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Research on the properties of highly focused fields mainly involved fully polarized light, whereas partially polar-
ized waves received less attention. The aim of this Letter is to provide an appropriate framework, for designing some
features of the focused field, when dealing with incoming partially polarized beams. In particular, in this Letter, we
describe how to get an unpolarized field on the axis of a high numerical aperture objective lens. Some numerical
results that corroborate theoretical predictions are provided. © 2014 Optical Society of America
OCIS codes: (260.0260) Physical optics; (260.2110) Electromagnetic optics; (260.5430) Polarization.
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The study of field distribution, in the focal region of a high
numerical aperture (NA) focusing system, is attracting in-
creasing attention because of their possible applications
in many fields, e.g., electron acceleration, nonlinear op-
tics, or particle trapping and manipulation. In general,
these techniques require three-dimensional (3D) focused
electromagnetic fields, with special characteristics:
shape, polarization coherence, and so on. Obtaining these
specific features involves the suitable design of the input
field [1–6]. Research on the polarization properties of
highly focused fields has been mainly devoted on fully
polarized light, whereas partially polarizedwaves have re-
ceived less attention [7–9]. Moreover, the use of partially
coherent fields has been recently proposed as a suitable
light source for optical trapping systems [10]; this kind of
fields are also useful in tomography [11], plasmonics spec-
troscopy [12], or invisibility cloaking [13].
Accordingly, the aim of this Letter is to provide an

appropriate framework for designing some features of
the focused field, when dealing with incoming partially
polarized beams. First, we relate the circular compo-
nents of the transverse incident field with the circular
and longitudinal content of the focused field; then, this
formalism is extended to quasi-monochromatic sta-
tistically stationary incident beams. Finally, we focus
on getting an unpolarized field on the axis of an imaging
system with a high NA. Moreover, the polarization over
the focal plane is also analyzed.
The electric field distribution, at any point in the focal

region of a high NA focusing system, is given by the well-
known Richards–Wolf integral [14]

E�r;φ; z� � A

Z
θ0

0

Z
2π

0
P�θ�E0�θ;ϕ�eik sin θr cos�φ−ϕ�

× e−ik cos θz sin θdθdϕ; (1)

where A is a constant, related to the focal length and the
wavelength; k is the wave number, r and ϕ denote in this
Letter the polar coordinates at the focal plane; and angles
θ and θ0 are represented in Fig. 1. P�θ� denotes the

so-called apodization function. obtained from energy
conservation and geometric considerations; and E0 is
the so-called vector angular spectrum; this angular spec-
trum is usually written as

E0�θ;ϕ� � f 1�θ;ϕ�e1�ϕ� � f 2�θ;ϕ�e2�θ;ϕ�; (2)

where f 1 and f 2 are, respectively, the azimuthal and ra-
dial components of incident field (which we assume
transversal). The unitary vectors e1 and e2 are given by

e1�ϕ� � �− sin ϕ; cos ϕ; 0�; (3a)

e2�θ;ϕ� � �cos θ cos ϕ; cos θ sin ϕ; sin θ�: (3b)

Frequently, it is useful towrite the angular spectrum us-
ing a convenient change of basis [15–17]. Instead of using
the conventional radial and azimuthal description, it is
advisable to describe the angular spectrum in terms of
the circular content of the beam (see below). Accordingly,
we write the angular spectrum using an alternative form

E0�θ;ϕ� � g1�θ;ϕ�v1�θ;ϕ� � g2�θ;ϕ�v2�θ;ϕ�; (4)

where g1 and g2 are, respectively, the right-hand and left-
hand circular components of the incident field; g1 and g2

Fig. 1. Geometry and variables involved.
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are related with the radial and azimuthal components, by
means of

g1 �
1���
2

p �f 2 − if 1�e−iϕ; (5a)

g2 �
1���
2

p �f 2 � if 1�eiϕ; (5b)

where v1 and v2 are mutually orthogonal unitary vectors,
introduced in [15–17]

v1�θ;ϕ� �
eiϕ���
2

p �e2 � ie1�; (6a)

v2�θ;ϕ� �
e−iϕ���

2
p �e2 − ie1�: (6b)

Note that vm�θ;ϕ� exp�ikr · s� with m � 1; 2 represents
circularly polarized planar waves, propagating along
the direction defined by s � �sin θ cos ϕ; sin θ sin ϕ;
− cos θ�. Thus, Eq. (4) can be understood as a superposi-
tion of right and left circularly polarized plane waves. In
particular, in the paraxial limit �θ → 0�, v1 � 1��

2
p �1; i; 0�

and v2 � 1��
2

p �1;−i; 0�, are the usual transversal circular
plane waves.
We rewrite the field at the vicinity of the focus plane E

as follows

E � EcÛ; (7)

where Û is the unitary matrix

Û �

0
BB@

1��
2

p i��
2

p 0

1��
2

p −i��
2

p 0

0 0 1

1
CCA: (8)

and Ec � �E�; E−

; Ez�; in this Letter, E� and E
−

represent
the right and left circular content of the transverse field,
at the vicinity of the focus plane; and Ez is the magnitude
of the longitudinal component. Taking into account
Eqs. (4) and (7), Eq. (1) is rewritten as

Ec�r;φ; z� � A

Z
θ0

0

Z
2π

0
P�θ�g�θ;ϕ�Â�θ;ϕ�eik sin θr cos�ϕ−φ�

× e−ik cos θz sin θdθdϕ; (9)

where g � �g1; g2� and Â�θ;ϕ� is a 2 × 3 matrix given by

Â�θ;ϕ��
�

cos2�θ∕2� −sin2�θ∕2�e2iϕ 1��
2

p sin θeiϕ

−sin2�θ∕2�e−2iϕ cos2�θ∕2� 1��
2

p sin θe−iϕ

�
:

(10)

Thus, Eq. (9) relates the circular components of the in-
cident field, with the circular and longitudinal content
of the focused field. It should be noted that incident right
(left) polarized beams (i.e., incident beams with g1 or g2

equal to zero) produce, at the focal plane, fields whose
transverse component has elliptic polarization. More-
over, according to Eq. (9), a focused field whose trans-
verse component is circularly polarized at any plane z

is obtained, if and only if the incident beam satisfies

g1�θ;ϕ� � g2�θ;ϕ��tan θ∕2�2e−2iϕ; (11)

or

g2�θ;ϕ� � g1�θ;ϕ��tan θ∕2�2e2iϕ: (12)

Note that recently, an experimental implementation of
such beams has been reported [18]. Let us next consider
a quasi-monochromatic statistically stationary incident
beam characterized by means of the 2 × 2 matrix Ĝ, de-
fined as

Ĝ�θ1;ϕ1; θ2;ϕ2� � hg†�θ1;ϕ1�g�θ2;ϕ2�i; (13)

where the dagger † stands for transpose complex conju-
gate; and the angular brackets indicate statistical aver-
age. Matrix Ĝ is related with the 2 × 2 cross spectral
density matrix Ŵ0 of the incident beam [19] by means of

Ĝ � U0Ŵ0U
†

0; (14)

with

Û0 �
1���
2

p
�
1 i

1 −i

�
: (15)

Therefore, Ĝ contains the coherence-polarization fea-
tures of the input paraxial beam. Taking into account
Eq. (7), the coherence-polarization properties of the fo-
cused field are fully contained in the 3 × 3 cross-spectral
density matrix Ŵc given by

Ŵc�r1;φ1; r2;φ2; z� � hE†
c�r1;φ1; z�Ec�r2;φ2; z�i: (16)

From Eqs. (9), (13), and (15), it follows that Ŵc and Ĝ are
related, by means of

Ŵc�r1;φ1;r2;φ2;z�

� jAj2
Z

θ0

0

Z
θ0

0

Z
2π

0

Z
2π

0
Â�θ1;ϕ1�†Ĝ�θ1;ϕ1;θ2;ϕ2�Â�θ2;ϕ2�

×P�θ1�P�θ2�e−ikr1·s1eik1r2·s2 sin θ1 sin θ2dθ1dθ2dϕ1dϕ2:

(17)

Note that rj � �rj cos ϕj ; rj sin ϕj ; z� and sj � �sin θj
cos φj ; sin θj sin φj;−cosj θj� with j � 1, 2. Equation (17)
is one of the main results of this Letter. This formula
provides the relationship between the properties of
coherence-polarization of the incident beam. and the fo-
cused field, in terms of the circular polarization content.
It appears especially suitable for designing some pre-
determined features of the field at the vicinity of the focal
region.

Next, we turn our attention to obtain a nonpolarized
field on the axis. Taking Eq. (17) into account, the cross
spectral density matrix on axis can be written as
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Ŵc�0; z� � jAj2
Z

θ0

0

Z
θ0

0

Z
2π

0

Z
2π

0
Â�θ1;ϕ1�†Ĝ�θ1;ϕ1; θ2;ϕ2�

× Â�θ2;ϕ2�P�θ1�P�θ2�e−ikz cos θ2eikz cos θ1 sin θ1

× sin θ2dθ1dθ2dϕ1dϕ2: (18)

Then, in order to have a nonpolarized field on axis, it is
sufficient that Ŵ c�0; z� takes the form

Ŵ c�0; z� � J�0; z�Î3; (19)

where Î3 is the 3 × 3 identity matrix; and J�0; z� is any pos-
itive function. It is important to stress that for a nonpolar-
ized incident beam, the field on axis is partially polarized.
Let us consider an incident beam, whose cross spectral

density matrix Ĝ is given by

Ĝ�θ1;ϕ1; θ2;ϕ2� � B̂
†�θ1;ϕ1�Ĝ0�θ1;ϕ1; θ2;ϕ2�B̂�θ2;ϕ2�;

(20)

being

Ĝ0�θ1;ϕ1; θ2;ϕ2� � g�θ1; θ2��2 sin θ1 sin θ2Î2

� cos θ1 cos θ2F�ϕ1�†F�ϕ2��: (21)

In this Letter, g�θ1; θ2� is a nonnegative definite function,
fulfilling g�θ1; θ2�� � g�θ2; θ1�; Î2 is the 2 × 2 identity
matrix; F is the row vector F�ϕ� � �e−iϕ; eiϕ�; and B̂ is
the 2 × 2 matrix defined as

B̂�θ;ϕ� �
�

cos2�θ∕2� sin2�θ∕2�e2iϕ
sin2�θ∕2�e−2iϕ cos2�θ∕2�

�
: (22)

From a physical point of view, Ĝ0 represent the inco-
herent superposition, with different weights, of both an
unpolarized beam and a totally polarized beam; as a re-
sult of superposition, the total field is partially polarized
nonuniformly. In fact, the conventional two-dimensional
(2D)-degree of polarization takes the form

P2d�θ� �
cos2 θ

1� sin2 θ
: (23)

If this beam passes through an optical element, whose
Jones matrix is given by Eq. (22), then the cross spectral
density matrix Ĝ is given by Eq. (21). To experimentally
implement Ĝ, it is important point out that in this Letter,
the cross spectral density matrix is handled within the
framework of its circular components. Finally, by substi-
tuting Eq. (20) into Eq. (17), the elements of matrix
Ŵc�r;φ; r;φ; z� are obtained

Ŵc�r;φ; r;φ; z�11 � Ŵc�r;φ; r;φ; z�22
�

Z
θ0

0

Z
θ0

0
K�θ1; θ2; z�g�θ1; θ2��2 sin 2θ1 sin 2θ2J0�kr sin θ1�J0�kr sin θ2�

�4 cos2 θ1 cos2 θ2J1�kr sin θ1�J1�kr sin θ2��dθ1dθ2 (24)

Ŵc�r;φ; r;φ; z�12 � Ŵc�r;φ; r;φ; z��21
� 4e2iφ

Z
θ0

0

Z
θ0

0
K�θ1; θ2; z�g�θ1; θ2�cos2 θ1 cos2 θ2J1�kr sin θ1�J1�kr sin θ2��dθ1dθ2; (25)

Ŵc�r;φ; r;φ; z�13 � Ŵc�r;φ; r;φ; z��31 � 2
���
2

p
ieiφF�r; z�; (26)

Ŵ c�r;φ; r;φ; z�23 � Ŵ c�r;φ; r;φ; z��32 � 2
���
2

p
ie−iφF�r; z�; (27)

Ŵ c�r;φ; r;φ; z�33 �
Z

θ0

0

Z
θ0

0
K�θ1; θ2; z�g�θ1; θ2��8 sin2 θ1 sin2 θ2J1�kr sin θ1�J1�kr sin θ2�

�2 sin 2θ1 sin 2θ2J0�kr sin θ1�J0�kr sin θ2��dθ1dθ2; (28)

where we denote

K�θ1; θ2; z� � π2jAj2P�θ1�P�θ2�e−ikz cos θ2eikz cos θ1 sin θ1 sin θ2; (29)
and

F�r;φ� �
Z

θ0

0

Z
θ0

0
K�θ1; θ2; z�g�θ1; θ2��sin 2θ1 sin2 θ2J0�kr sin θ1�J1�kr sin θ2�

− sin 2θ2 cos2 θ1J1�kr sin θ1�J0�kr sin θ2�dθ1dθ2�: (30)

Then, on axis we get

Ŵc�0; z� � 2Î3

Z
θ0

0

Z
θ0

0
K�θ1; θ2; z�g�θ1; θ2�sin2 θ1 sin2 θ2dθ1dθ2: (31)
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Hence, regardless of the form of function g, we always
have an unpolarized field on axis. However, out of axis
the field exhibits nonuniform partial polarization.
In order to illustrate the behavior of this kind of beams,

the 3D-degree of polarization P3D and the profile of the
transversal (It � W11 �W22), longitudinal (Iz � W33),
and total (IT � It � Ir) irradiances are calculated as a
function of r. Although several measures for the 3D-
degree of polarization have been proposed (see, for
instance, [20] and references therein), in what follows
the P3D is calculated according to Eq. (32) [3,8]

P2
3D � 3

2

�
tr�WcWc�
�trWc�2

−

1
3

�
: (32)

In this way, it is possible to compare the results, pre-
sented in Figs. 2 and 3, with those obtained when dealing
with other problems that require the calculation of the
3D-degree of polarization (see, for instance, [8]).
In the cases analyzed, a factorizable function g is

selected

g�θ1; θ2� � g0�θ1�g0�θ2�; (33)

being g0 of Gaussian profile, i.e.,

g0�θ� � exp
�
−

sin θ

f 0 sin θ0

�
2
; (34)

where f 0 is the so-called filling factor. Figures 2 and 3
show the irradiance profiles and P3D, for f 0 � 0.5 and
f 0 � 2, respectively. In Figs. 2 and 3, z � 0 and θ0 � π∕2.
Regarding the behavior of the 3D-degree of polariza-

tion for f 0 � 0.5, P3D is equal to zero on axis, as expected.
Then, its value rises until P3D ≈ 1, for r > 0.8λ. For the
case f 0 � 2, P3D � 0 at z � 0. P3D reaches a maximum
at r ≈ 1.2λ, but suddenly drops and again reaches a maxi-
mum. Then, an incident partially polarized beam produ-
ces a field at the focal region, whose degree of
polarization ranges from zero to nearly 1. This oscillating
behavior is in consonance with what is described in [8].
In summary, we developed a theoretical framework for

designing partially polarized fields in the focal area. In

particular, we centered our attention in a family of beams
that remain unpolarized, on the axis of a high NA objec-
tive lens. Numerical results corroborate that out of the
axis, the field remains partially polarized.

This Letter has been supported by the Ministerio de
Ciencia e Innovación of Spain, project FIS2010-17543,
and Ministerio de Economía y Competitividad projects
FIS2013-46475.
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Fig. 2. Irradiance profiles IT (blue), It (green), Iz (red), and
3D-degree of polarization P3D (turquoise); θ0 � π∕2, f 0 � 0.5,
and z � 0.

Fig. 3. Irradiance profiles IT (blue), It (green), and Iz (red).
3D-degree of polarization P3D (turquoise); θ0 � π∕2, f 0 � 2,
and z � 0.
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