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Abstract: The aim of this paper is to provide a formal framework for
designing highly focused fields with specific transversal features when the
incoming beam is partially polarized. More specifically, we develop a field
with a transversal component that remains unpolarized in the focal area.
Special attention is paid to the design of the input beam and the development
of the experiment. The implementation of such fields is possible by using
an interferometric setup combined with the use of digital holography tech-
niques. Experimental results are compared with those obtained numerically.
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1. Introduction

Three dimensional electromagnetic field distributions generated at the focal region of a high nu-
merical aperture (NA) focused system has been extensively investigated in the last years [1–21].
Non-paraxial fields have demonstrated very useful in many fields for instance in high-resolution
microscopy, particle trapping, high-density recording, tomography, electron acceleration, non-
linear optics, and optical tweezers. In most of the cases the study is concentrated on fully polar-
ized fields. However, partially polarized tightly focused fields are attracting some more atten-
tion [22–28]. Tailoring three dimensional vectorial electromagnetic distributions with specified
characteristics (shape, polarization, coherence, angular moment, etcetera) requires a careful de-
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sign of the incident beam. The objective of this paper is to develop a method for designing
focused fields with a non-polarized transversal component at any plane in the focal area and
a non-zero longitudinal component on axis. This kind of fields may be useful in tomography,
plasmonics spectroscopy, or invisibility cloaking [29–31].

Very recently we developed a framework for analyzing focused fields with specific polariza-
tion features when the optical system is illuminated with partially polarized light. This method
relates the circular content of the incident beam with the circular and longitudinal components
of the focused field [32]. Using this formalism, in this paper we derive analytical expressions
that link the coherence-polarization properties of a quasi-monochromatic statistically stationary
incident beam and the transversal part of a focused field. Taking these equations into account,
we provide sufficient conditions for the incident beam so as to obtain fields in the focal area
whose transversal component remains unpolarized for any z. These class of beams are imple-
mented experimentally by means of spatial light modulators (SLM) displaying computer gen-
erated holograms. Numerical calculations and experimental results are compared and analysed.

Accordingly, the paper is organized as follows: in section 2 we review the description of
highly focused partially polarized beams in terms of the angular spectrum. In section 3, this
framework is used for designing focused fields whose transversal part remains unpolarized for
any z. Section 4 includes an explanation of the optical setup used for generating these kind of
beams. Experimental results are presented and discussed. Finally, the main conclusions of this
paper are summarized in section 5.

2. Review of basic concepts

The electric field distribution at any point in the focal region of a high numerical aperture
focusing system is given by the well know Richards-Wolf integral [33]

E(r,ϕ,z) = A

θ0∫
0

2π∫
0

P(θ)E0 (θ ,φ)eik sinθr cos(ϕ−φ)e−ik cosθz sinθdθdφ , (1)

where A is a constant, related to the focal length and the wavelength, k is the wave number, r and
ϕ denote here the polar coordinates at the focal plane, and angles φ , θ and θ0 are represented in
Fig. 1. P(θ) denotes the so called apodization function obtained from energy conservation and
geometric considerations. According to the characteristics of the problem, it can be advisable
to write the angular spectrum E0 in terms of the circular content of the beam instead of using
the conventional radial and azimuthal description [34]:

E0 (θ ,φ) = g1 (θ ,φ)v1 (θ ,φ)+g2 (θ ,φ)v2 (θ ,φ) , (2)

where g1 and g2 are, respectively, the right-hand and left-hand circular components of the inci-
dent field and v1 and v2 are mutually orthogonal unitary vectors that can be described in terms
of the radial and azimuthal vectors e1 and e2 by means of

v1 (θ ,φ) =
eiφ
√

2
(e2 + ie1) (3a)

v2 (θ ,φ) =
e−iφ
√

2
(e2− ie1) , (3b)

where
e1 (φ) = (−sinφ ,cosφ ,0) (4a)

e2 (θ ,φ) = (cosθ cosφ ,cosθ sinφ ,sinθ) . (4b)
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vm(θ ,φ)exp(ikr · s) (m = 1,2) are circularly polarized planar waves propagating along the di-
rection defined by s = (sinθ cosφ ,sinθ sinφ ,−cosθ). Angular spectrum E0 can be understood
as the superposition of right and left circularly polarized plane waves. Notice that in the parax-
ial limit (θ → 0), v1 =

1√
2
(1, i,0) and v2 =

1√
2
(1,−i,0) are the usual transversal circular plane

waves.

Fig. 1. Geometry, bases and variables involved.

The use of this circular basis is particularly useful in the analysis of the angular momentum
and when dealing with vortex beams [34–36]. Moreover, this basis is very suitable for designing
the polarization characteristics of the transverse component of a highly focused beam [18, 32].
We rewrite the field at the vicinity of the focus plane E as follows:

E = Ec


1√
2

i√
2

0

1√
2
−i√

2
0

0 0 1

 . (5)

where Ec = (E+,E−,Ez); here E+ and E− represent the right and left circular content of the
transverse field at the vicinity of the focus plane, and Ez is the magnitude of the longitudinal
component. Taking into account Eqs. (2) and (5), Eq. (1) is rewritten as

Ec (r,ϕ,z) = A

θ0∫
0

2π∫
0

g(θ ,φ)Â(θ ,φ)P(θ)eik sinθr cos(φ−ϕ)e−ik cosθz sinθdθdφ , (6)

where g = (g1,g2) and Â(θ ,φ) is a 2x3 matrix given by

Â(θ ,φ) =

(
cos2(θ/2) −sin2(θ/2)e2iφ 1√

2
sinθeiφ

−sin2(θ/2)e−2iφ cos2(θ/2) 1√
2

sinθe−iφ

)
. (7)

Thus, Eq. (6) relates the circular components of incident field with the circular and longitudinal
content of focused field.

Let us next consider a quasi-monocromatic statistically stationary incident beam. On the one
hand, the coherence-polarization features of the input paraxial beam are characterized by means
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of the 2x2 matrix Ĝ defined as

Ĝ(θ1,φ1,θ2,φ2) =
〈
g†(θ1,φ1)g(θ2,φ2)

〉
, (8)

where the dagger † stands for transpose complex conjugate and the angular brackets indicate
statistical average. On the other hand, the coherence-polarization properties of the focused field
are fully contained in the 3x3 cross-spectral density matrix Ŵc given by

Ŵc(r1,ϕ1,r2,ϕ2,z) =
〈
Ec

† (r1,ϕ1,z)Ec (r2,ϕ2,z)
〉
. (9)

By using Eqs. (6), (8) and (9) the relationship between Ŵc and Ĝ is obtained:

Ŵc(r1,ϕ1,r2,ϕ2,z) = |A|2
θ0∫

0

θ0∫
0

2π∫
0

2π∫
0

Â(θ1,φ1)
† Ĝ(θ1,φ1,θ2,φ2)Â(θ2,φ2)

P(θ1)P(θ2)exp(−ikr1 · s1)exp(ik1r2 · s2)sinθ1 sinθ2dθ1dθ2dφ1dφ2 . (10)

where r j = (r j cosφ j,r j sinφ j,z) and s j = (sinθ j cosϕ j,sinθ j sinϕ j,−cosθ j) with j = 1,2. Eq.
(10) relates coherence-polarization properties of the incident and the focused field in terms of
the circular polarization content.

3. Focused fields with unpolarized transversal component

In this section we concentrate on the transverse field components of Eq. (10):

ŴcT (r1,ϕ1,r2,ϕ2,z) = |A|2
θ0∫

0

θ0∫
0

2π∫
0

2π∫
0

ÂT (θ1,φ1)
† Ĝ(θ1,φ1,θ2,φ2)ÂT (θ2,φ2)

P(θ1)P(θ2)exp(−ikr1 · s1)exp(ikr2 · s2)sinθ1 sinθ2dθ1dθ2dφ1dφ2 . (11)

where ŴcT is a 2x2 matrix containing the transverse part of Ŵc, and ÂT is the 2x2 matrix defined
as

ÂT (θ ,φ) =

(
cos2(θ/2) −sin2(θ/2)e2iφ

−sin2(θ/2)e−2iφ cos2(θ/2)

)
. (12)

Let us now introduce ĜT defined as

ĜT (θ1,φ1,θ2,φ2) = ÂT (θ1,φ1)
† Ĝ(θ1,φ1,θ2,φ2)ÂT (θ2,φ2) (13)

thus Eq. (11) can now be written in a more compact way

ŴcT (r1,ϕ1,r2,ϕ2,z) = |A|2
θ0∫

0

θ0∫
0

2π∫
0

2π∫
0

ĜT (θ1,φ1,θ2,φ2)P(θ1)P(θ2)

exp(−ikr1 · s1)exp(ikr2 · s2)sinθ1 sinθ2dθ1dθ2dφ1dφ2 . (14)

To analyse the polarization of the transversal component we write the matrix ŴcT (r,ϕ,r,ϕ,z),
namely ŴcT (r,ϕ,z), in terms of the circular Stokes parameters Cn(r,z) = tr

(
ŴcT (r,ϕ,z)σn

)
with n = 0,1,2,3; σn are the Pauli matrices [37]. According to Eq. (14),

Cn(r,z) = |A|2
θ0∫

0

θ0∫
0

2π∫
0

2π∫
0

CnT (θ1,φ1,θ2,φ2)P(θ1)P(θ2)

exp(−ikr1 · s1)exp(ikr2 · s2)sinθ1 sinθ2dθ1dθ2dφ1dφ2 (15)
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being CnT

CnT (θ1,φ1,θ2,φ2) = tr
(

ĜT (θ1,φ1,θ2,φ2)σn

)
. (16)

CnT are the so-called circular generalized Stokes parameters as they are the analogue of the gen-
eralized Stokes parameters [37]. Eq. (15) is one of the main results of this paper, since provides
the relationship between the polarization properties of the incident beam and the transversal
part of focused field, in terms of the circular Stokes parameters.

An interesting application of the formalism developed above is the design of a a field in the
focal area whose transversal part is non-polarized. Taken Eq. (15) into account, the transversal
field is unpolarized when Cn(r,z) = 0 for n = 1,2,3. To this end we consider a beam whose
circular generalized Stokes parameters are given by

C0T (θ1,φ1,θ2,φ2) = 4h(θ1,θ2)cos(m(φ1−φ2)) (17a)

C1T (θ1,φ1,θ2,φ2) = 4ih(θ1,θ2)sin(m(φ1−φ2)) (17b)

C2T (θ1,φ1,θ2,φ2) =C3T (θ1,φ1,θ2,φ2) = 0 (17c)

here h(θ1,θ2) is a nonnegative definite function fulfilling h(θ1,θ2) = h(θ2,θ1)
∗. These Stokes

parameters correspond to a matrix ĜT given by

ĜT (θ1,φ1,θ2,φ2) = h(θ1,θ2)Û†(φ1)Û(φ2) (18)

where

Û(φ) =

(
−ie−imφ ieimφ

e−imφ eimφ

)
. (19)

Substituting Eq. (17) into (15) we get

C0(r,z) = 16π
2 |A|2

θ0∫
0

θ0∫
0

P(θ1)P(θ2)h(θ1,θ2)Jm(kr sinθ1)Jm(kr sinθ2)

exp(−ikrzcosθ2)exp(ikzcosθ1)sinθ1 sinθ2dθ1dθ2 (20a)

C1(r,z) =C2(r,z) =C3(r,z) = 0 (20b)

Hence, a field whose transversal part is unpolarized for any z and vanishes on axis is obtained,
regardless of the form of function h. According to Eqs. (13) and (18), the matrix of incident
beam Ĝ now reads

Ĝ(θ1,φ1,θ2,φ2) = h(θ1,θ2)
(

ÂT (θ2,φ2)
†
)−1

Û†(φ1)Û(φ2)ÂT (θ2,φ2)
−1 . (21)

Using Eqs. (10) and (21), and after some calculations, the following expression for the longitu-
dinal component of the focused field is obtained:

Ŵc(r1,ϕ1,r2,ϕ2,z)zz = 8π
2 |A|2 cos((m−1)(ϕ1−ϕ2))

θ0∫
0

θ0∫
0

P(θ1)P(θ2)h(θ1,θ2) tanθ1 tanθ2

exp(−ikrzcosθ2)exp(ikzcosθ1)Jm−1(kr1 sinθ1)Jm−1(kr2 sinθ2)sinθ1 sinθ2dθ1dθ2 (22)
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From Eq. (22) we conclude that, on axis, the irradiance of the longitudinal component vanishes
when m 6= 1. However, for m = 1 the field is purely longitudinal on axis, and its irradiance
becomes

I(0,z) = tr(Ŵc(0,ϕ,0,ϕ,z)) = 8π
2 |A|2

θ0∫
0

θ0∫
0

P(θ1)P(θ2)h(θ1,θ2) tanθ1 tanθ2

exp(−ikrzcosθ2)exp(ikzcosθ1)sinθ1 sinθ2dθ1dθ2 (23)

Since fields with longitudinal component are relevant in several applications, from this point
onwards, we analyse the case m = 1 thus Eq. (21) becomes

Ĝ(θ1,φ1,θ2,φ2) = h(θ1,θ2)

(
aei(φ1−φ2) bei(φ1+φ2)

be−i(φ1+φ2) ae−i(φ1−φ2)

)
(24)

with
a = 1+ cosθ1 cosθ2
b = 1− cosθ1 cosθ2

(25)

A calculation of the beam proposed in Eq. (24) has been carried out using Eq. (10) and assum-
ing a constant value for function h. The results are presented in Fig. 2. The first row shows the
intensity of the focused field at z = 0 and z = 2λ , i.e. tr(Ŵc(r,ϕ,r,ϕ,z)). In the second row, the
profiles of the irradiance and the transversal Ŵc(r,ϕ,r,ϕ,z)11 +Ŵc(r,ϕ,r,ϕ,z)22 and longitu-
dinal components Ŵc(r,ϕ,r,ϕ,z)zz are presented. Note that for the beams we are handling, the
magnitudes presented here only depend on r and z. As expected, the intensity of the transverse
component is always zero at r = 0. In the next section a practical implementation of such kind
of beams is explained.

4. Experimental implementation

Figure 3 depicts an experimental setup based on a Mach-Zehnder interferometer able to gen-
erate arbitrary spatially-variant polarized focused beams. An extended explanation on how this
system is used to generate beams with arbitrary polarization and shape can be found in [17]. An
unpolarized quasi monochromatic input beam is split into two beams by means of polarizing
beam splitter PBS1. Reflected by mirrors M1 or M2, the split beam passes through wave plates
HWP and QWP which rotate the oscillating plane and set the modulator to the required desired
modulation curve. Then, light passes through a translucent SLM (Holoeye HEO 0017) display-
ing cell-based double-pixel holograms to encode complex transmittances Esx and Esy [38].
Using this holographic procedure, the displays can access nearly all possible complex values
within a circle of transmittance T = 0.3, as explained in [18]. The beams are subsequently re-
combined by means of polarizing beam splitter PBS2 and fed into a 4f system. A spatial filter
removes higher-order terms whereas allowing pass the synthesized field. The irradiance of this
beam can be observed by means of camera CCD1. Afterwards, the beam is focused by means
of a high numerical aperture microscope lens NA=0.85. This objective obeys the sine condition
thus P(θ) =

√
cosθ . The field in the focal area is reflected on a glass surface and imaged on

camera CCD2. Polarization analysis is carried out by means of polarizer LP and a quarter-wave
plate.

In order to synthesize the beam of Eq. (24) the following complex valued distributions are
coded on each SLM

Esx = isinφ cosθ + cosφ (26a)

Esy =−icosφ cosθ + sinφ (26b)
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Fig. 2. Numerical simulation of Eq. (10) for the beam proposed in Eq. (24), NA=0.85. First
row: false color representation of the intensity at z = 0 and z = 2λ ; second row: profiles of
the irradiance and the transversal and longitudinal components.

The observation plane (a cover slip) is mounted on a stage that enables to modify the ob-
servation distance z. Figure 4 shows the profile of C0 measured at z = 2λ . The distance of the
observation plane with respect to the focal plane is estimated by comparing the experimental
light distribution with the numerical evaluation of the angular average of the transversal irra-
diance. As shown in Fig. 4, the model developed reproduces with precision the profile of the
transversal irradiance despite the fact that the value of this distribution at r = 0 is not zero. The
intensity detected at the center is compatible with certain amounts of background noise and
spherical aberration of the imaging system. The focal plane cannot be retrieved with enough
accuracy because of the insufficient resolution and limited bandwidth of the camera, and the
lack of precision along the z−axis due to the equipment used.

Figure 5 summarizes the measures of the transversal Stokes parameters. The first row of Fig.
5 shows the parameters of the laser source measured in a plane between the optical fiber and
lens L1. The second and third rows display the Stokes parameters measured in two transverse
planes in the focal area, in particular at z = 2λ and z = 4λ . In the three cases considered,
parameters S1, S2 and S3 are close to zero at any point. Note that parameters C0, C1, C2 and
C3 used in this paper are related to the conventional Stokes parameters by means of S0=C0,
S1=C2, S2=C3 and S3=C1. Table 1 indicates the averaged values of the Stokes parameters. For
completeness, the averaged value of the degree of transversal polarization P2D is also presented.
Accordingly, the source beam is mostly unpolarized and the behavior of the Stokes parameters
in the focal area is compatible with our thesis: the transverse component of the focused field
remains unpolarized on axis.
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Fig. 3. Experimental setup
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Fig. 4. Experimental C0 distribution at the focal area z = 2λ .

Table 1. Averaged normalized Stokes parameters.
S1 S2 S3 P2D

He-Ne laser source -0.06 0.04 0.04 0.10
z = 2λ 0.08 -0.02 0.01 0.08
z = 4λ -0.04 0.03 -0.01 0.10

5. Concluding remarks

We developed a suitable framework for designing some transversal features of the field distribu-
tion in the focal region of a high numerical aperture lens when the incoming beam is partially
polarized. In particular, we propose a field with a non-polarized transversal part that preserves
this characteristic for any z and non-zero longitudinal component on axis. The combined use of
an interferometric setup for generating beams with arbitrary polarization and digital holography
techniques enables the generation of such field in practice. Numerical and experimental results
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Fig. 5. Measure of the transversal Stokes parameters. First row: laser source; second and
third rows: focal area of the microscope lens.

are provided, showing a good agreement between theoretical predictions and the experimental
behavior of the beam.
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