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Human-induced changes at sea – through fishery
activities, climate change, and release of hazardous

contaminants, such as metals and persistent organic pol-
lutants (POPs) – are altering the structure and stability of
the marine food web (Halpern et al. 2008; Lotze et al.
2011). Apical marine predators (eg Figure 1) are particu-
larly sensitive to anthropogenic impacts because of their
specific life-history traits, such as long life expectancy,
delayed maturity, high rates of adult survival, and rela-
tively low reproductive rates (Heithaus et al. 2008).
Fisheries for lower-trophic-level species have high eco-
nomical value but are competing for the main resources
of marine predators and can affect the viability of their
populations (Cury et al. 2011). Moreover, longline fishing
and episodic pollutant-associated contamination are
responsible for the direct mortality of hundreds of thou-

sands of predatory fish, seabirds, and marine mammals
worldwide, and are currently driving many species to
unsustainable levels through population declines
(Peterson et al. 2003; Lewison et al. 2004). While this is of
major conservation concern, some marine predators can
also be used to monitor the health of the marine environ-
ment better than other groups of basal-trophic-level
organisms.  For instance, most of these apical species are
exposed to high concentrations of pollutants at the top of
trophic webs and many have very large breeding ranges;
this allows direct comparisons of pollutant levels among
remote areas (Aguilar et al. 2002; Hobson et al. 2004).
These organisms are therefore considered as reliable indi-
cators of the spatiotemporal distribution of marine conta-
minants (eg Roscales et al. 2010). Similarly, those species
undergoing long-distance movements may provide
unique opportunities to compare pollutant levels
between breeding and non-breeding areas, as well as to
identify sources of pollution in remote areas. In addition,
the spatial dynamics of marine top predators have been
reported as an accurate indicator of specific ecosystem-
wide changes linked either directly to bycatch associated
with hooks and nets or indirectly to climate and overfish-
ing (Worm et al. 2005). Thus, marine top predators are
among the best candidates to assess the ocean’s health
and sustainability. However, understanding the underly-
ing drivers and the magnitude of the impacts on the
marine environment and its top predators requires more
comprehensive insight into the feeding ecology and
migration of these organisms.

Trophic and spatial ecology of species has been studied
for decades through the use of conventional methodolo-
gies, such as dietary analyses or animal banding, but these
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In a nutshell:
• Improved knowledge of the spatial distribution and trophic

relationships of marine organisms is required to better under-
stand human-induced changes to the marine environment

• Recent advances in the analysis of biogeochemical markers
in specific tissues provide powerful tools to effectively trace
feeding ecology and migration of marine predators

• Combining multiple tracers and tracking devices in novel
ways can aid the conservation and recovery of marine top
predators, and provide information about the health and sus-
tainability of marine ecosystems
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approaches have often been found to be
unsatisfactory when applied to marine top
predators. Dietary analyses underestimate eas-
ily digestible prey, require exhaustive monitor-
ing over time to study a population’s feeding
habits, and are difficult or impossible to under-
take when species are not breeding. Similarly,
banding programs require a huge banding and
searching effort over time (ie several decades)
but recovery and resighting rates in the open
sea are relatively low, and are biased toward
coastal populated areas. Recent advances in
electronic tracking devices are helping to fill
the current knowledge gap regarding migra-
tion patterns of marine predators (Figure 2;
Block et al. 2011), but tracking studies are usu-
ally restricted to a few breeding individuals,
often tracked for short periods due to logistical
and financial constraints. All of these limita-
tions have led to an increased interest in find-
ing alternative means of investigating the
trophic and spatial ecology of marine top
predators.

n The intrinsic biogeochemical markers

Many chemicals, such as some stable iso-
topes, trace elements, POPs, or lipids, move
through the biotic and abiotic compartments
of an ecosystem and can be detected in ani-
mal tissues. Several of these chemicals are
increasingly used as intrinsic markers, here-
after referred to as tracers, to study the feed-
ing habits or seasonal movements of different
organisms (Figure 1; Fisk et al. 2002; Budge et
al. 2008; Rooker et al. 2008; Ramos et al. 2009a). Although
incapable of providing the taxonomic detail achieved by
dietary samples or the geographic accuracy of bands and
tracking devices, tracers are not hampered by most of the
biases and constraints related to these conventional
approaches. For example, from the point of view of trophic
studies, stable-isotope and fatty-acid analyses of the tissues
of predators provide information about the elements and
compounds assimilated during digestion, avoiding biases
related to prey digestibility. Such analyses can also inte-
grate dietary information from days to years, depending on
their biochemical properties and the regeneration rate (ie
turnover) of the target tissue (Figure 3; Newsome et al.
2007; Caut et al. 2009; Williams and Buck 2010). Regarding
advantages for spatial ecology, tracer analyses can be con-
ducted extensively on virtually any individual of any
species, do not require subsequent animal recovery, and can
provide information about movements and past locations
(eg breeding or non-breeding areas; Figure 2d) as well as
insights into the species’ diet in previously occupied areas
(Norris et al. 2007; Hobson and Norris 2008). However,
careful selection of intrinsic markers and target tissues is

crucial, given that each tracer and tissue has advantages and
limitations, and its interpretation often involves several
problematic assumptions (Table 1).

n Interest of tracers in trophic ecology

Isotopically speaking, of the 118 known elements, 54
have at least two stable isotopes (ie their nuclides do not
decay with time), but only those elements related to the
biosphere (plants, animals), the hydrosphere (water), and
the atmosphere (gaseous) – ie carbon (C), nitrogen (N),
sulfur (S), hydrogen (H), and oxygen (O) – are relevant
to ecological research. Although the isotopes of elements
have exceedingly similar chemical properties, the slight
difference in their mass results in slight differences in
reaction kinetics and bond energies, and in the end, this
produces differences in isotope abundances in the final
product depending on the initial substrate. This process is
known as isotopic fractionation and – together with other
diverse metabolic phenomena, such as routing processes –
it explains why we are not exactly what we eat – that is,
why the isotopic composition of a consumer’s tissue (final

Figure 1. Uses of intrinsic biogeochemical markers in animal tissues as tracers.
(a) The diet, foraging strategies, and migration of several species of seals
(including the Antarctic fur seal Arctocephalus gazella) are determined by
specific isotopic analysis of certain fatty acids in blubber samples or bulk stable-
isotope analysis in whiskers (Budge et al. 2008; Cherel et al. 2009); (b) natal
origin, connectivity, and migration routes, in addition to feeding ecology of
different populations of critically endangered tuna species (including the Atlantic
bluefin tuna Thunnus thynnus), are investigated by analyzing stable-isotope
signatures and organochlorine tracers (such as PCBs) in both otoliths and muscle
tissue (Ménard et al. 2007; Popp et al. 2007; Rooker et al. 2008; Dickhut et
al. 2009; Olson et al. 2010); (c) specific feeding patterns and dietary shifts over
time can be assessed by determining the elemental and stable-isotope composition
of incrementally growing tissues (such as baleen of North Atlantic minke whales
Balaenoptera acutorostrata; Hobson et al. 2004); and (d) spatiotemporal
assessments of marine pollution can be conducted by analyzing the organochlorine
and mercury content of seabirds with wide foraging ranges (such as the Laysan
albatross, Phoebastria immutabilis; Finkelstein et al. 2006).

(a) (b)

(c) (d)
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product; �Xtissue) and its diet (initial substrate; �Xdiet) dif-
fer quantitatively (Caut et al. 2009). This difference is
called isotopic discrimination (�Xdiet-tissue). Interestingly,
this discrimination occurs at each trophic step, summing
throughout trophic chains (Figure 4), and thus it can
help us to decipher the trophic interactions among
organisms (Newsome et al. 2007; Boecklen et al. 2011).
At a local spatial scale, three main stable isotopes (those
of C, N, and S) are measured to establish dietary origins
and trophic relationships of the species (Table 1). �15N in
the tissues of consumers reflects dietary protein metabo-
lism, and its values are normally used to infer information
about food-web interactions and to show the trophic

positions of species (Figure 4;
Caut et al. 2009). �13C is pre-
sent in all three dietary macro-
molecules (ie proteins, fats,
and carbohydrates), reflecting
the various dietary sources of
the consumer’s tissues. Sulfur
in the consumer’s tissues is usu-
ally only present in S-contain-
ing amino acids like cysteine
and methionine, and therefore
its isotopic analysis exclusively
represents protein pathways
derived from diet. Typically,
�13C and �34S, due to their
smaller discrimination as com-
pared with that of �15N, allow
us to trace the different origins
of these element inputs into
food webs (see WebPanel 1).
However, one must be careful
about making isotopic compar-
isons across samples or studies
because different factors, such
as tissue type, age, body size,
consumer’s nutritional condi-
tion, or dietary quality, con-
tribute to variation in isotopic
signatures and the discrimina-
tion process (Cherel et al. 2005;
Forero et al. 2005; Caut et al.
2009; Boecklen et al. 2011).

Although less common than
stable-isotope analyses, trace
elements and several organic
pollutants have also been used
to trace the dietary preferences
of a great variety of marine
organisms (Fisk et al. 2002).
Specifically, some trace ele-
ments, such as mercury (Hg),
arsenic (As), cadmium (Cd),
and selenium (Se), and several
POPs, in particular polychlori-

nated biphenyls (PCBs) and dichlorodiphenyl-
trichloroethanes (DDTs), bioaccumulate in lipid-rich
tissues and biomagnify (increase in concentration
through the food chain), indicating the trophic position
of the consumer (Figure 4; Becker et al. 2002; Stewart et
al. 2004; Bentzen et al. 2008). However, as with isotopes,
many other factors can also influence trace element and
pollutant burdens among consumers, for instance
branchial ion uptake, ecosystem compartments
(mesopelagic versus benthic prey), trophic steps, specific
metabolic rates – greater in homeotherms (those organ-
isms that maintain a stable internal body temperature)
than in poikilotherms (the internal temperature of

Figure 2. Many species of marine top predators, such as (a) king penguins (Aptenodytes)
patagonicus, (b) loggerhead sea turtles (Caretta caretta), and (c) Cory’s shearwaters
(Calonectris diomedea), can be tracked electronically through the use of Platform Terminal
Transmitters, Global Positioning System loggers, or Global Location Sensing (GLS) loggers
(arrows). Combining the analysis of different intrinsic biogeochemical markers with electronic
tracking of a limited number of individuals offers new ways to reveal foraging areas (Zbinden et al.
2011), migratory routes, and wintering areas (Ramos et al. 2009a) of top predators. For instance,
when studying the annual migrations of Cory’s shearwaters ([d]; 5–90% kernel ranges derived from
validated wintering locations), the isotopic composition of feathers molted in winter (�13C, �15N,
�34S, �2H, and �18O in the eighth secondary feather) identified the wintering area chosen by each
tracked individual: Benguela, Brazilian, and Agulhas currents ([e]; correct cross-validation
assignments were 81.8%, 60%, and 100%, respectively; other minor wintering sites included the
south-central Atlantic Ocean, Gulf of Guinea, and the Canary Current). The number of
individuals tracked with GLS devices is shown in dashed line/light tone bars, whereas the number of
individuals estimated through isotopic analyses is represented in solid line/dark tone bars. Further
biogeochemical analyses with larger sample sizes should provide stronger evidence and a more
meaningful perspective of the spatial ecology of the species of interest. Inds = individuals.

(a)

(b)

(c)

(d)

(e)

GLS-tracked inds Isotope-assigned inds

Brazilian
Current

Other minor
areas

Benguela
Current

Agulhas
Current

Main wintering areas for Cory’s shearwaters

N
um

b
er

 o
f 

in
d

iv
id

ua
ls

12

10

8

6

4

2

0

©
 J

 G
on

zá
le

z-
S

ol
is

©
 M

 S
an

-F
el

ix
©

 M
 R

eb
as

sa



R Ramos and J González-Solís Tracing marine top predators

© The Ecological Society of America www.frontiersinecology.org

which varies considerably with external temperature) –
and several other factors, such as age, sex, body size, genet-
ics, reproductive status, and nutritional condition (Aguilar
et al. 2002; Becker et al. 2002; Verreault et al. 2009).

Similarly, the fatty-acid signatures of marine species
can be traced through several trophic levels up to top
predators. Vertebrates are not able to synthesize some
fatty acids de novo (eg some long-chain polyunsaturated
fatty acids; PUFAs). Prey fatty acids are deposited into
consumer adipose tissue with little modification and, in a

predictable way, providing insights into the pathways of
energy and nutrient transfer (Dalsgaard et al. 2003;
Iverson 2009; Williams and Buck 2010). As compared to
other tracers, the great diversity of these lipid com-
pounds, the suggested absence of geographic variability in
baseline levels in some of them, and their unique origin
among plants and animals become key points in their
applicability (Iverson 2009). 

Ultimately, the fundamental theory of each tracer is
what defines its ecological interest. For instance, whereas

Figure 3. Tracer dynamics in the tissues of a marine predator that changes either its diet or its habitat (from “A” to “B”); these diets or
habitats are biogeochemically distinct. (a) Tissues are grouped according to their turnover rate: liver and plasma (dash-dot lines) can
integrate new chemicals from days to a week; muscle and blood cells (dashed lines) can integrate new chemicals from weeks to months;
and some keratinous tissues with determinate growth, such as feathers and hair (solid line), can integrate new biogeochemicals from
months to years, depending on molting period (dotted lines) (Foglia et al. 1994; Hobson 1999; Buchheister and Latour 2010).
Contrasting dynamics among the tracers can be noted: stable isotopes (in red) and polyunsaturated fatty acids (PUFAs, in yellow)
decrease faster than persistent organic pollutants and mercury (POPs and Hg, in blue). For PUFAs, depicted changes only refer to
changes in diet. Note that keratinous tissues inherently lack PUFAs and POPs in their chemical structure. (b) Hg (gray line) and stable-
isotope (red line) dynamics in calcified tissues (eg teeth, otoliths, bones), chitinous tissues (eg gladius from squid), or keratinous tissues
with continuous/indeterminate growth (eg whiskers and claws from seals, scutes from turtles, baleen from whales, claws from seabirds)
from a hypothetical marine predator consuming two distinct diets or inhabiting two different biomes throughout its annual cycle.
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Table 1. Major traits among intrinsic biogeochemical markers (tracers) used to study the feeding ecology and
migration of marine top predators (numbers in square brackets refer to references listed in WebPanel 2)

Stable isotopes Trace elements Lipids Persistent organic pollutants

Main biogeochemicals �13C, �15N, �34S Hg, Cd, Se, Pb Fatty acids DDTs, PCBs

Geographical changes 
in baseline levels Yes [1] Yes [2,3] Only specific cases [4,5] Yes [6,7]

Geographic gradients �13C [1,8,9], �15N [1,10] No [3] No [5] Possibly [6,7]

Spatial resolution Relatively low High [11] Only specific cases [5] Low [6,7]

Indicators of trophic level �15N [12] Hg, Se, Cd [13,14,15] Only specific cases [4,5] Some DDTs, PCBs [6,7,16,17]

Potential to reveal specific 
food sources �13C, �34S [18,19] Yes [20] Yes [4,5] Low [16,17,21]

Freshwater vs saltwater 
habitat food sources �13C, �34S [18,19,22] Hg [13,20] Yes [4] No

Inshore/benthic vs offshore/ 
pelagic food sources �13C [8] Hg [13] Yes [4,23] DDTs, PCBs [16]
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stable isotopes typically provide information about the
source of proteins (given that samples are usually lipid-
extracted prior to isotopic analyses), fatty acids account
for the source of lipids. Nevertheless, the different origin
and temporal integration of the tracers can offer comple-
mentary information as different pieces of the same bio-
geochemical puzzle. Despite these caveats, studies using
tracers have flourished over the past decade to recon-
struct the diets of sharks, marine mammals, and seabirds,
among others (Hobson et al. 2004; Iverson 2009), to
characterize trophic relationships among species and
individuals (Fisk et al. 2002; Budge et al. 2008), and to
elucidate food-web structuring (Forero et al. 2005) as well
as the physiological status of the individuals (Cherel et al.
2005; Williams and Buck 2010). 

n Uses of tracers in spatial ecology

Dietary elements and compounds ultimately derive from
soils, geological substrates, and sources of contamination
close to, or around, the area where tissues are formed or
maintained, and are integrated in prey tissues and ulti-
mately in their predators. Isotopic signatures – such as
those of �13C, �15N, and �34S – but also many trace ele-
ments and pollutants are known to vary geographically
(Figure 5) as a result of differences in nutrient cycling at
the base of the food web or different sources of contami-
nation (Dickhut et al. 2009; Szép et al. 2009; Graham et
al. 2010). For example, �13C signatures typically change

at high latitudes, depending on the productivity of the
area and the proximity to nearshore or benthic habitats
(Cherel and Hobson 2007; Cherel et al. 2009), the food-
web structuring (Forero et al. 2005), or the changes in the
diet of predators among different areas (Hobson et al.
2004), providing spatially related variability in the bio-
geochemical composition of the tissues. Given that top
predators often move thousands of kilometers over the
course of a year and usually show low levels of genetic
structuring due to extensive gene flow, different tracers
identified in their tissues can be used as geographical
markers to identify the regions in which the consumer’s
tissues were formed. Finally, the tissues provide an overall
biogeochemical fingerprint to identify non-breeding areas
(Figure 2d), to distinguish between resident and immigrant
individuals in a specific area (Herman et al. 2005; Ménard
et al. 2007; Graham et al. 2010), to identify interspecific
and intersexual segregation in foraging areas (Becker et al.
2002; Forero et al. 2005), to decipher migratory move-
ments and foraging ecology of marine predators in histori-
cal times (Hobson et al. 2004; Quillfeldt et al. 2010; Rayner
et al. 2011), or to study natal homing and population mix-
ing (Rooker et al. 2008; Dickhut et al. 2009).

In this context, the identification of geographic spatial
gradients of tracers becomes crucial, because these tracers
help us to assign any animal to a specific area with a sin-
gle capture. In the Atlantic Ocean, preliminary attempts
to describe isotopic geographic gradients, also called
isoscapes, in �13C and �15N signatures have been under-
taken based on plankton values (Figure 5; Graham et al.
2010); however, at the moment, the spatial resolution of
such maps in the marine environment remains disap-
pointingly low (ie thousands of kilometers). In the
Southern Ocean, a more decisive decrease in �13C signa-
tures with latitude has been ground-truthed for several
seabird species and can readily be used to assign different
top predators to the specific areas where their analyzed
tissue was formed (Cherel and Hobson 2007). Similarly,
�15N isoscapes have also been ground-truthed for tropical
Pacific tunas (Olson et al. 2010). However, some large
oceanic areas, such as the northeast temperate Atlantic,
may not exhibit such isotopic gradients (Roscales et al.
2011). All the aforementioned studies determined varia-
tion in stable-isotope signatures across the ocean by sam-
pling the relevant species and tissues throughout several
localities, but this is costly and not always feasible. In this
sense, sampling the appropriate tissues from animals
tracked with different types of electronic devices is
emerging as a powerful tool that can potentially be used
to understand the spatial variability of a wide variety of
tracers across the oceans (Finkelstein et al. 2006; Ramos
et al. 2009a; Zbinden et al. 2011). Despite these substan-
tial advances, there is still much room for improvement,
since most studies on the spatial ecology of predators
have so far been based on only a few tracers.

In addition to spatial variability, temporal changes in
physicochemical and biological composition of primary

Tracer concentration
or signature

Figure 4. Tracer dynamics along the marine food chain.
Contaminant biomagnification (in gray) increases exponentially
with each step of the food chain because contaminants
accumulate in tissues faster than they can be metabolized or
excreted. In consequence, marine top predators such as whales,
seals, sharks, or seabirds are at a greater risk of suffering toxic
effects from contaminants than lower-trophic-level organisms.
Stable isotopes of N in bulk organic tissues (in blue) increase
proportionally 3–4 per mil (‰) with each trophic level, as a
result of the animal’s metabolism. Isotopic signatures of essential
nutrients and PUFA profiles (in green) show little or no change
along the marine food web because animals lack the ability to
synthesize these compounds.
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producers and consumers are crucial for defin-
ing tracer gradients in the oceanic realm. For
instance, seasonal fluctuations in stable-iso-
topic signatures of zooplankton (Hannides et
al. 2009) are able to be transferred up food
chains to top predators, raising concerns about
the seasonal stability of biogeochemical values.
Temporal variations in the signal of tracers,
both at the base of the food web and at the
predator level, hamper our ability to draw pre-
cise and stable gradients/isoscapes to further
track the movement of marine top predators in
oceanic ecosystems (Graham et al. 2010). This
issue can be particularly problematic when
contaminants are used as tracers, because their
spatiotemporal concentrations depend on dis-
charge from human activities, transport, depo-
sition, persistence, and accumulation in differ-
ent compartments of the ecosystem (Aguilar et
al. 2002). The temporal stability of tracers at
baseline levels must therefore be considered
and incorporated when developing biogeo-
chemical maps and isoscapes for the marine environment.

n The relevance of the tissue, integration process,
and excretion routes

Several advances in mass spectrometry have led to the pos-
sibility of processing smaller quantities of samples in
greater numbers, faster, and with improved accuracy and
lower costs, thereby providing opportunities to trace eco-
logical processes. However, because many of these tools
were originally developed for applications in geochemical
systems, there are gaps in our understanding of how these
biochemicals become incorporated into biological tissues,
the timescales over which they can be used, and the
processes that contribute to their distribution, mixing, and
turnover within organisms. Each tracer integrates into tis-
sues in a different manner and over different time periods
(Figure 3). For instance, while stable-isotope signatures
and fatty acids are promptly transferred from the diet to the
tissues, trace elements and some pollutants are intention-
ally mobilized to various tissues and organs with accumula-
tion or excretion purposes, showing a slower and more
complex response to changes in diet or habitat (Ramos et
al. 2009b; Bond 2010). Therefore, when designing any eco-
logical study based on biogeochemical tracers, the selec-
tion of the target tracers and tissues becomes a key issue.
For stable isotopes and fatty acids, their spatiotemporal
integration can range from days to months, depending on
the metabolic replacement of proteins and lipids, respec-
tively, of the analyzed tissue. Tissues with high turnover (eg
plasma or liver) will integrate isotopic and fatty-acid forms
incorporated in the relatively recent past, whereas those
tissues that are slowly replaced (eg red blood cells, muscles,
or adipose tissue) will integrate over longer time periods
(Figure 3a; Foglia et al. 1994; Hobson 1999; Buchheister

and Latour 2010). Alternatively, tissues that are formed
over a specific period but without turnover after their for-
mation – such as eggs, fish scales, calcified tissues (eg teeth,
otoliths, bones), or keratinous tissues (eg hairs, whiskers,
nails, carapace scutes, baleen, feathers), from a large vari-
ety of organisms – are particularly advantageous for ecolog-
ical research because they remain chemically inert after
their formation and can provide information from the
same individual over a period of time. It has been largely
assumed, then, that isotopic forms of these tissues reflect
the composition of the area where they have matured
(Hobson and Norris 2008). Thus, specific portions of those
keratinous tissues with well-known growth patterns can be
sampled at any time of the year to examine feeding habits
or geographic locations at concrete periods, regardless of
the sampling date (Figure 3b; Hobson et al. 2004; Cherel et
al. 2009; Quillfeldt et al. 2010). Pollutant molecules are
concentrated in different tissues according to their bio-
chemical properties. For example, organochlorine or
organometallic compounds, given their non-polar charac-
ter, are concentrated in the lipid fraction of the tissue. For
such molecules, fatty tissues (eg hypodermic fat) would be
the best choice; in the same way, trace metals mainly
attached to metallothioneins are concentrated principally
in liver, kidney, and muscle, although some metals, such as
Hg and lead (Pb), can also be excreted in keratinous or cal-
cified tissues. Although some organs can only be sampled
through invasive procedures, many keratinous tissues can
be sampled without any detrimental effects; non-destruc-
tive biopsy of fat from free-living animals is also feasible in
some cases (Owen et al. 2010). In addition, recent analyti-
cal improvements allow for the analysis of virtually all trac-
ers via minimally invasive procedures, such as blood sam-
pling (Henriksen et al. 1998; Roscales et al. 2010; Williams
and Buck 2010).

Figure 5. Isotopic contours (isoscapes) of the Atlantic Ocean from a meta-
analysis of published data. Geographic gradients in (a) �13C and (b) �15N
signatures based on plankton samples collected in the Atlantic (sampling
locations, between 0–500 m of depth, depicted as black circles; figure from
Graham et al. 2010).

100˚W 75˚W 50˚W 25˚W  0˚

–18

–20

–22

–24

–26

–28

–30
�

13C
 (‰

)

(a) (b)

60˚N

30˚N

0˚

30˚S

60˚S

8

7

6

5

4

3

2

1

�
15N

 (‰
)

100˚W 75˚W 50˚W 25˚W  0˚

60˚N

30˚N

0˚

30˚S

60˚S



Tracing marine top predators R Ramos and J González-Solís

www.frontiersinecology.org © The Ecological Society of America

n The potential of combining tracers in novel ways

As the distribution and integration of tracers in ecosystems
and within tissues, respectively, are being clarified, the
next aim for ecological research is the simultaneous use of
multiple tracers (eg Hebert et al. 2009). However, by con-
tinuing to rely on more traditional methods, many
researchers focus only on part of the entire biogeochemical
spectrum. For instance, much attention in trophic and
migration studies has focused on both �13C and �15N signa-
tures, but little research has been conducted on combining
those signatures with �34S, elemental composition, or lipid
signatures in study tissues. In spite of this, recent evidence
suggests that these relatively unexplored biogeochemicals
could be applied to more effectively discriminate among
trophic sources (eg Becker et al. 2002; Connolly et al. 2004;
Herman et al. 2005), indicate geographical origin (eg
Dickhut et al. 2009; Roscales et al. 2010), and trace migra-
tory movements (eg Szép et al. 2009) with more robustness
than by relying on �13C and �15N alone.

Up to now, few ecological studies have successfully com-
bined stable isotopes with trace metals, organochlorine com-
pounds, or fatty acids (eg Herman et al. 2005). In some cases,
combination with genetic markers and morphological mea-
surements may also provide synergistic effects, such as iden-
tifying the origin of predators or assessing ecological diver-
gence among populations (Gómez-Díaz and González-Solís
2007; Foote et al. 2009). Recent DNA-based approaches
potentially provide more accurate methods for precise diet
reconstructions from dietary samples (eg Pompanon et al.
2011), but its potential combination with several tracers
remains unexplored. Carbon and N signatures have repeat-
edly been used to identify and quantify the influence of
trophic position, food-web structure, and physiology in con-
trolling the accumulation of pollutants in predator tissues
(Fisk et al. 2002; Stewart et al. 2004; Roscales et al. 2010).
Although these studies have provided important insights
into pollutant dynamics and feeding ecology, the indepen-
dent use of different tracers hampers their overall potential
and precision. The simultaneous combination of multiple
tracers in common statistical approaches (eg mixing model-
ing frameworks or in discriminant analyses) has also been
largely neglected, despite the potential to optimize the preci-
sion of dietary estimations and geographical assignments.
However, caution is also needed when combining and inter-
preting the results of multiple tracers simultaneously,
because the functional disparity with which tracers are inte-
grated into tissues (eg for storage, excretion, or rapid con-
sumption) may result in spurious relationships with no bio-
logical relevance (Bond 2010).

n Conclusions and perspectives 

Since the first predictions and calls for appropriate bio-
geochemical methodologies were conducted a decade
ago, there have been substantial improvements in iso-
topic ecology, and the use of tracers in animal ecology

has flourished (Hobson and Norris 2008). Ongoing tech-
nological and statistical advances in biogeochemical
analysis, such as the use of compound-specific isotopic
analyses or the adoption of Bayesian approaches in
dietary estimations using mixing models, will likely revo-
lutionize ecological research in the coming years. Yet, in
spite of these promising developments, there are still
numerous important questions about biogeochemical
integration that remain unanswered. For instance, there
needs to be a much deeper understanding of the fraction-
ation and routing processes of these tracers in different
tissues for their proper interpretation. Several studies
have found consistent differences in biogeochemical
composition among specific tissues according to their
nature and origin. Therefore, the specificity of discrimi-
nation factors among different tissues – as well as 
potential differences in kinetics among biogeochemicals
(eg stable isotopes versus contaminants) – must be con-
sidered when using these tracers. Moreover, research
into several effects, such as the growth state, tempera-
ture, O stress, as well as other metabolic factors that
influence the incorporation of tracers into tissues, will
enhance our ability to use and interpret multiple tracers
in an ecological context. Undoubtedly, exhaustive labo-
ratory-based experiments will be required because most
of these issues can only be resolved experimentally.
Although our call for comparative experiments is not
innovative, there is certainly some urgency for conduct-
ing them; we therefore echo previous calls for laboratory-
based experiments that aim to clarify the biogeochemi-
cal integration processes.

Despite evidence that biogeochemical gradients exist
in some oceanic water masses, to date, few researchers
have analyzed spatial variability of tracers in the marine
environment; where such studies have been carried out,
they often ignored potential dietary shifts as well as tem-
poral changes in baseline levels. Similarly, trophic studies
based on tissue composition consider biogeochemical
fractionation throughout the food web only, ignoring
geographic variability in the tracers. We emphasize the
need to integrate temporal, spatial, and trophic variabil-
ity when studying both the feeding ecology and migration
of marine predators. In this regard, the advent of and con-
tinuous improvement in the electronic devices used to
track the foraging and migration movements of marine
animals will be crucial in teasing apart the different
sources of variability among and within tracers. Sampling
and analyzing the relevant tissues of tracked animals and
matching this to their movements over the course of sev-
eral years will allow temporal, spatial, and trophic effects
on multiple tracers to be distinguished. In addition, the
accuracy of dietary information and spatial resolution of
isotope-based studies should improve by expanding the
spectrum of biogeochemical parameters measured. For
instance, by exploiting a greater number of chemical
parameters rather than only a few isotopic elements, eco-
logical studies using mineral and pollutant profiles will be
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better equipped to assess diets or specific areas used by top
predators. Thus, once the different sources of variability
are identified and discrimination power is increased, this
biogeochemical approach will provide important evi-
dence for assigning specific foraging and non-breeding
areas, dietary variability during periods when animals are
inaccessible, seasonal interactions between breeding and
non-breeding areas, and population connectivity of
marine predators.

Such advances in the use of tracers can be applied in
many different ways, to resolve specific conservation and
management issues in several fields, including fishery man-
agement, environmental health, and conservation biology.
Results obtained from only a minimally invasive sampling
of specific tissues – eg a small amount of keratin, fat, or
blood tissue, from just a few animals – can help answer typ-
ical management questions related to population dynamics,
contamination, or anthropogenic impacts. These questions
include, but are not limited to, determining main food
sources and trophic relationships, assessing exposure to con-
taminants, distinguishing resident from migrant animals,
identifying population units in species with cryptic popula-
tion structuring, assigning target or accidental catches to
their population of origin, and locating wintering, breeding,
or feeding grounds. Resolving these questions not only
could improve the conservation and management of preda-
tor populations but will be essential in effectively monitor-
ing the sustainability and health of marine ecosystems.
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WebPanel 1. The latest biogeochemical tools in trophic ecology

Overcoming some problems: the compound-specific isotopic analyses
Isotopic analyses based on bulk organic materials have become a valuable tool in contemporary ecological research. However, diffi-
culty in determining baseline levels, together with an insufficient understanding of isotopic routing and tissue-specific discrimination,
have led to the development of novel approaches that try to overcome these problems. One of the emerging isotopic tools is the
compound-specific isotopic analysis (Evershed et al. 2007). Identifying the target compound is crucial and depends on the hypothesis
to be tested, given that different biochemical compounds (eg fatty acids, cholesterol, or amino acids) in the diet of a consumer differ
in their routing and trophic enrichment (Budge et al. 2008; Lorrain et al. 2009; Ruess and Chamberlain 2010). For instance, when con-
sidering the amino-acid composition of a consumer’s tissue, essential amino acids maintain the same �15N as food resources, whereas
other amino acids become enriched in 15N due to the animal’s metabolism (Popp et al. 2007). This is because animals lack the ability
to synthesize essential amino acids, and therefore the isotopic signal of these amino acids must directly reflect the trophic level of the
consumed prey (Figure 4). In this sense, the isotopic analysis of specific essential compounds in the tissues of a consumer helps to
solve various isotopic discrimination questions in ecology (Boecklen et al. 2011). Unfortunately, methodological and economic con-
straints make this powerful approach inaccessible to most researchers, and it therefore remains uncommonly used among isotopic
ecologists. Likewise, analysis of stable isotopes of specific persistent organic pollutants in tissues of top predators could also provide
valuable information about the sources of contaminants in the environment in a novel way, but this has not been extensively explored
by scientists.

Reconstructing the diet of a predator: the mixing models
On the basis of the isotopic maxim “you are what you eat” (but see the discrimination concerns in the main text; DeNiro and Epstein
1978), stable-isotope analysis can be used to quantify the relative importance of different dietary sources to a consumer, ie to recon-
struct the diet. Mixing models used in making these estimations have undergone substantial modification during the past decade. The
first attempt involved the use of simple linear mixing models that were restricted by the number of isotopes used in the study, alge-
braically constraining the number of sources that could be assessed (Peterson and Fry 1987). From that point, because of the obvious
greater complexity of food webs in natural systems, more advanced and complex models were developed independently to achieve
better dietary estimations: IsoError allowed variation to be propagated to produce uncertainty within the results, IsoConc incorpo-
rated differential assimilation among elements, and IsoSource allowed an unlimited number of sources to be included independently
of the number of analyzed isotopes (eg Phillips and Gregg 2003).  Although adding biological realism to the results, these mixing mod-
els still provided low resolution and suffered several drawbacks because each model did not integrate the advantages of the others
(Boecklen et al. 2011). Recently, Bayesian mixing models combine most of these advantages and – instead of using single metrics for
isotopic values, elemental concentrations, and fractionation factors (eg means, modes, medians) – they also account for the uncer-
tainties (variability) involved in all of these parameters (Parnell et al. 2010; Hopkins and Ferguson 2012). Moreover, a feasible approach
for incorporating temporal variability in the isotopic baselines of a food web has recently been developed for this Bayesian frame-
work, increasing the realism of the isotopic modeling (Woodland et al. 2011). 

In a similar fashion to stable isotopes in classic mixing models, tens of specific fatty acids can also provide quantitative information
about the diet of several marine top predators (Iverson 2009). Theoretically, trace elements and contaminant loads can also be used
in mixing models to estimate the feeding preferences of organisms. However, because of the currently limited knowledge of metabo-
lism and integration of these tracers into animal tissues, this approach remains unexplored by ecologists. Nevertheless, geologists
have successfully shown the potential of using natural concentrations of major elements and trace metals in mixing models to trace
sources of sediments to streams (Stutter et al. 2009), suggesting that multi-element and pollutant signatures could soon increase the
number of opportunities for researchers to investigate trophic ecology.
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