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Abstract 

 
This study attempts to improve the forecasting accuracy of tourism demand by using 
the existing common trends in tourist arrivals form all visitor markets to a specific 
destination in a multiple-input multiple-output (MIMO) structure. While most tourism 
forecasting research focuses on univariate methods, we compare the performance of 
three different Artificial Neural Networks in a multivariate setting that takes into 
account the correlations in the evolution of inbound international tourism demand to 
Catalonia (Spain). We find that the MIMO approach does not outperform the 
forecasting accuracy of the networks when applied country by country, but it 
significantly improves the forecasting performance for total tourist arrivals. When 
comparing the forecast accuracy of the different models, we find that radial basis 
function networks outperform multilayer-perceptron and Elman networks. 
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1. Introduction 

 

Tourism demand forecasting has become essential in one of today’s fastest growing 

industries. Song and Li (2008) have acknowledged the importance of applying new 

approaches to tourism demand forecasting in order to improve the accuracy and the 

performance of the methods of analysis. Whilst most research efforts focus on 

conventional tourism forecasting methods (Gounopoulos, Petmezas, & Santamaria, 

2012) or a combination of them (Chan, Witt, Lee, & Song, 2010), in recent years the 

availability of more advanced forecasting techniques and the requirement for more 

accurate forecasts of tourism demand have led to a growing interest in Artificial 

Intelligence (AI) techniques (Wu, Law, & Xu, 2012; Cang, 2013; Pai, Hung, & Lin, 

2014). The suitability of AI models to handle nonlinear behaviour is one of the reasons 

why Artificial Neural Networks (ANNs) are increasingly used for forecasting purposes 

(Haviluddin & Rayner, 2014; Claveria, Monte, & Torra, 2014; 2016). 

In spite of the increasing interest in AI methods for time series forecasting (Uysal, 

2004), very few studies compare the accuracy of different ANN architectures for 

tourism demand forecasting. This study seeks to break new ground by comparing the 

performance of three different ANN models in a multivariate setting that takes into 

account the common trends in inbound international tourism demand shared by all 

visitor markets to a specific destination. We use three ANNs: the multi-layer perceptron 

(MLP) network, the radial basis function (RBF) network and the Elman network. ANNs 

are able to learn from experience. There are two major learning paradigms: supervised 

learning and non-supervised learning. MLP networks are supervised learning models, 

while RBF networks, combine both learning methods (hybrid learning). Each ANN 

architecture handles information in a different manner, so by comparing the different 

models we can evaluate the impact of alternative ways of processing data on forecast 

accuracy. 

The present study deals with tourist arrivals to Catalonia, which is a region of Spain. 

Barcelona is the capital of Catalonia, and the most important destination in Spain. After 

France and the United States, Spain is the third most important destination of the world 

with 60 million tourist arrivals in 2013. Catalonia received 15,5 million tourists in 2013, 

up 8% over the previous year. Tourist spending grew by 14% in 2013, and it accounted 

for 25% of tourism revenues in Spain. In relation to 2012, the expenditure per tourist 

raised by 7.2%, while the expenditure per day by 4.6%. It follows that tourism is one of 



the fastest growing industries in Catalonia, accounting for 12% of GDP and providing 

employment for 15% of the working population. These figures show the importance of 

accurate forecasts of tourism volume at the destination level for policy makers and 

professionals in the tourism industry. Capó, Riera, and Rosselló (2007) and Balaguer 

and Cantavella-Jordá (2002) have shown the important role of tourism in the Spanish 

long-run economic development. 

The main objective of this study is to improve forecasts of tourism demand with 

ANN models by using the common trends in inbound international tourism demand 

form all visitor markets to Catalonia. With this aim, we undertake an out-of-sample 

forecasting competition and compare the performance of three different ANN models in 

a multiple-input multiple-output (MIMO) structure to those of a single-input single-

output (SISO) structure, in which forecasts are obtained country by country. Given that 

univariate specifications are limited and unable to capture dynamic interrelationships 

between different countries of origin, we analyze whether a multivariate approach, in 

which information about tourist arrivals from all origin countries is simultaneously 

used, provides useful for forecasting purposes. To our knowledge, this is the first study 

to analyze the forecasting performance of ANNs in a MIMO setting, using the 

correlated growth rates between all visitor markets to a specific destination. 

We obtain forecasts of tourism demand in all countries of origin for different forecast 

horizons (1, 3 and 6 months). In addition, we compute a measure of forecast accuracy to 

compare the forecasting performance of the three NN architectures. Finally, we run the 

Diebold-Mariano test for significant differences between each two competing series. 

Another major contribution of this study is to assess the effects of expanding the 

memory on forecast accuracy. In order to do so, we repeat the experiment assuming 

different topologies with respect to the number of lags used for concatenation. 

The article proceeds as follows. The next section reviews the literature on tourism 

demand forecasting with ANNs. Then, the different NN architectures used in the 

analysis are presented. Data is described in the fourth section. In the following section, 

results of the out-of-sample forecasting competition are discussed. Finally, the last 

section provides a summary, a discussion of the implications, and potential lines for 

future research. 

 



 

2. Literature review 

 

A growing body of literature has focused on tourism demand forecasting, but most 

research efforts apply conventional forecasting methods, either casual econometric 

models (Cortés-Jiménez & Blake, 2011; Page, Song, & Wu, 2012, Nordström, 2004), 

time series models (Chu, 2008, 2011; Assaf, Barros, & Gil-Alana, 2011; Gounopoulos, 

Petmezas, & Santamaria, 2012), or a combination of them (Shen, Li, & Song, 2008; 

Coshall & Charlesworth 2010). See Li, Song and Witt (2005), Song and Li (2008) and 

Peng, Song, and Crouch (2014) for a thorough review of tourism demand forecasting 

studies. Nevertheless, the need for more accurate forecasts has led to an increasing use 

of AI techniques, such as fuzzy time series models and support vector machines 

(SVMs), or a mix of them (Hadavandi, Shahanaghi, & Abbasian, 2011; Shahrabi, 

Hadavandi, & Asabi 2013; Pai, Hung, & Lin 2014; Cang & Yu 2014), in order to obtain 

more refined predictions of tourist arrivals at the destination level. 

Yu and Schwartz (2006) and Tsaur and Kuo (2011) use fuzzy time series models in 

predicting annual U.S. tourist arrivals and monthly tourism demand in Taiwan 

respectively. Goh, Law, and Mok (2008) apply a rough sets algorithm to forecast U.S. 

and U.K. tourism demand for Hong Kong. The use of genetic algorithms for parameter 

selection has led to increased use of support vector machines (SVMs) (Pai & Hong, 

2005) and their regression version (Chen & Wang, 2007; Chen, 2011; Hong, Dong, 

Chen, & Wei, 2011). Wu, Law, and Xu (2012) use a sparse GP regression (GPR) model 

for tourism demand forecasting in Hong Kong and find that its forecasting capability 

outperforms those of the ARMA and SVM models. Bloom (2005) implements a self-

organizing (SOM) neural network for segmenting the international tourist market to 

Cape Town. In a recent meta-analysis of published tourism forecasting studies, Kim and 

Schwartz (2013) find that forecast accuracy is closely associated with data 

characteristics. The fact that ANNs are data-driven procedures that learn from past 

experience explain the growing interest in ANNs for tourism demand forecasting (Lin, 

Chen, & Lee, 2011; Teixeira & Fernandes, 2012; Claveria & Torra, 2014). 

ANNs can be classified into two major types of architectures: feed-forward networks 

and recurrent networks. MLP networks are the most widely used feed-forward topology 

in tourism demand forecasting (Pattie & Snyder, 1996; Uysal & El Roubi, 1999; Law, 

2000, 2001; Tsaur, Chiu, & Huang 2002; Kon & Turner, 2005; Zhang & Qi, 2005). A 



class of multi-layer feed-forward architecture with two layers of processing is the radial 

basis function (Broomhead & Lowe, 1988). RBF networks have the advantage of not 

suffering from local minima in the same way as MLP networks, which explains their 

increasing use in many fields. Cang (2013) uses RBF, MLP and SVM ANN forecasts in 

non-linear combination models. Recurrent networks are models with bidirectional data 

flow which allow for a temporal feedback from the outer layers to the lower layers. This 

feature is specially suitable for time series modelling. A special case of recurrent 

network is the Elman network (Elman, 1990). Whilst MLP networks are increasingly 

used with forecasting purposes, Elman neural networks have been scarcely used with 

forecasting purposes. The only previous study that uses Elman ANNs for tourism 

demand forecasting is that of Cho (2003), who applies the Elman architecture to predict 

the number of arrivals from different countries to Hong Kong. 

Multivariate approaches to tourist demand forecasting are also few and have yielded 

mixed results. Athanasopoulos and Silva (2012) compare the forecasting accuracy of 

exponential smoothing methods in a multivariate setting against univariate alternatives. 

They use international tourist arrivals to Australia and New Zealand and find that 

multivariate models improve on forecast accuracy over the univariate alternatives. 

Contrary to what could be expected, du Preez and Witt (2003) find that multivariate 

time series models did not generate more accurate forecasts than univariate time series 

models. 

With regard to studies on tourism in Spain at regional level, there have been several 

articles published in recent years (Aguiló & Rosselló, 2005; Roselló, Aguiló, & Riera, 

2005; Garín-Muñoz & Montero-Marín, 2007; Bardolet & Sheldon, 2008; Santana-

Jiménez & Hernández, 2011; Nawijn & Mitas, 2012; Andrades-Caldito, Sánchez-

Rivero, & Pulido-Fernández, 2013; Cirer-Costa, 2014). Concerning tourism demand 

forecasting, Palmer, Montaño, and Sesé (2006) design a MLP neural network to forecast 

tourism expenditure in the Balearic Islands. Medeiros, McAleer, Slottje, Ramos, and 

Rey-Maquieira. (2008) develop a NN-GARCH model to estimate demand for 

international tourism also in the Balearic Islands. Bermúdez, Corberán-Vallet, and 

Vercher (2009) calculate prediction intervals for hotel occupancy in three provinces in 

Spain by means of a multivariate exponential smoothing. Claveria and Datzira (2009, 

2010) use consumer expectations derived from tendency surveys to forecast tourism 

demand in Catalonia. Guizzardi and Stacchini (2015) also make use of business 



sentiment indicators form tendency surveys for real-time forecasting of hotel arrivals at 

a regional level, improving the forecasting accuracy of structural time series models. 

 

3. Methodology 

 

ANNs emulate the processing of human neurological system to identify related spatial 

and temporal patterns from historical data. ANNs learn from experience and are able to 

capture functional relationships among the data when the underlying process is 

unknown. The data generating process of tourist arrivals is too complex to be specified 

by a single linear algorithm, which explains the great interest that ANNs have aroused 

for tourism demand forecasting. As opposed to the traditional model-based methods, 

ANNs do not depend on a set of a priori assumptions, so to obtain a reliable network the 

parameters of the model are iteratively estimated by means of different algorithms. 

Most of the algorithms used in training artificial neural networks employ some form 

of gradient descent. Therefore, each network is suited to a combination of a learning 

paradigm and a learning algorithm (forward-propagation, back-propagation, etc.). The 

main learning paradigms are supervised learning and non-supervised learning. In 

supervised learning weights are adjusted to approximate the network output to a target 

value for each pattern of entry, while in non-supervised learning the subjacent structure 

of data patterns is explored so as to organize such patterns according to their distances. 

The combination of both learning methods implies that part of the weights is determined 

by a supervised process while the rest are determined by non-supervised learning. This 

is known as hybrid learning. An example of hybrid model is the RBF network. 

ANNs are composed of interconnected processing units called neurons and can also 

be classified into feed-forward networks and recurrent networks depending on the 

connecting patterns of the different layers of neurons. In feed-forward networks the 

information runs only in one direction, whilst in recurrent networks there are feedback 

connections from outer layers of neurons to lower layers of neurons. Feed-forward 

networks were the first ANNs devised. The MLP network is the most widely used feed-

forward topology in tourism demand forecasting. 

 



3.1. Multi-layer perceptron (MLP) neural network 

 

MLP networks consist of multiple layers of computational units interconnected in a 

feed-forward way. MLP networks are supervised neural networks that use as a building 

block a simple perceptron model. The topology consists of layers of parallel 

perceptrons, with connections between layers that include optimal connections. The 

number of neurons in the hidden layer determines the MLP network’s capacity to 

approximate a given function. In order to solve the problem of overfitting, the number 

of neurons was estimated by cross-validation. In this work we used the MLP 

specification suggested by Bishop (1995) with a single hidden layer and an optimum 

number of neurons derived from a range between 5 and 25: 
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Where ty  is the output vector of the MLP at time t ; g  is the nonlinear function of the 

neurons in the hidden layer; itx   is the input value at time it   where i  stands for the 

memory (the number of lags that are used to introduce the context of the actual 

observation.); q  is the number of neurons in the hidden layer; ijφ  are the weights of 

neuron j  connecting the input with the hidden layer; and jβ  are the weights connecting 

the output of the neuron j  at the hidden layer with the output neuron. Note that the 

output ty  in our study is the estimate of the value of the time series at time 1t , while 

the input vector to the neural network will have a dimensionality of 1p . 

We have considered a MLP  qp;  architecture that represents the possible nonlinear 

relationship between the input vector and the output vector. Once the topology of the 

neural network is decided (i.e. the number of layers, etc.), the parameters of the network 

are estimated. The estimation can be done by means of different algorithms, which are 

either based on gradient search or line search. A summary of the different algorithms 

can be found in Bishop (1995). Another aspect to be taken into account, is the fact that 

the training is done by iteratively estimating the value of the parameters by local 

improvements of the cost function. To avoid the possibility that the search for the 

optimum value of the parameters finishes in a local minimum, we have used a multi-



starting technique that initializes the neural network several times for different initial 

random values and returns the best result. 

 

3.2. Radial basis function (RBF) neural network 

 

RBF networks consist of a linear combination of radial basis functions centered at a 

set of centroids with a given spread that controls the volume of the input space 

represented by a neuron (Bishop, 1995). RBF networks typically include three layers: an 

input layer; a hidden layer, which consists of a set of neurons, each of them computing a 

symmetric radial function; and an output layer that consists of a set of neurons, one for 

each given output, linearly combining the outputs of the hidden layer. The input can be 

modeled as a feature vector of real numbers, and the hidden layer is formed by a set of 

radial functions centered each at a centroid jμ . The output of the network is a scalar 

function of the output vector of the hidden layer. The equations that describe the 

input/output relationship of the RBF are: 
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Where ty  is the output vector of the RBF at time t ; jβ  are the weights connecting the 

output of the neuron j  at the hidden layer with the output neuron; q  is the number of 

neurons in the hidden layer; jg  is the activation function, which usually has a Gaussian 

shape; itx   is the input value at time it   where i  stands for the memory (the number of 

lags that are used to introduce the context of the actual observation); jμ  is the centroid 

vector for neuron j ; and the spread jσ  is a scalar that measures the width over the input 

space of the Gaussian function and it can be defined as the area of influence of neuron 

j  in the space of the inputs. Note that the output ty  in our study is the estimate of the 

value of the time series at time 1t , while the input vector to the neural network will 

have a dimensionality of 1p . 



In order to assure a correct performance, before the training phase the number of 

centroids and the spread of each centroids have to be selected. There are different 

methods for the estimation of the number of centroids and the spread of the network. A 

complete summary can be found in Haykin (1999). In this study the training was done 

by adding the centroids iteratively with the spread parameter fixed. Then a regularized 

linear regression was estimated to compute the connections between the hidden and the 

output layer. Finally, the performance of the network was computed on the validation 

data set. This process was repeated until the performance on the validation database 

ceased to decrease. 

 

3.3. Elman neural network 

 

An Elman network is a special architecture of the class of recurrent neural networks. 

The architecture is based on a three-layer network with the addition of a set of context 

units that allow feedback on the internal activation of the network. There are 

connections from the hidden layer to these context units fixed with a weight of one. At 

each time step, the input is propagated in a standard feed-forward fashion, and then a 

back-propagation type of learning rule is applied. The fixed back connections result in 

the context units always maintaining a copy of the previous values of the hidden units. 

Thus the network can maintain a sort of state of the past decisions made by the hidden 

units, allowing it to perform such tasks as sequence-prediction that are beyond the 

power of a standard multilayer perceptron. The output of the network is a scalar 

function of the output vector of the hidden layer: 
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Where ty  is the output vector of the Elman network at time t ; tjz ,  is the output of the 

hidden layer neuron j  at the moment t ; g  is the nonlinear function of the neurons in 

the hidden layer; itx   is the input value at time it   where i  stands for the memory (the 



number of lags that are used to introduce the context of the actual observation); ijφ  are 

the weights of neuron j  connecting the input with the hidden layer; q  is the number of 

neurons in the hidden layer; jβ  are the weights of neuron j  that link the hidden layer 

with the output; and ijδ  are the weights that correspond to the output layer and connect 

the activation at moment t . Note that the output ty  in our study is the estimate of the 

value of the time series at time 1t , while the input vector to the neural network will 

have a dimensionality of 1p . 

There are different strategies for estimating the parameters of the Elman neural 

network. In this study, the training of the network was done by back-propagation 

through time, which is a generalization of back-propagation for feed-forward networks. 

The parameters of the Elman neural network are estimated by minimizing an error cost 

function. In order to minimize total error, we use gradient descent. A potential problem 

with gradient descent for standard recurrent architectures is that error gradients vanish 

exponentially quickly with the size of the time lag. Therefore recurrent NN cannot be 

easily trained for large numbers of neuron units. 

 

4. Data 

 

Data on tourists arrivals (first destinations) are provided by the Institute of Tourism 

Studies (IET) and are available at the Statistical Institute of Catalonia (IDESCAT). Data 

include the monthly number of tourists arriving from each visitor market over the time 

period 2001:01 to 2012:07. Table 1 shows a descriptive analysis of the data. It can be 

seen that the first four visitor markets (France, the United Kingdom, Belgium and the 

Netherlands and Germany) account for more than half of the total number of tourist 

arrivals to Catalonia. Nevertheless, when comparing the growth rates (Fig. 1), Russia 

and the Scandinavian countries experienced the highest growth in tourist arrivals during 

this period. Russia is also the country that presents the highest relative dispersion and 

the highest levels of Skewness and Kurtosis, while the United Kingdom shows the 

lowest levels of Skewness and Kurtosis. 

 



Figure 1. Growth rates of tourists coming to Catalonia: from each visitor country vs. total arrivals 
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1. Source: Compiled by the author. The black line represents the year-on-year growth rates of the trend-cycle component of 
tourist arrivals to Catalonia from each visitor country. The dotted line represents the year-on-year growth rates of the trend-
cycle component of total inbound tourism demand to Catalonia. 



 

Table 1. Descriptive analysis of tourist arrivals (levels) 

Country Minimum Maximum Mean 
Standard 
deviation 

Skewness Kurtosis 

France 59,886 869,535 300,137 161,364 1.22 4.35 

United Kingdom  34,128 293,005 152,223 70,762 0.10 1.78 

Belgium and NL 23,818 467,505 118,974 100,198 1.74 5.61 

Germany 26,588 258,600 112,126 53,834 0.37 2.26 

Italy 24,077 271,975 83,805 42,335 1.96 7.76 

US and Japan 20,984 131,089 60,795 22,869 0.80 3.53 

Scandinavian 
countries 

7,439 99,879 38,155 19,790 0.74 3.27 

Switzerland  8,867 98,924 28,120 14,173 1.42 6.83 

Russia 1,687 162,505 23,486 27,998 2.38 9.64 

Other countries  101,894 442,597 246,241 76,311 0.36 2.38 

Total 360,281 2,302,855 1,164,061 496,152 0.55 2.45 

 

We use the year-on-year rates of the seasonally adjusted series to eliminate both 

linear trends as well as seasonality. These series are obtained using a Census X12 filter. 

In Fig.1 we compare the growth rate of the seasonally adjusted series of tourists coming 

to Catalonia from each visitor country to the growth rate of total inbound international 

tourism demand. Given the common patterns displayed by most countries we test for 

multicointegration using Johansen’s (1988, 1991) maximum eigenvalue test. The 

maximum eigenvalue test tests the null hypothesis of r  cointegrating vectors against the 

alternative hypothesis of 1r  cointegrating vectors. 

In Table 2 we present the results of the unrestricted cointegration eigenvalue test. It 

can be seen that all different markets present correlated accelerations. The fact that the 

evolution of tourist arrivals is multicointegrated led us to use the correlations in the 

evolution of tourist arrivals between all different visitor markets. To forecast tourism 

demand, we design a MIMO setting in which forecasts of tourist arrivals for all 

countries are obtained simultaneously, and we compare the results to those of a SISO 

approach, in which models are estimated country by country. 

 



 
Table 2. Cointegration test results. Unrestricted Cointegration Rank Test – Maximum eigenvalue 

Hypothesized 

number of CE(s) 

Type of test 

Allow for linear deterministic trend in data 

Intercept in CE Intercept in CE 

Test VAR No trend in VAR 

 Maximum 
Eigenvalue 

Critical value 
Maximum 
Eigenvalue 

Critical value 

0:0 rH * 227.2916 64.50472 227.4935 68.81206 

1:0 rH * 152.9724 58.43354 181.3408 62.75215 

2:0 rH * 133.6029 52.36261 134.5977 56.70519 

3:0 rH * 105.6646 46.23142 129.6588 50.59985 

4:0 rH * 86.6518 40.07757 97.79509 44.4972 

5:0 rH * 77.79057 33.87687 86.65054 38.33101 

6:0 rH * 65.28306 27.58434 77.78193 32.11832 

7:0 rH * 49.773 21.13162 64.52919 25.82321 

8:0 rH * 36.80542 14.2646 49.7264 19.38704 

9:0 rH * 10.98843 3.841466 35.64879 12.51798 

1. Estimation period 2001:01-2012:07. 
2. * Denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values. 

 

 

5.Empirical results 

 

We carry out an out-of-sample forecasting competition between three different ANN 

architectures (MLP, RBF and Elman) using both a SIO and a MIMO setting. While a 

multiple-output approach allows to simultaneously obtain forecasts for each visitor 

market, a single-output approach requires to implement the experiment for each visitor 

country. The single-output approach is implemented by reconfiguring the architecture of 

the multiple-output ANNs into an array of single-output networks for each country. A 

multivariate approach seems especially suited for this specific data set in which growth 

rates of tourist arrivals from all the different countries of origin share a common 

stochastic trend (Table 2). 

Following Bishop (1995) and Ripley (1996), we divided the collected data into three 

sets: training, validation and test sets. This division is done in order to asses the 

performance of the network on unseen data. Based on these considerations, the first 

sixty monthly observations (from January 2001 to January 2006) are selected as the 

initial training set, the next thirty-six (from January 2007 to January 2009) as the 

validation set and the last 20% as the test set. 



Due to the large number of possible networks’ configurations, the validation set is 

used for determining the following aspects of the neural networks: 

a. The topology of the networks. 

b. The number of epocs for the training of the MLP neural networks. The iterations 

in the gradient search are stopped when the error on the validation set increases. 

c. The number of neurons in the hidden layer for the RBF. The sequential increase in 

the number of neurons at the hidden layer is stopped when the error on the validation 

increases. 

d- The value of the spread jσ  in the RBF NN. 

To make the system robust to local minima, we apply the multistartings technique, 

which consists on repeating each training phase several times. We repeat the training 

three times so as to obtain a low value of the performance error. The selection criterion 

for the topology and the parameters is the performance on the validation set. The results 

that are presented correspond to the selection of the best topology, the best spread in the 

case of the RBF neural networks, and the best training strategy in the case of the Elman 

neural networks. 

To summarize the results of the out-of-sample competition and rank the methods 

according to their forecasting performance for different forecast horizons (1, 3 and 6 

months) we compute the Mean Absolute Error (MAE) statistic for forecast accuracy. 

The results of our forecasting out-of-sample competition are shown in Tables 3 and 4. 

We also apply the Diebold-Mariano test (Table 5) for significant differences between 

each two competing series (single vs. multiple-output) for each forecast horizons in 

order to assess the value of the different models and settings. 

We repeat the experiment assuming different topologies regarding the memory 

values. These values represent the number of lags introduced when running the models, 

denoting the number of previous months used for concatenation. The number of lags 

used in the different experiments ranged from one to three months for all the networks 

architectures. Therefore, when the memory is zero, the forecast is done using only the 

current value of the time series, without any additional temporal context. 

 



 

Table 3. MAE (2010:04-2012:02). Memory (0) – No additional lags 

 SISO ANN models MIMO ANN models 

France MLP RBF Elman MLP RBF Elman 
1 month 0.42    0.38* 19.49 4.31 4.60 20.32 
3 months 2.72 1.26 16.00 7.89 2.04 30.99 
6 months 5.40 2.92 12.66 6.44    1.48* 22.11 

United Kingdom        
1 month 2.77 5.15 17.40 8.60 4.58 24.66 
3 months 8.48 7.48 15.59 22.59 9.85 33.27 
6 months 17.22 8.54 13.38 16.77 11.68 23.41 

Belgium and the NL       

1 month 7.96 5.86 15.52 4.19 3.89 14.43 
3 months 5.46 3.29 13.72 6.96 6.63 15.37 
6 months 9.86 4.02 11.91 10.49 8.05 12.39 

Germany       

1 month 7.95 7.48 15.03 2.85 4.77 10.43 
3 months 5.07 4.12 16.96 5.34 5.81 13.82 
6 months 5.68 3.36 9.25 7.71 6.41 11.34 

Italy       

1 month 1.45 1.60 10.12 15.49 4.33 20.37 
3 months 4.11 4.31 14.12 19.79 4.48 25.01 
6 months 7.80 8.88 13.53 25.27 3.96 32.49 

US and Japan       

1 month 5.12 4.09 12.94 8.45 6.78 17.50 
3 months 8.28 7.62 20.39 14.02 10.00 19.29 
6 months 10.01 9.78 13.79 15.90 10.06 19.40 
Scandinavian 
countries       

1 month 4.10 3.90 18.84 16.36 6.26 26.34 
3 months 9.85 8.99 16.70 26.95 14.15 30.29 
6 months 13.38 12.75 23.33 30.20 14.42 34.02 

Switzerland        

1 month 11.49 10.63 21.44 5.38 6.00 17.03 
3 months 6.81 5.27 11.94 9.21 9.92 13.56 
6 months 7.26 5.05 22.77 12.20 10.00 16.82 

Russia       

1 month 29.74 26.96 34.59 23.39 13.45 41.46 
3 months 34.47 29.33 32.57 39.12 35.81 48.67 
6 months 35.39 33.68 49.63 50.01 43.01 60.74 

Other countries        

1 month 2.64 2.44 11.11 9.73 4.09 13.51 
3 months 5.88 4.59 13.24 14.40 4.98 17.93 
6 months 8.02 6.92 12.03 17.27 5.90 18.35 

Total       

1 month 3.27 3.41 15.64 6.64 2.52 8.25 
3 months 5.98 3.75 13.37 10.49 2.53 11.07 
6 months 14.72 3.45 10.88 8.68 2.67 9.78 
1. Italics: best model for each country 
2. * Best model 

 



 

Table 4. MAE (2010:04-2012:02). Memory (3) – 3 additional lags 

 SISO ANN models MIMO ANN models 

France MLP RBF Elman MLP RBF Elman 
1 month    0.08* 0.21 14.99 8.19 3.43 19.67 
3 months 1.27 1.12 16.40 6.06    1.79* 19.31 
6 months 4.56 4.32 10.90 5.82 1.83 14.60 

United Kingdom        
1 month 3.75 4.53 10.20 16.28 8.83 23.00 
3 months 5.86 6.81 9.46 23.42 11.84 21.20 
6 months 9.28 11.94 14.83 15.40 11.96 35.57 

Belgium and the NL       

1 month 8.38 8.21 13.87 6.25 5.69 9.97 
3 months 6.92 7.04 11.89 7.83 7.43 14.19 
6 months 12.10 4.95 10.10 11.31 7.40 13.91 

Germany       

1 month 9.24 8.59 14.56 3.64 5.76 9.63 
3 months 7.59 7.81 11.18 7.94 6.20 13.25 
6 months 8.28 7.31 12.59 7.91 6.23 10.90 

Italy       

1 month 0.83 1.56 11.69 18.46 5.78 18.03 
3 months 5.44 3.63 13.41 23.55 5.37 18.93 
6 months 11.09 8.70 11.74 19.07 6.69 23.19 

US and Japan       

1 month 4.71 5.00 16.06 10.81 9.28 15.51 
3 months 6.78 9.33 17.65 13.82 9.48 18.12 
6 months 8.55 9.55 9.67 20.80 10.42 16.88 
Scandinavian 
countries       

1 month 3.08 3.12 14.30 19.22 12.45 25.23 
3 months 3.78 6.41 14.08 26.29 15.12 23.34 
6 months 10.15 8.98 23.52 32.94 15.51 42.83 

Switzerland        

1 month 14.58 11.00 9.95 7.26 8.01 12.75 
3 months 14.97 9.84 14.94 11.37 10.43 11.73 
6 months 8.55 5.90 12.09 7.58 10.91 19.44 

Russia       

1 month 24.53 26.51 33.46 25.02 33.61 45.65 
3 months 23.18 25.56 28.87 32.28 41.04 45.80 
6 months 33.21 37.87 51.99 58.46 41.17 47.07 

Other countries        

1 month 2.60 2.64 12.52 11.03 6.52 11.56 
3 months 2.75 2.34 13.94 15.18 6.13 16.47 
6 months 5.57 5.54 16.97 13.44 6.33 16.41 

Total       

1 month 3.57 3.44 12.19 4.99 2.65 10.51 
3 months 4.47 3.99 12.25 6.10 2.38 10.27 
6 months 8.71 9.46 11.11 7.35 2.41 12.16 
1. Italics: best model for each country 
2. * Best model 

 



When comparing the forecasting performance of the different neural architectures, 

RBF networks show lower MAE values than MLP and Elman networks, specially when 

no additional lags are introduced (Table 3). When the forecasts are obtained 

incorporating additional lags of the time series (Table 4), the forecasting performance of 

MLP networks improves for shorter horizons in the SISO approach. This result 

indicates that the number of previous months used for concatenation, conditions the 

forecasting performance of the different networks, although not in a significant way. An 

explanation for the better forecasting performance of RBF networks has to do with the 

fact that in this type of architecture, data are clusterized. On the other extreme, Elman 

networks systematically obtain the highest MAE values. This result suggests that the 

feedback topology of the Elman network could not capture the specificities of the time 

series. The fact that the number of training epocs had to be low in order to maintain the 

stability of the network suggests that the Elman architecture requires longer time series. 

When analyzing the differences between countries, the lowest MAE value is always 

obtained for France, while Russia displays the highest MAE values for all models and 

scenarios. These results can be explained by the fact that France is the main visitor 

market, while Russian visitors only account for a small percentage of total arrivals and 

present high levels of dispersion. Countries could be grouped regarding the evolution of 

the forecasting performance as the forecasting horizon increases: while France, 

Germany and Switzerland show low MAE values for 6 months forecasts, forecasts for 

Scandinavian countries, Italy, UK, US and Japan worsen as the forecasting horizon 

increases. These clusters can be explained by the common patterns observed in the 

evolution of tourism demand for certain groups of countries (Fig. 1). 

When testing for significant differences between a MIMO and a SISO approach for 

each two competing series (Table 5), we find that the multivariate analysis does not 

outperform the approach country by country. On the contrary, 83% of the cases in 

which there is a significant difference between single and multiple-output approaches 

(half of the 198 cases), the sign is negative, indicating that the MIMO structures present 

higher forecasting errors. Nevertheless for short horizons, we find that for Germany, 

Switzerland, Russia and Belgium and the Netherlands the MIMO approach presents 

significantly better results. For total arrivals, MAE values are lower for RBF and Elman 

networks with the multivariate approach, but the differences are not statistically 

significant. 



Table 5. Diebold-Mariano loss-differential test statistic for predictive accuracy 

 Memory (0) – no additional lags Memory (3) – 3 additional lags 

 MLP RBF Elman MLP RBF Elman 

 
Single vs.  
Multiple-output 

Single vs.  
Multiple-output 

Single vs.  
Multiple-output

Single vs.  
Multiple-output

Single vs.  
Multiple-output 

Single vs.  
Multiple-output

France       
1 month -6.58 -5.79 -0.14 -6.64 -7.10 -1.16 
3 months -4.03 -2.95 -2.46 -4.50 -3.54 -1.04 
6 months -0.47 2.82 -1.87 -0.74 3.95 -1.17 

United Kingdom        
1 month -5.45 0.62 -2.04 -5.04 -3.07 -7.31 
3 months -2.99 -2.97 -2.16 -6.41 -4.34 -3.66 
6 months 0.08 -2.50 -3.08 -2.77 -0.02 -3.56 

Belgium and the NL       

1 month 2.41 2.12 2.12 1.91 0.36 2.10 
3 months -0.86 -2.92 -2.92 -0.62 -0.50 -1.09 
6 months -0.19 -2.97 -2.97 0.18 -0.13 -1.55 

Germany       

1 month 3.46 2.10 1.64 3.92 2.45 1.89 
3 months -0.23 -2.63 0.73 -0.21 1.28 -1.01 
6 months -0.99 -1.71 -0.93 0.28 0.73 0.45 

Italy       

1 month -5.03 -4.86 -2.50 -6.46 -3.99 -1.66 
3 months -4.85 -0.18 -2.88 -4.64 -1.44 -1.88 
6 months -3.96 2.56 -3.54 -2.10 0.86 -2.75 

US and Japan       

1 month -2.77 -1.33 -1.71 -3.03 -3.27 0.32 
3 months -1.55 -0.93 0.36 -2.90 -0.10 -0.13 
6 months -2.88 -0.13 -1.12 -2.15 -0.53 -4.05 
Scandinavian 
countries       

1 month -4.07 -1.57 -1.28 -3.01 -4.66 -2.88 
3 months -2.35 -2.58 -4.27 -6.12 -2.78 -1.95 
6 months -3.74 -0.74 -2.09 -3.52 -2.55 -3.48 

Switzerland        

1 month 4.06 3.52 0.81 4.82 1.42 -1.45 
3 months -1.27 -3.02 -0.29 1.92 -0.40 0.94 
6 months -1.99 -9.98 1.53 0.57 -8.26 -2.54 

Russia       

1 month 1.08 3.13 -0.91 -0.08 -1.34 -1.46 
3 months -0.64 -2.17 -1.65 -1.62 -5.20 -3.34 
6 months -1.59 -2.31 -1.04 -1.63 -1.04 0.40 

Other countries        

1 month -3.81 -2.42 -0.85 -5.96 -3.99 0.37 
3 months -4.10 -0.28 -2.22 -5.96 -2.29 -0.91 
6 months -3.86 1.08 -2.21 -2.24 -0.80 0.12 

Total       

1 month -3.84 1.05 4.38 -1.50 1.15 0.87 
3 months -2.50 1.42 0.88 -1.27 1.63 0.88 
6 months 1.46 0.95 0.67 0.47 2.62 -0.51 
1. Diebold-Mariano test statistic with NW estimator. Null hypothesis: the difference between the two competing series is 

non-significant. A negative sign of the statistic implies that the second model has bigger forecasting errors. 
2. Italics: Significant at the 5% level (2.028 critical value). 

 



 

6. Summary and Conclusions 

 

The increasing importance of the tourism sector worldwide has led to a growing 

interest in new approaches to tourism demand forecasting. New methods provide more 

accurate estimations of anticipated tourist arrivals for effective policy planning. 

Artificial intelligence techniques such as Artificial Neural Networks have attracted 

increasing interest to refine the predictions of tourist arrivals at the destination level. 

From the wide array of neural network models, we have focused on three different 

architectures that represent three alternative ways of handling information: the multi-

layer perceptron neural network, the radial basis function neural network and the Elman 

recursive neural network. 

The main purpose of this study is to assess how forecasts of tourism demand can be 

improved by incorporating the existing common trends in tourist arrivals form all visitor 

markets to a specific destination. Given that the evolution of tourist arrivals form 

original countries to Catalonia presents a significant cross-correlation structure, we have 

analyzed whether a multivariate approach that takes into account the correlations in the 

evolution of tourist arrivals from different countries of origin has a significant effect on 

forecast accuracy. With this aim we have compared the performance of three different 

ANN topologies in a multiple-input multiple-output setting to that obtained estimating 

the models country by country. 

When comparing the forecasting accuracy of univariate versus multivariate models 

country by country, we obtain better forecasting results with an univariate approach, 

with the exception of forecasts for short forecasting horizons in very few countries 

(Germany, Switzerland, Russia and Belgium and the Netherlands). Nevertheless, for 

total tourist arrivals we obtain lower forecasting errors with a multivariate approach. 

This result shows that a multiple-input multiple-output structure proves useful to 

forecast the inbound international demand to a destination when the evolution of tourist 

arrivals form all visitor markets share a common trend. 

When comparing the forecasting accuracy of the different techniques, we find that 

radial basis function neural networks outperform multi-layer perceptron and Elman 

neural networks, being the Elman model the one showing the poorest forecasting 

performance. This result suggests that issues related with the divergence of the Elman 

neural network may arise when using dynamic networks with forecasting purposes. 



Recurrent neural networks are not easy to train for large numbers of input units and may 

present scaling issues. These results reveal the suitability of hybrid models such as 

radial basis functions for tourism demand forecasting. 

When analyzing the differences between countries, France displays the best 

forecasting results. On the other hand, we obtain the worst forecasting results with all 

models and in all scenarios for the predictions about the evolution of Russian tourists. 

These results can partly be explained by the fact that Russian visitors only account for a 

small percentage of total arrivals and show high levels of dispersion. As it could be 

expected, forecasts for Scandinavian countries, Italy, UK, US and Japan worsen as the 

forecasting horizon increases, while in France, Germany and Switzerland we obtain low 

forecasting errors for longer term forecasts. The distance to the destination could be 

explaining the differences between each group of countries. 

In order to evaluate the effect of the memory on the forecasting results, we repeated 

the experiment considering different topologies regarding the number of lags used for 

concatenation. We find no significant differences when additional lags are incorporated 

in the feature vector. The fact that increasing the dimensionality of the input does not 

have a significant effect on forecast accuracy is indicative that the increase in the weight 

matrix is not compensated by the more complex specification, leading to 

overparametrization. This issue could be solved by increasing the length of the time 

series of tourist arrivals. Longer time series would also favor the learning process of the 

neural networks. 

This study contributes to the tourism forecasting literature and to the tourism 

industry by highlighting the relevance of using the common trends in tourist arrivals 

from different visitor markets and the suitability of applying radial basis function neural 

networks to improve the forecasting accuracy of international inbound tourism demand. 

The proposed forecasting approach may prove useful for planning purposes, providing 

managers with a new and practical forecasting approach. Nevertheless, this study is not 

without its limitations. First, a comparison between different tourist destinations would 

allow to analyze whether regional differences have a significant influence on 

forecasting accuracy. Another question to be considered in further research is whether 

the implementation of supervised learning models such as support vector regressions, or 

the combination of the forecasts of different topologies and different time aggregations, 

may improve the forecasting performance of practical neural network-based tourism 

demand forecasting. 
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