Unit IV: Optimization. Solutions

Exercise 1.

\[A = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 5 & 2 \\ 2 & 9 & 0 \end{pmatrix} \]

Exercise 2.

\[q(x, y, z) = 2x^2 + 5y^2 + 2xy + 8xz + 3yz \]

Exercise 3. Positive definite

Exercise 4. Positive semidefinite

Exercise 5.

\[
\begin{align*}
\text{Positive definite} & \quad \text{if } -2\sqrt{6} < a < 2\sqrt{6} \\
\text{Positive semidefinite} & \quad \text{if } a = \pm 2\sqrt{6} \\
\text{Indefinite} & \quad \text{if } a < -2\sqrt{6} \text{ or } a > 2\sqrt{6}
\end{align*}
\]

Exercise 6.

\[
\begin{align*}
\text{Negative definite} & \quad \text{if } -\sqrt{15} < a < \sqrt{15} \\
\text{Negative semidefinite} & \quad \text{if } a = \pm \sqrt{15} \\
\text{Indefinite} & \quad \text{if } a < -\sqrt{15} \text{ or } a > \sqrt{15}
\end{align*}
\]

Exercise 7.

a) \(B \) is an indefinite quadratic form. Then, by definition there is a production level at which the benefits of the company will be negative.

b) Setting \(y = 4x \) we have that \(B(x, y) = 19x^2 \) which is a positive definite form. Then, the benefits of the company will always be positive.

Exercise 8.

a) The Extreme Value Theorem can be applied because \(f \) is continuous in \(A \) and \(A \) is a compact set. Then, \(\exists p, q \in A \) such that \(\forall x \in A, f(p) \leq f(x) \leq f(q) \), in other words, we know that there are both a global maximum and a global minimum in \(A \).

b) The Extreme Value Theorem cannot be applied because \(f \) is not continuous in \(B \).

c) The Extreme Value Theorem cannot be applied because \(C \) is not compact (it is not bounded).
Exercise 9.

a) The Extreme Value Theorem cannot be applied because A is not compact (it is not bounded).

b) The Extreme Value Theorem can be applied because f is continuous in \mathbb{R}^2 (in particular, it is continuous in B) and B is a compact set. Then, $\exists p, q \in B$ such that $\forall x \in B$, $f(p) \leq f(x) \leq f(q)$, in other words, we know that there are both a global maximum and a global minimum in B.

c) The Extreme Value Theorem cannot be applied because C is not compact (it is not closed).

Exercise 10. The Extreme Value Theorem cannot be applied because the domain of f:

$$\text{Dom}(f) = \{(x, y) \in \mathbb{R}^2 : (x - 1)^2 + (y - 1)^2 - 9 \geq 0\}$$

is not compact (it is not bounded).

Exercise 11. If $-6 \leq a \leq 6$ ($a \in [-6, 6]$) the Extreme Value Theorem cannot be applied because f is not continuous in A. In any other case the Extreme Value Theorem can be applied, that is, if $a < -6$ or $a > 6$ we can ensure the existence of a global maximum and a global minimum of f in A.

Exercise 12.

a) $(0, 0)$ and $(0, 4)$ are saddle points and $(-1, 2)$ is a local minimum.

b) $(0, 0)$ is the only stationary point of f but we cannot classify it precisely. We can only say that it is either a local minimum or a saddle point.

c) There is no stationary point.

d) $(-6/5, 2/5)$ is a saddle point.

e) $(-2/5, -6/5, 0)$ is a saddle point.

Exercise 13. Studying the Hessian matrix of f we find out that f is concave in $\{(x, y) \in \mathbb{R}^2 : x \geq 0, y \geq 0, \text{ and } xy - 1 \geq 0\}$ and convex in $\{(x, y) \in \mathbb{R}^2 : x \leq 0, y \leq 0, \text{ and } xy - 1 \geq 0\}$. Then, we conclude that

a) f is neither concave nor convex in A.

b) f is neither concave nor convex in B.

c) f is concave in C because $C \subseteq \{(x, y) \in \mathbb{R}^2 : x \geq 0, y \geq 0, \text{ and } xy - 1 \geq 0\}$.

d) f is convex in D because $D \subseteq \{(x, y) \in \mathbb{R}^2 : x \leq 0, y \leq 0, \text{ and } xy - 1 \geq 0\}$.
Exercise 14.

a) $(0, 0)$ is the global minimum of f in \mathbb{R}^2.

b) $(1, 0)$ is the global minimum of f in \mathbb{R}^2.

c) $(8/3, 8/3)$ is the global minimum of f in \mathbb{R}^2.

d) $(8, 8)$ is the global minimum of f in \mathbb{R}^2.

Exercise 15. The profit of the monopolist is maximum when $q = 60$ units are produced and sold at price $p = 590$.

Exercise 16.

a) The profit function of the company is given by $B(q_A, q_B) = -7q_A^2 - 6q_B^2 + 70q_A + 60q_B - 2$, where q_A and q_B are the quantities of goods A and B produced, respectively.

b) The profit of the company is maximum when $q_A = q_B = 5$ units of each commodity are produced and sold at prices $p_A = 55$ and $p_B = 42$.

Exercise 17. The global minimum of f in A is attained at point $(-1, 2)$.