Unit II: The Euclidean Space

Exercise 1. Compute, whenever possible, the inner product of vectors \vec{u} and \vec{v} when

a) $\vec{u} = (2,5,6)$ and $\vec{v} = (3,1,1)$ b) $\vec{u} = (4,2)$ and $\vec{v} = (5,6)$ c) $\vec{u} = (1,3,1)$ and $\vec{v} = (5,2)$ d) $\vec{u} = (2,2,0)$ and $\vec{v} = (3,-3,1)$

Exercise 2. Let $\vec{u} = (-3, 1, 2)$, $\vec{v} = (5, 0, 3)$, $\lambda = 2$, and $\mu = 4$. Compute

a) $(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v})$ b) $(\vec{u} \cdot \vec{v}) \cdot \vec{v}$ c) $(\lambda \vec{u}) \cdot (\mu \vec{v})$ d) $[\lambda (\vec{u} + \vec{v})] \cdot (\mu \vec{v})$

Exercise 3. Study whether the vectors \vec{u} and \vec{v} are orthogonal (perpendicular) or not in the following cases

a) $\vec{u} = (4,1)$ and $\vec{v} = (-4,1)$	e) $\vec{u} = (2,3)$ and $\vec{v} = (3,-2)$.
b) $\vec{u} = (2, 1, 2)$ and $\vec{v} = (-2, -1, -2)$	f) $\vec{u} = (1, 2, 3)$ and $\vec{v} = (-4, -2, 3)$.
c) $\vec{u} = (3, 1, -2)$ and $\vec{v} = (1, 5, 4)$	g) $\vec{u} = (2, -1, 1)$ and $\vec{v} = (3, 2, -2).$
d) $\vec{u} = (3,5,1)$ and $\vec{v} = (0,0,0)$	h) $ec{u} = (2, -1, 1, 3)$ and $ec{v} = (0, 0, 0, 0)$.

Exercise 4. Find the value of the parameter k that makes the inner product of vectors (3, k, k) and (1, -3, k) equal to 1.

Exercise 5. Find the values of the parameter k so that the inner product of the vectors $\vec{u} = (-1, k, 2)$ and $\vec{v} = (k, 1, k)$ equals 2.

Exercise 6. For what values of the parameter k are the vectors $\vec{u} = (k, 4, 5)$ and $\vec{v} = (k, -k, -1)$ orthogonal?

Exercise 7. Find the values of the parameter k for which the vectors $\vec{u} = (-1, k, 1)$ and $\vec{v} = (k, k, -6)$ are orthogonal?

Exercise 8. Let (a, b) and (c, d) be two orthogonal vectors of \mathbb{R}^2 . Show that the vectors are linearly independent.

Exercise 9. Given $\vec{u} = (1, -2, 3)$ and $\vec{v} = (4, 0, 1)$, compute

a)	$\ ec{u}\ $ and $\ ec{v}\ $	<i>C</i>)	$\ \vec{u}-\vec{v}\ $
b)	$\ 2\vec{u}\ $	d)	$\ 2\vec{u} + \vec{v}\ $

M. Álvarez Mozos

Exercise 10. Let $\vec{u} = (2, 3, 4)$ and $\vec{v} = (3, 3, 2)$. Compute

a)	$\ ec{u}\ $ and $\ ec{v}\ $	<i>C</i>)	$\ -3\vec{u}\ $
b)	$\ 3\vec{u}\ $	d)	$\ \vec{u}+\vec{v}\ $

Exercise 11. Check that the Schwartz and Triangle inequalities hold for the particular case of $\vec{u} = (1, -2, 3)$ and $\vec{v} = (4, 0, 1)$.

Exercise 12. Check that the Schwartz and Triangle inequalities hold for the particular case of $\vec{u} = (1,3,4)$ and $\vec{v} = (0,-4,-3)$.

Exercise 13. Normalize the following vectors $\vec{u} = (2, 5)$ and $\vec{v} = (1, 2, 2)$.

Exercise 14. Normalize the vectors $\vec{u} = (2, 1, -2)$ and $\vec{v} = (4, -4, -4, 4)$.

Exercise 15. Check if the following set of vectors is an orthogonal basis of \mathbb{R}^3 :

$$\{(1,1,0), (1,-1,2), (-2,2,2)\}.$$

Exercise 16. Check if the following set is an orthonormal basis of \mathbb{R}^3 :

$$\{(1,0,0), (0,6,8), (0,-8,6)\}.$$

Exercise 17. Check if the following set of vectors is an orthonormal basis of \mathbb{R}^3 :

$$\left\{ (0,0,-1), \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right), \left(\frac{\sqrt{2}}{2}, \frac{-\sqrt{2}}{2}, 0\right) \right\}.$$

Exercise 18. Find the value(s) of the parameter k for which the norm of the vector (-4, k, 0) is equal to 5?

Exercise 19. Find the angle between the vectors $\vec{u} = (1, 0, 1)$ and $\vec{v} = (4, 3, 0)$.

Exercise 20. Find the values of k that make the norm of the vector $\vec{u} = (3, -2, k)$ equal to 20.

Exercise 21. Compute the angle between the vectors $\vec{u} = (4, 2, -6)$ and $\vec{v} = (0, 3, -1)$.

Exercise 22. Compute the angle between the vectors $\vec{u} = (0, 1, 1)$ and $\vec{v} = (1, 0, 1)$.

Exercise 23. Find the angle between the vectors $\vec{u} = (2, 0, 2)$ and $\vec{v} = (3, 0, 3)$.

Exercise 24. Find the distance between the vectors $\vec{u} = (3, 1, -2)$ and $\vec{v} = (0, 1, 2)$.

Exercise 25. Find the value of k for which the angle between the following vectors is 60° :

$$\vec{u} = (1,0,1) \quad \text{and} \quad \vec{v} = (k,1,0).$$

M. Álvarez Mozos

Exercise 26. Compute the distance between the vectors $\vec{u} = (3, 0, 5)$ and $\vec{v} = (7, 2, 1)$.

Exercise 27. Find the value of k for which the distance between the following vectors is 5:

$$\vec{u} = (5, k)$$
 and $\vec{v} = (8, 1)$.

Exercise 28. Find the value of k for which the distance between the following two vectors is 4:

$$\vec{u} = (0, -2, k)$$
 and $\vec{v} = (k, 1, 0)$.

Exercise 39. Find the value (or values) of k for which the distance between the following two vectors is 13:

$$\vec{u} = (k, 2, k)$$
 and $\vec{v} = (1, 2, -k)$.