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A method to evaluate the physical realizability of an arbitrary three-dimensional vectorial field distribution in the
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Analysis of the electromagnetic field distribution gener-
ated in the focal region of an optical focusing system with
high numerical aperture (NA) is attracting wide interest
because of its multiple applications in electron acceler-
ation, nonlinear optics, and optical tweezers, among
others. Since the electric field distribution in the focal
plane depends on the complex amplitude and spatial
polarization of the beam at the entrance pupil, the inci-
dent field has to be conveniently designed [1–11]. In this
Letter, we analyze the feasibility of physically implement-
ing an arbitrary three-dimensional vectorial distribution
in the focal area. This study is carried out using the
framework of the closest electromagnetic field EF to a
target vectorial function F. Note that this approach al-
lows us to obtain the field EF, which is a solution of
the Maxwell equations that is best fitted in an algebraic
sense to F [12,13]. A parameter to evaluate the similarity
between the closest field (CF) EF and the distribution F is
also introduced.
The electric field distribution at any point in the focal

region of a high-NA focusing system is given by the
Richards–Wolf integral [14]:
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E0�θ;φ�eik sin θr cos�ϕ−φ�e−ik cos θz sin θdθdφ;

(1)

where k is the wave number, r and ϕ are the polar coor-
dinates at the focal plane, θ and φ are the polar and the
azimuthal angles, and A is a constant; note that θ0 �
maxfθg is the semi-aperture angle of the aplanatic
system (Fig. 1). E0 is the so-called vectorial angular
spectrum, expressed as

E0�θ;φ� � P�θ��f 1�θ;φ�e1�φ� � f 2�θ;φ�e2�θ;φ��: (2)

Here P�θ� is the so-called apodization function obtained
from energy conservation and geometric considerations,
and f 1 and f 2 are, respectively, the azimuthal and radial

components of the incident field, which we assume trans-
verse. The unitary vectors e1 and e2 are given by

e1�φ� � �− sin φ; cos φ; 0�; (3a)

e2�θ;φ� � �cos θ cos φ; cos θ sin φ; sin θ�: (3b)

Let us assume that F�r;ϕ; 0� is a target distribution to
be obtained at the focal plane. The shape of this function
is suggested from its potential applications. The problem
arises because, in general, F cannot be written in the
form given by Eq. (1). Instead of using F, the CF EF
associated to F is used. To clarify what this means, let us
suppose that F is a band-limited function that can be
written in terms of its angular plane wave spectrum F0:

F�r;ϕ; 0� � A
Z

θ0

0

Z
2π

0
F0�θ;φ�eik sin θr cos�ϕ−φ� sin θdθdφ:

(4)

Function F represents the target vectorial field at the
focal area. In general, an arbitrary function F0 does not
belong to the subspace S, generated by vectors e1 and e2.
From an algebraic point of view, the vector V belonging
to S and closest to F0 is given by the projection of F0 onto
the subspace S, namely

Fig. 1. Notation and geometry of the problem.
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V � �F0 · e1�e1 � �F0 · e2�e2; (5)

where the dot denotes the inner product. Notice that V
satisfies the following condition at each point �θ;φ�:

inffjF0 −Gj; G ∈ Sg � jF0 − Vj; (6)

where the bars denote the vector modulus (see Fig. 2).
Accordingly, the electric field EF closest to F is

defined as

EF�r;ϕ; 0� � A
Z

θ0

0

Z
2π

0
V�θ;φ�eik sin θr cos�ϕ−φ� sin θdθdφ:

(7)

Obviously, when F0 belongs to S, F0 � V and therefore
EF � F [12,13]. To estimate the difference between the
CF field EF and the target function F, we introduce
parameter ρ, defined as

ρ �
R
∞
0

R
2π
0 jEF�r;ϕ; 0�jjF�r;ϕ; 0�jrdrdϕ����������

IFIE
p ; (8)

where
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∞
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jEF�r;ϕ; 0�j2rdrdϕ; (9a)
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0
jF�r;ϕ; 0�j2rdrdϕ: (9b)

Since V is the projection of F0 onto subspace S, ρ
provides a measure of the physical realizability of the
selected function F. Obviously, ρ ≤ 1, and by using
Parseval’s theorem and Hölder’s inequality, a lower
bound ρ0 for ρ can be obtained, namely ρ0 ≤ ρ ≤ 1,
which is

ρ0 �
j R θ0

0

R
2π
0 �V · F0� sin θdθdφj�������������������������������������������������������������������������������������������������R θ0
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0

R
2π
0 jF0j2 sin θdθdφ

q :

(10)

Notice that ρ depends on F as well as the parameters of
the optical system, such as the NA and the pupil function
P�θ�. Related to this, a high value for the lower bound

given in Eq. (10) implies that ρ must be closer to 1
and then EF will be best fitted to F.

As an illustrative example, we consider the ideal case
of a purely longitudinal vectorial distribution at the focus.
It is clear from Eq. (1) that this polarization structure is
not physically realizable. Instead, we will consider the CF
associated to this pure longitudinal field distribution. In
this case, the target wave spectrum takes the form
F0 � P�θ�g�θ;φ��0; 0; 1�, g�θ;φ� being an arbitrary func-
tion. In this case, vector V and its corresponding CF
[cf. Eqs. (5) and (7)] are, respectively,

V�θ;φ� � P�θ� sin θg�θ;φ�e2�θ;φ� (11)

and

EF�r;ϕ; 0� � A
Z

θ0

0

Z
2π

0
P�θ� sin θg�θ;φ�e2�θ;φ�

× eikr sin θ cos�ϕ−φ� sin θdθdφ: (12)

From the equation above it is concluded that an inci-
dent beam has to be radially polarized to obtain the CF
associated to a purely longitudinal vectorial distribution
at the focal plane. Such a property can be thought of as
an analytical support to the well-known result of achiev-
ing a significant longitudinal component by focusing ra-
dially polarized light. In this case the bound ρ0 takes the
form

ρ20 �
R θ0
0

R
2π
0 jP�θ�g�θ;φ�j2sin3 θdθdφR θ0

0

R
2π
0 jP�θ�g�θ;φ�j2 sin θdθdφ

: (13)

Additional features for the field EF�r;ϕ; 0� can be ac-
complished by choosing suitable functions P�θ� and
g�θ;φ�. Taking into account an objective lens obeying
the sine condition and assuming rotational symmetry,
Eqs. (12) and (13) become

EF�r;ϕ; 0� � A
Z

θ0

0

Z
2π

0

������������
cos θ

p
sin θg�θ�e2�θ;φ�

× eikr sin θ cos�ϕ−φ� sin θdθdφ: (14)

and

ρ20 �
R θ0
0

R
2π
0 cos θjg�θ�j2sin3 θdθdφR θ0

0

R
2π
0 cos θjg�θ�j2 sin θdθdφ

: (15)

It is apparent from Eq. (15) that an apodization of g�θ�
and large semi-aperture angles will maximize the value of
ρ0; thus ρ will be higher. In fact, from Eq. (11) we get

lim
θ→π∕2

V�θ;φ� � F0; (16)

and therefore EF will tend to be a pure longitudinal field.
The apodized beam will provide better results because
only the contribution of the larger semi-aperture angles
θ is taken into account. In order to show the behavior of
ρ, two different distributions for g�θ� have been consid-
ered: (i) a Gaussian–Bessel beam and (ii) an apodized
Gaussian–Bessel beam:Fig. 2. Projection of F0 on the subspace S.
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g�θ� � exp
�
−β

�
sin θ

sin θ0

�
2
�
J1

�
2β

sin θ

sin θ0

�
; (17)

where β−1 is the so-called filling factor [15]. The apodized
beam is calculated by multiplying g�θ� by an annulus lim-
ited by angles θmin and θmax. Figure 3 shows the behavior
of ρ as a function of the semi-aperture angle θ0 the for
two beams analyzed. It is apparent from Fig. 3 that higher
values of ρ are obtained for large semi-aperture angles
and vice versa.
To provide more insight about the behavior of ρ and ρ0,

we consider now a purely transverse radially polarized
distribution at the focus of an objective lens obeying
the sine condition. In this case F0 takes the form
F0 �

������������
cos θ

p
g�θ��cos φ; sin φ; 0�, and therefore

V�θ;φ� �
������������
cos θ

p
cos θg�θ�e2�θ;φ�: (18)

As expected, the incident field presents radial polari-
zation. Assuming rotational symmetry, the lower bound
for ρ now takes the form

ρ20 �
R θ0
0

R
2π
0 cos3 θjg�θ�j2 sin θdθdφR θ0

0

R
2π
0 cos θjg�θ�j2 sin θdθdφ

: (19)

From Eq. (19) and Fig. 4, it can be concluded that
apodization is not advisable and better results are ob-
tained for small semi-aperture angles. Notice that now
limθ→0V�θ;φ� � F0 and EF tends to be a purely trans-
verse beam.
In summary, we have shown a procedure to design the

input beam in order to obtain a realizable field distribu-
tion at the focus of an objective lens. From the two ex-
amples considered, we can conclude that physically

realizable beams with a high longitudinal component
can be obtained when a radially polarized apodized beam
is focused using a high-NA objective lens. On the other
hand, apodization is not advisable to generate trans-
verse-only radially polarized beams; better results are
obtained for low aperture angles.
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Fig. 3. Coefficients ρ and ρ0 versus the semi-aperture angle θ0
(in radians) for a longitudinal-only polarized beam. Two func-
tions g�θ� are considered: (i) a Gaussian–Bessel beam and (ii) an
apodized Gaussian–Bessel beam with θmin � 0.95θ0 and
θmax � θ0. In both cases, β � 0.5.
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Fig. 4. Coefficients ρ and ρ0 versus the semi-aperture angle θ0
(in radians) for a transverse-only radially polarized beam.
Functions g�θ� are the same as in Fig. 3.
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