to a subgroup G ⊂ GL(d,R), it is said that the manifold M has a G-structure.

It is appropriate to characterize these G-structures by means of non-degenerated, glob-
ally defined, G-invariant tensors or spinors. Since these tensors or spinors are globally
defined on the manifold M , it is possible to choose frames with some components not
changing along the different patches of M . Therefore the transition functions must leave
these objects invariant and hence reducing the structure group to G. This is illustrated
in figure 3.1.

The fluxless case: SU(3)-structure

In the presence of a metric of the form (3.64), the structure group reduces to Spin(3, 1)×
Spin(6). Now let us consider the supersymmetry conditions (3.58)-(3.61) in the absence
of fluxes. These conditions simplify to

δψ1,2
M = ∇M ǫ1,2 = 0 , δλ1,2 = ✓∂Φǫ1,2 = 0 . (3.73)

This requires a topological condition, that is the existence of globally defined non-vanishing
spinors. Consider the internal part of the spinors ǫ1,2, and let us suppose that it is the
same Weyl spinor η+ with positive chirality. This spinor transforms in the fundamental 4
of SU(4) ≃ Spin(6), so we can choose a basis in which this spinor takes the form

η+ =











0
0
0
η0











. (3.74)
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Uα Uβ

ea e′
a

O(d)

Uα Uβ

ea e′
a

v v

v

O(d− 1)

(a) (b)

Figure 3.1: Suppose that the structure group in (a) is O(d). If like in (b) we find a
globally defined vector v, we can choose the frames with one component along this vector,
then the transition functions must leave this vector invariant and the structure group is
further reduced to O(d− 1). Figure reproduced from [50].

Therefore, as the spinor is globally defined and it must be invariant under the transition
functions between patches, the transformations leaving η+ invariant are reduced to the
SU(3) subgroup of SU(4),

(

U 03×1

01×3 1

)

, with U ∈ SU(3). (3.75)

Then the structure group is reduced to SU(3), and hence, the internal manifold of (3.64)
has a SU(3) structure.

The supersymmetry conditions (3.73) also impose differential conditions. The first
equation in (3.73) sets that ǫ1 and ǫ2, and thus η+, must be covariantly constant, which
implies that the internal space also has SU(3) holonomy and therefore M is a Calabi-Yau
three-fold. It can be shown that compactifying on a Calabi-Yau three fold preserves 1/4 of
the supersymmetry. Eventually we will be interested in extensions of the AdS/CFT duality
to less supersymmetric theories, in particular N = 1 supersymmetric gauge theories,
therefore this is the type of manifold we will compactify on to reduce the supersymmetry
of the field theory from N = 4 to N = 1.

The second condition from (3.73) implies a constant dilaton. From the Minkowski part
of (3.64), supersymmetry conditions only impose the four dimensional part of ǫ1,2 to be
constant. In principle, one can choose the four dimensional part of ǫ1,2 to be different,
leading to N = 2 supersymmetry, but the supersymmetry conditions (3.58)-(3.61) in the
presence of fluxes forces them to be equal, implying N = 1 supersymmetry.

We can characterize the SU(3)-structure in a different way. Since we have at our
disposal a globally defined nowhere vanishing spinor η+, for the splitting (3.68) let us take

η1
+ = aη+ and η2

+ = bη+ with ||η+|| = η†
+η+ = 1, we can build out of it a real two-form

and a complex three-form. In components, they are

Jmn = − i

|a|2 η
1†
+ γmnη

1
+ , Ωmnp = − i

a2
η1†

− γmnpη
1
+ , (3.76)
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where η− is the complex conjugate, i.e. η− = η∗
+ and γi1...in is the antisymmetrized product

of n gamma matrices. These forms have to satisfy the compatibility conditions,

J ∧ Ω = 0 , Ω ∧ Ω̄ = −8i

3!
J3 (3.77)

and the normalization condition,

Ω ∧ Ω̄ = 8ivol(M) . (3.78)

Then the topological requirement that characterizes an SU(3)-structure, the existence of a
globally defined non-vanishing spinor, can be rephrased as the requirement of the existence
of the globally defined forms (3.76) satisfying the conditions (3.77) and (3.78). Moreover,
the differential condition of SU(3) holonomy implies

dJ = dΩ = 0 . (3.79)

J and Ω are called the Kähler form and the holomorphic (3, 0)-form respectively.

SU(3)× SU(3) structure

The presence of fluxes changes the properties of supersymmetric solutions. In that case,
it is convenient to work in the context of Generalized Complex Geometry. Very roughly
speaking, this consists of taking the concepts presented in the definition of G-structures,
which are based on the tangent bundle, and generalize them based on the concept of
generalized tangent bundle, which is the sum of the tangent and the cotangent bundle
TM ⊕ T ∗M .

In the absence of fluxes we have seen that the topological requirement of the existence of
a globally defined spinor translates into the requirement that the structure group of TM is
SU(3). Now we are going to see a more general case in which the ansatz (3.64) admits two
globally defined spinors, η1 and η2, (which do not need to be everywhere independent) and
this topological requirement can also be expressed as the requirement that the generalized
tangent bundle TM⊕T ∗M has structure group SU(3)×SU(3). Depending on the relation
between the two spinors, in some particular cases this is reduced to a SU(3)-structure or
SU(2)-structure on TM .

From these spinors, η1 and η2, we can build two pure spinors on TM ⊕ T ∗M ,

Ψ1 = η1
+ ⊗ η2†

+ , Ψ2 = η1
+ ⊗ η2†

− , (3.80)

recall that η∗
+ = η−. The definition of pure spinors is given in appendix 3.A, but essentially,

these pure spinors can be seen as polyforms using the Clifford map (3.130) and the Fierz
identity

η1 ⊗ η2† =
1

8

∑

k

1

k!
(η2†γik...i!η

1)γi1...ik . (3.81)

Therefore, the generalized tangent bundle has a SU(d/2)×SU(d/2)-structure if there
exist two globally defined pure spinors Ψ1 and Ψ2, which satisfy the compatibility condi-
tions (for more details look at [50]),

〈Ψ1, Ψ̄1〉 = 〈Ψ2, Ψ̄2〉 6= 0 , (3.82)

〈Ψ1,X ·Ψ2〉 = 〈Ψ̄1,X ·Ψ2〉 = 0 , ∀X ∈ TM ⊕ T ∗M , (3.83)
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defined through the Mukai pairing of two polyforms

〈Ψ1,Ψ2〉 = (Ψ1 ∧ σ(Ψ2))|(top) , (3.84)

where |(top) means the projection of the polyform on the form of higher order.

The most general relation between the two spinors η1 and η2 is given by

η2
+ = cη1

+ +
1

2
V iγiη

1
− , (3.85)

for some complex constant c and complex vector V i. It is suitable to characterize both
spinors in terms of orthogonal, normalized ones, η+ and χ+. If ||η1

+|| = a and ||η2
+|| = b,

we can take the following parameterization

η1
+ = aη+ , η2

+ = b(cosϕη+ + sinϕχ+) , (3.86)

with η†
+η+ = χ†

+χ+ = 1, η†
+χ+ = 0 and the parameter ϕ ∈ [0, π/2] describes the angle

between η1 and η2. Hence, at the points with ϕ = 0, these spinors are parallel and it is
not necessary to introduce χ+. At the points where ϕ 6= 0 the orthogonal spinors η+ and
χ+ define, in general, a “local” SU(2)-structure which can also be defined in terms of the
forms

zi = η†
−γiχ+ , jij = − i

2
η†

+γijη+ +
i

2
χ†

+γijχ+ , ωij = iχ†
+γijη+ , (3.87)

which, in principle, can change along the manifold and hence the name local. The first
relation in (3.87) is just a redefinition of the complex vector appearing in (3.85),

V i ≡ b

a∗ z
i sinϕ , χ+ ≡

1

2
ziγiη− , (3.88)

once the following compatibility conditions are taken into account:

j ∧ ω = ω ∧ ω = 0 , zyj = zyω = zyω̄ = 0 , ω ∧ ω̄ = 2j2 , (3.89)

which must be fulfilled by the forms defining the local SU(2)-structure. Eventually, we
will also use the notation z ≡ v + iw, with v and w real.

Making use of (3.80) and (3.81), we can write the pure spinors in terms of the above
forms:

Ψ1 =
ab∗

8
e

1
2
z∧z̄ ∧

(

cosϕe−ij + i sinϕω
)

, Ψ2 =
ab

8
z ∧

(

sinϕe−ij − i cosϕω
)

. (3.90)

Then the following structures are defined [51,52]:

SU(3)-structure: If ϕ = 0 everywhere. The pure spinors (Ψ1,Ψ2) are type (0, 3). Ac-
cording to (3.90) they are given by

Ψ1 =
ab∗

8
e

1
2
z∧z̄ ∧ e−ij ≡ ab∗

8
e−iJ , Ψ2 = −iab

8
z ∧ ω ≡ −iab

8
Ω . (3.91)
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We can express the J and Ω forms in terms of spinors:

J = j − i

2
z̄ ∧ z ⇒ Jij = −iη†

+γijη+ , (3.92)

Ω = z ∧ ω ⇒ Ωijk = −iη†
−γijkη+ , (3.93)

and we obtain essentially the same expressions appearing in (3.76). Then we identify
J with the Kähler form and Ω with the holomorphic (3,0)-form, expressed in terms
of the local SU(2)-structure forms. They must satisfy the compatibility conditions
(3.77), which can be obtained from (3.89).

Static SU(2)-structure: If ϕ = π/2 everywhere. The pure spinors are type (2, 1) and
are given by

Ψ1 = i
ab∗

8
e

1
2
z∧z̄ ∧ ω , Ψ2 =

ab

8
z ∧ e−ij , (3.94)

with z, j and ω given in terms of spinors in (3.87) and satisfying the compatibility
conditions (3.89). Note that an SU(2)-structure can be identified as the intersection
of the two SU(3)-structures defined by the spinors η+ and χ+,

J1 = j − i

2
z̄ ∧ z , Ω1 = z ∧ ω , (3.95)

J2 = j − i

2
z ∧ z̄ , Ω2 = z̄ ∧ ω , (3.96)

j =
1

2
(J1 + J2) , ω =

1

2
z̄yΩ1 =

1

2
zyΩ2 . (3.97)

Intermediate SU(2)-structure: Neither of the previous cases. In a generic point where
ϕ 6= 0, π/2, the pure spinors are type (0, 1). If the angle ϕ changes along the
manifold, we have a dynamical SU(2)-structure.

To sum up, we have seen that the topological requirement of the existence of two
globally defined spinors can be rephrased in terms of two other descriptions: the existence
of globally defined forms or the existence of two pure spinors in Spin(d, d), both of them
subject to the fulfillment of some compatibility conditions.

3.2.2 Supersymmetric conditions in terms of pure spinors

As we have seen, from the two internal spinors η1 and η2 we can define two Spin(6, 6)
pure spinors or polyforms, Ψ1 and Ψ2,

Ψ1 = Ψ∓ = η1
+ ⊗ (η2

∓)† , Ψ2 = Ψ± = η1
+ ⊗ (η2

±)† , (3.98)

where upper/lower indices correspond to type IIA/IIB supergravity, thus, chirality of
pure spinors is interchanged when going from type IIA to type IIB supergravity. We
have seen that the topological condition of the existence of globally defined spinors can be
recast in terms of the pure spinors (3.98). To ensure supersymmetry we must also impose
the differential conditions. In [51] (see also [53,54]) it was found that the supersymmetry
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differential conditions (3.58)-(3.61) can be extremely simplified if they are written in terms
of these pure spinors. The BPS conditions are now

dH
(

e2A−ΦΨ∓
)

= e2A−ΦdA ∧ Ψ̄∓ +
e2A

16

[(

|a|2 − |b|2
)

F− + i
(

|a|2 + |b|2
)

⋆6 F+

]

,

dH
(

e2A−ΦΨ±
)

= 0 ,

(3.99)

for type IIA/IIB. The RR fluxes entering on the right-hand side of this equation are defined
for the type IIA case as

F IIA
− = F0 − F2 + F4 − F6 , F IIA

+ = F0 + F2 + F4 + F6 , (3.100)

and for the type IIB case

F IIB
− = F1 − F3 + F5 , F IIB

+ = F1 + F3 + F5 . (3.101)

Indeed it turns out, as we will see in a moment (3.118), that the norm of the spinors η1

and η2 has to be the same, ||η1||2 = |a|2 = ||η2||2 = |b|2, to allow for supersymmetric
D-branes. This further simplifies equation (3.99).

Moreover, it can be shown [55–57] that equations (3.99) together with Bianchi iden-
tities imply the equations of motion for all the type II supergravity fields, i.e: Einstein’s
equations, the dilaton equation and the equations of motion for the NS field, H, and the
RR fields, F .

This is major simplifications due to the fact that BPS equations are first order differ-
ential equations and it is easier to solve first order rather than second order differential
equations, as it is the case for the supergravity equations of motion.

This also holds in the presence of backreacting sources [57], if the sources are introduced
in a supersymmetric way, which can be done with the help of generalized calibrations.

3.2.3 Calibrations

One is often interested, particularly in the context of the AdS/CFT correspondence, in the
possibility that D-branes may wrap certain submanifolds of the geometry in a supersym-
metric way. It turns out that supersymmetric branes, in the case where no flux or D-brane
world-volume fields are turned on, minimize their world-volume [58] and they are said to
be calibrated in the sense of [59]. Minimizing the world-volume of a submanifold is a
difficult task involving second order differential equations. However, if the submanifold is
calibrated and thus, it is endowed with a calibration form, the problem reduces to solving
first-order differential equations.

A calibration form ̟ is a closed l-form on a manifold M that bounds the volume of
any l-dimensional oriented submanifold Σ,

dlσ
√

|det g|Σ| ≥ ̟|Σ . (3.102)

In every point there must exist subspaces saturating the above bound, then the submani-
fold Σ is said to be calibrated if in every point p ∈ Σ the bound (3.102) is saturated,

dlσ
√

|det g|Σ| = ̟|Σ . (3.103)
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It is easy to see that a calibrated submanifold Σ is that of minimal volume within its
homology class. To see this, consider another submanifold Σ′ in the same homology class,
then there is a third submanifold B whose border corresponds to ∂B = Σ′ − Σ. Then we
find

vol(Σ′) =

∫

Σ′

dlσ
√

|det g|Σ′ | ≥
∫

Σ′

̟|Σ′ =

∫

Σ
̟|Σ +

∫

B
d̟|B

=

∫

Σ
̟|Σ =

∫

Σ
dlσ
√

|det g|Σ| = vol(Σ) , (3.104)

where we have used the calibration bound (3.102) for Σ′, then we have decomposed the
integral over Σ′ as a sum over Σ and ∂B and we have applied the Stoke’s theorem to the
latter, which vanishes due to the fact that ̟ is closed. Finally, we have used that Σ is
calibrated (3.103).

Of course, in the geometries we are interested in we will have both NS and RR fluxes
and this simple calibration condition is not enough to establish supersymmetric D-brane
configurations. In this case one has to consider the concept of “generalized calibrations”
to include the possibility of fluxes [53,60–62].

For a static space-filling D-brane with worldvolume field strength F = B|Σ + 2πl2sdA
wrapping an internal l-cycle Σ, we can define its energy density as

E(Σ,F) = e4A
(

e−Φ
√

|det(g|Σ + F)|dσ1 ∧ . . . ∧ dσl −
(

C̃|Σ ∧ eF
) ∣

∣

∣

(l)

)

, (3.105)

where C̃ is the potential of the field strength F̃ in the 4 + 6 decomposition (3.65). The
energy per unit volume of the external space is

E(Σ,F) = − SD(3+l)

T(3+l)vol4
=

∫

Σ
E(Σ,F) . (3.106)

Then a generalized calibration form ̟ is a dH-closed polyform on M of definite parity
which satisfies the algebraic condition given by the bound

E(Σ,F) ≥
(

̟
∣

∣

Σ
∧ eF

) ∣

∣

∣

(l)
. (3.107)

Then a generalized submanifold, made of the pair (Σ,F), is calibrated if in every point
p ∈ Σ the bound is saturated.

Due to the fact that ̟ is dH closed, by similar arguments to those presented in
the absence of fluxes or world-volume fields, one can see that a generalized calibrated
submanifold minimizes its energy (within its generalized homology class).

The generalized calibration ̟ is not globally defined since it depends on the gauge
choice for the RR potentials. For example, under the gauge transformation

δC̃ = e−4AdHλ , (3.108)

in terms a given polyform λ made of even/odd forms for type IIA/IIB supergravity, the
generalized calibration transforms as

δ̟ = −dHλ . (3.109)
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Therefore, an alternative definition of the generalized calibration is often used, where the
energy density in (3.107) is replaced by just its DBI part,

e4A−Φ
√

|det(g|Σ + F)| dσ1 ∧ . . . ∧ dσl ≥
(

˜̟
∣

∣

Σ
∧ eF

) ∣

∣

∣

(l)
. (3.110)

With this alternative definition the generalized calibration is gauge invariant, but it is no
longer dH-closed,

dH ˜̟ = e4AF̃ . (3.111)

Both ˜̟ and ̟ are related by the formula

˜̟ = ̟ + e4AC̃ . (3.112)

Relation with κ-symmetry

Another approach to check if a D-brane embedding is supersymmetric, previous to the use
of calibrations, was κ-symmetry, [63–67]. The consideration of κ-symmetric embeddings
will provide us with natural calibration forms, as we will see.

Consider a Dp-brane extended along Σp, which consists of the time direction plus q flat
directions and a p−q cycle of the internal space. The D-brane preserves the supersymmetry
of the background generated by

ǫ =

(

ǫ1

ǫ2

)

, (3.113)

if it satisfies the relation [68]
ǫ = Γǫ , (3.114)

where Γ is the κ-symmetry matrix of the Green-Schwarz formulation for D-branes. This
operator is given by

Γ =

(

0 Γ̂

Γ̂−1 0

)

, (3.115)

Γ̂ =
1

√

|det (g|Σ + F) |
∑

2n+l=p+1

1

n!l!2n
ǫa1...a2nb1...blFa1a2 . . .Fa2n−1a2nΓb1...bn , (3.116)

Γ̂−1(F) = Γ̂†(F) = (−1)Int[(p+3)/2]Γ̂Dp(−F) , (3.117)

where ai and bi are indices on Σ, hence, Γa are the ten dimensional gamma matrices pulled
back to the D-brane.

From the κ-symmetry condition (3.114) it follows that ǫ1 and ǫ2 must have equal norm,
and therefore, after the splitting (3.68)

||η1
+||2 = ||η2

+||2 . (3.118)

Furthermore, from the definition of Γ, it is easy to see that we can build the projector
P = 1

2(I− Γ), from which we obtain the bound

ǫ†Pǫ = ǫ†P †Pǫ ≥ 0 ⇒ ǫ†ǫ ≥ ǫ†Γǫ , (3.119)
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which, after using the definition of Γ, can be stated in the form

√

|det (g|Σ +F) | ≥ 1

||ǫ1||2
∑

2n+l=p+1

1

n!l!2n
ǫa1...a2nb1...blFa1a2 . . .Fa2n−1a2nǫ

2†Γb1...bnǫ
1 .

(3.120)

The equality in the bound holds when (3.114) is fulfilled, therefore, the previous equation
is analogous to the calibration condition given in (3.110) and provides a way to find
the calibration forms in terms of spinor bilinears. Indeed, if one further works out the
splitting (3.68) on the operator Γ̂ and one considers how the κ-symmetry conditions realize
in the four and six-dimensional parts, one arrives exactly at the condition (3.110) with
calibrations given by (see [53])

Spacetime filling brane (q = 3) : ˜̟ = −8e4A−Φ

|a|2 Re(iΨ1) (3.121)

Domain wall (q = 2) : ˜̟ =
8e3A−Φ

|a|2 Re(eiθΨ2) (3.122)

Effective string (q = 1) : ˜̟ =
8e2A−Φ

|a|2 Re(Ψ1) (3.123)

Effective particle (q = 0) : Not supersymmetric

where θ is an arbitrary constant phase. After some work, (details can be found in [53]) one
can see that the calibration condition for the calibrations given by (3.121) and (3.122) re-
duces to the imaginary and real parts of the first equation in (3.99), respectively, while the
calibration (3.123) reproduces the remaining supersymmetric condition in (3.99). There-
fore, there is a nice interpretation of the supersymmetric conditions that the supergravity
background must fulfill in terms of allowed D-brane configurations (when both internal
spinors have the same norm).

3.A Pure spinors and polyforms

A polyform is a sum of forms of different degree. Then, a section of the generalized tangent
bundle, call it a generalized vector, X = (x,X) where x ∈ TM and X ∈ T ∗M , acts on a
polyform Ψ as

X ·Ψ = xyΨ +X ∧Ψ , (3.124)

where the contraction between two p-forms ApyBp is defined as

ApyBp =
1

p!
Aµ1...µpBµ1...µp . (3.125)

The generalized tangent bundle is also equipped with a metric, defined by the coupling of
vectors and one-forms

η(X,Y) =
1

2
(xyY + yyX) . (3.126)

Therefore, elements of the generalized tangent bundle act as a Clifford algebra

{X,Y} ·Ψ = (X · Y + Y · X) ·Ψ = 2η(X,Y)Ψ , (3.127)
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where, in comparison to the usual Clifford algebra of gamma matrices, X and Y play the
role of the matrices and η is a SO(d, d) metric. In this way, we see that there should be an
isomorphism between polyforms and spinors, since we can also consider Ψ as a Spin(d, d)
spinor. Irreducible representations of Spin(d, d) are Majorana-Weyl. The Majorana con-
dition corresponds to consider real forms, while the Weyl condition restricts the polyforms
to a sum of forms of even order, for positive chirality, or a sum of forms of odd order, for
negative chirality.

In addition, we will be interested in pure spinors. Ψ is a pure spinor if the space

LΨ = {X ∈ TM ⊕ T ∗M |X ·Ψ = 0} (3.128)

has dimension d, half that of TM ⊕ T ∗M . For example, pure spinors of the more familiar
Spin(d) (with d even) are those spinors, ψ, for which the space

Lψ =
{

z ∈ C
d|zaγaψ = 0

}

(3.129)

has dimension d/2.
Spin(d, d) pure spinors on TM ⊕ T ∗M can be written as a bi-product of Spin(d)

spinors, which are pure in six dimensions, since any Spin(6) Weyl spinor is pure. This
can be done through the Clifford map

C =
∑

k

1

k!
C

(k)
i1...ik

dxi1 ∧ . . . ∧ dxik ←→ C =
∑

k

1

k!
C

(k)
i1...ik

γi1...ik , (3.130)

which establishes an isomorphism between polyforms and bi-spinors.
Finally, any non-degenerate complex pure spinor can be decomposed in the form [69]

Ψ = Ωk ∧ eiω+b , (3.131)

where ω, b are real two forms and Ωk is a complex decomposable k-form and it is said that
the pure spinor is of type k, i.e. the type of a pure spinor is the smallest degree of the
component forms when it is seen as a polyform.





4Chapter

Gravity dual to N = 1 SQCD-like
theories with massive flavors

In this chapter we want to explore some extensions of the AdS/CFT duality to non-
maximally supersymmetric backgrounds where conformal symmetry is lost and it is only
recovered asymptotically.

An important type of these backgrounds corresponds to gravity duals to N = 1 su-
persymmetric SU(N) Yang-Mills theory with an arbitrary number Nf of fundamental
flavors. The Nf = 0 case was constructed by Maldacena and Núñez (MN) [70], building
up on a geometry previously found in [71]. Massless flavors in the fundamental represen-
tation of the SU(N) gauge theory can be incorporated following the idea of [72] by adding
Nf spacetime filling branes. The resulting holographic models [73–75] have led to many
interesting physical insights, including, for instance, aspects of Seiberg duality (see also
[76–78]). However, the presence of a singularity in the IR region limits the applicability
of this geometry. Recently, a new N = 1 supersymmetric geometry has been found by
Conde, Gaillard and Ramallo [79] which includes the previous ones as particular cases,
but more generally can circumvent the IR singularity. The aim of this chapter is to use
this framework to construct new solutions and investigate new physical properties, with
the aim of understanding the extent to which these geometries can describe aspects of
N = 1 supersymmetric SU(N) Yang-Mills theory with Nf fundamental massive flavors.

N = 1 supersymmetric SU(N) Yang-Mills theories with Nf massless flavors, analo-
gously to their non-supersymmetric counterpart, are likely to abandon the QCD-like con-
fined phase for sufficiently large number of flavors and develop a conformal phase before
the loss of asymptotic freedom. The restoration of conformal symmetry and the presence
of a so called conformal window in the number of flavors would thus identify a new family
of non-Abelian gauge theories which is worth to explore.

Until now, the emergence of conformal symmetry in theories without supersymmetry
has been discussed in the context of Schwinger-Dyson equations for chiral symmetry in
the ladder approximation [80, 81], truncated non-perturbative RG flows [82, 83], super-
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symmetry inspired conjectures [84] and deformation theory [85]. The proof of existence
of a conformal window however depends on our ability to describe these theories in a
non-perturbative manner, following the evolution of parameters all the way from strong
coupling to weak coupling. Lattice studies are currently the only ones to provide a fully
non perturbative analysis, and in N = 3 QCD they have recently produced evidence that
Nf = 12 is plausibly close to the end-point of a conformal window [86–91]. Similar results
have been found in [92] using the world-line formalism.

A further insight comes from supersymmetric gauge field theories. The renormalization
group of N = 1 supersymmetric QCD (SQCD) has been extensively studied, and the
perturbative β function for the gauge coupling is given by the well known NSVZ formula
[93]. However, any rigorous prediction for the existence and width of a conformal window
would require to derive the β functions and anomalous dimensions of the theory in a non-
perturbative way. Holographic techniques may allow to study the renormalization group
flow beyond perturbation theory as we are going to see. In particular, for Nf = 2N , a
prediction arising from our study is the existence of a non-trivial UV fixed point at some
strong coupling g∗. Consistency with the RG evolution at weak coupling requires the
existence of an IR fixed point at g′

∗ < g∗, as we shall discuss. Notice that the presence
of a UV fixed point at strong coupling in addition to an IR fixed point has been already
conjectured in the pioneering work by Banks-Zaks [94], and might lead to a mechanism
of disappearance of the conformal window via the annihilation of a pair of fixed points as
suggested in [95].

This chapter is organized as follows. After briefly comment on the twisting mechanism
that allows to preserve some supersymmetry when branes wrap curved manifolds, we
will review the Maldacena-Núñez supergravity solution and how the physical properties
of the field theory dual are obtained from this background. Later, we will review how
massless flavors are added and the field theory physics these new backgrounds account for,
for example, the realization of Seiberg duality. Finally, we will review the backgrounds
recently constructed in [79], where flavors are massive and we will give some physical
criteria to uniquely select a single background. Then we will compute the gauge coupling
β-functions for the three cases: i) Nf < 2N , ii) Nf = 2N and iii) Nf > 2N ; and we will
make some comments about Seiberg duality.

4.1 Wrapped D-branes and the topological twist

To reduce the amount of supersymmetry to get an N = 1 gauge theory we can consider
D-branes wrapping cycles of Calabi-Yau manifolds in a supersymmetric way. In principle,
a D-brane with world-volume along a curved manifold cannot preserve supersymmetry
because we should find a covariantly constant spinor and, since we are on a curved mani-
fold, we have to take into account the spin connection, ωµ. Then we have to consider the
equation

(∂µ + ωµ)ǫ = 0 , (4.1)

which does not admit a solution at first sight. However, supersymmetry can be preserved
if the field theory living on the world-volume of the brane is topologically twisted [96].
Let us explain what this means.
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If the theory possesses some global R-symmetry, we can consider an external gauge
field that couples to this R-symmetry current, so that equation (4.1) is modified to

(∂µ + ωµ −Aµ)ǫ = 0 . (4.2)

Then, after the identification ωµ = Aµ, it is easy to find supersymmetry preserving so-
lutions, because finding covariantly constant spinors reduces in this case to find just a
constant spinor,

∂µǫ = 0 . (4.3)

If the Dp-brane is wrapping a q-dimensional cycle, Σ, inside the Calabi-Yau fold, Aµ
is identified with the connection of the normal bundle NΣ and the fact that NΣ is not
trivially fibered over Σ allows for the identification between Aµ and the spin connection
on Σ, ωµ. In this way, the theory on the (p+ 1)-dimensional world-volume is twisted, this
means that the behavior of the different fields under a Lorentz transformation, namely
their spin, is changed, but the important thing is that the field theory on the flat (p+1−q)-
dimensional part remains untwisted.

For example consider a D5-brane in flat space. The mere presence of the brane breaks
the Lorentz group of the ten dimensional space into

SO(1, 9)→ SO(1, 5) × SO(4)R (4.4)

and SO(4) is identified with the R-symmetry group of the brane world-volume gauge
theory. If the D5-brane wraps a two-sphere, we have the further breaking

SO(1, 5) × SO(4)R → SO(1, 3) × SO(2)× SO(4)R . (4.5)

SO(2) ≃ U(1) is the tangent bundle of the sphere and the twist is performed identifying
this U(1) with some U(1) ⊂ SO(4)R ≃ SU(2)l × SU(2)r , for example, U(1)l ⊂ SU(2)l
or equivalently U(1)r ⊂ SU(2)r. Working out how the field content of the brane world-
volume transforms after this symmetry breaking pattern and the group identification, one
arrives at the field content of an N = 1 vector multiplet in four dimensions.

4.2 Maldacena-Núñez background

Here we elaborate on the model presented in [70], based on a four-dimensional supergravity
solution previously found in [71]. In the setup of [70], Maldacena and Núñez considered a
stack of N D5-branes wrapping a compact supersymmetric 2-cycle inside a CY three-fold.

By the twisting procedure explained above the background preserves four supercharges
and it is claimed to be dual to N = 1 super Yang-Mills in four dimensions plus some
Kaluza-Klein adjoint matter. In the string frame, the ten dimensional metric is given by

ds2 = gsα
′NeΦ(r)

[

1

gsα′N
dx2

1,3 + dr2 + e2h(r)(dθ2 + sin2 θdφ2) +
1

4
(ω̃i −Ai)2

]

. (4.6)

The angles θ ∈ [0, π] and φ ∈ [0, 2π) parametrize a two-sphere. The coordinate r is
a dimensionless quantity related to the actual radial coordinate by a factor

√
gsα′N to
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recover the right dimensions. ω̃ are the SU(2) left-invariant one-forms parametrizing the
three sphere:

ω̃1 = cosψdθ̃ + sinψ sin θ̃dφ̃ ,

ω̃2 = − sinψdθ̃ + cosψ sin θ̃dφ̃ ,

ω̃3 = dψ + cos θ̃dφ̃ ,

(4.7)

where the angles take values in θ̃ ∈ [0, π], φ̃ = [0, 2π) and ψ ∈ [0, 4π). The dilaton Φ(r),
the function h(r) and the SU(2)L gauge field A, turned on to implement the twist, are
given by

e−2Φ = e−2Φ0
2eh

sinh(2r)
, e2h = r coth(2r)− r2

sinh2(2r)
− 1

4
, (4.8)

A1 = −a(r)dθ ,

A2 = a(r) sin θ dφ , with a(r) =
2r

sinh(2r)
.

A3 = − cos θ dφ ,

(4.9)

There is also a RR three-form F3, satisfying the Bianchi identity dF3 = 0,

F3 = dC2 = −gsα
′N

4

3
∧

i=1

(ω̃i −Ai) +
gsα

′N
4

3
∑

i=1

F i ∧ (ω̃i −Ai) , (4.10)

C2 =
gsα

′N
4

(

a(r)(sin θ dφ ∧ ω̃2 − dθ ∧ ω̃1)

+ (ψ + ψ0)(sin θ dθ ∧ dφ− sin θ̃ dθ̃ ∧ dφ̃) + cos θ cos θ̃dφ ∧ dφ̃

)

, (4.11)

where we also show the corresponding potential C(2) and F i = dAi + 1
2ǫ
ijkAj ∧ Ak is the

field strength corresponding to the gauge field A. Moreover, the color D5-branes have
been encoded into a flux, having N of them translates into the flux quantization condition
for the RR three-form,

− 1

2κ2
10T5

∫

S3(θ̃,φ̃,ψ)
F3

∣

∣

S3 = N , (4.12)

where 2κ2
10T5 = 4π2gsα

′. Notice that the factor a(r) in the gauge field makes this back-
ground regular, as oppose to the type IIB supergravity solution with a = 0.

To identify the relevant cycle the D5-branes are wrapping we should consider the five
dimensional internal part of the metric (4.6) in the r →∞ limit,

ds2
5 = gsα

′NeΦ(r)
[

r(dθ2 + sin2 θdφ2)

+
1

4
(dθ̃2 + sin2 θ̃dφ̃2) +

1

4
(dψ + cos θdφ+ cos θ̃dφ̃)2

]

, (4.13)

which is the metric of a T 1,1 manifold, we will comment more on this metric in section 5.2.
Together with the r coordinate, this metric defines de CY3 manifold of the target space,
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characterized by the topologically non-trivial three and two cycles

S2 : θ = ±θ̃ , φ = −φ̃ , ψ = any . (4.14)

S3 : θ = φ = 0 . (4.15)

The two cycle the D5-branes are wrapping can be either θ = θ̃ or θ = −θ̃ in (4.14), since
both have the same volume and are equivalent from the field theory point of view. The
value of ψ is determined by requiring that the cycle is that of minimal volume. One gets

S2 : θ = θ̃ , φ = −φ̃ , ψ = 0 mod 2π . (4.16)

S2 : θ = −θ̃ , φ = −φ̃ , ψ = π mod 2π . (4.17)

4.2.1 N = 1 super Yang-Mills field theory

Now we are going to collect some basic facts about SU(N) N = 1 super Yang-Mills field
theory here, since we will want to see later if the Maldacena-Núñez solution presented in
the previous section can reproduce them.

The N = 1 SYM action can be written in terms of the holomorphic gauge coupling,

τ ≡ θYM

2π
+ i

4π

g2
YM

, (4.18)

in the simple form

SN =1 SYM =
τ

16πi

∫

d4xd2θWaαWa
α + h.c.

=

∫

d4x

[

− 1

4g2
YM

F aµνF aµν −
θYM

32π2
F aµν F̃ aµν

+
i

g2
YM

λ̄aσ̄µDµλ
a +

1

2g2
YM

DaDa

]

, (4.19)

where F̃ aµν ≡ 1
2ǫ
µναβF aαβ and

Wa
α = −iλaα(y) + θαD

a(y)− (σµνθ)αF
a
µν(y)− (θθ)σµDµλ̄

a(y) (4.20)

is the field strength chiral superfield, written in terms of the superspace coordinate yµ =
xµ − iθσµθ̄. F aµν is the usual field strength of the gauge field Aaµ, which, together with
the gaugino, λaα, and the auxiliary scalar field, Da, form the vector supermultiplet V =
(Aaµ, λ

a,Da).

β-function and the holomorphic coupling:

By holomorphicity arguments, we know that the (holomorphic) gauge coupling runs only
at one loop and its β-function is given by [97–99]

β(gYM) = µ
∂gYM

∂µ
= − b

16π2
g3

YM , (4.21)
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where µ is an arbitrary renormalization scale and the coefficient b is given by

b =
11

3
T (Ad)− 2

3
T (F )− 1

3
T (S) . (4.22)

The index T (R) is the one-half Dynkin index of the representation R. In this case, T (F )
and T (S) mean the sum of indices over all the fermions and all the complex scalars in
their respective representations. For the case at hand, N = 1 pure super Yang-Mills with
gauge group SU(N), b = 3N .

The Renormalization Group equation (4.21) has the running coupling solution

1

g2
YM(µ)

= − b

8π2
log
|Λ|
µ

, (4.23)

where |Λ| is the dynamically generated scale. This allows to define the holomorphic
intrinsic scale

Λ ≡ |Λ|eiθYM/b , (4.24)

in terms of which the running of the holomorphic gauge coupling is

τ =
b

2πi
log

Λ

µ
+ f(Λ, µ) , (4.25)

where the first term is the one-loop contribution and the second term accounts for non-
perturbative instantonic contributions. The second term has to be an holomorphic function
of Λ, invariant under Λ→ e2πi/bΛ, because, according to (4.24), this only changes the θYM

angle by 2π. It can be also expanded in Taylor series of positive powers of Λ, because
the limit Λ → 0 must coincide with the perturbative result. Therefore we can write the
holomorphic coupling as

τ =
b

2πi
log

Λ

µ
+

∞
∑

n=1

an

(

Λ

µ

)nb

. (4.26)

The β-function (4.21) is also referred as the β-function computed in the Wilsonian
renormalization scheme. Usually, one is interested in the β-function of the canonical
gauge coupling for canonically normalized fields. This needs of a redefinition of the vector
superfield from which the action (4.19) is built, V → gYMV . Both β-functions, the Wilso-
nian and the canonical one, are not related by just a simple change in the renormalization
scheme, because of a rescaling anomaly. This anomaly sets the following relation between
both types of coupling:

1

g2
W

=
1

g2
c

+
N

4π2
log gc , (4.27)

where the subscript c refers to the canonically normalized fields coupling and the subscript
W refers to the Wilsonian scheme. Inserting this relation in (4.21), one obtains the so
called NSVZ β-function for canonically normalized fields,

βNSV Z = −3
g3

YMN

16π2

(

1− g2
YMN

8π2

)−1

. (4.28)
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and we have already renamed the subscript of the gauge coupling c → YM. This was
computed for the first time using instanton methods by Novikov, Shifman, Vainshtein and
Zakharov [93] in the Pauli-Villars scheme.

The β-function, either (4.28) or (4.21), is renormalization scheme independent at one
and two loops.

U(1)R symmetry and the gaugino condensate:

Given that the gauge field in the vector multiplet has R-charge R = 0, and the gaugino
has R = 1, this theory has a U(1)R symmetry, which turns out to be anomalous. This
can be seen calculating the triangle anomaly between one global U(1)R current and two
gluons (fig. 4.1).

Figure 4.1: Triangle diagram with one U(1)R global current and two gluons at the vertices
and fermions running on the loop. This diagram produces the anomaly that breaks the
U(1)R symmetry.

Under an U(1)R shift, the gaugino and the SYM action transform as

λ→ eiǫλ , S → S − ǫ
∫

d4x ∂µ(λ̄σ̄µλ) (4.29)

and using, for example, Fujikawa’s path integral derivation [100, 101] of the mentioned
triangle anomaly, we obtain a non conserved current, jµ = λ̄σ̄µλ, where the anomaly is
given by

∂µj
µ =

N

16π2
F aµν F̃ aµν . (4.30)

This result is not changed by higher-loops contributions [102,103]. In general, each fermion
of the theory will contribute to this anomaly by a factor proportional to its R-charge times
the index of the representation of SU(N) under which it transforms,

∂µj
µ =

1

16π2

[

∑

fermions

RT (rep.)

]

F aµν F̃ aµν . (4.31)

Then, the U(1)R transformation (4.29), is equivalent to the following shift in the θYM

angle

θYM → θYM − 2Nǫ (4.32)

In consequence, this transformation is a symmetry only when ǫ = kπ/N , with k being an
integer. Then we see that the U(1)R classical symmetry is explicitly broken to Z2N .
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Let us promote the holomorphic gauge coupling τ to a background spurious chiral
superfield, so that the shifts (4.29) and (4.32) define a spurious U(1)R symmetry

λ→ eiǫλ , τ → τ + ǫ
N

π
. (4.33)

Consider now the effective superpotential that is generated when modes above a certain
energy scale µ are integrated out. Under the spurious symmetry the superpotential trans-
forms as Weff → e2iǫWeff, since it has R-charge R = 2. Therefore, if the theory has no
massless degrees of freedom, holomorphicity and symmetry fix the effective superpotential
potential to be

Weff ∝ µ3e2πiτ/N . (4.34)

Then the F -term of the background spurious field τ acts as a source for the λaλa operator.
We can obtain the gaugino condensate computing

〈λaλa〉 = 16πi
∂ logZ

∂Fτ
. (4.35)

In the IR, if there are no massless particles, the effective action is just the effective su-
perpotential. Discarding non-perturbative corrections, the previous expression reduces
to

〈λaλa〉 ∝ 16πi
∂

∂Fτ

∫

d2θWeff = 16πi∂τWeff = −32π2

N
µ3e2πiτ . (4.36)

Substituting here the expression of the running holomorphic coupling (4.26),

〈λaλa〉 ∝ −32π2

N
Λ3 , (4.37)

where we have not written the non-perturbative contributions to the running holomorphic
coupling, since they only contribute like a phase. This gaugino condensate transforms as

〈λaλa〉 → e2iǫ〈λaλa〉 (4.38)

under the shift (4.29). Then it is not invariant for any value of ǫ = kπ/N . To keep it
invariant the allowed values of ǫ are given by k = 0, N . In consequence, the presence of
this gaugino condensate implies that in the IR the symmetry Z2N spontaneously breaks
to

Z2N → Z2 . (4.39)

There are then N different vacua, each of which with its own Z2 symmetry, characterized
by the change in the θYM-angle, θYM → θYM + 2πk/N , in which the gaugino condensate
takes different values.

4.2.2 Field theory results from the Maldacena-Núñez background

Consider the DBI-WZ action (3.21) for a D5-brane in the Maldacena-Núñez background
explained at the beginning of the section,

SDBI = −TD5

∫

dξ6e−Φ

√

∣

∣

∣det
(

g
∣

∣

ξ
+ 2πl2sF

)∣

∣

∣ ,

SWZ = TD5

∫

(

(2πl2s)
2C2

∣

∣

ξ
∧ F ∧ F + C6

∣

∣

ξ

)

,

(4.40)
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We now proceed in analogous way to section 3.1.3, where we found that SU(N) N = 4
super Yang-Mills is the gauge theory that describes the low energy dynamics of N coin-
cident D3-branes in flat space. By expanding now the action (4.40) in ls up to quadratic
terms in the world-volume fields, one arrives at

S = −1

2
TD5

∫

d4x

∫

S2
e−Φ

√

− det g

(

1 + (2πl2s)
2 1

4
F aµνF

aµν
)

+
1

4
(2πl2s)

2TD5

∫

d4xF aµν F̃
aµν

∫

S2
C2

+ . . .

(4.41)

once the fields are promoted to those of a SU(N) non-Abelian gauge theory, in order to
consider the effect of having a stack of N coincident D5-branes. In the expansion (4.41)
we find the bosonic part of the SU(N) N = 1 SYM action, plus a constant energy-density
term. In this expansion we can identify the gauge coupling, gYM, and the θYM-angle in
terms of the supergravity quantities:

1

g2
YM

=
1

2(2π)3gsα′

∫

S2
e−Φ

√

− det g =
N

16π2

(

4e2h + (a− 1)2
)

, (4.42)

θYM = − 1

2πgsα′

∫

S2
C2 = −Nψ0 , (4.43)

once we have replaced the value of the D5-brane tension (3.25) and considered the cycle
(4.14) for definiteness.

From the relation (4.42) it is manifest the AdS/CFT prescription that relates the radial
variable with the energy scale of the field theory, since large values of r correspond to small
values of the coupling, attained at the UV of N = 1 SYM theory. Conversely, small values
of r should correspond to the IR of the field theory, where it becomes strongly coupled.

According to (4.32), under a U(1)R transformation characterized by the parameter ǫ,
the θYM -angle receives a shift θYM → θYM −2Nǫ, the identification (4.43) shows that this
is realized in the gravity side through shifts in the angular variable ψ → ψ+ 2ǫ. However,
these shifts do not correspond to isometries of the Maldacena-Núñez metric (4.6), the
terms (ω̃i − Ai)2 for i = 1, 2 are not invariant under shifts in ψ. This is not a problem,
because we know that these shifts actually are not a symmetry of the quantum gauge
theory. The true symmetry is Z2N , which spontaneously breaks to Z2 in the IR.

Let us consider the UV r → ∞ limit of the MN background. In this limit, the a
function vanishes and the explicit ψ dependence disappears from the metric (see (4.13))
and shifts in this angle become an isometry of the metric, although the dependence still
is present in the RR potential. Since the UV limit has removed the dependence of the
metric on ψ, the condition that fixed the value of ψ in (4.16) or (4.17) no longer does it
and the 2-cycle is given by (4.14). Hence, integrating the RR potential over the 2-cycle in
the θYM -angle expression (4.43) gives

1

4π2gsα′

∫

C2 =
N

2π
(ψ + ψ0) . (4.44)

This integral is allowed to change by integer values. This implies that the shifts

ψ → ψ +
2π

N
k k ∈ Z (4.45)
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are a symmetry of the MN solution at large r, which is the supergravity counterpart of
the Z2N symmetry of the gauge theory.

On the other hand, in the IR the function a is turned on and the only remaining
symmetry of the supergravity solution are shifts

ψ → ψ + 2πk , (4.46)

since the dependence of the metric on ψ is through trigonometric functions. This corre-
sponds to the Z2 symmetry of the gauge theory in the IR. In this way, the MN solution is
able to reproduce the symmetry breaking pattern of the gauge theory.

From this analysis it becomes clear that the a function is responsible for this symmetry
breaking pattern. On the gauge theory side, this symmetry breaking is accompanied by
gaugino condensation, then it is conjectured that both quantities are duals of each other
[104,105],

〈λ2〉 ↔ a(r) . (4.47)

This allows us to establish the precise relation between the radial coordinate and the
energy scale of the gauge theory, which was already established in a qualitative way in the
discussion of section 3.1.4 or after equations (4.42) and (4.43). Taking into account that
the gaugino condensate has dimension three, the relation is

Λ3

µ3
∼ a(r) , (4.48)

where, again, µ is an arbitrary renormalization scale at which the gaugino condensate is
defined and Λ is the intrinsic scale of the gauge theory generated through dimensional
transmutation by quantum corrections. Notice that we have identified a supergravity field
with a protected operator of the gauge theory, i.e. an operator whose dimension does
not change by quantum corrections. This must be in this way, since the dimension of
supergravity fields do not change with the radial coordinate.

The precise energy-radius relation (4.48) allows us to compute the β-function of the
gauge coupling from the supergravity side. At large r, discarding exponentially suppressed
terms,

a(r) = 4re−2r +O(e−6r) ,
1

g2
YM

=
N

16π2

(

4r +O(e−2r)
)

, (4.49)

we get the β-function:

β =
∂gY M
∂ log µ

Λ

= −3
g3
Y MN

16π2

(

1− g2
YMN

8π2

)−1

, (4.50)

which is the complete perturbative NSVZ β-function of N = 1 SYM. This is a surprising
result for various reasons:

• First of all, we are able to reproduce the correct β-function in the perturbative regime
of the gauge theory, where, in principle, the supergravity approximation does not
hold.
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• Not only this, but if we carry out the computation that led to (4.50) without throwing
away exponential suppressed terms,

β = −3
g3
YMN

16π2









1− g2
YMN

8π2
+

2 exp

(

− 16π2

g2
Y M

N

)

1− exp

(

− 16π2

g2
Y M

N

)









−1

, (4.51)

the study through the gravity dual seems to indicate there are some non-perturbative
contributions. However, the interpretation of these new contributions is not very
clear as it might be contaminated from Kaluza-Klein modes, not belonging to the
gauge theory, which cannot be disentangled from the gauge theory degrees of free-
dom, as we will see in a moment.

• Another fact worth mentioning is that it seems surprising that the simple relation
(4.48) leads to the β-function (4.50) in the particular Pauli-Villars renormalization
scheme. We could have modified the relation (4.48) by an analytic function of the
gauge coupling,

Λ3

µ3
= f(gYM )a(r) , (4.52)

changing the β-function. Nevertheless, this redefinition enters in the β-function be-
yond two loops. The same happens for gauge theory computations of the β-function
using different renormalization schemes. Thus, the universality of the two-loop coef-
ficient of the NSVZ β-function is maintained. Therefore, the above redefinition (4.52)
of the energy-radius relation should account for different renormalization schemes in
the gauge theory.

The Maldacena-Núñez solution describes the SU(N) N = 1 SYM in a particular
vacuum of the N different ones. One can run over the different vacua by considering a
gauge transformation of the SU(2)L gauge field A,

A→ A′ = U−1AU + iU−1dU , (4.53)

where U ∈ SU(2)L. Under such a gauge transformation the twisted part of the metric can
be written as

3
∑

i=1

(ωi −A′i)2 =
1

2
Tr(ω −A′)2 =

1

2
Tr(UωU−1 − idUU−1 −A)2 . (4.54)

Then, a global transformation corresponds to a rotation of the three-sphere parametrized
by ω, while a local transformation will also contribute to the twist, in addition to the
rotation of the three-sphere.

In particular, we can choose U = exp iǫσ3 with ǫ independent of the space-time coor-
dinates. Then the two-cycle (4.16) now becomes

S2 : θ = −θ̃ , φ = −φ̃ , ψ = 2ǫ mod 2π . (4.55)
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The integral of the two form potential implies that this corresponds to a different θ-
vacuum, θ = −N(ψ0 + 2ǫ), so that ǫ is allowed to change by 2ǫ = 2πk/N for integer k.
Then, changing the gauge field A with k = 0, . . . , N − 1, we run over the N vacua of the
gauge theory.

However, not everything works so well with the duality between the Maldacena-Núñez
solution andN = 1 SYM. Within the supergravity regime, in which we have computational
control, there is not a complete decoupling between four dimensional gauge degrees of
freedom and Kaluza-Klein modes. Basically, when the energy scale of the four dimensional
gauge theory becomes of the order of the energy scale characterized by the radius of the 2-
cycle the branes are wrapping, the Kaluza-Klein modes, which in principle are not present
in the gauge theory considered, start to appear in the spectrum and we start to explore a
six dimensional field theory.

To lay in the supergravity regime we must require a small curvature. The curvature
for the Maldacena-Núñez background is of the order

R ∼ 1

α′gsN
, (4.56)

and hence, we must take α′gsN →∞. On the other hand, at small distances, Kaluza-Klein
modes have a mass roughly given by

m2
KK ∼

1

vol(S2)
∼ 1

α′gsN
. (4.57)

Therefore, within the supergravity regime we cannot decouple the Kaluza-Klein modes at
strong coupling. In consequence, one has to consider the results obtained in this way with
some care.

Indeed, in [75] a proposal for the action describing the weakly coupled field theory
was made taking into account these Kaluza-Klein modes. This proposal is based on some
previous results [106,107], where the spectrum of these Kaluza-Klein modes was studied.
In the field theory we find a massless N = 1 vector multiplet V and a tower of massive
chiral and vector Kaluza-Klein multiplets, Φk and Vk. We will denote the corresponding
field strengths of the vector multiplets by W and Wk. The proposal of [75] is

S =

∫

d4xd4θ
∑

k

(

Φ†
ke
V Φk + µk|Vk|2

)

+

∫

d4xd2θ WW +
∑

k

(

WkWk + µk|Φk|2 +W (Φk, Vk)
)

+ h.c. (4.58)

with a superpotential cubic in the chiral superfields and some interaction between chiral
and vector superfields,

W =
∑

ijk

zijkΦiΦjΦk +
∑

k

f(Φk)WkWk . (4.59)
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4.3 Flavoring the Maldacena-Núñez background

In order to make contact with supersymmetric QCD-like theories one would like to add
flavors to the Maldacena-Núñez background previously presented. More precisely we will
consider the addition of chiral multiplets transforming in the fundamental representation.

As well as in the large N limit [108] of pure SU(N) Yang-Mills, where Feynman
diagrams can be associated with Riemann surfaces that organize themselves into a genus
expansion similar to the one appearing in closed string theory. If one considers flavors,
these Riemann surfaces now admit boundaries and, thus, one identifies an expansion of
string theory with both open and closed strings.

Therefore, the supergravity counterpart of the addition of flavors consists of endorsing
the original closed string background with an open string sector. This is done by consid-
ering the presence of Nf “flavor” branes (this approach was initiated by [72]) in the type
IIB supergravity background previously presented, which already encodes the N “color”
branes.

color
branes flavor branes

fundamental

anti-fundamental

adjoint rep. decoupled

Figure 4.2: Picture of the color-flavor branes scheme.

Another motivation for the addition of this extra set of flavor branes comes from the
open string picture as depicted in figure 4.2. Consider first the flavorless background
generated by just the stack of N color branes. We have fields transforming in the adjoint
representation of the gauge group SU(N) and they can be considered as N × N matrix
objects. Adding now Nf fundamental fields, corresponds to consider Nf × N matrix
objects. Then, if we label each end of an open string depending on the brane it is attached
to, we will find:

• Strings with both ends on the color branes, whose low energy excitations will corre-
spond to these N ×N fields.

• Strings starting on a flavor brane and ending on a color brane, representing a N×Nf

object, i.e. a fundamental field (or anti-fundamental field if it starts and ends the
way round).
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• Strings with both ends on the flavor branes. This would correspond to fields trans-
forming under the adjoint representation of a gauge SU(Nf ) group. We can get rid
of these undesired fields by taking the quotient between the volume of flavor branes
and that of color branes to be infinite [72]. For example, as we saw in (4.42), the
gauge coupling is related to the volume of the internal space along which the brane
is extended. Then, if we consider that the flavor branes are extended along a non-
compact cycle of the internal space, the corresponding gauge coupling would vanish.
In this way, we manage to decouple the undesired fields and the SU(Nf ) symmetry
group can be considered now as a global symmetry.

For a number of flavor branes not very large, Nf ≪ N , the addition of these branes
can be done in the probe approximation, i.e. we can neglect the backreaction of the flavor
branes, considering them in the background without deforming the geometry. This is
equivalent in the field theory to the quenched approximation, where fundamental fields
do not run inside loops. This can be easily seen from the point of view of the ‘t Hooft
1/N expansion. For example, consider the scattering between n mesons, whose Feynman
diagrams may have an associated Riemann surface with w windows (corresponding to
internal fundamental loops), h handles and b boundaries. Then the mesonic n point
correlation function has the dependence [109]

〈M(x1) . . .M(xn)〉 ∼
(

Nf

N

)w

N (2−2h−b−n/2) . (4.60)

Then in the ’t Hooft limit

gYM → 0 , N →∞ , with λ = g2
YMN and Nf fixed, (4.61)

the dominant contribution comes from surfaces with no windows, w = 0, that is the
quenched approximation.

However, we find another interesting limit, the Veneziano limit [110], given by

gYM → 0 , N →∞ , Nf →∞ , with λ = g2
YMN and ζ ≡ Nf

N
fixed. (4.62)

This is also referred as topological expansion, since only non-planar diagrams are sup-
pressed, unlike the ’t Hooft expansion (4.61), where both non-planar and planar diagrams
with fundamental loops are suppressed. Although the Veneziano limit may capture more
physics than the ’t Hooft limit, since it takes into account more Feynman diagrams, this
approach requires more effort in the supergravity analogue, because the number of flavor
branes is large and we can no longer neglect their backreaction. We will work in this latter
setup.

Then we will consider Nf backreacting D5-branes extended along a non-compact,
calibrated two-cycle together with the 3+1 dimensions of the gauge theory. As already
mentioned, we require this two-cycle to be non-compact to introduce a SU(Nf ) global
symmetry. We also require the two-cycle to be calibrated to preserve supersymmetry.

To obtain this supersymmetric cycle is not an easy task because when we depart from
the probe approximation and we have to consider backreacting branes, the dynamics of
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the system is governed by the combination of the supergravity action, encoding the color
branes as a flux, plus the DBI-WZ action of the flavor branes,

S = Ssugra + Sflavor . (4.63)

Then, to find where the flavor branes can be placed to preserve supersymmetry, we need to
know the geometry; but the geometry is obtained by solving the combined action (4.63),
where we need to know how the flavor branes are placed to specify Sflavor. The only
way to deal with this problem is to propose an ansatz general enough to account for
the backreaction of the flavor branes, but not so general in order to allow us to find the
supersymmetric embeddings. This ansatz might be guided by the results obtained in the
probe approximation.

The supersymmetric cycles that we can consider in the background [70] were studied
in [111], where they addressed the problem of adding flavors in the probe approximation
(this is also studied in [112]) by means of κ-symmetry, which we have seen it is equivalent
to the use of calibrations (section 3.2.3). The cycle we are going to consider corresponds
to the “cylinder solutions” of [111], since the flavor branes extend along the coordinates
r, ψ (as well as the coordinates of the gauge theory) at any value of θ, φ, θ̃, φ̃. Then, in
the Maldacena-Núñez background the metric induced on the world-volume takes the form
(writing just the transverse directions to the gauge theory)

ds2
2 = gsα

′NeΦ
(

dr2 +
1

4
dψ2

)

, (4.64)

which is conformally equivalent to a cylinder. As the embedding reaches the r = 0 position,
we have strings of zero length stretching between the flavor and color branes. Hence, this
setup corresponds to massless flavors. On the contrary, if the embedding of the flavor
branes did not reach the origin, we would have strings of minimal non-zero length, l, given
by the minimum distance between both types of branes. The mass of these strings would
be given by this length times the string tension, m = T l, and they we would represent
massive flavors.

Although we have discussed this embedding for the Maldacena-Núñez background,
since in [111] they work in the probe approximation, the same conclusions hold for the
backreacted geometry, which we come to discuss now.

The dynamics of the system is described by the action (4.63), where

SIIB sugra =
1

2κ2
10

∫

d10x e−2Φ
√

− det g

[

R+ 4(∂µΦ)(∂µΦ)− 1

12
e2ΦF 2

3

]

, (4.65)

Sflavor = TD5

Nf
∑

(

−
∫

M6

d6ξ e−Φ
√

− det g
∣

∣

M6
+

∫

M6

C6

∣

∣

M6

)

, (4.66)

and M6 is the world-volume of the flavor branes and pullbacks are understood in Sflavor.
F3 must satisfy the flux quantization condition (4.12).

As we have already said, flavor branes extend along the directions x0, x1, x2, x3, r, ψ,
each one of them at a fixed value of θ, φ, θ̃, φ̃. Then, if we derive the equations of motion
following from the sum of these two actions, we would obtain Einstein and flux equations
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involving Dirac δ-functions depending on the latter set of coordinates, where the branes
are localized. Something of the form

dF3 = 2κ2
10TD5

Nf
∑

i=1

δ(4)(~r − ~ri) (4.67)

and similarly for Einstein’s equations, where more Dirac δ-functions would appear in the
strength energy tensor. This is a very hard problem, as we have to solve second order,
nonlinear, partial differential equations with localized sources.

However, there is a huge simplification we can perform. As proposed in [113], since
we are taking the Veneziano limit Nf ∼ N →∞, we can consider the branes as a “fluid”
homogeneously smeared over the transverse dimensions θ, φ, θ̃, φ̃. This introduces two
major simplifications. First of all, the angular dependence is erased, so that we only have
to consider ansatzes depending just on the radial coordinate. The second simplification
consists of replacing the sum in (4.66) by an integral over these transverse coordinates,
obtaining in this way a full ten dimensional integral,

Sflavor = TD5

(

−Nf

4π2

∫

d10x sin θ sin θ̃e−Φ
√

− det g +

∫

Ξ4 ∧C6

)

, (4.68)

where we will take Ξ4 =
Nf

16π2 sin θ sin θ̃dθ ∧ dφ ∧ dθ̃ ∧ dφ̃, which is known as the smearing
form. This amounts to replace the Dirac δ-functions by a constant density. When the
smearing is performed, the violation of the Bianchi identity is given in terms of a continuous
distribution of charge,

dF3 = 2κ2
10TD5Ξ4 . (4.69)

The smearing form is the brane charge density and we see it must be a closed form.
Then, modifying the Maldacena-Núñez background, Casero, Núñez and Paredes [73]

proposed the following ansatz for the metric and RR-form:

ds2 = eΦ(r)
[

dx2
1,3 + e2k(r)dr2 + e2h(r)(dθ2 + sin2 θdφ2)

+
e2g(r)

4

(

(ω̃1 −A1)2 + (ω̃2 −A2)2
)

+
e2k(r)

4
(ω̃3 −A3)2

]

, (4.70)

F(3) =
gsα

′N
4

(

3
∑

i=1

Fi ∧ (ω̃i −Bi)−
3
∧

i=1

(ω̃i −Bi)− ζ sin θdθ ∧ dφ ∧ (dψ + cos θ̃dφ̃)

)

,

(4.71)
where ω̃ are the SU(2) left-invariant one-forms given in (4.7). A is the SU(2)L gauge field
that appeared in (4.9), although the dependence of a with the radial coordinate r can be
different now, determined by the new BPS equations. The RR three form is the sum of a
closed form with the same structure as in the flavorless case (4.10), plus a term generating
the violation of the Bianchi identity depending on the Veneziano parameter ζ. B is an
SU(2) gauge connection following the same pattern as the gauge field A,

B1 = −b(r)dθ , B2 = b(r) sin θ dφ , B3 = − cos θ dφ , (4.72)
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and Fi is its corresponding field strength.
Until now we have been careful showing the gsα

′ units, however it is more comfortable
to work in units in which gsα

′ = 1. In this case, the gsα
′ factors can be thought to be

absorbed into N and Nf (see (4.69)-(4.71)), hence they are easily recovered by N → gsα
′N

and Nf → gsα
′Nf . Notice that in comparison to the Maldacena-Núñez metric (4.6), the

factors N of the internal part of the metric have been absorbed into the factors e2g, e2h

and e2k.

It is convenient to introduce the following set of vielbeins

ex
i

= eΦ/2dxi , er = eΦ/2+kdr , (4.73)

eθ = −eΦ/2+hdθ , eφ = eΦ/2+h sin θdφ , (4.74)

e1 =
1

2
eΦ/2+g(ω̃1−A1) , e2 =

1

2
eΦ/2+g(ω̃2−A2) , e3 =

1

2
eΦ/2+k(ω3−A3) . (4.75)

To obtain the undetermined functions a(r), b(r), g(r), h(r), k(r) and the dilaton,
Φ(r), we must solve the set of BPS equations. The BPS equations impose the following
projections on the ten-dimensional Killing spinor

Γ12ǫ = Γθφǫ , Γr123ǫ = (cosα+ sinαΓφ2)ǫ , iǫ∗ = ǫ , (4.76)

for α(r) an arbitrary function to be determined. After the 4+6 split, ǫ1 = ǫ2 = (ζ+⊗η+ +
ζ−⊗η−), where we are taking iγrθφ123η+ = η+, the ten dimensional Γ-matrices decompose
into

Γµ = γ̂µ ⊗ I , Γa = I⊗ γa . (4.77)

We see that the internal manifold of this system possesses a SU(3)-structure described by
the spinor η. This allows to write the BPS equations in an extremely simple way. As we
saw in section 3.2, this SU(3)-structure, can be described in terms of two pure spinors

Ψ+ =
1

8
e−iJ , Ψ− = − i

8
Ω, (4.78)

where we consider that the spinor η+ is already normalized. According to the projections
(4.76) after the splitting (4.77) and using the formulas (3.76), the SU(3)-structure forms
can be expressed as

J = er3 + (cosαeφ + sinαe2) ∧ eθ + (cosαe2 − sinαeφ) ∧ e1 , (4.79)

Ω = (er + ie3) ∧ ((cosαeφ + sinαe2) + ieθ) ∧ ((cosαe2 − sinαeφ) + ie1) (4.80)

or performing the frame rotation in eφ, e2:

ẽφ = cosαeφ + sinαe2 , ẽ2 = − sinαeφ + cosαe2, (4.81)

where J and Ω take the canonical form.

We find that the supersymmetry conditions (3.99) can be written in the simple form

d
(

eΦ/2J
)

= −e3Φ/2 ⋆6 F3 , dΩ = 0 , d(e−Φ/2J ∧ J) = 0 . (4.82)
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It turns out that this set of equations can be partially integrated and they can be recast
in a simple way in terms of a “master” differential equation [75]. After the integration the
supersymmetric equations are

e2(Φ−Φ0) =
1

2

sinh(2r)

eh+g+k
, b =

2r

sinh(2r)
, (4.83)

cosα =
P sinh(2r)−Q cosh(2r)

P cosh(2r)−Q sinh(2r)
, aeh+g cotα =

a2 − 1

4
e2g − e2h , (4.84)

e2g = P coth(2r)−Q , a =
P

P cosh(2r)−Q sinh(2r)
, (4.85)

e2h =
1

4

P 2 −Q2

P coth(2r)−Q , e2k =
1

2
(P ′ +Nf ) , (4.86)

where we have introduced the functions P (r) and Q(r), which are defined in terms of the
functions g(r) and a(r) from the inverse of the relation shown in (4.85),

Q ≡ (a cosh(2r)− 1)e2g , P ≡ ae2g sinh(2r) . (4.87)

The remaining BPS conditions impose over these functions the following constraints:

Q = coth(2r)

(

(2N −Nf )

(

r − 1

2
tanh(2r)

)

+ q0

)

, (4.88)

P ′′ + (P ′ +Nf )

(

P ′ −Q′ + 2Nf

P +Q
+
P ′ +Q′ + 2Nf

P −Q − 4 coth(2r)

)

= 0 . (4.89)

where Φ0 and q0 are integration constants. Hence, solving the BPS equations reduces to
finding solutions to the “master equation” (4.89), which determines the full background.

The solutions to these BPS equations were studied in [73–75] and it is beyond the scope
of this work to review them. Furthermore, all of them seem to suffer from IR singularities.
This singularity has a simple explanation, as we are dealing with massless flavors, all flavor
branes are forced to pass through the origin, thus the brane density blows up at that point.

It is worth mentioning here that despite of the presence of an IR singularity, some IR
physics can be extracted from these backgrounds. Several criteria, for example [114,115],
have been proposed to determine if these type of singular backgrounds should be considered
to extract some physical results without spoiling the application of the gauge/gravity
techniques. Following the criterion [114], the solutions considered in [73–75] are of the good
type and they should be considered. This criterion states that if the temporal component
of the metric (in Einstein frame) gtt is bounded, one should consider the singularity as a
good physical one. Indeed, when computing IR observables usually different contributions
of metric singularities cancel each other out, leaving a sensible physical result, however
this does not always happen and a resolution of the singularity would be desirable. This
will be consider in section 4.4 by introducing massive flavors.

The BPS solutions corresponding to backgrounds including massive flavors must co-
incide in the UV regime with the solutions of the BPS equations shown above. For this
reason, we will review the asymptotic behavior of these solutions, discussed in full detail
in [75].
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For large radius, i.e. in the ultraviolet of the dual gauge theory, a generic solution
behaves exponentially

P = k e4r/3 +O(1) , (4.90)

where k is an integration constant. There are also special solutions with the following
linearly rising large r asymptotic:

P = |2N −Nf | r +O(1) , Nf 6= 2N . (4.91)

A further analysis is required to see if the geometry can actually be extended to r → ∞
or if it meets a singularity before. This will be discussed below. When Nf = 2N , there
are special solutions with the following asymptotic behavior:

P = P0 +O(e−cr) , P0 =
8N

ξ(4− ξ) , (4.92)

with

q0 =
4N(ξ − 2)

ξ(4− ξ) , c = 1 +
√

9− 4ξ + ξ2 , (4.93)

where ξ is a parameter allowed to change in the range 0 < ξ < 4. 1

4.3.1 Flavorless limit: Deformed Maldacena-Núñez solution

If the presence of (massless) flavor branes originates an IR singularity, one should expect
that setting Nf = 0 in the setup explained in the previous section should produce regular
solutions and, indeed, it is what happens. One also may expect that taking Nf = 0 should
render the background to the Maldecena-Núñez solution, however, this is not the case.
Since the ansatz (4.70) is more general than the ansatz (4.6), in addition to the regular
solution of the Maldacena-Núñez model, there is a one-parameter deformation, first found
in [73], that leads to solutions with regular behavior at r = 0. The infrared asymptotic of
this unflavored one-parameter family of solutions has been explicitly written for P in [75],

P = h1r +
4h1

15

(

1− 4N2

h2
1

)

r3 +
16h1

525

(

1− 4N2

3h2
1

− 32N4

3h4
1

)

r5 +O(r7) , (4.94)

where h1 is the parameter that labels each solution of the family. When h1 = 2N , one
recovers the Maldacena–Núñez solution. It is worth noting that the resulting function Q
is the same for any value of h1,

Q = N(2r coth(2r)− 1) (4.95)

and the integration constant q0 has to be chosen in order to avoid a pole in Q, which
would spoil the regular behavior at r = 0.

In [73] they claim that different members of this family of solutions are related to
changes in the dynamics and masses of the KK modes.

1In [74,75] they also find a set of solutions in which the origin of space is not at r = 0, and r is allowed
to extend to −∞, then the BPS equations and the master equation are slightly modified [75]. These
solutions correspond to take a = b = 0, which in the flavorless case of the Maldacena-Núñez background
leads to singular solutions. However, if the number of flavors is greater or equal to the number of colors,
Nf ≥ N , the IR singularity is of the “good” type and these solutions are claimed to describe strongly
coupled physics of N = 1 gauge theory with vanishing gaugino condensate. Nevertheless, the UV behavior
of these solutions coincides at leading order with that of the solutions presented in the main text.
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4.3.2 Field theory comparison

To propose an action describing the field theory dual to the background presented along
section 4.3, we start with the proposed flavorless field theory action (4.58). To introduce
flavors we must consider a pair of chiral multiplets Q and Q̃ transforming in the funda-
mental and antifundamental representation of the gauge group SU(N) and flavor group
SU(Nf ). Then we should add to (4.58) the canonical kinetic terms

∫

d4xd4θTr
[

Q†eVQ+ Q̃†eV Q̃
]

, (4.96)

plus some superpotential term that couples these flavors to the Kaluza-Klein adjoint chiral
multiplets. In [73] they propose a superpotential term of the form

W =
∑

k

κkQ̃ΦkQ , (4.97)

motivated by the fact that this is the only allowed way to couple fundamentals to an
adjoint in N = 2 SQCD. κ is an undetermined coupling constant.

Let us consider the total action, given by the addition of (4.58) to (4.96) with the
additional superpotential term (4.97). In the IR we can integrate out the massive Kaluza-
Klein modes to end up with the folloeing action

S ∼
∫

d4xd4θ
[

Q†eVQ+ Q̃†eV Q̃
]

+

∫

d4xd2θTr
[

W2
α +W ′

]

+ h.c. , (4.98)

where the new superpotential is quartic in the chiral multiplets.

W ′ ∼
∑

k

κ2
k

2µ2
k

(Q̃Q)2 . (4.99)

We have omitted IR irrelevant superpotential terms of the order O((Q̃Q)3). To integrate
out the Kaluza-Klein degrees of freedom we must lay in an energy scale below mKK, where
the supergravity approximation may fail. Hence, this is not a very clean computation so
that, expression (4.98) with the superpotential (4.99) has to be taken with a grain of salt.

Symmetries

• The term (4.97) explicitly breaks the flavor symmetry SU(Nf ) × SU(Nf ) to its
diagonal group SU(Nf ). This agrees with the flavor brane set-up we have presented.
We do not have a system of D5 and anti-D5 branes, which would reproduce the
SU(Nf )×SU(Nf ) flavor symmetry. Since we only have flavor D5-branes, the flavor
symmetry group is SU(Nf ) (without taking into account the smearing).

• In [75] they argue that SU(Nf ) is not the actual symmetry. Because of the smearing,
flavor branes are separated, breaking the symmetry to the group U(1)Nf . Therefore,
the superpotential (4.97) should be replaced by

W ∼ κijQ̃aiΦabQbj , (4.100)
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with i, j = 1, . . . , Nf in the fundamental or antifundamental of SU(Nf ) and a, b =
1, . . . , N in the fundamental or antifundamental of SU(N) and the rest of the dis-
cussion remains unchanged. Nevertheless, the SU(Nf ) symmetry is recovered in the
IR.

• The U(1)R symmetry breaking pattern is now

U(1)R → Z2N−Nf
→ Z2 , (4.101)

where the first breaking is explicit, due to quantum corrections, and the second
one is spontaneous, due to the formation of the gaugino condensate. By analogous
arguments to those shown in section 4.2.2, the flavored supergravity background can
reproduce this pattern. Although now one can identify the gaugino condensate with
the a or b functions.

Notice that the solution Nf = 2N is special because it preserves the U(1)R symmetry,
there is no anomaly. Of course, this is what happens in the field theory. According to
the formula (4.31) for the R-symmetry anomaly, the theory described by the action
(4.98) has an anomaly proportional to

T (Ad)Rgaugino + 2NfT (F)(RQ − 1) ; (4.102)

the indices are T (Ad) = N , T (F) = 1/2 and the gaugino has R-charge Rgaugino = 1
and for the chiral supermultiplets we have RQ = 1/2, which can be seen, for example,
from the superpotential. Then the previous expression is exactly zero for Nf = 2N .

β-function

The NSVZ β-function for pure N = 1 super Yang-Mills was explained in section 4.2.1. Its
generalization to the presence of massless flavors is given by

βgYM
= − g

3
YM

16π2

3N −Nf (1− γ0)

1− g2
YM

N

8π2

, (4.103)

where γ0 is the anomalous dimension of the fundamental superfields.
As we have already mentioned, the master equation (4.89) admits many solutions

whose UV asymptotics is shown in (4.90), (4.91) and (4.92). There are also several IR
behaviors [75] and, hence, a plethora of solutions interpolating between these two regimes
giving rise to different backgrounds. Here, we lack of a criterion to determine whether a
solution is relevant or not, indeed, all of them produce singular backgrounds at the IR.
This situation will ameliorate in section 4.4, where we will consider the generalization to
backgrounds realizing massive flavors. As in the massless case, in section 4.4 we will find
several solutions giving rise to different backgrounds, but we will have at our disposal a
physical criterion to determine uniquely the relevant solution. Moreover, contrary to the
massless case, these solutions do not suffer from IR singularities.

Therefore, we will postpone the discussion of the β-function obtained with gravity
computations until section 4.7. Since the comparisons with the NSVZ β-function only
makes sense in the UV, the conclusions in section 4.4 are valid for the massless flavor case
presented along this section as well.
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Seiberg duality

Let us consider the following two theories:

• SQCD or electric theory:
This is a similar field theory to the one we have been considering along the section.
It is SU(N) N = 1 SYM with Nf > N flavors, i.e. Nf chiral supermultiplets in
the fundamental representation of the gauge group and Nf in the anti-fundamental,
but no superpotential. This theory has the global symmetry SU(Nf ) × SU(Nf ) ×
U(1)× U(1)R, under which the fields have the following quantum numbers:

SU(N) SU(Nf ) SU(Nf ) U(1) U(1)R
Q N Nf 1 1 1− N

Nf

Q N 1 Nf −1 1− N
Nf

Table 4.1: Quantum numbers for SQCD. The R-charge shown is that of the scalar in the
supermultiplet.

• SQCD+M or magnetic theory:
This is the same theory as the previous one, except now the gauge group is SU(Ñ )
with Ñ = Nf −N and we have an extra fundamental chiral superfield, M̃ , coupled
to the flavors q and q̄ through the superpotential

W = λM̃ j
i qj q̄

i , (4.104)

where λ is a dimensionless constant. Now the quantum numbers are:

SU(Ñ ) SU(Nf ) SU(Nf ) U(1) U(1)R
q N Nf 1 1 N

Nf

q N 1 Nf −1 N
Nf

M̃ 1 Nf Nf 0 2
(

1− N
Nf

)

Table 4.2: Quantum numbers for SQCD+M. The R-charge shown is that of the scalar in
the supermultiplet.

As originally proposed by Seiberg [7], these two theories, with different behaviors at
weak coupling, are conjectured to describe the same IR physics. More precisely, their
Green functions become exactly the same in the limit in which all external momenta
are taken to zero after the identification of some gauge invariant operators between both
theories. For example, we can define the baryonic operators

SQCD : Bi1...iN = ǫn1...nNQn1i1 . . . QnN iN , B̄i1...iN = ǫn1...nN
Q̄n1i1 . . . QnN iN ,

(4.105)

SQCD +M : bi1...iÑ = ǫn1...nÑ qn1i1 . . . qnÑ iÑ
, b̄i1...iÑ = ǫn1...nÑ

q̄n1i1 . . . qnÑ iÑ ,

(4.106)
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where n is a gauge index and i, a flavor index. Then we identify

Bi1...iN ↔ ǫi1...iN j1...jÑ
bj1...jÑ , (4.107)

B̄i1...iN ↔ ǫi1...iN j1...jÑ b̄j1...jÑ
. (4.108)

In the same way the mesonic operator of SQCD, M j
i = Q̄jnQni, is identify with the

fundamental field of SQCD+M

M ↔ M̃ , (4.109)

not with the magnetic meson mj
i = q̄jnqni, since quantum numbers simply do not match.

This duality is extremely useful since it is a weak-strong coupling duality and, therefore,
a valuable tool to extract non-perturbative information in one theory by doing perturbative
computations in its dual. Some consistency checks of this duality are:

• Global symmetries match.

• Seiberg duality is an involution.

• The dimension of moduli spaces for both theories and gauge invariant operators
match.

• Anomalies for both theories match.

• It is consistent under mass or vev deformations. For example, we can give mass to a
flavor and integrate it out, then the electric theory is a SU(N) theory with Nf − 1
flavors, while the dual theory should be a SU(Nf −N −1) gauge theory with Nf −1
flavors and it actually is. The reason is that a mass term for the electric flavors
generates a linear term for the magnetic field M̃ , which forces the magnetic squarks
to take a vev. This generates a Higgs mechanism that renders the gauge group of
the dual magnetic theory to SU(Nf −N − 1) and the number of flavors to Nf − 1.
This will be relevant for section 4.7.

However, neither of the two theories involved in the duality as originally proposed by
Seiberg corresponds to the field theory dual of the supergravity background we have been
studying along this section. Rather we have SQCD supplemented with a quartic superpo-
tential. The effects of the introduction of a quartic superpotential are very nicely discussed
in [116] and this modification of the original Seiberg duality turns out to be even more
interesting since the duality holds along a RG flow, not just at the IR.

Due to the importance of Seiberg duality, it is then natural to ask what the supergravity
counterpart of Seiberg duality is. In [73–75] they proposed that Seiberg duality is realized
in the background (4.70)-(4.71) through the interchange of the spheres (θ, φ) ↔ (θ̃, φ̃).
According to (4.12) the number of colors of the electric theory is given by the integral of
the RR three-form over the three-sphere S3 ∼ (θ̃, φ̃, ψ). Then, the number of colors of the
magnetic theory would be given by integrating over the dual three-sphere S̃3 ∼ (θ, φ, ψ):

− 1

2κ2
10TD5

∫

S̃3(θ,φ,ψ)
F3

∣

∣

S̃3 = Nf −N , (4.110)
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which is the right number of colors for an interpretation in terms of a Seiberg duality.
Moreover, the interchange of the two spheres does not play any role in the violation of the
Bianchi identity, from which we can obtain the number of flavors, and thus, the number
of flavors remains the same.

This duality is reflected at the level of the BPS system of equations by keeping it
invariant under the interchange

(N,Nf )↔ (Nf −N,Nf ) , Q(r)↔ −Q(r) . (4.111)

This also leaves the master equation invariant. Then, two different field theories corre-
spond to the same gravity solution and, therefore, they describe the same physics.

Nevertheless, this supergravity implementation of Seiberg duality should be taken care-
fully and one should try to support it with checks like those of the original Seiberg duality.
For example, in [74] they verify the R-symmetry anomaly matching.

4.4 Considering massive flavors

The solutions to the BPS equations of the previous system or, what it is the same, the
solutions to the master equation (4.89) show an IR singularity. This singularity is a
common feature of supergravity solutions introducing massless flavors engineered through
the smearing procedure previously explained. This singularity can be understood from
the fact that the brane density blows up at r = 0, because all flavor branes pass through
the origin, since the flavors are massless. Although this singularity is of the good type, it
makes the interpretation of the IR field theory not so clear.

One possibility to alleviate this consists of hiding the singularity behind an horizon
[117], which corresponds to having a thermal bath in the field theory. Another possibility,
which is the one we will be considering, consists of taking massive quarks, so that the
branes do not reach the origin and, hence, the singularity is avoided.

We will take the same metric ansatz as in (4.70), respecting the SU(3)-structure of
the internal manifold, but we will consider a slightly different RR three-form. The most
general ansatz for a RR three-form just depending on the radial coordinate and compatible
with supersymmetry is [79]

F3 =
N

4

(

−
3
∏

i=1

(ω̃i −Bi) +
3
∑

i=1

(F i + f i) ∧ (ω̃i −Bi)

)

, (4.112)

where the change with respect to (4.71) comes from the f i functions. They follow a similar
structure to that of F i,

f1 = −L1(r)dr∧dθ , f2 = L1(r) sin θ dr∧dφ , f3 = L2(r) sin θ dθ∧dφ , (4.113)

in terms of two functions L1(r) and L2(r) to be determined. Hence, the smearing form
describing the density of brane charge, appearing in the Bianchi identity (4.69), changes
to

Ξ3 = − N

16π2
sin θ dθ ∧ dφ ∧

(

L2ω̃
1 ∧ ω̃2 − L′

2dr ∧ ω̃3
)

+
NL1

16π2
dr ∧

(

dθ ∧ ω̃2 ∧ ω̃3 + dφ ∧
(

sin θ ω̃1 ∧ ω̃3 + cos θ dθ ∧ ω̃2
))

. (4.114)
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The new BPS equations set a relation between the functions L1 and L2,

L1 = − L′
2

2 cosh(2r)
. (4.115)

Then, defining the function S(r) as

S(r) ≡ − N

Nf
L2(r) , (4.116)

we can write the functions that parametrize the RR three-form and the smearing form in
terms of the S(r) function.

The remaining BPS conditions allow us to write a master equation analogous to (4.89),
generalized for massive flavors,

Q = coth(2r)

[

q0 +

∫ r

0

2N −NfS(ρ)

coth2(2ρ)

]

, (4.117)

P ′′ +NfS
′ +(P ′ +NfS)

(

P ′ −Q′ + 2NfS

P +Q
+
P ′ +Q′ + 2NfS

P −Q − 4 coth(2r)

)

= 0 (4.118)

and the rest of the relations imposed by the BPS equations in the massless case (4.83)-
(4.86) have the same form, except for

b =
2r

sinh(2r)
− Nf

2N

[

S(r)

cosh(2r)
+

2

sinh(2r)

∫ r

0
dρ tanh2(2ρ)S(ρ)

]

(4.119)

and

e2k =
1

2
(P ′ +NfS(r)) . (4.120)

Setups where the function S(r) vanishes below a certain value, r ≤ rq, describe the physics
of N = 1 SYM with massive flavors, whose mass is related to the separation of the flavor
and color branes, rq, and the quartic coupling we already had in the massless case.

Notice that in the limit S → 1 we recover the massless situation of the previous section
and the limit S → 0 is equivalent to set Nf = 0, i.e. we should get the solution presented in
4.3.1. This situation is similar to the approach used in [118–120] where massive flavors are
reproduced from the massless case by the substitution Nf → NfS(r), for the function S(r)
interpolating between zero in the IR (r → 0) and one in the UV (r → ∞). Nevertheless,
performing this naive substitution in the flavored background of section 4.3 does not give
the whole RR three-form (4.112) of the “massive” background.

Once a profile S(r) is determined, a solution is obtained by first computing Q(r) in
(4.117) and then solving equation (4.118) for P (r). It should be noted that regularity of
the geometry (see the expressions for e2h (4.86) and e2k (4.120)) requires

P > |Q| , P ′ > −NfS . (4.121)

In the particular cases S = 0 and S = 1 one finds solutions which already appeared in the
literature.
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4.5 Supersymmetric embedding

In section 4.3, flavor branes were introduced following [111], where they make use of κ-
symmetry to find supersymmetric embeddings for the D-branes. However, as we saw in
section 3.2.3 we have a powerful way of finding supersymmetric embeddings by means of
the use of calibrations.

The fact that the background we are considering has an SU(3)-structure results very
useful, as it provides a natural calibration form (see equations (3.91) and (3.121)):

ω = −eΦJ . (4.122)

Having an SU(3)-structure also implies that the internal manifold is complex and so,
we can introduce a set of complex coordinates z1, . . . , z4 parametrizing a deformed conifold
[121], thus satisfying

z1z2 − z3z4 = 1 (4.123)

and related to the radial coordinate through

4
∑

i=1

|zi|2 = 2 cosh(2r) . (4.124)

In this way we can write the metric, the Kähler (1, 1)-form J , and the holomorphic (3, 0)-
form Ω as

ds2
6 =

1

2
hαβ̄(dzα ⊗ dz̄β̄ + dz̄β̄ ⊗ dzα) , (4.125)

J =
i

2
hαβ̄dzα ∧ dz̄β̄ , (4.126)

Ω = −e
2Φ0

2z3
dz1 ∧ dz2 ∧ dz3 . (4.127)

The explicit dependence with the original coordinates is given by [79]

z1 = −e− i
2

(φ+φ̃)

(

er+
i
2
ψ sin

θ

2
sin

θ̃

2
− e−r− i

2
ψ cos

θ

2
cos

θ̃

2

)

,

z2 = e
i
2

(φ+φ̃)

(

er+
i
2
ψ cos

θ

2
cos

θ̃

2
− e−r− i

2
ψ sin

θ

2
sin

θ̃

2

)

,

z3 = e
i
2

(φ−φ̃)

(

er+
i
2
ψ cos

θ

2
sin

θ̃

2
+ e−r− i

2
ψ sin

θ

2
cos

θ̃

2

)

,

z4 = −e− i
2

(φ−φ̃)

(

er+
i
2
ψ sin

θ

2
cos

θ̃

2
+ e−r− i

2
ψ cos

θ

2
sin

θ̃

2

)

.

(4.128)

One can characterize the supersymmetric D5-brane embeddings by two algebraic equa-
tions in terms of the complex coordinates:

F1(zi) = 0 , F2(zi) = 0 . (4.129)
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In [79], Conde, Gaillard and Ramallo proved, for the calibration given in (4.122), that
the embedding described by the previous holomorphic equations satisfies the calibration
condition (3.103) and, therefore, the embedding is supersymmetric.

However, this is not the whole story. It may happen that embeddings of the form
(4.129) produce a backreaction of the flavor branes not compatible with the ansatz shown
around (4.112).

In particular, the choice made in [79] is given by the following embedding parametrized
by two complex constants A and B:

z3 = Az1 , z4 = Bz2 , (4.130)

for which flavor branes backreact in a compatible way with the ansatz.

This equation, together with (4.123) and (4.124) determines the minimum distance rq
that this embedding reaches

cosh(2rq) =

√

1 + |A|2
√

1 + |B|2
|1−AB| . (4.131)

It depends on the moduli of A and B, as well as their phase. By demanding that the WZ
term of the action of the full set of D5 branes in the ten-dimensional theory coincides with
the action obtained from the embeddings one arrives at [79]

S(r) =

√

cosh 4r − cosh 4rq√
2 sinh(2r)

Θ(r − rq) . (4.132)

Notice that S(r) is continuous at r = rq, while S′(r) diverges as S′(r) ∼ (r − rq)
−1/2

near rq, and it is thus singular. To avoid this singularity in [79] they have proposed a
brane setup for which the tip of the branes, rq, is “smeared”, so that an average should
be made over brane distributions with different tip positions, weighted with a density
function ρ(rq). After performing the change of variables y = cosh(4r) and yq = cosh(4rq)
with y ≥ 1, and assuming that the branes are distributed over the whole space 0 < r <∞,
then the profile function will be given by

S(y) =

∫ y

1
dyq ρ(yq)

√
y − yq√
y − 1

, (4.133)

where the measure function ρ(yq) satisfies the normalization condition

∫ ∞

1
dyqρ(yq) = 1 . (4.134)

4.6 Simple solutions for massive flavors

In this section we will present some requirements for the profile function S(r) and we will
propose a simple function S(r) that fulfills them. Once we have a good profile function
we can find the solutions to the master equation (4.118). However, not all the solutions
to the master equation will be interesting for us, we will take some plausible physical
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assumptions in such a way that the relevant solution will be uniquely determined for each
value of the parameter ζ ≡ Nf/N .

On the gauge field theory side, one expects that the asymptotic physics for Nf massive
flavors at high and low energies should be as follows:

a) At energies lower than the flavor mass (infrared limit) it should converge to the
unflavored case, S = 0, since in the deep IR we can integrate out all massive flavors.

b) At high energies (ultraviolet limit) flavors seem to be massless, so it should converge
to the Nf massless flavor case, S = 1.

This picture can be realized by the gravity dual background when the function S(r)
interpolates between the infrared/small radius limit S(r) → 0 for r ≪ rq – with rq being
a measure of the common quark mass – and the ultraviolet/large radius limit S(r) → 1
for r ≫ rq.

Thus we are interested in solutions for massive flavors that approach the deformed
MN solution (4.94) in the infrared, i.e. in the small radius limit r → 0. In [79], to
describe flavors with a given mass O(yq) with some spread, a measure function ρ(yq) with
a finite support around yq was chosen. Here, we slightly depart from this approach. Given
the freedom in the choice of distribution of branes, we will conveniently adopt a smooth
distribution ρ(yq) of branes, chosen to meet the following requirements:

• S(r) is assumed to be a monotonous increasing function of r, in agreement with the
idea that degrees of freedom are integrated out when we move along the RG flow
from the UV to the IR, varying between S = 0 and S = 1, approaching S = 1 at
infinity.

• We demand S(r) ∼ r4 (or greater powers) for r ∼ 0, so that the curvature invariants
of the geometry near r = 0 are the same as in the deformed MN solution. In this
way we ensure that the metric is regular at the origin (and that there are no massless
flavors, which would generate the awkward IR singularity).

• In order to have a more tractable differential equation (4.118), we demand that S is
such that the integral (4.117) defining Q can be explicitly performed with a simple
result for Q.

• Finally, we demand that ρ(yq) is positive definite and satisfies the normalization
condition (4.134).

We found an extremely simple choice that meets all these requirements:

S(r) = (tanh(2r))2n , n = 2, 3, . . . (4.135)

This corresponds to a distribution of branes with masses concentrated around the maxi-
mum of S′(r), at

rmax = arccoth





√

3 + 2n+ 2
√

4n + 2

2n− 1



 , (4.136)
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which increases with n (for large n, rmax ∼ 1/4 log n). The spread ∆r decreases with n.
In order to determine ρ(yq), we note that the integral defining S is related to an Abel
Transform as follows

2∂y(
√

y − 1 S(y)) = A[ρ(y)] =

∫ y

1
dyq

ρ(yq)√
y − yq

. (4.137)

The inverse Abel Transform formula is

ρ(yq) =
2

π
∂yq

∫ yq

1

∂y (
√
y − 1 S(y))

(yq − y)1/2
dy . (4.138)

It is easy to verify that the normalization condition (4.134) is satisfied for this measure
function. For the choice (4.135), we find

ρ(n)(yq) =
4
√

2 Γ(n+ 3
2)√

π(n− 1)!

(yq − 1)n−1

(yq + 1)n+ 3
2

. (4.139)

In particular, if we take n = 2,

ρ(n=2)(yq) =
15(yq − 1)
√

2(1 + yq)
7
2

. (4.140)

Next, we compute Q(r) in (4.117). The basic integral we need is
∫ r

0
dr tanhm(2r) =

tanhm+1(2r)

2(m + 1)
2F1

[

1, 1
2 (1 +m), 1

2(3 +m), tanh2(2r)
]

. (4.141)

For integer m, this reduces to simple expressions. Thus we find

Q(n)(r) =
1

2
(2N −Nf )(2r coth(2r)− 1)

− Nf

2

(

1 +
n+1
∑

k=1

(

tanh2k−1(2r)

2k
− tanhk−1(2r)

k
− tanhk+n(2r)

k + n+ 1

))

, (4.142)

Q(n=2)(r) =
1

2
(2N −Nf )(2r coth(2r)− 1) +

Nf

6
tanh2(2r) +

Nf

10
tanh4(2r) . (4.143)

Notice that we have set q0 = 0. The reason is that the term q0 coth(2r) produces a singular
behavior at r = 0, thus violating our condition that the solution reduces to the deformed
MN solution at r = 0.

In the following section we will proceed to the analysis of solutions P (r) of the master
equation (4.118) as a function of the Veneziano parameter ζ = Nf/N . In all cases we will
use the S(r) given by (4.135) with n = 2 and hence Q given by (4.143).

In general, the resulting differential equation (4.118) admits the following boundary
conditions:

P ≈
{

p0 +O(r3)

h1r +O(r3)
r ∼ 0 , (4.144)

P ≈















|2N −Nf | r ζ 6= 2

P0 + e−cr ζ = 2

k e4r/3 any ζ

r≫ 1 . (4.145)
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Notice that the solutions with boundary conditions at r ≫ 1 already appeared in section
4.3, these are (4.90), (4.91) and (4.92). For each ζ 6= 2, the solution to (4.118), P (r), is
uniquely determined if we demand the following asymptotic conditions:

a) At r ∼ 0, P ∼ h1r, i.e. the solution reduces to the deformed Maldacena-Núñez
solution with the asymptotic behavior given by (4.94).

b) At large r, the solution has the linear behavior (4.91), P ∼ |2N −Nf | r.

For a generic integration constant h1 above some critical value, the large r asymptotic
behavior is P ∼ e4r/3, as discussed earlier. At a critical value of h1 the solution has the
linear behavior P ∼ (2N − Nf )r, or constant for ζ = 2, and at any lower h1 it meets
a singularity before reaching r = ∞. Hence, the condition of linear behavior at infinity
specifies the solution uniquely.2

In order to solve the differential equation (4.118) numerically, as mentioned above we
take the brane distribution (4.135) with n = 2, and Q given in (4.143). This describes
massive flavors with a mass around r ≈ 0.5 (see (4.136)), determined by the maximum of
S′(r), shown in fig. 4.3 together with S(r).

0.0 0.5 1.0 1.5 2.0
r0.0

0.5

1.0

1.5

SHrL, S'HrL

Figure 4.3: S(r) (solid line) and S′(r) (dashed line). The maximum of S′(r) at r ≈ 0.5
indicates the characteristic mass scale of the massive flavors.

Since we have to meet boundary conditions at zero and infinity, we employ a shooting
method. This determines the critical h1. Figures 4.4 (a), (b), (c), (d) illustrate the
solutions in the three cases Nf < 2N , Nf = 2N and Nf > 2N .

• In the first case we take ζ = 7/4, for which we find

h1

Nf

∼= 1.53218706 , ζ =
7

4
, (4.146)

and the solution is reported in fig. 4.4 (a).

2The solutions with exponential behavior at infinity have a constant dilaton and become Ricci flat,
which is not the expected asymptotic behavior for holographic applications. Some interesting applications
of these solutions as describing properties of 6d field theories have nevertheless been found in [75].
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• In the special case ζ = 2 the solution that starts with P ∼= h1r near r = 0 and
asymptotes to a constant at infinity has

h1

Nf

∼= 1.42475837 , ζ = 2 . (4.147)

The large radius behavior is given by

P = P0 − e−c(r−r1) +O(e−4r) , (4.148)

with

P0 =
32N

15
, c = 1 +

√
21

2
, Q→ 8N

15
, (4.149)

where r1 is a numerical constant. The solution is shown in fig. 4.4 (b).

• Finally, fig. 4.4 (c) shows a case with ζ > 2, taking in particular ζ = 7/3, for which
we find

h1

Nf

∼= 1.35890843 , ζ =
7

3
. (4.150)

Note that ζ = 7/3 is related to ζ = 7/4 (used in fig. 4.4 (a)) by ζ → ζ/(ζ − 1),
which is produced by the change N → Nf −N . We have made this choice for later
comparison between theories related by a naive Seiberg duality transformation. We
will comment on this below.

More generally, one can determine h1 as a function of ζ, with 0 < ζ <∞, as shown in fig.
4.5. For ζ → 0 we obtain h1/Nf → ∞. Indeed one can verify that h1 → 2Nf/ζ = 2N
as Nf → 0, recovering the MN boundary condition at r = 0 for P discussed above.
Furthermore, we note that for large ζ the critical h1 approaches a finite asymptotic value,

h1

Nf

∼= 1.72102763 , ζ →∞ . (4.151)

The reason is that for ζ ≫ 1, one can scale P → NfP so that the master equation (4.118)
becomes independent of ζ, as Q becomes proportional to Nf , see (4.143). This scaling
solution is shown in fig. 4.4 (d).

4.7 Gauge coupling β-function

To compute the β function of the gauge coupling in the dual field theory we first need to
identify the gauge coupling constant in terms of geometrical quantities. For the metric
(4.70), which is the same for both the massless and massive flavor background, this has
been done in [73] and the computation is completely analogous to that performed in (4.42).
The gauge coupling turns out to be directly related to the P function as follows

8π2

g2
YM

= 2

(

e2h +
e2g

4
(a− 1)2

)

= tanh(r) P (r) . (4.152)
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Figure 4.4: The function P (r)/Nf solution to the master equation (4.118) that matches
between the deformed Maldacena-Núñez solution (4.94) in the infrared (r → 0) and the
linear behavior in the ultraviolet (r → ∞). The dashed line corresponds to Q(r)/Nf

(|Q(r)|/Nf in fig. c). (a) ζ = 7/4 (b) ζ = 2. (c) ζ = 7/3. (d) ζ =∞.

Since it is clear when we refer to the Yang-Mills coupling we will remove from now on the
YM subscript to clear the notation.

The second crucial ingredient necessary to obtain any β function in the dual field theory
is the precise relation between the radial coordinate r of the supergravity background and
the energy scale of the gauge theory. This was already discussed in section 4.2.2 for the
Maldacena-Núñez model, where the following relation was obtained

(

Λ

µ

)3

∼ a(r) , (4.153)

which gives rise to the UV behavior

µ

Λ
∼ e 2r

3 , r ≫ 1 . (4.154)

In extending the relation between µ and r to models with Nf 6= 0 massless flavors, one
needs to consider a number of issues. In particular, interesting solutions exist with a =
b = 0 in (4.70)-(4.71) and its massive generalization, so one should seek for other possible
definitions of the energy scale than (4.153). As emphasized in [73, 75], for a class of
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Figure 4.5: Near r = 0, the solutions are required to behave as P ≈ h1r to approach the
deformed MN solution. The figure shows the critical values of the parameter h1 which are
required for P to have linear behavior at infinity.

flavored N = 1 supersymmetric models, the same UV relation (4.154) arises from any of
the following identifications

(

Λ

µ

)3

∼ a(r) ,

(

Λ

µ

)3

∼ b(r) ,
(

Λ

µ

)3

∼ e−2Φ(r) . (4.155)

The relations (4.154) and (4.155) can be generically written in the form

(

Λ

µ

)3

= F (r) , F (r)→ e−2r for r →∞ . (4.156)

Different choices of F are analogous to the ambiguity that appears on the field theory
side in the choice of renormalization scheme. Using (4.152) and (4.156), we obtain the
following expression for the β function:

β 8π2

g2

= −3F

F ′ ∂r(tanh r P ) = − 3F

F ′ cosh2 r

(

sinh r cosh r P ′ + P
)

(4.157)

and by knowing F and the solution P , we can now compute β8π2/g2 and hence βg. Differ-
ences between the possible radius/energy relations in (4.155) eventually arise in the IR.
However, we have verified that all relations in (4.155) lead to qualitatively similar results.
For the calculations that follow, we will adopt the prescription (4.153). In this way, when
Nf = 0, we recover the β function of the MN model (specifically, the β function obtained
in [122]).

It is convenient to rescale away the parameter Nf in the master equation (4.118) by
the change P = Nf P̃ and Q = Nf Q̃. This leads to the following scaling for the β function,

βg =
1

√

Nf
βg̃(x, g̃) , g =

1
√

Nf
g̃ , (4.158)

where
8π2

g̃2
= tanh(r) P̃ (r) . (4.159)
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In what follows we will thus compute βg̃. Note that, in terms of the ’t Hooft coupling
λ ≡ g2N , one has g̃2 = ζλ, ζ = Nf/N , and

βλ = f(x, λ) . (4.160)

This can be compared with the NSVZ β function (4.103), which in terms of λ reads

βλ = − λ2

8π2(1− λ
8π2 )

(3− x(1− γ0)) . (4.161)

This agrees with the structure of the holographic β function (4.160), i.e. in the large N
limit at fixed Nf/N it only depends on λ and ζ.

At this point it is useful to recall some basic facts of the NSVZ β function. It was
suggested by Seiberg [7] that a conformal window for SQCD should exist for 3

2N < Nf <
3N , where a family of massless SQCD theories with Nf massless flavors develop an IR
fixed point at finite coupling. All flavored gauge theories in the conformal window would
be deconfined and chiral symmetry restored. The lower end-point should be considered a
lower-bound on the actual value. A non-trivial IR fixed point can be found if ζ ≈ 3 [94].
Indeed, using the explicit form of the one-loop anomalous dimension the vanishing of the
β function requires

3

ζ
− 1 = −γ0 =

1

8π2
g2N +O(g4N2) . (4.162)

It is clear that this fixed point moves towards the strongly coupled region as ζ decreases
from 3 to lower values. This assumes a small value of the anomalous dimension. As we
will see below, the present holographic system, like the one of [74, 75] seems to involve
large values of the anomalous dimension γ0, in fact γ0 = −1/2 in the UV.

The calculations that follow use our specific choice for the embedding function S(r) =
tanh4(2r). However, the structure of the fixed points seems to be a generic property of the
solutions of the master equation (4.118) with linear dilaton asymptotic and any embedding
function S with S(r)→ 1 at infinity. This asymptotic includes previously known solutions
with massless flavors.

The linear dilaton asymptotics of these types of backgrounds preclude the emergence
of an anti de Sitter geometry at infinity, which should be a more appropriate description
near the UV fixed points. Despite this fact and despite the above mentioned ambiguities in
the definition of the holographic beta function, we will find some remarkable coincidences
with the expected behavior in flavored SQCD.

4.7.1 Nf < 2N

The β function for the gauge theory with massive fundamental flavors is obtained by
taking the solution P (r) found in the previous section (see fig. 4.4a) and applying the
formula (4.157). The result is shown in fig. 4.6a.

The β function has a UV fixed point at g = 0, where it has the following behavior

βg ≈ −
3

32π2
(2N −Nf )g3 . (4.163)
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Figure 4.6:
√

Nfβg as a function of
√

Nfg, corresponding to the supergravity solutions
in fig. 4.4a,b,c,d. (a) ζ = 7/4. (b) ζ = 2. (c) ζ = 7/3. (d) ζ =∞.

Remarkably, this exactly agrees with the NSVZ β function (4.103) near g = 0, if γ0 = −1/2
in the UV – where mass terms can be neglected. A similar conclusion was reached in the
case of the backgrounds with S = 1 [74, 75]. This is not surprising, since in the UV our
S differs from S = 1 by exponentially suppressed terms, which do not affect the leading
behavior in (4.163). It would be interesting to have an independent derivation of the
anomalous dimension γ0 by holographic methods, but presently it is not clear to us what
the correct prescription would be.3

The β function of fig. 4.6a is zero at g = 0, negative and monotonically decreasing for
g > 0, thus implying asymptotic freedom and ordinary confinement in the IR, where
g →∞. In particular, we find no additional IR or UV fixed points at finite coupling.

4.7.2 Nf = 2N

Using the solution P (r) found in the previous section (see fig. 4.4b) we determine the β
function, shown in fig. 4.6b. We can see that a non-trivial UV fixed point g = g∗ appears.
Although we do not have the gravity solution that describes the missing branch g < g∗,
some interesting features can be inferred by comparing with the NSVZ β function (4.103)
in this UV region where mass terms can be neglected. For Nf = 2N , the NSVZ β function

3In [74] an attempt was made to compute γ0 by proposing that the quartic coupling of the gauge theory
should be identified with some quotient of the volumes of different cycles of the manifold.
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becomes

βg = − g3N

16π2(1− g2N
8π2 )

(1 + 2γ0) . (4.164)

Again, it is consistent with our results if γ0 → −1/2 in the UV and g flows to g∗. Moreover,
since the perturbative NSVZ β function is negative near the UV fixed point at g = 0, by
continuity there must be at least another point g′

∗, with g′
∗ < g∗, where the β function

vanishes. In the simplest assumption that there is only one such point, this would be an
IR fixed point. The resulting picture is in fact similar to the one proposed by Seiberg (for
a discussion on the effect of mass terms see e.g. [116]). Obviously, a description using
massive flavors like the present one cannot describe the emergence of a conformal fixed
point in the infrared. However, given the presence of the UV fixed point at g = g∗, the IR
fixed point seems to be the simplest possibility that permits a negative beta function near
g = 0. The combined presence of a pair of IR and UV fixed points is also a prerequisite
for the existence of a mechanism in which the disappearance of the conformal window is
due to the annihilation of a pair of fixed points [95]. Notice that if for Nf = 2N the IR
fixed point appears at ‘t Hooft coupling λ = O(1) (as suggested by a naive extrapolation
of (4.162)), it would be very difficult to see it by means of perturbative and holographic
techniques.

4.7.3 Nf > 2N

Using now the solution P (r) of fig. 4.4c we determine the β function for the case ζ = 7/3.
This is shown in fig. 4.6c. The β function has, like in the Nf < 2N case, a UV fixed point
at g = 0, where it has the behavior

βg ≈ −
3

32π3
(Nf − 2N)g3 . (4.165)

This exactly agrees with the NSVZ β function (4.103) of the Seiberg dual gauge theory
with Ñ = Nf −N near g = 0, if again we set γ0 = −1/2 in the UV. This strongly suggests
that in the UV region the background obtained with our boundary conditions describes,
when Nf > 2N , the Seiberg dual system.

It must be stressed that in the present case Seiberg duality is only an approximate
relation that depends on the scale of energy (see [79]). The idea is that at a given scale µ
one can integrate out massive flavors which have mass greater than µ and remain with a
reduced number of light flavors. In the present framework, this reduced number of flavors
at an energy scale r is effectively described by Nf (r) ≡ Nf S(r). With our choice of
S(r), massive flavors are accumulated near r ≈ 0.5 (see fig. 4.3). In the infrared region,
where r ∼ 0, one has S ∼ r4 so Nf (r) → 0, as expected since in this region the energy
scale is much smaller than the characteristic mass of the flavors. On the other hand,
in the UV region, S → 1 and Nf (r) → Nf , which is consistent with the fact that at
this scale of energies all flavors look massless. As observed in [79], the master equation
(4.118) remains invariant under N → Nf (r)−N and Nf (r)→ Nf (r). This transformation
changes Q(r)→ −Q(r). This is the only sense in which Seiberg duality can be applied to
the present system (in particular, N → Nf −N and Nf → Nf is not a symmetry of the
master equation) and it is consistent with our proposal that the solution P (r) of fig. 4.4c
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describes the Seiberg dual system at an energy scale much larger than the characteristic
mass of the flavors, where Nf (r)→ Nf .

Having obtained a gravity solution for the “Seiberg dual” system, the question is how
to identify a background dual to the original gauge theory. When Nf > 2N , we expect
that the gauge theory will develop a Landau pole. This means that the theory cannot
be extended beyond a certain UV scale. On the gravity side, it means that the geometry
should terminate at a maximum value of r, where it probably has a singularity. Indeed,
there is a one-parameter family of solutions with parameter h1 that at r = 0 approach
the deformed MN solution, but at some finite r they meet a singularity where P = |Q|.
These are the solutions which have an h1 whose value is anything lower than the critical
h1 of fig. 4.5. In this case we lack a clear criterion to pick a unique solution in this family
that is dual to the original gauge theory. It should also be noted that the application of
holography is difficult to justify for singular backgrounds that do not get to infinity.

The β function in fig. 4.6c exhibits a local maximum precisely near the g∗ where a fixed
point appears in the Nf = 2N case. Indeed, as Nf approaches 2N , the local maximum
approaches the line βg = 0 and occurs at large values of r. In the strict Nf = 2N limit,
the branch g < g∗ disappears from the figure, because the solution gets to r =∞ already
at g = g∗.

Finally, fig. 4.6d shows the gauge coupling β function computed in the infinite flavor
limit, that is, for the solution shown in fig. 4.4d. It shares similar features with the case
ζ = 7/3, except that the local maximum has disappeared. The disappearance of the local
maximum can be understood as follows: for ζ = ∞, one has ζ̃ = Nf/Ñ → 1, where
Ñ = Nf − N . Thus one is computing the β function of the “Seiberg dual” system with
ζ = 1. For ζ = 1, the βg indeed looks very similar to fig. 4.6d.

4.8 Comments

We have investigated the new gravity backgrounds found in [79] dual to N = 1 super-
symmetric gauge theories with massive fundamental flavors. This is a step forward in the
endeavor to describe QCD-like theories through the AdS/CFT duality which started with
[70].

These backgrounds are characterized by a profile function S(r) which encodes the fla-
vor brane distribution. In the specific backgrounds we have studied we have chosen a
continuous S(r) = tanh4(2r), with support in the whole space 0 < r <∞, which leads to
a simple analytic expression for the function Q(r), and thus permits a more straightfor-
ward integration of the master equation (4.118) that determines P (r), hence the complete
geometry. The solutions –parametrized by ζ ≡ Nf/N– were uniquely determined by im-
posing boundary conditions that ensure regularity at r = 0 and acceptable asymptotic
behavior at infinity. In this way, solutions are free from the IR singularity that affects the
massless flavor S = 1 case of [74,75].

An interesting open problem would be to find regular backgrounds that can describe
the massless flavor limit in a controllable manner. The current approach uses an S(r)
function that determined the flavor mass scale r ∼ Mf . One can attempt to study the
limit Mf → 0 within this context. Although this approach seems to be affected by
singularity problems similar to those of the massless S = 1 case, it is possible that some
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universal properties can be learned by studying this limit in detail.
Other possible direction would be the exploration of the physical consequences of

different profile functions S(r). Some examples in this direction can be found in [123,124].
For the particular profile function studied here, we have investigated properties of the

gauge coupling beta function and the possible emergence of fixed points. As explained in
[74,75], the main feature that seems to determine the properties of the dual gauge theory
is the presence of quartic operators in the superpotential that arise upon integration of
the Kaluza-Klein modes of the original string theory. These operators are of the form
W ∼ (QrQ̃u)(QuQ̃r), with gauge indices contracted inside the parentheses and lead to a
sextic potential in the scalar fields. They become marginal when the anomalous dimension
γ0 is −1/2. For this value of the anomalous dimension the NSVZ β function (4.103)
becomes

βg = − 3g3

32π2

2N −Nf

1− g2N
8π2

. (4.1)

We have seen that this expression agrees with the holographic β function in the UV
region for Nf ≤ 2N , and also for Nf > 2N if we replace N → Nf − N . We argued
that for Nf > 2N our backgrounds should therefore describe the Seiberg dual system, in
the generalized sense discussed in sect. 4.3. After this replacement, the β function stays
negative for all Nf > 2N . As discussed, in the Nf > 2N case, finding a gravity description
of the original system before Seiberg duality is difficult because, as the expression (4.1)
indicates, asymptotic freedom is lost and thus a Landau pole is expected, presumably
meaning that the gravity solution must encounter a singularity at some radius r.

For Nf = 2N we found that the theory has a UV fixed point, which hints at the
presence of an IR fixed point at some lower coupling, if one is to match continuously with
standard perturbative results. In this context, we stress that our theory only converges
to the massless case in the UV, and it can only asymptotically recover the presence of
conformal fixed points. For Nf < 2N we have not found any evidence of an IR fixed point,
perhaps suggesting that in the presence of quartic operators the “conformal window” opens
and closes at Nf = 2N .

The effect of higher dimensional operators such as (QrQ̃u)(QuQ̃r) –which in the com-
ponent Lagrangian leads to terms (scalars)6 and (scalar)2 (fermion)2–has a counterpart
in non-supersymmetric QCD. It produces effects that are similar to well known non-
perturbative effects related to chiral dynamics in the low energy effective field theory. For
example, a quartic fermion operator has a key role in the emergence of chiral symmetry
breaking and must have a role in the disappearance of conformality: Schwinger-Dyson
gap equation for the fermion propagator implies a direct relation between the onset of
chiral symmetry breaking, thus the presence of a non vanishing chiral condensate, and the
point where the four-fermion operator becomes relevant in the RG flow [80,81,125]. This
happens by lowering the number of flavors in QCD-like theories, starting from the point
where asymptotic freedom sets in. At sufficiently low Nf chiral symmetry will always be
broken and conformality is lost.
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Non-Abelian T-dual of
Klebanov-Witten with flavors and

G-structures

Although the idea of generalising T-duality to non-Abelian isometry groups has rather
old roots [126], it is only recently that it has been studied as full solution-generating
symmetry of supergravity [127–133]. The recent work of Itsios et al. [132,133] considered
the application of this duality transformation in IIB supergravity backgrounds preserving
N = 1 supersymmetry. For instance applying an SU(2) non-Abelian T-duality to the
internal space of the Klebanov–Witten background (AdS5 × T 1,1) results in a solution of
type IIA which retains the AdS5 factor and has a lift to M-theory which corresponds to
the geometries obtained in [134] from wrapping M5 branes on an S2. In [133] similar
dualizations were applied to non-conformal geometries (Klebanov–Tsetylin, Klebanov–
Strassler and wrapped D5 models like the ones shown in the previous chapter) resulting
in a new class of smooth solutions of massive type IIA supergravity. The field theory
interpretation of these massive IIA solutions is, as yet, undetermined. However an analysis
of the gravity solution indicates they retain rich RG dynamics displaying signatures of
Seiberg duality, domain walls and confinement in the IR.

A common feature of the geometries obtained in [133] is that they retain four di-
mensional Poincaré invariance and it was argued that they should also retain N = 1
supersymmetry. The conditions for a solution of type II supergravity to possess these
symmetries can be very elegantly stated using the language of G-structures (see section
3.2).

The first purpose of this chapter is to study the effects of non-Abelian T-duality on
these G-structures and thereby to give credence to the conjecture made in [133] that in
general the result of the dualization will be to take an SU(3)-structure background to one
with SU(2)-structure.

A second purpose of this chapter concerns the application of non-Abelian T-duality
in the construction of new flavored solutions of supergravity. The string dual view on
the addition of fundamental matter to the field theories has already studied in chapter 4.

99
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For the background we will consider in this chapter, namely Klebanov-Witten [135], the
addition of flavors works in a similar way as in chapter 4.

A generic feature about these solutions encoding the dynamics of Nf fields transforming
in the fundamental representation of the SU(N) gauge group is that the string backgrounds
should represent sources localised on those SUSY-preserving submanifolds. In chapter 4
we have already seen that the complications associated with the non-linear and coupled
partial differential equations this problem requires, lead to the consideration of smeared
sources. The SUSY-preserving way of implementing this smearing is also described by the
G-structures classifying the original (unflavored) background, see [136], [137] for details.

Hence, there is a rich interplay between G-structures and the dynamics of SUSY sources
in supergravity. This is one of the themes of this work.

The main goal is to geometrize part of the information of the works [132, 133]. The
idea being that once in a geometric context, a future physical analysis will become more
clear and systematic. On the other hand, we emphasize the underlying motivation: the
utility of non-Abelian T-duality is to produce backgrounds (hard to obtain by an educated
guess) that being smooth, they define a dual QFT. So, understanding the geometric side
of the non-Abelian T-duality will help to characterize a set of new strongly coupled field
theories.

In this chapter we will start by reviewing non-Abelian T-duality and the Roc̆ek-
Verlinde recipe to obtain the T-dual of a given background. It will be useful to show how
G-structures transform under T-duality. Then we will work with the Klebanov-Witten
background. We will show its SU(3)-structure and we will explicitly construct the SU(2)-
structure of its T-dual. Finally, we will present the flavored Klebanov-Witten model and
its T-dual.

5.1 Non-Abelian T-duality

In this section we present some useful overview of non-Abelian T-duality, a comprehensive
treatment may be found in [133].

T-duality first appeared in the context of closed strings for toroidal compactifications
[138–140]. In the simple case of one single direction compactified on a circle of radius
R, the target space coordinate corresponding to this direction must satisfy the boundary
condition

X(σ + π, τ) = X(σ, τ) + 2πRm , m ∈ Z , (5.1)

where (σ, τ) are world-sheet coordinates and m is the winding number, that is the number
of times the string winds around the circle. The mode expansion for a closed string with
winding number m must incorporate the previous boundary condition and it becomes

X(σ, τ) = x+ 2α′pτ + 2Rmσ + . . . (5.2)

and the dots refer to string excitation modes, not modified by the compactification. x
and p are the center of mass and the total string momentum components in the direction
of the circle along which we compactify. Since this direction is compact, the momentum
component is quantized

p =
n

R
, n ∈ Z , (5.3)
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where n is the Kaluza-Klein excitation number. Then we see that there is no change if we
consider compactifications on circles of radius R ↔ α′/R, if, besides, we interchange the
winding and the Kaluza-Klein excitation numbers m↔ n (with the additional change in
the dilaton Φ→ Φ− logR/

√
α′ [141]). This is illustrated in figure 5.1.

Figure 5.1: Diagram of T-duality acting on closed strings with a direction compactified
on a circle.

This was extended by Buscher [142,143] to non-flat conformal backgrounds. One starts
by considering the σ-model built out of a B-field, the dilaton, Φ, and a metric, g, enjoying
an abelian isometry, which in adapted coordinates (θ, xα) acts as translations in θ. Then
the dual σ-model is built out of the tilded quantities

g̃00 =
1

g00
, g̃0α =

B0α

g00
, g̃αβ = gαβ −

1

g00
(g0αg0β −B0αB0β) , (5.4)

B̃0α =
g0α

g00
, B̃αβ = Bαβ −

1

g00
(g0αB0β − g0βB0α) , (5.5)

Φ̃ = Φ− 1

2
log g00 . (5.6)

The transformation above is known as abelian T-duality. An alternative construction of
this transformation was given by Roc̆ek and Verlinde [144], more useful to generalize these
concepts to non-Abelian T-duality. The three-step Roc̆ek-Verlinde procedure consists of:

1. One starts by gauging the abelian U(1) isometry. To this purpose, one must intro-
duce an auxiliary gauge field A.

2. Then the gauge field is demanded to be flat by the introduction of the Lagrange
multiplier term vdA. Integrating out the Lagrange multiplier leads to the original
σ-model.

3. But we do not integrate out the Lagrange multiplier. Now we integrate out the gauge
field considering the Lagrange multiplier as a new dynamical variable. Finally, fixing
the gauge, one obtains the T-dual σ model.
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This approach can be readily generalized to the case of non-Abelian isometries and pro-
vides a putative non-Abelian T-duality transformation [126,145–147]. Unlike its Abelian
counter part, this non-Abelian T-duality typically destroys the isometries dualized (though
they can be recovered as non-local symmetries of the string σ-model [148]). Due to global
complications, it is thought that this non-Abelian dualization is not a full symmetry of
string (genus) perturbation theory however it remains valid as a solution-generating sym-
metry of supergravity. In this regard, it is still very useful in the context of the AdS/CFT
correspondence.

Let us see in more detail how this non-Abelian T-duality works. First consider a
bosonic string σ-model in a NS background, we will assume that this background admits
some isometry group G and that background fields can be expressed in terms of left-
invariant Maurer–Cartan forms, Li = −iTr(g−1dg), for this group. That is to say the
target space metric has a decomposition

ds2 = Gµν(x)dxµdxν + 2Gµi(x)Li + gij(x)LiLj , (5.7)

with corresponding expressions for the NS two-form B and dilaton Φ. The non-linear
σ-model is

S =

∫

d2σ
(

Qµν∂+x
µ∂−x

ν +Qµi∂+x
µLi− +QiµL

i
+∂−x

µ + EijL
i
+L

j
−
)

, (5.8)

where

Qµν = Gµν +Bµν , Qµi = Gµi +Bµi , Qiµ = Giµ +Biµ , Eij = gij + bij , (5.9)

and Li± are the left-invariant forms pulled back to the world sheet. To obtain the dual
σ-model one first gauges the isometry by making the replacement

∂±g → D±g = ∂±g −A±g , (5.10)

in the Maurer–Cartan forms. Also, the addition of a Lagrange multiplier term −iTr(vF+−)
enforces a flat connection.

After integrating this Lagrange multiplier term by parts, one can solve for the gauge
fields to obtain the T-dual model. Finally, we must gauge fix the redundancy by, for
example, setting g = I

1.
We obtain the Lagrangian,

S̃ =

∫

d2σ
(

Qµν∂+x
µ∂−xν+(∂+vi+∂+x

µQµi)(Eij+fij
kvk)

−1(∂−vj−Qjµ∂−xµ)
)

, (5.11)

from which the T-dual metric and B-field can be ascertained. As with Abelian T-duality
[142, 143] the dilaton receives a shift from performing the above manipulations in a path
integral given by

Φ̂(x, v) = Φ(x)− 1

2
log(detM) , (5.12)

1More general gauge fixing choices are allowed and will in fact be exploited in this paper. For details
of these we refer the reader to [133]. In this section we assume the gauge fixing choice of g = I.
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where we have defined Mij = Eij+fij
kvk, which will play a prominent role in what follows.

This shift in the dilaton ensures conformal invariance of the dual model, at least at first
order in α′.

Using the equations of motion, one can ascertain the following transformation rules
for the world-sheet derivatives

Li+ = −(M−1)ji (∂+vj +Qµj∂+x
µ) ,

Li− = M−1
ij (∂−vj −Qjµ∂−x

µ) ,

∂±x
µ = invariant .

(5.13)

These relations provide a classical canonical equivalence between the two T-dual σ-models
[148,149].

The consequence of this is that left and right movers couple to different sets of vielbeins
for the T-dual geometry. Suppose that we define frame fields for the initial metric (5.7)
by

ds2 = ηABe
AeB +

dimG
∑

i=1

δabe
aeb , eA = eAµdxµ , ea = κaiL

i + λaµdxµ . (5.14)

Then by making use of the transformation rules (5.13) one finds that after T-dualization
left and right movers couple to the vielbeins

êa+ = −κM−T (dv +QTdx
)

+ λdx , êA+ = eA ,

êa− = κM−1(dv −Qdx
)

+ λdx , êA− = eA ,
(5.15)

in which M−T is the inverse transpose of the matrix M defined above. Both these frame
fields define the T-dual target space metric obtained from (5.11) given by

dŝ2 = ηABe
AeB +

dimG
∑

i=1

δabê
a
+ê

b
+ = ηABe

AeB +
dimG
∑

i=1

δabê
a
−ê

b
− . (5.16)

Since these frame fields define the same metric they must be related by a Lorentz trans-
formation and indeed

ê+ = Λê− , Λ = −κM−TMκ−1 . (5.17)

We note that det Λ = (−1)dimG, this will have the consequence that the dualization of an
odd-dimensional isometry group maps between type IIA and IIB theories whereas that of
an even-dimensional group preserves the chirality. This Lorentz transformation induces
an action on spinors defined by the invariance property of gamma matrices 2;

Ω−1ΓaΩ = ΛabΓ
b . (5.18)

We are particularly interested in performing this duality in supergravity backgrounds
of relevance to the AdS/CFT correspondence which are typically supported by RR fluxes.

2Unfortunately, the existing notation in the literature means we have the same symbol Ω for the spinorial
transformation matrix and for the SU(3)-structure three-form. We trust the reader will infer from the
context which is meant.
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Then one ought to, in principle, reconsider the above derivation in a formalism suitable
for including RR fluxes. In the case of Abelian and Fermionic T-duality [150] (T-duality
when the full supersymmetric action, including fermions, is considered and duality is
performed along fermionic directions) this has explicitly been done in the pure spinor
approach [151,152] and a simple extrapolation of these results to this non-Abelian context
leads to the following conclusion which can also be motivated from the considerations of
[153]. The dual RR fluxes are obtained by right multiplication by the above matrix Ω on
the RR bispinor (this can be viewed equivalently as a Clifford multiplication on the RR
polyform/pure spinor). Explicitly, the T-dual fluxes are given by [127]:

eΦ̂ ˆ
��F = eΦ

��F · Ω−1 , (5.19)

where the RR polyforms are defined by equations (3.19)-(3.20) and the slashed notation
in equation (3.63).

For many applications knowledge of the transformation laws for the gauge-invariant
field strengths is sufficient. However, in some applications we will also be interested on
how the RR potentials themselves transform. The potentials are given in equations (3.7),
(3.8) or (3.17), related to the field strengths. Actually we will need to be a bit more general
than those expressions when we consider the addition of sources, see appendix 5.B.

We propose that the potentials so defined have a straightforward transformation rule:

eΦ̂
✓✓̂C = eΦ

��C · Ω−1 . (5.20)

We should comment briefly about a subtlety; the potentials in the equation above have
to be chosen in such a way that the T-duality can be readily performed. In other words,
for the transformation rule to be as above, the potentials Cp should have a vanishing
Lie derivative along the Killing vectors of the isometry dualized. A less judicious choice
of potentials would require composing the above transformation law with an appropriate
gauge transformation that first brings the potential into the desired form (this is well
explained in [154] for the NS two-form potential which does not need to have a vanishing
Lie derivative under the isometry dualized but instead it obeys LkB = dξ).

Although we have not shown that (5.20) implies (5.19) in all generality, we find that
it does indeed generate the correct transformation in the case at hand. The essential step
in a general proof would be to show that the Clifford multiplication implied by the spinor
contraction in (5.20) commutes with the action of the twisted differential dH . One may
be confident that this is true in all generality since this is indeed the case with Abelian
T-duality [154] and we shall see that in a certain basis the transformation rules do become
very similar to the Abelian case.

We end this section by remarking the status of supersymmetry under non-Abelian
T-duality. Supersymmetry does not need to be preserved by T-duality (Abelian or not).3

Whether (and how much) supersymmetry is preserved depends on how the Killing vectors
about which we dualize act on the supersymmetry. The action of a vector on a spinor,
which is only well defined when the vector is Killing, is given by [155–157]

Lkǫ = kµDµǫ+
1

4
∇µkνγµνǫ . (5.21)

3In principle, supersymmetry can even be enhanced by T-duality but given that non-Abelian T-duality
destroys isometry this seems rather unlikely in this case.
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If, when acting on the Killing spinor of the initial geometry, this vanishes automatically for
all the Killing vectors that generate the action ofG then we anticipate supersymmetry to be
preserved in its entirety. If, on the other hand, this vanishes only for some projected subset
of Killing spinors then we expect only a corresponding projected amount of supersymmetry
to be preserved in the T-dual.4 In this paper we consider the case of N = 1 supersymmetry
which is invariant under the above action of G so that the non-Abelian duality should
preserve supersymmetry. Suppose we start with ten-dimensional Majorana-Weyl Killing
spinors ǫ1 and ǫ2, then the Killing spinors in the T-dual will be given by

ǫ̂1 = ǫ1 , ǫ̂2 = Ω · ǫ2 . (5.22)

5.1.1 Transformation of G-structures under T-duality

As already seen in section 3.2, the supersymmetric conditions can be recast in terms
of G-structures. Therefore, it is very useful to know the non-Abelian T-dual of these
structures. To obtain the transformation rules one can work explicitly with the T-dual
Killing spinors defined in equation (5.22) and construct from first principles the pure-
spinors Ψ± describing the G-structures explained in section 3.2, namely SU(3) and SU(2)-
structures. Alternatively, for the spinor-phobic one can circumvent this by using the
following transformation rules on the polyforms

��Ψ
SU(2)
+ = i��Ψ

SU(3)
− Ω−1 , ��Ψ

SU(2)
− =��Ψ

SU(3)
+ Ω−1 . (5.23)

The D-brane generalized calibrations follows from this as shown in appendix 5.A.
Let us just remark at this stage that the condition of supersymmetry being preserved

as detailed in equation (5.21) simply translates (using the Liebniz derivation property
obeyed the Lorentz-Lie derivative [155–157]) into the invariance of the pure-spinors under
the regular Lie derivative acting on forms:

Lkǫ = 0⇒ LkΨ± = 0 . (5.24)

For the case of the Abelian T-duality one can show that this criteria does indeed ensure
that supersymmetry is preserved after T-duality [154]. The essence of the proof is that up
to terms proportional to this Lie derivative, the twisted differential dH commutes with the
Clifford multiplication rule (c.f. equation (5.23)) used to extract the T-dual pure spinors.
Using this, one can infer that supersymmetry is preserved by the dualization. Although
we have not verified the details, the situation here appears to be exactly analogous, indeed
as we shall shortly see one can find a basis in which the non-Abelian T-duality essentially
mimics the Abelian case.

In the following sections, we will consider two examples that will make clear vari-
ous points discussed above. The first case-study will be the non-Abelian T-dual of the
Klebanov-Witten system as presented in [132, 133]. We will explicitly show the SU(2)-
structure of the solution (and hence its SUSY preservation). We will then consider the
background obtained by adding fundamental fields (quarks) to the Klebanov-Witten field
theory [158] (conversely, we will consider the addition of source-branes to the Klebanov-
Witten background). With the essential help of the SU(2)-structure formalism.

4In [129] this was confirmed to be true in general for a large class of backgrounds.
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5.2 Example 1: Unflavored Klebanov-Witten and its T-dual

In this section we shall examine the Klebanov-Witten geometry, its T-dual and explicitly
demonstrate the SU(2)-structure of the T-dual.

5.2.1 Klebanov-Witten model

In the same way we saw that N = 4 super Yang-Mills can be obtained as the low-energy
dynamics of D3-branes in flat space, the Klebanov-Witten model follows from considering
the low-energy dynamics of D3-branes on the conifold.

The conifold is a six dimensional singular space, which can be considered as the three
complex dimensional space characterized by the condition

z2
1 + z2

2 + z2
3 + z2

4 = 0 , (5.25)

embedded in C
4 with a singularity at the origin of C4. One can also use the alternative

coordinates
Zαβ = zi(σ

i)αβ + iz4Iαβ (5.26)

in such a way that the condition (5.25) becomes in terms of the new variables

detZ = 0 . (5.27)

This space has the symmetry SO(4) acting on the index i = 1, . . . , 4, or alternatively
SO(4) ≃ SU(2) × SU(2), each SU(2) acting on the α and β indices, respectively. There
is also an additional U(1) rotating each zi by a common phase.

The metric of this space can be written in the form [121]

ds2
6 = dr2 + r2ds2

T 1,1 , (5.28)

where T 1,1, the base of the cone, is defined as the coset SU(2)×SU(2)
U(1) , and its metric is

ds2
T 1,1 =

1

9

(

dψ + cos θdφ+ cos θ̃dφ̃
)2

+
1

6
(dθ2 + sin2 θdφ2) +

1

6
(dθ̃2 + sin2 θ̃dφ̃2) , (5.29)

where (θ, φ) and (θ̃, φ̃) parametrize two spheres in the usual way and ψ ∈ [0, 4π). The
relation between these coordinates and the holomorphic ones is giben by

Z = r3/2





e
i
2

(ψ−φ−φ̃) sin θ
2 sin θ̃

2 e
i
2

(ψ−φ+φ̃) sin θ
2 cos θ̃2

e
i
2

(ψ+φ−φ̃) cos θ2 sin θ̃
2 e

i
2

(ψ+φ+φ̃) cos θ2 cos θ̃2



 . (5.30)

In analogy to the duality obtained in section 3.1.3 by placing N D3-branes in flat
space, placing them now at the tip of the conifold, generates the following metric

ds2 =

(

1 +
L4

r4

)−1/2

dx2
1,3 +

(

1 +
L4

r4

)1/2
(

dr2 + r2ds2
T 1,1

)

, (5.31)

with

L =

(

27

4
πgsN

)1/4

ls , (5.32)
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whose near horizon limit is AdS5 × T 1,1,

ds2 =
r2

L2
dx2

1,3 +
L2

r2
dr2 + L2ds2

T 1,1 , (5.33)

together with N units of RR flux supporting the geometry

F5 =
4

gsL

(

vol(AdS5)− L5vol(T 1,1)
)

. (5.34)

We will work with the following frame fields for this geometry

ey
µ

=
r

L
dyµ (µ = 0 . . . 3) , er =

L

r
dr , eφ = λ1 sin θdφ , eθ = λ1dθ ,

e1 = λ1σ1 , e2 = λ1σ2 , e3 = λ (σ3 + cos θdφ) ,
(5.35)

in which λ2
1 = L2

6 and λ2 = L2

9 and we have renamed the SU(2) left-invariant one-forms
of equation (4.7):

σ1 = ω̃2 = (− sinψdθ̃ + cosψ sin θ̃dφ̃) ,

σ2 = ω̃1 = (cosψdθ̃ + sinψ sin θ̃dφ̃) , (5.36)

σ3 = ω̃3 = (cos θ̃dφ̃+ dψ) .

Since the conifold is a Calabi-Yau three-fold, it preserves 1/4 of the original supersym-
metries and thus, the dual gauge theory describing the low-energy dynamics of the branes
must be N = 1 supersymmetric, indeed superconformal as we have the AdS5 factor in the
metric. The precise dual gauge theory was obtained by Klebanov and Witten in [135],
it is an N = 1 superconformal SU(N) × SU(N) gauge theory which can be described
by a two-node quiver and has two sets of bi-fundamental matter fields Aα in the (N, N̄)
representation of the gauge group and Bβ in the (N̄,N). The indices α and β correspond
to the two sets of SU(2) global symmetries. These fields appear as the identification with
the coordinates

Zαβ = AαBβ . (5.37)

Besides the SU(2) × SU(2) global symmetry, the field theory has a U(1)R symmetry
identified with the remaining U(1) symmetry of the conifold, which shifts the coordinate
ψ. For this U(1)R to be non-anomalous we must require both the R-charges of A and B
to be 1/2. In a superconformal theory we can relate the dimension of chiral superfields
with their superconformal R-charge [159]

d =
3

2
R (5.38)

and hence A and B have conformal dimension 3/4.
Furthermore, to give mass to some undesired massless multiplets we must introduce

some superpotential. Superpotentials must have R-charge R = 2 and, in this case, it must
be an exactly marginal operator so as not to break conformal symmetry, therefore it must
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be a quartic operator made of A and B. It should also respect the SU(2)×SU(2)×U(1)R
global symmetry, then the superpotential is fixed up to a constant, λ,

W =
λ

2
ǫαα

′

ǫββ
′

Tr
(

AαBβAα′Bβ′

)

. (5.39)

For reference we state the ten-dimensional spinors of KW in the basis (5.35) given by

ǫ1 =

√

r

L

(

ζ+ ⊗ η+ + ζ− ⊗ η−
)

, ǫ2 =

√

r

L

(

i ζ+ ⊗ η+ − i ζ− ⊗ η−
)

. (5.40)

The chiralities in these expressions are defined with respect to four and six-dimensional
chirality matrices

γ(4) = i γy
0y1y2y3

, γ(6) = −i γφθ123r , (5.41)

such that under the ten-dimensional chirality operator Γ(10) = γ(4) ⊗ γ(6) both ǫ1 and ǫ2

are positive. In addition the spinor η+ is constant and normalised such that η†
+η+ = 1.

Supersymmetry imposes the following projections on the spinor (as above η+ = (η−)∗),

γr3η+ = γ12η+ = γφθη+ = −i η+ . (5.42)

Using these expressions, we can determine the SU(3)-structure of KW in the basis (5.35)
to be

J = eθφ − e12 + e3r ,

Ω = (e2 + i e1) ∧ (eθ + i eφ) ∧ (e3 + i er) .
(5.43)

5.2.2 T-dual of the Klebanov-Witten model

The non-Abelian T-dual of this geometry with respect to the SU(2) global symmetry
defined by the σi was constructed in [132, 133]. The result is an N = 1 supersymmetric
solution of type IIA whose NS sector is given by5

dŝ2 =ds2
AdS5

+ λ2
1(dθ2 + sin2 θdϕ2) +

λ2
1λ

2

∆
x2

1σ̂
2
3

+
1

∆

(

(x2
1 + λ2λ2

1)dx2
1 + (x2

2 + λ4
1)dx2

2 + 2x1x2dx1dx2

)

,

B̂ =− λ2

∆

[

x1x2dx1 + (x2
2 + λ4

1)dx2

]

∧ σ̂3 ,

e−2Φ̂ =
8

g2
s

∆ ,

(5.44)

where σ̂3 = dψ + cos θdϕ and

∆ ≡ λ2
1x

2
1 + λ2(x2

2 + λ4
1) . (5.45)

The gauge fixing used in this case is given by fixing the Lagrange multiplier v2 to zero,

v2 = 0 , v1 = 2x1 , v3 = 2x2 , (5.46)

5We have set L = 1 which may be restored by appropriate rescalings.
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and we have renamed v1 and v2. For different gauge choices the dual backgrounds are
locally diffeomorphic and one has to be careful with global properties of the dual coordi-
nates, for example, a systematic way to find the periodicity of the dual coordinates is an
open problem in non-Abelian T-duality. More details may be found in [133], where the
range of ψ is restricted to 2π and that of x1 to the positive real line to remove a singularity
of the dual background.

The metric evidently has an SU(2) × U(1)ψ isometry and for a fixed value of (x1, x2)
the remaining directions give a squashed three-sphere. This geometry is supported by two
and four-form RR fluxes which may be computed using equation (5.19) and whose explicit
form can be found in [133]. We remark in passing that the lift of this geometry to eleven
dimensions has an interpretation in terms of recently discovered N = 1 SCFT’s obtained
from wrapping M5 branes on a Riemann surface (of genus zero in this case) [134].

One can establish the left and right-moving T-dual frames for this geometry along the
lines of equation (5.15). The frames in the AdS direction are unaltered as are eθ and eφ.
In the directions dualized we find new frame fields êi± for i = 1 . . . 3. The plus and minus
T-dual frames are related by a Lorentz transformation which, as described in section 5.1,
induces a transformation on spinors given by 6,

Ω =
Γ(10)√

∆

(

− λ2
1λΓ123 + λ1x1 cosψ Γ1 + λ1x1 sinψ Γ2 + λx2Γ3

)

. (5.47)

This defines the Killing spinors of the T-dual to be

ǫ̂1 = ǫ1 , ǫ̂2 = Ω · ǫ2 . (5.48)

Implementing the four-six decomposition one finds from (5.40) using (5.42) that

ǫ̂1 =

√

r

L

(

ζ+ ⊗ η+ + ζ− ⊗ η−
)

,

ǫ̂2 =

√

r

L

(

ζ+ ⊗ η̂2
− + ζ− ⊗ η̂2

+

)

,

(5.49)

where

η̂2
− = − i√

∆

(

λ2
1λγ

r + λ1x1 cosψ γ1 + λ1x1 sinψ γ2 + λx2γ
3
)

η+ , η̂2
+ = (η̂2

−)∗. (5.50)

It is clear that in this basis, the T-dual Killing spinors depend not only on the radial
coordinate but also on the T-dual coordinates x1, x2. It is helpful to work in a different
basis in which this new spinor can be expressed as simply as possible. In addition, we
would like the new vielbein basis to preserve the geometric structure defined by η+, because
ǫ1 is invariant under the non-Abelian T-duality. To do so we perform a rotation to a new

6The careful reader will not confuse this matrix Ω and its inverse Ω−1 with the complex three-form
defining an SU(3)-structure, that appears for example in equation (5.43).
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basis ẽ = Rê (ordered as r, φ, θ, 1, 2, 3) with the rotation matrix

R =
1√

1 + ζ · ζ



















1 0 0 ζ1 ζ2 ζ3

0
√

1 + ζ · ζ 0 0 0 0
0 0

√
1 + ζ · ζ 0 0 0

−ζ1 0 0 1 −ζ3 ζ2

−ζ2 0 0 ζ3 1 −ζ1

−ζ3 0 0 −ζ2 ζ1 1



















(5.51)

with

ζ1 =
x1 cosψ

λλ1
, ζ2 =

x1 sinψ

λλ1
, ζ3 =

x2

λ2
1

. (5.52)

Notice that these parameters are reflecting the structure of the spinor transformation
matrix Ω. The rotated vielbeins are given, in coordinate frame, by:

ẽr =
λλ2

1dr − r(x1dx1 + x2dx2)

r
√

∆
, ẽφ = λ1 sin θ dφ ,

ẽ1 = λ1
rλ(x1 sinψ σ̂3 − cosψ dx1)− x1 cosψ dr

r
√

∆
, ẽθ = λ1dθ ,

ẽ2 = −λ1
rλ(x1 cosψ σ̂3 + sinψ dx1) + x1 sinψdr

r
√

∆
, ẽ3 = −λx2dr + λ2

1r dx2

r
√

∆
.

(5.53)

Then in this new basis (in which the gamma matrices are of course also rotated γ̃ = Rγ),
we can easily show that

ǫ̃1 =

√

r

L

(

ζ+ ⊗ η+ + ζ− ⊗ η−
)

,

ǫ̃2 =

√

r

L

(

ζ+ ⊗ η̃2
− + ζ− ⊗ η̃2

+

)

,

(5.54)

with η̃2
+ = (η̃2

−)∗ and,
η̃2

− = −i γ̃rη+ . (5.55)

Note that, as required for type IIA supergravity, the new spinors have opposite chirality.
With this simple relation between η̃2

− and η+, we clearly see that they are never parallel,
hence we have an SU(2)-structure. Because we were careful about the definition of our
new vielbein basis, the projections on η+ are not modified,

γ̃r3η+ = γ̃12η+ = γ̃φθη+ = −i η+ , (5.56)

but the projections obeyed by η̃2
− are different

− γ̃r3η̃2
− = γ̃12η̃2

− = γ̃φθη̃2
− = −i η̃2

− . (5.57)

The Killing spinors define two different SU(3)-structures

J1 = ẽθφ + ẽ21 − ẽ3r ,

Ω1 = (ẽ2 + i ẽ1) ∧ (ẽθ + i ẽφ) ∧ (−ẽ3 + i ẽr) ,

J2 = ẽθφ + ẽ21 + ẽ3r ,

Ω2 = (ẽ2 + i ẽ1) ∧ (ẽθ + i ẽφ) ∧ (−ẽ3 − i ẽr) ,

(5.58)
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whose intersection is the SU(2)-structure given by (see (3.97))

v + iw = −ẽ3 + iẽr ,

j = ẽθφ + ẽ21 ,

ω = (ẽ2 + i ẽ1) ∧ (ẽθ + i ẽφ) .

(5.59)

An explicit check shows that these do indeed satisfy the dilatino and gravitino equations
that follow from equation (3.99).

Note that it makes sense to mix er with e1, e2 and e3 when performing the rotation
(5.51) because the geometric structure links er and e3 in the projection γr3η+ = −i η+.
Actually the choice of this rotation appears clearer when considering that, because of
the geometric structure, the transformation of the spinor ǫ2 can be written very easily
as Ω ǫ2 = −Γ̃rǫ2. It is in this new basis that the transformation closely resembles the
T-duality of the Abelian case.

5.3 Example 2: Flavored Klebanov-Witten and its T-dual

5.3.1 Flavoring the Klebanov-Witten model

An important step if one is to try and use the AdS/CFT paradigm to understand QCD-like
dynamics is to incorporate fundamental flavors into the gauge theory and corresponding
gravity descriptions. A first step in this direction is to add a finite number Nf of funda-
mental flavors which in the IIB set-up is typically achieved by the inclusion of extra flavor
D-branes as we explained in the previous chapter when adding flavors to the Maldacena-
Núñez background.

In the case at hand we will consider adding 2Nf D7 branes to the KW geometry in such
a way that supersymmetry is preserved. We will work beyond the probe approximation in
the Veneziano limit. We first describe the gauge theory engineered from the D3-D7 system
in the conifold. We consider D7 branes parallel to the D3 stack in the Minkowski directions
with the remaining four directions embedded holomorphically and non-compactly in the
conifold. The strings that run between the D7 and the D3 give rise to massless flavors.
To avoid gauge anomalies on the field-theory side of the description and supergravity
tadpoles on the string side of it, one must include two branches of D7 branes giving rise
to fundamental chiral superfields for each gauge group (q, q̃ in the (N,1) and (N̄,1) and
Q, Q̃ in the (1,N) and (1, N̄)). The superpotential for this theory is given by [158],

W =
λ

2
ǫijǫmnTr (AiB

mAjB
n) + h1q̃

aA1Qa + h2Q̃
aB1qa . (5.60)

Notice that the SU(2) global symmetries are explicitly broken by the embedding of the
D7 branes - this symmetry will be recovered by smearing the sources. The addition of
flavors implies that the theory loses conformality; a positive beta function is generated
and a priori one expects a Landau pole in the UV.

We now turn to the gravity description. By considering the κ-symmetry projectors one
can determine that the supersymmetric embeddings of D7 branes in the KW background
to lie along two branches (the yµ denote the Minkowski directions) [73,76,158],

ξ = (yµ, r, ψ, S2), ξ̃ = (yµ, r, ψ, S̃2), (5.61)
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where S2 and S̃2 are the two-spheres parametrised by θ, φ and θ̃, φ̃ respectively. To avoid
the D7 charge tadpole we must include Nf branes on both branches. One can write an
action for the whole system consisting of supergravity together with DBI and WZ terms
of the D7 branes (in string frame)

SDBI = −
Nf
∑

∫

ξ
d8ξe−Φ

√

∣

∣

∣det g
∣

∣

ξ

∣

∣

∣−
Nf
∑

∫

ξ̃
d8ξ̃e−Φ

√

∣

∣

∣det g
∣

∣

ξ̃

∣

∣

∣ ,

SWZ =

Nf
∑

∫

(

C8

∣

∣

ξ
+ C8

∣

∣

ξ̃

)

.

(5.62)

We do not activate the gauge field on the brane itself and since there is no NS two-form in
this geometry the WZ term is simple. Note that the two stacks of flavor branes introduce
a U(Nf )× U(Nf ) symmetry (although the diagonal axial U(1) is anomalous).

Now, as we are considering the case where the number of flavor branes goes to infinity,
we can smear them and consider that each stack is distributed homogeneously across the
two-sphere it does not wrap.7 In a field-theory perspective the U(Nf ) flavor symmetries
are broken to U(1)Nf . The supergravity effect can be encoded by introducing a smearing
form:

Ξ2 = −Nf

4π

(

sin θdθ ∧ dϕ+ sin θ̃dθ̃ ∧ dφ̃
)

. (5.63)

The smearing procedure essentially boils down to replacing the DBI and WZ contributions
of equation (5.62) with

SDBI → −
∑

Nf

∫

d10xe−Φ

(

sin θ̃

√

∣

∣

∣det g
∣

∣

ξ

∣

∣

∣+ sin θ

√

∣

∣

∣det g
∣

∣

ξ̃

∣

∣

∣

)

,

SWZ →
∑

Nf

∫

Ξ2 ∧C8 .

(5.64)

One consequence of this smearing is that the Bianchi identities are modified

dF1 = Ξ2 , dF5 = 0 . (5.65)

Note that the coefficient 2κ2
10TDp does not appear in the Bianchi identities as in (4.69).

This is because we are not considering the coefficient TDp of the DBI-WZ actions as well as
the coefficient 1/2κ2

10 of the supergravity action. They can be easily recovered by rescaling
in the Bianchi identities

Ξp → 2κ2
10TD9−pΞp . (5.66)

The D7-brane backreaction is accommodated by the following ansatz (as above we

7This smearing procedure overcomes the bound on the number of D7 branes that comes from looking
the deficit angle of the D7 solution so Nf may indeed be taken large.
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work in string frame)

ds2 =
e

Φ
2√
h

dy2
1,3

+ e
Φ
2

√
h

(

dr2 + λ2
1e

2g(sin2 θdϕ2 + dθ2) + λ2
2e

2g(σ2
1 + σ2

2) + λ2e2f (σ3 + cos θdϕ)2
)

,

F1 =
Nf

4π
(σ3 + cos θdϕ) , F5 = (1 + ⋆)dt ∧ dx1 ∧ dx2 ∧ dx3 ∧Kdr ,

(5.67)
where the warp factors f , g, h and the dilaton Φ are functions of the radial variable r
and λ2

1 = λ2
2 = 1/6, λ2 = 1/9 and as a consequence of the Bianchi identities Kh2e4g+f =

27πNc. 8 A convenient basis of vielbeins is given by:

ey
µ

= e
Φ/4h−1/4dyµ , er = e

Φ/4h
1/4dr ,

eφ = λ1e
g+Φ/4h

1/4 sin θ dϕ , eθ = λ1e
g+Φ/4h

1/4dθ ,

e1 = λ1e
g+Φ/4h

1/4σ1 , e2 = λ1e
g+Φ/4h

1/4σ2 ,

e3 = λh
1/4ef+Φ/4(σ3 + cos θdϕ) .

(5.68)

Like the unflavored version, this solution supports an SU(3)-structure:

J = −
(

er3 + eφθ + e12
)

= −4π
√
h

3Nf
e

Φ
2

(

1

2
e2gΞ2 + efdr ∧ F1

)

,

Ω = (e2 + ie1) ∧ (eθ + ieφ) ∧ (e3 + ier) .

(5.69)

With these and the structure conditions for SU(3), it is possible to derive a set of first
order BPS equations for the various functions introduced thus far:

f ′ = e−f (3− 2e2f−2g)− 3Nf

8π
eΦ−f , g′ = ef−2g , (5.70)

h′ = −27πNce
−f−4g , Φ′ =

3Nf

4π
eΦ−f .

The RR potentials can be expressed in terms of the SU(3)-structure forms as:

C8 = −1

2
e−Φ

(

eΦ

h
vol4

)

∧ J ∧ J , C4 = e−Φ

(

eΦ

h
vol4

)

, (5.71)

where F9 = ⋆F1. The reason why we did not cancel both factors of the dilaton is just for
comparison with formulas below.

Finally for the brane embedding to be supersymmetric it must obey the calibration
condition (see appendix 5.B):

√

− det g
∣

∣

ξ
d8ξ = −1

2

(

eΦ

h
vol4

)

∧ J ∧ J
∣

∣

∣

∣

ξ

,
√

− det g
∣

∣

ξ̃
d8ξ̃ = −1

2

(

eΦ

h
vol4

)

∧ J ∧ J
∣

∣

∣

∣

ξ̃

.

(5.72)
8The unflavored Klebanov-Witten can be recovered with the following substitution:

y
µ → 1√

gs

y
µ

, Nf = 0 , h =
L4

gsr4
, e

2f = e
2g = r

2
, K =

4r3gs

L4
, e

Φ = gs .
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This allows the DBI and WZ actions of the smeared brane embedding to be expressed as:

SDBI =
1

2

∫

M10

e−Φ

(

eΦ

h
vol4

)

∧ J ∧ J ∧ Ξ2 , SWZ =

∫

M10

C8 ∧ Ξ2 , (5.73)

from which it is immediate that SDBI + SWZ = 0, as required by supersymmetry. As the
sources are calibrated the dilaton equation of motion, Einstein’s equations and the flux
equation for H are all satisfied once the Bianchi identities are imposed.

We will now find the non-Abelian T-dual of this system involving metric, fluxes and
sources. The interest of this problem is two-fold. On the one hand, it teaches us the effect
of the non-Abelian duality on the Born-Infeld-Wess-Zumino action. On the other hand, it
will tell us how to find the new smearing forms. Both these points give clues to a generic
procedure.

5.3.2 The T-dual of the flavored Klebanov-Witten model

We perform the non-Abelian T-duality along the SU(2) directions as before. To compactly
display the results it is convenient to perform a supplementary rotation as detailed in
equation (3.21) of [133]. We find the frame fields for the T-dual metric to be

ê1 = −λ1

∆
eg+ Φ

4 h
1/4
(

(λ2
1λ

2he2f+2g+Φ + x2
1)dx1 + x1x2(dx2 + λ2

√
he2f+ Φ

2 σ̂3)
)

,

ê2 =
λ1

∆
eg+ 3

4
Φh

3/4
(

λ2x2e
2fdx1 − λ2

1x1e
2g(dx2 + λ2

√
he2f+ Φ

2 σ̂3)
)

, (5.74)

ê3 = − λ
∆
ef+ Φ

4 h
1/4
(

x1x2dx1 + (λ4
1he

4g+Φ + x2
2)dx2 − λ2

1

√
hx2

1e
2g+ Φ

2 σ̂3

)

.

Where we recall σ̂3 = cos θdφ+ dψ and

∆ =
√
he

Φ
2

(

λ4
1λ

2he2f+4g+Φ + λ2
1x

2
1e

2g + λ2x2
2e

2f
)

. (5.75)

The T-dual NS sector is then given by

dŝ2 = (eyµ)2 + (er)2 + (eφ)2 + (eθ)2 + (ê1)2 + (ê2)2 + (ê3)2 ,

B̂ =
λef−gx2

λ1x1
ê13 +

λλ1e
f+g+ Φ

2

√
h

x1
ê23 ,

H = dB̂ ,

e−2Φ̂ = 8∆e−2Φ .

(5.76)

This geometry is supported by RR fluxes, obtained using the general formula equation
(5.19),

F0 =
Nf√
2π
x2 ,

F2 =
λ1e

g−f− Φ
2√

2λπ

(

4πλ1λ
2Ke2f+gh

3/2eφθ + λλ1Nfe
f+g+Φ

√
hê12 − x1Nfe

Φ
2 ê13

)

,

F4 = −2
√

2e−ΦhKeφθ ∧
(

λx2e
f ê12 + λ1x1e

g ê23
)

.

(5.77)
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Although there is an F0, it is possible that one should not regard this as a solution
of Massive IIA – the would-be mass parameter is neither constant nor quantized— but
rather, as we shall discuss, this should be thought of as a solution to type IIA in the
presence of D8 sources. Now since the original Bianchi identities were not satisfied (due
to D7 source) one would not expect these new fluxes in equation (5.77) to obey standard
Bianchi identities after the non-Abelian T-duality. Indeed, one finds T-dual smearing
forms enter the game

dF0 = Ξ1 ,

dF2 − F0H = Ξ1 ∧B + Ξ3 ,

dF4 −H ∧ F2 =
1

2
Ξ1 ∧B ∧B +B ∧ Ξ3 .

(5.78)

We find a rather nice result: the T-dual smearing forms can be calculated directly as

Ξ1 = − Nfe
−g− Φ

4√
2πλ1h

1/4

(

x1ê
2 + λλ1

√
hef+g+ Φ

2 ê3
)

=
Nf√
2π

dx2 ,

Ξ3 =
Nfe

−2g− Φ
4

πh1/4
eφθ ∧

(√
3x1e

g ê1 +
√

2x2e
f ê3
)

(5.79)

=
Nf√
2π

sin θ (x1dθ ∧ dφ ∧ dx1 + x2dθ ∧ dφ ∧ dx2) .

These may be obtained equally using a transformation rule much like that of the RR fields,

eΦ
✓Ξ2Ω−1 = eΦ̂

✓̂ΞB , (5.80)

where Ξ̂B = eB ∧ (Ξ1 + Ξ3). The active smearing forms indicate sources for both D6 and
D8 branes.

5.3.3 A nice subtlety

There is a subtlety here. A naive reasoning would lead us to believe that when the non-
Abelian T-dual is applied to D7 sources, it will generate charge for D8, D6, D4 branes,
whilst in equation (5.79) we only have D8, D6 charges, since Ξ5, the smearing form for D4
charges is absent in equation (5.78). Below, we will solve this apparent contradiction.

If we consider the Bianchi identity of the RR polyform

dHF = Ξ̂ ∧ eB , (5.81)

it is clear that, since the LHS of this equation is gauge invariant, the RHS must also
be. Throughout this chapter we have set to zero gauge fields on the world-volume, how-
ever, one should remember that they occur in conjunction with the NS two-form in the
gauge-invariant combination F = B + 2πα′dA. Then the most conservative view is that
performing a gauge transformation on the NS B-field simply activates appropriate com-
pensating world-volume gauge field. There is however another point of view which is to
keep the world-volume gauge fields turned off and instead compensate for a B-field trans-
formation with an appropriate redefinition of the smearing form Ξ̂. This is best thought of
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not as a gauge transformation but rather as a mapping. In this picture the transformation
of the NS potential, B → B + ∆B, mediates a redistribution of source charge between
the D4 and D6 branes. The reason to prefer this second viewpoint is that turning on a
one-form gauge field on the brane would break either the SU(Nf ) or the U(1)Nf symmetry.

To explain this second viewpoint, we consider the transformation B → B′ = B + ∆B.
Such a transformation must be supplemented by a transformation of the smearing polyform
Ξ̂→ Ξ̂′ so that the Bianchi identity of the RR polyform is unchanged. This requires that

Ξ̂′ ∧ eB′

= Ξ̂ ∧ eB . (5.82)

As an example, consider a transformation for which Ξ1 ∧∆B = 0. Then we still have

dF0 = Ξ1 , dF2 −HF0 = Ξ3 +B ∧ Ξ1 . (5.83)

The final Bianchi identity of the RR sector then becomes

dF4 −H ∧ F2 = Ξ5 +B ∧ Ξ3 +
1

2
B ∧B ∧ Ξ1 , (5.84)

where Ξ5 = ∆B ∧ Ξ3. So we generate an explicit source for D4-branes under such a
transformation. Clearly there are always source D8-branes but whether we have explicit
source D6’s or source D6 and D4’s is a gauge-dependent statement. We do not believe
it is possible to find a gauge in which we only have explicit D8 sources. This appears to
be related to the fact that the original type IIB D7-brane embedding has two branches.
This may seem rather mysterious, however one should understand that the total DBI and
WZ actions of the source branes depend only on the sources through the gauge-invariant
quantity Ξ ∧ eB . The higher potentials in the WZ action, C5, C7 and C9, are gauge
invariant as consequence of the SU(2) SUSY conditions (see appendix 5.A for details on
this). So, it is only the “portion” of the sources that are viewed as being explicit rather
than induced that changes, the equations of motion, the Bianchi identities and the total
Maxwell charge are all invariants.

In summary, we advocated a picture in which gauge transformations mediate a redis-
tribution of the source charge between the D4 and D6 branes.

To emphasize these points above, we can consider their Page charges [160] defined as

QD6
Page =

∫

M2

(F2 − F0B) ,

QD4
Page =

∫

M4

(F4 −B ∧ F2 +
1

2
F0B ∧B) .

(5.85)

The Maxwell charges are invariant under a shift in the B-field described above. While the
shift of the Page charges is given by

∆QD6
Page =

∫

M2

F0∆B ,

∆QD4
Page =

∫

M4

(−∆B ∧ (F2 − F0B) +
1

2
F0∆B ∧∆B) .

(5.86)

As these these integrals are defined over compact manifolds these quantities are invariant
for small gauge transformations. The integrands are exact so the integrals are zero. It
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is of course a generic feature of Page charges that they are only defined up to quantized
shifts under large gauge transformations9. This is generally interpreted in the literature
as a Seiberg duality in the dual gauge theory as in [158,161].

5.3.4 Potentials, SU(2)-structure and Calibration

We may use the formula for the T-dual RR potential in equation (5.20) to find the RR
potentials. These are given in coordinate frame by (for alternative expressions see below)

C5 = e−Φ̂
(

eΦ

h
vol4

)
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∆
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,
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eΦ

h
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∧
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λλ4
1e
f+4g+ 3Φ

2 x1h
3
2 sin θdθ ∧ dϕ ∧ σ̂3

)

∧
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(hλ2λ2
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.

(5.87)
This background is again of SU(2)-structure where the defining forms v+ iw, j, ω are the
same as in the unflavored case – see equations (5.59) – the only difference being that the
parameters entering the rotation matrix used in equation (5.51) become

ζ1 =
e−f−g− Φ

2 x1 cosψ

λλ1

√
h

, ζ2 =
e−f−g− Φ

2 x1 sinψ

λλ1

√
h

, ζ3 =
e−2g− Φ

2 x2

λ2
1

√
h

. (5.88)

This rotation leads to the following simple vielbeins for the dual geometry

ẽr =
hλλ2

1e
f+2g+Φdr − (x1dx1 + x2dx2)√

∆
,

ẽφ = h
1
4λ1e
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4 sin θdφ , ẽθ = h

1
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4 dθ ,
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√
hλ1e

g+Φ/2−x1 cosψ dr − efλ(cosψ dx1 − x1 sinψ σ̂3)√
∆

,
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√
hλ1e

g+Φ/2x1 sinψ dr + efλ(sinψ dx1 + x1 cosψ σ̂3)√
∆

,

ẽ3 = −
√
he

Φ
2
λefx2dr + λ2

1e
2gdx2√

∆
.

(5.89)

This whole background is indeed a solution to the combined (massive)-IIA supergravity
plus DBI plus WZ action (the details are explicit in appendix 5.B):

S = SMassive IIA + SDBI + SWZ . (5.90)

9Large gauge transformations are topological in nature and always induce quantized shifts.
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In the gauge in which the B-field is given by equation (5.76) and there are no explicit D4
sources, the appropriate WZ terms are given by

SWZ = SD8
WZ + SD6

WZ ,

SD6
WZ =

∫

M10

(

C7 −B ∧ C5

)

∧ Ξ3 , (5.91)

SD8
WZ = −

∫

M10

(

C9 −B ∧ C7 +
1

2
B ∧B ∧ C5

)

∧ Ξ1 ,

whilst the DBI action, expressed in terms of the D8 and D6 calibrations – c.f. (5.73) – is
given by

SDBI = SD8
DBI + SD6

DBI ,

SD6
DBI = −
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h
vol4

)
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∧ Ξ3 ,
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1

2
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)

∧ Ξ1 .

(5.92)

Operating with the SU(2) structure we can recast the RR potentials as

C5 = e−Φ̂

(

eΦ

h
vol4

)

∧ w1 ,

C7 = e−Φ̂

(

eΦ

h
vol4

)

∧ j2 ∧ v1 ,

C9 = −1

2
e−Φ̂

(

eΦ

h
vol4

)

∧ j2 ∧ j2 ∧ w1 .

(5.93)

This makes it clear that on shell, as is required by sypersymmetry, SDBI +SWZ = 0. This
reflects the fact that the branes are calibrated, a fact that we now discuss in some detail.

5.3.5 Analysis of the dualized geometry

As we saw in the previous chapter, one is often interested, particularly in the context of the
AdS/CFT correspondence, in the possibility that D-branes may wrap certain submanifolds
of the geometry in a way that preserves supersymmetry. One approach to check whether a
brane embedding is supersymmetric is the use of calibrations. SU(3)×SU(3) backgrounds
admit a rich structure of supersymmetric cycles and the polyforms Ψ± (or rather the
appropriate imaginary parts) serve as generalized calibrations as detailed at the end of
chapter 3.

For the case of SU(2)-structure backgrounds with non-trivial NS three-form the cali-
brations for space-time filling D-branes wrapping odd cycles are given by10

CCal. odd = −8h
1
4 e− Φ

4 Im(Ψ−) ∧ eB , (5.94)
10Here we assume no gauge field on the brane world-volumes and then, we have absorbed the factor

exp F = exp B|Σ appearing in (3.110) into the definition of the calibration and we have also canceled out
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while those for the even cycles by

CCal. even = −8h
1
4 e− Φ

4 Im(Ψ+) ∧ eB , (5.95)

where the pure spinors are given by equation (3.94) for |ab| = eA = e
Φ
4

h
1
4

. Specifically this

gives the calibrations:

C1 = −w1 ,

C2 = −Re(ω2) ,

C3 = v1 ∧ j2 − w1 ∧B ,

C4 = −v1 ∧ w1 ∧ Im(ω2)−B ∧Re(ω2) ,

C5 =
1

2
w1 ∧ j2 ∧ j2 + v1 ∧ j2 ∧B −

1

2
w1 ∧B ∧B ,

C6 = −v1 ∧ w1 ∧ Im(ω2) ∧B − 1

2
Re(ω2) ∧B ∧B .

(5.96)

A cycle in the internal space is supersymmetric if it saturates the bound (3.110)
√

|det(g +B)|ξ|diξ = Ci
∣

∣

ξ
. (5.97)

This makes it clear that an SU(2)-structure in six dimensions in type IIA supergravity
can potentially support Minkowski space-time filling D4, D6 and D8-branes wrapping one,
three and five-cycles, respectively. Similarly, SU(2)-structures in six dimensions in type
IIB supergravity might support space-time filling D5, D7 and D9-branes wrapping two,
five and seven-cycles.

Indeed, one can explicitly check that in our case, space-time filling D4, D6 and D8
branes wrapping the following cycles are supersymmetric:

ΣD4 = (yµ, r) with x1 = x2 = 0 ,

ΣD6 = (yµ, r, ψ, x1) with x2
1 + x2

2 = constant , (5.98)

ΣD8 = (yµ, r, ψ, θ, φ, x1) .

The task of finding other supersymmetric cycles is left as an open problem.

5.4 Comments

In this chapter we have clarified the action of non-Abelian T-duality in the context of
backgrounds possessing SU(3)× SU(3) structure and N = 1 supersymmetry.

We saw that rather generically the effect of performing a dualization along an SU(2)
isometry group is to map an SU(3)-structure background to an SU(2)-structure back-
ground. A heuristic reason for this can be found by looking at the abelian case following

the exp(4A − Φ) factors appearing in (3.110) and (3.121), so that the relation between C and ˜̟ is given by

C = e
−4A+Φ

(

˜̟ ∧ e
B
)

∣

∣

∣

Σ
.
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[154]. After T-duality, left and right movers couple to different set of frame fields for the
same geometry, êi+ and êi−. In the simplest case we can understand this T-duality as a
reflection on right movers so that in directions dualized êi+ = −êi−. The J and Ω of the
starting SU(3)-structure give rise, after dualization, to a Ĵ and Ω̂ which may be expressed
in terms of either the left or right moving frame fields giving a corresponding Ĵ± and Ω̂±.
Suppose that the expression for Ĵ is

Ĵ± = ê1
± ∧ ê2

± + ê3
± ∧ ê4

± + ê5
± ∧ ê6

± . (5.99)

Consider the case where the dualized directions are 1 and 2, then Ĵ+ = Ĵ− and in this
case the T-dual also has SU(3)-structure. Now consider the dualization of two directions
that are not paired by the complex structure, say 1 and 3, in this case Ĵ+ 6= Ĵ− and
type changing has occurred; the SU(3)-structure gives rise to a T-dual SU(2)-structure
after T-dualization. Since the non-Abelian T-dualizations performed here involve three
directions they cannot respect the paring of the complex structure and so they have to be
type changing.

These SU(2)-structure geometries remain an interesting sector of compactifications
which are much less well explored than their IIB SU(3)-structure cousins. The results
presented here then open the door to constructing a rich class of such geometries. Indeed
although we have illustrated this work with the Klebanov-Witten geometry, everything
we have said holds true for the wide variety of N = 1 backgrounds presented in [133].
A particularly noteworthy direction is to consider the dualization of more general toric
Calabi-Yau geometries.

One feature of the geometries presented above was that they possess static SU(2)-
structure. An interesting question from the point of view of generalized complex geometry
is whether backgrounds with a dynamical SU(2)-structure can be found using these tech-
niques. For this to be the case one would have to substantially change the relationship
between the isometry group dualized and the initial complex structure.

Establishing a clear dictionary between the geometries [133] discussed here and a dual
field theoretic description remains the most pressing physical question. In this chapter
we showed how to readily add flavor branes to the picture and this will provide further
insight into any putative dual field theoretic description. Indeed, this geometrical approach
could be extended with interesting subtleties to the Klebanov-Strassler baryonic branch
solution (including the wrapped D5 system) [162]. This viewpoint will make clear the way
to calculate some physical observables, like domain walls and other topological defects
corresponding to branes wrapping calibrated sub-manifolds. On the other hand, it is likely
that this geometric view might help address important questions, like the periodicity of
the new coordinates x1, x2, the existence of different cycles on which to integrate fluxes,
a clear interpretation of the background in terms of color/flavor branes, etc. All these
points remain for future study. A long but somewhat clear path needs be travelled, to
use the Maldacena conjecture and define strongly coupled field theories based on these
backgrounds.
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5.A On the SU(2)-structure of the T-dual background

In this section, we give further details regarding the SU(2)-structure that are used through
out the main body of this chapter. We sketch the derivation of the conditions that the
SU(2)-structure must satisfy for N = 1 SUSY in type IIA. We will also use these to define
potentials for the space-time filling RR-fluxes. We assume a string frame metric of the
form:

ds2 = e2Ady1,3 + ds2
6 (5.100)

with a dilaton Φ and a NS three form H = dB. We further assume that Φ(z), A(z) with
z any coordinate in ds2

6. Expanding out the SU(2) pure spinors in (3.94) gives:

Ψ+ = i
|ab|
8

[

ω2 − iω2 ∧ v1 ∧ w1 −
1

2
ω2 ∧ v1 ∧ w1 ∧ v1 ∧ w1

]

,

Ψ− =
|ab|
8

(1− ij2 −
1

2
j2 ∧ j2) ∧ (v1 + iw1) ,

Ψ̄− =
|ab|
8

[

v1 − iw1 + j2 ∧ (w1 + iv1)− 1

2
j2 ∧ j2 ∧ (v1 − iw1)

]

.

(5.101)

Supersymmetry requires that |a| = |b|, we define:

|ab| = |a|2 = eA . (5.102)

Plugging (5.101) into (3.99), equating forms with equal number of legs and separating real
and imaginary parts gives

d
[

e3A−Φω2

]

= 0 ,

d
[

e3A−Φω2 ∧ v1 ∧ w1

]

+ ie3A−ΦH ∧ ω2 = 0 .
(5.103)

For two-forms,
d
[

e3A−Φv1

]

− e3A−ΦdA ∧ v1 = 0 ,

d
[

e3A−Φw1

]

+ e3A−ΦdA ∧ w1 = −e3A ⋆6 F4 .
(5.104)

For four-forms,

− d
[

e3A−Φj2 ∧ w1

]

− e3A−ΦH ∧ v1 + e3A−ΦdA ∧ j2 ∧ w1 = 0 ,

d
[

e3A−Φj2 ∧ v1

]

− e3A−ΦH ∧ w1 + e3A−ΦdA ∧ j2 ∧ v1 = e3A ⋆6 F2 ,
(5.105)

while for the six-form,

− 1

2
d
[

e3A−Φj2 ∧ j2 ∧ v1

]

+ e3A−ΦH ∧ j2 ∧ w1 +
1

2
e3A−ΦdA ∧ j2 ∧ j2 ∧ v1 = 0 ,

1

2
d
[

e3A−Φj2 ∧ j2 ∧w1

]

+ e3A−ΦH ∧ j2 ∧ v1 +
1

2
e3A−ΦdA ∧ j2 ∧ j2 ∧ w1 = e3A ⋆6 F0 .

(5.106)
Finally, we have for the zero-form

⋆6 F6 = 0 (5.107)
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where the fluxes F0, F2 and F4 are understood to have legs in the six-dimensional internal
space only. These equations can be further simplified as follows:

d
[

e3A−Φω2

]

= 0

ω2 ∧
[

d
(

v1 ∧ w1
)

+ iH
]

= 0

d
[

e2A−Φv1

]

= 0

d
[

e4A−Φw1

]

= −e4A ⋆6 F4

d
[

e2A−Φj2 ∧ w1

]

+ e2A−ΦH ∧ v1 = 0 (5.108)

d
[

e4A−Φj2 ∧ v1

]

− e4A−ΦH ∧ w1 = e4A ⋆6 F2

1

2
d
[

e2A−Φj2 ∧ j2 ∧ v1

]

− e2A−ΦH ∧ j2 ∧ w1 = 0

1

2
d
[

e4A−Φj2 ∧ j2 ∧ w1

]

+ e4A−ΦH ∧ j2 ∧ v1 = e4A ⋆6 F0

⋆6 F6 = 0.

We clearly now have a definition of the Minkowski space-time filling RR-sector in terms
of the SU(2)-structure:

F6 = d
[

e4A−Φvol4 ∧ w1

]

F8 = d
[

e4A−Φvol4 ∧ j2 ∧ v1

]

− e4A−ΦH ∧ vol4 ∧ w1

F10 = −1

2
d
[

e4A−Φvol4 ∧ j2 ∧ j2 ∧ w1

]

+ e4A−ΦH ∧ vol4 ∧ j2 ∧ v1,

(5.109)

where the remaining fluxes can be obtained from the duality condition F2n = (−)n⋆F10−2n.
With these equations it is possible to derive expressions for the potentials associated with
these fluxes. They take the most compact form when the space-time filling part of the RR
flux ployform is expressed as11

FMink = dCMink −H ∧ CMink . (5.110)

We must have −H∧C3 + 1
3!F0B

3 = 0 for N = 1 SUSY, otherwise the final line in equation
(5.108) cannot hold. This allows the derivation of canonical potentials in terms of the
SU(2)-structure,

C5 = e4A−Φvol4 ∧ w1 ,

C7 = e4A−Φvol4 ∧ j2 ∧ v1 ,

C9 = −1

2
e4A−Φvol4 ∧ j2 ∧ j2 ∧ w1 .

(5.111)

11We are assuming B is defined only on the internal space so that B4 = 0.
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5.B Some details of the flavored SU(3) and SU(2)-structure so-
lutions

We will start analyzing the case of the addition of flavors to the Klebanov-Witten field
theory [158]. This will be explicitly dealt with using the language of SU(3)-structures.
Then, we will extend the analysis to the background generated in section 5.3. This will
require the full SU(2)-structure formalism, developed above.

We consider the addition of Minkowski space-time filling sources to an SU(3)-structure
background in type-IIB. The action of type-IIB in string frame is modified as:

S = SIIB + SDBI + SWZ . (5.112)

With pure spinors defined as in equation (3.91) the calibration condition is given by:

Ψcal. IIB = −8e4A−Φ

|a|2 Im Ψ+ = e−Φ
(

eΦ

h

)(

1− 1

2
J ∧ J

)

, (5.113)

which is compatible with source D3 and D7-branes. We are assuming, as it is true for the
Klebanov-Witten model with massless flavors, that H = 0. The combined DBI action of
such a system will be given by:

SDBI = SD3
DBI + SD7

DBI ,

SD3
DBI = −

∫

M10

e−Φ
(

eΦ

h

)

vol4 ∧ Ξ6 ,

SD7
DBI =

1

2

∫

M10

e−Φ
(

eΦ

h

)

vol4 ∧ J ∧ J ∧ Ξ2 .

(5.114)

While the WZ terms will be given by:

SWZ = SD3
WZ + SD7

WZ ,

SD3
WZ = −

∫

M10

C4 ∧ Ξ6 ,

SD7
WZ =

∫

M10

C8 ∧ Ξ2 .

(5.115)

The fluxes, in the presence of sources – for the case of B = 0, should be defined as,

H = dB , F1 = dC0 , F3 = dC2 , F5 = dC4 (5.116)

and the Bianchi identities are modified as follows:

dH = 0, dF1 = Ξ2, dF3 −H ∧ F1 = 0 ,

dF5 −H ∧ F3 = Ξ6 ,
(5.117)

where the Ξi’s that are non zero are determined by the specific source brane content. The
dual fluxes, related by the expression F2n+1 = (−)n ⋆ F9−2n, are defined as:

⋆ F5 = F5, F7 = dC6, F9 = dC8 (5.118)
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and the fluxes have the following equations of motion:

d ⋆ F1 = 0, d ⋆ F3 = 0 . (5.119)

For Klebanov-Witten with massless flavors we should set Ξ6 = 0 and then the equation
of motion of the dilaton and Einstein’s equations can be shown to be satisfied also as in
[163].

5.B.1 Analysis of the generated background

In this work we generated a flavored type-IIA solution which supports an SU(2)-structure
and non closed B. The action of (massive) type IIA in string frame, is now modified,

S = SMassive IIA + SDBI + SWZ . (5.120)

As shown around equation (5.96), an SU(2)-structure can in general support smeared
source D4, D6 and D8-branes that extend in the Minkowski directions. The combined
DBI and WZ actions of this system are given by:

SDBI = SD8
DBI + SD6

DBI + SD4
DBI ,

SD4
DBI =

∫

M10

e−Φ̂

(

eΦ

h

)

vol4 ∧w1 ∧ Ξ5 ,

SD6
DBI = −

∫

M10

e−Φ̂

(

eΦ

h

)

vol4 ∧
(

v1 ∧ j2 − w1 ∧B
)

∧ Ξ3 ,

SD8
DBI = −

∫

M10

e−Φ̂

(

eΦ

h

)

vol4 ∧
(

1

2
w1 ∧ j2 ∧ j2 + v1 ∧ j2 ∧B −

1

2
w1 ∧B ∧B

)

∧ Ξ1 ,

(5.121)
and

SWZ = SD8
WZ + SD6

WZ + SD4
WZ ,

SD4
WZ = −

∫

M10

C5 ∧ Ξ5 ,

SD6
WZ =

∫

M10

(

C7 −B ∧ C5

)

∧ Ξ3 ,

SD8
WZ = −

∫

M10

(

C9 −B ∧ C7 +
1

2
B ∧B ∧ C5

)

∧ Ξ1 .

(5.122)

In the presence of such sources we should define the RR-potentials as:

F0 , F2 = dC1 + F0B , F4 = dC3 +B ∧ dC1 +
F0

2
B ∧B , (5.123)

this ensures that we have no ill-defined potential terms appearing explicitly. We note
that source D8-branes imply that F0 will no longer be quantized. In general the Bianchi
identities are given by

dF0 = Ξ1 , dF2 − F0H = Ξ3 +B ∧ Ξ1 ,

dF4 −H ∧ F2 = Ξ5 +B ∧ Ξ3 +
1

2
B ∧B ∧ Ξ1 .

(5.124)
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The dual fluxes, related by the expression F2n = (−)n ⋆ F10−2n, are defined as:

F6 = dC5 , F8 = dC7 −H ∧ C5 ,

F10 = dC9 −H ∧ C7 .
(5.125)

Here, we did not write the terms that are zero due to the SU(2) SUSY conditions in six
dimensions. The flux equations of motion for the RR sector are given by:

d ⋆ F2 +H ∧ ⋆F4 = 0 , d ⋆ F4 +H ∧ F4 = 0 , (5.126)

while for the NS sector we find:

d
(

e−2Φ̂ ⋆ H
)

=F0 ⋆ F2 + F2 ∧ ⋆F4 +
1

2
F4 ∧ F4−

eΦ−Φ̂

h

[

vol4 ∧ (w1 ∧B − v1 ∧ j2) ∧ Ξ1 + vol4 ∧w1 ∧ Ξ3

]

.

(5.127)

A careful calculation shows that the potentials do not enter into this equation explicitly
[57]. We can express the variation of the dilaton as an integral for compactness,

SDBI = −
∫

8e−2Φ̂(d ⋆ dΦ̂ + ⋆
R

4
− dΦ̂ ∧ ⋆dΦ̂− 1

8
H ∧ ⋆H) . (5.128)

It is useful at this stage the following identity,
∫

ω(p) ∧ λ(10−p) = −
∫

√

− det gλy(⋆ω) . (5.129)

Then Einstein’s equations can be expressed in a gauge-invariant fashion as:

Rµν =− 2DµDνΦ̂ +
1

4
H2
µν + e2Φ̂

[

1

2
(F 2

2 )µν +
1

12
(F 2

4 )µν −
1

4
gµν(F 2

0 +
1

2
F 2

2 +
1

4!
F 2

4 )

]

+

eΦ+Φ̂

h

[

1

48
(Ξ5 + Ξ3 ∧B +

1

2
B ∧B ∧ Ξ1)µα1...α4 ⋆ (vol4 ∧w1)α1...α4

ν −
1

4
(Ξ3 +B ∧ Ξ1)µα1α2 ⋆ (vol4 ∧ v1 ∧ j2)α1α2

ν − 1

4
Ξ1 µ ⋆ (vol4 ∧w1 ∧ j2 ∧ j2)ν

− 1

4
gµν

(

(Ξ5 + Ξ3 ∧B +
1

2
B ∧B ∧ Ξ1)y ⋆ (vol4 ∧ w1)−

(Ξ3 +B ∧ Ξ1)y ⋆ (vol4 ∧ v1 ∧ j2)− 1

2
Ξ1y ⋆ (vol4 ∧ w1 ∧ j2 ∧ j2)

)]

.

(5.130)

The equations (5.124)-(5.130) are solved by the system in section 5.3 after the BPS equa-
tions (5.70) are imposed.
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Supersymmetric superconductors

In the previous chapters, we have already seen various applications of supersymmetry.
In this chapter, we are going to use supersymmetry in a rather different environment,
we are going to use it within the context of condensed matter physics, in particular,
superconductivity.

Superconductivity is a common phenomenon realizing spontaneous symmetry breaking
of a local U(1) symmetry. In particular, Bardeen-Cooper-Schrieffer theory of superconduc-
tivity (BCS), [164, 165], describes this spontaneous symmetry breaking, where one starts
with a theory with a local U(1) symmetry at finite temperature and a chemical potential
that generates a Fermi surface. When the temperature is lowered enough, quantum ef-
fects generate a spontaneous symmetry breaking vacuum by fermion condensation. The
IR choice of vacuum can be described in terms of an effective Ginzburg-Landau theory
(GL), which can be derived from BCS theory.

Our main purpose in this chapter is to implement relativistic BCS theory with the sim-
plest supersymmetric field theory model and to explore the new features that supersym-
metry introduces in comparison to the general features that standard non-supersymmetric
superconductors have. To be precise, we look for the simplest field theory model that at
zero temperature and zero chemical potential enjoys N = 1 supersymmetry (since any
theory with higher supersymmetry can be viewed as a particular N = 1 supersymmetric
field theory, it is convenient to use the N = 1 framework to provide a general picture of the
conditions under which U(1) spontaneous symmetry breaking can arise by BCS fermion
condensation). We also require that when temperature and chemical potential are turned
on, a Fermi surface is generated and for temperatures below a critical one quantum ef-
fects produce a Fermion condensate that spontaneously breaks a U(1) symmetry, just as
it occurs in the BCS theory.

Having a supersymmetric version of superconductivity might be interesting, since su-
persymmetric field theories are more stable and less sensitive to radiative corrections, as
a result, the theory is less sensitive to the UV cutoff, which in BCS theory must be put
by hand by introducing a Debye energy as a phenomenological input of the model.

Although the BCS theory of superconductivity was a fundamental step towards the
microscopic understanding of conventional superconductivity, it fails to describe other ex-
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otic behaviors like high Tc superconductivity. If the type of non-perturbative results we
have seen in the previous chapters in other contexts could be extended to the field of super-
conductivity, this would allow us to gain insight into how the superconducting mechanism
behaves in the strong coupling regime, a regime which is believed to be involved in this
high Tc superconductivity [166]. To this purpose, some models of superconductivity have
been implemented in the context of the gauge/gravity duality, the so-called holographic
superconductors, (some of the earliest approaches are [11, 167] and some reviews can be
found at [168, 169]). These holographic superconductors are models of superconductivity
built in the gravity side of the duality, so that, applying the AdS/CFT dictionary, they
should correspond to a superconducting field theory on the field theory side of the dual-
ity. In top-down holographic superconductor models supersymmetry plays a central role,
thus, having implemented superconductivity in a supersymmetric field theory might help
to provide field-theoretical understanding of the possible mechanisms underlying holo-
graphic superconductivity.

On the other hand, the introduction of a chemical potential generating a Fermi surface
in supersymmetric field theories is not straightforward, as it can lead to undesired Bose-
Einstein condensation of the scalar superpartners, which spoils BCS mechanism. Hence,
this model illustrates the difficulties that the introduction of a chemical potential in a
supersymmetric theory brings up. However, despite this difficulty, the fact of having
scalar superpartners for fermions in the supersymmetric version of BCS theory might be of
relevance for certain real condensed matter systems where scalar and fermionic excitations
arise in a quasi-supersymmetric way. This quantum mechanical quasi-supersymmetry
arises in BCS theory itself, as noticed by Nambu [170], in terms of which one can describe
the Interacting Boson Model [12], which describes the low-lying states of intermediate and
heavy atomic nuclei.

As we see, there is a lot of interest in having a supersymmetric model of supercon-
ductivity. For this reason, we can find some attempts in the literature to build such a
model [171–173]. However, these models use explicit supersymmetry breaking terms and,
therefore, the Lagrangian does not describe a supersymmetric theory. Some other studies
of phase transitions in supersymmetric field theories, for example [174], have neither found
superconducting phases, despite the fact that its gravity dual shows a rich phenomena to
be taking place at strong coupling, [175].

The outline of this chapter is the following. We will start by reviewing the main
properties of superconducting systems and the main models describing them following an
historical approach. Next, we will propose a supersymmetric model describing a super-
conducting phase transition a la BCS after some abortive, although instructive, attempts.
The third section is devoted to the comparison of some physical quantities obtained for
standard relativistic BCS theory and those computed for the presented supersymmetric
model. These physical quantities are the gap, the specific heat, the magnetic and coher-
ence lengths and critical magnetic fields, all of them reviewed in the first section. Finally,
we conclude with some comments.

In this chapter we will follow the notation of [176]. We also will work in units in which
the vacuum permeability is one.
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6.1 Brief review of superconductivity

Superconductivity was discovered in 1911 when Kamerlingh Onnes observed that the
electrical resistance of various metals drops to zero when their temperature is lowered
below a certain critical one, Tc, characteristic of the material.

The second distinctive sign of superconductivity is perfect diamagnetism, found in
1933 by Meissner and Ochsenfeld, a phenomenon nowadays known as the Meissner effect.
This is a completely different phenomenon from perfect conductivity as, not only does
it imply that the magnetic field cannot penetrate the superconductor, which could be
explained by perfect superconductivity, but also that the magnetic field in an originally
normal conductor is expelled from it when the material becomes superconducting as its
temperature is cooled below Tc.

The existence of this reversible Meissner effect implies that a high enough magnetic
field can destroy superconductivity. The critical field, Bc, above which superconductivity
would be lost can be determined by equating the condensation energy with the magnetic
energy needed to maintain the field out of the sample, i.e.

1

2
B2
c (T ) = Fn(T )− Fs(T ) , (6.1)

where Fn and Fs are the free energies per unit volume in the normal and superconducting
phases at zero magnetic field.

At zero magnetic field, the phase transition at Tc is second order, but when an external
field is turned on the phase transition taking place at Bc becomes first order, since the
free energy is discontinuous.

6.1.1 The London equations

These two features of superconductivity, perfect conductivity and perfect diamagnetism,
were first described by the London brothers in 1935, who proposed the following relations
between the superconducting current and the electric and magnetic field,

∂t~js = c ~E , ~∇×~js = −c ~B . (6.2)

These two equations can be summarized in a single equation in terms of the vector poten-
tial, ~A,

~js = −c ~A , (6.3)

where c is a phenomenological parameter. The first equation in (6.2) describes perfect su-
perconductivity because the electric field accelerates the superconducting electrons rather
than maintaining their velocity constant, as it would happen in a normal conductor as
described by Ohm’s law. On the other hand, the second equation in (6.2), together with
Maxwell equations, predicts an exponential decay in the magnetic field as it penetrates
the superconducting sample, characterized by a magnetic penetration length λ. It turns
out that the parameter c is related with the magnetic penetration length, λ = 1/

√
c.
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6.1.2 The Ginzburg-Landau theory of superconductivity

The next successful theory of superconductivity was elaborated by Ginzburg and Lan-
dau in 1950. This theory still provides a phenomenological, macroscopic description of
superconductivity, nevertheless it is a powerful theory which embodies in a simple way
the macroscopic quantum mechanical nature of superconductors. Afterwards, the BCS
theory will provide a microscopical completion, from which the Ginzburg-Landau theory
of superconductivity can be derived and this will show that the Ginzburg-Landau theory
is valid in the regime of temperatures close to Tc and slowly varying fields.

Within the framework of Landau theory of phase transitions, Ginzburg and Landau in-
troduced a complex order parameter, ∆(x), related to the local density of superconducting
charge carriers by

ε = |∆(x)|2 . (6.4)

The Ginzburg-Landau theory assumes that the free energy can be expanded around its
non-superconducting value, Fn, as a power series of the carrier density, which is supposed
to be small. If we only consider the first two terms of this series expansion, characterized
by phenomenological coefficients a(T −Tc) and b, the free energy in the GL theory is, thus,
given by

Fs − Fn = a (T − Tc) |∆|2 + b|∆|4 +
1

2m

∣

∣

∣

(

~∇− iq ~A
)

∆
∣

∣

∣

2
+

1

2
( ~B − ~Bext)

2 , (6.5)

where m and q are the mass and the electric charge of the superconducting carriers.
Although at that time the nature of the superconducting carriers was to be determined,
BCS theory will show that these carriers are paired electrons so that m = 2me and
q = −2|e|, being me and e the electron mass and electric charge, respectively.

Minimizing the free energy with respect to the order parameter and the vector potential
one gets the Ginzburg-Landau equations,

1

2m

(

~∇− iq ~A
)2

∆− 2b|∆|2∆ = a(T − Tc)∆ , (6.6)

~js = ~∇× ~B = −i q
2m

(∆∗~∇∆−∆~∇∆∗)− q2

m
|∆|2 ~A , (6.7)

the former of which can be viewed as an analogue to the Schrödinger equation for a free
particle, but with a non-linear term, and the later generalizes the London superconducting
current. This improves the London theory as it allows to consider non-linear effects of
fields able to change the density of superconducting carriers and it also allows to consider
the case in which this density varies in space.

Apart from the magnetic penetration length, the Ginzburg-Landau theory allows to
define another length, the coherence length ξ, which characterizes the distance over which
the order parameter can vary without much energy increase. Together with the magnetic
penetration length, their expressions are

λ−2 =
aq2

2bm
(T − Tc) , ξ−2 = 2am(T − Tc) . (6.8)

The quotient between these two lengths defines the Ginzburg-Landau parameter, κ = λ/ξ.
At that time, known superconductors, today called type I, had a GL parameter in the
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regime κ ≪ 1. However, in 1957 Abrikosov studied what would happen to a supercon-
ductor described by the GL theory in the regime κ ≫ 1. He found what he called type
II superconductors to distinguish them from the already known κ ≪ 1 superconductors.
In particular, the exact breakpoint between type I and type II superconductors occurs
at κ = 1/

√
2. Instead of a discontinuous breakdown of superconductivity in a first order

phase transition at Bc like in type I superconductors, this new type of superconductor ex-
hibits an intermediate vortex state where the magnetic field penetrates in regular arrays
of flux tubes of non-superconducting material surrounded by a superconducting current.
This Abrikosov vortex state takes place in between two critical magnetic fields,

Bc1 ≈
φ0

2πλ2
, Bc2 ≈

φ0

2πξ2
, (6.9)

where Bc1 is the value of the magnetic field for which a single vortex with flux quantum
φ0 = π/e would appear, whereas near Bc2 vortices are as closely packaged as the coherence
length allows. Superconductivity disappears completely for magnetic fields above Bc2.

6.1.3 The (relativistic) Bardeen-Cooper-Schrieffer theory of superconductiv-
ity

In 1957 Bardeen, Cooper and Schrieffer proposed a microscopic theory of superconduc-
tivity. Even though it fails to explain high Tc superconductivity and other exotic su-
perconducting materials, it provides theoretical understanding of the microscopic physics
behind standard superconducting experimental results and it is the starting point for more
complex theories that aim to describe these other exotic behaviors.

The cornerstone of BCS mechanism is the fact that even a weak attractive interaction
between electrons due to phonons is able to produce an instability in the Fermi sea of
conducting electrons. This instability leads to the production of bound states of paired
electrons able to condense. These are the so called Cooper pairs, which have, roughly
speaking, a spatial extension given by the coherence length introduced in the GL the-
ory. Cooper pairs clarify then the nature of the superconducting charge carriers, which
remained an obscure point in the previous theories.

Another important feature of superconductivity that the BCS theory can explain is
the existence of an energy gap between the Fermi level and the first excited states, this
corresponds, from the BCS point of view, to the energy necessary to break a Cooper pair.
This energy gap increases from zero at Tc to a limiting value at zero temperature. The
quantitative agreement with existing experiments measuring the energy gap was one of
the decisive validating arguments of the theory, see fig. 6.1 obtained from [177].

Instead of presenting here the original BCS formulation, we are going to show its
relativistic generalization (rBCS), as it is going to be more appropriate for the later super-
symmetric extension and it is conceptually similar from the point of view of quantum field
theory. The simplest realization of BCS mechanism, which we will be considering here, is
s-wave pairing, i.e. the paired electrons form a singlet anti-parallel spin state where the
gap is constant in momentum space.

To build the relativistic BCS Lagrangian just start with the standard Dirac one

L =
i

2
(ψ̄γµ∂µψ − ∂µψ̄γµψ)−mψ̄ψ , (6.10)
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∆(T )
/

∆(0)

T

/

Tc

Figure 6.1: Comparison between experimental results and the BCS prediction for the gap
as a function of the temperature for tin, tantalum, lead and niobium. Extracted from
[177].

where, as usual, ψ̄ = ψ†γ0. This Lagrangian enjoys a global U(1) symmetry, this allows us
to introduce a chemical potential, µ, associated with the corresponding conserved charge.
This is done by adding the term µψ†ψ, as it is described in appendix 6.A. Strictly speaking,
if the symmetry is global we will be discussing superfluidity instead of superconductivity,
although transport properties are similar in both cases and one can consider the global
U(1) symmetry model as that of a superconductor with weakly gauged symmetry. Below
we will consider the addition of the corresponding gauge field, however, we maintain for
the moment the discussion with the global symmetry for the sake of simplicity.

The next term of higher dimension we can add to the Dirac Lagrangian is a four-
fermion interaction term. As shown in [178], the attractive interaction between electrons
can be described in the relativistic BCS theory by the term (ψ̄cγ5ψ)†(ψ̄cγ5ψ), hence we
are left with the Lagrangian

L =
i

2
(ψ̄γµ∂µψ − ∂µψ̄γµψ)−mψ̄ψ + µψ†ψ + g2(ψ̄cγ5ψ)†(ψ̄cγ5ψ) . (6.11)

ψc is the charge conjugate of ψ. Other quartic terms might be worth considering, but only
the (ψ̄cγ5ψ)†(ψ̄cγ5ψ) term respects the s-wave pairing.

The Lagrangian (6.11) is not renormalizable, the four-fermion interaction typically
represents an irrelevant operator, but the dynamics of BCS superconductivity is such that
for fermions which are close to the Fermi surface this attractive four-fermion interaction
becomes strong. At weak coupling the scaling dimension of the fermionic fields must be
very close to that of the 3/2 for a free field. Hence, on dimensional grounds, the interaction
term is irrelevant in the IR. Naively it would seem that this theory cannot lead to any
interesting IR physics. The phenomenon that actually takes place is explained in [179].
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The key observation is that, in the presence of a chemical potential there is a Fermi
surface which can change the naive scaling dimensions for the operators in such a way
that the otherwise irrelevant interaction becomes indeed marginal. This is the seed for
the possibility of a non-trivial IR physics such as superconductivity.

As we said, BCS is a theory describing a spontaneous symmetry breaking of the afore-
mentioned U(1) symmetry driven by the temperature. For this reason, we want to study
the theory at finite temperature and to do that we have to consider the Lagrangian (6.11)
in Euclidean space (as described in appendix 6.A). At this point, we have a Lagrangian
which is not quadratic in the fields, to alleviate this, one has to perform a Hubbard-
Stratonovich transformation by introducing an auxiliary field, ∆. At the end of the day
we arrive at the Lagrangian

LE =
1

2
(ψ†∂τψ − ∂τψ†ψ)− i

2
(ψ̄γi∂iψ − ∂iψ̄γiψ) +mψ̄ψ − µψ†ψ

+ g2|∆|2 − g2
[

∆†(ψ̄cγ5ψ) + ∆(ψ̄cγ5ψ)†
]

. (6.12)

In this way, if we eliminate the auxiliary field through its equations of motion, we recover
the original Lagrangian (6.11) (in Euclidean space). The equations of motion set ∆ =
(ψ̄cγ5ψ), where we see that ∆ is a measure of the density number of Cooper pairs and it
is analogous to the order parameter that appeared in the GL theory.

Once we have a Lagrangian which is quadratic in fermions, our purpose is to integrate
them out to obtain a one-loop effective potential for the auxiliary field ∆. After performing
the Matsubara thermal sums, this is described in appendix 6.A, the effective potential is
given by

Veff = g2|∆|2

−
∫

d3p

(2π)3
(ω−(p) + ω+(p))

− 2

β

∫

d3p

(2π)3

(

log(1 + e−βω−(p)) + log(1 + e−βω+(p))
)

, (6.13)

where we have written in separate lines, the classical potential, the Coleman-Weinberg
potential and the thermal potential, from top to bottom respectively. The ω± appearing
in the effective potential are the energy eigenvalues coming from the Lagrangian (6.12).
In appendices 6.A and 6.B we explain how they are obtained. The expression for the
eigenvalues is given by

ω± =
√

(ω0(~p)± µ)2 + 4g4|∆|2 , (6.14)

where ω0 ≡
√

p2 +m2. From the expression of the energy eigenvalues it is clear that BCS
theory predicts an energy gap characterized by ∆.

The whole one-loop effective potential is identified with the free energy density in the
grand canonical ensemble. It is UV divergent due to the Coleman-Weinberg contribution,
for which we must introduce a cut-off, Λ, appearing here like a “Debye energy”. The cut-off
as usual represents the energy where new physics emerges.

Considering the thermal potential at low temperatures, one can see that the dominant
contribution comes from the minimum of the energy eigenvalues. Supposing µ > 0, this
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minimum is reached for ω− around ω0 = µ, these contributions are identified with those
coming from the particle, and contributions from ω+ are those coming from the anti-
particle. The momentum space location of this minimum defines a Fermi surface, p2

F =
µ2−m2, from which it is clear that the condition µ > m is required for the Fermi surface
to exist.

The minimum of the effective potential (6.13) as a function of the gap for each tem-
perature defines a curve ∆(T ). This curve can be found by solving the gap equation,
∂εVeff = 0, where ε = |∆|2. Explicitly, the gap equation is

1 =
g2

π2

∫ Λ

0
dp p2

(tanh
(

1
2βω−(p,∆)

)

ω−(p,∆)
+

tanh
(

1
2βω+(p,∆)

)

ω+(p,∆)

)

. (6.15)

This describes the usual critical curve for a second order phase transition for the order
parameter ∆ as a function of the temperature. Solving this equation at ∆ = 0 one can
obtain the value of the critical temperature, Tc, at which the phase transition takes place,
below which the fermion condensate appears. There are standard approximations that
one can do. The second term inside the integrand comes from the antiparticle and can
be neglected as ω− ≪ ω+ near the Fermi surface. In doing so one connects with the
expressions of the standard non-relativistic BCS theory. Near the Fermi surface one may
also approximate the factor p2 in the integrand by µ2 −m2.

6.1.4 Considering a gauge field and fluctuations of the gap

If one is interested in studying electromagnetic properties, such as the Meissner effect, one
must include in (6.12) a U(1) gauge field, Aµ. We will do so treating this gauge field as
an external field.

One can also consider fluctuations of the gap, ∆(~x) = ∆0+∆̄(~x), around its equilibrium
position, ∆0, determined by eq. (6.15). This will allow us to compute the coherence length.
For simplicity, we will consider static fluctuations and suppose ∆ to be real.

We are going to treat the inclusion of the gauge field and the fluctuations of the gap
as static perturbations. To this purpose, we write the Lagrangian (6.12) in the form
L = Ψ̄OFΨ, where Ψ̄ = (ψ̄, ψ̄c), and we split the matrix OF as OF (∆, A) = OF0(∆0) +
δOF (∆̄, A). In the path integral formalism this amounts to consider the saddle point
approximation, which is the approach that Gor’kov [180] followed to derive the Ginzburg-
Landau effective action from the BCS theory. In this way, the free energy can be expanded
as1

Ω =

∫

d3xVcl(∆0 + ∆̄(~x)) − 1

2β
log detOF = Ω0 + Ω1 + Ω2 + . . . (6.16)

Ω0 = g2
∫

d3x∆2
0 −

1

2β
log detOF0 ,

Ω1 = g2
∫

d3x 2∆0∆̄(~x) − 1

2β
Tr[O−1

F0δOF ] ,

Ω2 = g2
∫

d3x ∆̄2(~x) +
1

4β
Tr[(O−1

F0δOF )2] ,

1A note on notation, the effective potential is identified with the free energy density so we will equally
use Veff or F . We will use Ω for the free energy of the whole space.
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where Vcl stands for the classical potential and

Tr[O−1
0 δO] ≡

∫

d4x

∫

d4x1 tr[O−1
0 (x, x1)δO(x1, x)] , (6.17)

Tr[(O−1
0 δO)2] ≡

∫

d4xd4x1 d4x2 d4x3 tr[O−1
0 (x, x1)δO(x1, x2)O−1

0 (x2, x3)δO(x3, x)] ,

(6.18)

δO(x, y) = δ(4)(x − y)δO(x) and tr[.] is the usual trace over matrix elements. The first
term of the expansion (6.16), Ω0, is just the free energy corresponding to eq. (6.13), which
fixes the value of the gap. The second term, Ω1, has two contributions, one corresponding
to ∆̄ (which vanishes, as it is proportional to the gap equation) and another one due to
the gauge field A. In momentum space we have

Tr[O−1
F0δOF ] =

∫

d4x
1

β

∑

n

∫

d3p

(2π)3
tr[O−1

F0(ωn, ~p)δOF (x)] , (6.19)

which gives rise to terms of the form

∫

d4x
1

β

∑

n

∫

d3p

(2π)3
h(ωn, p

2)~p · ~A(x) , (6.20)

for some function h depending on ωn and p2. This term does not survive the momentum
integration, so this just leaves contributions involving the temporal component of the
gauge field, which are interpreted as fluctuations or space inhomogeneities of the chemical
potential.

Once the effective potential is computed we have to add the kinetic term for the gauge
field, the complete free energy is then

Ωtot =

∫

d3x

[

1

2
~E2 +

1

2
~B2
]

+ Ω(∆, A)

=

∫

d3x

[

f1

∣

∣

∣

(

~∇− ie ~A
)

∆
∣

∣

∣

2
+m−2|∆̄|2 + f2

~E2 + f3
~B2
]

+ Ω0 + . . . , (6.21)

where the coefficients f1, f2, f3 and m−2 have been introduced to account for the contri-
butions coming from the Ω1 and Ω2 terms of the expansion of the free energy. Near Tc,
we can expand Ω0 in eq. (6.21) as

Ω0(∆0, T ) =

∫

d3x
[

a(T − Tc)∆2
0 + b∆4

0 + . . .
]

, (6.22)

where

a =
g4

2π2
β2
c

∫ Λ

0
p2dp

(

sech2
(

1

2
βc(ω0(p) + µ)

)

+ (µ→ −µ)

)

,

b =
g8

2π2

∫ Λ

0
p2dp



−βc
sech2

(

1
2βc(ω0(p) + µ)

)

(ω0(p) + µ)2
+ 2

tanh
(

1
2βc(ω0(p) + µ)

)

(ω0(p) + µ)3
+ (µ→ −µ)



 .
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Eq. (6.22) is just the Ginzburg-Landau (GL) free energy, which is valid near the critical
temperature, so (6.21) must be considered as a generalization of the GL free energy, valid
for all temperatures well below the cut-off scale. Thus, as in the GL case, the equations
of motion for the gauge field and the gap define a magnetic penetration length and a
coherence length.

From the equations of motion for ~A (in the London limit, i.e. ∆̄ = 0, and in the
Coulomb gauge, ~∇ · ~A = 0), we get the following magnetic penetration length, λ:

∇2 ~A =
e2f1

f3
|∆0|2 ~A ⇒ 1

λ2
=
e2f1

f3
|∆0|2 . (6.23)

And similarly, the explicit expression for the coherence length, ξ, is obtained from the
equations of motion for ∆̄(x) obtained from (6.21). In absence of gauge field, we get

∇2∆̄ =
1

m2f1
∆̄ ⇒ 1

ξ2
=

1

m2f1
. (6.24)

Hence, to determine these lengths we must be able to identify the coefficients f1, f3

and m−2 in (6.21). The identification of these coefficients is explained in appendix 6.C.
After presenting the supersymmetric model of BCS superconductivity we will give

expressions with the explicit temperature dependence of these quantities, both in the non-
supersymmetric case as well as in the supersymmetric model. We will do likewise with
the specific heat and the critical magnetic fields.

We will compute the specific heat at constant µ, instead of constant charge density.
This way is more convenient because, when neutral scalars are considered in the SUSY
case, they do not contribute to the charge density constraint ρ = dF/dµ. The specific
heat is computed through the formula

S = −
(

∂Veff

∂T

)

µ
, c = T

(

dS

dT

)

µ
= −T

(

∂2Veff

∂T 2
+
∂2Veff

∂T∂ε

∂ε

∂T

)

, (6.25)

where
∂ε

∂T
= −∂T∂εVeff

∂2
εVeff

. (6.26)

Finally, the critical magnetic field, Bc, which corresponds to a type I superconductor,
and those corresponding to a type II superconductor, Bc1 and Bc2, will be computed with
(6.1) and (6.9), once we have explicit expressions for the free energy, magnetic penetration
length and coherence length.

6.2 Supersymmetric BCS

Let us now try to design a supersymmetric Lagrangian which incorporates these basic
features. But, as we did in the presentation of the relativistic BCS theory, we will first
consider the simpler case in which we do not care about the gauge field and possible spatial
fluctuations of the gap.

We are interested in a supersymmetric theory with a global U(1) symmetry which
undergoes spontaneous symmetry breaking. This symmetry can be a baryonic U(1)B
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symmetry or, thanks to supersymmetry, a U(1)R symmetry. In general, U(1) symmetry
breaking is easy to achieve by a suitable choice of the superpotential W . However, here
we are looking for a BCS type mechanism, where the breaking is caused by fermion con-
densation triggered by quantum effects. N = 1 supersymmetric models with a canonical
Kähler potential do not contain any quartic fermion interaction for any choice of superpo-
tential W . Quartic fermion interactions arise by means of the following choice of Kähler
potential:

K(Φ,Φ†) = Φ†Φ + g2(Φ†Φ)2 . (6.27)

We would like to construct a supersymmetric BCS theory with Dirac fermions and in
N = 1 supersymmetric theories this requires at least two chiral superfields (a single chiral
superfield describes a Weyl fermion, although a theory of BCS superconductivity for Weyl
fermions can also be implemented). The simplest theory consists of two chiral superfields
X and Y with the Kähler potential

K(X,Y,X†, Y †) = X†X + Y †Y + g2(X†X)2 + g2(Y †Y )2 . (6.28)

The coupling g could in principle be different for the interaction terms involving X and Y
superfields. One could also add, for example, a term X†XY †Y (used in [181]). However
we shall consider the above simple choice which already illustrates the essential points.

6.2.1 Chemical potential for U(1)B

We first consider the N = 1 supersymmetric model defined in terms of two chiral super-
fields with Kähler potential (6.28) and superpotential:

W = mXY . (6.29)

This gives masses to scalars and fermions. It will be shown that this model is not suitable
to implement BCS mechanism in supersymmetric theories. The model will illustrate the
typical problems that one has to deal with.

We first consider the Lorentzian theory on R
4. For the finite temperature theory,

we shall later consider the Euclidean theory on S1 × R
3, and eventually on S1 × S3. In

components, the Lagrangian reads

LS = (1 + 4g2|φx|2)∂µφ
∗
x∂

µφx −
m2|φy|2

1 + 4g2|φx|2
+ (x↔ y) (6.30)

LF = i(1 + 4g2|φx|2)(ψ†
xσ̄

µ∂µψx) + 4ig2(ψ†
xσ̄

µψx)φ∗
x∂µφx +

g2(ψxψx)(ψ†
xψ

†
x)

1 + 4g2|φx|2

+

(

2mg2φyφ
∗
x

1 + 4g2|φx|2
(ψxψx)− 1

2
mψxψy + h.c.

)

+ (x↔ y) . (6.31)

Note the presence of the (non-renormalizable) quartic fermion interaction. The choice
of sign of g2 was made in order to have the same type of interaction as in BCS. One can
check that the opposite sign does not lead to fermion condensation by quantum effects.
For g2 < 0 there is no consistent solution to the gap equation for the vacuum condensate.
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The effective potential is unstable and cannot be consistently minimized in the one-loop
approximation. Therefore in what follows we assume g2 > 0.

We need to introduce a chemical potential and consistency demands that this is coupled
to a conserved non-anomalous U(1) current. The superfields X and Y carry opposite U(1)
charge so the baryonic U(1)B current is non-anomalous. Turning on a chemical potential
corresponds to turning on a background U(1)B gauge field component A0 = µ as explained
in appendix 6.A. In order to have a Lagrangian quadratic in fermion fields, one can make
a Hubbard-Stratonovich transformation in the component Lagrangian by introducing two
auxiliary fields, ∆x and ∆y,

LS = (1 + 4g2|φx|2)Dµφ
∗
xD

µφx −
m2|φy|2

1 + 4g2|φx|2
− g2(1 + 4g2|φx|2)|∆x|2 + (x↔ y) (6.32)

LF = i(1 + 4g2|φx|2)(ψ†
xσ̄

µDµψx) + 4ig2φ∗
xDµφx(ψ†

xσ̄
µψx)

+

((

2mg2φ∗
xφy

1 + 4g2|φx|2
+ g2∆x

)

(ψxψx)− 1

2
mψxψy + h.c.

)

+ (x↔ y) , (6.33)

where we have already introduced the chemical potential through the covariant derivatives

Dν = ∂ν − iqµδν0 . (6.34)

With no loss of generality we can set the U(1) charge of the X chiral superfield equal to
one, qX = 1, as it can be absorbed into a redefinition of µ; in this way the superfield Y
has charge qY = −1. After the Hubbard-Stratonovich transformation the Lagrangian has
become quadratic in the fermion fields, no quartic fermion interaction is left. As a result,
the functional integral over fermions can be directly performed.

Next, we expand the scalar fields, φ = v+ϕ, around their vacuum expectation values,
v, and retain only up to quadratic terms in the scalar fields (we assume real v). We find

LS = (1 + 4g2v2
x)∂µϕ

∗
x∂

µϕx + 4g2v2
x

(

µ2 − 4g2m2v2
y

(1 + 4g2v2
x)3

)

(ϕ2
x + ϕ∗2

x )

+
4g2m2vxvy

(1 + 4g2v2
x)2 (ϕxϕy + ϕ∗

xϕy + ϕxϕ
∗
y + ϕ∗

xϕ
∗
y)

+

(

(

1 + 16g2v2
x

)

µ2 − 4g4|∆x|2 −
4g2m2

(−1 + 4g2v2
x

)

v2
y

(1 + 4g2v2
x)3

)

|ϕx|2 −
m2

1 + 4g2v2
x

|ϕy|2

+ iµ(1 + 8g2v2
x)(ϕ∗

x∂tϕx − ϕx∂tϕ∗
x)− 4iµg2v2

x(ϕ∗
x∂tϕ

∗
x − ϕx∂tϕx)

+ (x↔ y, µ→ −µ) (6.35)

LF = i(1 + 4g2v2
x)(ψ†

xσ̄
µ∂µψx) + µ(1 + 8g2v2

x)(ψ†
xσ̄

0ψx)

+

((

2mg2vxvy
1 + 4g2v2

x

+ g2∆x

)

(ψxψx)− 1

2
mψxψy + h.c.

)

+ (x↔ y, µ→ −µ) (6.36)

with classical potential

Vcl =
m2v2

y

1 + 4g2v2
x

+ (1 + 4g2v2
x)(g

2|∆x|2 − µ2v2
x) + (x↔ y) . (6.37)
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To have canonically normalized kinetic terms, one can redefine fields as follows:

ϕ→ ϕ
√

1 + 4g2v2
, ψ → ψ

√

1 + 4g2v2
. (6.38)

Integrating over ψ, ψ†, ϕ and ϕ∗ leads to a one-loop potential depending on g, v, ∆, µ,
m. Since the model is not renormalizable just like BCS, the integrals will be regularized,
as usual, by a momentum cut-off.

We proceed as follows. Calling OS and OF to the resulting 4 × 4 scalar and fermion
matrices for the quadratic terms in momentum space, we shall write the determinants as:

detOS =
4
∏

i=1

(

ω2 + ω2
Si

)

, detOF =
4
∏

i=1

(

ω2 + ω2
F i

)

, (6.39)

where

ωSi = ωSi(µ, |~p|, g,m, vx, vy,∆x,∆y) , ωF i = ωF i(µ, |~p|, g,m, vx, vy,∆x,∆y) . (6.40)

The expressions for OS and OF are shown in appendix 6.B. The eigenvalues for the fre-
quencies have complicated expressions when vx and vy are non-vanishing. The strategy
is to look for non-trivial minima at vx = vy = 0 with ∆x, ∆y 6= 0, assuming them to be
real. Next, we shall check that the one-loop effective potential is locally stable in vx and
vy directions, a property that will be ensured by the presence of a mass term.

When vx = vy = 0 the scalar and fermion quadratic terms greatly simplify. At this
point, we find the following eigenvalues for the frequency.

ωS 1,2 =
√

4g4∆2
x +m2 + p2 ± µ ,

ωS 3,4 =
√

4g4∆2
y +m2 + p2 ± µ , (6.41)

ω2
F 1,2 = 2g4∆2

x + 2g4∆2
y + µ2 +m2 + p2 ± E+ ,

ω2
F 3,4 = 2g4∆2

x + 2g4∆2
y + µ2 +m2 + p2 ± E− , (6.42)

E± = 2

√

µ2 (m2 + p2) + g8
(

∆2
x −∆2

y

)

2 + g4
(

m2 (∆x + ∆y)
2 ± 2µp

(

∆2
x −∆2

y

))

.

(6.43)
For configurations with ∆x = ∆y ≡ ∆, the fermion frequencies become

ωF =

√

√

√

√

√





√

p2 +m2 + 4g4∆2
m2

µ2
± µ





2

+ 4g4∆2

(

1− m2

µ2

)

. (6.44)

On the other hand, for ∆x = −∆y ≡ ∆, we find

ωF =

√

(

√

p2 +m2 ± µ)2 + 4g4∆2 . (6.45)
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This is the same dispersion relation as in the relativistic BCS system of section 6.1.3.
This might suggest that the BCS mechanism can be implemented in a similar way. But
the presence of charged scalars demands some care. We first need to identify the Fermi
surfaces. For ∆x = ∆y = 0, they lie on the region where ωF 2,4 vanish, i.e. at

√

p2
F +m2 = µ . (6.46)

As in the standard relativistic BCS case, the existence of a Fermi surface would require
µ > m. However, in the present supersymmetric system we cannot set µ > m, since the
scalar contribution to the thermal partition function,

1

β

∑

i

∫

d3p

(2π)3
log

(

1− e−βωSi
)

, (6.47)

is ill-defined, because ωS 2,4 become negative below some momentum. The system presents
Bose-Einstein condensation, the occupation number of scalars with zero momentum goes
to infinity as µ approaches m from below. This spoils the BCS mechanism.

One possible approach to elude this problem while maintaining supersymmetry is to
put the theory on a curved manifold, such that scalar fields couple to the curvature. This
coupling between scalars and the curvature provides an extra mass term for the scalar
fields, which might allow for regions in parameter space with Fermi surfaces and without
problems of Bose-Einstein condensation of scalars. In particular, we will consider the
theory on S1 × S3, (see e.g. [36]). The mass term, when the R-charge of the scalars is
one, is now of the form

(

m2 +R−2
)

(φ∗
xφx + φ∗

yφy) ,

where R is the radius of the three-sphere. The scalar contribution would be negligible if
one could assume that 1/R > Λ. However, having put the theory on S3, the integral over
momentum is replaced by a discrete sum coming from the Kaluza-Klein modes of S3. This
replacement is achieved by (see for example [174])

Scalars : p2 −→ l(l + 2)R−2 , (6.48)

Fermions : p2 −→ (l + 1/2)2R−2 , (6.49)

with l = 0, 1, 2 . . . One must also take into account the degeneracy of each mode:

Scalars : dSl = (l + 1)2, (6.50)

Fermions : dFl = l(l + 1) . (6.51)

In particular, for the fermions, l = 0 does not contribute. For the scalars, in addition
we must add the mass term R−2. This is effectively incorporated by the replacement

Scalars : p2 −→ l(l + 2)R−2 +R−2 = (l + 1)2R−2 (6.52)

instead of (6.48). These formulas show that one cannot assume 1/R > Λ, since such
cut-off would leave no excitation in the system. Therefore it is not possible to separate
the scalar mass scale from the Fermi surface.
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In order to see if the system can have Fermi surfaces, we need the detailed form of the
Lagrangian on S3. This depends on the R charges of the fields. We denote by q the R
charge of φx so that the charge of φy is 2− q. From the expressions given in [36], we find

LS = (1 + 4g2|φx|2)∂µφ
∗
x∂

µφx

+

(

q(q − 2)

R2
+ 2µ

q − 1

R
+ µ2

)

|φx|2 + 4g2
(

q(q − 1)

R2
+ µ

2q − 1

R
+ µ2

)

|φx|4

+ i

(

q − 1

R
+ µ

)

(φ∗
x∂tφx − φx∂tφ∗

x) + 2ig2
(

2q − 1

R
+ 2µ

)

|φx|2(φ∗
x∂tφx − φx∂tφ∗

x)

− m2|φy|2
1 + 4g2|φx|2

− g2(1 + 4g2|φx|2)|∆x|2 + (x↔ y, µ→ −µ, q → 2− q) (6.53)

LF = i(1 + 4g2|φx|2)(ψ†
xσ̄

µ∂µψx) + 4ig2(φ∗
x∂µφx)(ψ†

xσ̄
µψx)

+

(

2q − 1

2R
+ µ

)

(ψ†
xσ̄

0ψx) + 4g2
(

4q − 1

2R
+ 2µ

)

|φx|2(ψ†
xσ̄

0ψx)

+

(

2mg2φ∗
xφy

1 + 4g2|φx|2
+ g2∆x

)

(ψxψx) +

(

2mg2φxφ
∗
y

1 + 4g2|φx|2
+ g2∆∗

x

)

(ψ†
xψ

†
x)

− 1

2
m(ψxψy + ψ†

xψ
†
y) + (x↔ y, µ→ −µ, q → 2− q) (6.54)

We shall demand that in the unbroken phase the theory has well-defined thermody-
namical potentials. So we begin by considering the case ∆x = ∆y = 0, vx = vy = 0. We
will now see that Bose-Einstein condensation is inevitable in this case, which is sufficient
to rule out the model. Consider first the case q = 1, i.e. the U(1) charges of X and Y are
equal to 1. The scalar contribution is now given in terms of the frequencies

ωS =
√

(l + 1)2R−2 +m2 ± µ , l = 0, 1, 2, . . . (6.55)

If both X and Y had the same baryon charge, the Fermi surface would just be determined
by the replacement (6.49) in the flat expression (6.46), and shifting the chemical potential
by µ → µ + 1/(2R). As X and Y have opposite baryon charges, this is more involved.
By explicitly computing ωF from the above Lagrangian, we obtain that the Fermi surface
ωF = 0 lays at

√

l2FR
−2 +m2 = µ, lF = 1, 2, . . . (6.56)

For a given choice of lF , one can determine µ. Substituting µ in the lowest (l = 0) scalar
frequency, we see that the scalar frequency cannot be positive as long as lF = 1, 2, . . .,

√

R−2 +m2 −
√

l2FR
−2 +m2 ≤ 0 . (6.57)

Therefore, even on S3, it is not possible to separate the Fermi surface from the region of
Bose-Einstein condensation. The underlying reason being that the extra mass term for
the scalar provided by the coupling to the curvature of the space is of the same order as
the quantized fermion momentum values. The same problem arises for any choice of q.
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6.2.2 A simple supersymmetric BCS model: Chemical potential for U(1)R

Let us now consider an N = 1 supersymmetric model with two chiral superfields X and
Y with Kähler potential given by (6.28) and superpotential W = 0. The Lagrangian
has a U(1)R symmetry for arbitrary U(1)R charges of the X and Y superfields. It is
convenient to consider the U(1)R symmetry under which scalars φx and φy are neutral, so
that fermions ψx and ψy have charge −1. The advantage of this choice is that we can avoid
problems of Bose-Einstein condensation even in R

4. Note that with this charge assignation
the U(1)R symmetry is anomalous. However, this can be easily cured by adding to the
theory free superfields with canonical Kähler potential with the required U(1)R charges
to cancel the anomaly. For example, one may add Zi, i = 1, 2 with R-charges R(Zi) = 2
so that ψZ1, ψZ2 have charges +1. The scalars in Zi would then couple to the chemical
potential and may undergo Bose-Einstein condensation. However, this sector is completely
decoupled and therefore does not participate in the thermodynamics governing the X, Y
sector.

The component Lagrangian with chemical potential included can be obtained from
the previous case, (6.32), (6.33), by setting m = 0, vanishing U(1) charges for the scalar
fields (which amounts to replace covariant derivatives of the scalar fields by ordinary
derivatives) and taking into account that fermions ψx and ψy now have the same charge
−1. The quadratic Lagrangian for the fluctuations (after expanding around expectation
values) is given by

LS = ∂µϕ
∗
x∂

µϕx + ∂µϕ
∗
y∂

µϕy −
4g4|∆x|2
1 + 4g2v2

x

|ϕx|2 −
4g4|∆y|2
1 + 4g2v2

y

|ϕy|2 , (6.58)

LF = i(ψ†
xσ̄

µ∂µψx) + i(ψ†
yσ̄

µ∂µψy)− µ(ψ†
xσ̄

0ψx)− µ(ψ†
yσ̄

0ψy)

+

(

g2∆x

1 + 4g2v2
x

(ψxψx) +
g2∆y

1 + 4g2v2
y

(ψyψy) + h.c.

)

, (6.59)

where we have rescaled the fields to have canonical kinetic terms. The classical potential
is given by

Vcl = g2
(

4g2v2
x + 1

)

|∆x|2 + (x↔ y) . (6.60)

The equations of motion for ∆x, ∆y give (setting the scalar fluctuations ϕx, ϕy → 0)

∆x =
ψ†
xψ

†
x

(1 + 4g2v2
x)2

, ∆y =
ψ†
yψ

†
y

(1 + 4g2v2
y)

2
. (6.61)

∆x, ∆y have both U(1)R charges equal to 2. Vacuum expectation values for them thus
spontaneously break U(1)R and represent a measure of the fermion condensate.

By proceeding in a similar way as in the previous case with the baryonic symmetry,
we now find the following frequencies for scalars and fermions

ω2
S 1,2 = p2 +

4g4∆2
x

1 + 4g2v2
x

, ω2
S 3,4 = p2 +

4g4∆2
y

1 + 4g2v2
y

, (6.62)

ω2
F 1,2 = (p± µ)2 +

4g4∆2
x

(1 + 4g2v2
x)2 , ω2

F 3,4 = (p ± µ)2 +
4g4∆2

y
(

1 + 4g2v2
y

)2 . (6.63)
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Here we have chosen real ∆x, ∆y, as one-loop potential depends only on their moduli. We
stress that these simple dispersion relations are a consequence of the extreme simplicity of
this supersymmetric model; generic models (even with simple superpotentials) typically
lead to very complicated eigenvalues for the frequencies.

In the present case, the dynamics of the X and Y fields are decoupled. It is clear that
the same configuration that minimizes the one-loop potential in the x direction also min-
imizes the one-loop potential in the y direction. Therefore, with no loss of generality and
for the sake of simplicity we can consider just one chiral superfield, this would correspond
to consider a model of superconductivity with one Weyl fermion an one complex scalar
field.

For one chiral superfield, the complete one-loop thermodynamic potential is given by

Veff = g2
(

1 + 4g2v2
)

∆2

+
1

2π2β

∫ Λ

0
dp p2



2 log



sinh
β

2

√

p2 +
4g4∆2

1 + 4g2v2





− log

[

cosh
β

2

√

(p+ µ)2 +
4g4∆2

(1 + 4g2v2)2

]

− log

[

cosh
β

2

√

(p− µ)2 +
4g4∆2

(1 + 4g2v2)2

])

. (6.64)

When the vacuum lies at ∆ 6= 0, then v = 0 is a local minimum. When the vacuum lies
at ∆ = 0, then there is a flat direction in v, because in this case the frequencies do not
depend on v. This is confirmed by the evaluation of the one-loop potential. The effective
potential at v = 0 is then

Veff = g2∆2

− 1

2

∫

d3p

(2π)3

(

√

(p + µ)2 + 4g4∆2 +
√

(p− µ)2 + 4g4∆2

)

− 1

β

∫

d3p

(2π)3

(

log

[

1 + e−β
√

(p+µ)2+4g4∆2
]

− log

[

1 + e−β
√

(p−µ)2+4g4∆2
])

+

∫

d3p

(2π)3

√

p2 + 4g4∆2 +
1

β

∫

d3p

(2π)3
log

[

1− e−β
√
p2+4g4∆2

]

, (6.65)

to be compared with (6.13). Up to redefinitions of the field ∆ and the coupling constant g,
they are the same expression except for a couple of differences. One difference is that now
fermions (and also scalar fields) are massless, since a mass term would not be consistent
with scalars neutral under U(1)R. The second and more fundamental difference is the last
line of equation (6.65), corresponding to the scalar contribution, not present in (6.13).

Now if we want to study the magnetic response of the superconductor, we have to
turn on an external U(1) gauge field. We have two possibilities: the gauge field can be
turned on for the baryonic U(1)B symmetry or the U(1)R symmetry2. In either case

2R-symmetry can only be gauged within the context of supergravity. The present model can be easily
embedded in N = 1 supergravity, in such a way that in the usual laboratory set up, where energy
configurations are much lower than the Planck scale, the supergravity multiplet can be ignored.
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supersymmetry is broken by the background. In principle, the magnetic response could
depend on this choice, but as explained in appendix 6.C, this is not the case, at least for a
small enough gauge coupling3. For definiteness we introduce the gauge field through the
baryonic U(1)B symmetry, therefore the Lagrangian (6.58), (6.59) is modified to (once we
set v = 0)

LE =
(

∂aφ∂aφ∗ + ψ̄σ̄0 (∂τ − ieAτ + µ)ψ + iψ̄σ̄i
(

∂i − ieAi
)

ψ
)

− ieAaφ∂aφ∗ + ieAaφ∗∂aφ+ e2AaAa|φ|2 + 4g4|∆|2|φ|2 − g2∆(ψψ)− g2∆∗(ψ̄ψ̄) .
(6.66)

Given this Lagrangian, we can construct the bosonic and fermionic matrices (whose explicit
form is written in appendix 6.B) and split them as explained in section 6.1.4, so that we
have to add to eq. (6.16), the scalar contribution

+
1

2β
log detOS0 +

1

2β
Tr[O−1

S0 δOS ]− 1

4β
Tr[(O−1

S0 δOS)2] + . . . (6.67)

The determination of the quantities explained in the case of relativistic BCS theory is
now completely analogous for the supersymmetric case. We are going to examine them in
detail in the next section.

6.3 Comparison between the SUSY model and relativistic BCS

In this section we want to compare some physical quantities when obtained for the rBCS
theory and the supersymmetric model presented in the previous section. In particular,
we will study the gap, the specific heat, the penetration length and the coherence length
and the critical magnetic fields, Bc, Bc1 and Bc2. To be precise, we will compare these
quantities obtained for (6.65) with and without the scalar contribution. This amounts to
compare the relativistic BCS theory in the massless case with the supersymmetric version
(sBCS).

6.3.1 Gap

The gap as a function of the temperature, ∆0 = ∆0(T ), is determined by solutions to the
gap equation ∂εVeff = 0. Taking this derivative in (6.64) we obtain that the explicit form

3However, things are different if we turn on the gauge fields associated with the U(1)B and U(1)R

symmetries at the same time. In this case, there is a linear combination of the previously introduced gauge
fields which defines a massless rotated gauge field. Therefore, the magnetic field associated to this rotated
gauge field can penetrate the superconductor without being subject to the Meissner effect. This case is
similar to that of [182–185], so it would be interesting to study how the phenomenology presented there
translates into the present supersymmetric model.
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Figure 6.2: (a) Effective potential as a function of the gap for different temperatures
(T = 2, 1.3, 1, 0.75, 0 from top to bottom) in the relativistic BCS case. (b) Corre-
sponding gap as a function of the temperature (µ = 0.0065, g = 0.54, Λ = 8.4). (c)
(T = 1.1, 1, 0.92, 0.84, 0.7, 0.47, 0) and (d) analogous figures for the SUSY case (µ = 0.65,
g = 3.9, Λ = 52). The thicker red lines in (d) correspond to metastable solutions and the
curved dashed line represents the maximum that separates both minimums in the effective
potential. Data given in units of Tc.

of the gap equation at v = 0 is

1 =
g2

2π2

∫ Λ

0
dp p2

(tanh

(

1
2β
√

4g4∆2
0 + (p − µ)2

)

√

4g4∆2
0 + (p− µ)2

+
tanh

(

1
2β
√

4g4∆2
0 + (p+ µ)2

)

√

4g4∆2
0 + (p+ µ)2

−
2 coth

(

1
2β
√

4g4∆2
0 + p2

)

√

4g4∆2
0 + p2

)

, (6.68)

where the second line is the new contribution due to the scalar.
The IR physics produced by the scalar sector has a striking effect: the superconducting

transition becomes first-order, instead of second-order, as it would be in standard BCS.
The IR physics of the scalar sector is important at the onset of the transition, where ∆0
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is small. To see the nature of the transition, we need to compute d∆0/dT . Writing the
gap equation in the form 1 = f(∆2

0, T ), one has

d∆0

dT
= − 1

2∆0

∂f

∂T

/

∂f

∂(∆2
0)
. (6.69)

In a second-order phase transition, d∆0/dT is singular at the critical temperature, where
∆0 = 0. This is because ∂f/∂T and ∂f/∂(∆2

0) are regular at ∆0 = 0. While the scalar
contribution to the one-loop potential is regular at ∆0 = 0, its second derivative with
respect to ∆2

0 has a singularity near ∆0 = 0 originating from the region near p = 0. We
have

∂f

∂(∆2
0)
≈ 8g6T

π2

∫

0
dp p2 1

(p2 + 4g4∆0)2
≈ g4T

π

1

∆0
. (6.70)

As a result, d∆0/dT is now finite at ∆0 = 0. The superconducting phase transition is
therefore first-order. This significant change coming from the p = 0 region would obviously
not take place if the scalar field was massive. In such a case, the phase transition would
still be second-order. But, as explained, in the present model it is not possible to add a
mass term.

First order phase transitions in usual superconductivity have already been explained
in [186], where a gauge field takes a non zero vacuum expectation value appearing as a
〈A2〉|∆0|3 term in the free energy, which inevitably leads to a first order phase transition.
This gauge field plays the same role as the scalar in the supersymmetric case. Near ∆0 = 0
and at low momentum, we can approximate the contribution of the scalar as

∂εVeff ≈
2g4T

π2

∫

0
dp p2 1

(p2 + 4g4∆2
0)
≈ −2g6T

π
∆0 , (6.71)

which leads to the analogous O(|∆0|3) term in the free energy.
In fig. 6.2 we compare the effective potential and the gap as a function of the tempera-

ture obtained for relativistic BCS and supersymmetric BCS. For the former, the effective
potential develops a non-trivial minimum at ∆0 6= 0, which will approach the origin as
we increase the temperature, reaching the zero gap value at the critical temperature Tc,
(fig. 6.2 (a) and (b)). The phase transition is second order. For the sBCS theory, at low
temperatures, T < Tc1, the effective potential has a unique non-trivial minimum (zone 1
of fig. 6.2 (c) and (d)), above Tc1 (zone 2) a zero gap metastable minimum appears be-
coming the dominant one for T > Tc2 (zone 3), so that the minimum with non-vanishing
gap becomes metastable until it disappears at Tc3, jumping to the non-superconducting
zero gap solution for T > Tc3 (zone 4). Therefore, the phase transition is first order in the
supersymmetric case. For short, we will be calling Tc ≡ Tc3 and ∆c ≡ ∆(Tc3) from now
on.

We can also study the dependence with the chemical potential. ∆0(T ) is shown in
fig. 6.3 for different values of the chemical potential. We see that, as the chemical poten-
tial gets smaller, the transition approaches a second-order phase transition. In general,
the scalar field has the effect of decreasing the critical temperature with respect to the
relativistic BCS case to the extent that at small chemical potential and small temperatures
the sBCS system does not admit a superconducting phase, something that it is allowed
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in the rBCS theory. This can be seen from the phase diagram T − µ, shown in figs. 6.4
(a) and (b), or from the gap equation (6.68). At low temperatures and small chemical
potential (6.68) can be expanded as

1 =
g2

2π2

∫ Λ

0
dp p2

[

2
√

p2 + 4g4∆2
0

+O
(

exp

[

−β
√

p2 + 4g4∆2
0

])

+O(µ2)

− 2
√

p2 + 4g4∆2
0

+O
(

exp

[

−β
√

p2 + 4g4∆2
0

]) ]

, (6.72)

where, again, the second line corresponds to the scalar contribution. It is clear from the
previous equation that the equality cannot hold if the scalar contribution is included.
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Figure 6.3: Gap as a function of the temperature for different values of the chemical
potential (µ = 1.4, 1.6, 3.6) and Λ = 100. At low chemical potential the phase transition
approaches a second order. Data given in units of g.

Let us study now the analytic behavior of the gap for temperatures near the phase
transition, T ≈ Tc, and at zero temperature.

At low temperatures, we can neglect in (6.68) the antiparticle and the scalar contri-
butions for momenta near the Fermi surface, where the main contribution to the integral
comes from. By doing so, we are taking the non-relativistic limit and connecting with the
standard BCS result. Specifically, one performs the ad hoc approximation by which one
substitutes dp3 by 4πp2

Fdp and the integral is done in the interval |p−pF | < Λ around the
Fermi surface. After these approximations and at large cut-off (Λ/Tc ≫ 1), one can show
that the behavior of the gap near the critical temperature Tc follows a universal behavior

∆0(T )

∆0(0)
≈ η

√

1− T

Tc
, (6.73)

where η = 1.74 can be computed numerically from eq. (6.22). In the supersymmetric case
we obtain numerically the following behavior near the critical temperature:

∆0(T )−∆c

∆0(0)
≈ η

(

1− T

Tc

)α

, (6.74)

where α ≈ 0.5 and now η depends on the parameters g, µ and Λ.
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Figure 6.4: Phase diagram T −µ (Λ = 100) for rBCS in (a) and sBCS in (b). The shaded
region represents the U(1) symmetry breaking phase by a fermion condensate. The curve
represents the critical temperature as a function of the chemical potential µ. Data given
in units of g.

We can also determine the expressions for the gap at zero temperature. The non-
relativistic and relativistic BCS expressions are:

|∆0(0)BCS| ≈
Λ

g2
e

− 2π2

g2µ2 ≈ 1

2
πe−γ Tc

g2
, |∆0(0)rBCS| ≈

Λ3

6π2
≈ Tc
g2

, (6.75)

where in the non-relativistic limit we have considered the aforementioned approximation
and γ is the Euler-Mascheroni constant. Both the gap at zero temperature and the critical
temperature depend on the cut-off (the Debye energy in the standard BCS case), in such
a way that the cut-off dependence disappears from the formula for the gap once it is ex-
pressed in terms of the critical temperature. We have also shown here the dependence on
the cut-off because we want to compare these expressions with those obtained for sBCS,
since one of the virtues of supersymmetry is the softening of divergences due to cancella-
tions between fermionic and bosonic contributions. As the thermal integrals in (6.13) and
(6.65) are convergent, it is sufficient to study the dependence of the gap with the cut-off
at zero temperature. Comparing the relativistic expression with the supersymmetric one,

|∆0(0)sBCS| ≈
Λ

g2
e

− π2

g2µ2 − 3
2 , (6.76)

we observe that this softening in the cut-off dependence appears in the present system.
However, this reduction in the power of the cut-off does not appear if we compare the
supersymmetric expression with the non-relativistic one, where the dependence is linear
rather than cubic as in the relativistic theory. This is because the power of the cut-off
has already been reduced after performing the substitution dp3 → 4πp2

Fdp in the non-
relativistic case. Finally, just as in the non-supersymmetric cases (6.75), one can check
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that the supersymmetric case (6.76) is also linear with the critical temperature with no
dependence on the cut-off.

6.3.2 Specific heat

Let us now study the specific heat. It is instructive to examine the different contributions
to the thermodynamic potential closely. Consider first the symmetric phase ∆0 = 0. As
we shall be interested in derivatives with respect to the temperature, we can subtract the
Coleman-Weinberg contribution, so that integrals are convergent. We write

F = Fscalar + Ffermion + Fanti−fermion , (6.77)

where (after integration by parts)

Fscalar

∣

∣

∆0=0
= − 1

3π2

∫ ∞

0
dp p3 e− p

T

1− e− p
T

, (6.78)

Ffermion

∣

∣

∆0=0
= − 1

6π2

∫ ∞

0
dp p3 e− p−µ

T

1 + e− p−µ

T

, (6.79)

Fanti−fermion

∣

∣

∆0=0
= − 1

6π2

∫ ∞

0
dp p3 e− p+µ

T

1 + e− p+µ
T

. (6.80)

We get

Fscalar

∣

∣

∆0=0
= − 1

45
π2T 4 , (6.81)

as expected, since when ∆0 = 0 the scalar contribution describes a relativistic boson
particle (there is an extra factor of 2 as compared with the usual single scalar contribution,
because we have a complex scalar field). The integrals for the fermionic contribution can
be computed analytically in terms of polylogarithmic functions.

Let us now compute the different contributions to the specific heat. These can be
computed with the formulas in (6.25). We obtain

cscalar

∣

∣

∆0=0
=

4π2T 3

15
, (6.82)

as usual for relativistic bosons. Consider now the fermion contributions. At large T , the
dependence on µ disappears and one gets the usual behavior of a relativistic fermion

cfermion

∣

∣

∆0=0
= canti−fermion

∣

∣

∆0=0
=

7π2T 3

60
, for T ≫ µ . (6.83)

At low temperatures the antiparticle and the scalar can be neglected and the main con-
tribution comes from the region near the Fermi surface p ∼ µ, so that the behavior of the
specific heat in the normal phase and in the superconducting phase is given by

cfermion|∆0=0 ∼
µ2T

6
, cfermion|∆0 6=0 ∼ e− 2g2∆0(T =0)

T . (6.84)
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Figure 6.5: Specific heat a function of the temperature. (a) Relativistic BCS (µ = 0.0065,
g = 0.54, Λ = 8.4). (b) SUSY BCS (µ = 0.65, g = 3.9, Λ = 52). Data given in units of Tc.

Let us now compute the full c(T ) including the region T < Tc2 where ∆0 6= 0. The
comparison of the full specific heat between the sBCS and rBCS theories is shown in
fig. 6.5. When only fermions are considered the jump in the specific heat at the critical
temperature is finite, as it is characteristic for second order phase transitions, whereas it
is infinite when the scalar is included.

The last expression of equation (6.84) shows a way to compute the value of the gap at
zero temperature. Indeed, by performing a fit of the plots in fig. 6.5 one can obtain the
value of the gap at zero temperature shown in fig. 6.2.

6.3.3 Magnetic penetration length and coherence length

The magnetic penetration length, obtained from eq. (6.23), is plotted in fig. 6.6.
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Figure 6.6: Magnetic penetration length as a function of the temperature. (a) Relativistic
BCS (µ = 0.0065, g = 0.54, Λ = 8.4). (b) SUSY BCS (µ = 0.65, g = 3.9, Λ = 52). Data
given in units of Tc.

In both the relativistic and the SUSY BCS theory, the magnetic penetration length is
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a monotonically increasing function4.
For the fermionic contribution alone, the magnetic penetration length diverges near the

critical temperature. Whereas in the supersymmetric case, it reaches a finite value at Tc
and it jumps to infinity for T > Tc, which is the expected behavior for a first order phase
transition. This behavior is explained basically from the gap dependence. Expanding the
f1 coefficient as a power series of the temperature and the gap, one obtains

f1 rBCS = a0 +a1∆2
0 +a2(T−Tc)+. . . , f1 sBCS = α0 +α1(∆2

0−∆2
c)+. . . , (6.85)

where one can check that the coefficients shown do not vanish. The ellipsis stands for
higher powers of the temperature, taking into account the temperature dependence of the
gap, (6.73) or (6.74). Substituting this expansion in (6.23), and using (6.73) or (6.74), one
finds the behavior

λrBCS ∼
(

1− T

Tc

)−1/2

, (λ− λc)sBCS ∼
(

1− T

Tc

)α

. (6.86)

The behavior of the magnetic penetration length at zero temperature can be computed
analytically. According to the dependence of the coefficients f1 and m−2 with the cut-
off, given in appendix 6.C, and that of the gap, we find the following expressions for the
magnetic penetration length,

λrBCS ≈
4g3

3
√

3π2e
Λ2 , λsBCS ≈

2π

ec
(1 + 4c2)3/4Λ−1 , where c = exp

[

− π2

g2µ2
− 3

2

]

.

(6.87)

The coherence length, ξ, obtained from eq. (6.24), is plotted in fig. 6.7. It is a mono-
tonically increasing function of the temperature for both the relativistic and the SUSY
BCS theory. The behavior near the critical temperature is the same as for the magnetic
penetration length. To see this, expand the m−2 coefficient as we did with the f1 coeffi-
cient. Using the gap equation, one can see that the m−2 coefficient has a global ∆2

0 factor
so that the expansions are

m−2
rBCS = ∆2

0(b0 + b1∆2
0 + b2(T −Tc)+ . . .) , m−2

sBCS = ∆2
0(β0 +β1(∆2

0−∆2
c)+ . . .) .

(6.88)
Inserting the expansions (6.85) and (6.88) in the expression for the coherence length,
(6.24), we find

ξrBCS ∼
(

1− T

Tc

)−1/2

, (ξ − ξc)sBCS ∼
(

1− T

Tc

)α

. (6.89)

Thus, the coherence length exhibits the same behavior as the magnetic penetration length.
However, the behavior of the coherence length at zero temperature is different from that

4For high enough values of the chemical potential and the cut-off a counterintuitive non-trivial minimum
can appear before reaching the critical temperature, which would mean that there is a range of temperatures
where the Meissner effect is enhanced with increasing temperature. This odd behavior can be avoided by
restricting the parameter range of validity to not very high values of the chemical potential and the cut-off.
However, this restriction is relaxed in the SUSY case where the cut-off dependence is softened.
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of the magnetic penetration length. Now, the dependence on the cut-off is

ξrBCS ≈
9
√

6π4

4g4
Λ−5 , (6.90)

ξsBCS ≈
g

2(1 + 4c2)3/4

(

2π2 + g2µ2

(

32c4 + 16c2 + 5

(1 + 4c2)5/2
− 2 log

1 +
√

1 + 4c2

2c

))−1/2

+O(Λ−2) .

(6.91)
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Figure 6.7: Coherence length as a function of the temperature. (a) Relativistic BCS
(µ = 0.0065, g = 0.54, Λ = 8.4). (b) SUSY BCS (µ = 0.65, g = 3.9, Λ = 52). Data given
in units of Tc.

If we take the quotient between these two characteristic lengths,

κ =
λ

ξ
=

1√
2emf1∆0

, (6.92)

we get the Ginzburg-Landau parameter, shown in fig. 6.8. As the coherence length behaves
in the same way as the magnetic penetration length near the phase transition, at leading
order, the GL parameter will take a finite constant value. Depending on the value of the
GL parameter one has a type I (κ ≪ 1) or a type II superconductor (κ ≫ 1). In the
GL theory κ is defined near the critical temperature and the critical value differentiating
between the two types of superconductor is κ = 1/

√
2. As shown in fig. 6.8, κ≫ 1, since

we are considering small values of gauge coupling e, then the superconductors are type II
in both the rBCS and the sBCS cases.

6.3.4 Critical magnetic fields

For a type I superconductor, the critical magnetic field is obtained by equating the energy
per unit volume, associated with holding the field out against the magnetic pressure, with
the condensation energy. That is eq. (6.1),

1

2
B2
c (T ) = Vn(T )− Vs(T ) .
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Figure 6.8: Ginzburg-Landau parameter as a function of temperature. (a) Relativistic
BCS (µ = 0.0065, g = 0.54, Λ = 8.4). (b) SUSY BCS (µ = 0.65, g = 3.9, Λ = 52). Data
given in units of Tc.

The behavior near the critical temperature is found by preforming expansions similar
to those for the f1 and m−2 coefficients. In the rBCS theory the gap is expanded around
∆0 = 0. On the other hand, when the scalar is considered, Bc does not make sense above
Tc2, since the superconducting minimum in the effective potential becomes metastable,
but we can perform the expansion around ∆c2 ≡ ∆0(Tc2). According to the dependence
of the gap with the temperature (6.73) in the rBCS theory and due to the fact that ∆0 is
linear with the temperature near Tc2 in the sBCS theory, we have

1

2
B2
c rBCS = ∂T∂ε(Vn(T )− Vs(T ))

∣

∣

∣T=Tc
∆0=0

(T − Tc)∆2
0

+
1

2
∂2
ε (Vn(T )− Vs(T ))

∣

∣

∣T=Tc

∆0=0

∆4
0 + . . . (6.93)

1

2
B2
c sBCS = ∂T (Vn(T )− Vs(T ))

∣

∣

∣ T=Tc2
∆0=∆c2

(T − Tc2) + . . . (6.94)

from which we find a linear and square root behavior near the critical temperatures,

Bc rBCS ∼
(

1− T

Tc

)

, Bc sBCS ∼
√

1− T

Tc2
, (6.95)

as shown in fig. 6.9 (a) and (b), respectively. The expressions for the critical magnetic
field at zero temperature are

Bc rBCS ≈
√

2g

6π2
Λ3 , Bc sBCS ≈

√
2

√

√

√

√−1− g2µ2

π2

(

1√
1 + 4c2

− log
1 +
√

1 + 4c2

2c

)

c

g
Λ .

(6.96)
As expected the dependence on the cut-off is milder in the supersymmetric case.

As explained at the end of sec. 6.1.2, for type II superconductors, which are charac-
terized by the appearance of Abrikosov vortices in a mixed superconductor-normal state,
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there are two critical magnetic fields, Bc1 and Bc2,

Bc1 ≈
φ0

2πλ2
, Bc2 ≈

φ0

2πξ2
.

These are plotted in fig. 6.9 together with Bc. It is easy to obtain the behavior of these
two critical magnetic fields in the different regimes using the expressions for the magnetic
penetration length and the coherence length.

If Bc ≪ Bc2, we will be able to see the intermediate vortex state as we decrease the
applied magnetic field, i.e. the superconductor is type II. On the contrary if Bc ≫ Bc2, we
reach the pure superconducting state without the formation of any vortex, and we have
type I superconductivity. According to fig. 6.9, we have type II superconductivity in both
the relativistic and the supersymmetric BCS theory, in agreement with the prediction
obtained in the previous section by computing the GL parameter.

Given that Bc ends at Tc2, instead of Tc3 as Bc1 and Bc2, and due to the fact that
there is a range of parameters where Bc2 < Bc at zero temperature, one can find a crossing
between the two magnetic fields and a crossover between type I and type II behavior as we
increase the temperature. However, this crossing effect disappears if the gauge coupling
is sufficiently small.
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Figure 6.9: Critical magnetic fields Bc (black), Bc1 (blue) and Bc2 (red) as a function of
the temperature. (a) Relativistic BCS (e = 0.2, µ = 0.0065, g = 0.54, Λ = 8.4), for clarity
Bc1 and Bc2 have been rescaled by a factor 25 and 0.00125 respectively). (b) SUSY BCS
(e = 0.2, µ = 0.65, g = 3.9, Λ = 52). Data given in units of Tc.

6.4 Comments

After reviewing the main features of superconductivity and the BCS paradigm, we have
shown how to engineer a supersymmetric model realizing these features by means of a
non-canonical Kähler potential of the form

K = X†X + g2(X†X)2 , (6.97)

with no superpotential and with a chemical potential coupled to the U(1)R current, nec-
essary to produce a Fermi surface without the presence of Bose-Einstein condensation of
the scalar superpartners.
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The salient aspects of this model are that the equations determining the temperature
dependence of the gap are very similar to those of BCS theory with the main difference
represented by the contribution coming from scalar fluctuations. One important effect
of this contribution is the change in the character of the phase transition from second
to first-order. The main differences between standard relativistic BCS results and those
from the supersymmetric model lie in the different orders of the phase transition. For
example, the infinite jumps found in the supersymmetric model for the specific heat,
magnetic penetration length and coherence length are those characteristic of a first order
phase transition. Another effect due to the scalar superpartner is a drastic reduction of
the dependence on the UV cutoff in all quantities we have computed.

As it was already pointed out, our aim here was to design a simple supersymmetric
model of superconductivity. Therefore, there are various ways in which one would desire
to extend the model presented here:

• One thing one would like to implement is the addition of mass. In section 6.2.1
we discussed a model with a superpotential giving mass to fermions and hence, to
scalars, but it led to Bose-Einstein condensation of the later, spoiling in this way
the BCS mechanism.

• This difficulty in dealing with superpotential terms is also reproduced when trying
to realize the BCS mechanism in models with canonical Kähler potential when all
the fields are dynamical. In this type of models fermion condensation needs to be
triggered by interactions contained in a superpotential W .

It is easy to implement the BCS mechanism if not all the fields are dynamical. In
[16] different models were considered by starting from the previous one with non-
canonical Kähler potential (6.97) and integrating in some fields. For example, the
model

K = X†X + Y †Y , W = mZ(X − gY 2) , (6.98)

sets X = gY 2 after integrating out the non-dynamical chiral superfield Z. Substi-
tuting this relation into the Kähler potential, one recovers the K = Y †Y +g2(Y †Y )2

model.

If we consider that all the superfields X, Y and Z are dynamical and they have
canonical Kähler potential, things are not so easy as we will see in a moment. For
the models considered in [16], the functional integral over fermions can be explicitly
carried out, since the Lagrangians already are quadratic in fermions, while, as usual,
we have to expand scalar fields around their vacuum expectation values, e.g. φx =
vx + ϕx, φy = vy + ϕy and φz = vz + ϕz. In these models, the chiral superfield
X represents the supersymmetric analog of the Hubbard-Stratonovich field, ∆. We
summarize here the results of the models studied in [16]:

– W = m(X − gY 2)2

This model has only U(1)R symmetry with (qX , qY ) = (1, 1/2). Then the chem-
ical potential is introduced for this U(1)R. Like in the model of section 6.2.1
with baryonic U(1)B chemical potential, scalar particles are charged. As a
result on R

4 we cannot have Fermi surfaces because they would overlap with
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regions of Bose-Einstein condensation. The theory on three sphere produces
analogue negative results to those in section 6.2.1.

– W = mZ(X − gY 2) +MZ2

This is a renormalizable model and can be viewed as a UV completion of the
previous case. It has a U(1)R symmetry with charge assignation (qX , qY , qZ) =
(1, 1/2, 1) and a similar IR physics to the previous model, with M playing the
role of the UV cutoff Λ.

– W = mZ(X − gY 2)
This model has a baryonic U(1)B as well as U(1)R symmetry. If chemical
potential is introduced for U(1)B , again we find that Fermi surfaces cannot be
separated from the region of Bose-Einstein condensation (irrespective of the
R-charge assignation).
Consider now a chemical potential coupled to the U(1)R current. One can
assign charges (qX , qY , qZ) = (2 − q, 1 − q/2, q). Unlike the model of section
6.2.2, now it is not possible to have only neutral scalars. Nonetheless, for q = 2,
i.e. when (qX , qY , qZ) = (0, 0, 2), in the unbroken phase vx = vy = vz = 0, it
is possible to have a Fermi surface without Bose-Einstein condensation even in
flat space. There is a Fermi surface at pF = µ. The scalar frequencies are

ωS = {
√

p2 +m2 ± 2µ,
√

p2 +m2,
√

p2 +m2, p, p} , (6.99)

which are always positive definite for µ < m/
√

2. The problem is that Bose-
Einstein condensation reappears in an infinitesimal neighborhood of vx = vy =
vz = 0. After turning on vz and vx, the last frequency in (6.99) becomes

ωS =
√

p2 + 4g2m2v2
z − 2gm2vx ,

which becomes complex at low momenta in the region vx > 2gv2
z . Thus the

model is not protected from Bose-Einstein condensation.
It would be interesting to further explore the possibility of introducing masses
and the existence of models with canonical Kähler potential despite the diffi-
culties presented here.

• Since one of the motivations for building a supersymmetric model of superconductiv-
ity is high Tc superconductivity, it would be very interesting to generalize the present
model to d-wave superconductivity, which is substantial for high Tc superconductors
[187]. To this purpose we would need to consider terms like ψ̄cψ and ψ̄cγµγ5ψ in the
Lagrangian.

• In addition, it would be worth considering extensions of the present supersymmetric
model to describe supersymmetric color superconductivity and compare the resulting
dynamics with the standard phenomenology of QCD color superconductivity [188–
190].

• Finally, we would like to see if there are realistic condensed matter systems with an
effective quasi supersymmetric dynamics with thermodynamic and response proper-
ties similar to those presented in section 6.3, summarized in the different figures.
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6.A The effective potential at finite temperature and density

In this appendix, we review some basic concepts of thermal field theory and what are the
steps to obtain the effective potential, containing the thermal and the Coleman-Weinberg
contributions.

To study the statistical behavior of a quantum system in thermal equilibrium one
defines the density matrix

ρ(β) = e−βH , (6.100)

where H is the appropriate Hamiltonian for the corresponding ensemble.
If our system possesses a certain global symmetry, let us consider for definiteness a U(1)

symmetry like in the main text, by the standard Noether procedure we can compute the
associated conserved current, Jµ, whose temporal component defines a conserved charge,

q =

∫

d3xJ0(t, x) , (6.101)

to which we can associate a chemical potential, µ.
We will work at fixed chemical potential µ, therefore it is convenient to work in the

grand canonical ensemble, where H = H −µq, and H is the dynamical Hamiltonian. The
partition function of the system is defined from this density matrix

Z = Tr ρ(β) = Tr e−β(H−µq) , (6.102)

where Tr represents the sum over expectation values in a complete basis and β is the usual
notation for the inverse of the temperature.

Working out the path integral representation of this partition function, one sees that
(let us set µ = 0 for the moment) it is analogue to a transition amplitude between states
separated by an imaginary time ∆τ = β (with t = −iτ) and with periodic boundary
conditions

φ(τ, x) = φ(τ + β, x) (6.103)

for bosonic degrees of freedom and antiperiodic boundary conditions

ψ(τ, x) = −ψ(τ + β, x) (6.104)

for fermions.
Turning on the operator −µq and adding it to the Hamiltonian H is equivalent, at the

level of the action, to add the same terms we would obtain by gauging the U(1) symmetry
with a non-dynamical gauge field with only non-vanishing temporal component,

Aν = (µ, 0, 0, 0) , (6.105)

i.e. to account for the addition of the chemical potential we just have to replace normal
derivatives with covariant derivatives Dν = ∂ν − iqµδν0.

Therefore, the whole prescription to build the partition function at finite temperature
and finite chemical potential in the path integral formalism is:

• First add the chemical potential µ by considering covariant derivatives Dν = ∂ν −
iqµδν0 in your Lagrangian.
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• Then, to consider the system at a finite temperature, T = 1/β, go to Euclidean
space by performing the Wick rotation to imaginary time, LE(τ) = −L(t = −iτ).

• Restrict the time to the interval τ ∈ (0, β).

• Require (anti)periodicity over τ for bosons (fermions).

This can be summarized in the formula

Z =

∫

φ(0) = φ(β)
DφDφ∗

∫

ψ(0) = −ψ(β)
DψDψ† exp

[

−
∫ β

0
dτ

∫

d3xLE
(

φ, φ∗, ψ, ψ†; ∂µ → Dµ

)

]

.

(6.106)
Once we have the partition function describing the system at finite temperature and

finite density, it is desirable to integrate the fields to get an effective potential. We only
now how to perform Gaussian path integrals, hence we should manipulate LE in (6.106) in
case it was not quadratic in the fields, in order to get a Gaussian integral. For a Lagrangian
made of scalar fields, one usually expands the scalars up to quadratic order in fluctuations
around their vacuum expectation values; whereas for fermions one has to carry out tricks
like the Hubbard-Stratonovich transformation explained in the main text, which provides
a quadratic Lagrangian by means of the introduction of extra non-dynamical auxiliary
fields.

As an example, consider the Lagrangian for BCS theory (6.12) after the previous
manipulations are carried out. We rewrite it here for the reader comfortability

LE =
1

2

(

ψ†∂τψ − ∂τψ†ψ
)

− i

2

(

ψ̄γi∂iψ − ∂iψ̄γiψ
)

+mψ̄ψ − µψ†ψ

+ g2|∆|2 − g2
[

∆†(ψ̄cγ5ψ) + ∆(ψ̄cγ5ψ)†
]

. (6.107)

It is clear that the classical part of the effective potential (6.13) is given by the non-
dynamical term

Vcl = g2|∆|2 . (6.108)

The remaining terms in (6.13), i.e the thermal potential and the Coleman-Weinberg po-
tential, are obtained after integration. At this point, it is convenient to go to momentum
space, we take the Fourier transform

ψ(τ, x) =
vol

β

∞
∑

n=−∞

∫

d3p

(2π)3
ψ(ωn, p)e

iωnτ+ip·x , (6.109)

ψc(τ, x) =
vol

β

∞
∑

n=−∞

∫

d3p

(2π)3
ψc(ωn, p)e

−iωnτ−ip·x , (6.110)

where vol is a factor regularizing the volume of the four-dimensional coordinate space. Due
to anti-periodic boundary conditions (6.104), the Matsubara frequencies, ωn, run over the
values

Fermions: ωn =
π(2n+ 1)

β
. (6.111)
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Now, making use of the identities

ψ̄γµ∂µψ = ψ̄cγ
µ∂µψc , ψ̄ψ = ψ̄cψc , ψ̄γ0ψ = −ψ̄cγ0ψc , (ψ̄cγ

5ψ)† = −ψ̄γ5ψc ,
(6.112)

we can write the quadratic Lagrangian (6.107), in momentum space, in the form
∫

dτ

∫

d3xLE =
vol

β

∑

n

∫

d3p

(2π)3
Ψ̄OΨ , (6.113)

where

Ψ̄ =
(

ψ̄, ψ̄c
)

, Ψ =

(

ψ
ψc

)

,

O =
1

2

(

(iωn − µ)γ0 + piγ
i +m 2g2∆γ5

−2g2∆†γ5 (iωn + µ)γ0 + piγ
i +m

)

. (6.114)

In general, the determinant of the O-matrix can be written as

detO =
∏

i

(ω2
n + ω2

i ) , (6.115)

up to an innocuous constant. In the present case we have5

detO = (ω2
n + ω2

+)(ω2
n + ω2

−) , (6.116)

where the eigenvalues obtained in this way are exactly those appearing in (6.14),

ω2
± =

(

√

p2 +m2 ± µ
)2

+ 4g4|∆|2 . (6.117)

We know that the Gaussian integral over Grassmann variables gives
∫

DψDψ̄ exp

[

−vol

β

∑

n

∫

d3p

(2π)3
Ψ̄OΨ

]

=
∏

p, ωn

√
detO

= exp

[

vol

2β

∑

i

∞
∑

n=−∞

∫

d3p

(2π)3
log(ω2

n + ω2
i )

]

.

(6.118)

It only remains to perform the sum over the Matsubara modes,

f(ωi) =
1

2β

∞
∑

n=−∞
log

(

π2

β2
(2n + 1)2 + ω2

i

)

=
1

β
log cosh

(

β

2
ωi

)

, (6.119)

which can be obtained, up to a constant, by taking the derivative ∂ωi
f , doing the sum

there and integrating back to obtain the result shown. Finally, rearranging the expression
(6.119) and substituting

vol =

∫

dτ

∫

d3x , (6.120)

5O is an 8 × 8 matrix and, hence, (6.116) actually is the square root of the determinant, otherwise we
would be overcounting the number of fermionic degrees of freedom. We must have as many powers of ωn

as degrees of freedom.
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the partition function becomes

Z = exp

[

−
∫

dτ

∫

d3x (Vcl + VCW + Vthermal)

]

(6.121)

where we identify the effective potential, given by the sum of the following expressions

Vcl = g2|∆|2 , (6.122)

VCW = −1

2

∑

i=±

∫

d3p

(2π)3
ωi , (6.123)

Vthermal = − 1

β

∑

i=±

∫

d3p

(2π)3
log

(

1 + e−βωi

)

. (6.124)

The Lagrangian (6.107) does not include any dynamical scalar field, however, in case
it had, expressions would be similar, with the differences:

• The Matsubara frequencies for bosons are

Bosons: ωn =
2πn

β
, (6.125)

due to periodic boundary conditions (6.103).

• The Gaussian path integral for complex scalar fields is

∫

DφDφ∗ exp

[

−vol

β

∑

n

∫

d3p

(2π)3
Φ†OΦ

]

=
∏

p, ωn

1√
detO

, with Φ =

(

φ
φ∗

)

.

(6.126)

• And the Matsubara sums are then

1

2β

∞
∑

n=−∞
log

(

4π2n2

β2
+ ω2

i

)

=
1

β
log sinh

(

β

2
ωi

)

. (6.127)

Therefore, if we can write the Lagrangian in the quadratic form (6.113) and its determinant
can be expressed in the form (6.115), then the general prescription to obtain the effective
potential is

Veff = Vcl +
1

2

∑

i

∫

d3p

(2π)3
ηiωi +

1

β

∑

i

∫

d3p

(2π)3
ηi log

(

1− ηie−βωi

)

, (6.128)

where the sum over i accounts for fermionic (ηi = −1) and scalar (ηi = 1) degrees of
freedom.

6.B Matrix elements

In this section we show the remaining matrix elements and the corresponding eigenvalues
used in the main text.
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Matrices for chemical potential coupled to a U(1)B current

Consider now the expressions (6.35) and (6.36) describing the quadratic terms in the
fluctuation Lagrangian when the chemical potential is coupled to a U(1)B current. In a
completely analogous way to the previous case, we can write these Lagrangians in mo-
mentum space in the matrix form

LS = Φ†OSΦ , LF = Ψ†OFΨ ,

Φ† =
(

φ∗
x, φ

∗
y, φx, φy

)

, Ψ† =
(

ψ†
x1, ψ

†
x2, ψ

†
y1, ψ

†
y2, ψx1, ψx2, ψy1, ψy2

)

,

where now, either ψx or ψy represents a two component Weyl spinor. When the vacuum
expectation value of the scalar fields is zero, vx = vy = 0, the scalar matrix, OS , takes the
diagonal form

OS =











(ω + iµ)2 + p2 +m2 + 4g4∆2
x 0

(ω − iµ)2 + p2 +m2 + 4g4∆2
x

(ω − iµ)2 + p2 +m2 + 4g4∆2
x

0 (ω + iµ)2 + p2 +m2 + 4g4∆2
x











(6.129)

and the fermionic matrix, OF , is given by

OF =

(

A+ B
−B A−

)

, (6.130)

A± =











1
2(iω − p∓ µ) 0 0 0

0 1
2(iω + p∓ µ) 0 0

0 0 1
2(iω − p± µ) 0

0 0 0 1
2(iω + p± µ)











, (6.131)

B =











0 −g2∆x 0 m
2

g2∆x 0 −m
2 0

0 m
2 0 −g2∆y

−m
2 0 g2∆y 0











. (6.132)

We omit the (long) general expressions with vx, vy 6= 0 as these are not used in the
discussion. Writing the determinants of these matrices in an analogous way to (6.115),

detOS =
4
∏

i=1

(ω2 + ω2
Si) , detOF =

4
∏

i=1

(ω2 + ω2
F i) , (6.133)

we find the following eigenvalues

ωS 1,2 =
√

4g4∆2
x +m2 + p2 ± µ ,

ωS 3,4 =
√

4g4∆2
y +m2 + p2 ± µ , (6.134)

ω2
F 1,2 = 2g4∆2

x + 2g4∆2
y + µ2 +m2 + p2 ± E+,

ω2
F 3,4 = 2g4∆2

x + 2g4∆2
y + µ2 +m2 + p2 ± E−, (6.135)

E± = 2

√

µ2 (m2 + p2) + g8
(

∆2
x −∆2

y

)

2 + g4
(

m2 (∆x + ∆y)
2 ± 2µp

(

∆2
x −∆2

y

))

.

(6.136)
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Matrices for chemical potential coupled to a U(1)R current

Now we turn to the case in which the chemical potential couples to a U(1)R symmetry,
corresponding to Lagrangians (6.58) and (6.59). If we also introduce a baryonic U(1)B
gauge field (see Lagrangian (6.66)) and consider spatial fluctuations of the gap, ∆ =
∆0 + ∆̄(~x), after the splitting O(∆, A) = O0(∆0) + δO(∆̄, A) the scalar and fermionic
matrices are given in momentum space by

OS0 =

(

1
2

(

ω2 + p2
)

+ 2g4∆2
0 0

0 1
2

(

ω2 + p2
)

+ 2g4∆2
0

)

,

δOS =

















e(Aτω+ ~A·~p)+ 1
2e

2
(

A2
τ + ~A2

)

+2g4
(

2∆̄∆0 + ∆̄2
) 0

0
−e(Aτω + ~A · ~p) + 1

2e
2
(

A2
τ + ~A2

)

+2g4
(

2∆̄∆0 + ∆̄2
)

















,

OF0 =











i
2ω + 1

2p+ 1
2µ 0 0 −g2∆0

0 i
2ω − 1

2p+ 1
2µ g2∆0 0

0 g2∆0
i
2ω + 1

2p− 1
2µ 0

−g2∆0 0 0 i
2ω − 1

2p− 1
2µ











,

δOF =











− i
2eAτ − 1

2eA 0 0 −g2∆̄

0 − i
2eAτ + 1

2eA g2∆̄ 0

0 g2∆̄ i
2eAτ + 1

2eA 0

−g2∆̄ 0 0 i
2eAτ − 1

2eA











. (6.137)

If instead of introducing a baryonic U(1)B gauge field, we had introduced U(1)R gauge
field, the scalar and fermionic matrices would have been the following ones:

δOS =





2g4
(

2∆̄∆0 + ∆̄2
)

0

0 2g4
(

2∆̄∆0 + ∆̄2
)



 ,

δOF =











i
2eAτ + 1

2eA 0 0 −g2∆̄

0 i
2eAτ − 1

2eA g2∆̄ 0

0 g2∆̄ − i
2eAτ − 1

2eA 0

−g2∆̄ 0 0 − i
2eAτ + 1

2eA











. (6.138)

The energy eigenvalues computed for the OS0 and OF0 matrices are

ωS 1,2 =
√

p2 + 4g4∆2
0 , ωF± =

√

(p± µ)2 + 4g4∆2
0 . (6.139)

6.C m−2, f1 and f3 coefficients

In momentum space, the m−2 and f1 terms in (6.21) are given by
∫

d3xm−2∆̄∆̄∗ =

∫

d3k

(2π)3
m−2∆̄∗(~k)∆̄(~k) , (6.140)

∫

d3x f1∂
i∆ ∂i∆∗ =

∫

d3k

(2π)3
f1
~k2∆̄∗(~k)∆̄(~k) , (6.141)
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where we have considered time independent perturbations. Thus, we have to find in (6.16)
a term quadratic in ∆̄ and expand its coefficient up to quadratic order in momentum.
The zero order term will correspond to m−2 and the coefficient of the quadratic term
in momentum will be identified with f1. Terms quadratic in ∆̄ are found in Ω2 and, if
scalars are considered, in Ω1. The Ω1 term only contributes to the m−2 coefficient, which
in momentum space becomes

1

2β
Tr
[

O−1
S0 δOS

]

=
1

2β2

∫

d4x
∑

n

∫

d3K

(2π)3
tr
[

O−1
S0 (ωn, ~K)δOS(~x)

]

, (6.142)

where we have to sum over Matsubara frequencies, ωn = 2nπ/β for bosonic frequencies
and ωn = (2n+ 1)π/β for fermionic ones. Once the Matsubara sums are done, we have to
consider the piece quadratic in ∆̄ (supposing ∆̄ to be real)

1

2β
Tr
[

O−1
S0 δOS

]

∆̄∆̄
=

1

β2

∫

d4x

∫

d3K

(2π)3
B∆̄∆̄( ~K)∆̄(~x)∆̄(~x)

=
1

β

∫

d3K

(2π)3
B∆̄∆̄( ~K)

∫

d3k

(2π)3
∆̄∗(~k)∆̄(~k) . (6.143)

Hence, we identify the first contribution to m−2 as

m−2 =
1

β

∫

d3K

(2π)3
B∆̄∆̄( ~K) + . . . (6.144)

Let us elaborate now on the Ω2 contribution,

1

4β
Tr[(O−1

F0δOF )2] =
1

4β

∫

d4x1

∫

d4x2 tr[δOF (~x1)O−1
F0(x1, x2)δOF (~x2)O−1

F0(x2, x1)] ,

(6.145)
plus the analogous scalar term if one considers the supersymmetric case, and the extra
term

∫

d3x g2∆̄2 for m−2. The previous expression in momentum space is

1

4β
Tr[(O−1

F0δOF )2] =
1

4β3

∫

d4x1d4x2

∑

m,n

∫

d3k1

(2π)3

d3k2

(2π)3

d3q1

(2π)3

d3q2

(2π)3

× e−i(ωm−ωn)(τ1−τ2)e−i(~k1−~k2+~q1)~x1e−i(−~k1+~k2+~q2)~x2

× tr[δOF (~q1)O−1
F0(ωm, ~k1)δOF (~q2)O−1

F0(ωn, ~k2)]

=
1

4β

∑

n

∫

d3k1

(2π)3

d3k2

(2π)3
tr[δOF (~k2 − ~k1)O−1

F0(ωn, ~k1)δOF (~k1 − ~k2)O−1
F0(ωn, ~k2)]

≡ 1

β

∫

d3k1

(2π)3

d3k2

(2π)3
F(~k1, ~k2) . (6.146)

Taking the piece quadratic in ∆̄ in (6.146), we have

Ω2

∣

∣

∆̄∆̄
=

1

β

∫

d3k1

(2π)3

d3k2

(2π)3
∆̄∗(~k2 − ~k1)∆̄(~k2 − ~k1)F∆̄∆̄(~k1, ~k2) . (6.147)
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Assuming that second order corrections are located close to each other in momentum space,
we can expand the momenta around their average value, ~k1 = ~K − ~k/2, ~k2 = ~K + ~k/2, so
that the corresponding free energy term is

Ω2

∣

∣

∆̄∆̄
=

1

β

∫

d3K

(2π)3

d3k

(2π)3
∆̄∗(~k)∆̄(~k)F∆̄∆̄( ~K,~k) , (6.148)

Expanding F∆̄∆̄ up to quadratic order in k, we identify the m−2 and f1 coefficients with

m−2 = g2 +
1

β

∫

d3K

(2π)3

(F∆̄∆̄( ~K, 0) −B∆̄∆̄( ~K, 0) + B∆̄∆̄( ~K)
)

, (6.149)

f1 =
1

2β

∫

d3K

(2π)3

(

∂2
kF∆̄∆̄( ~K, 0) − ∂2

kB∆̄∆̄( ~K, 0)
)

, (6.150)

once the analogous bosonic contribution is included.

The f3-term in the Ginzburg-Landau free energy (6.21) has a contribution coming
from the gauge field kinetic term plus contributions coming from the part of Ω2 quadratic
in the gauge field, which will be proportional to the square of the gauge coupling, e2,

f3 =
1

2
+O(e2) . (6.151)

As the gauge coupling is assumed to be small we can simply take f3 = 1/2. From this
identification for the f3 coefficient we see that there is no significant difference between
turning on a baryonic gauge field (6.137) or an R-symmetry (6.138) gauge field, since
differences would appear to order O(e2).

Once these coefficients are computed, one can study their cut-off dependence in both
the relativistic and supersymmetric case. We will restrict ourselves to the zero temperature
regime, where integrals can be performed analytically. In the zero temperature limit, the
explicit forms of the coefficients f1 and m−2 are

f1

∣

∣

T=0
=

128g12∆6
0µ+ 80g8∆4

0µ(Λ + µ)2 + µ2(Λ + µ)5 + 2g4∆2
0(Λ + µ)3

(

3Λ2 + 6Λµ + 8µ2
)

96π2∆0

(

4g4∆2
0 + (Λ + µ)2

)5/2

+ (µ→ −µ)

+
g8∆2

0Λ3

2π2
(

4g4∆2
0 + Λ2

)5/2
, (6.152)

m−2
∣

∣

T=0
= g2 +

g4

4π2





(Λ + µ)(5µ2 + 2Λµ− Λ2) + 4g4(5µ− 3Λ)∆2
0

√

4g4∆2
0 + (Λ + µ)2

+ 2
(

µ2 − 6g4∆2
0

)

log





µ+
√

4g4∆2
0 + µ2

Λ + µ+
√

4g4∆2
0 + (Λ + µ)2



+ (µ→ −µ)





+
g4

2π2





12g4∆2
0Λ + Λ3

√

4g4∆2
0 + Λ2

− 12g4∆2
0csch−1

(

2g2∆0

Λ

)



 , (6.153)
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where the last line in (6.152) or (6.153) corresponds to the scalar contribution. Taking
into account the cut-off dependence of the gap at zero temperature, (6.75), we find the
following expressions for the f1 and m−2 coefficients at leading order in Λ:

f1 rBCS =
35π8

8g6
Λ−10 , f1 sBCS =

g4

8π2
(1 + 4c2)−3/2 +O(Λ−2) , (6.154)

m−2
rBCS = g2 +O(Λ−4) , m−2

sBCS = g2 +
g4µ2

2π2

(

32c4 + 16c2 + 5

(1 + 4c2)5/2
− 2 log

1 +
√

1 + 4c2

2c

)

+O(Λ−2) , (6.155)

where c = exp
[

− π2

g2µ2 − 3
2

]

. We must stress that the coefficient f1 in the relativistic BCS
theory does not vanish at zero temperature, because Λ is a physical cut-off acting like a
“Debye energy”, which takes a finite value.





Summary

The study of supersymmetry has led us to a better understanding of field theories, specially
in the strong coupling regime. In this thesis we have tried to show this through several
examples. These are:

• The first of these examples has been the application of localization techniques in
supersymmetric theories. Specifically, we have shown how to compute the partition
function ofN = 2 supersymmetric Chern-Simons theory with gauge group U(N) and
2Nf flavors, i.e Nf chiral multiplets transforming in the fundamental representation
of the gauge group and Nf more transforming in the anti-fundamental. To regularize
the theory, it is necessary to make the computation in a three sphere whose radius, R,
serves as an IR regulator which can be taken to infinity at the end of the computation.

Once we have the exact partition function in terms of a matrix integral, although
difficult to compute, it is much easier than the original path integral one starts with
before applying localization. Then we can solve the integral by means of a saddle-
point approximation. This approximation becomes exact in the large N limit.

Hence, solving the integral by saddle-point in the large N limit, we can consider
a continuous distribution of eigenvalues of the N × N matrix that represents the
scalar field of the N = 2 vector hypermultiplet in three dimensions. This leads to
an equation that can be solved exactly and that in the decompactification limit,
R → ∞, it shows different phases depending on the value of the ’t Hooft coupling.
This coupling also has to be rescaled with the radius because otherwise, matter
fields would simply decouple and we would end with pure Chern-Simons theory. In
this way, depending on the value that the rescaled ’t Hooft coupling, λ, takes in
comparison to the quotient ζ = Nf/N , we find one of the three phases described by
the eigenvalue distributions shown in figures 2.3, 2.4 and 2.5 for the intervals:

Phase I: λ < 1 , Phase II: 1 < λ < (1− ζ)−1 , Phase III: (1− ζ)−1 < λ .
(6.156)

If ζ ≥ 1, phase III simply disappears and phase II extends up to λ→∞.

We have also computed the free energy and the vacuum expectation value of a Wilson
loop for a big circle of the three sphere. Both of them show discontinuities in their
derivatives, in particular, the discontinuity in the free energy appears in the third
derivative and thus, both phase transitions are third order.

• Other application that we have seen consists of the use of the gauge/gravity duality
to build supergravity solutions dual to supersymmetric gauge theories that allow

167
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us to obtain information about these gauge theories in the strong coupling regime,
where other tools are no longer useful.

In particular, starting from the gravity dual to N = 1 super Yang-Mills, proposed
by Maldacena and Núñez, we have reviewed how to add flavors (quarks) to this
theory, without mass first and with mass later. We have also seen how to extract
information about the field theory from these gravity duals. In particular, we have
paid special attention to how the β-function of the field theory dual is obtained from
the gravity background proposed by Conde, Gaillard and Ramallo, dual to N = 1
super Yang-Mills field theory with Nf massive flavors and a quartic superpotential.

The gravity dual proposed by Conde, Gaillard and Ramallo is based on the addition
of Nf backreacting flavor D5-branes to the background generated by N color D5-
branes. The distribution of the flavor branes is governed by a function S(r). Here we
have used a simple function S(r), determined by some physical and computational
requirements.

Once we have a particular S(r) function, we can solve the BPS system of equations,
which admits various solutions. Under some physical criteria we are able to choose
a single relevant solution for each value of the quotient Nf/N .

The main result from the point of view of the field theory corresponding to this
solution is that, in the case Nf = 2N , the β-function (figure 4.6) shows a non-trivial
UV fixed point. Taking into account the perturbative behavior of the β-function,
the simplest interpolation between the weak and strong coupling regimes of the
β-function implies a new non-trivial IR fixed point. In the cases Nf < 2N and
Nf > 2N we do not find any evidence of any non-trivial fixed point.

This hint of a new IR fixed point is in agreement with Seiberg proposal of a conformal
window for 3N/2 < Nf < 3N although in our case it is reduced to a single point,
Nf = 2N , maybe because of the presence of a quartic superpotential.

In addition, we have seen how Seiberg duality is realized in these gravity back-
grounds. Indeed, the β-function of the case Nf > 2N seems to correspond to that
of the Seiberg-dual theory.

• Again, in the context of the gauge/gravity duality, we have studied how to generate
new supergravity solutions applying T-duality and how this affects the G-structures
that describe the supersymmetry of these solutions.

In particular, we have applied T-duality to the IIB supergravity solution of Klebanov
and Witten, obtained by placing N D3-branes at the tip of the conifold. Firstly, we
have done this without flavors, as an example; and later we have included flavors
by adding Nf D7-branes. Both cases, with and without flavors, posses an SU(3)-
structure before the application of T-duality. After we T-dualize in some SU(2)
isometry directions of the background, we find new IIA supergravity solutions with
an SU(2)-structure.

When we consider the flavored background, flavor branes act as sources which pro-
duce the violation of Bianchi identities. Studying how these identities transform
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under T-duality we obtain that the new supergravity solution is able to accommo-
date sources for D4, D6 and D8-branes.

• Finally, we have presented an N = 1 supersymmetric model that exhibits a super-
conducting phase transition. This model is based on the following Kähler potential

K = Φ†Φ + g2(Φ†Φ)2 , (6.157)

for chiral multiplets Φ and no superpotential. We also have to include temperature
and chemical potential. Since this system has two global U(1) symmetries, a baryonic
one and the U(1)R-symmetry, in principle, we can couple the chemical potential to
the associated current of one of these symmetries. However, as the appearance of a
Fermi surface is a necessary condition, the chemical potential can be only introduced
for the U(1)R charge. In this way the scalars of the chiral multiplet do not suffer
from Bose-Einstein condensation and do not spoil the BCS mechanism at the same
time that a Fermi surface is generated.

Moreover, the scalars, which do not appear in the usual BCS theory, have the effect
of making the phase transition first order rather than second order (see figure 6.2).

We have also considered the effect of an external gauge field as well as possible gap
fluctuations. This allows us to study the Meissner effect, penetration and coherence
lengths and critical magnetic fields. Then we have been able to determine that the
superconducting model studied here is type II.

We have compared different quantities (figures 6.2-6.9) for our model and the rela-
tivistic BCS model and the main differences are due to the difference in the order of
the phase transition and the fact that the dependence on the cut-off is milder in the
supersymmetric model.





Resumen

El estudio de supersimetría nos ha permitido un mejor entendimiento de las teorías de
campos, especialmente en el régimen de acoplamiento fuerte. En esta tesis hemos tratado
de mostrar esto a través de varios ejemplos. A saber:

• El primero de estos ejemplos ha sido la aplicación de técnicas de localización en
teorías supersimétricas. En particular, hemos mostrado cómo calcular de manera
exacta la función de partición de la teoría de Chern-Simons supersimétrica N = 2
con grupo gauge U(N) y 2Nf sabores, es decir Nf multipletes quirales transformando
en la representación fundamental del grupo gauge y otros Nf , en la antifundamental.
Para regularizar esta teoría es necesario hacer el cálculo en una tres esfera cuyo radio,
R, sirve como regulador IR que puede tomarse infinito al terminar los cálculos.

Una vez que tenemos la función de partición exacta en términos de una integral de
matrices, que aunque complicada de calcular, es mucho más fácil que la integral de
camino original de la que uno parte antes de aplicar localización, podemos resolverla
por medio de la aproximación de punto silla. Esta aproximación deja de serlo y se
vuelve exacta cuando tomamos el límite de N grande.

Resolviendo, por tanto, la integral por medio del punto silla, en el límite de N
grande podemos considerar una distribución continua de los autovalores de la matriz
N ×N que representa el campo escalar del hipermultiplete vector de N = 2 en tres
dimensiones. Esto da lugar a una ecuación que puede resolverse de manera exacta y
que en el límite de descompactificación R→∞ tiene como solución diferentes fases
dependiendo del valor del acoplamiento de ’t Hooft. Este acoplamiento también debe
rescalearse con el radio ya que de otra manera, los campos de materia simplemente
se desacoplan y acabaríamos con una teoría de Chern-Simons pura. De forma que,
dependiendo del valor que tome el acoplamiento de ’t Hooft rescaleado, λ, en relación
al cociente ζ = Nf/N , encontramos tres fases descritas por las distribuciones de
autovalores mostradas en las figuras 2.3, 2.4 y 2.5 para los intervalos:

Fase I: λ < 1 , Fase II: 1 < λ < (1−ζ)−1 , Fase III: (1−ζ)−1 < λ , (6.158)

Si ζ ≥ 1 la fase III simplemente desaparece y la fase II se extiende hasta λ→∞.

También hemos calculado la energía libre y el valor de expectación de un lazo de
Wilson correspondiente a un círculo máximo de la tres-esfera. Ambos exhiben dis-
continuidades en sus derivadas, en concreto, la discontinuidad para la energía libre
es en la tercera derivada y, por tanto, las dos transiciones de fase son de tercer orden.
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• Otra aplicación que hemos visto consiste en el uso de la dualidad gravedad/gauge
para construir soluciones de supergravedad duales a teorías gauge supersimétricas
que nos permitan obtener información acerca de estas últimas en el régimen de
acoplamiento fuerte, donde otras técnicas dejan de ser útiles.

En particular, partiendo del dual gravitatorio de la teoría N = 1 super Yang-Mills,
propuesto por Maldacena y Núñez, hemos revisado cómo añadir sabores (quarks)
a esta teoría, con y sin masa. Hemos visto también cómo extraer de los duales
gravitatorios información sobre la teoría de campos. En concreto, hemos puesto
especial atención en cómo obtener la función β de la teoría de campos dual al fondo
gravitatorio propuesto por Conde, Gaillard y Ramallo, dual a la teoría de campos
N = 1 super Yang-Mills con Nf sabores masivos y un superpotencial cuártico.

El dual gravitatorio propuesto por Conde, Gaillard y Ramallo se basa en añadir
Nf D5-branas de sabor al fondo generado por N D5-branas de color, alterándolo a
su vez. La distribución de las branas de sabor viene caracterizada por una función
S(r). Nosotros hemos elegido una función S(r) simple, determinada por varios
requerimientos físicos y computacionales.

Una vez que tenemos una función S(r) particular, podemos resolver el sistema de
ecuaciones BPS, que admite varias soluciones. Bajo determinados criterios físicos
podemos elegir una única solución relevante para cada valor del cociente Nf/N .

El principal resultado desde el punto de vista de la teoría de campos que corresponde
a dicha solución, consiste en que, en el caso Nf = 2N , la función β (figura 4.6) exhibe
un punto fijo UV no trivial. Teniendo en cuenta el comportamiento perturbativo de
la función β, la forma más simple de interpolar entre el comportamiento perturbativo
y el de acoplamiento fuerte es a través de la aparición de un nuevo punto fijo no
trivial IR. En los casos Nf < 2Nc y Nf > 2Nc no encontramos evidencia de ningún
punto fijo no trivial.

Este indicio de un nuevo punto fijo IR está de acuerdo con la proposición de Seiberg
acerca de la existencia de una venta conforme entre 3N/2 < Nf < 3N , aunque en
nuestro caso se reduce a un único punto Nf = 2N , quizá debido a la presencia del
superpotencial cuártico.

También hemos visto como la dualidad de Seiberg aparecía en estas soluciones gravi-
tacionales. De hecho, la función β del caso Nf > 2N parece corresponder con la de
la teoría dual de Seiberg.

• También en el contexto de la dualidad gravedad/gauge hemos estudiado cómo generar
nuevas soluciones de supergravedad por medio de la aplicación de T-dualidad y como
esta afecta a las G-estructuras en términos de las que podemos describir la super-
simetría de estas soluciones.

En particular hemos aplicado T-dualidad a la solución de supergravedad IIB de Kle-
banov y Witten, obtenida al poner N D3-branas en el conifold, sin sabores primero,
a modo de ilustración, y con sabores después, tras añadir Nf D7-branas. Ambos
casos, con y sin sabores, posen una estructura SU(3) antes de aplicar la T-dualidad.
Después T-dualizamos en las direcciones de la isometría SU(2) de la solución y
encontramos nuevas soluciones de supergravedad IIA con una estructura SU(2).
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Cuando consideramos el caso con sabores, las branas de sabor actúan como fuentes
dando lugar a la violación de las identidades de Bianchi. Estudiando cómo transfor-
man estas identidades bajo T-dualidad obtenemos que la nueva solución es capaz de
acomodar fuentes de D4, D6 y D8-branas.

• Finalmente, hemos presentado un modelo supersimétrico que exhibe una transición
de fase superconductora. Este modelo está basado en el siguiente potencial de Kähler

K = ΦΦ† + g(ΦΦ†)2 (6.159)

para multipletes quirales Φ y sin superpotencial. También debemos incluir en este
sistema temperatura y un potencial químico. Como este sistema dispone de dos
simetrías globales U(1), una bariónica y otra la simetría U(1)R, podemos, en princi-
pio, acoplar el potencial químico a la corriente correspondiente a una u otra simetría.
Sin embargo, como es necesaria la aparición de una superficie de Fermi, el potencial
químico solo puede ser introducido para la carga a U(1)R, de forma que los escalares
del multiplete quiral no condensen y estropeen el mecanismo BCS, a la vez que se
genera una superficie de Fermi.

Además, los escalares, que no aparecen en la teoría BCS usual, tienen el efecto de
hacer que la transición de fase sea de primer orden en lugar de segundo orden (ver
figura 6.2).

También hemos considerado el efecto de un campo gauge externo así como posibles
fluctuaciones del gap. Esto permite estudiar el efecto Meissner además de longitudes
de penetración y de coherencia y campos magnéticos críticos. Gracias a esto hemos
sido capaces de determinar que los superconductores estudiados con este modelos
son de tipo II.

Hemos comparado diferentes magnitudes (figuras 6.2-6.9) para nuestro modelo y el
modelo BCS relativista y las principales diferencias son debido a la diferencia en
el orden de la transición de fase y el hecho de que en el modelo supersimétrico la
dependencia en la energía de corte es más suave.
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