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Preface

Starting from the pioneering work by C.Peskine and L. Szpiro in their joint thesis (cf. [110]),
the Frobenius morphism, which acts by raising each element of a ring of prime characteristic
p to its pth power, has become in a fundamental tool in the study of Commutative Algebra
in positive characteristic. A tremendous breakthrough in such study was the introduction of
the so-called tight closure theory. This theory, originally due to M.Hochster and C.Huneke,
has played a crucial role in many advances in the study of commutative Noetherian rings,
even in characteristic zero. Indeed, seemingly unrelated results can be proved using tight
closure. We mention here a few: the existence of big Cohen-Macaulay modules (cf. [131,
11.5.1 and Chapter 12, Theorem I]); rings of invariants of linearly reductive groups acting on
regular rings are Cohen-Macaulay (cf. [69, Main Theorem]); the Briançon-Skoda Theorem
(cf. [71, Chapter 12]); the monomial conjecture (cf. [30, 6.5.9]) and the syzygy Theorem
(cf. [70, Chapter 10]). We refer to [70] and the references therein for more information
about tight closure.

It occurs that inside tight closure theory grew out certain invariants, the so-called test
ideals. These invariants are crucial in the study of higher Birational Geometry in positive
characteristic because it turns out that, in many situations, are the characteristic p analogs
of multiplier ideals in characteristic zero. This fact, as far as we know, was firstly pointed
out by K.E. Smith in [128, Theorem 3.1]. Actually, it is a longstanding question in Algebraic
Geometry whether test ideals are, for arbitrary algebraic varieties, the prime characteristic
analogs of multiplier ideals in characteristic zero. In this way, as far as multiplier ideals in
characteristic zero allow to define some special types of singularities of algebraic varieties
(essentially, the singularities stemming from the so-called Minimal Model Program), the
same type of singularity can be defined in the prime characteristic setting replacing the
multiplier ideal by the test ideal. The main advantage of this approach is that one does not
need to appeal to resolution of singularities of algebraic varieties, which nowadays is still
an open problem in prime characteristic. Maybe at this point, it is convenient to point out
that here we are using the phrase test ideal in order to refer to what in tight closure theory
is called either the big or the non-finitistic test ideal.

In this way, a first problem arises in this context.

Problem 1. Define test ideals without appealing to any tight closure theory.
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One of the main problems of tight closure is that it is an operation defined at the level
of ideals and modules which, in general, does not commute with localization (cf. [28] or
[104]). Nevertheless, as people working on Algebraic Geometry is more interested in test
ideals rather than in tight closure, it was natural to ask whether test ideals can be defined
without appealing to tight closure theory, expecting that this new definition would imply
that these important invariants commutes with localization.

As far as we know, S. Takagi proposed in [132] a definition of test ideals which only
involves p−e-linear maps (that is, homogeneous maps of degree p−e). Later on, K. Schwede,
building on Takagi’s approach, defines test ideals through algebras of p−e-linear maps
(cf. [117]). Finally, in [18], M.Blickle proposes a completely algebraic definition of test
ideals through algebras of p−e-linear maps, the so-called Cartier algebras. Blickle’s defini-
tion of test ideals agrees with the previous ones in the F -finite case. Even more important
than this is the fact that, using Blickle’s approach, is straightforward to prove, among
other things, that test ideals commute with localization. It is worth noting here that, at
this point, the reader may think about Cartier algebras just as a certain ring on which we
are packing all the possible homogeneous maps of degree p−e, where e runs over N.

It is worth mentioning here that, in the F -finite case, Cartier algebras correspond,
roughly speaking (cf. Theorem 1.5.1 for the precise statement), to the so-called Frobenius
algebras. These algebras were introduced and studied by G. Lyubeznik and K.E. Smith in
[96]; the goal of the authors in such paper was to determine sufficient conditions in order
to guarantee that test ideals commutes with localization and completion. It turns out that,
whenever R is a complete local F -finite ring of prime characteristic, the Frobenius algebra
attached to the injective hull of the residue field of R corresponds through Matlis duality
(once more, we encourage the reader to look at Theorem 1.5.1 for the precise statement)
to the Cartier algebra associated to R.

So, it is of some interest to know the structure of these Cartier algebras.

Problem 2. Determine whether Cartier algebras are finitely generated or not.

It is known (cf. [18]) that Cartier algebras of Gorenstein rings are principally generated.
It turns out that Gorensteinness is enough to characterize principal Cartier algebras of nor-
mal rings. However, the situation in the non-normal case is unclear. So far, the only known
result about non-normal Cartier algebras was provided by M.Katzman in [79]. Indeed,
Katzman gave an example of a non-finitely generated Cartier algebra over a non-normal
ring; more precisely, his example is

K[[x, y, z]]

〈xy, yz〉
,

(where K is any field of prime characteristic) which may be regarded as a complete Stanley-
Reisner ring. Motivated by such fact, we have:

Dissertation goal 1. Study Cartier algebras attached to complete Stanley-Reisner rings.
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In Chapter 2, we are certainly to study the Cartier algebra CR attached to the complete,
Stanley-Reisner ring

R := K[[x1, . . . , xd]]/I,

where K is any ground field of prime characteristic and I is a squarefree monomial ideal
inside K[x1, . . . , xd]. In such case, we shall determine completely the generation of CR
as R-algebra. Actually, we shall see that, under our assumptions, CR can only be either
principally generated or infinitely generated as R-algebra, and that such issue only depends
on the primary decomposition associated to the Stanley-Reisner ideal I.

So far, we have discussed issues regarding theoretical aspects of test ideals. But a very
natural question arises in this context.

Question. How we can compute effectively test ideals?

As we have previously explained, test ideals grew out inside tight closure theory. So, one
possible answer to this question might be: compute tight closure of ideals and then compute
test ideals. Unfortunately, nowadays it is still an open problem to determine an effective
method in order to compute the tight closure of an arbitrary ideal even in a polynomial
ring. Therefore, our previous answer does not seem a good choice nowadays.

A different and more fruitful approach was provided by M.Katzman in [77]. Building
from ideas originally established by J.Àlvarez Montaner, M.Blickle and G. Lyubeznik in
[2] and later on generalized by M.Blickle, M.Mustaţǎ and K.E. Smith in [21], Katzman
proposed an effective procedure (implemented in Macaulay2) to compute test ideals in
Cohen-Macaulay rings. Bearing in mind that test ideals are the smallest ones which are
fixed under the action of Cartier algebras, it is natural to ask for a method to determine
all the ideals which are fixed under the action of such algebras.

Dissertation goal 2. Provide an algorithm in order to compute effectively all the ideals
fixed with respect to a principally generated Cartier subalgebra of the Cartier algebra of a
polynomial ring.

In Chapter 3, we shall give an effective method to calculate all the ideals fixed with
respect to a principally generated subalgebra of CS , where S := K[x1, . . . , xd] and K is an
F -finite field of prime characteristic p; in this case, CS turns out to be the S-algebra of all
the homogeneous maps of S with degree p−e, where e runs through N.

From now on, we have to make a change of topic, because Chapter 4 revolves around
contents which are not directly connected with the ones discussed so far.

Indeed, in [6] J. ÀlvarezMontaner, R.García López, and S. Zarzuela generalized the
Mayer-Vietoris long exact sequence of local cohomology modules (cf. [30, 3.2.3]) to a spectral
sequence, the so-called Mayer-Vietoris spectral sequence; such spectral sequence was only
given in [6] in case of arrangements of linear varieties. Later on, G. Lyubeznik in [95,
Theorem 2.1] provided the Mayer-Vietoris spectral sequence in full generality. Moreover, it
was also pinpointed in [6] that the formalism used to construct the Mayer-Vietoris spectral
sequence of local cohomology modules might be applied to other functors.
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Coming back to [6], in op. cit. sufficient conditions were provided in order to ensure
that the Mayer-Vietoris spectral sequence degenerates at the E2-page; finally, also in [6]
the authors determined the extension problems associated to the filtration produced by
such degeneration.

On the other hand, in a quite technical article, M.Brun, W.Bruns and T.Römer (cf. [31])
provided a vast generalization of Hochster’s decomposition of local cohomology modules of
a Stanley-Reisner ring (cf. [31, Theorem 1.1 and Theorem 1.3]); in the final remark of such
paper (cf. [31, Remark 8.8]), the authors pointed out that some of the results obtained there
can be recovered using spectral sequences.

Regarding both observations, it seems natural to ask the next:

Question. Is there a general formalism to produce spectral sequences which recovers and
generalizes the Mayer-Vietoris spectral sequence of local cohomology modules? If so, un-
der what assumptions these spectral sequences degenerate at the E2-page? In case of
degeneration, what are the extension problems produced by the filtration attached to such
degeneration? Finally, can we extend the results of [31] through this kind of formalism?

Motivated by all the foregoing issues, we have:

Dissertation goal 3. First of all, build homological spectral sequences which recover
and extend the Mayer-Vietoris spectral sequence of local cohomology modules. Secondly,
provide cohomological spectral sequences which recover and generalize some of the results
obtained in [31]. Finally, give sufficient conditions to ensure their degeneration at the E2-
page and, following the spirit of [6], study the extension problems attached to the filtration
produced by such degeneration.

Indeed, the purpose of Chapter 4 will be to construct, on one hand, spectral sequences
which involve the left derived functors of the direct limit (for this reason, we often refer to
them as homological spectral sequences); in particular, we recover and extend the Mayer-
Vietoris spectral sequence of local cohomology modules firstly obtained in [6] and later on
established in full generality in [95]. On the other hand, we also produce spectral sequences
which involve the right derived functors of the inverse limit (this fact will make that we
often refer to them as cohomological spectral sequences); in particular, these cohomological
spectral sequences allow us to recover and extend some of the results of [31]. Finally,
following the spirit of [6], we provide sufficient requirements to ensure the degeneration of
all of these spectral sequences at the E2-page and we study their extension problems.

Overview of contents

From now onward, we are to provide a more detailed outline of the contents and main
results of this mimeograph.

In Chapter 1, we present the definitions and concepts that will be used throughout the
subsequent chapters. It includes mild generalizations of the notions of Frobenius algebras
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and Cartier algebras. This chapter also includes a rough sketch of the theory of a distin-
guished class of non-commutative rings, the so-called Ore extensions and skew polynomial
rings, which will play a key role in Chapter 2. It is worth mentioning that the material
presented in Chapter 1 is known; the only new aspects here are the organization of the
material and, overall, a mild generalization of Frobenius and Cartier algebras which we
hope might be interesting for the reader.

Chapter 2 is devoted to the study of Cartier algebras of complete Stanley-Reisner rings;
that is, rings of the form

R := K[[x1, . . . , xd]]/I∆,

where I∆ is a squarefree monomial ideal and K is an arbitrary ground field of prime charac-
teristic. It turns out that such Cartier algebras can only be either principally generated or
infinitely generated, and that this fact just depends on the minimal primary decomposition
of the ideal I∆ (cf. Theorem 2.3.5). As a main application, we are able to show the discrete-
ness of F -jumping numbers of pairs of the form (Spec(R),V(a)), where a is an arbitary
ideal of R (cf. Theorem 2.5.3).

In Chapter 3, we are to provide an effective procedure in order to compute all the ideals
which are fixed with respect to the action of a principally generated Cartier subalgebra of
CA, where A is either the polynomial ring K[x1, . . . , xd], the localization K[x1, . . . , xd]m, or
the formal power series ring K[[x1, . . . , xd]], and K is an F -finite field (cf. Theorem 3.2.5).
We shall also give some theoretical evidence that this algorithm might be of some help in
order to tackle the same issue when one drops the F -finiteness assumption on the ground
field.

As we have essentially pinpointed before, Chapter 4 is likely the most technical part
of this mimeograph. The main goal of such chapter is, on one hand, to work out a for-
malism in order to produce several homological spectral sequences which, in particular,
recover and extend the Mayer-Vietoris one (cf. Theorem 4.2.17 and Example 4.2.18). On
the other hand, following carefully a similar strategy, we produce some cohomological spec-
tral sequences which, in particular, recover and generalize some of the results obtained by
M.Brun, W.Bruns and T.Römer in [31] (cf. Theorem 4.3.5). Furthermore, following the
philosophy carried out in [6, Section 3], we give sufficient conditions in order to ensure
the degeneration of all these spectral sequences in their E2-sheet (cf. Theorem 4.2.30 and
Theorem 4.3.15) and, in this case, we study the extension problems associated to the fil-
tration produced by such degeneration (cf. Subsection 4.3.4). We conclude providing, as
application of these results, a generalization of the so-called Gräbe formula (cf. Theorem
4.3.30).

Moreover, we also want to point out that each chapter concludes with an unnumbered
section called Bibliographical Notes. Our goal in such bibliographical notes is, on one
hand, to provide further references about the research topics covered in each chapter which
complement some aspects of them which are not explicitly pinpointed in the main text. On
the other hand, these bibliographical notes are sometimes used in order to express our very
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particular point of view about the results obtained by our colleagues and how we think
such results grew out.

Finally, it is noteworthy that this mimeograph contains three appendices. On one hand,
in Appendix A, our main purpose is to describe the main results obtained in Chapter 2 in an
algorithmic way. More specifically, Appendix A provides the pseudo-code of the procedures
which have been used in order to deduce some of the theoretical results obtained in Chapter
2 and, of course, to build examples. CoCoA has been used extensively in the implementation
of such methods. The code is located in [24].

On the other hand, Appendix B is devoted to turn the main result obtained in Chap-
ter 3 into an effective method in order to compute all the ideals of the polynomial ring
A := Fp[x1, . . . , xd] which are fixed with respect to a fixed principally generated Cartier
subalgebra of CA. In this case, Macaulay2 (cf. [55]) has been used extensively in the imple-
mentation of such procedure. The code is located in [25].

Finally, Appendix C introduces a chain complex which, under reasonable assumptions,
provides a free resolution which may be regarded as a Koszul resolution in a very specific
non-commutative setting; we hope that such resolution is of some interest in its own right.

Note on references

Some parts of this mimeograph have already been published. More precisely, Chapter 2 is
based in joint work with J.ÀlvarezMontaner and S. Zarzuela and it has been published by
Journal of Algebra (cf. [4]). On the other hand, Chapter 3 is based in a submitted joint
project with M.Katzman (cf. [26]); the corresponding Macaulay2 package (cf. [25]) was also
jointly written with professor Katzman. It is also worth noting that a report of [26], in the
format of an extended abstract, have already been published in [27]. Finally, Chapter 4 is
based is an ongoing joint project with J.Àlvarez Montaner and S. Zarzuela (cf. [3]).
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Chapter 1

Preliminaries

The purpose of this chapter is to collect the basic notions and results which will play some
role during this mimeograph; in what follows, we present a brief overview of its contents
for the convenience of the reader. Before doing so, it is worth noting that all the material
presented in this chapter is known; maybe, the only new aspects here are, on one hand, the
organization of such material and, on the other hand, the slight generalization we produce
about the notions of Frobenius and Cartier algebras (cf. Section 1.3).

Firstly, we shall introduce Cartier and Frobenius algebras. In our presentation, we
follow the notation and terminology of the recent survey [23]. Actually, we present both
notions in a slightly more general context (cf. Section 1.3) mostly in the spirit provided by
A.K. Singh and U.Walther in [126, Section 2]; we hope that this extra generality may be
useful for the reader.

Secondly, we are to review the notions of Ore extensions and skew polynomial rings,
following the notations and terminology of [52]. We want to prevent the reader about
the fact that we are to use the terminology Frobenius Ore extension ring to refer to what
R.Y. Sharp called in several papers ([122] is such as a point) the Frobenius skew polynomial
ring ; this change of terminology is due to some historical remarks made by K.Goodearl
and R.Warfield Jr. in [52]. It turns out that the basic (aka principally generated) example
of Cartier algebra is the Frobenius skew polynomial ring and the basic (aka principally
generated) example of Frobenius algebra is the Frobenius Ore extension ring.

Thirdly, we shall introduce a rough sketch of the theory of algebraic D-modules. It
is customary in the literature ([39] is such as a point) to restrict such study to the case
where the ground field has characteristic zero. Regardless, our sketch also includes some
information about the case when the coefficient field has prime characteristic. This sketch
is mainly introduced because modules over the Frobenius algebra (respectively, over the
Cartier algebra) can be regarded as left (respectively, right) modules over the ring of dif-
ferential operators in positive characteristic (cf. Section 1.6); this fact will play some role in
Chapter 2 (cf. Section 2.5.2).
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On the other hand, in Section 1.7 we introduce, borrowing from [21], test ideals on
smooth ambient rings and we shall see how Cartier algebras allow to define test ideals even
in non-smooth ambient rings. We shall also make a rough comparison between test ideals
and their characteristic zero counterpart, the so-called multiplier ideals.

Finally, we conclude this chapter recalling basic facts about modules endowed with a
Frobenius action; most of the material of this section is borrowed from [146].

1.1 Algebras attached to a ring endomorphism

Unless otherwise is specified, throughout this chapter A is to denote a commutative ring
and A

ϕ //A will stand for a homomorphism of rings.
The purpose of this section is to associate to ϕ a non necessarily commutative algebra.

1.1.1 The pushforward and pullback functors of a fixed map

Our first aim is to recall how to attach to ϕ the pushforward functor ϕ∗ and the pullback
functor ϕ∗. Later on (cf. Section 1.4), we shall specialize such constructions in case A is of
prime characteristic and ϕ = F is the Frobenius map on A.

We start with the pushforward functor.

Construction 1.1.1. We denote by ϕ∗A the abelian group A with the following structure
as (A,A)-bimodule. Before establishing such structure, we underline that we denote ϕ∗a
(a ∈ A) an arbitrary element of ϕ∗A. Bearing in mind this convention, for any (a, b, c) ∈
A×A×A, set

b · ϕ∗a · c := ϕ∗(ϕ(b)ac).

This construction can be also applied to modules. Indeed, given a left A-moduleM we may
define ϕ∗M in similar terms; that is, if we denote by ϕ∗m (m ∈ M) an arbitrary element
of ϕ∗M then, for any a ∈ A, set

a · ϕ∗m := ϕ∗(ϕ(a)m).

Finally, given a map M
g //N of left A-modules we can define a map ϕ∗M

ϕ∗g //ϕ∗N of
left A-modules by setting, for any m ∈M ,

ϕ∗g(ϕ∗m) := ϕ∗g(m).

In this way, the symbol ϕ∗ defines a covariant functor from the category of left A-modules
to the category of left A-modules.

Now, we review the construction of the pullback functor in this setup.

8



Construction 1.1.2. Let M be an A-module. Set ϕ∗M := ϕ∗A ⊗A M . Moreover, given a
map g ∈ HomA(M,N) set

ϕ∗g := 1ϕ∗A ⊗ g.

In this way, we have produced a covariant functor ϕ∗ from the category of A-modules to
the category of A-modules which is just ϕ∗A⊗A (−).

We conclude this subsection with the following:

Remark 1.1.3. By a slight abuse of notation, we shall use the symbol ϕ∗A to denote the
target of the ring homomorphism A

ϕ //A . Taking into account such convention, we shall
regard ϕ as a ring homomorphism with source A and target ϕ∗A. In this way, ϕ∗ may be
viewed as a functor from the category of ϕ∗A-modules to the category of A-modules.

Moreover, ϕ∗ may be regarded as a functor from the category of A-modules to the
category of ϕ∗A-modules. In the same spirit, the so-called extraordinary inverse image
functor

ϕ! := HomA(ϕ∗A,−)

may be considered too as a functor from the category of A-modules to the category of
ϕ∗A-modules.

Remark 1.1.4. It is worth noting that we have chosen the language of Algebraic Geometry
in order to define the previous functors; however, we want to compare, for the convenience
of the Commutative Algebraist reader, these functors with other which such reader will
quickly recognize.

(i) The pushforward functor ϕ∗ is what is called in the context of Commutative Algebra
the restriction of scalars functor; for instance, in [114, page 670] this functor is denoted
by U .

(ii) The pullback functor ϕ∗ is what is called in the context of Commutative Algebra the
extension of scalars functor; in [114, page 671] such functor is denoted by ϕ(−).

(iii) The extraordinary inverse image functor ϕ! is denoted by (−)ϕ in [114, page 671].

Explicit adjunction

The following discussion establishes some duality isomorphisms between the previously
defined functors. We want to underline that not all of such isomorphisms are canonical.

Discussion 1.1.5. Let M be a ϕ∗A-module and let N be an A-module.

(i) There is a canonical isomorphism

Homϕ∗A (ϕ∗N,M)
∼ // HomA (N,ϕ∗M)

f 7−→ (n 7−→ ϕ∗(f(ϕ∗1⊗ n)))
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in the category of ϕ∗A-modules; the reader should notice that this isomorphism is just
a particular case of the well-known adjointness between Hom and tensor product, as
described in either [114, Theorem 2.76] or [114, Lemma 10.68].

(ii) There is a canonical isomorphism

HomA (ϕ∗M,N)
∼ // Homϕ∗A

(
M,ϕ!N

)
f 7−→

(
m 7−→ µf(ϕ∗m)

)
in the category of ϕ∗A-modules, where µf(ϕ∗m) ∈ ϕ!N denotes right multiplication by
f(ϕ∗m); in this case, this isomorphism turns out to be a particular case of [114, part
(iv) of Lemma 10.70].

From now on, we assume that ϕ∗A is a finitely generated free left A-module.

(iii) Since ϕ∗A is finitely generated and free, there is a canonical isomorphism

ϕ!A⊗A N ∼ // ϕ!N

h⊗ n 7−→ (ϕ∗a 7−→ h(ϕ∗a)n)

in the category of ϕ∗A-modules.

(iv) Combining part (ii) and part (iii) it follows that there is a canonical isomorphism

HomA (ϕ∗M,N)
∼ // Homϕ∗A

(
M,N ⊗A ϕ!A

)
in the category of ϕ∗A-modules.

In the sequel, we assume that ϕ!A is abstractly isomorphic to ϕ∗A as ϕ∗A-module. In
this way, we fix such abstract isomorphism

ϕ!A ∼
φ // ϕ∗A.

(v) φ induces an abstract isomorphism

ϕ!A⊗A N ∼
φ⊗1N // ϕ∗A⊗A N = ϕ∗N

in the category of ϕ∗A-modules.

(vi) Combining part (iv) and (v) it follows that there is an abstract isomorphism

HomA (ϕ∗M,N)
∼ // Homϕ∗A (M,ϕ∗N)

in the category of ϕ∗A-modules.
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We sum up the relevant adjunction isomorphisms obtained in the previous discussion
as follows.

Proposition 1.1.6. Let M be a left ϕ∗A-module and let N be an A-module. Then, the
following statements hold.

(a) There is a canonical isomorphism

Homϕ∗A (ϕ∗N,M)
∼ // HomA (N,ϕ∗M)

f 7−→ (n 7−→ ϕ∗(f(ϕ∗1⊗ n)))

in the category of ϕ∗A-modules.

(b) If, in addition, ϕ∗A is a finitely generated free A-module which is abstractly isomorphic
to ϕ!A as ϕ∗A-module, then there is an abstract isomorphism

HomA (ϕ∗M,N)
∼ // Homϕ∗A (M,ϕ∗N)

in the category of ϕ∗A-modules.

1.1.2 ϕ-linear maps and ϕ−1-linear maps

Carrying over notions defined by M.Blickle in [18, Section 2], we introduce:

Definition 1.1.7. Let M be a left A-module and ψ ∈ EndA(M).

(i) We say that ψ is ϕ-linear provided ψ(am) = ϕ(a)ψ(m) for any (a,m) ∈ A×M .

(ii) We say that ψ is ϕ−1-linear provided ψ(ϕ(a)m) = aψ(m) for any (a,m) ∈ A×M .

We denote by Endϕ(M) (respectively, Endϕ−1(M)) the A-endomorphisms of M which are
ϕ-linear (respectively, ϕ−1-linear).

We have to notice that these notions are straightforward generalizations of the following
well-known concept.

Example 1.1.8. Let k ∈ N and set

A
(−)k−→ A

a 7−→ ak.

Thus, the set of (−)k-linear maps is clearly the set of homogeneous maps of degree k.

We can interpret both Endϕ(M) and Endϕ−1(M) in terms of our previously introduced
functors; the proof of the below result is very straightforward and therefore it is left to the
interested reader.
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Lemma 1.1.9. The following statements hold.

(a) The map

Endϕ(M) −→ HomA(M,ϕ∗M)

ψ 7−→ [m 7−→ ϕ∗(ψ(m))]

is bijective.

(b) The map

Endϕ−1(M) −→ HomA(ϕ∗M,M)

ψ 7−→ [ϕ∗m 7−→ ψ(m)]

is bijective.

1.2 Classical non-commutative algebras attached to a single
ring endomorphism

In this section, we are to recall a pair of ring constructions which stem from non-Commutative
Algebra and which will play a key role in this mimeograph.

1.2.1 Ore extensions

The aim of this subsection is to collect the basic facts which we shall need later in this
mimeograph concerning the so-called Ore extensions. The interested reader may like to
consult [52, Chapter 2] for further details.

Definition 1.2.1. A left ϕ-derivation is any additive map A
δ //A such that δ(ab) =

ϕ(a)δ(b) + δ(a)b for all (a, b) ∈ A × A. In case ϕ = 1A a ϕ-derivation is just called a
derivation.

Now, we are ready for presenting Ore extensions.

Theorem/Definition 1.2.2. Let δ be a left ϕ-derivation on A. Then, there exists a ring
B, containing A as a subring, such that B is a free left A-module with a basis of the form
{θi}i∈N0 and θ · a = ϕ(a)θ + δ(a) for all a ∈ A. In fact, B is denoted A[Θ;ϕ, δ] and it is
called the Ore extension of A determined by ϕ and δ.

(i) In case ϕ = 1A we shall write A[Θ; δ] instead of A[Θ;1A, δ] and we shall call this ring
a (formal) differential operator ring.

(ii) In case δ = 0A we shall write A[Θ;ϕ] rather than A[Θ;ϕ, 0A].
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Sketch of proof. In fact, A[Θ;ϕ, δ] is just

A〈Θ〉
〈Θa− ϕ(a)Θ− δ(a) | a ∈ A〉

.

The other statements of this result can be verified easily using this equality.

We shall refer to the next result as the universal property for Ore extensions.

Proposition 1.2.3. Let B = A[Θ;ϕ, δ] be the Ore extension of A determined by ϕ and δ.

Suppose that we have a ring T , a ring homomorphism A
φ //T and an element y ∈ T such

that, for each a ∈ A, yφ(a) = φ(ϕ(a))y + φ(δ(a)). Then, one has that there is a unique

ring homomorphism B
ψ //T such that ψ(Θ) = y which makes the triangle

A
φ

��

� � // A[Θ;ϕ, δ]

ψzz
T

commutative.

From now on, we shall restrict our attention to Ore extensions with δ = 0A.
Our next aim is to produce Ore extensions through elementary ring homomorphisms.

This is the content of the following:
Example 1.2.4. Let u ∈ A. As uΘ is an element of A[Θ;ϕ] such that, for any a ∈ A,

(uΘ)a = uΘa = uϕ(a)Θ = ϕ(a)(uΘ),

it follows from the universal property for Ore extensions that there is a unique ring homo-
morphism A[Θ′;ϕ] //A[Θ;ϕ] such that it maps Θ′ to uΘ and which fixes the elements
of A. We shall denote the image of this map by A[uΘ;ϕ]. The previous argument shows
that A[uΘ;ϕ] can be regarded as an Ore extension too.

We end this subsection relating the approach used here with the one employed in Section
1.1.

Proposition 1.2.5. There is a bijective correspondence between Endϕ(M) and the left
A[Θ;ϕ]-module structures which can be attached to M .

Sketch of proof. Any ϕ-linear map ψ induces onM a structure as left A[Θ;ϕ]-module given
by the following rule:

Θ ·m := ψ(m).

Conversely, any left A[Θ;ϕ]-module structure on M produces a ϕ-linear map; namely,

M
ψ−→M

m 7−→ Θm.

We omit the routine verifications, which are left to the interested reader.
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1.2.2 Skew polynomial rings

In this subsection, we are to review the basic facts which we shall need later on concerning
the so-called skew polynomial rings. The interested reader may like to consult [101, Chapter
1] for additional details.

Definition 1.2.6. A right ϕ-derivation is any additive map A
δ //A such that δ(ab) =

δ(a)ϕ(b) + aδ(b) for all (a, b) ∈ A×A. In case ϕ = 1A a right ϕ-derivation is just called a
derivation.

Theorem/Definition 1.2.7. Let δ be a right ϕ-derivation of A. Then, there exists a ring
B, containing A as a subring, such that B is a free right A-module with a basis of the form
{εi}i∈N0 and a · ε = εϕ(a) + δ(a) for all a ∈ A. In fact, B is denoted A[ε;ϕ, δ] and it is
called the skew polynomial ring of A determined by ϕ and δ.

(i) In case ϕ = 1A we shall write A[ε; δ] rather than A[ε;1A, δ] and call this ring a
(formal) differential operator ring.

(ii) In case δ = 0A we are to write A[ε;ϕ] instead of A[ε;ϕ, 0A].

Sketch of proof. We should only check the statements taking A[ε;ϕ, δ] as

A〈ε〉
〈aε− εϕ(a)− δ(a) | a ∈ A〉

.

The rest of the details are omitted.

We shall refer to the next result as the universal property for skew polynomial rings.

Proposition 1.2.8. Let B = A[ε;ϕ, δ] be the skew polynomial ring of A determined by ϕ

and δ. Suppose that we have a ring T , a ring homomorphism A
φ //T and an element

y ∈ T such that, for each a ∈ A, φ(a)y = yφ(ϕ(a)) + φ(δ(a)). Then, one has that there is

a unique ring homomorphism B
ψ //T such that φ(ε) = y which makes the triangle

A
φ

��

� � // A[ε;ϕ, δ]

φzz
T

commutative.

We provide in the below lines the basic example of skew polynomial rings which we
shall consider later on.
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Example 1.2.9. Let u ∈ A. As εu is an element of A[ε;ϕ] such that, for any a ∈ A,

a(εu) = εϕ(a)u = (εu)ϕ(a),

it follows from the universal property for skew polynomial rings that there is a unique ring
homomorphism A[ε′;ϕ] //A[ε;ϕ] such that it maps ε′ to εu and which fixes the elements
of A. We shall denote the image of this map by A[εu;ϕ]. The previous argument shows
that A[εu;ϕ] can be regarded as a skew polynomial ring too.

The following result can be proved along the same lines of Proposition 1.2.5. We omit
the details.

Proposition 1.2.10. There is a bijective correspondence between Endϕ−1(M) and the left
A[ε;ϕ]-module structures which can be attached to M .

1.3 Algebras associated to a family of maps

So far, we have fixed a ring endomorphism ϕ of A and we have studied the action of ϕ on
modules. In this section, we collect in suitable algebras all the maps which we are interested
on. From this point of view, the current section may be regarded as a generalization of the
previous ones.

1.3.1 Rings of ϕ−1-linear operators

Our first purpose is to pack all the ϕ−e-linear maps in an algebra. It leads us to introduce
the so-called Cartier algebras with respect to ϕ; as the reader can easily see, next definition
may be regarded as a generalization of the notion of Cartier algebra introduced by M.Blickle
in [18].

Definition 1.3.1. An A-Cartier algebra with respect to ϕ is an N-graded A-algebra

Cϕ :=
⊕
e≥0

Cϕe

such that, for any (a, φe) ∈ A×Cϕe , we have that a ·φe = φe ·ϕe(a). The A-algebra structure
of Cϕ is given by the natural map from A to Cϕ0 . Moreover, set

Cϕ+ :=
⊕
e≥1

Cϕe .

We also assume that the structural map A //Cϕ0 is surjective.

The reader should notice that in Cϕ we are collecting all the ϕ−e-linear maps, where e
runs through N. Our next goal is to propose a possible (and useful) way to produce Cartier
algebras.
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Construction 1.3.2. Let M be a left A-module. We have to point out that the elements of

Endϕ−e(M) are abelian group homomorphisms M
φe //M such that φe(ϕe(a)m) = aφ(m)

for all (a,m) ∈ a×M . We can now turn

CM,ϕ :=
⊕
e≥0

HomA(ϕe∗M,M) =
⊕
e≥0

Endϕ−e(M)

into an A-algebra by defining the product of a φe ∈ CM,ϕ
e and a φe′ ∈ CM,ϕ

e′ as the element
of CM,ϕ

e+e′ given by

ϕe+e
′

∗ M
φe′◦ϕe

′
∗ φe //M.

We point out that CM,ϕ is generally NOT an A-Cartier algebra with respect to ϕ, since
CM,ϕ

0 = EndA(M) and therefore the natural map R //EndA(M) is, in general, not
surjective. Nevertheless, if M = A/I (where I is any ideal of A) then EndA(M) = A/I and
therefore it follows that CA/I,ϕ is an A-Cartier algebra.

1.3.2 Rings of ϕ-linear operators

In the same spirit, we may collect all the ϕe-linear maps in a suitable algebra. In this
case, it leads us to introduce the so-called Frobenius algebras with respect to ϕ; indeed,
next definition provides a generalization of the notion of Frobenius algebra introduced by
G. Lyubeznik and K.E. Smith in [96, Definition 3.5].
Construction 1.3.3. Let A[Θ;ϕe] be the Ore extension of A with respect to ϕe. Since
A ⊂ A[Θ;ϕe], any A[Θ;ϕe]-module is an A-module by restriction of scalars. Conversely,
an A[Θ;ϕe]-module is simply an A-module together with a suitable action of Θ on M ; that
is, to define an A[Θ;ϕe]-module structure on an A-module M , one only needs to define an

additive map M
ψe //M such that, for any (a,m) ∈ A ×M , ψe(am) = ϕe(a)ψe(m). We

can quickly note that ψe ∈ HomA(M,ϕe∗M). In this way, set

FM,ϕ
e := HomA(M,ϕe∗M) = Endϕe(M).

We underline as well that we may define a product among these pieces; that is, if ψe ∈ FM,ϕ
e

and ψe′ ∈ FM,ϕ
e′ then one sets

ψe′ · ψe := ϕe∗ (ψe′) ◦ ψe ∈ FM,ϕ
e+e′ .

Therefore, we are ready for introducing the following notion.

Definition 1.3.4. The ring of Frobenius operators with respect to ϕ onM is the associative,
not necessarily commutative ring

FM,ϕ :=
⊕
e≥0

FM,ϕ
e .
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Notice that we are packing in such Frobenius algebra all the possible ϕe-linear maps,
where e runs through N.

In the below example, we provide the basic instance of Frobenius algebra with respect to
a ring homomorphism; it is worth noting that the below calculation is a mild generalization
of a computation carried out by G. Lyubeznik and K.E. Smith in [96, Example 3.6].

Example 1.3.5. We claim that FA,ϕ ∼= A[Θ;ϕ]. Indeed, fix e ∈ N and let ψe ∈ FA,ϕe . We
point out that, for any a ∈ A,

ψe(a) = ψe(a · 1) = ϕe(a)ψe(1) = ψe(1)ϕe(a).

In this way, set

FA,ϕe
be // AΘe

ψe 7−→ ψe(1)Θe.

The previous straightforward calculation shows the injectivity of this map. In fact, it is a
bijective map with inverse

AΘe // FA,ϕe

aΘe 7−→ aϕe.

In this way, setting FA,ϕ b //A[Θ;ϕ] as the unique map of rings given in degree e by be it
follows that b is an isomorphism of graded algebras.

1.4 Algebras attached to the Frobenius endomorphism

So far, we have considered several abstract constructions which actually stem from con-
siderations about a particular endomorphism (namely, ϕ) on a general commutative ring
A.

In this section, we shall specialize all these abstract constructions in the case we are
really interested. Namely, hereafter A will stand for a commutative Noetherian ring of

prime characteristic p and A
F //A will denote the Frobenius map on A; that is, F raises

an element a ∈ A to its pth power ap ∈ A.

1.4.1 Frobenius pushforward, Frobenius pullback, and adjunction

In Section 1.1.1, we reviewed the constructions of the pushforward and pullback functors
with respect to a given map ϕ. In case ϕ = F e, we fix once and for all the following
notation.

(i) The e-fold of the Frobenius pushforward functor will be denoted F e∗ .
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(ii) The e-fold of the Frobenius pullback functor will be denoted

F ∗e = F e∗A⊗A (−).

Notice that F ∗ := F ∗1 is the classical Peskine-Szpiro Frobenius functor (cf. [110,
Définition (I.2)]). As the reader can easily see, when discussing the case e = 1 we
drop the e from the notation.

It is well-known when F ∗ is exact. We shall refer to the following classical result as Kunz’s
Theorem (cf. [89, Theorem 1.2 and Corollary 2.7]).

Theorem 1.4.1 (Kunz). Let A be a commutative Noetherian reduced ring of prime char-
acteristic p. Then, the following statements are equivalent.

(i) A is regular.

(ii) F∗A is a flat A-module.

(iii) F ∗ is exact.

We also state in this case the adjunction established before in the general case (cf. Proposition
1.1.6); it is worth noting that the below result was originally proved by G. Lyubeznik,
W. Zhang and Y. Zhang in [97].

Proposition 1.4.2 (Lyubeznik, Zhang, Zhang). Let M be a left F∗A-module and let N be
an A-module. Then, the following statements hold.

(a) There is a canonical isomorphism

HomF∗A (F ∗N,M)
∼ // HomA (N,F∗M)

f 7−→ (n 7−→ F∗(f(F∗1⊗m)))

in the category of F∗A-modules.

(b) If, in addition, F∗A is a finitely generated free A-module which is abstractly isomorphic
to F !A as F∗A-module, then there is an abstract isomorphism

HomA (F∗M,N)
∼ // HomF∗A (M,F ∗N)

in the category of F∗A-modules.
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1.4.2 pe-linear maps and p−e-linear maps

Taking into account Example 1.1.8, the set of F e-linear maps is just the set of homogeneous
maps of degree pe. Inspired by this fact, M.Blickle in [18, Definition 2.1] introduced the
following notions.

Definition 1.4.3 (Blickle). Let ψ ∈ EndA(M).

(i) We say that ψ is pe-linear provided ψ(am) = ap
e
ψ(m) for any (a,m) ∈ A × M .

Equivalently, ψ ∈ HomA(M,F e∗M).

(ii) We say that ψ is p−e-linear provided ψ(ap
e
m) = aψ(m) for any (a,m) ∈ A ×M .

Equivalently, ψ ∈ HomA(F e∗M,M).

Remark 1.4.4. A note on terminology. In [8, pp. 293], G.W.Anderson used a slightly
different terminology. Namely, Anderson used the phrase Frobenius linear (respectively,
Cartier linear) to refer to any pe-linear map (respectively, p−e-linear map). It is worth
mentioning that the notion of pe-linear map is classical (cf. [131, page 218]).

1.4.3 Frobenius-Ore extensions and Frobenius skew polynomial rings

In Section 1.2, we have established with complete generality the notions of Ore extensions
and skew polynomial rings. The aim of this subsection is to specialize such constructions
in case ϕ is the Frobenius map.

(i) The Frobenius-Ore extension ring of A is the non-commutative graded ring A[Θ;F ];
that is, the free left A-module with basis {Θe}e∈N and right multiplication given by

Θ · a = apΘ.

(ii) The Frobenius skew polynomial ring of A is the non-commutative graded ring A[ε;F ];
that is, the free right A-module with basis {εe}e∈N and left multiplication given by

a · ε := εap.

Remark 1.4.5. As it was pointed out in the introduction of this chapter, our terminology
concerning the previous non-commutative ring differs from the one adopted by R.Y. Sharp
in recent papers (e. g. [122]). Namely, Sharp refers to A[Θ;F ] as the Frobenius skew poly-
nomial ring. On the other hand, it is also worth noting that A[Θ;F ] is what G. Lyubeznik
denoted by A {F} in [94, Section 4].
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1.4.4 Frobenius algebras and Cartier algebras

In Section 1.3, we have introduced Frobenius and Cartier algebras with respect to a given
map ϕ. Due to the fact that both play a key role in this dissertation, we review their
definition in this specific setting for the convenience of the reader.

Definition 1.4.6. Let A be a commutative Noetherian ring of prime characteristic p and
let M be an A-module.

(i) The Frobenius algebra attached to M is the associative, N-graded, not necessarily
commutative ring

FM :=
⊕
e≥0

HomA (M,F e∗M) .

(ii) The Cartier algebra attached to M is the associative, N-graded, not necessarily com-
mutative ring

CM :=
⊕
e≥0

HomA (F e∗M,M) .

Remark 1.4.7. Slightly loosely speaking, whereas in FM we are collecting all the homoge-
neous maps on M of degree pe (where e runs through N), in CM we are packing all the
homogeneous maps on M of degree p−e (where again e runs through N).

1.4.5 The trace map

In this subsection, all the fields are assumed to have prime characteristic p. The aim of
this subsection is to justify why the name of P.Cartier has appeared in the definition of the
previously mentioned Cartier algebras.

The Cartier operator

Firstly, we introduce some preliminary notions which will be useful not only in this subsec-
tion, but also in other places of this dissertation.

Definition 1.4.8 (Infinity norm). Let K be any field, S will stand for K[x1, . . . , xd], let
g ∈ S, and write

g =
∑
α∈Nd

gαx
α,

with gα ∈ K and gα = 0 up to a finite number of terms.

(i) We define the support of g (which will be denoted supp(g)) as

supp(g) :=
{
α ∈ Nd | gα 6= 0

}
.
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(ii) We define the infinity norm of g (which will be denoted ||g||∞) as

||g||∞ := max
α∈supp(g)

||α||∞,

where ||α||∞ := max{a1, . . . , ad} and α := (a1, . . . , ad).

The other well-known concept that we are to introduce below is the notion of p-basis.
The reader may like to consult [44, A.1.3] and the references therein for additional infor-
mation.

Definition 1.4.9. Let L be an arbitrary ground field of prime characteristic p.

(i) Finitely many elements λ1, . . . , λs are called p-independent if the following three equiv-
alent conditions are satisfied.

(a) [Lp (λ1, . . . , λs) : Lp] = ps.
(b) The chain

Lp ⊆ Lp (λ1) ⊆ Lp (λ1, λ2) ⊆ . . . ⊆ Lp (λ1, . . . , λs)

is an strictly increasing tower of fields.
(c) The ps monomials λ := λa1

1 · · ·λass with 0 ≤ ||α||∞ ≤ p− 1 are an Lp-vector space
basis for L.

(ii) An infinite subset of L is called p-independent provided any finite subset of it is
p-independent in the previous sense.

(iii) A maximal p-independent subset of L is called a p-basis for L. It is worth mentioning
that Zorn’s Lemma guarantees the existence of p-basis; indeed, it stems from the fact
that the union of a chain of p-independent sets is also p-independent.

Now, we proceed recalling the following classical construction (cf. [34, pp. 200]).
Construction 1.4.10 (Cartier). Let Kp ⊆ L ⊆ K be a tower of fields such that [K : L] <∞,
let DerL(K) the ring of L-derivations over K and let

Ω :=
⊕
r≥0

Ωr
K|L

be the ring of differential forms of K over L. In this way, we define the operator

Ω1 ⊗L DerL(K)
C−→ K1/p

given by the assignment ω ⊗ ∂ 7−→ (Cω)(∂), where

[(Cω)(∂)]p = ω(∂p)− ∂p−1(ω(∂)).

We have to underline that ∂p ∈ DerL(K) because all the involved fields have prime charac-
teristic p.
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We are interested in extending such construction. For simplicity, hereafter in this section
we shall assume that K is F -finite

Construction 1.4.11 (Cartier). Set Ω := ΩK|Kp , let Ω
d //Ω be the differential of Ω, set

B := d(Ω), Z := ker(d), and let x1, . . . , xt be a p-basis of K. In this way, set

Z
C // Ω

which sends an element

ω = dϕ+
∑

1≤i1<...<ir≤t
api1,...,ir(x

p−1
i1

dxi1) ∧ . . . ∧ (xp−1
ir

dxir) (1.1)

to
Cω :=

∑
1≤i1<...<ir≤t

ai1,...,irdxi1 ∧ . . . ∧ dxir .

We omit the proof of the following result. We refer to [35, pp. 195–204] for a detailed
treatment.

Theorem/Definition 1.4.12 (Cartier). The following statements hold.

(i) The monomials {xp−1
i1

dxi1 ∧ . . . ∧ x
p−1
ir

dxir}1≤i1<...<ir≤t form a basis of Z modulo B.
Actually, this fact justifies why we can write an arbitrary element of ker(d) as in (1.1).
In this way, the operator C is well-defined.

(ii) C is a ring homomorphism from Z to Ω.

(iii) For any x ∈ K, one has that C(xp) = x, C(xp−1dx) = dx and C(dx) = 0.

(iv) C is surjective and induces a ring isomorphism

HdR(K | Kp) ∼
C // Ω.

In this way, the de Rham cohomology ring HdR(K | Kp) is abstractly isomorphic to
Ω; indeed, it depends on the choice of a p-basis on K. For such reason, this is not a
bijection of differential algebras (cf. [90] for unexplained terminology).

The operator C is called the Cartier operator.

Remark 1.4.13. In fact, it is straightforward to check that C is the unique ring homomor-
phism from Z to Ω verifying part (iii) of the previous theorem.
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The trace map on a polynomial ring

From now on in this subsection, let K be an F -finite field and set S := K[x1, . . . , xd].
The following technical tool will be used later on in this mimeograph; albeit this result

is well known, we provide a detailed proof for the reader’s benefit.

Proposition 1.4.14. Let Be be a basis of K as Kpe-vector space. Then, the set

{bxα | b ∈ Be, 0 ≤ ||α||∞ ≤ pe − 1}

is a finite basis of F e∗S as left S-module.

Proof. Let g ∈ S and write
g =

∑
b∈Be

0≤||α||∞≤pe−1

gp
e

αbbx
α,

with gαb ∈ S and gαb = 0 up to a finite number of terms (indeed, this is always possible
after performing the euclidean quotient with pe as denominator in the exponent set of g).
In this way, if follows that

F e∗ g =
∑
b∈Be

0≤||α||∞≤pe−1

gαbF
e
∗ (bxα),

just what we would want to check.

Now, we introduce the main result of this subsection. We skip the proof and refer to
[29, Chapter 1] for details.

Theorem/Definition 1.4.15. Let K be an F -finite field, let d ∈ N, let S := K[x1, . . . , xd]
and set Φe as the only S-linear map such that

F e∗S
Φe−→ S

F e∗ (bxα) 7−→ bx
a1−(pe−1)

pe

1 · · ·x
ad−(pe−1)

pe

d

(where b and α are as in Proposition 1.4.14) with the convention that if ai−(pe−1)
pe /∈ Z for

some 1 ≤ i ≤ d then Φe(F
e
∗ (bxα)) = 0. Then, the map

F e∗S −→ HomS(F e∗S, S)

F e∗ s 7−→ [F e∗ t 7−→ Φe(F
e
∗ (st))]

is bijective. Therefore, HomS(F e∗S, S) is the cyclic free F e∗S-module generated by Φe.
Hereafter, we shall refer to Φe as the (Grothendieck) trace map.
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Remark 1.4.16. Whenever K is F -finite, the set

{bxα | b ∈ Be, 0 ≤ ||α||∞ ≤ pe − 1}

is a finite basis of F e∗S as left S-module, where S = K[x1, . . . , xd] and Be is a basis of K as
Kpe-vector space. In this way, we may also regard the trace map Φe as the unique p−e-linear
map which is the projection onto the direct summand Sxp

e−1
1 · · ·xp

e−1
d .

We conclude this subsubsection with the following:
Remark 1.4.17. Albeit we do not exploit it in what follows, it is worth noting that in
[126, Example 2.2] was presented a generalization of the trace map Φe; indeed, given K an

arbitrary field and S := K[x1, . . . , xd] there is a K-linear endomorphism S
ϕt //S such that

ϕt(xi) = xti for 1 ≤ i ≤ d (where t ∈ N). We have to point out that the inclussion ϕt (S) ⊆ S
splits because S is a free ϕt (S)-module with basis xα with ||α||∞ ≤ t−1. Moreover, given a
squarefree monomial ideal I, it is clear that ϕt (I) ⊆ I, whence ϕt induces an endomorphism

S/I
ϕt //S/I . The reader should notice that ϕt (S/I) is the K-vector space spanned by

those monomials in xt1, . . . , xtd which are not in I. In this way, setting S/I πt //S/I as the
unique K-linear endomorphism which is the identity on the previous monomials, and acts
as zero on the remainder ones, we obtain a splitting of ϕt. In particular, if t = pe and K is
of prime characteristic, then ϕt = F e and therefore πt turns out to be the trace map Φe.

1.4.6 Some examples of Frobenius algebras

Now, we shall exhibit several examples of principally generated Frobenius algebras. The
first one turns out to be a calculation which was carried out by G. Lyubeznik and K.E. Smith
in [96, Example 3.7].
Example 1.4.18 (Lyubeznik, Smith). Let (R,m,K) be a local ring of characteristic p. Then

FH
dim(R)
m (R) ∼= S[Θ;F ],

where S denotes the S2-ification of R̂ and F denotes the standard Frobenius action on
H

dim(R)
m (R). Indeed, as S := Hom

R̂

(
H

dim(R̂)
m̂

(R̂), H
dim(R̂)
m̂

(R̂)
)

is the S2-ification of R̂
(cf. [30, 12.2.9]) and

HomR

(
F ∗eR H

dim(R)
m (R), H

dim(R)
m (R)

)
= Hom

R̂

(
F ∗e
R̂
H

dim(R̂)
m̂

(R̂), H
dim(R̂)
m̂

(R̂)
)

(indeed, it follows combining flat base change of local cohomology [30, 4.3.2] joint with
the fact that Hdim(R)

m (R) is Artinian [30, 7.1.6]) we finally obtain, bearing in mind that

F ∗e
R̂

= R̂Θe ⊗
R̂

(−) and Hdim(R̂)
m̂

(R̂)⊗
R̂

(−) commutes,

FH
dim(R)
m (R) ∼=

⊕
e≥0

Hom
R̂

(
H

dim(R̂)
m̂

(R̂), H
dim(R̂)
m̂

(R̂)
)

Θe ∼=
⊕
e≥0

SΘe ∼= S[Θ;F ],
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and therefore we get the desired conclusion.

Another source of examples is given by the following result.

Proposition 1.4.19. Let (R,m,K) be a complete F -finite local ring of characteristic p and
ER will stand for a choice of injective hull of K over R. Then, the following statements
hold.

(i) If R is quasi Gorenstein then FER is principal.

(ii) If R is normal then FER is principal if and only if R is Gorenstein.

(iii) If R is a normal domain which, in addition, is Q-Gorenstein (cf. Theorem/Definition
2.4.1), then FER is a finitely generated R-algebra if and only if p is relatively prime
with the index of R.

(iv) If R is a normal domain which, in addition, is Q-Gorenstein, then FER is principal
if and only if the index of R divides p− 1.

Proof. If R is quasi Gorenstein then ER ∼= H
dim(R)
m (R). But we have seen in Example

1.4.18 that, under our assumptions, FH
dim(R)
m (R) ∼= R[Θ;F ]; indeed, R is complete and any

quasi Gorenstein ring is, in particular, S2. The second part is proved in [18, Example 2.7].
On the other hand, part (iii) follows combining [84, Proposition 4.3] and [47, Theorem 4.5];
finally, part (iv) also follows from [84, Proposition 4.3].

Next result computes explicitly FER . We shall refer to this result in what follows as
Fedder’s Theorem (cf. [49, pp. 465]). This is the main result of this subsection.

Theorem 1.4.20 (Fedder). Let K be a field of prime characteristic p, T will stand for
K[[x1, . . . , xd]], and I will denote an arbitrary ideal of T . Then, one has that

FER ∼=
⊕
e≥0

{
(I [pe] :T I)/I [pe]

}
Θe,

where E denotes a choice of injective hull of K over T , R := T/I, Θ is the standard
Frobenius action on E and ER := (0 :E I).

Proof. Compute explicitly:

HomT ((T/I)∨, F e∗ ((T/I)∨)) ∼= HomT (F ∗e((T/I)∨), (T/I)∨) ∼= HomT ((T/I [pe])∨, (T/I)∨)

∼= HomT (T/I, T/I [pe]) ∼= (I [pe] :T I)/I [pe].
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1.5 Duality between Cartier algebras and Frobenius algebras

From now on, let T = K[[x1, . . . , xd]] be a formal power series ring with d indeterminates over
an F -finite field K of characteristic p, I an ideal of T and R := T/I. The purpose of this
section is to review the correspondence between Frobenius and Cartier algebras obtained
through Matlis duality; before doing so, we want to stress that such correspondence is
known (cf. [19] and [125]). However, we produce here a simplified proof which we hope may
be useful for the reader.

Next result establishes the explicit correspondence between CR and FER given by Matlis
duality. It is the main result of this section.

Theorem 1.5.1. We have that

HomT (F e∗R,R)∨ ∼= HomT (ER, F
e
∗ER) and HomT (ER, F

e
∗ER)∨ ∼= HomT (F e∗R,R).

Before proving this theorem we have to show a previous statement which we shall need
during its proof; albeit the below result was obtained by F.Enescu and M.Hochster in [46,
Discussion (3.4)], we review here their proof for the convenience of the reader.

Lemma 1.5.2. Let (A,m,K) //(B, n,L) be a local homomorphism of local rings, and
suppose that mB is n-primary and that L is finite algebraic over K (both these conditions
hold if B is module-finite over A). Let E := EA(K) and EB(L) denote choices of injective
hulls for K over A and for L over B, respectively. Then, the functor HomA(−, E), on
B-modules, is isomorphic with the functor HomB(−, EB(L)).

Proof. First of all, we underline that HomA(−, E), on B-modules, can be identified via
adjunction with

HomA ((−)⊗A B,E) ∼= HomB(−,HomA(B,E))

and therefore HomA(B,E) is injective as B-module. Moreover, as mB is n-primary any
element of HomA(B,E) is killed by a power of n and therefore

HomA(B,E) ∼= EB(L)⊕l.

In this way, it only remains to check that l = 1. Indeed, we note that

HomA(L, E) ∼= HomA(L,K).

However, as A-module, HomA(L,K) is abstractly isomorphic to L (here we are using the
assumption that L is finite algebraic over K). Thus, all these foregoing facts imply that

EB(L) ∼= HomA(B,E),

hence HomA ((−)⊗A B,E) ∼= HomB(−, EB(L)) and we get the desired conclusion.
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Proof of Theorem 1.5.1. First of all, we underline that

HomT (F e∗R,R)∨ ∼= HomT (ER, F
e
∗ (R)∨).

Now, let E∗ be the injective hull of the residue field of F e∗R. In this way, from Lemma 1.5.2
we deduce that HomT (−, E) ∼= HomF e∗T (−, E∗) as functors of F e∗T -modules. Therefore,
combining all these facts joint with the exactness of F e∗ it follows that

F e∗ (R)∨ ∼= HomT (F e∗R,E) ∼= HomF e∗T (F e∗R,E∗)
∼= F e∗ HomT (R,E) ∼= F e∗ER.

Thus, taking into account this last chain of isomorphisms one obtains the first desired
conclusion.

On the other hand, using once more Lemma 1.5.2 it turns out that

F e∗ (ER)∨ ∼= HomT (F e∗ER, E) ∼= HomF e∗T (F e∗ER, F
e
∗E) ∼= F e∗ (E∨R) ∼= F e∗R.

Thus, bearing in mind this last chain of isomorphisms it follows that

HomT (ER, F
e
∗ER)∨ ∼= HomT (F e∗ (ER)∨, E∨R) ∼= HomT (F e∗R,R),

just what we finally wanted to show.

We end this part with the following:
Remark 1.5.3. The reader should point out that Theorem 1.5.1 only guarantees a corre-
spondence between Frobenius and Cartier algebras at the level of homogeneous elements.

1.6 Cartier operators, Frobenius operators and differential
operators

The purpose of this section is to remind the close connection between Cartier algebras (re-
spectively, Frobenius algebras) and the ring of differential operators in prime characteristic;
in fact, it turns out that modules over CA (where A is either K[x1, . . . , xd] or K[[x1, . . . , xd]]
and K is a field of positive characteristic) can be regarded as right modules over DA and
that modules over FA can also be considered as left DA-modules. This connection will be
of some interest for our purposes in the final part of Chapter 2 (cf. Section 2.5.2).

Before doing so, we remind Grothendieck’s construction of the ring of differential oper-
ators of a general commutative ring.

Definition 1.6.1 (Grothendieck). Let A be a commutative ring and let A0 be a subring of
A. The ring of algebraic differential operators DA|A0

is the subring of HomA0(A,A) whose
elements are defined inductively on the so-called order. Namely, a differential operator of
order 0 is the multiplication by an element of A, and a differential operator of order n is
a δ ∈ HomA0(A,A) such that, for any a ∈ A, the commutator [δ, a] := δ ◦ a − a ◦ δ is a
differential operator of order less or equal than n−1. In case A0 = Z, we shall simply write
DA instead of DA|Z for the sake of simplicity.
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Example 1.6.2. Let F be any field of characteristic 0 and let A be either the polynomial
ring F[x1, . . . , xd], the convergent power series ring F{x1, . . . , xd}, or the formal power series
ring F[[x1, . . . , xd]]. In this case,

DA|F = A

[
y1, . . . , yd;

∂

∂x1
, . . . ,

∂

∂xd

]
,

where ∂
∂xi

(i ∈ {1, . . . , n}) denotes the partial derivative with respect to xi. In this case,
DA|F is a left Noetherian (non-commutative) ring. In this case, DA|F is the so-called Weyl
algebra and it is often denoted Ad(F).

The reader should remind that the fact that Ad(F) is left Noetherian turns out to be a
non-trivial result; indeed, it is a consequence of a non-commutative version of the Hilbert
Basis Theorem. The interested reader may like to consult [52, Theorem 2.6 and Corollary
2.7] for additional details.

The situation is quite different in prime characteristic.
Example 1.6.3. Let K be any field of characteristic p and let A be a finitely generated
K-algebra (or a localization or a completion of it). In this case, DA is far from being left
or right Noetherian. However, we can describe explicitly DA|K under mild assumptions.
Indeed, if one sets D(e)

A := HomA(F e∗A,F
e
∗A) then it follows that

DA|K ⊆ DA ⊆
⋃
e≥0

D
(e)
A .

Furthermore, if A is an F -finite ring (in case A is local this is equivalent to say that K
is an F -finite field) then the previous rightmost inclusion becomes in equality because of
Yekutieli’s Theorem (cf. [145, 1.4.8a]). In any case, we may think that the elements of D(e)

A|K
are nothing but differential operators that are linear over Ape . It is also well known that
the inclusion DA|K ⊆ DA is an equality in case the ground field K is perfect.

From now on, we denote by K a perfect field of prime characteristic.
Example 1.6.4. Let A be either the polynomial ring K[x1, . . . , xd], or the formal power series
ring K[[x1, . . . , xd]]. In this case, DA|K is the ring extension of A generated by the differential
operators

∂ti :=
1

t!

∂t

∂xti
(i ∈ {1, . . . , d}),

where ∂t

∂xti
is the tth partial derivative with respect to xi. More precisely, using the multi-

graded notation

∂α :=
1

a1!

∂a1

∂xa1
1

· · · 1

ad!

∂ad

∂xadd
,

we have that D(e)
A|K is the ring extension of A generated by the differential operators ∂α

with ||α||∞ ≤ pe − 1.
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On the other hand, we recall as well that the ring of differential operators of a quotient
ring B := A/I is DB|K = DA|K(I)/IDA|K, where

DA|K(I) := {δ ∈ DA|K | δ(I) ⊆ I}

is often called the ring of I-logarithmic differential operators of A.

Now, we introduce the main ingredient of this section.
Let A be a essentially of finite type K-algebra. We observe that we have a natural map

FAe ⊗A CAe
〈−,−〉e // D

(e)
A .

given by the assignment φe ⊗ ψe 7−→ φe ◦ ψe. However, we have to take into account that
FAe = HomA(A,F e∗A) and that CAe = HomA(F e∗A,A); in this way, regarding HomA(A,F e∗A)
as an (HomA(F e∗A,F

e
∗A), A)-bimodule and HomA(F e∗A,A) as an (A,HomA(F e∗A,F

e
∗A))-

bimodule, the previous tensor product is a (D
(e)
A , D

(e)
A )-bimodule, whence 〈−,−〉e is a nat-

ural morphism of (D
(e)
A , D

(e)
A )-bimodules.

Next result tells that, when the ambient ring is smooth, the previous pairing turns out
to be bijective; although the below result was proved in [2, Proposition 2.1], we provide a
proof for the sake of completeness.

Theorem 1.6.5 (Àlvarez, Blickle, Lyubeznik). Suppose that, in addition, A is regular.
Then 〈−,−〉e is an isomorphism.

Proof. As being isomorphism is a local property we may assume, without loss of generality,
that A is a local regular ring. In this situation, Kunz’s Theorem says us that F e∗A is a
free left A-module with finite rank; namely, r. Once a basis of it is fixed, we can identify
F e∗A with Mr×1(A); we may as well identify HomA(F e∗A,A) with M1×r(A) and, finally,
we identify D(e)

A|K withMr×r(A). In this way, 〈−,−〉e can be identified with the map

Mr×1(A)⊗AM1×r(A) −→Mr×r(A)

given by the assignment B1 ⊗B2 7−→ B1 ·B2; but this is clearly bijective.

Later on (cf. Section 2.5.2 of Chapter 2) we shall check that, if one drops regularity,
then one loses bijectivity.

On the other hand, it is worth mentioning that Theorem 1.6.5 has been generalized by
Y.Toda and T.Yasuda. We omit their proof and refer to [135, Proposition 2.1] for further
details.

Proposition 1.6.6 (Toda, Yasuda). Let R be a commutative ring and let L, M , N denote
R-modules. We regard L as an (EndR(L), R)-bimodule, and analogously for M and N .
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Suppose that L is a direct summand of M⊕r for some r ≥ 1. Then, the natural morphism
of (EndR(N),EndR(L))-bimodules

HomR(M,N)⊗EndR(M) HomR(L,M) −→ HomR(L,N)

given by the assignment f ⊗ g 7−→ f ◦ g is an isomorphism.

The reader should notice that, if one takes M = A and N = L = F e∗A in the previous
result, then one recovers Proposition 1.6.5 as an immediate corollary.

1.6.1 Basic examples of D-modules

We are to conclude this section presenting some basic examples of algebraic D-modules.
For the purposes of this subsection, K is to denote either a field of characteristic zero or a
perfect field of prime characteristic, and A will denote the polynomial ring K[x1, . . . , xd].
As we have noticed in this section, DA = DA|K is the ring extension of A generated by the
differential operators

∂ti :=
1

t!

∂t

∂xti
,

where (i, t) ∈ {1, . . . , d} × N and ∂t/∂xti denotes the tth partial derivative with respect to
xi.

Example 1.6.7. A has a natural structure as left DA-module given by

∂ti · f :=
1

t!

∂tf

∂xti
,

where f ∈ A. In this case, there is an isomorphism A ∼= DA/(DA)+ in the category of left
DA-modules, where (DA)+ is the left ideal of DA generated by ∂ti , and (i, t) runs through
{1, . . . , d} × N∗.

Next example is also basic, but it is non-trivial. Actually, it requires to introduce the
following notion (cf. [39, Chapter 10, Theorem 3.3]).

Theorem/Definition 1.6.8 (Bernštĕın). Let K be a field of characteristic zero, set A :=
K[x1, . . . , xd] and f ∈ A a non-zero polyomial. Then, there exists a monic polynomial
bf ∈ K[s] and a differential operator Q ∈ DA[s] such that

Q(s) · fs+1 = bf (s) · fs

for any s. The polynomial bf (s) is called the Bernštĕın-Sato polynomial of f .

Example 1.6.9. Let f ∈ A. Then, Af has a natural structure as left DA-module. In this
case, there is an isomorphism

Af ∼= DA ·
1

f l
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in the category of leftDA-modules, where l = 1 ifK has prime characteristic (cf. [2, Theorem
3.7 and Corollary 3.8]) or −l is the negative integer root of greatest absolute value of the
Bernštĕın-Sato polynomial of f if K has characteristic zero (cf. [12]). In the characteristic
zero case, it is known as well that Af can not be isomorphic to DA · 1/f i for i < l (cf. [138,
Lemma 1.3]).

We end this subsection with the last basic example of D-module which will appear later
on: the local cohomology module H∗I (A).

Example 1.6.10. Let I be an arbitrary ideal of A (at this point, it is very important to
stress that A = K[x1, . . . , xd]). We have seen before that Af has a natural structure as
D-module. Using this fact, it is straightforward to check, with the help of the Čech complex
with respect to a minimal generating set for I, that the cohomology of such complex has a
natural structure as D-module. But the cohomology of this Čech complex is just the local
cohomology modules H∗I (A). This last fact is proved carefully in [30, Chapter 5].

We give two concrete (and enlightening) examples. When I = m = 〈x1, . . . , xd〉, one
has (cf. [93, Proposition 2.3]) that

Hd
m(A) ∼=

DA

DA ·m

More generally, one can check that if I = 〈x1, . . . , xt〉 (where t ≤ d) then

Ht
I(A) ∼=

DA

DA · 〈x1, . . . , xt, ∂t+1 . . . , ∂d〉
.

1.7 F-jumping numbers of pairs

It is well-known (cf. [92, Chapter 9]) that the mere existence of resolution of singularities
in characteristic zero implies the fact that the jumping numbers of the multiplier ideal are
discrete and rational. On the other hand, although the existence of resolution of singularities
in prime characteristic is still an open problem, it is well-known too that the multiplier
ideal has an analogue in the characteristic p setting. In this section, we shall introduce such
analog.

Before so, we present the organization of this section for the reader’s benefit. Firstly,
we recall the notions of multiplier ideals and jumping numbers, following the presentation
due to R. Lazarsfeld in [92, Chapter 9]. Second, following Blickle, Mustaţǎ and Smith’s
approach, we introduce Hara-Yoshida’s (generalized) test ideals (through p−e-linear maps)
and their corresponding jumping coefficients, the so-called F -jumping numbers. Third, we
see how Cartier algebras allow to extend test ideals and F -jumping numbers to non-smooth
(even non-normal) varieties. Finally, we see how the so-called gauge boundedness allows to
show the discreteness of F -jumping numbers under some finiteness restrictions on a certain
Cartier algebra.
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1.7.1 Multiplier ideals and jumping numbers

As we have explained before, the material of this section is borrowed from [92, Chapter 9];
we only introduce the notions and results that we really need regarding our purposes.

We start with some well-known preliminaries.

Definition 1.7.1. Let X be an irreducible, normal algebraic variety over C.

(i) A Q-divisor on X is a finite formal linear combination

D =
∑
i

aiDi

of codimension-one irreducible subvarieties Di ⊆ X with rational coefficients ai ∈ Q.
Moreover, it is said that D is effective provided ai ≥ 0 for all i.

(ii) Let D =
∑

i aiDi be a Q-divisor on X. The round down (or integral part) bDc is the
integral divisor

bDc :=
∑
i

baicDi,

where, as usual, for x ∈ Q one denotes by bxc the greatest integer less or equal than
x.

From now on, assume that X is, in addition, smooth.

(iii) A divisor D =
∑

iDi has simple normal crossings (and, in this case, it is said that
D is a simple normal crossings divisor) if each Di is smooth, and if D is defined in a
neighborhood of any point by an equation in local analytic coordinates of the type

z1 · · · zk = 0

for some k ≤ dim(X). A Q-divisor
∑

i aiDi has simple normal crossing support
provided

∑
iDi is a simple normal crossings divisor in the previous sense.

(iv) Let a ⊆ OX be a non-zero ideal sheaf on X. A log resolution of a is a projective

birational map X ′
µ //X, where X ′ smooth, such that µ−1a = OX′(−F ), where F is

an effective divisor on X such that F +except(µ) has simple normal crossing support;
here, except(µ) denotes the sum of the exceptional divisors of µ.

In this way, given any such resolution, we denote by

KX′|X := KX′ − µ∗KX

the so-called relative canonical divisor of X ′ over X.

After all the foregoing preliminaries, we are now ready for introducing multiplier ideals.
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Definition 1.7.2. Let X be a smooth algebraic variety over C, let a ⊆ OX be a non-zero
ideal sheaf on X, and t > 0 a real number. Fix a log resolution of a with µ−1a = OX′(−F ).
The multiplier ideal J (X, ac) attached to c and a is defined as follows:

J (X, ac) := µ∗OX′
(
KX′|X − bcF c

)
.

Our next aim is to define the so-called jumping numbers attached to multiplier ideals;
before doing so, we introduce the smallest non-zero of such digits:

Definition 1.7.3. Let X be a smooth algebraic variety over C, and let a ⊆ OX be a
non-zero ideal sheaf on X. The log-canonical threshold of a at x ∈ X is

lct(a;x) := inf{c ∈ Q | J (X, ac)x ⊆ mx}.

It is of some interest to characterize the intervals on which multiplier ideals are constant;
it leads to the introduction of the so-called jumping numbers. More precisely:

Theorem/Definition 1.7.4. Let X be a smooth algebraic variety over C, and let a ⊆ OX
be a non-zero ideal sheaf on X. Then, for each x ∈ X, there is an increasing sequence

0 = ξ0(a;x) < ξ1(a;x) < ξ2(a;x) < . . .

of rational numbers ξi = ξi(a;x) characterized by the properties that

J (X, ac)x = J (X, aξi)x for c ∈ [ξi, ξi+1),

whereas J (X, aξi+1)x ( J (X, aξi)x for every i. Here, one agrees the convention that
J (X, a0) = OX ; so, ξ1(a;x) is the log-canonical threshold of a at x.

The rational numbers ξi(a;x) are called the jumping numbers (or jumping coefficients)
of a at x.

The reader should notice that, by the very definition of jumping numbers, there is an
strictly decreasing chain of multiplier ideals

OX,x ) J (X, aξ1)x ) J (X, aξ2)x ) . . . ) J (X, aξi)x ) J (X, aξi+1)x ) . . .

We end this subsection with the following:

Remark 1.7.5. In fact, one can define multiplier ideal sheaves in non-smooth (but normal)
algebraic varieties; the problem turns out to be that, in this setting, it is unclear whether
the corresponding jumping numbers are discrete and rational. The interested reader in this
issue may like to consult [92, Chapter 9] and overall [41] for further information about these
general multiplier ideals.
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1.7.2 Test ideals and F-jumping numbers

Test ideals have grown inside the so-called tight closure theory introduced by M.Hochster
and C.Huneke thirty years ago (one may like to consult [70] for a gentle introduction on the
study of tight closure). Starting from the pioneering work by K.E. Smith in [128], people
working in Algebraic Geometry have tried to define test ideals without appealing to tight
closure; as we have previously explained, their motivation stems from the fact that test
ideals are in many situations the characteristic p analogs of multiplier ideals. It is worth
mentioning here that what we call test ideal here is what is defined in tight closure theory
as the big test ideal. The interested reader may like to consult [119] and the references
therein for more information concerning test ideals.

Test ideals and F-jumping numbers on smooth habitats

In [59], N.Hara and K.-i. Yoshida defined the test ideals for pairs; regardless, their definition
stills depends on a generalization of tight closure theory, the so-called generalized tight
closure; sometimes, it is as well called ideal-adic tight closure (e .g . [139]). Finally, recent
work due to S.Takagi (cf. [132]) (among others) have conducted M.Blickle, M.Mustaţǎ and
K.E. Smith in [21] to define test ideals using p−e-linear maps.

We start this section introducing test ideals through p−e-linear maps following [21].

Theorem/Definition 1.7.6. Let A be an F -finite regular ring of prime characteristic p,
let c ∈ R be non-negative, let a be an ideal of A, and set

Ie(a
c) := HomA(F e∗A,A) · F e∗ (adc(p

e−1)e).

Then, the following statements hold.

(i) For any e ∈ N, Ie(ac) ⊆ Ie+1(ac+1). In this way, one obtains an increasing chain of
ideals

. . . ⊆ Ie(ac) ⊆ Ie+1(ac+1) ⊆ . . .

(ii) The previous ascending chain of ideals eventually stabilizes.

In this way, we define the test ideal with respect to ac as

τ(A; ac) := Ie(a
c)

for e� 0.

After these preliminaries, we introduce F -jumping numbers of pairs; the reader is en-
couraged to compare the below result with 1.7.4.
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Theorem/Definition 1.7.7. Let A be an F -finite regular ring of prime characteristic, let
a be an ideal of A and let c be a non-negative real number. Then, for all ε > 0, we have

τ(A; ac) ⊇ τ(A; ac+ε)

with equality for sufficiently small ε > 0. In this way, a real number c > 0 is called an
F -jumping number of the pair (Spec(A),V(a)) if

τ(A; ac−ε) ) τ(A; ac)

for all ε > 0.

As in the characteristic zero setting, it is clear, by the very definition of F -jumping
numbers, that there is an strictly decreasing chain of test ideals:

A = τ(A; a0) = τ(A; aν0) ) τ(A; aν1) ) . . . ) τ(A; aνi) ) τ(A; aνi+1) ) . . .

The first non-zero of such digits (namely, ν1 in our previous notation) is the so-called F -pure
threshold of the pair (Spec(A), a).

Test ideals and F-jumping numbers in singular habitats through Cartier alge-
bras

Our next aim is to extend the definition of the test ideal (and also of F -jumping coefficients)
to a non-necessarily regular ambient ring; it turns out that Cartier algebras are the key
notion in order to attain this goal. More precisely, following [23, Definition 9.3.7] we
introduce:

Theorem/Definition 1.7.8 (Blickle). LetM be a finitely generated R-module that is also
a C-module for some R-Cartier algebra C. Then there is a unique C-submodule σ(M) ⊆M
such that the following statements hold.

(a) M/σ(M) is nilpotent; that is, (C+)n (M/σ(M)) = 0 for some n ∈ N.

(b) C+σ(M) = σ(M).

In this way, we define the test submodule τ(M, C) to be the unique smallest submodule N
of M (IF IT EXISTS) which verifies the following requirements.

(i) N is a C-submodule of M .

(ii) σ(M)p = Np for any minimal prime p of R.

In this way, M.Blickle introduced (cf. [18, Definition 3.21]) Hara-Yoshida’s generalized
test ideals using Cartier algebras in the following manner.
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Definition 1.7.9. Let a ⊆ R be a non-zero ideal and let t be a non-negative real number.
Set

Cat :=
⊕
e≥0

(
HomR (F e∗R,R) ·

(
F e∗ a

dt(pe−1)e
))

,

which is clearly a Cartier subalgebra of CR. Thus, the generalized test ideal τ(R; at) is
defined as τ(R, Cat). This definition makes sense because the existence of τ(R; at) under
our assumptions is well-known.

In this way, as far as Cartier algebras allow to define test ideals in arbitrary algebraic
varieties, one can also define its corresponding F -jumping numbers as in 1.7.7. So, it is
natural to ask in this general context the following:

Question 1.7.10. Are F -jumping numbers discrete and rational?

Gauge boundedness

Now, we present the fundamental technical tool of this section. It is worth mentioning that
this technique is mainly introduced in order to deduce discreteness of jumping numbers of
test ideals where the ambient ring is not necessarily normal.

From now on, set S := K[x1, . . . , xd]. It is worth mentioning that the below notion,
introduced by G.W.Anderson in [8, pp. 291–292] and used by M.Blickle in [18, Section 4]
in the context of test ideals, plays an important role in this mimeograph

Definition 1.7.11 (Anderson, Blickle). Set Sd as the K-span generated by monomials

{xα | ||α||∞ ≤ d}

and S−∞ := 0. Let M be a finitely generated S-module and let m1, . . . ,mk be generators
of M . Thus, the just introduced filtration on S together with this choice of generators of
M induces an increasing filtration, indexed by {−∞} ∪ N0, on M given by

Md :=

{
0, if d = −∞,
Sd · 〈m1, . . . ,mk〉, otherwise.

In this way, set

M
δM // {−∞} ∪ N0

m 7−→ min{d | m ∈Md −Md+1}.

We call δM a gauge for M .

The main example of gauge we shall consider in this dissertation has been already
introduced in this mimeograph (cf. Definition 1.4.8). However, we remind it once more for
the convenience of the reader.
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Definition 1.7.12. Let g ∈ S and write

g =
∑
α∈Nd

gαx
α,

with gα ∈ K and gα = 0 up to a finite number of terms.

(i) We define the support of g (which will be denoted supp(g)) as

supp(g) :=
{
α ∈ Nd | gα 6= 0

}
.

(ii) We define the infinity norm of g (which will be denoted ||g||∞) as

||g||∞ := max
α∈supp(g)

||α||∞,

where ||α||∞ := max{a1, . . . , ad} and α := (a1, . . . , ad).

Example 1.7.13. There are two examples of gauge which are interesting for our later pur-
poses.

(i) If M = S then δS =|| · ||∞.

(ii) If M = S/I, where I is some ideal of S, then δM is just the map which makes the
following triangle commutative.

S

||·||∞
��

// // S/I

δS/Iyy
{−∞} ∪ N0

In what follows, we make the abuse of identifying δS/I with || · ||∞.

Definition 1.7.14 (Blickle). Let I be an ideal of S and set R := S/I. We say that CR is
gauge bounded if there exists a set {ψi | ψi ∈ CRei}, which generates CR+ as right R-module,
and a constant K such that, for any i and for any r ∈ R,

||ψi(r)||∞ ≤ ||r||∞
pei

+K.

The following result, proved by Blickle in [18], justifies all the previously introduced
notions in this section. We skip the proof and refer to [18, Corollary 4.16] for details.

Proposition 1.7.15 (Blickle). Suppose that CR is gauge bounded. Then, whenever C is a
positive real number, the set {τ(R; ac) | 0 ≤ c ≤ C} is a finite set.

We shall show that Proposition 1.7.15, in conjunction with the results obtained in
Chapter 2, imply that the F -jumping numbers of (Spec(R),V(a)) forms a discrete subset
inside the non-negative real numbers, where R = K[[x1, . . . , xd]]/I is a complete Stanley-
Reisner ring, K is a perfect field of characteristic p, and a is any ideal of R.
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1.8 Modules with a Frobenius action

In this section, we shall focus on the study of modules M equipped with a homomorphism
ψ ∈ Hom(M,F∗M). Equivalently, we want to analize some objects in the category of left
A[Θ;F ]-modules, where A is a commutative Noetherian ring of prime characteristic p and

A
F //A is the Frobenius map.

1.8.1 Artinian modules over the Frobenius-Ore extension ring

One of the main problems of A[Θ;F ] is that it is rarely left or right Noetherian, as it is
explictly established in the following result. We omit its proof and we refer to [146, Theorem
(1.3)] for details.

Theorem 1.8.1 (Yoshino). Let A be a commutative Noetherian ring of characteristic p.
Then, the following statements hold.

(i) A[Θ;F ] is left Noetherian if and only if A is a direct product of a finite number of
fields.

(ii) A[Θ;F ] is right Noetherian if and only if A is Artinian and A/m is a perfect field for
any m ∈ Max(A).

Now, we provide effective descriptions of basic examples of left modules over A[Θ;F ].
We refer to [146, Lemma (5.1)] for details.

Proposition 1.8.2 (Yoshino). Let A be a commutative Noetherian ring of characteristic
p, let a ∈ A be any element and let J(a) denote the left ideal of A[Θ;F ] generated by the
infinite set

{ape−1Θe − 1 | e ∈ N}.

Then, the following statements hold.

(i) A has a natural structure as left A[Θ;F ]-module given by

Θ · x := xp for any x ∈ A.

In such case, there is an isomorphism

A ∼= A[Θ;F ]/A[Θ;F ]〈Θ− 1〉

in the category of left A[Θ;F ]-modules.

(ii) The localization Aa has a natural structure as left A[Θ;F ]-module given by

Θ ·
( x
at

)
:=

xp

atp
for any x ∈ A.

38



In such case, there is an isomorphism

ψa : A[Θ;F ]/J(a) ∼= Aa.

in the category of left A[Θ;F ]-modules.

Let I be any ideal of A. Our next aim is to show that local cohomology modules H i
I(A)

have an abstract structure as finitely generated left A[Θ;F ]-modules. This is the main
result of this subsection. We refer to [146, pp. 2490–2491] for further details.

Theorem 1.8.3 (Yoshino). Let A be a commutative Noetherian ring of characteristic p,
let a, b ∈ A and let I be any ideal of A such that I = 〈a1, . . . , at〉. Then, the following
statements hold.

(i) There is a commutative diagram

A[Θ;F ]/J(a)

ψa
��

µb // A[Θ;F ]/J(ab)

ψab
��

Aa
µb // Aab

Here, the vertical arrows are the isomorphisms described in Proposition 1.8.2 and both
µb and µb are the natural maps induced by the right multiplication by b.

(ii) The Čech complex of A with respect to a1, . . . , at

0 −→ A −→
t⊕
i=1

Aai −→
⊕

1≤i<j≤t
Aaiaj −→ . . . −→

t⊕
i=1

Aa1···âi···at −→ Aa1···at −→ 0

is a complex of left A[Θ;F ]-modules which is isomorphic to the following complex:

0 −→ A[Θ;F ]/J(1) −→
t⊕
i=1

A[Θ;F ]/J(ai) −→
⊕

1≤i<j≤t
A[Θ;F ]/J(aiaj) −→ . . .

. . . −→
t⊕
i=1

A[Θ;F ]/J(a1 · · · âi · · · at) −→ A[Θ;F ]/J(a1 · · · at) −→ 0.

In this complex, for each 1 ≤ i1 < . . . < il ≤ t, any map

A[Θ;F ]/J(ai1 · · · âij · · · ail)
µaij // A[Θ;F ]/J(ai1 · · · ail)

is the one induced on any direct summand from the right multiplication by some aij .
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(iii) Any local cohomology module H i
I(A) has an abstract structure as a finitely generated

left A[Θ;F ]-module.

Remark 1.8.4. It is worth mentioning here that part (iii) of the previous result is proved
carefully in [30, 5.3.4 and 5.3.6] in a more functorial way.

We have to emphasize that Theorem 1.8.3 has the following interesting:

Corollary 1.8.5. Let (A,m,K) be a Cohen-Macaulay local ring of characteristic p of di-
mension d ≥ 1, and let x1, . . . , xd be a system of parameters for A. Then, there is an
isomorphism

Hd
m(A) ∼= A[Θ;F ]/ (J(x1 · · ·xd) +A[Θ;F ]〈x1, . . . , xd〉) .

in the category of left A[Θ;F ]-modules.
In particular, if A is Gorenstein then there is an isomorphism

EA ∼= A[Θ;F ]/ (J(x1 · · ·xd) +A[Θ;F ]〈x1, . . . , xd〉)

in the category of left A[Θ;F ]-modules.

1.8.2 Matlis duality

In this subsection, we are to establish an equivalence of categories which involves a slight
modification of the well-known Matlis duality. We must notice that this construction was
introduced by M.Katzman in [77, Section 2]. Actually, we shall follow his treatment. Re-
gardless, we want to point out that the most of the ideas used here were already established
by M.Blickle in his thesis; the interested reader may like to consult [15, Chapter 4] for fur-
ther details.

Throughout this section, K is to denote an arbitrary field of characteristic p, T will be
K[[x1, . . . , xd]], I will stand for an arbitrary ideal of T and R := T/I. Moreover, we shall
denote by E = ET a choice of injective hull of K over T and by (−)∨ the Matlis duality
functor HomT (−, E).

Definition 1.8.6. Let M be a left R[Θ;F ]-module.

(a) Following Lyubeznik’s terminology in [94, Section 4], we say thatM is cofinite provided
it it Artinian as R-module. We shall denote by R[Θ;F ]A the category of cofinite R[Θ;F ]-
modules.

(b) Following Blickle’s terminology in [17, Definition 2.1], a γ-sheaf on T is a pair (N, γN )

consisting of a left T -moduleN and a T -linear map N
γN //F ∗TN . Moreover, we say that

it is coherent provided its underlying T -module N is finitely generated. In addition, we
say that a coherent γ-sheaf is supported on I provided its underlying module N has a
structure as left R-module. It is worth mentioning here that Blickle’s original definition
of γ-sheaf is more general than ours.
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On the other hand, homomorphisms of γ-sheaves are maps N1
ψ //N2 between the

corresponding underlying T -modules such that the square

N1

γN1

��

ψ // N2

γN2

��
F ∗TN1

F ∗Tψ // F ∗TN2

commutes. In the sequel, we shall denote by Cohγ(T ) (respectively, Cohγ(R)) the
category of coherent γ-sheaves on T (respectively, supported on I).

Remark 1.8.7. A note on terminology. The notion of γ-sheaf previously introduced agrees
with the concept of quasi-F-module which was proposed by D.Tobisch in [134, Definition
3.1].

On the other hand, in [77, Section 2] our previously defined category R[Θ;F ]A was
denoted by C and the author says that C is the category of Artinian R[Θ;F ]-modules.
We have avoided this terminology because the top local cohomology module Hdim(R)

m (R)
belongs to R[Θ;F ]A; however, we have seen in Theorem 1.8.3 that it has a structure as finitely
generated left R[Θ;F ]-module. So, it is not clear for us whether Hdim(R)

m (R) belongs to C.
The following technical statement will be a key ingredient in the proof of the main result

of this section. It was established by Lyubeznik in [94, Lemma 4.1] providing a generaliza-
tion of an earlier result (cf. [62, Lemma 1.8]) proved by R.Hartshorne and R. Speiser. We
provide here Lyubeznik’s proof for the sake of completeness.

Proposition 1.8.8 (Lyubeznik). There is a natural equivalence of functors

(−)∨ ◦ F ∗T ∼
τ +3 F ∗T ◦ (−)∨

regarding these compositions as functors from the category of Artinian left T -modules to the
category of finitely generated left T -modules.

Proof. Let M be an Artinian left T -module. So, (cf. [30, 10.2.8]) there are (a, b) ∈ N × N
and an exact sequence

0 //M // E⊕a
ψ // E⊕b.

Moreover, as E∨ is canonically isomorphic to T one has that ψ can be abstractly identified
with the right multiplication by At ∈Mb×a(T ). In this way, applying to the previous exact
sequence the exact functors (−)∨ ◦ F ∗T and F ∗T ◦ (−)∨ respectively, we obtain the following
exact sequences:

(F ∗T (E)∨)⊕b
F ∗T (ψ)∨

// (F ∗T (E)∨)⊕a // F ∗T (M)∨ // 0

F ∗T (E∨)⊕b
F ∗T (ψ∨)

// F ∗T (E∨)⊕a // F ∗T (M∨) // 0.
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It turns out that the following statements hold.

(i) Both F ∗T (ψ)∨ and F ∗T (ψ∨) are abstractly isomorphic to the left multiplication by A[p],
where A[p] is obtained from A by raising all its entries to the p-th power.

(ii) Since T is regular it is, in particular, quasi Gorenstein and therefore E is isomorphic
to Hd

m(T ).

(iii) F ∗T (Hd
m(T )) is canonically isomorphic to Hd

m(T ). Indeed, set x := x1 · · ·xd. Since

Hd
m(T ) ∼= lim

−→

(
T

x· // T/〈x1, . . . , xd〉
x· // T/〈x2

1, . . . , x
2
d〉

x· // . . .
)

it follows, using that tensor products commute with filtered colimits, that

F ∗TH
d
m(T ) ∼= lim

−→

(
T

xp· // T/〈xp1, . . . , x
p
d〉

xp· // T/〈x2p
1 , . . . , x

2p
d 〉

xp· // . . .

)

Now, we fix t ∈ N and let T/〈xt1, . . . , xtd〉
Ft //T/〈xpt1 , . . . , x

pt
d 〉 be the map induced by

the Frobenius map. We have to note that the following square commutes:

T/〈xt1, . . . , xtd〉

Ft
��

x· // T/〈xt+1
1 , . . . , xt+1

d 〉

Ft+1

��

T/〈xpt1 , . . . , x
pt
d 〉

xp· // T/〈xp(t+1)
1 , . . . , x

p(t+1)
d 〉

In this way, the universal property of the colimit implies that there is a natural
homomorphism

Hd
m(T ) // F ∗T (Hd

m(T )).

Finally, using that {〈xpt1 , . . . , x
pt
d 〉}t∈N is an inverse system of ideals which is cofinal

with respect to the inverse system of ideals given by {〈xt1, . . . , xtd〉}t∈N it follows that
the previous map between colimits yields the promised canonical isomorphism between
F ∗T (Hd

m(T )) and Hd
m(T ).

In this way, combining the previous facts it turns out that we obtain a canonical isomor-
phism F ∗T (E)∨

∼ //F ∗T (E∨) which induces a canonical isomorphism

F ∗T (M)∨ ∼
τM // F ∗T (M∨)

between the cokernels of F ∗T (ψ)∨ and F ∗T (ψ∨). The comparison theorem between minimal
free resolutions (cf. [114, Theorem 6.16]) imply that this isomorphism does not depend on
the presentation of M∨ as cokernel of a matrix between free T -modules.
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Now, we are to introduce the following terminology.

Definition 1.8.9. Let M be a left R-module.

(i) The evaluation map on M , which we shall denote by eM , is defined in the following
way:

M
eM−→M∨∨

m 7−→ em

where

M∨
em−→ E

ω 7−→ ω(m).

We note that e defines a natural transformation from the identity functor (−) to the
double dual functor (−)∨∨.

(ii) We say that M is Matlis-reflexive provided eM is an isomorphism of left R-modules.

Enochs-Zink Theorem describes explicitly the class of Matlis-reflexive modules. We
shall omit the proof and refer to [131, 3.4.13] for details.

Theorem 1.8.10 (Enochs, Zink). A left R-module M is Matlis-reflexive if and only if it
can be embedded into a short exact sequence

0 //M ′ //M //M ′′ // 0

in whichM ′ is a Noetherian left R-module andM ′′ is an Artinian left R-module. Therefore,
the full subcategory of left R-modules consisting of all Matlis-reflexive modules is actually
the smallest Serre subcategory of R −Mod that contains all Noetherian and all Artinian
modules.

Now, we are to introduce two functors which are mild modifications of the standard
Matlis duality.

Construction 1.8.11 (Katzman). LetM be a cofinite left R[Θ;F ]-module. We define ∆(M)

as the γ-sheaf supported on I (N, γN ), where N := M∨ and N
γN //F ∗TN will be defined

as follows. Firstly, we set F ∗TM
βM //M given by the assignment F∗t⊗m 7−→ tΘm. In this

way, we define γN as the composition

M∨
β∨M // F ∗T (M)∨ ∼

τM // F ∗T (M∨).

Therefore, the symbol ∆ defines a contravariant functor from R[Θ;F ]A to Cohγ(R).
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On the other hand, let (N, γN ) be a coherent γ-sheaf supported on I. We define Ψ(N)
as the Artinian left R-module N∨. In addition, we want to attach to Ψ(N) a structure as
cofinite left R[Θ;F ]-module. Indeed, we denote by νN the following chain of isomorphisms:

F ∗T (N∨) ∼

eF∗
T

(N∨)
// F ∗T (N∨)∨∨ ∼

(τ∨
N∨ )−1

// F ∗T (N∨∨)∨ ∼
(F ∗T (e−1

N )∨)−1

// F ∗T (N)∨.

In this way, we have obtained a functorial map

F ∗T (N∨) ∼
νN // F ∗T (N)∨

γ∨N // N∨

and therefore we can define the action of Θ on Ψ(N) := N∨ by setting, for any ω ∈ N∨,

Θ · ω := (γ∨N ◦ νN )(F∗1⊗ ω).

Hence, in fact, it turns out that the symbol Ψ defines a contravariant, univariate functor
from Cohγ(R) to R[Θ;F ]A.

Next result is the promised equivalence of categories between R[Θ;F ]A and Cohγ(R)
which was established by Katzman in [77, Theorem 3.1]. It is the main result of this
subsection. We provide a detailed proof for the convenience of the reader.

Theorem 1.8.12 (Katzman). Let d ∈ N, K will stand for an arbitrary field of characteristic
p, T := K[[x1, . . . , xd]], I is an arbitrary ideal of T and R := T/I. Then, the following
statements hold.

(i) The functors R[Θ;F ]A
∆ //Cohγ(R) and Cohγ(R)

Ψ //
R[Θ;F ]A are exact.

(ii) For any cofinite left R[Θ;F ]-module M , the cofinite left R[Θ;F ]-module (Ψ ◦∆)(M)
is canonically isomorphic to M .

(iii) For any coherent γ-sheaf (N, γN ) supported on I, the coherent γ-sheaf (∆◦Ψ)(N, γN )
supported on I is canonically isomorphic to (N, γN ).

(iv) Both ∆ and Ψ are equivalences of categories.

Proof. First of all, the exactness of the above-mentioned functors stems from the exactness
of (−)∨ and F ∗T , hence part (i) holds.

Now, letM be a cofinite module. We note that (Ψ◦∆)(M) isM∨∨ which is canonically
isomorphic to M as R-module under the evaluation map eM . In this way, it is enough to
check that eM is actually an isomorphism of left R[Θ;F ]-modules. Indeed, let em be any
element of M∨∨ and we are to describe Θ · em. This is the image of F∗1 ⊗ em under the
map

F ∗T (M∨∨)
eF∗
T

(M∨∨)
// F ∗T (M∨∨)∨∨

(τ−1
M∨∨ )∨

// F ∗T (M∨∨∨)∨
F ∗T (e−1

M∨ )∨
//

F ∗T (e−1
M∨ )∨

// F ∗T (M∨)∨
τ∨M // F ∗T (M)∨∨

α∨∨M //M∨∨.

(1.2)
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Moreover, the functoriality of τ implies that the following square commutes:

F ∗T (M∨∨∨)∨

τ∨
M∨∨

��

F ∗T (e−1
M∨ )∨

// F ∗T (M∨)∨

τ∨M
��

F ∗T (M∨∨)∨∨
e−1
F∗
T

(M∨∨)

// F ∗T (M∨∨).

With the help of this commutative square, it turns out that we can simplify the chain of
maps described in (1.2) obtaining finally the map

F ∗T (M∨∨)
α∨∨M //M∨∨.

In this way, we have checked that part (ii) holds too.
Finally, let (N, γN ) be a coherent γ-sheaf supported on I. In this case, (∆ ◦Ψ)(N, γN )

is the γ-sheaf with underlying module N∨∨ and structural map given by the composition

N∨∨
γ∨∨N // F ∗T (N)∨∨

F ∗T (eN )∨∨
// F ∗T (N∨∨)∨∨

((τ∨
N∨ )−1)∨

//

((τ∨
N∨ )−1)∨

// F ∗T (N∨)∨∨∨
e−1
F∗
T

(N∨)∨
// F ∗T (N∨)∨

τN∨ // F ∗T (N∨∨).

(1.3)

In addition, combining the functoriality of τ joint with the fact that ((τ∨N∨)−1)∨ = (τ∨∨N∨)−1

one obtains the following commutative square:

F ∗T (N∨∨)∨∨

e−1
F∗
T

(N∨∨)

��

(τ∨∨
N∨ )−1

// F ∗T (N∨)∨∨∨

e−1
F∗
T

(N∨)∨
��

F ∗T (N∨∨)
τ−1
N∨

// F ∗T (N∨)∨.

Therefore, with the aid of this square we rewrite the composition of maps described in (1.3)
and we simplify it into

N∨∨
γ∨∨N // F ∗T (N)∨∨,

just what we finally wanted to show.

1.8.3 F-finite F-modules

The aim of this subsection is to introduce a functor from the category of coherent γ-sheaves
supported on I (we have to note that we preserve the assumptions and notations introduced
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in the previous subsection) to the category of γ-sheaves. It turns out that the image of such
functor is the category of FT -finite FT -modules defined by G. Lyubeznik in [94, Section 2].
The below-defined functor was introduced by Blickle in [17, pp. 353].

Construction 1.8.13 (Blickle). Let (N, γN ) be a γ-sheaf. We have to note that F ∗TN is
naturally a γ-sheaf with structural map F ∗TγN . We may iterate this process in order to
obtain a direct system

N
γN // F ∗TN

F ∗T γN // F ∗2T N
F ∗2T γN // . . .

In this way, set

Gen(N) := lim
−→

(
N

γN // F ∗TN
F ∗T γN // F ∗2T N

F ∗2T γN // . . .

)
.

We have to emphasize that the following statements hold.

(a) Gen(N) is clearly a γ-sheaf with structural map given by

lim−→
e∈N

F ∗eT γN .

Moreover, this map is actually an isomorphism. Regarding Lyubeznik’s terminology
(cf. [94, Section 2]), Gen(N) is an FT -finite FT -module with generating morphism γN .

(b) With this notation, Lyubeznik’s functor HR,T (cf. [94, Section 4]) is obtained as the
composition Gen ◦∆, hence it is clearly a contravariant exact univariate functor.

In this way, one might ask how far the functor Gen (equivalently, the functor HT,T ) is of
being an equivalence of categories regarding Gen as a functor from Cohγ(T ) to the category
of FT -finite FT -modules. Albeit we do not want to go into the details of this question, at
least we provide the precise statement.

Theorem 1.8.14 (Blickle, Emerton, Kisin, Katzman, Lyubeznik). The following state-
ments hold.

(a) An FT -finite FT -module N is precisely a module which is isomorphic to Gen(N) for a
unique coherent minimal γ-sheaf (N, γN ). Therefore, the functor Gen is dense.

(b) Let N ′ and N ′′ be FT -finite FT -modules. For every β ∈ HomFT (N ′,N ′′) there exists
a homomorphism

α ∈ HomCohγ(T )(N
′, N ′′)

such that Gen(N ′) ∼= N ′, Gen(N ′′) ∼= N ′′ and Gen(α) ∼= β. In this way, the functor
Gen is full.
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(c) Let α ∈ HomCohγ(T )(N
′, N ′′). Then Gen(Im(α)) = 0 if and only if γ∗eN ′′(Im(α)) = 0 for

some e� 0.

(d) The functor Gen induces an equivalence of categories between the category of FT -finite
FT -modules and the category of minimal γ-crystals, where the category of γ-crystals
(namely, Crysγ(T )) is the category obtained from Cohγ(T ) by inverting all the mor-
phisms with nilpotent kernel and cokernel.

Remark 1.8.15. Firstly, part (a) of Theorem 1.8.14 was proved by Lyubeznik in [94, Theorem
3.5] under our assumptions. Later, M.Emerton and M.Kisin in [45, Theorem 6.1.3] proved
the same statement (without unicity) dropping the completeness assumption on the base
ring under the hypothesis that K is F -finite.

Secondly, part (b) of Theorem 1.8.14 was proved by Katzman in [80, Theorem 3.3] again
under our assumptions building from results obtained by M.Hochster in [67]. Part (c) was
also obtained by Katzman (cf. [80, Theorem 3.4]).

Finally, part (d) follows combining parts (a), (b) and (c). Nevertheless, we must observe
that part (d) was proved by Blickle in [17, Theorem 2.27] just requiring the F -finiteness
assumption of the ground field K.

In the following diagram, we sum up the previously established equivalences of cate-
gories. In the below diagram, we recall that K is an F -finite field, T := K[[x1, . . . , xd]], I is
an ideal of T and R := T/I.

T [Θ;F ]A ∼
∆ // Cohγ(T ) // // Crysγ(T )

∼
Gen

**
FT − finite FT −Mod

R[Θ;F ]A
?�

OO

∆

∼ // Cohγ(R)
?�

OO

// // Crysγ(R)
?�

OO

∼
Gen

44

Moreover, it is worth noting once more that the composition

R[Θ;F ]A ∆

∼ // Cohγ(R) // // Crysγ(R) ∼
Gen // FT − finite FT −Mod

turns out to be the functor HR,T introduced by G. Lyubeznik in [94, Section 4].

Some concrete F -finite F -modules

We are to conclude this section describing explicitly the images of some distinguished mod-
ules under the previously introduced functors. The first example we treat was provided by
M.Katzman in [77, Theorem 4.7].
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Example 1.8.16 (Injective hulls). Let u ∈ (I [p] :T I)/I [p]. So, ER has an structure as left
R[uΘ;F ]-module. We have to note that ∆(ER) ∼= (R, u·); indeed, after identifying F ∗eT (R)
with T/I [pe], it is clear that

Gen(R, u·) = lim
−→

(
T/I

u· // T/I [p] up· // T/I [p2] up
2 · // T/I [p3] up

3 · // . . .

)
.

In this way, Gen(R, u·) is the FT -finite FT -module minimally generated by the γ-sheaf
(T/IF,u, u·), where

IF,u := {t ∈ T | uσ(pe−1)tp
e ∈ I [pe] for some e� 0}

and, for any e ∈ N,

σ(pe) :=

e∑
i=0

pi.

When u = 1, IF,u = IF is the well-known Frobenius closure of the ideal I. We have to
point out that these facts were established by Katzman in [77, Theorem 4.7]. Moreover,
Katzman showed in [77] that if u 6= 1 then

IF,u = min{e ∈ N | (I [pe] :T u
σ(pe−1)) = (I [pa] :T u

σ(pa−1)) for all a ≥ e}.

If I = 0 then it was already pointed out by Blickle in [17, pp. 365] that

∆(E) ∼= (T, u·) and Gen(T, u·) ∼= Tu.

Example 1.8.17 (Local cohomology modules). Fix i ∈ N. We have explained in Theorem
1.8.3 that Hdim(T )−i

m (R) has a natural structure as cofinite R[Θ;F ]-module. In this way,
local duality implies that

∆(H
dim(T )−i
m (R)) ∼= (ExtiT (R, T ),ExtiT (F, T )),

where ExtiT (R, T )
ExtiT (F,T )

//ExtiT (T/I [p], T ) is the natural map induced by

F ∗TR −→ R

F∗t⊗ x 7−→ txp.

Therefore, Gen(ExtiT (R, T ),ExtiT (F, T )) ∼= H i
I(T ). This isomorphism was already pointed

out by Lyubeznik in [94, Example 4.5].

Although we do not want to go into details, it is worth mentioning that the calculation
carried out in Example 1.8.17 was generalized by D.Tobisch. We omit the proof of the
following result (which we only state) and refer to [134, Theorem 4.1] for details.
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Theorem 1.8.18 (Tobisch). Let K be an F -finite field of prime characteristic p, set
T := K[[x1, . . . , xd]], I will stand for an arbitrary ideal of T , and let a be a cohomologi-
cally complete intersection ideal of T with gradeT (a) := c. Then, there is an isomorphism

Gen(Hc−i
a (T/I)) ∼= H i

I(H
c
a(T )∨)

for all i ∈ N.

Our final example deals with the case of the so-called Nagata’s ideal transforms.
Example 1.8.19 (Ideal transforms). As T is regular it is, in particular, a domain and there-
fore ΓI(T ) = 0; hence the natural exact sequence

0 // ΓI(T ) // T // DI(T ) // H1
I (T ) // 0

becomes into the next short exact sequence:

0 // T // DI(T ) // H1
I (T ) // 0.

The aim of this example is to endow this sequence with a natural structure as a short exact
sequence in the category of FT -finite FT -modules. Indeed, we consider the short exact
sequence

0 // I // T // R // 0.

Applying to this sequence the left exact functor HomT (−, T ) one obtains the following exact
sequence:

0 −→ HomT (R, T ) −→ HomT (T, T ) −→ HomT (I, T ) −→ Ext1
T (R, T ) −→ Ext1

T (T, T ).

Nevertheless, as HomT (R, T ) = 0 = Ext1
T (T, T ) and HomT (T, T ) ∼= T it turns out that this

sequence becomes into the following short exact sequence:

0 // T // HomT (I, T ) // Ext1
T (R, T ) // 0.

In this way, after identifying F ∗T HomT (I, T ) and F ∗T Ext1
T (R, T ) with HomT (I [p], T ) and

Ext1
T (T/I [p], T ) respectively one has that

0 // T

F

��

// HomT (I, T )

HomT (F,T )
��

// Ext1
T (R, T )

Ext1
T (F,T )

��

// 0

0 // T // HomT (I [p], T ) // Ext1
T (T/I [p], T ) // 0

can be regarded as a short exact sequence in Cohγ(T ). Therefore, applying to this diagram
the functor Gen one obtains the following short exact sequence in the category of FT -finite
FT -modules:

Gen(T, F ) �
� // Gen(HomT (I, T ),HomT (F, T )) // // Gen(Ext1

T (R, T ),Ext1
T (F, T )).

(1.4)
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Morerover, we have checked in Example 1.8.16 and Example 1.8.17 respectively that

Gen(T, F ) ∼= T and Gen(Ext1
T (R, T ),Ext1

T (F, T )) ∼= H1
I (T ).

On the other hand, by the own definition of the Gen functor, it is clear that

Gen(HomT (I, T ),HomT (F, T )) ∼= lim−→
e∈N

HomT (I [pe], T ).

In this way, using once more that the inverse system of ideals {I [pe]}e∈N is cofinal with
respect to the inverse system {Ie}e∈N it turns out that

Gen(HomT (I, T ),HomT (F, T )) ∼= lim−→
e∈N

HomT (Ie, T ) ∼= DI(T ).

Therefore, combining the foregoing facts it follows that (1.4) becomes into the short exact
sequence

0 // T // DI(T ) // H1
I (T ) // 0

in the category of FT -finite FT -modules. In particular, Nagata’s ideal transform DI(T ) of
T with respect to I has a natural structure as FT -finite FT -module.

Bibliographical notes

Throughout this mimeograph, we have denoted by F the Frobenius map; that is, the map
which raises any element of a ring of prime characteristic p to its pth power, borrowing
this notation from [29]; however, we want to prevent the reader that there is no general
convention to use this notation. Indeed, in [30, Chapters 5 and 6], the authors use f to refer
to the same notion; on the other hand, in [73, Lecture 21] the Frobenius endomorphism
is denoted by ϕ. Finally, in the context of Arithmetic Geometry (e. g. [45]) the Frobenius
endomorphism is often denoted by σ.

Cartier algebras were formally introduced by K. Schwede in [117] as an auxiliar tool
for solving an open question raised, among others, by R. Lazarsfeld which, roughly speak-
ing, involved the expression of the test ideals as sum of small pieces (cf. [117, Introduc-
tion] for more details). Schwede was probably influenced by work due to M.Blickle in
[16], S. Takagi (cf. [132, Theorem 3.13]) and by N.Hara and S.Takagi in [58, Lemma 2.1].
Quickly, M.Blickle in [18] presented a systematic study of Cartier algebras from a purely
algebraic point of view. His approach builds on Blickle-Böckle’s theory of Cartier modules
(cf. [19]) and Cartier crystals (cf. [20]). In this case, Blickle mainly uses Cartier algebras
for defining with complete generality test modules and generalized test ideals (which were
introduced by N.Hara and K.-I. Yoshida in [59]) without any reference to some ideal-adic
tight closure theory, although the definition which we have given in this chapter is slightly
different (cf. [23, Definition 9.3.7]).
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Albeit our approach in this chapter builds from Cartier algebras and only uses Frobenius
algebras as an auxiliary tool, it is noteworthy that Frobenius algebras were introduced before
Cartier algebras. Indeed, in [96] G. Lyubeznik and K.E. Smith used Frobenius algebras as a
tool in order to give a complete characterization of strongly F -regular rings; the interested
reader may like to consult [96, Theorem 4.1] for the precise statement.

The connection between Cartier algebras and Frobenius algebras in this chapter based
on Matlis duality relies on Theorem 1.5.1, which was proved by F.Enescu and M.Hochster
(cf. [46, Discussion 3.4]). As far as we know, this result of Enescu and Hochster generalizes
a previous result obtained by Y.Yoshino in [146, Lemma (3.6)].

In this chapter, we have introduced a rough sketch of the theory of algebraic D-modules.
We refer to [39] and the references therein for a more detailed treatment.

Theorem 1.6.5 is a result proved by J.Àlvarez Montaner, M.Blickle and G. Lyubeznik
in [2, Proposition 2.1]. In fact, their result is deeper. Indeed, they establish an equivalence
between the category of R-modules and the category of D(e)

R -modules using the Frobenius
functor provided R is regular and F -finite. From this point of view, such an equivalence can
be regarded as a particular case of the so-called Morita equivalences between categories of
modules (cf. [114, Theorem 5.55]). On the other hand, it is also worth mentioning that an
arithmetic version of Theorem 1.6.5 had already previously established by P.Berthelot in
[13, 2.3.6 and 2.4.6]. This result stems from ideas worked out, among others, by B.Haastert
(cf. [56]).

The terminology Enochs-Zink theorem may look a bit strange for some readers; however,
it is worth mentioning that Theorem 1.8.10 was originally proved by T. Zink in [147]. Later
on, E. Enochs obtained in [48, Proposition 1.3] independently the same result.
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Chapter 2

Cartier algebras of Stanley-Reisner
rings

In [79], M.Katzman gave an example of an Artinian moduleM over a complete local ring R
of characteristic p for which the algebra of Frobenius operators FM is not finitely generated
as R-algebra. More precisely, his example R is a non-Cohen-Macaulay quotient of a formal
power series ring in three indeterminates by a squarefree monomial ideal and M = ER is a
choice of injective hull of the residue field of R. This example provides a negative answer
to a question raised by G. Lyubeznik and K.E. Smith in [96, paragraph preceding Example
3.6].

Bearing in mind the duality established in Chapter 1 (cf. Theorem 1.5.1) between Frobe-
nius and Cartier algebras, one may regard Katzman’s example as a case where the Cartier
algebra CR is infinitely generated as R-algebra.

The main purpose of this chapter will be the study of the generation of the Cartier
algebra CR, where T := K[[x1, . . . , xd]] is a formal power series ring with d indeterminates
over a field of characteristic p, I is an ideal minimally generated by squarefree monomials
inside S := K[x1, . . . , xd] and R := T/I. It turns out that, in this situation, CR can only be
principally generated or infinitely generated as R-algebra and that such fact just depends
on the minimal primary decomposition of I (cf. Theorem 2.3.5).

As a first application of this description of CR, we prove (cf. Theorem 2.5.3) that the
set of F -jumping numbers of pairs (Spec(R),V(a)) forms a discrete subset inside the non-
negative real numbers, where a is an arbitrary ideal of R.

As a second and final application, we are to provide some description of the image of
the pairing 〈−,−〉e introduced in Chapter 1 (cf. Section 1.6); it turns out (not surprisingly,
in fact) that one can produce differential operators of level e which does not belong to the
image of such pairing (cf. Theorem 2.5.5 and the subsequent discussion).

Now, we move on provide a more detailed overview of contents. First of all, Sections 2.1
and 2.2 are devoted to introduce some preliminary calculations and notations which will be
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useful later on in this chapter. Second, in Section 2.3 we remind for the reader’s benefit the
main technical tool used by M.Katzman in [79] (cf. Proposition 2.3.1) because it play a key
role in the proof of the main result of this chapter; namely, our main result (cf. Theorem
2.3.5) establishes the fact that the Cartier algebra attached to a complete, Stanley-Reisner
ring can only be either principally generated or infinitely generated, and that such fact only
depends on the primary decomposition of the corresponding Stanley-Reisner ideal.

On the other hand, in Section 2.4 we discuss several examples of Stanley-Reisner rings
at the boundary of the Gorenstein property; this discussion is motivated because it is known
that the Cartier algebra attached to a normal, local ring A is principally generated if and
only if A is Gorenstein (cf. Proposition 1.4.19). It turns out that we provide examples of
even non Cohen-Macaulay rings with principal Cartier algebra; the reader should notice
that this does not contradict the previous fact because the case of Stanley-Reisner rings we
are dealing with is, in general, non-normal.

Moreover, also in Section 2.4 (cf. 2.4.3) we introduce a generating function and its cor-
responding generating serie, hoping that both might be interesting in its own right.

Finally, in Section 2.5 we present two applications of Theorem 2.3.5; on one hand,
from the explicit description of the Cartier algebra attached to a complete, Stanley-Reisner
ring R, we deduce (cf. Theorem 2.5.3) the discreteness of F -jumping numbers of the pair
(Spec(R),V(a)), where a is any ideal of R. On the other hand, building again from the
explicit description of CR obtained in Theorem 2.3.5 we exhibit differential operators which
does not belong to the natural pairing introduced in Chapter 1 (cf. Section 1.6); in particu-
lar, this fact implies that Theorem 1.6.5 is, in general, false when one drops the assumption
of regularity.

Special acknowledgement of joint work

The content of this chapter is based in joint work with J.ÀlvarezMontaner and S. Zarzuela.
Nonetheless, we have rewritten this text in our own words and notation, which is slightly
different from [4]. We provide in what follows some details and simplifications which are
not found in the paper.

2.1 Some preliminary calculations

The aim of this section is to compute colon ideals of the form
(
I [pe] :T I

)
, where I stands for

an arbitrary ideal of K[[x1, . . . , xd]] and K is an arbitrary ground field of prime characteristic
p. Recall that Fedder’s Theorem (cf. Theorem 1.4.20) establishes the following isomorphism:

FER ∼=
⊕
e≥0

{
(I [pe] :T I)/I [pe]

}
Θe,
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where E denotes a choice of injective hull of K over T , Θ is the standard Frobenius action
on E and ER := (0 :E I). Thus, our motivation to calculate such quotient ideals stems
from this fact.

Next result will be useful in what follows; albeit this result was originally proved by
J.CowdenVassilev in [137, Lemma 2.1], we provide her proof for the sake of completeness.

Lemma 2.1.1. Let A be a regular (not necessarily local) F -finite ring of prime characteris-
tic and let M be a finitely generated, free A-module. Then, for any family of ideals {Ji}i∈I
of A, we have that ⋂

i∈I
JiM =

(⋂
i∈I

Ji

)
M.

In particular, as F e∗A is a finitely generated, free A-module whenever K is F -finite it follows
that ⋂

i∈I
J

[pe]
i =

(⋂
i∈I

Ji

)[pe]

.

Proof. Let {xj}j∈J be a free basis of M over A. Thus, M = ⊕j∈JAxj . Therefore, one has
for any ideal a of A that aM = ⊕j∈Jaxj . This fact implies that

⋂
i∈I

JiM =
⊕
j∈J

(⋂
i∈I

Ji

)
xj .

In this way, it is clear that
⋂
i∈I JiM ⊇

(⋂
i∈I Ji

)
M . On the other hand, if x ∈

⋂
i∈I JiM

then x ∈ JiM for all i ∈ I. But again by JiM = ⊕j∈JJixj it follows that x =
∑

j∈J ajxj ,
where aj ∈ I for all (i, j) ∈ I × J . Hence aj ∈

⋂
i∈I Ji and therefore x ∈

(⋂
i∈I Ji

)
M .

In the following result, we collect without proof some well-known general facts which
will simplify our later computations. The first three statements are proved in [60, Corollary
1] (see also [44, Exercise 17.13] for more information); the last three statements are proved
in [40, Chapter 4, Proposition 10 and Theorem 11].

Proposition 2.1.2. Let I, J , I1, . . . , Ir be ideals of S = K[x1, . . . , xd], suppose that J :=
〈f1, . . . , ft〉 and let f ∈ S. Then, the following statements hold.

(i) (I1 + . . .+ Ir)T = (I1T ) + . . .+ (IrT ).

(ii) (I1 ∩ . . . ∩ Ir)T = (I1T ) ∩ . . . ∩ (IrT ).

(iii) (I :S J)T = ((IT ) :T (JT )).

(iv) (∩ri=1Ii :S J) = ∩ri=1(Ii :S J).

(v) (I :S J) = ∩ti=1(I :S 〈fi〉).
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(vi) (I :S 〈f〉) = 1
f (I ∩ 〈f〉).

We conclude this subsection with the following elementary (but very important) fact.
We emphasize that in the following result I stands for an arbitrary ideal of T ; although we
think the below result is well known for experts, we provide a detailed proof because of the
lack of a reference.

Proposition 2.1.3. Let I = F1 ∩ . . .∩Fr be a minimal primary decomposition of I. Then

(I [pe] :T I) = (F
[pe]
1 :T F1) ∩ . . . ∩ (F [pe]

r :T Fr).

Proof. Lemma 2.1.1 implies that I [pe] = F
[pe]
1 ∩ . . . ∩ F [pe]

r . Moreover, using Proposition
2.1.2 it follows that

(I [pe] :T I) = (F
[pe]
1 :T I) ∩ . . . ∩ (F [pe]

r :T I).

Now, fix j ∈ {1, . . . , r} and set Qj :=
√
Fj . We underline that (F

[pe]
j :T I) is the only

Qj-primary component of (I [pe] :T I) and

(F
[pe]
j :T I)Qj = (F

[pe]
j TQj :TQj ITQj ) = (F

[pe]
j TQj :TQj FjTQj ) = (F

[pe]
j :T Fj)TQj .

In this way, combining the foregoing equalities we get the desired result.

2.2 Stanley-Reisner case

From now on, let K be a perfect field of characteristic p, q := pe (for some e ∈ N),
S := K[x1, . . . , xd] is the polynomial ring in d variables over K, T := K[[x1, . . . , xd]] will be
the formal power series ring in d variables over K and set I := I ′T , where I ′ is an ideal
of S generated by squarefree monomials xα := xa1

1 · · ·x
ad
d , α = (a1, . . . , ad) ∈ {0, 1}d. Its

minimal primary decomposition I = Iα1 ∩ . . . ∩ Iαs is given in terms of face ideals; that is,
ideals of the form Iβ := 〈xi | bi 6= 0〉. For simplicity, we shall denote the homogeneous
maximal ideal m := I1 = 〈x1, . . . , xd〉, where 1 := (1, . . . , 1). Finally, the support of α is
supp(α) := {i ∈ {1, . . . , d} | ai = 1}.

We specialize the facts which have been established in Proposition 2.1.2 in terms of face
ideals.

Lemma 2.2.1. Let Iα be a face ideal. Then
(
I

[q]
α :T Iα

)
= I

[q]
α + 〈x(q−1)α〉.

Proof. We only have to note that(
I [q]
α :T Iα

)
=

⋂
i∈supp(α)

(
I [q]
α :T 〈xi〉

)
=

⋂
i∈supp(α)

(
I [q]
α + 〈xq−1

i 〉
)

= I [q]
α + 〈x(q−1)α〉.

Hence the result holds.

56



Remark 2.2.2. We have to note that, when α has only one non-zero entry,(
I [q]
α :T Iα

)
= I [q]

α + 〈x(q−1)α〉 = 〈x(q−1)α〉.

Therefore, combining Proposition 2.1.3 joint with the previous lemma one obtains the
following statement.

Proposition 2.2.3. Let I = Iα1 ∩ . . . ∩ Iαs be the minimal primary decomposition of a
squarefree monomial ideal I ⊆ T . Then(

I [q] :T I
)

=
(
I [q]
α1

+ 〈x(q−1)α1〉
)
∩ . . . ∩

(
I [q]
αs + 〈x(q−1)αs〉

)
.

Remark 2.2.4. From now on, we shall assume that m = Iα1 + . . .+ Iαs for simplicity; that
is, we use all the variables x1, . . . , xd.

Discussion 2.2.5. If we take a close look to the equality given in Proposition 2.2.3 then we
note that only the following situations are possible.

(i) If ht(Iαi) > 1 for all i ∈ {1, . . . , s}, then
(
I [q] :T I

)
= I [q] + Jq + 〈x(q−1)1〉, where the

generators xγ := xc11 · · ·x
cd
d of Jq satisfy (c1, . . . , cd) ∈ {0, q−1, q}d. Moreover, we also

notice that xγ ∈ 〈x(q−1)1〉 whenever (c1, . . . , cd) ∈ {q − 1, q}d and that we may also
have xγ ∈ I [q] whenever a generator of I [q] divides xγ . Summing up, we end up with
only two possibilities depending whether Jq is contained in I [q] + 〈x(q−1)1〉 or not.

(a)
(
I [q] :T I

)
= I [q] + 〈x(q−1)1〉.

(b)
(
I [q] :T I

)
= I [q] + Jq + 〈x(q−1)1〉.

In the later case, there is a generator xγ of Jq such that (ci, cj , ck) = (q, q − 1, 0),
where 1 ≤ i, j, k ≤ d.

(ii) If ht(I) = 1 and there is i ∈ {1, . . . , s} such that ht(Iαi) > 1 then
(
I [q] :T I

)
=

J ′q + 〈x(q−1)1〉. In this case, there exists a generator xγ of J ′q such that (ci, cj , ck) =
(q, q − 1, 0), where 1 ≤ i, j, k ≤ d.

(iii) If ht(Iαi) = 1 for all i ∈ {1, . . . , s} then
(
I [q] :T I

)
= 〈x(q−1)1〉. We note that, in this

case, R is Gorenstein.

2.3 M.Katzman’s criterion

The following result is a key fact in order to give a complete characterization of the genera-
tion of CR. We have to emphasize that, in the following result, I stands for an arbitrary ideal
of T . Although the proof of the below result was provided by Katzman in [79, Proposition
2.1], we shall describe it for the sake of completeness.

57



Proposition 2.3.1 (Katzman). For any e ∈ N, set Ke :=
(
I [pe] :T I

)
and

Le :=
∑

1≤b1,...,bs≤e−1
b1+...+bs=e

Kb1K
[pb1 ]
b2
· · ·K [pb1+...+bs−1 ]

bs
.

Let F<e be the R-subalgebra of FER generated by FER0 , . . . ,FERe−1. Then F<e∩FERe = LeF
e,

where F e is the e-fold of the natural Frobenius action on the injective hull of the residue
field of T .

The proof of this crucial statement requires the following previous calculation.

Lemma 2.3.2. Let s ∈ N, let b1, . . . , bs ∈ N and set, for each i ∈ {1, . . . , s},

ci :=

i−1∑
j=1

bi.

Then

J :=
s∏
i=1

(
I [pbi ] :T I

)[pci ]
⊆
(
I [pb1+...+bs ] :T I

)
.

Proof. We proceed by increasing induction on s. First of all, for s = 1 there is nothing
to prove because of c1 = 0. Secondly, we assume that s = 2. Let λ1λ

pb1
2 (where λi ∈(

I [pbi ] :T I
)
for i ∈ {1, 2}) be a generator of J and let µ ∈ I. We underline that λ1µ ∈ I [pb1 ].

So, we can write λ1µ = νp
b1 for some ν ∈ I. Moreover, as λ2ν ∈ I [pb2 ] we write λ2ν = χp

b2

for some χ ∈ I. In this way, it follows that(
λ1λ

pb1
2

)
µ = λp

b1

2 (λ1µ) = λp
b1

2 νp
b1

= (λ2ν)p
b1

= χp
b1+b2 ∈ I [pb1+b2 ],

hence the case s = 2 holds.
Finally, when s > 2 one has, combining the induction hypothesis joint with the case

s = 2, that

J ⊆
(
I [pb1+...+bs−1 ] :T I

)
·
(
I [pbs ] :T I

)[pb1+...+bs−1 ]
⊆
(
I [pb1+...+bs ] :T I

)
,

and therefore we obtain the desired inclusion

Proof of Proposition 2.3.1. We have that any element of F<e ∩ FERe can be written as a
sum of elements of the form φ1 · · ·φs where, for each j ∈ {1, . . . , s},

φj ∈ FERbj (1 ≤ bj < e) and b1 + . . .+ bs = e.
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In addition, it follows (for each 1 ≤ j ≤ s) from the fact that FERbj is essentially given

by (I [pbj ] :T I)θbj = Kbjθ
bj (indeed, bearing in mind Fedder’s Theorem) that any such φj

equals ajθbj (for some aj ∈ Kbj ). Summarizing, we have that

s∏
i=1

φi =

s∏
i=1

(aiθ
bi). (2.1)

Claim 2.3.3. One has that

s∏
i=1

(aiθ
bi) =

(
s∏
i=1

(
ap

ci

i

))
θb1+...+bs , where ci :=

i−1∑
j=1

bj (1 ≤ i ≤ s).

Proof of Claim 2.3.3. Once more, we proceed by increasing induction on s. First of all, for
s = 1 one has, as c1 = 0, that

s∏
i=1

(aiθ
bi) = a1θ

b1 =
(
ap

c1

1

)
θb1 .

Furthermore, in the case s = 2

s∏
i=1

(aiθ
bi) = a1θ

b1a2θ
b2 = a1

(
ap

b1

2

)
θb1+b2 =

(
ap

c1

1

)(
ap

c2

2

)
θb1+b2 .

In the general case, combining the induction hypothesis joint with the definition of cs we
only have to note that

s∏
i=1

(aiθ
bi) =

(
s−1∏
i=1

(aiθ
bi)

)
asθ

bs =

{(
s−1∏
i=1

(
ap

ci

i

))
θb1+...+bs−1

}
asθ

bs

=

(
s−1∏
i=1

(
ap

ci

i

))
θb1+...+bs−1(asθ

bs) =

(
s−1∏
i=1

(
ap

ci

i

))(
ap

cs

s

)
θb1+...+bs

=

(
s∏
i=1

(
ap

ci

i

))
θb1+...+bs ,

just what we wanted to check.

In this way, combining the computation given by Claim 2.3.3 joint with (2.1) one has
that

s∏
i=1

φi = a1

(
ap

b1

2

)(
ap

b1+b2

3

)
· · ·
(
ap

b1+...+bs−1

s

)
θb1+...+bs ∈ Leθe.
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Thus, we have seen, in fact, that

F<e ∩ FERe ⊆ Leθe. (2.2)

Conversely, we point out that for any 1 ≤ b1, . . . , bs < e such that b1 + . . . + bs = e we
deduce from Lemma 2.3.2 that

Kb1K
[pb1 ]
b2
· · ·K [pb1+...+bs−1 ]

bs
=

s∏
i=1

{
(I [pbi ] :T I)[pci ]

}
⊆ (I [pb1+...+bs ] :T I) = (I [pe] :T I)

and therefore

Le =
∑

1≤b1,...,bs<e
b1+...+bs=e

Kb1K
[pb1 ]
b2
· · ·K [pb1+...+bs−1 ]

bs
⊆ (I [pe] :T I),

hence
Leθ

e ⊆ (I [pe] :T I)θe = FERe . (2.3)

Besides, doing the computation carried out in Claim 2.3.3 from right to left it follows that

Leθ
e =

 ∑
1≤b1,...,bs<e
b1+...+bs=e

Kb1K
[pb1 ]
b2
· · ·K [pb1+...+bs−1 ]

bs

 θe ⊆ F<e. (2.4)

In this way, combining (2.3) and (2.4) one has that

Leθ
e ⊆ F<e ∩ FERe . (2.5)

Joining (2.2) and (2.5) one gets the desired equality.

Remark 2.3.4. Following Blickle’s terminology in [18], Katzman’s criterion says essentially
that {(I [pe] :T I)}e∈N forms an F -graded system of ideals. This concept may be regarded
as a characterisitic p-analog of the well-known notion of graded system of ideals.

Next statement (cf. [4, Theorem 3.5]) is the main result of this chapter.

Theorem 2.3.5 (Àlvarez, Boix, Zarzuela). Let K be an F -finite field of prime characteristic
p, let T be the power series ring K[[x1, . . . , xd]] and let I be a squarefree monomial ideal of
T such that its minimal primary decomposition

I = Iα1 ∩ . . . ∩ Iαs

verifies that m = Iα1 + . . .+ Iαs. Then, the following statements are equivalent.
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(a) CR is a principally generated R-algebra. In this case, CR ∼= R[εx(p−1)1;F ], where F
denotes the standard Frobenius endomorphism on T .

(b) FER is a principally generated R-algebra. In this case, FER ∼= R[x(p−1)1Θ;F ], where
F denotes the standard Frobenius map on ET .

(c) (I [q] :T I) = I [q] + 〈x(q−1)1〉 for all q = pe.

If neither of these conditions hold then CR is an infinitely generated R-algebra.

Proof. First of all, the isomorphism obtained in Theorem 1.5.1 of Chapter 1

HomT (F e∗R,R)∨ ∼= HomT (ER, F
e
∗ER)

maps Φ∨e into F e up to a unit; this fact implies that (a) is equivalent to (b). On the other
hand, Fedder’s Theorem implies that (b) and (c) are equivalent.

In this way, we only need to show that if neither of these conditions hold then CR is
infinitely generated.

As (I [q] :T I) 6= I [q] + 〈x(q−1)1〉 we may assume, without loss of generality, that there
exists a generator xγ ∈ (I [q] :T I) with xγ = xq1x

q−1
2 xc44 · · ·x

cd
d such that (c4, . . . , cd) ∈

{0, q − 1, q}d−4. As Le is a sum of monomial ideals, xγ ∈ Le if and only if xγ is in one of
the summands. Let e ∈ N and let 1 ≤ b1, . . . , bs ≤ e− 1 be such that b1 + . . .+ bs = e. If

xγ ∈ Kb1K
[pb1 ]
b2
· · ·K [pb1+...+bs−1 ]

bs

then
xγ ∈ Gb1G

[pb1 ]
b2
· · ·G[pb1+...+bs−1 ]

bs
,

where Ge := 〈xp
e

1 x
pe−1
2 xc44 · · ·x

cd
d 〉. But it is impossible because the exponent of x1 in the

generator of last product of ideals is

pb1+(b1+b2)+...+(b1+...+bs) > pb1+...+bs = pe.

In this way, as xγfe 6∈ LeF
e and xγF e ∈ FER we deduce from Proposition 2.3.1 that

xγF e 6∈ F<e and therefore CR is infinitely generated.

We end up this section with the following important observations.

Remark 2.3.6. Let K be an F -finite field of prime characteristic p, let T be the power series
ring K[[x1, . . . , xd]], let I be a squarefree monomial ideal of T and let I = Iα1 ∩ . . . ∩ Iαs be
its minimal primary decomposition. We have to point out that the formula(

I [q] :T I
)

=
(
I [q]
α1

+ 〈x(q−1)α1〉
)
∩ . . . ∩

(
I [q]
αs + 〈x(q−1)αs〉

)
is exactly the same for any q; in this way, we only have to compute (I [p] :T I) to describe
the whole Cartier algebra.
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On the other hand, we have to note as well that such formula does not depend on the
characteristic of the field. Therefore, in order to describe the whole Cartier algebra we may
reduce to the case p = 2 and so we only need to compute (I [2] :S I).

Remark 2.3.7. Whenever CR is an infinitely generated algebra we have some control on the
number of generators of each graded piece CRe . Indeed, set µ as the minimum number of
generators of CR1 . Our previous calculations imply that µ = ν+1, ν generators coming from
J2 or J ′2 and the other one being x1. So, each graded piece CRe adds up ν new generators,
those coming from the corresponding J2 or J ′2. We shall come back to this observation later
on (cf. 2.4.3).

2.4 Examples

We have proved in Chapter 1 (cf. Proposition 1.4.19) that Cartier algebras of Gorenstein
rings are principally generated. Moreover, the converse holds for normal rings. However,
the case of Stanley-Reisner rings we are dealing with is, in general, non-normal. In this
way, we shall discuss examples at the boundary of the Gorenstein property.

2.4.1 Examples with pure height

Cohen-Macaulay rings, in particular Gorenstein rings, are unmixed. In this way, we shall
start considering ideals such that all the face ideals in its primary decomposition have the
same height. Moreover, we shall only consider ideals involving all the variables; that is,
m = Iα1 + . . .+ Iαs .

Table 2.1: Table involving pure squarefree monomial ideals

d = 3 p.g. Gor i.g.
ht(I) = 1 1 1 -
ht(I) = 2 2 1 -
ht(I) = 3 1 1 -

d = 4 p.g. Gor i.g.
ht(I) = 1 1 1 -
ht(I) = 2 4 2 3
ht(I) = 3 3 1 -
ht(I) = 4 1 1 -

d = 5 p.g. Gor i.g.
ht(I) = 1 1 1 -
ht(I) = 2 6 2 13
ht(I) = 3 12 2 10
ht(I) = 4 4 1 -
ht(I) = 5 1 1 -

Building from the computational package described in Appendix A we have constructed
Table 2.1 in order to explore the principal generation of all the squarefree monomial ideals
such that all its primary components have the same height. In these tables, d is the number
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of variables of our current formal power series ring. Depending on the height we count the
number of ideals (up to relabeling) having principally generated (denoted p.g. in the tables
for the sake of brevity) Cartier algebra, how many Gorenstein (Gor) rings we get among
them and the number of ideals having infinitely generated (i.g.) Cartier algebra.

In the following, we are to analize the information obtained in these tables.

Distinguished examples in three variables

Before taking a close look of the previous tables, we remind the following concept for the
convenience of the reader. We omit its proof and refer to [98, Proposition 2.4] for details.

Theorem/Definition 2.4.1. Let (A,m,K) be a local equidimensional unmixed ring which
admits a canonical module Ω. Then, the following statements are equivalent.

(i) Ω is abstractly isomorphic to an ideal ω of A.

(ii) A is generically Gorenstein.

Moreover, when these equivalent conditions hold, ω contains at least a non-zerodivisor of
A.

Suppose that the previous equivalent conditions hold. We say that A is Q-Gorenstein
provided ω(r) is a principal ideal of A for some integer r ≥ 1, where (−)(r) stands for the
rth symbolic power of an ideal. In this case, we refer to the digit

min{r ∈ N | ω(r) is principal}

as the index of A.

It is clear that quasi Gorenstein rings are, in particular, Q-Gorenstein. The converse
does not hold, as the following example illustrates; the unjustified calculations were carried
out with CoCoA.

Example 2.4.2. Consider the monomial algebra K[[v3, u2v, uv2, u3]], where K is any field of

characteristic zero. Moreover, consider the map Z4 ψ //Z2 given by matrix
(

0 2 1 0
3 1 2 3

)
;

one may check that ker(ψ) = 〈e1 − e2 − e3 + e4, e1 + e2 − 2e3〉Z. In this way, we consider
the ideal J := 〈xy − z2, xw − yz〉. Now, using [103, Lemma 7.6] we produce a lattice ideal
as follows:

I := (J : 〈xyzw〉∞) = 〈xy − z2, xw − yz, y2 − zw, z3 − x2w〉.

So, the algebra K[x, y, z, w]/I may be viewed as the coordinate ring of an affine toric
variety (namely, V ). Moreover, we have to point out that K[V ] is not Gorenstein because
of type(K[V ]) = 2. However, we claim that K[V ] is Q-Gorenstein.

Firstly, we have to underline that

R := K[[v3, u2v, uv2, u3]] = K[[u, v]](3)
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is the 3-Veronesean subring of K[[u, v]] (cf. [30, Section 13.5] and [103, Example 10.6] for
more information concerning Veronesean subrings). In this way, if we denote by ωR the
canonical module of R then one may check (using [30, part (v) of 13.5.9 and 14.5.10] for
the first isomorphism) that

ωR ∼=
(
ωK[[u,v]]

)(3)
= 〈u3, u2v〉R.

Furthermore, if p := 〈u3, u2v, uv2〉R, then

p(2) = 〈u3, u2v〉R = ωR, p(3) = 〈u3〉R,

and therefore
ω

(2)
R = 〈u3〉R · p = p(4), ω

(3)
R = 〈u6〉R = p(6).

Whence we have checked that R is a Q-Gorenstein ring of index 3.
Actually, the reader should notice that, in this example, R = K[[u, v]]G, where G is

a group such that |G| 6= 0 in K. In such case, the divisor class group Cl(R) (cf. [50] for
unexplained terminology) attached to R is isomorphic to Hom(G,K×), where K× denotes
the underlying multiplicative group of K. Therefore, summing up one has that

Cl(R) ∼= Hom(G,K×) ∼= Z/(3).

Now, we analize an example of a non-Gorenstein Stanley-Reisner ring with principally
generated Cartier algebra.

Example 2.4.3. In three variables we have an example of a Cohen-Macaulay non-Gorenstein
ring R := K[[x, y, z]]/I having principally generated Cartier algebra, where

I := 〈x, y〉 ∩ 〈x, z〉 ∩ 〈y, z〉 = 〈xy, xz, yz〉.

Indeed, it is not Gorenstein because type(R) = 2. This example is as well interesting
because R is not even Q-Gorenstein.

In order to check our last claim, we note that the canonical module ωR is abstractly
isomorphic to the height one ideal 〈x + y, y + z〉/I of R. As dim(R) = 1 it follows that
ω

(n)
R = ωnR for all n ≥ 1. We claim that

ωnR = 〈xn, yn, zn〉/I

for all n ≥ 2 and therefore ωR can not admit a symbolic power ω(t)
R such that ω(t)

R is
principal.

We proceed by increasing induction on n. When n = 2,

ω2
R =

〈x+ y, y + z〉
I

· 〈x+ y, y + z〉
I

=
〈x2 + y2, xy + yz + y2 + yz, y2 + z2〉

I
=
〈x2, y2, z2〉

I
.
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When n > 2, it follows that

ωnR = ωn−1
R · ωR =

〈xn−1, yn−1, zn−1〉
I

· 〈x+ y, y + z〉
I

=
〈xn, yn, zn〉

I
,

just what we finally wanted to show.

We end this subsubsection with the following:

Question 2.4.4. Is it true that, for a Stanley-Reisner ring, being quasi Gorenstein is equiv-
alent of being Q-Gorenstein?

Distinguished examples in four variables

In four variables we have three examples with infinitely generated Cartier algebra; namely,

〈x, y〉 ∩ 〈z, w〉 = 〈xz, xw, yz, yw〉,
〈x, y〉 ∩ 〈x,w〉 ∩ 〈y, z〉 = 〈xy, xz, yw〉,
〈x, y〉 ∩ 〈x,w〉 ∩ 〈y, w〉 ∩ 〈z, w〉 = 〈xyz, xw, yw〉.

The first example has disjoint variables and the corresponding colon ideal is

〈x2z2, x2w2, y2z2, y2w2, xyz2, x2zw, y2zw, xyw2, xyzw〉.

In this case, the corresponding Cartier algebra is

R[εxyzw, zεxy, xεzw, yεzw,wεxy, zε2(xy)3, xε2(zw)3, yε2(zw)3, wε2(xy)3, . . . ;F ].

The corresponding colon ideal of the second example is

〈x2y2, x2z2, y2w2, x2yz, xy2w, xyzw〉.

In this case, the corresponding Cartier algebra is

R[εxyzw, xεyz, yεxw, xε2(yz)3, yε2(xw)3, xε3(yz)7, yε3(xw)7, . . . ;F ].

Finally, the corresponding colon ideal of the third example is

〈x2y2z2, x2w2, y2w2, xyw2, xyzw〉.

In this case, the corresponding Cartier algebra is

R[εxyzw,wεxy,wε2(xy)3, wε3(xy)7, wε4(xy)15, . . . ;F ].

Some families of examples having principal Cartier algebra

In this subsubsection, we introduce two general families of pure height ideals with principally
generated Cartier algebra.
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Examples with pure height d− 1

The first family of examples are pure squarefree monomial ideals of dimension 1.

Proposition 2.4.5. Let I ⊆ T be a squarefree monomial ideal of pure height d− 1. Then
CR is principally generated.

Proof. We may suppose, without loss of generality, that there is k ∈ {1, . . . , d} such that

I =
k⋂
i=1

〈x1, . . . , xi−1, xi+1, . . . , xd〉 = 〈xixj | 1 ≤ i < j ≤ k〉+ 〈xk+1, . . . , xd〉.

So, we proceed by increasing induction on k, being the case k = 1 trivial. For k = 2, we
deduce from Proposition 2.2.3 that

(I [2] :T I) = 〈x2
2, . . . , x

2
d,x

1〉∩〈x2
1, x

2
3, . . . , x

2
d, x1x3 · · ·xd〉 = 〈x2

1x
2
2, x

2
3, . . . , x

2
d,x

1〉 = I [2]+〈x1〉.

When k ≥ 3, combining the induction hypothesis joint with Proposition 2.2.3 and the
modular law for monomial ideals (cf. [87, Part (2.3) of Proposition 1]) it follows that

(I [2] :T I) =

k−1⋂
i=1

〈x2
1, . . . , x

2
i−1, x

2
i+1, . . . , x

2
d, x1 · · ·xi−1xi+1 · · ·xd〉

∩ 〈x2
1, . . . , x

2
k−1, x

2
k+1, . . . , x

2
d, x1 · · ·xk−1xk+1 · · ·xd〉

=
(
〈x2
ix

2
j | 1 ≤ i < j ≤ k − 1〉+ 〈x2

k, . . . , x
2
d,x

1〉
)

∩ 〈x2
1, . . . , x

2
k−1, x

2
k+1, . . . , x

2
d, x1 · · ·xk−1xk+1 · · ·xd〉

= 〈x2
ix

2
j | 1 ≤ i < j ≤ k〉+ 〈x2

k+1, . . . , x
2
d〉+ 〈x1〉 = I [2] + 〈x1〉,

just what we wanted to check.

The following result provides a generalization of Example 2.4.3.

Proposition 2.4.6 (Goto). Let d ≥ 2, and set R := K[[x1, . . . , xd]]/I, where

I := 〈xixj | 1 ≤ i < j ≤ d〉.

Then, the following statements hold.

(i) dim(R) = 1.

(ii) R is Cohen-Macaulay.

(iii) The canonical module ωR is abstractly isomorphic to the height-one ideal

〈x1 + x2, . . . , x1 + xd〉/I.

In particular, type(R) = d− 1 and therefore R is Gorenstein if and only if d = 2.

From now on, we assume that d ≥ 3.
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(iv) For all t ≥ 2,

ω
(t)
R = ωtR =

〈xt1, . . . , xtd〉
I

.

In particular, ωR can not admit a principal symbolic power; hence R is not Q-
Gorenstein.

(v) CR is principally generated.

Sketch of proof. Part (i) follows from the fact that

I =
d⋂
i=1

〈x1, . . . , xi−1, xi+1, . . . , xd〉.

Part (ii) follows combining part (i) joint with the fact that x1 + x2 is not a zero-divisor on
R. Part (v) has been proved in Proposition 2.4.5. Part (iv) is proved performing a similar
calculation which has been done in Example 2.4.3. Finally, part (iii) was proved by S.Goto
in [53, Example 2.8].

Squarefree Veronese ideals

The second family of examples having principal Cartier algebra are the so-called squarefree
Veronese ideals (cf. [65, Exercise 8.7]).

Proposition 2.4.7. Let k ∈ {1, . . . , d} and let Ik,d ⊆ T be the squarefree monomial ideal
obtained as intersection of all the face ideals of height k; namely,

Ik,d :=
⋂

1≤i1<...<ik≤d
〈xi1 , . . . , xik〉.

Then CT/Ik,d is principally generated.

Proof. This proof is again based on the use of Proposition 2.2.3 joint with the modular law
for monomial ideals. First of all, we underline that we have a decomposition of the form
Ik,d = Ik,d−1 ∩ Jk,d, where

Jk,d :=
⋂

1≤i1<...<ik−1≤d−1

〈xi1 , . . . , xik−1
, xd〉 = 〈xd〉+ Ik−1,d−1.

In particular, CT/Jk,d is principally generated if and only if CT/Ik−1,d−1 is principally gen-
erated. In this way, the result now follows by increasing induction on d. Indeed, the case
d = 1 is obvious. On the other hand, when d > 1 we may write

(I
[2]
k,d :T Ik,d) = (I

[2]
k,d−1 :T Ik,d−1) ∩ (J

[2]
k,d :T Jk,d).
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As CT/Ik,d−1 and CT/Jk,d are both principally generated by induction hypothesis it follows
that

(I
[2]
k,d :T Ik,d) =

(
I

[2]
k,d−1 + 〈x1 · · ·xd−1〉

)
∩
(
J

[2]
k,d + 〈x1〉

)
= I

[2]
k,d+

(
〈x1 · · ·xd−1〉 ∩ J

[2]
k,d

)
+〈x1〉.

Nevertheless, since 〈x1 · · ·xd−1〉∩J
[2]
k,d ⊆ I

[2]
k,d+〈x

1〉 one finally gets (I
[2]
k,d :T Ik,d) = I

[2]
k,d+〈x

1〉.
Hence CT/Ik,d is principal.

2.4.2 Examples with no pure height

We have seen that the Gorensteinness of the Stanley-Reisner ring R is not the property that
tackles when CR is principally generated. It turns out that one may even find examples of
non Cohen-Macaulay rings with CR principally generated. In 4 and 5 variables we have the
following examples.

I = 〈x,w〉 ∩ 〈x, z〉 ∩ 〈x, y〉 ∩ 〈y, z, w〉,
I = 〈x, u〉 ∩ 〈x,w〉 ∩ 〈x, z〉 ∩ 〈x, y〉 ∩ 〈y, z, w, u〉,
I = 〈x, z〉 ∩ 〈x,w〉 ∩ 〈x, u〉 ∩ 〈y, z〉 ∩ 〈y, w〉 ∩ 〈y, u〉 ∩ 〈z, w, u〉,
I = 〈x, y, u〉 ∩ 〈x, y, w〉 ∩ 〈x, y, z〉 ∩ 〈y, z, w, u〉,
I = 〈x, y, w〉 ∩ 〈x, y, u〉 ∩ 〈x, z, w〉 ∩ 〈x, z, u〉 ∩ 〈y, z, w, u〉.

In general, we may find examples in any dimension. Indeed, we can take the following
families of ideals in d variables as such as a point.

I = 〈x1, . . . , xr, xr+1 · · ·xd〉 ∩ 〈xr+1, . . . , xd〉,
I = 〈x1, . . . , xr, xr+1 · · ·xr1 , xr1+1 · · ·xr2 , . . . , xrt+1 · · ·xd〉 ∩ 〈xr+1, . . . , xd〉,

where 1 ≤ r < r1 < . . . < rt ≤ d.

Examples with no pure height: some families

In this subsection, we shall exhibit a family of squarefree monomial ideals with the property
that almost all its members have infinitely generated Cartier algebra.

We start introducing the concept of ideal with disjoint variables.

Definition 2.4.8. Let d ∈ N, let K be any field, let S := K[x1, . . . , xd] and let I be a
squarefree monomial ideal of S. We say that I has disjoint variables if there is t ∈ N and
integers d1 ≥ d2 ≥ . . . ≥ dt > 0 with d1 + . . .+ dt = d such that

I =

t⋂
j=1

〈
xbj−1+1, . . . , xbj

〉
,
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where, for each i ∈ {1, . . . , t},

b0 := 0 and bi :=

i∑
j=1

dj .

As we have announced, the main result of this subsection is the following:

Proposition 2.4.9. Let d ∈ N, let K be any F -finite field, let S := K[x1, . . . , xd], let J be a
squarefree monomial ideal with disjoint variables, set T := K[[x1, . . . , xd]] and set I := JT .
Then, the following statements are equivalent.

(a) CR is principally generated.

(b) J = 〈x1, . . . , xd〉 or J = 〈x1 · · ·xd〉.

Proof. It is clear that (b)=⇒ (a) because, in any case, R is Gorenstein. In this way, we
have only to check that the converse implication holds.

Let (d1, . . . , dt) be as in Definition 2.4.8 and suppose that J 6= 〈x1, . . . , xd〉, 〈x1 · · ·xd〉.
Moreover, as we know that non-pure ideals of height one have infinitely generated Cartier al-
gebra we are also allowed to assume that dt > 1. In this case, the monomial x2

1(xb1+1 · · ·xd)
is a minimal monomial generator of (J [2] :S J) which does not belong to J [2] + 〈x1〉 because
of dt > 1.

Finally, we end this subsection proving the following result which also involves ideals
with disjoint variables.

Proposition 2.4.10. Let I be a squarefree monomial ideal with disjoint variables of S such
that its minimal primary decomposition

I = Iα1 ∩ . . . ∩ Iαs

verifies that ht(Iαi) > 1 for all i ∈ {1, . . . , s}. Then, the following statements hold.

(a) One has that

µ
((
I [2] :S I

))
=

s∏
j=1

(ht(Iαj ) + 1).

(b) It follows that

µ(J2) =

 s∏
j=1

(ht(Iαj ) + 1)

−
 s∏
j=1

ht(Iαj )

− 1.
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Proof. Let (b0, . . . , bt) be as in Definition 2.4.8. As I has disjoint variables,

(
I [2] :S I

)
=

t⋂
j=1

〈
x2
bj−1+1, . . . , x

2
bj
, xbj−1+1 · · ·xbj

〉
=

t∏
j=1

〈
x2
bj−1+1, . . . , x

2
bj
, xbj−1+1 · · ·xbj

〉
.

In this way, as the exponent set of the product of monomial ideals equals the Minkowski
sum of the exponent set of each factor one obtains part (a). Part (b) follows from part (a)
directly.

2.4.3 A numerical function attached to Cartier algebras

The aim of this subsection is to introduce a generating function which is directly related
with the number of generators of each graded piece CRe . We hope that such generating
function (and the corresponding generating serie) may be interesting in its own right.

Throughout this section, K will denote an F -finite field of characteristic p and T will
be K[[x1, . . . , xd]].

Definition 2.4.11. Let LT be the lattice of ideals of T . Set, for each e ∈ N,

ce,p : LT −→ N

I 7−→ dimK

(
HomT (F e∗ (T/I), T/I)

mHomT (F e∗ (T/I), T/I)

)
.

We shall refer to ce,p as the (e, p)-Cartier function of T .

Now, we collect the previously defined digits in a power serie as follows.

Definition 2.4.12. Let I be an ideal of T . The Cartier-Frobenius generating function with
respect to I is defined in the following way:

CFG(I;X) :=
∑
e≥0

ce,p(I)Xe ∈ N[[X]].

Next result summarizes some elementary properties of the previous formal power series.
All of such properties follow immediately from its definition.

Proposition 2.4.13. Let I be an ideal of T . Then, the following statements hold.

(i) c0,p(I) = 1.

(ii) The following statements are equivalent.

(a) CT/I is principally generated.

(b) ce,p(I) = 1 for all e ∈ N.
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(c) One has that

CFG(I;X) =
1

1−X
.

In case of I is a squarefree monomial ideal we can provide a more precise description of
such generating function.

Theorem 2.4.14. Let I be a squarefree monomial ideal of T and let

I = Iα1 ∩ . . . ∩ Iαs

be its minimal primary decomposition in terms of face ideals. Then, the following statements
hold.

(i) For all e ≥ 1, ce,p(I) = ce,2(I).

(ii) One has that

ce,2(I) =

{
µ(J2) + 1, if e = 1,

µ(J2), if e > 1.

(iii) One has that

CFG(I;X) =
1 + µ(J2)X −X2

1−X
.

(iv) If, in addition, I has disjoint variables and ht(Iαi) > 1 for any i ∈ {1, . . . , s}, then

c1,2(I) =

 s∏
j=1

(ht(Iαj ) + 1)

−
 s∏
j=1

ht(Iαj )

 .

Bearing in mind the previous result, one might ask whether ce,p(I) = c1,p(I) for all
e ∈ N. The answer is in general negative, as the following result illustrates.

Proposition 2.4.15. Let T := Fp[[x1, x2, x3, x4, x5, x6]] and let I be the ideal generated by
the 2× 2 minors of matrix (

x1 x2 x3

x4 x5 x6

)
.

Then, the following statements hold.

(i) ce,p(I) =
(
pe+1

2

)
.

(ii) One has that

CFG(I;X) =
2− p(p+ 1)X

2(1− pX)(1− p2X)
.
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Proof. First of all, we deduce part (ii) from part (i) in the following manner:

CFG(I;X) =
∑
e≥0

(
pe + 1

2

)
Xe =

∑
e≥0

(pe + 1)pe

2
Xe =

1

2

∑
e≥0

(1 + pe)(pX)e

=
1

2

∑
e≥0

(pX)e +
1

2

∑
e≥0

(p2X)e =
1

2

(
1

1− pX
+

1

1− p2X

)
=

2− p(p+ 1)X

2(1− pX)(1− p2X)
;

whence part (ii) holds. Therefore, it only remains to check part (i). The reader should
remind that

I = 〈∆1,∆2,∆3〉 = 〈x1x5 − x2x4, x1x6 − x3x4, x2x6 − x3x5〉.

Now, using [84, part (2) of Proposition 5.1] it follows that

(I [pe] :T I) = I [pe] + 〈fa,b | a+ b ≤ pe − 1〉,

where each fa,b is such that

xa5x
b
6(∆2∆3)p

e−1 ≡ xa+b
4 fa,b (mod I [pe]).

From this fact, we deduce that ce,p(I) turns out to be the cardinality of the set of the fa,b’s,
which is exactly

pe−1∑
i=0

(i+ 1) =

pe∑
i=1

i =
pe(pe + 1)

2
=

(
pe + 1

2

)
,

just what we finally wanted to prove.

These previous computations lead us to raise the following:

Question 2.4.16. Is it true that CFG(I;X) is always a rational function?

We finish this part with the following:

Remark 2.4.17. It is worth mentioning that Question 2.4.16 is closely related with the
notion of the so-called Frobenius complexity, which has been introduced by F.Enescu and
Y.Yao (cf. [47, Definition 2.13]).

Counting new generators of infinitely generated Cartier algebras

Now, we introduce another numerical function.
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Definition 2.4.18. Let L∆,T,∞ be the lattice of squarefree monomial ideals of T such that
CT/I is infinitely generated for any I ∈ L∆,T,∞. In this way, set

M∆(e, p) := max
I∈L∆,T,∞

{ce,p(I)− 1} .

Roughly speaking, once it is fixed the number of formal indeterminates in our formal
power series ring T , M∆ may be regarded as the function which counts the maximum
number of generators which are added in an infinitely generated Cartier algebra attached
to a complete Stanley-Reisner ring.

Remark 2.4.19. We have to point out that, in fact, M∆ is a constant function. Indeed, we
have seen that if I is a squarefree monomial ideal then ce,p(I) = c1,2(I) for all e ∈ N. In
this way, it follows that

M∆ = max
I∈L∆,T,∞

{c1,2(I)− 1} .

In this way, one might ask the following question regarding M∆.

Question 2.4.20. Is it true that there exists a unique (up to relabeling) squarefree monomial
ideal I such that M∆ = c1,2(I)− 1?

Example 2.4.21. When d = 3, M∆ = 2 = c1,2(〈x1x2, x1x3〉)−1. In this case, M∆ is reached
in a squarefree monomial ideal with disjoint variables.

In fact, this example suggests the following:

Question 2.4.22. Is it true that M∆ = c1,2(I) − 1, where I is a squarefree monomial ideal
with disjoint variables?

In Appendix A, we provide some numerical evidence (cf. Table A.1) that Question 2.4.22
might be true.

2.4.4 Behaviour of Cartier algebras under Alexander duality

In this section, we briefly explore the behaviour of the generation of CR with respect to the
so-called Alexander duality.

We start recalling a well-known notion.

Definition 2.4.23. Let I be a squarefree monomial ideal of S and let I = Iα1 ∩ . . . ∩ Iαs
be its minimal primary decomposition in terms of face ideals such that m = Iα1 + . . .+ Iαs .
Set

I1 := 〈xα1 , . . . ,xαs〉

and we refer to the ideal I1 to be the the Alexander dual of I.

Remark 2.4.24. In general, having principally generated Cartier algebra does not behave
well with respect to Alexander duality. Indeed, take for instance I = 〈xy, xz〉 and I1 =
〈x, yz〉. While CT/I is infinitely generated, CT/I1 is principally generated.
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On the other hand, it is straightforward to check that I1k,d = Id−k+1,d. This fact leads
us to raise the following:

Question 2.4.25. Let I be a squarefree monomial ideal such that CT/I and CT/I1 are both
principally generated. Is it true that I = Ik,d for some k ∈ {1, . . . , d}?

We have checked using CoCoA (cf. [38]) that this question has an affirmative answer for
d ≤ 6.

We conclude this part with the following:

Remark 2.4.26. It is worth mentioning that, in [7, Theorem 4], the authors obtained an
elementary combinatorial characterization of complete Stanley-Reisner rings having princi-
pally generated Cartier algebra; in particular, they show that being principally generated is
not a topological property of the simplicial complex attached to any Stanley-Reisner ring.

2.5 Applications

In this section we shall use our description of the Cartier algebra of a complete Stanley-
Reisner rings in the ways described as follows.

2.5.1 Discreteness of F-jumping numbers

In Chapter 1, we have recalled the notion of gauge boundedness of a Cartier algebra in-
troduced by M.Blickle in [18, Definition 4.8] (cf. Definition 1.7.14). This notion is mainly
introduced because Blickle proved that the set of F -jumping numbers attached to the pair
(Spec(R),V(a)) forms a discrete subset inside the non-negative real numbers provided Ca
is gauge bounded (cf. Proposition 1.7.15). He also proved that finitely generated Cartier
algebras are gauge bounded.

So far in this chapter, we have seen that Cartier algebras of complete Stanley-Reisner
rings can be either principally generated or infinitely generated. It is clear that principally
generated Cartier algebras are gauge bounded.

The main result of this section is the following:

Theorem 2.5.1 (Àlvarez, Boix, Zarzuela). Let K be a perfect field of characteristic p, let
T be K[[x1, . . . , xd]], let I be a squarefree monomial ideal of T and set R := T/I. Then, the
R-Cartier algebra CR is gauge bounded.

Proof. Let s ∈ S and write

s =
∑

0≤||ε||∞≤||s||∞

sεx
ε, sε ∈ K, ε ∈ Nd.
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On the other hand, let xγ := xc11 · · ·x
cd
d be a minimal monomial generator of Jpe+〈x(pe−1)1〉

and write γ = peα+ (pe − 1)β, where α := (a1, . . . , ad) and

ai :=

{
1, if ci = pe,

0, otherwise.

Moreover, β = (b1, . . . , bd), where

bi :=

{
1, if ci = pe − 1,

0, otherwise.

We denote by Φe,γ the composition Φe ◦ xγµ, where xγµ denotes left multiplication by xγ

and Φe denotes the unique p−e-linear map which is the projection onto the direct summand
Sx(pe−1)1. Our foregoing results imply that {Φe,γ}e,γ (where e runs over N and γ runs
over the exponent set of Jpe + 〈x(pe−1)1〉) generates CR as right T -module. In this way, we
underline that

Φe,γ(s) = Φe(x
γs) =

∑
0≤||ε||∞≤||s||∞

sεx
ε+peα+(pe−1)(β−1)

pe1

So, we need to distinguish two cases. If α = 0 then β = 1 and therefore

||Φe,γ(s)||∞ ≤ ||s||∞
pe

.

If α 6= 0 then β − 1 has, at least, a strictly negative entry, hence

||Φe,γ(s)||∞ ≤ ||s||∞
pe

+ 1.

In any case, one obtains that

||Φe,γ(s)||∞ ≤ ||s||∞
pe

+ 1

and therefore CR is gauge bounded.

We also want to provide here a different way of proving Theorem 2.5.1. This alternative
proof involves the following statement, which was obtained by M.Katzman and W.Zhang;
the reader is encouraged to consult [86, Lemma 2.2] for further details.

Proposition 2.5.2 (Katzman, Zhang). Let K be any field of prime characteristic p, let
S be the polynomial ring K[x1, . . . , xd], and let I be an ideal of S such that (I [pe] :S I) is
generated by elements of infinity norm at most Cpe for any e ≥ 1 (and some constant C
which does not depend neither on e, nor on the number of generators of (I [pe] :S I)). Then,
the Cartier algebra CS/I is gauge bounded.
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Now, using Proposition 2.5.2 we give an alternative proof of Theorem 2.5.1.

Alternative proof of Theorem 2.5.1. Suppose that I is a Stanley-Reisner ideal and let e ≥ 1.
Keeping in mind Discussion 2.2.5, one has that

(I [pe] :S I) = I [pe] + Jpe + 〈(x1 · · ·xd)p
e−1〉,

where ||(x1 · · ·xd)p
e−1||∞ = pe−1, I [pe] is generated by monomials of infinity norm equal to

pe, and Jpe is also generated by monomials of infinity norm less or equal than pe; summing
up, (I [pe] :S I) is generated by elements of infinity norm less or equal that pe for any e ≥ 1.
In this way, Proposition 2.5.2 implies that CT/I is gauge bounded; the proof is therefore
completed.

As a direct consequence of Theorem 2.5.1 we obtain the following:

Theorem 2.5.3 (Àlvarez, Boix, Zarzuela). Let K be a perfect field of characteristic p, let
T be K[[x1, . . . , xd]], let I be a squarefree monomial ideal of T and set R := T/I. Let a be
any ideal of R. Then, the F -jumping numbers of the pair (Spec(R),V(a)) are a discrete
set inside the non-negative real numbers.

We end this section with the following observations.

Remark 2.5.4. Theorem 2.5.1 was observed by M.Blickle in a particular case. Indeed, in
[18, Remark 4.20] he pointed out that the example studied by M.Katzman in [79] is gauge
bounded.

On the other hand, we want to emphasize that Theorem 2.5.3 is not covered by the
results obtained in [18] since we have seen that the Cartier algebra of a complete Stanley-
Reisner ring might be infinitely generated.

It is natural to ask for the rationality of these F -jumping numbers. As far as we know,
the best argument to prove discreteness and rationality of these digits was obtained by
M.Katzman, G. Lyubeznik and W.Zhang in [81]. Unfortunately, their argument is only
valid for regular rings; as the reader can see, our framework in this chapter is far from
being regular.

2.5.2 Cartier algebras, Frobenius algebras and differential operators re-
visited

In Chapter 1 (cf. Section 1.6), we have introduced a pairing 〈−,−〉e which is just the com-
position of an element of CRe followed by an element of FRe ; such composition yields a
differential operator of level e. More precisely, we have a natural map

HomR(R,F e∗R)⊗R HomR(F e∗R,R)
〈−,−〉e // HomR(F e∗R,F

e
∗R)
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given by the assignment φe ⊗ ψe 7−→ φe ◦ ψe. In addition, we have also seen (cf. Theorem
1.6.5) that this pairing is an isomorphism for regular rings. However, in general, this pairing
is far from being an isomorphism; therefore, one may naturally ask for its image inside the
differential operators of level e.

The aim of this section is to show that, for a complete Stanley-Reisner ring, we are
able to check out how far this pairing might be from being surjective. More precisely, the
following statement is the main result of this section.

Theorem 2.5.5 (Àlvarez, Boix, Zarzuela). Let R := K[[x1, . . . , xd]]/I be a complete, Stanley-
Reisner ring. Then, one has that the image of 〈−,−〉e is generated, as abelian group, by
the differential operators

{xpeα ◦ ∂(pe−1)1 ◦ x(pe−1)β}γ∈Γ,

where γ := peα + (pe − 1)β runs over a minimal monomial generating set of the ideal
Je + 〈x(pe−1)1〉; that is, γ ∈ Γ if and only if xγ is a minimal monomial generator of
Je + 〈x(pe−1)1〉.

Proof. Let γ ∈ Γ. We have seen that ψe,γ is a right R-generator of CRe . In this way, as a
left R-generator of FRe is the eth Frobenius map F e it follows that

〈F e, ψe,γ〉e = F e ◦ ψe,γ = F e ◦ (ψe ◦ xγ) = F e ◦ (ψe ◦ xp
eα+(pe−1)β)

= F e ◦ (xα ◦ ψe ◦ x(pe−1)β) = xp
eα ◦ (F e ◦ ψe) ◦ x(pe−1)β = xp

eα ◦ ∂(pe−1)1 ◦ x(pe−1)β,

just what we wanted to show.

In order to exhibit differential operators in D
(e)
R that do not belong to the image of

〈−,−〉e we need to recall the following explicit presentation of DR whenever R is a Stanley-
Reisner ring. The below result is due to W.N.Traves; we omit the proof and refer to [136,
Theorem 3.5] for additional details.

Proposition 2.5.6 (Traves). Let I = Iα1 ∩ . . . ∩ Iαs ⊆ S := K[x1, . . . , xd] be a squarefree
monomial ideal and let R′ := S/I be the corresponding Stanley-Reisner ring. A monomial
xβ∂α ∈ DS is in DR′ if and only if, for each face ideal Iαi in the minimal primary decom-
position of I, we have either xβ ∈ Iαi or xα /∈ Iαi . In particular, DR′ is generated as a
K-algebra by

{xβ∂α | xβ ∈ Iαi or xα /∈ Iαi ∀i ∈ {1, . . . , s}}.

Remark 2.5.7. We underline that the expression for the elements in the image of 〈−,−〉e
given in Theorem 2.5.5 is not the same as the one given in Traves’ result. Nevertheless,
applying the relations defining DR it is not hard to get it.

In this way, combining Theorem 2.5.5 joint with Traves’ result we can find differential
operators in D(e)

R that do not belong to the image of 〈−,−〉e.
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Example 2.5.8. Set R := K[[x, y, z]]/I, where I := 〈y〉 ∩ 〈x, z〉 and K is any field of char-
acteristic p. Traves’ result says that the ring of differential operators DR is the R-algebra
generated by

{x∂n1 ∂m3 , z∂n1 ∂m3 , y∂m2 }(n,m)∈N.

Moreover, CR is generated by {xpeΦey
pe−1, zp

e
Φey

pe−1,Φex
pe−1yp

e−1zp
e−1}e∈N that corre-

spond via 〈−,−〉e to the differential operators{
xp

e
∂p

e−1
1 ∂p

e−1
2 ∂p

e−1
3 yp

e−1, zp
e
∂p

e−1
1 ∂p

e−1
2 ∂p

e−1
3 yp

e−1, ∂p
e−1

1 ∂p
e−1

2 ∂p
e−1

3 xp
e−1yp

e−1zp
e−1
}
e∈N

We note that x∂p
e−1

1 does not even belong to the R-algebra generated by this set.

This example illustrates a general way to build differential operators in D
(e)
R that do

not belong to the image of 〈−,−〉e. Indeed, just take xi∂p
e−1
i , where xi ∈ Iα for some face

ideal Iα in the minimal primary decomposition of I.

Bibliographical notes

Albeit the proof of Proposition 2.1.3 presented in this chapter is so straightforward, we
point out that this result was obtained in the unmixed case by R. Fedder in [49]. The proof
given in [4] is quite different; in fact, the proof presented here follows closely the argument
used by R.Y. Sharp in order to prove [123, Proposition 2.8]. On the other hand, another,
a priori, innocent tool used is Lemma 2.1.1. The proof presented in this chapter is due to
J. CowdenVassilev (cf. [137, Lemma 2.1]). We underline that this result has been generalized
by M.Blickle, M.Mustaţǎ and K.E. Smith in [21, Lemma 2.3] and by M.Katzman in [77,
Proposition 5.3].

Perhaps, the most distinguished family of squarefree monomial ideals with principal
Cartier algebra are the one given in Proposition 2.4.7. These ideals are called squarefree
Veronese ideals (we use the terminology from [65, Exercise 8.7 and page 200]). The impor-
tance of these ideals (from a combinatorial point of view) stems from the fact that these
ideals are the only squarefree monomial ideals which are simultaneously Cohen-Macaulay
and polymatroidal (cf. [65, Theorem 12.6.7] for more details).

The formal introduction of F -jumping numbers was made by M.Mustaţǎ, S. Takagi and
K. -I.Watanabe in [107] under the name F -pure thresholds. Moreover, in [107, Remark 2.12]
the authors proved that the test ideal is constant in intervals of the form [a, b) whenever the
ambient ring is regular. On the other hand, the first results on discreteness and rationality
of F -jumping numbers were obtained by N.Hara in [57]. Generalizations of results of
Hara has been recently obtained in [21] and [22]. The study of these digits is definitely
a hot topic of research nowadays (cf. [121] and [120]). It is worth mentioning here that,
when the ambient ring is not regular, there is no clear connection between the F -threshold
previously mentioned and the first non-zero F -jumping number; the interested reader may
like to consult [99] for concrete examples.
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Chapter 3

An algorithm for producing F-pure
ideals

In Chapter 1, the notion of Cartier algebra introduced by K. Schwede and M.Blickle was
established (cf. Definition 1.4.6). Moreover, in Chapter 2 we have given a complete char-
acterization of CR whenever R is a complete Stanley-Reisner ring. We have seen, among
other things, that CR can only be either principally generated or infinitely generated as
R-algebra (cf. Theorem 2.3.5).

From now on in this chapter, unless otherwise is specified, we shall denote by A a fixed
regular ring which is either the polynomial ringK[x1, . . . , xd], the localizationK[x1, . . . , xd]m
(where m is the ideal of K[x1, . . . , xd] generated by all the variables), or the formal power
series ring K[[x1, . . . , xd]], where K is any F -finite field of prime characteristic p. Moreover,
all the ideals of A which we shall consider will be of the form JA, where J is an ideal of
K[x1, . . . , xd].

Before going on, we introduce the objects of our study in this chapter.

Definition. Let C be a graded A-subalgebra of CA. An ideal I of A is called F -pure (with
respect to C) provided C+I = I.

Our purpose is to introduce an effective method (cf. Theorem 3.2.5) in order to calculate
all the F -pure ideals of A contained in m with respect to the subalgebra of CA generated
by a single p−e-linear map φ under the additional assumption that its ground field K is
finite. This procedure has been implemented in Macaulay2 (cf. [25]) in case K = Fp and
A = K[x1, . . . , xd]; the interested reader may like to consult Appendix B for further details
about our implementation of this method.

This work is motivated by the study of F -pure ideals and their properties carried out
by M.Blickle in [18]; for instance, under our assumptions one has that A itself is an F -pure
ideal (with respect to CA) if and only if CA+ contains a splitting of a certain power of the
Frobenius map on A (cf. [18, Proposition 3.5]); therefore, these F -pure ideals turn out to
be a generalization of the F -purity property.
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Furthermore, among the main results obtained in [18] (see also [19, Corollary 4.20 and
Proposition 5.4]) is the fact that the set of F -pure ideals in A is finite, and that the big
test ideal is the minimal element of such set. Apart from their usefulness in describing big
test ideals, we believe that the set of F -pure ideals provides an interesting set of invariants
of A yielding information about the ring which is not yet fully understood.

The reader should contrast this with the situation one encounters when studying the set
of CA+-compatible ideals; that is, ideals I ⊆ A for which CA+I ⊆ I. One might hope to list all
F -pure ideals by listing all compatible ideals and checking which ones are F -pure. However,
the set of compatible ideals need not be finite, and one can only describe algorithmically
the radical ones among these; such task was carried out in [82].

Our contribution to the understanding of F -pure ideals is to provide an effective pro-
cedure to calculate all the F -pure ideals contained in m of the subalgebra C = Cφ of CA
generated by a single p−e-linear map φ under the additional assumption that the coefficient
field K is finite.

Now, we provide an overview of the contents of this chapter. Firstly, in Section 3.1 we
introduce compatible and fixed ideals, stressing its connection with Cartier algebras given
by a result originally due to O.Gabber and later on extended by M.Blickle (cf. Theorem
3.1.1); moreover, we show that the so-called eth root ideal (cf. Definition 3.1.6) plays a
key role in their calculation. Second, Section 3.2 contains the main result of this chapter;
namely, the algorithm previously referred (cf. Theorem 3.2.5); by the way, we introduce a
new operation on ideals (cf. Definition 3.2.2), hoping that it may be interesting in its own
right. On the other hand, in Section 3.3 we provide examples in order to illustrate how our
method works; most of these specific computations were carried out with an implementation
of this procedure in Macaulay2.

Finally, it is worth mentioning that ,when K is not F -finite, we have no explicit methods
for solving such task; nevertheless, in the final part of this chapter (cf. Section 3.4), we shall
give theoretical evidence that the algorithm presented here might be of some help in order
to tackle this problem. For that purpose, we use the so-called Γ-construction introduced
by M.Hochster and C.Huneke in [68].

Special acknowledgement of joint work

The content of this chapter is a submitted joint work with Mordechai Katzman (cf. [26]).
However, it is worth mentioning that in what follows we are to give some details and results
which are not found in the article.

3.1 Basic notions

Our motivation for studying F -pure ideals stems from the following result. We omit the
proof and refer to [18, Proposition 2.13] and [51, Lemma 13.1] for details.
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Theorem 3.1.1 (Gabber, Blickle). Let C ⊆ CA be a Cartier subalgebra of CA and let M be
a finitely generated A-module that is also a left C-module. Then, the chain of submodules

M ⊇ C+M ⊇ C2
+M ⊇ . . . ⊇ Ci+M ⊇ Ci+1

+ M ⊇ . . .

eventually stabilizes; that is, there is e0 � 0 such that Ce0+ M = Ce+M for all e ≥ e0.

This non-trivial result motivates the introduction of the objects of study in this chapter.

Definition 3.1.2. Let M be a left module over C. We say that M is F -pure (with respect
to C) if C+M = M . In particular, we say that an ideal I of A is F -pure (with respect to C)
provided C+I = I.

In fact, we are interested in case M = A and C a principal Cartier subalgebra of CA.
Before going on, we shall recall the explicit description of CA in this setup. Unless

otherwise is specified, K will denote an F -finite field of characteristic p.
Under our assumptions, F e∗A is a free A-module of finite rank. Indeed, if Be is a Kpe-

basis for K then a free basis is given by

{bxα | b ∈ Be, 0 ≤ ||α||∞ ≤ pe − 1}.

Moreover, we recall that the trace map Φe ∈ HomA(F e∗A,A), which is just the unique
p−e-linear map which is the projection onto the direct summand Ax(pe−1)1, generates the
F e∗A-module HomA(F e∗A,A) (cf. Theorem/Definition 1.4.15). In this way, any homogeneous
element φ ∈ HomA(F e∗A,A) can be written as uΦe (interpreted as the composition of
multiplication by u and Φe) for some u ∈ F e∗A. All these facts imply that if C is the Cartier
subalgebra of CA generated by such φ then the problem of finding the F -pure ideals of A
is equivalent of computing ideals I ⊆ A such that φ (F e∗ I) = I.

The previous discussion motivates the introduction of the following notions.

Definition 3.1.3. Let I be an ideal of A and let φ ∈ HomA(F e∗A,A).

(i) We say that I is φ-compatible if φ(F e∗ I) ⊆ I.

(ii) We say that I is φ-fixed if φ(F e∗ I) = I.

It is clear that all φ-fixed ideals are, in particular, φ-compatible. The converse holds,
for instance, when φ is a Frobenius splitting. Before proving so, we recall that:

Definition 3.1.4. It is said that φ ∈ HomA(F e∗A,A) is a Frobenius splitting if φ(F e∗ 1) = 1.

Lemma 3.1.5. If φ is a Frobenius splitting then an ideal I ⊆ A is φ-fixed if and only if I
is φ-compatible.

Proof. Suppose that I is φ-compatible and let r ∈ I. We have also to note that

r = r · 1 = rφ(F e∗ 1) = φ(r · F e∗ 1) = φ(F e∗ r
pe) ∈ I.

Indeed, in the second equality we have used that φ is a Frobenius splitting and in the last
inclusion we have used that I is φ-compatible.

From now on, we shall suppose that φ = uΦe, where u ∈ F e∗A.
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3.1.1 The root ideal

Our next goal is to express in an equivalent way the condition of being φ-fixed in order
to carry out explicit calculations. Such equivalent expression requires us to introduce the
following concept (cf. [21, Definition 2.2] and [77, Section 5]).

Definition 3.1.6. Let J be an ideal of A. We set Ie(J) as the smallest ideal I such that
I [pe] ⊇ J . We shall refer to Ie(J) as the e-th root ideal of J . It is often denoted J [1/pe].

In the forthcoming result, we are to focus on collecting some elementary (but important)
properties which the e-th root ideal verifies. We shall omit its proof and we refer to [77,
Section 5] for details.

Proposition 3.1.7 (Katzman). Let J, J1, . . . , Jr be ideals of A. Then, the following state-
ments hold.

(a) If J1 ⊆ J2 then Ie(J1) ⊆ Ie(J2).

(b) One has that

Ie

(
r∑
i=1

Ji

)
=

r∑
i=1

Ie(Ji).

Note that this fact implies that it is enough to know how to calculate Ie(J) when J is a
principal ideal.

(c) Let g ∈ A. If
g =

∑
b∈Be

0≤||α||∞≤pe−1

gp
e

αbbx
α

then Ie(g) is the ideal of A generated by all the gαb’s.

(d) If A′ is any faithfully flat A-algebra then Ie(JA′) = Ie(J)A′.

We refer to Appendix B in order to give a concrete algorithm for computing Ie(g).

Remark 3.1.8. Albeit we shall not exploit it further in this chapter, we have to underline
that in [22] was proved that Ie(J)[pe] = D

(e)
A · J , where D

(e)
A := HomA(F e∗A,F

e
∗A) is the

ring of differential operators of level e. This fact had been already pointed out in [2] in case
J is a principal ideal.

Now, we are ready for expressing the condition of being φ-fixed in computational terms.
This is the main result of this section.

Theorem 3.1.9. Let J ⊆ A be any ideal and let φ = uΦe ∈ HomA(F e∗A,A). Then, the
following statements hold.

(a) The image of F e∗J under φ is Ie(uJ).
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(b) J is φ-compatible if and only if Ie(uJ) ⊆ J .

(c) J is φ-fixed if and only if Ie(uJ) = J .

Proof. Parts (b) and (c) follow directly form part (a). So, it is enough to prove part (a).
Proposition 3.1.7 implies that, in order to compute Ie(uJ), one may choose a set of

generators g1, . . . , gt of F e∗J and then compute Ie(ug1)+. . .+Ie(ugt). Now, fix i ∈ {1, . . . , t}
and write

ugi =
∑
b∈Be

0≤||α||∞≤pe−1

rp
e

iαbbx
α.

Applying once more Proposition 3.1.7, it follows that Ie(ugi) is the ideal generated by all
the previous riαb’s. Moreover, taking into account this fact, we have to notice that

riαb = Φe

(
F e∗

(
b−1x(pe−1)1−α

)
ugi

)
∈ φ(F e∗J).

This argument shows that Ie(ugi) ⊆ φ(F e∗J) for any i ∈ {1, . . . , t}; in this way, it follows
that

Ie(uJ) ⊆ φ(F e∗J).

Conversely, we have to note that φ(y) = Φe(uy) ∈ Ie(uJ) for any y ∈ F e∗J , hence φ(F e∗J) ⊆
Ie(uJ) and therefore we obtain the desired conclusion.

Before going on, we are to fix some additional notation.

Notation 3.1.10. Hereafter, set S := K[x1, . . . , xd] and set Sl as the K-vector space
generated by monomials xα with ||α||∞ ≤ l.

The following result will guarantee that the algorithm we shall introduce later on ter-
minates after a finite number of steps.

Proposition 3.1.11. The following statements hold.

(i) For any y ∈ S, the ideal Ie(y) can be generated by elements g ∈ S such that

||g||∞ ≤
||y||∞
pe

.

(ii) If J is uΦe-fixed then there exists a set of generators of J such that if g belongs to
such set then

||g||∞ ≤
||u||∞
pe − 1

.
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Proof. We begin proving part (i). Indeed, we write

y =
∑
b∈Be

0≤||α||∞≤pe−1

yp
e

αbbx
α.

In this way, for any α and b as above it follows that

pe||yαb||∞ ≤ ||yp
e

αb||∞ ≤ ||y
pe

αbx
α||∞ ≤ ||y||∞,

hence part (i) holds.
Now, we prove part (b). LetM ≥ 0 be the minimal integer for which a set of generators

of J have infinity norm at most M . Part (i) shows that Ie(uJ) can be generated by
polynomials with infinity norm at most (||u||∞ +M) /pe. In addition, as Ie(uJ) = J we
deduce, by the minimality of M , that M ≤ (||u||∞ +M) /pe and therefore we conclude
that M ≤ ||u||∞/(pe − 1), just what we finally wanted to check.

3.2 The algorithm through the hash operation

The aim of this section is to describe a computational method to produce all the uΦe-fixed
ideals of S. As the reader will appreciate, our procedure is based on a new operation on
ideals (cf. Definition 3.2.2), which we hope to be of some interest in its own right.

We start with the following elementary statement, which we provide a proof for the sake
of completeness. It may be regarded as an elementary consequence of Nakayama’s Lemma.

Lemma 3.2.1. Let I ⊆ m be an ideal minimally generated by s elements. Then, any ideal
J ( I is contained in some ideal V , where mI ⊆ V ⊆ I and dimK I/V = 1.

Proof. Nakayama’s Lemma implies that there are g1, . . . , gs ∈ S with I = Sg1 + . . . + Sgs
such that g1, . . . , gs (mod mK) is a basis of the s-dimensional K-vector space I/mI. In
this way, it follows that any ideal J ( I is contained in some V := SW + mI, where W is
a (s − 1)-dimensional K-vector subspace of I/mI. Moreover, we have to note as well that
dimK I/V = 1.

From now on, we shall assume that u ∈ F e∗S is fixed and set

De :=

⌈
||u||∞
pe − 1

⌉
.

The following construction will become in the crucial building block of our method.

Definition 3.2.2. Given any ideal J ⊆ S, we define the sequence of ideals

J0 := J, Ji+1 :=
(
Ji ∩

(
J

[pe]
i :S u

)
∩ Ie(uJi) ∩ SDe

)
S,
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and set
J#e :=

⋂
i≥0

Ji.

When e = 1, we shall write J# instead of J#1 for the sake of brevity. Hereafter, we are to
refer to this construction as the hash operation.

The introduction of the hash operation is motivated by the following result.

Lemma 3.2.3. For any ideal J ⊆ S, J#e contains all the uΦe-fixed ideals which are
contained in J .

Proof. Let I ⊆ J be any uΦe-fixed ideal. We shall show by increasing induction on i ≥ 0
that I ⊆ Ji, where Ji is as in Definition 3.2.2. This is clearly true for i = 0.

Now, we assume that i ≥ 0 and that I ⊆ Ji. First of all, as I is uΦe-fixed it is, in
particular, uΦe- compatible and therefore

uI ⊆ I [pe] ⊆ J [pe]
i ,

hence I ⊆
(
J

[pe]
i :S u

)
. Secondly, using once more that I is uΦe-fixed it follows that

I = Ie(uI) ⊆ Ie(uJi) (indeed, we are simultaneously using that I ⊆ Ji and that the eth
root operation on ideals preserves inclusions). In this way, the previous two facts allow us
to say that

I ⊆ Ji ∩
(
J

[pe]
i :S u

)
∩ Ie(uJi).

Finally, bearing in mind that I = (I ∩ SDe)S (indeed, here we are applying part (ii) of
Proposition 3.1.11) and the foregoing it follows that

I = (I ∩ SDe)S ⊆ Ji+1,

just what we finally wanted to check.

Remark 3.2.4. As we have seen in Lemma 3.2.3, the hash operation produces the smallest
compatible ideal J# contained in a given one (namely, J) such that all the φ-fixed ideals
contained in J are also contained in J#. This fact allows us to regard this construction as
a kind of round down operation on ideals.

3.2.1 The statement of the algorithm

Now, we introduce our promised algorithm. More precisely, next result is a recursive pro-
cedure for producing all the uΦe-fixed ideals of S.

This is the main result of this chapter.
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Theorem 3.2.5 (Boix, Katzman). Let I ⊆ m. The set FPe(I) of all uΦe-fixed ideals
contained in I is given recursively as FPe(〈0〉) = {〈0〉} and, for I 6= 〈0〉, defined as the
union of {I#e} (whenever I#e is uΦe-fixed) and⋃{

FPe(V ) | mI#e ⊆ V ⊆ I#e , dimK I
#e/V = 1

}
.

Moreover, if K is finite then this recursion is finite in the sense that the resulting execution
tree is finite.

Proof. First of all, we shall show that if J ⊆ I is uΦe-fixed then J ∈ FPe(I). We shall
proceed by increasing induction on t := dimK(I ∩ SDe).

Indeed, if t = 0 then J ⊆ I#e = 〈0〉 and therefore J ∈ {〈0〉} = FPe(I).
Now, let J ⊆ I be such that t ≥ 1. If J = I#e then we are done by Lemma 3.2.3. Thus,

we assume that J ( I#e . Since I ⊆ m, Lemma 3.2.1 says us that we can find an ideal
mI#e ⊆ V ( I#e such that dimK I

#e/V = 1 and J ⊆ V . Furthermore, by construction,
I#e can be generated by elements in SDe , hence V ∩ SDe ( I#e ∩ SDe and therefore the
induction hypothesis implies that J ∈ FPe(V ) ⊆ FPe(I).

Finally, we have to point out that our foregoing inductive argument shows that the
chains of V #e ’s produced in this recursion have length at most dimK SDe , hence the second
statement follows too.

In this way, we can turn Theorem 3.2.5 into an effective method to calculate all the
uΦe-fixed ideals of any polynomial ring having a finite field as ring of coefficients as follows.

Algorithm 3.2.6. Let K be a finite field of prime characteristic p, S := K[x1, . . . , xd] and
let u ∈ S. These data act as the input of the procedure. Moreover, we initialize I as the
whole ring S and L as the empty list {}.

(i) Compute I#e . Assign to I the value of I#e .

(ii) If Ie(uI) = I, then add I to the list L.

(iii) If I = 0, then stop and output the list L.

(iv) If I 6= 0 but principal, assign to I the value of mI and loop over the previous steps.

(v) If I 6= 0 and not principal, then compute

{V ideal | mI ⊆ V ⊆ I, dimK I/V = 1} .

For each element V of such set, loop over the previous steps.

At the end of this method, the list L contain all the uΦe-fixed ideals of S.
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Remark 3.2.7. The reader should notice that step (v) of the previous method is the only
reason for which we have to assume that our coefficient field K is finite; otherwise, the set
{V ideal | mI ⊆ V ⊆ I, dimK I/V = 1} is not finite.
Remark 3.2.8. We underline that Theorem 3.2.5 also follows if we consider in Definition
3.2.2 Ji+1 to be

(
Ji ∩

(
J

[pe]
i :S u

)
∩ SDe

)
S rather than(

Ji ∩
(
J

[pe]
i :S u

)
∩ Ie(uJi) ∩ SDe

)
S.

Nevertheless, such smaller definition has the potential to decrease the size of the recursion
tree drastically.

We illustrate this remark with the following:

Example 3.2.9. We consider the ring S := F2[x, y, z] and we set u := x3yz + x2yz =
x2yz(x+ 1). If we apply the algorithm described in Theorem 3.2.5 defining Ji+1 as(

Ji ∩
(
J

[pe]
i :S u

)
∩ SDe

)
S

in the hash operation, then the program does not terminate. Regardless, applying the
algorithm described in Theorem 3.2.5 defining Ji+1 as(

Ji ∩
(
J

[pe]
i :S u

)
∩ Ie(uJi) ∩ SDe

)
S

in the hash operation we obtain quite quickly all the uΦ1-fixed ideals of S. Namely, we
obtain the following thirty non-zero uΦ1-fixed ideals:

(i) Nineteen ideals of the form 〈x〉·I, where I runs over all the possible non-zero squarefree
monomial ideals of S.

(ii) The ideals 〈u〉 and 〈x2y, xy(x+ z2), xyz(x+ 1)〉.

(iii) Five ideals of the form 〈x2y(x+ 1)〉+ J , where J can be either

〈xz〉, 〈xyz, x2z〉, 〈xyz〉, 〈x2yz〉 or 〈x2z〉.

(iv) Four ideals of the form 〈x2z(x+ 1)〉+K, where K can be either

〈xyz〉, 〈x2yz〉, 〈x2y〉 or 〈xy〉.

We end this section with the following result, which may be regarded as an elementary
consequence of the very definition of the hash operation.

Corollary 3.2.10. Let K be any F -finite field of prime characteristic p, set S as the
polynomial ring K[x1, . . . , xd], and let u ∈ S. Then, the ideal 〈u〉 is a minimal φ-fixed ideal,
where φ := up−1Φ1.
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Proof. We have to check that 〈u〉 is a minimal non-zero φ-fixed ideal of S. Firstly, we are
to show that 〈u〉 is φ-fixed; indeed,

I1(up−1 · 〈u〉) = I1(up) = 〈u〉,

whence 〈u〉 is φ-fixed. So, it only remains to prove that 〈u〉 is a minimal φ-fixed ideal of S.
First of all, notice that

D1 =

⌈
||up−1||∞
p− 1

⌉
= ||u||∞.

On the other hand, as 〈u〉 is principal it follows, according to Lemma 3.2.3, that if I ⊆ 〈u〉
is φ-fixed, then I ⊆ (〈u〉 ·m)#. Nevertheless, it implies that any element g ∈ 〈u〉 ·m which
forms part of a system of generators for 〈u〉 ·m is such that

||g||∞ ≥ ||u||∞ + 1 > ||u||∞.

But this strict lower inequality implies, taking into account the very definition of the hash
operation, that (〈u〉 ·m)# = 0 and therefore I = 0, just what we finally wanted to check.

3.3 Examples

In this section, we present some interesting calculations carried out with an implementation
of the algorithm presented in this chapter. We refer to Appendix B for more algorithmic
details. Macaulay2 (cf. [25]) have been used extensively in the writing of such procedure,
both in constructing and exploring examples, as well as implementing the method described
herein. It is worth mentioning here that we are to divide the examples considered in this
section into two parts; namely, the first one is concerned with examples in which the map
uΦ1 defines a Frobenius splitting. On the other hand, in the second part the homomorphism
uΦ1 won’t define a Frobenius splitting.

3.3.1 F-split examples

First of all, we include an example where we develop the algorithm step by step for the
convenience of the reader. This example is also interesting because it illustrates a particular
case of a general fact which we shall show later (cf. Proposition 3.3.2).

Example 3.3.1. We consider the ring S := F2[x, y] and set u := xy. We compute FP1(S).

(a) Start with I = S = I#. As I1(uI) = I add S to the list FP1(S).

(b) As I is principal, go on with I = m = I#. Since I1(uI) = I add m to the list FP1(S).
Moreover, we have to note that{

m2 ⊆ V ⊆ m | dimF2 m/V = 1
}

=
{
〈x, y2〉, 〈y, x2〉, 〈x2, xy, x+ y〉

}
.
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We have to emphasize that in the calculation of this set is when we are using that we
are working with characteristic two.

Thus, we need to compute FP1(〈x2, xy, x+ y〉), FP1(〈x, y2〉) and FP1(〈y, x2〉).

(i) Since 〈x2, xy, x + y〉# = 〈xy〉 and I1(u〈xy〉) = 〈xy〉, we add 〈xy〉 to the list
FP1(〈x2, xy, x+ y〉). Moreover, as 〈xy〉 is principal go on with 〈x2y, xy2〉. Never-
theless, since 〈x2y, xy2〉# = 〈0〉 we deduce that FP1(〈x2, xy, x+y〉) = {〈xy〉, 〈0〉}.

(ii) As 〈x, y2〉# = 〈x〉 and I1(u〈x〉) = 〈x〉 add 〈x〉 to the list FP1(〈x, y2〉). In addition,
as 〈x〉 is principal go on with 〈x2, xy〉. However, since 〈x2, xy〉# = 〈xy〉 we
can use the foregoing calculations and therefore we conclude that FP1(〈x, y2〉) =
{〈x〉, 〈xy〉, 〈0〉}.
A similar calculation shows that FP1(〈y, x2〉) = {〈y〉, 〈xy〉, 〈0〉}.

In this way, it follows that FP1(S) = {F2[x, y], 〈x, y〉, 〈x〉, 〈y〉, 〈xy〉, 〈0〉}.
As we have previously explained, this specific computation is just a particular case of

the following general fact.

Proposition 3.3.2 (Schwede, Tucker). When u := (x1 · · ·xd)p
e−1, the only uΦe-fixed ideals

of S := Fp[x1, . . . , xd] are the squarefree monomial ideals of S.

Proof. First of all, we shall check that if I is a squarefree monomial ideal of S then Ie(uI) =
I. Indeed, as

Ie(uI) = Ie(um1) + . . .+ Ie(umt)

(where m1, . . . ,mt is a finite collection of squarefree monomial ideals which generate I)
it is enough to check that Ie(um) = 〈m〉, where m is a single squarefree monomial ideal.
However, in this case there is 1 ≤ i1 < . . . < it ≤ d such that m = xi1 · · ·xit , hence

um = xp
e

i1
· · ·xp

e

it
xp

e−1
j1
· · ·xp

e−1
jd−t

(where {i1, . . . , it, j1, . . . , jd−t} = {1, . . . , d}) and therefore Ie(um) = 〈m〉. The converse
inclusion follows from [118, Proposition 5.3].

In the below example, we focus on an slightly more difficult computation which looks
in greater detail at [78, Example 5.6].

Example 3.3.3. Consider the ring S := F2[x, y, z] and set u := y(y + z)(x + z). It is
straightforward to check that uΦ1 is a Frobenius splitting. Our algorithm produces a
complete list of nineteen non-zero uΦ1-fixed ideals as follows.

(i) The whole ring S, the homogeneous maximal ideal m and the principal ideal 〈u〉.

(ii) Three prime ideals generated by two elements; namely, 〈x, y〉, 〈y, z〉 and 〈x+z, y+z〉.
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(iii) Three prime ideals generated by a single element; namely, 〈y〉, 〈x+ y〉 and 〈y + z〉

(iv) The remainder ten ideals are suitable intersections of the previous ones.

We have to underline that in our previous examples all the uΦe-fixed ideals are radical.
Indeed, these particular examples illustrate the following general fact. Although it is an
adaptation of [29, Proposition 1.2.1] we shall give a proof for the sake of completeness.

Proposition 3.3.4. Let u ∈ F e∗S be such that uΦe is a Frobenius splitting. Then any
uΦe-fixed ideal is radical.

Proof. Denote by F e the e-fold of the Frobenius map, set q := pe and let y ∈
√
J , where

J ⊇ Ie(uJ). Thus,
{
a ∈ N | yq

a ∈ J
}
6= ∅. In this way, set

b := min
{
a ∈ N | yq

a ∈ J
}
.

If b = 0 then we are done. Assume, to get a contradiction, that b > 0. Thus, using that
uΦe is a Frobenius splitting it follows that

yq
b−1

= (uΦe ◦ F e)
(
yq

b−1
)

= (uΦe)
(
yq

b
)
∈ Ie(uJ) ⊆ J,

hence yqb−1 ∈ J , which contradicts our choice of b.

Finally, we end this subsection carrying out a more involved calculation which looks in
greater detail at [77, Section 9].

Example 3.3.5. Consider the matrix of variables

A :=

(
x1 x2 x2 x5

x4 x4 x3 x1

)
and set S := F2[x1, x2, x3, x4, x5]. Furthermore, for any 1 ≤ i < j ≤ 4 we denote by Mij

the minor of A of size 2 obtained from columns i and j. In addition, set

u := x3
1x2x3 + x3

1x2x4 + x2
1x3x4x5 + x1x2x3x4x5 + x1x2x

2
4x5 + x2

2x
2
4x5 + x3x

2
4x

2
5 + x3

4x
2
5.

Our procedure produces the following 84 proper φ-fixed ideals of S, where φ := uΦ1.

(i) One prime ideal generated by five elements; namely, the ideal m generated by all the
variables of S.

(ii) Four prime ideals generated by four elements; namely,

〈x1, x2, x3, x4〉, 〈x1, x2, x4, x5〉, 〈x1, x3, x4, x5〉, 〈x1, x2, x3 + x4, x5〉.
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(iii) Five prime ideals generated by three elements; namely,

〈x1, x2, x5〉, 〈x1, x3, x4〉, 〈x1, x2, x4〉, 〈x1, x4, x5〉, 〈x1 + x2, x3 + x4, x
2
2 + x4x5〉.

(iv) Two prime ideals generated by two elements; namely, 〈x1, x4〉 and 〈x1 +x2, x
2
2 +x4x5〉.

The reader should notice that

〈x1 + x2, x
2
2 + x4x5〉 = 〈x1 + x2, x

2
1 + x4x5〉

because of we are working on characteristic two.

(v) One prime ideal generated by just one element; namely, the ideal 〈u〉.

(vi) Twenty-nine ideals which contains in their set of minimal generators some Mij for
some 1 ≤ i < j ≤ 4.

(vii) The remainder fourty-two ideals define arrangements of linear varieties. Among these
42 ideals, there is one distinguished element; namely, the ideal 〈x1, x2, x3 + x4, x4x5〉.
In [77, Section 9] it was shown that this ideal is the parameter test ideal of the quotient
ring S/I, where I is the ideal of S generated by the 2× 2 minors of A.

The reader should notice that, in this case, the set of φ-fixed ideals equals the set of φ-
compatible ideals; indeed, this is due to the fact that, in this case, the map φ = uΦ1 is
a Frobenius splitting. In particular, we recover the thirteen non-zero φ-compatible primes
obtained by M.Katzman and K. Schwede in [82, Example 7.2].

We conclude this part with the following:

Remark 3.3.6 (Algorithmic). In case φ defines a Frobenius splitting, we have seen that the
set of φ-fixed ideals agrees with the set of φ-compatible ideals; therefore, in this setting, the
method introduced in Theorem 3.2.5 performs the same task than the procedures described
in [82]. It is also worth mentioning, albeit we do not provide a formal proof, that we have
checked out in examples that the methods described in [82] are faster than our algorithm.
This fact is not surprising, taking into account that, whereas our procedure has as crucial
step the calculation of all the vector subspaces of a given one over a finite field, the methods
described in [82] only rely (essentially) on primary decomposition and elimination theory.

3.3.2 Non F-split examples

As we have previously explained, the aim of this section is to analize some examples in
which uΦ1 does not define a Frobenius splitting.

Example 3.3.7. Consider the ring S := F2[x, y, z] and set u := x3yz + x2yz. Our algorithm
produces a complete list of uΦ1-fixed ideals; namely, the ones given in example 3.2.9. We
have to emphasize that, in this example, the ideal 〈x, y, z〉 is not uΦ1-fixed.
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In this last example, uΦ1 does not define a Frobenius splitting but u is a reducible
polynomial. But, of course, one may produce examples with u irreducible. The next one is
such as a point.

Example 3.3.8. Consider the ring S := F2[x, y, z, w] and set u := x3 + y3 + z3 + w3. Our
algorithm produces a complete list of uΦ1-fixed ideals as follows.

F2[x, y, z, w], 〈x3 + y3 + z3 + w3〉, 〈0〉.

Remark 3.3.9. It is worth mentioning that example 3.3.8 was pointed out by K. Schwede
on

http://mathoverflow.net/questions/107062/frobenius-splitting-of-fano-varieties

The interest for such example, from a geometric point of view, stems from the fact that

X := Proj

(
F2[x, y, z, w]

〈x3 + y3 + z3 + w3〉

)
is an example of a Fano variety reduced to characteristic 2 which does not admit a Frobenius
splitting. It constrasts with the fact that Fano varieties, when reduced to characteristic
p� 0, possess a Frobenius splitting (cf. [29, 1.6.E]).

Thirdly, we include an example where the characteristic of our ground field is greater
than two.

Example 3.3.10. Let S := F5[x, y, z], and u = x4 + y4 + z4. The aim of this example is to
compute, using our algorithm, all the φ-fixed ideals of S, where φ := u4Φ1. Our method
produces the following sixty-five non-zero φ-fixed ideals.

(i) The ideal m := 〈x, y, z〉 ⊆ S, its square m2 and the principal ideal 〈u〉.

(ii) Thirty-one ideals of the form m2 +H, where H is an ideal of S generated by a single
linear form.

(iii) Thirty-one ideals of the form m2 +G, where G is an ideal of S generated by two linear
forms.

It is worth noting that this specific calculation is also interesting because it provides an
example where our method provides more information than the procedures worked out in
[82]; indeed, if one uses [83] here, then one only gets the ideals 〈u〉 and m. As we have
explained in the Introduction, the reader should remember that, whereas our algorithm
produces all the φ-fixed ideals, the procedures described in [82] describes algorithmically
the radical φ-compatible ideals.
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Finally, we end this subsection with a determinantal example. The main interest for
considering such example stems from the fact that, in [84, Section 5] the authors have shown
that the Cartier algebra attached to such ring is infinitely generated, raising positively a
question posed by M.Katzman in [79, Section 2].

Example 3.3.11. We fix the 2× 3 matrix of indeterminates(
x1 x2 x3

y1 y2 y3

)
and we let S to be the polynomial ring F2[x1, x2, x3, y1, y2, y3]. Moreover, for any 1 ≤ i <
j ≤ 3 ∆ij will stand for the 2× 2 minor obtained from columns i and j. In this way, taking
into account this notation, we set

u := ∆12∆13 = (x1y2 − x2y1)(x1y3 − x3y1).

Our procedure produces the following seven proper φ-fixed ideals, where φ := uΦ1; namely,

〈x1, y1,∆23〉, 〈x1, y1〉, 〈∆12,∆13,∆23〉, 〈∆12,∆13〉, 〈∆12〉, 〈∆13〉, 〈∆12∆13〉.

In particular, we obtain the following five proper φ-fixed prime ideals:

〈∆12〉, 〈∆13〉, 〈x1, y1〉, 〈x1, y1,∆23〉, 〈∆12,∆13,∆23〉.

Such list of φ-fixed prime ideals turns out to be the complete list of proper φ-compatible
prime ideals, as the reader can check using [83]. As we have roughly explained in the
paragraph which preceds this calculation, the interest of this example comes from the fact
that the Cartier algebra attached to the quotient ring S/I is infinitely generated, where I
is the ideal generated by all the ∆’s. For additional details about such result, the reader is
encouraged to consult [84, Section 5].

3.4 The non F-finite case

So far, we have produced an algorithm for computing all the uΦe-fixed ideals of S, where
u ∈ F e∗S, S := K[x1, . . . , xd] and K is an F -finite field.

The aim of this section is to give theoretical evidence that this case might be of some
help in order to calculate the uΦe-fixed ideals of S, where u ∈ F e∗S, S := K[x1, . . . xd] and
now K is a (not necessarily F -finite) field of characteristic p.

We begin with the following result. It takes care about the behaviour of uΦe-fixed ideals
under a special faithfully flat extension.

Proposition 3.4.1. Let S′ be the faithfully flat S-algebra L[x1, . . . , xd], where L is any
overfield of K. Then, the following statements hold.
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(a) If I is a uΦe-fixed ideal of S then IS′ is a uΦe-fixed ideal of S′.

(b) If J is a uΦe-fixed ideal of S′ such that J = IS′ for some ideal I of S, then I is a
uΦe-fixed ideal of S.

(c) There is a bijective correspondence between the uΦe-fixed ideals of S and the uΦe-
fixed ideals of S′ (namely, J) such that J = IS′ for some uΦe-fixed ideal I of S.
This correspondence is given by extension and contraction of ideals with respect to the
inclusion S �

� // S′ .

Proof. Part (c) follows directly combining parts (a) and (b). Thus, it is enough to check
that (a) and (b) holds.

First of all, let I be a uΦe-fixed ideal of S. So, bearing in mind part (f) of Proposition
3.1.7 one has that

Ie(u(IS′)) = Ie((uI)S′) = Ie(uI)S′ = IS′,

hence part (a) holds.
Finally, let J be a uΦe-fixed ideal of S′ such that J = IS′ for some (non-necessarily

uΦe-fixed) ideal I of S. In this way, as S �
� // S′ is faithfully flat it follows that

Ie(uI) = Ie(uI)S′ ∩ S = Ie(u(IS′)) ∩ S = Ie(uJ) ∩ S = J ∩ S = IS′ ∩ S = I,

and therefore part (b) holds too.

Remark 3.4.2. Actually, much more is true. T. J. Stadnik Jr. has proved in [130, Proposi-
tion 2.16] that Ie(JS′) = Ie(J)S′ provided S //S′ is étale. Moreover, it is also known
(cf. [85, Lemma 3.5]) that the operation Ie(−) commutes with localization. We refer to
[105, Proposition 9] for more information concerning the behaviour of the eth root ideal.

The main tool for showing, at least theoretically, that the algorithm constructed in
the F -finite case might be of some help in order to compute all the fixed ideals in general
polynomial rings is the so-called Γ-construction.

In what follows, we are to recall such construction with some detail. Keeping in mind
the notion of p-basis (cf. Definition 1.4.9), we introduce the following preliminary:

Definition 3.4.3. Let L be a field of prime characteristic p and let Λ be a p-base for L. It
is said that a subset Γ of Λ is cofinite provided Λ− Γ is a finite set.

Now, we are ready for introducing the gamma construction inside the following result,
albeit the proof of such result will be omitted (cf. [66, pp. 136–137] for details).

Theorem/Definition 3.4.4 (Hochster, Huneke). Let K be a fixed field of characteristic
p, let Λ be a fixed p-base for K and let Γ be a cofinite subset of Λ. Now, set

KΓ
e := K[λ1/q | λ ∈ Γ].
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Moreover, set T := K[[x1, . . . , xd]] and set

TΓ :=
⋃
e≥0

KΓ
e [[x1, . . . , xd]].

We shall refer to TΓ as being obtained from T by the gamma construction. Moreover, the
following statements hold.

(i) T �
� // TΓ is a flat local homomorphism of rings and therefore TΓ is a faithfully flat

T -algebra.

(ii) TΓ is a local regular ring of dimension d with maximal ideal mTΓ and residue field

KΓ :=
⋃
e≥0

KΓ
e .

(iii) TΓ is purely inseparable over T .

(iv) TΓ is F -finite, which is equivalent to say that KΓ is F -finite.

In this way, we can now turn all these constructions into a theoretical algorithm to
calculate all the uΦe-fixed ideals as follows.

(a) Choose Γ a cofinite subset of Λ such that the coefficients of u can be expressed as
polynomials in Λ− Γ.

(b) Compute the uΦe-fixed ideals of KΓ[x1, . . . , xd] using the algorithm presented in the
F -finite case.

(c) Use part (c) of Proposition 3.4.1 in order to recover the uΦe-fixed ideals of S.

We end this section with the following:

Remark 3.4.5. As it has already pointed out in the introduction of this chapter, in this
section we have just given some theoretical evidence that the algorithm constructed in the
F -finite case might be useful when one drops the F -finiteness assumption. We emphasize
that, at least for us, it is not clear how we can turn the theoretical constructions presented in
this section into an effective procedure for computing all the uΦe-fixed ideals of a polynomial
ring over any non F -finite ground field of prime characteristic.
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Bibliographical notes

The Γ-construction was introduced by M.Hochster and C.Huneke in [68, 6.11] as a main
ingredient to prove the existence of test elements in almost all the rings which mainly arise
in practice on Algebraic Geometry. At that time, it was unclear for the authors what was
the necessary and sufficient assumption for a ring in order to guarantee the existence of such
elements. As far as we know, the best result in that direction has been recently obtained by
R.Y. Sharp in [124, Theorem 8.4] using his theory of graded annihilator submodules over
the Frobenius Ore extension ring.

Going back to the Γ-construction, the presentation of such construction given in this
chapter is almost verbatim the one given by M.Hochster in [66, pp. 135–137].

Finally, we have to point out that T. J. Stadnik Jr. in [130, Definition 2.14] has proposed
a sheafified version of the eth root ideal. In a more algebraic framework, M.Katzman and
W.Zhang (cf. [85, Theorem 3.2]) have generalized the eth root operation for submodules of
free modules over K[[x1, . . . , xd]], where K is any field of prime characteristic.
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Chapter 4

Extension problems attached to some
spectral sequences

In [6], the authors established the existence of a Mayer-Vietoris spectral sequence of local
cohomology modules in case the base ring is a polynomial ring over a ground field K and
such local cohomology modules are supported on ideals defining an arrangement of linear
varieties. It was also given in [6, Theorem 1.2] a sufficient condition in order to guarantee
that such spectral sequence degenerates at the E2-page. Finally, they determined precisely
the extension problems attached to the filtration produced by such degeneration in the
category of straight modules (cf. [6, Proposition of page 50]).

In Chapter 1, we reviewed the functor HR,A (where A = K[[x1, . . . , xd]], K is of prime
characteristic p, and R = A/I for some ideal I of A) introduced by G. Lyubeznik in [94,
Section 4]; this functor has the following behaviour (cf. Example 1.8.17) with respect to
local cohomology modules:

HR,A
(
Hd−i

m (R)
)
∼= H i

I (A) .

In this way, regarding the existence of the Mayer-Vietoris spectral sequence of local coho-
mology modules

E−i,j2 = Li lim−→
p∈P

Hj
Ip

(A)
i
+3 Hj−i

I (A) (4.1)

(where P is the poset of all the possible sums of the prime components of I ordered by
reverse inclusion) firstly established in the setting of linear arrangements by J.Àlvarez
Montaner, R.García López and S. Zarzuela in [6, Section 2] and later on generalized by
G. Lyubeznik in [95, Theorem 2.1], it might seem natural to ask about the existence of a
certain spectral sequence

Ei,j2 = Ri lim←−
p∈P

Hj
m (A/Ip) i

+3 H i+j
m (A/I)
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which should correspond to the previous Mayer-Vietoris one under HR,A. The problem
turns out to be that such dual spectral sequence does not exist in this nice formulation;
indeed, if such spectral sequence existed, then it would have to collapse according to results
obtained by C.U. Jensen (cf. [74, Proposition 7.1]). Regardless, this collapse would lead to
the canonical isomorphism

Hr
I (A) ∼=

⊕
p∈P

H
ht(Ip)
Ip

(A),

which would contradict Hochster’s decomposition of local cohomology modules of Stanley-
Reisner rings (cf. [103, Theorem 13.13]).

We shall see (cf. Theorem 4.3.15) that there is a spectral sequence which is the most
similar to the previous false one, albeit unfortunately this true spectral sequence does not
correspond to (4.1) under HR,A.

Now, we provide a brief overview of the contents of this chapter for the reader’s benefit;
our first aim will be to establish several results (cf. Theorem 4.2.17, Theorem 4.2.25 and
Theorem 4.3.15) in order to build several spectral sequences through a common formalism.
It is worth mentioning that this fact was partially pointed out in [6, Remark 1.4 (iii)]; in
this way, we are able to develop such observation. Since all the spectral sequences which
appear in this chapter involve the left (respectively, the right) derived functors of the direct
(respectively, the inverse) limit functors, we review in Section 4.1 the facts we need later
on about the categories of direct and inverse systems; albeit all the material presented
in Section 4.1 is known, we present, as far as possible, a self contained treatment for the
convenience of the reader.

Once we establish our spectral sequences, our second goal will be to provide sufficient
conditions in order to determine when these spectral sequences degenerate at the E2-page
(cf. Theorem 4.2.30 and Theorem 4.3.15); it is noteworthy that Theorem 4.2.30 recovers
and generalizes [6, Theorem 1.2].

Our final objective will be the study of the extension problems attached to the filtration
produced by the degeneration of the local cohomology spectral sequences given in Example
4.2.18 and Theorem 4.3.18; on one hand, the spectral sequence obtained in Example 4.2.18
is exactly the Mayer-Vietoris one produced in full generality by Lyubeznik in [95, Theorem
2.1]. In this way, we show that the extension problems associated to the filtration produced
by the degeneration of this Mayer-Vietoris spectral sequence are, in general, non-trivial
(cf. Counterargument 2 and Counterargument 3); it is worth mentioning that our way of
arguing is different with respect to the one adopted in [6].

On the other hand, we see that the extension problems attached to the filtration
produced by the degeneration of the local cohomology spectral sequence given in Theo-
rem 4.3.15 are non-trivial; as a final application of this study, we recover and generalize
(cf. Theorem 4.3.30) the so-called Gräbe’s formula, which was obtained by H.-G.Gräbe in
[54, Theorem 2].

98



Special acknowledgement of joint work

The content of this chapter turns out to be an ongoing joint work with J.Àlvarez Montaner
and S. Zarzuela (cf. [3]).

4.1 The categories of inverse and direct systems

As pointed out in the introduction of this chapter, the purpose of this section is to review
the facts we shall need later on about the categories of inverse and direct systems; we try
to present, as far as possible, a self contained exposition of this topic for the reader’s profit.

Let (P,≤) be a partially ordered set (from now on, poset for the sake of brevity) and let
A be the category of A-modules, where A denotes a commutative Noetherian ring. We shall
regard P as a small category which has as objects the elements of P and, given p, q ∈ P ,
there is one morphism p → q if p ≤ q. If P contains a unique minimal (respectively,
maximal) element then this is called the initial (respectively, terminal) element of P and
it will be denoted by 0P (respectively, 1P ). Adding an initial and a terminal element to P
(even in case P have them) we may consider the poset (P̂ ,≤), where P̂ := P ∪ {0

P̂
, 1
P̂
}.

(a) A direct system over P valued on A is a covariant functor P //A .

(b) An inverse system over P valued on A is a contravariant functor P //A .

Before going on, we fix some additional notation.

Notation 4.1.1. Hereafter, Dir(P,A) (respectively, Inv(P,A)) will denote the category of
direct systems (respectively, inverse systems) valued on A; the reader should remind that
both are abelian categories (cf. [114, Corollary 5.94]), albeit it is worth noting here that we
recover indirectly this fact later on in this chapter (cf. Proposition 4.1.19 and Proposition
4.1.20).

Remark 4.1.2. A brief remark about terminology; in [6], the authors used the phrase diagram
to refer to what here is called direct system. We prefer the terminology of direct and inverse
systems because, on one hand, is more classical; on the other hand, according to [114, page
18] a diagram is a covariant functor such that its source category is small. Since any poset
can be regarded as a small category, it is clear that direct systems are a particular example
of diagrams; in fact, it is also known that any small category is of the form P (Q)/ ∼, where
Q is a certain quiver, P (Q) is its categorification, and ∼ denotes a certain equivalence
relation.

We conclude this introductory part stressing the following:

Assumption 1. Hereafter, we shall always assume that P is a finite poset.
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4.1.1 The Roos complexes

Given an inverse system of modules, J. E.Roos and G.Nöbeling independently introduced
in [112] and [108] a cochain complex which has as ith cohomology the ith right derived
functor of the inverse limit functor. In this subsection, we shall review their definition as
well as their dual notion for direct systems.

The homological Roos complex

We consider a direct system over P valued on A given by a covariant functor P F //A .
Then, we construct a chain complex (cf. [74, page 33])

. . . // Roosk(F )
dk // Roosk−1(F ) // . . .

in the following way:

(a) The spots of the complex are

Roosk(F ) :=
⊕

p0<...<pk

Fp0...pk ,

where Fp0...pk := F (p0) ∈ A.

(b) The boundary map Roosk(F )
dk //Roosk−1(F ) is defined on each direct summand

Fp0...pk as

jp1...pk ◦ F (p0 → p1) +
k∑
l=1

(−1)ljp0...p̂l...pk ,

where jp0...pk denotes the natural inclusion map Fp0...pk
� � // Roosk(F ).

From now on, we denote by Roos∗(F ) this chain complex. We collect in the following
result the main feature of this construction, which we reprove later on in this Chapter
(cf. Proposition 4.1.42) for the sake of completeness.

Lemma 4.1.3. The following statements hold.

(i) There is an augmented chain complex

Roos∗(F ) −→ lim−→
p∈P

F (p) −→ 0

in the category A.
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(ii) The homology of this chain complex gives the left derived functors of the direct limit;
that is,

Hi(Roos∗(F )) = Li lim−→
p∈P

F (p).

In particular, when i = 0 one has that

H0(Roos∗(F )) = lim−→
p∈P

F (p).

Remark 4.1.4. It is worth mentioning here that the left derived functors of the direct limit
Li lim−→p∈P F (p) are actually objects of A. Indeed, as A is the category of modules over
a commutative ring A, the classical construction of these groups through the Roos chain
complex can be carried out inside A; recall that

lim−→
p∈P

F (p) =

⊕
p∈P

F (p)

 /N,

where N := 〈(jq ◦ F (p → q))(mp) − jp(mp) | p ≤ q, mp ∈ Fp〉 and, for each p ∈ P , jp

denotes the natural inclusion map F (p) �
� jp // Roos0(F ) .

Although the following fact is so elementary, we want to state it because it will play a
key role later on (e. g. Construction 4.2.10).

Lemma 4.1.5. Assume, in addition, that F (1
P̂

) is defined; that is, that F is not only
defined on P but also on P ∪ {1

P̂
}. Then, there is a unique functorial map

lim−→
p∈P

F (p)
ψ // F

(
1
P̂

)
such that the diagram of chain complexes

Roos∗(F )
d0 // lim−→p∈P F (p)

ψ
��

// 0

Roos∗(F )
ψ◦d0 // F

(
1
P̂

)
// 0

is commutative.

Proof. For any p ∈ P , p < 1
P̂
and therefore there is an arrow F (p) //F

(
1
P̂

)
. In this way,

the universal property of the direct limit produces such ψ with the desired properties.

101



Remark 4.1.6. Preserving the assumptions of Lemma 4.1.5, it is unclear for us whether ψ
defines an isomorphism or not. Equivalently, it is unclear for us whether the natural map

lim−→
p∈P

F (p)
ψ // lim−→

p∈P̂

F (p) = F
(
1
P̂

)
is bijective or not. It is noteworthy that the equality

lim−→
p∈P̂

F (p) = F
(
1
P̂

)
is well known (cf. [114, Part (iii) of Exercise 5.22]).

We end this subsubsection with the following:

Remark 4.1.7. We denote by Ch(A) the category of chain complexes of objects of A. In

this way, we have built a functor Dir(P,A)
Roos∗(−) //Ch(A) which is exact and commutes

with arbitrary direct sums; that is, it is straightforward to check that, on one hand, given
any short exact sequence

0 // F ′ // F // F ′′ // 0

of direct systems, the induced sequence of chain complexes

0 // Roos∗(F
′) // Roos∗(F ) // Roos∗(F

′′) // 0

is also exact; on the other hand, given an arbitrary set of indexes (namely, Q) and given
any family {Fq}q∈Q of direct systems indexed by Q, one has that there is a canonical
isomorphism

Roos∗

⊕
q∈Q

Fq

 ∼= ⊕
q∈Q

Roos∗(Fq)

of direct systems.

The cohomological Roos complex

Now, we consider an inverse system over P valued on A given by a contravariant functor

P
G //A . Thus, we build a cochain complex of inverse systems (cf. [74, pp. 31-32] or [140,

Vista 3.5.12])

. . . // Roosk(G)
dk // Roosk+1(G) // . . .

as follows.
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(a) The pieces of the complex are

Roosk(G) :=
∏

p0<...<pk

Gp0...pk ,

where Gp0...pk := G(p0).

(b) The coboundary map Roosk(G)
dk //Roosk+1(G) is defined on each factor Gp0...pk as

G(p0 → p1) ◦ πp1...pk+1
+
k+1∑
l=1

(−1)lπp0...p̂l...pk ,

where πp0...pk denotes the natural projection Roosk(G) // // Gp0...pk .

Hereafter, we shall denote by Roos∗(G) this cochain complex. As in the homological case,
the main feature of this cohomological construction is recalled in the following result; later
on in this Chapter (cf. Proposition 4.1.32), we provide a detailed proof of this fact.

Lemma 4.1.8. The following statements hold.

(i) There is a coaugmented cochain complex

0 −→ lim←−
p∈P

G(p) −→ Roos∗(G)

in the category A.

(ii) The cohomology of this cochain complex yields the right derived functors of the inverse
limit; that is,

H i(Roos∗(G)) = Ri lim←−
p∈P

G(p).

In particular, when i = 0 one has that

H0(Roos∗(G)) = lim←−
p∈P

G(p).

Remark 4.1.9. As in the homological framework, it is worth mentioning the fact that
Ri lim←−p∈P G(p) are objects of A; in this case, the details are left to the interested reader.

We state the analogous cohomological of Lemma 4.1.5. We skip the details.

Lemma 4.1.10. Suppose, in addition, that G(0
P̂

) is defined; that is, that G is not only
defined on P but also in P ∪ {0

P̂
}. Then, there is a unique functorial map

G(0
P̂

)
α // lim←−

p∈P
G(p)
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such that the diagram of cochain complexes

0 // G(0
P̂

)

α

��

d0◦α // Roos∗(G)

0 // lim←−p∈P G(p)
d0
// Roos∗(G)

is commutative.

Remark 4.1.11. Preserving the assumptions of Lemma 4.1.10, it is unclear for us whether
α defines an isomorphism or not. In other words, we do not know whether the natural
restriction map

G(0
P̂

) = lim←−
p∈P̂

G(p)
α // lim←−

p∈P
G(p)

is an isomorphism. It is known (cf. [31, Example 3.3]) to be an isomorphism in some
particular situations. We shall come back later on to this point (cf. Subsection 4.2.1).

As in the homological case, we end this subsubsection with the following:
Remark 4.1.12. If we denote by CoCh(A) the category of cochain complexes of objects

of A, then we have produced a functor Inv(P,A)
Roos∗(−) //CoCh(A) which is exact and

commutes with arbitrary direct products; that is, it is straightforward to check that, on
one hand, given any short exact sequence

0 // G′ // G // G′′ // 0

of inverse systems, the induced sequence of cochain complexes

0 // Roos∗(G′) // Roos∗(G) // Roos∗(G′′) // 0

is also exact; on the other hand, given an arbitrary set of indexes (namely, Q) and given
any family {Fq}q∈Q of inverse systems indexed by Q, one has that there is a canonical
isomorphism

Roos∗

∏
q∈Q

Gq

 ∼= ∏
q∈Q

Roos∗(Gq)

of inverse systems.

4.1.2 Equivalent approaches

Throughout this chapter, we decided to choose the previous approach to study derived
functors of direct and inverse limits. Nevertheless, there are other equivalent approaches
to this subject. Some of them are reviewed in what follows. The reader is encouraged to
follow his/her own preferences.
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The category of sheafs on posets

We start recalling once again our setup for the reader’s benefit. Let (P,≤) be a poset
such that, given p, q ∈ P , there is one morphism p → q if p ≤ q. If P contains a unique
minimal (respectively, maximal) element then this is called the initial (respectively, termi-
nal) element of P and it will be denoted by 0P (respectively, 1P ). Adding an initial and a
terminal element to P (even in case P have them) we may consider the poset (P̂ ,≤), where
P̂ := P ∪ {0

P̂
, 1
P̂
}. The closed interval of elements between p and q will be denoted

[p, q] := {z ∈ P | p ≤ z ≤ q}

and form a sub-poset of P . In a similar way, we can also construct the intervals (p, q], [p, q)
and (p, q).

The Alexandrov topology on P is the topology where the open sets are the subsets U of
P such that p ∈ U and p ≤ q implies q ∈ U . In fact, this is the unique topology which one
can attach to P verifying this property. Moreover, the subsets of the form [p, 1

P̂
) form a

open basis for this topology.
On the other hand, the dual Alexandrov topology on P is the topology where the open

sets are the subsets U of P such that p ∈ U and q ≤ p implies q ∈ U . Once more, this is
the unique topology which one can attach to P verifying this property and the subsets of
the form (0

P̂
, p] form a open basis for this topology. We underline that this can be viewed

as the Alexandrov topology on the opposite poset P op = (P,�), where p � q if and only if
q ≤ p.

We shall fix some additional notation before going on.

Notation 4.1.13. In the sequel, we shall denote by Sh(P,A) (respectively, Sh(P op,A))
the category of sheaves on P (respectively, P op) valued on A.

We conclude this subsubsection with the following elementary statement, which will be
useful in what follows; although we think the below result is well known, we provide a proof
because of the lack of a reference.

Lemma 4.1.14. Let (P,≤) be a poset regarded as a topological space with the Alexandrov
topology. Then, for any p ∈ P , the basic open set [p, 1

P̂
) is contractible.

Proof. Let [p, 1
P̂

)
r //{p} be the constant map, let {p} �

� j // [p, 1
P̂

) be the inclusion map
and set

H : [p, 1
P̂

)× [0, 1] −→ [p, 1
P̂

)

(q, t) 7−→

{
p, if t = 0,

q, if t 6= 0.

We have to point out that the following statements hold.
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(i) r ◦ j = 1{p}, H(p, t) = p for any t ∈ [0, 1], H(q, 0) = p = (r ◦ j)(p) for any q ∈ [p, 1
P̂

)
and H(q, 1) = q = 1[p,1

P̂
)(q).

(ii) H is a continuous map. Indeed, let q ∈ P and let [q, 1
P̂

) be a basic open subset of
[p, 1

P̂
). We have to underline that

H−1([q, 1
P̂

)) =

{
[p, 1

P̂
)× [0, 1], if q = p,

[q, 1
P̂

)× (0, 1], if q > p.

In any case, H−1([q, 1
P̂

)) is an open subset of [p, 1
P̂

)× [0, 1].

The foregoing shows that {p} is a strong deformation retract of [p, 1
P̂

).

We also want to establish now the analogous of Lemma 4.1.14 regarding P as a topo-
logical space with the dual Alexandrov topology; since the proof of such result is almost
verbatim the one of Lemma 4.1.14 (with few minor changes), we omit it.

Lemma 4.1.15. Let (P,≤) be a poset regarded as a topological space with the dual Alexan-
drov topology. Then, for any p ∈ P , the basic open set (0

P̂
, p] is contractible.

The interested reader on Alexandrov spaces and its topological properties may like to
consult [9] (and the references therein) for additional information.

The category of AP -modules

The purpose of this part is to review the category of left AP -modules, as presented in [31,
Section 6]; in fact, whereas in op. cit. the authors established this notion in the context
of inverse systems, here our definition deals with direct systems. However, it is clear that
both notions can be mutually recovered just by taking the opposite order on the poset P .

Definition 4.1.16. A left AP -module M is a system (Mp)p∈P of left A-modules and, for

p ≤ q, homomorphisms Mp
Mpq //Mq with the property that, for all p ≤ q ≤ z,

Mpp = 1Mp and Mpq ◦Mqz = Mpz.

A homomorphism M
f //N of left AP -modules consists of, for p ∈ P , homomorphisms

Mp
fp //Np of left A-modules such that, for any p ≤ q in P , the following square commutes.

Mp

Mpq

��

fp // Np

Npq
��

Mq
fq
// Nq
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We shall denote the group of homomorphisms from M to N by HomAP (M,N). Moreover,
we shall denote by AP −Mod the category of left AP -modules.

In a similar way, just reversing the convenient morphisms, we can also construct the
category AP op −Mod of left AP op-modules.

Remark 4.1.17. Albeit we do not exploit it in what follows, it is worth mentioning that
in [31, Section 3] it is also defined the notion of AP -algebra; the interested reader on this
notion may like to consult op. cit. and [32] for additional details.

Modules over the incidence algebra

The reader should remind here that P is a finite poset (cf. Assumption 1) and that A is a
commutative ring. We review the following construction (cf. [129, Definition 1.2.1]).

Definition 4.1.18 (Incidence algebra). We define the incidence algebra I(P,A) of P over
A as follows; I(P,A) is the A-algebra with underlying A-module

I(P,A) :=
⊕
p≤q

A · ep≤q

endowed with the following multiplication rule:

(ep≤q) · (ep′≤q′) :=

{
ep≤q′ , if q = p′,

0, otherwise.

It is worth mentioning that the elements ep≤p are idempotent in I(P,A) and that, since P
is finite, the element ∑

p∈P
ep≤p

is the multiplicative unit in I(P,A).

The four previous categories are equivalent

In this part, we justify that all the foregoing approaches are equivalent and we make the
equivalence explicit. It is worth mentioning that such statement may be regarded a a dual
version of [31, Remark 6.5 and Proposition 6.6]. We are to provide a proof for the reader’s
benefit.

Proposition 4.1.19. The following categories are equivalent:

(a) Dir(P,A), the category of direct systems on P valued in A.

(b) Sh(P,A), the category of sheaves on P valued in A regarding P as a topological space
with the Alexandrov topology.
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(c) AP −Mod, the category of left AP -modules.

(d) The category of left modules over the incidence algebra I(P op, A).

Proof. The equivalence between (a) and (c) is tautological. Now, we are to describe the
equivalence between (a) and (d).

Firstly, given a left I(P op, A)-moduleM we produce a direct system as follows; indeed,
set M := (Mp)p∈P , where

Mp := (ep≤p)M.

On the other hand, given p ≤ q we also set

Mp
Mpq //Mq

(ep�p)m 7−→ (eq�p)(ep�p)m = (eq�p)m = (eq�q)(eq�p)m.

Conversely, given a direct system M we can define a left I(P op, A)-module M as follows:
set

M :=
⊕
p∈P

Mp

with multiplication defined in the following way:

(eq�p)mp :=

{
Mpq(mp), if mp ∈Mp,

0, otherwise.

It turns out that the foregoing two correspondences defines an equivalence of categories
between left I(P op, A)-modules and direct systems valued on A.

In this way, it only remains to establish an equivalence between (b) and (c).
Let F be a sheaf on P valued in A. We set Γ(P,F) as the left AP -module with

Γ(P,F)p := F([p, 1
P̂

))

(where p ∈ P ) and with Γ(P,F)pq (where p ≤ q) equal to the restriction homomorphism
attached to the inclusion [q, 1

P̂
) ⊆ [p, 1

P̂
). This defines a functor Γ(P,−) from the category

of sheaves of left A-modules on P to the category of left AP -modules.
Conversely, let M be a left AP -module and let U ⊆ P be an open subset of the

topological space P . Set
M̃(U) := lim−→

p∈U
Mp.

Moreover, given an inclusion V ⊆ U of open subsets of P , the natural restriction map
M̃(U) //M̃(V ) is just the natural restriction map of direct limits. In addition, since
[p, 1

P̂
) is contained in any neighbourhood of p (indeed, it follows from the definition of the

Alexandrov topology on P ) one has that the presheaf M̃ is isomorphic to the associated
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sheaf of left A-modules on P . Therefore, the symbol (̃−) defines a functor from AP −Mod
to Sh(P,A).

Now, we are going to check that Γ(P, (̃−)) ∼= 1AP−Mod and Γ̃(P,−) ∼= 1Sh(P,A).
Let M be a left AP -module. The homomorphism

Mp −→ Γ(P, M̃)p = lim−→
q∈[p,1

P̂
)

Mq

induced by the structural maps Mp
Mpq //Mq is a natural isomorphism. It shows that

Γ(P, (̃−)) ∼= 1AP−Mod.

On the other hand, let F be a sheaf of left A-modules on P and let U be an open subset
of P . Fix q ∈ P . Since the homomorphism

F([q, 1
P̂

)) −→ Γ̃(P,F)([q, 1
P̂

)) = lim−→
p∈[q,1

P̂
)

F([p, 1
P̂

))

is an isomorphism and q is any element of U , it follows that there is an isomorphism

F(U) −→ Γ̃(P,F)(U) = lim−→
p∈U
F([p, 1

P̂
)) (4.2)

gluing the previous ones (indeed, we are using here the second sheaf axiom on F with
respect to the open covering {[q, 1

P̂
)}q∈U of U). However, U is an arbitrary open subset

of P and therefore (4.2) defines, in fact, a natural isomorphism of sheaves F ∼= Γ̃(P,F),
whence one obtains the equivalence of functors Γ̃(P,−) ∼= 1Sh(P,A), just what we finally
wanted to check.

The following result also establishes an equivalence among several categories. We omit
its proof and refer to [31, Remark 6.5 and Proposition 6.6] for details.

Proposition 4.1.20. The following categories are equivalent:

(a) Inv(P,A), the category of inverse systems on P valued in A.

(b) Sh(P op,A), the category of sheaves on P op valued in A regarding P as a topological
space with the Alexandrov topology.

(c) AP op −Mod, the category of left AP op-modules.

(d) The category of left modules over the incidence algebra I(P,A).

We conclude this part with the following:
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Remark 4.1.21. Although we do not use it in what follows, it is noteworthy that, under
the equivalence between inverse systems and sheaves of A-modules over P op, the resolution
of (weakly) flasque inverse systems (cf. Definition 4.1.27) used in the proof of Proposition
4.1.32 (namely, Π∗) corresponds to the so-called Godement resolution (cf. [114, Proposition
6.73 and Definition of page 381]) for computing sheaf cohomology on the topological space
P op; on the other hand, it was already pointed out in [31, Remark 7.2] that the equivalence
between sheaves and left AP op-modules transforms sheaf cohomology on the topological
space P op into the right derived functors of HomAP op (A,−) (namely, Ext∗AP op (A,−)).
Summing up, all the equivalences in Proposition 4.1.20 are preserved in the derived category
D(A) of A.

4.1.3 Injective and projective objects in the category of inverse systems

Proposition 4.1.20 implies that Inv(P,A) is equivalent to the category of sheaves on P op

valued on A, where P op is regarded as a topological space with the Alexandrov topology.
From this result, we might deduce that the existence of enough injective objects in Inv(P,A)
is equivalent to the existence of enough injective objects in Sh(P op,A); albeit this last fact
is well known (see, for instance, [61, Chapter 1]), we want to provide here a proof of this
result, which we think is interesting in its own right, not only for the sake of completeness,
but also because it provides a explicit description of the injectives of Inv(P,A) which will
be useful later on for our purposes (cf. Construction 4.3.1).

Before doing so, we review the following technical statement about adjoint functors
between abelian categories. Because the only available reference we know of the below
result are a set of unpublished lecture notes by B.Keller (see also [113, Theorem 11.8] for
a partial statement), we provide a proof for the convenience of the reader.

Proposition 4.1.22 (Keller). Let C, C′ be abelian categories and let C R //C′ , C′ L //C
be a pair of adjoint functors. Then, the following assertions hold.

(i) If L is exact, then R preserves injectives.

(ii) If L is exact, faithful, and C has enough injective objects, then C′ has also enough
injective objects; in such case, any injective object of C′ is a direct summand of an
injective of the form R(I), where I is an injective object of C.

Proof. Let I be an injective object of C. By the adjointness of the pair (L,R), one gets the
following natural equivalence of functors:

HomC (L(−), I) ∼= HomC′ (−, R(I)) .

Moreover, since L is exact by assumption, HomC (L(−), I) is an exact functor because it
is a composition of two exact ones; namely, firstly apply L and then apply HomC (−, I).
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Whence HomC′ (−, R(I)) is exact and therefore we can conclude that R(I) is an injective
object of C′; in this way, part (i) holds.

Now, we want to prove part (ii) under the additional assumption that L is faithful, which
we suppose henceforth. Let A′ be an object of C′; since C has enough injectives, there is
an injective object I of C and a monomorphism L(A′) ↪→ I. In addition, since (L,R)
is an adjoint pair, R is automatically left exact; therefore, applying R to the previous
monomorphism we get a new one in C′; namely,

0 // RL(A′)
j // R(I).

We have to point out that, by part (i), R(I) is an injective object of C′; on the other hand,
the natural isomorphism

HomC
(
L(A′), L(A′)

) ∼= HomC′
(
A′, RL(A′)

)
maps 1L(A′) isomorphically into a certain ψ ∈ HomC′ (A

′, RL(A′)). In this way, we consider
the composition

A′
ψ // RL(A′)

j // R(I);

thus, as j is a monomorphism we only need to check out that ψ is a monomorphism.

Indeed, let B′ be an object of C′ and let B′ h //A′ be an element of HomC′ (B
′, A′) such

that ψh = 0. Now, using once more the naturality of the adjoint pair (L,R) we obtain the
following commutative square:

HomC (L(A′), L(A′))

HomC(L(h),L(A′))
��

∼
τA′,L(A′) // HomC′ (A

′, RL(A′))

HomC′ (h,RL(A′))
��

HomC (L(B′), L(A′)) ∼
τB′,L(A′) // HomC′ (B

′, RL(A′)) .

Now, we want to single out how the previous commutative square acts on 1L(A′); namely,

1L(A′)_

��

� // ψ_

��
h � // L(h) = ψh = 0.

Summing up, L(h) = ψh = 0, whence h = 0 because of L is faithful by assumption;
therefore, it implies that ψ is a monomorphism. Thus, we have produced a monomorphism
A′ ↪→ R(I), where A′ is an arbitrary object of C′ and R(I) is an injective object of C′; this
shows that C′ has enough injectives, as claimed.

In this way, it only remains to check out that, under the assumptions of part (ii), any
injective object of C′ is a direct summand of an injective of the form R(I), where I is an
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injective object of C; indeed, let I ′ be an injective object of C′. Since C has enough injectives,
there exists an injective object I of C and a monomorphism L(I ′) ↪→ I. Applying to this
monomorphism the left exact functor R, we obtain a monomorphism RL(I ′) ↪→ R(I);
moreover, as in the previous part we can show that the natural isomorphism

HomC
(
L(I ′), L(I ′)

) ∼= HomC′
(
I ′, RL(I ′)

)
maps 1L(I′) isomorphically into a certain monomorphism I ′ ↪→ RL(I ′). In this way, com-
posing we get the following monomorphism I ′ ↪→ RL(I ′) ↪→ R(I); however, this monomor-
phism splits because I ′ is injective and therefore we can ensure that I ′ is a direct summand
of R(I). This is exactly what we finally wanted to show.

Our next aim is to show, with the help of Proposition 4.1.22, that the category of
sheaves valued on A-modules has enough injective objects; as the reader can easily notice,
the proof of the below result turns out to be nothing but a refinement of the one presented
in [114, Proposition 5.97].

Theorem 4.1.23. Given any topological space X, the category Sh(X,A) has enough injec-
tive objects.

Proof. Firstly, we review some classical constructions from sheaf theory; indeed, given an
A-module M and fixed x ∈ X we consider the so-called skyscraper sheaf x∗(M), which can
be defined in the following way: given U an open subset of X, one sets

x∗(M)(U) :=

{
M, if x ∈ U,
0, otherwise.

On the other hand, we can also consider the so-called stalk functor with respect to x;
namely, the functor whichs maps a sheaf F to

Fx := lim−→
U∈Ux

F (U),

where Ux denotes all the open subsets of X which contain x.

Now, we have two exact functors A x∗ //Sh(X,A) and Sh(X,A)
(−)x //A ; the problem

turns out to be that the stalk functor is not faithful (indeed, because a non-zero sheaf
might have some stalks zero), so we need to work a bit more in order to apply Proposi-
tion 4.1.22. But we can arrange this situation with the so-called product category AX ; the
reader should remind that AX has enough injectives because A has so (indeed, slightly
loosely speaking all in AX is defined componentwise). In this way, we have two exact

functors AX x∗ //Sh(X,A) and Sh(X,A)

∏
x∈X(−)x //AX ; however, we have to point out

that
∏
x∈X(−)x is also faithful becase a sheaf is zero if and only if all of its stalks vanish.
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Therefore, we only have to check out that
(∏

x∈X(−)x, x∗
)
is an adjoint pair; in such case,

Proposition 4.1.22 will imply that Sh(X,A) has enough injective objects; regardless, the
adjointness of the previous functors boils down to the following chain of natural isomor-
phisms:

HomAX

(∏
x∈X

Fx,
∏
x∈X

Mx

)
∼=
∏
x∈X

HomA (Fx,Mx) ∼=
∏
x∈X

HomSh(X,A) (F, x∗(Mx))

∼= HomSh(X,A)

(
F, x∗

(∏
x∈X

Mx

))
.

We have to stress here that the only non-trivial part is the known fact that, for any x ∈ X,
((−)x, x∗) is an adjoint pair; the proof is therefore completed.

Before going on, we want to single out the following result, which has been obtained
during the proof of Theorem 4.1.23, because it will play a crucial role later on in this
chapter.

Theorem 4.1.24. Any injective object of Inv(P,A) is a direct summand of a direct sum
of injectives of the form E≥q for some q ∈ P , where E = EA(A/p) is an indecomposable
injective A-module, and

(E≥q)p :=

{
E, if p ∈ [q, 1

P̂
),

0, otherwise.

We conclude this part with the following:

Remark 4.1.25. The statement of Theorem 4.1.24 is not fully satisfactory in the sense that
one would wish to have an structure theorem of injectives in Inv(P,A); in other words, we
would want to know what are the indecomposable injectives of Inv(P,A). We do not know
whether such description exists.

Existence of enough flasque inverse systems

The goal of this part is to provide a detailed proof of Lemma 4.1.8 (being precise, of part
(ii)); that is, we want to show that the cohomology of the cochain Roos complex agree
with the right derived functors of the inverse limit. First of all, we have to point out that,
since the category of inverse systems has enough injectives, one has that the right derived
functors of the inverse limit can be defined in the usual way through injective resolutions;
regardless, the calculation of these right derived functors through injective resolutions is
not suitable in this framework. That is, injective resolutions are necessary in order to define
in the usual way the right derived functors of the inverse limit; however, in this case, it
turns out that one needs to compute explicitly such derived functors and, for this purpose,
injective inverse systems are not useful.
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In this way, we have to restrict our attention to the following subclass of objects of
Inv(P,A).

Definition 4.1.26. We say that an object G of Inv(P,A) is flasque if, for any pair U ⊆
V ⊆ P of open subsets of P (regarding P as a topological space with the dual Alexandrov
topology), the natural restriction map

lim←−
v∈V

G(v) // lim←−
u∈U

G(u)

is surjective.

In fact, we also have to consider the following bigger subclass of objects in Inv(P,A)
(cf. [74, Lemme 1.3]):

Definition 4.1.27. It is said that an object G of Inv(P,A) is weakly flasque if, for any
p0 ≤ q0, the natural restriction map

lim←−
q∈(0

P̂
,q0]

G(q) // lim←−
p∈(0

P̂
,p0]

G(p)

is surjective.

Remark 4.1.28. Regarding its very definition, it is clear that flasque inverse systems are,
in particular, weakly flasque; it is worth noting that the converse is, in general, not true.
Essentially, the difference stems from the fact that, whereas weakly flasque objects forms
a class which is closed under short exact sequences, flasque objects are not. In particular,
as pointed out by C.U. Jensen in [74, Chapter 1], the quotient I/G of an injective inverse
system I by a flasque one G is, in general, not flasque; however, I/G is always weakly
flasque.

As we have roughly explained in the previous remark, the main reason for considering
weakly flasque inverse systems is given formally in the next result, whose proof is omitted;
the interested reader may like to consult [74, Corollaire 1.7] for details.

Proposition 4.1.29. Let 0 //G′ //G //G′′ //0 be a short exact sequence in
Inv(P,A). If G′ and G are weakly flasque, then so is G′′.

Now, we want to single out the following result because it will play some role soon
(cf. Proposition 4.1.32).

Lemma 4.1.30. Any direct summand of a flasque (respectively, weakly flasque) inverse
system is also flasque (respectively, weakly flasque).
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Proof. We only prove the flasque piece of the statement (because the remainder weakly
flasque part can be proved exactly in the same way). Indeed, let G′′ be an inverse sys-
tem such that G = G′ΠG′′ for some flasque inverse system G and for some (a priori non
necessarily flasque) inverse system G′; so, the natural splitted short exact sequence

0 // G′ // G // G′′ // 0

induces, for any pair U ⊆ V of open subsets of P , the following commutative diagram with
exact rows, where the vertical columns are the corresponding natural restriction maps:

0 // lim←−v∈V G
′(v)

��

// lim←−v∈V G(v)

��

// lim←−v∈V G
′′(v)

��

// 0

0 // lim←−u∈U G
′(u) // lim←−u∈U G(u) // lim←−u∈U G

′′(u) // 0.

Since the central vertical arrow is surjective (because of G is flasque) the Snake’s Lemma
ensures that the righmost vertical one is also surjective. In particular, this shows that G′′

is also flasque; the proof is therefore completed.

The last technical fact we need is the following result, which was proved by G.Nöbeling
in [108, Satz 6]; we provide a detailed proof for the convenience of the reader.

Proposition 4.1.31. Let I be an injective inverse system. Then, for any j ≥ 1 one has
that Hj (Roos∗(I)) = 0.

Proof. Fix p ∈ P . Since Ip is an A-module and the category of A-modules has enough
injectives, there exists an injective A-module Jp and a monomorphism Ip ↪→ Jp (say, hp).
In this way, we can define an inverse system (namely, J≥p) in the following manner; on one
hand, for any q ∈ P set

(J≥p)q :=

{
Jp, if q ∈ [p, 1

P̂
),

0, otherwise.

On the other hand, if q′ ≤ q then set

(h≥p)qq′ :=

{
1Jp , if q ∈ [p, 1

P̂
),

0, otherwise.

In this way, J≥p =
{

(J≥p)q, (h≥p)qq′
}
defines an inverse system; moreover, we can produce

a map I
β≥p //J≥p in the next manner; indeed, given q ∈ P one sets

(β≥p)q :=

{
hp ◦ iqp, if q ∈ [p, 1

P̂
),

0, otherwise.
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Here, Iq
iqp //Ip denotes the corresponding structural moprphism of the inverse system I.

Thus, it is straightforward to check that, for any p ∈ P , β≥p defines a morphism of inverse
systems; therefore, setting

J :=
∏
p∈P

J≥p

one has that the universal property of the direct product ensures the existence of a unique

map I
β //J such that πp ◦ β = β≥p, where J

πp //J≥p is the canonical projection map.
Moreover, β is injective because hp is so; however, since I is injective it follows that I is a
direct summand of J . In this way, combining this fact with the known result that Roos∗

commutes with direct products, one obtains, for any k ≥ 0, that Hk(Roos∗(I)) is a direct
summand of

Hk(Roos∗(J)) =
∏
p∈P

Hk(Roos∗(J≥p)).

So, given k ≥ 1 it is enough to show thatHk(Roos∗(J≥p)) = 0; regardless, Roos∗(J≥p) turns
out to be the cochain complex for computing the simplicial cohomology of the topological
space [p, 1

P̂
) with coefficients in a certain abelian group. But, once more, Lemma 4.1.14

ensures that [p, 1
P̂

) is contractible; this concludes the proof.

Flasque and weakly flasque inverse systems are useful for our purposes because of the
following:

Proposition 4.1.32. The following statements hold.

(i) Any inverse system can be embedded into a flasque one; whence Inv(P,A) has enough
flasque and weakly flasque objects.

(ii) Any injective inverse system is flasque.

(iii) Any weakly flasque inverse system is acyclic with respect to the inverse limit functor.

(iv) The right derived functors of the inverse limit can be computed through either a flasque
or weakly flasque resolution.

(v) Given an object G of Inv(P,A), there exists a flasque resolution

0 // G //
∏∗(G).

(vi) For any i ≥ 0, one has that

H i (Roos∗(G)) = Ri lim←−
p∈P

G(p);

the reader should notice that this part is exactly the content of part (ii) of Lemma
4.1.8.
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Proof. Let G be an object of Inv(P,A) and fix p ∈ P . We consider the following inverse
system:

Π0(p) := Π0(G)(p) :=
∏
p0≤p

G(p0).

Moreover, given p ≤ q we set Π0(q) //Π0(p) as the natural projection. In this way, Π0

defines an inverse system which we claim is flasque.
Before showing so, we check that, for any open subset W of P , one has that

lim←−
w∈W

Π0(w) ∼=
∏
w∈W

G(w).

Indeed, given w0 ∈ W consider the natural projection
∏
w∈W G(w)

πw0 //
∏
w≤w0

G(w); on
the other hand, we also consider the natural restriction map

lim←−
w∈W

Π0(w)
pw0 // Π0(w0).

In this way, the universal property of the inverse limit guarantees the existence of a unique
homomorphism of A-modules ∏

w∈W
G(w)

ϕ // lim←−
w∈W

Π0(w)

such that pw0ϕ = πw0 ; on the other hand, the universal property of the direct product
ensures the existence of a unique homomorphism of A-modules

lim←−
w∈W

Π0(w)
ψ //

∏
w∈W

G(w)

such that πw0ψ = pw0 . We claim that ψ and ϕ are mutually inverses; indeed, we only have
to point out that

πw0 (ψϕ) = (πw0ψ)ϕ = pw0ϕ = πw0

and
pw0 (ϕψ) = (pw0ϕ)ψ = πw0ψ = pw0 ,

whence ψϕ and ϕψ satisfy respectively the same universal problem as the identity on∏
w∈W

G(w) and lim←−
w∈W

Π0(w),

whence they are mutually inverses; in particular, one has a canonical isomorphism

lim←−
w∈W

Π0(w) ∼=
∏
w∈W

G(w).
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Now, we want to show that Π0 is flasque; let U ⊆ V be open subsets of P . Under the
previous isomorphism, the natural restriction map

lim←−
v∈V

Π0(v) // lim←−
u∈U

Π0(u)

boils down to the natural projection∏
v∈V

G(v) //
∏
u∈U

G(u),

which is clearly surjective since U ⊆ V . Summing up, we have checked that Π0 is a flasque
inverse system; finally, the natural map G //Π0 clearly defines a monomorphism of A-
modules; in this way, part (i) holds.

Now, we prove part (ii). Let I be an injective inverse system; by part (i), I can be
embedded into a flasque inverse system Π0(I). Regardless, since I is injective one has that
I is a direct factor of Π0(I), whence it is also flasque according to Lemma 4.1.30. In this
way, part (ii) also holds.

Now, we provide a sketch of proof of part (iii), referring to [74, Proposition 1.6 and
Thèoréme 1.8] for full details. Let G be a weakly flasque inverse system and let

0 // G // I // I/G // 0

be a short exact sequence in Inv(P,A), where I is an injective inverse system; since G and
I are weakly flasque, Proposition 4.1.29 implies that I/G is also weakly flasque. Therefore,
the long exact sequence of right derived functors of the inverse limit yields, for any j ∈ N,
the following exact sequence:

Rj lim←−
p∈P

I // Rj lim←−
p∈P

I/G // Rj+1 lim←−
p∈P

G // Rj+1 lim←−
p∈P

I.

If j ≥ 1, then
Rj lim←−

p∈P
I = 0 = Rj+1 lim←−

p∈P
I

(indeed, injective inverse systems are clearly acyclic with respect to the inverse limit functor)
and therefore one has, for any j ≥ 1, a canonical isomorphism

Rj lim←−
p∈P

I/G ∼= Rj+1 lim←−
p∈P

G.

In this way, by applying increasing induction on j it is enough to check out that the exact
sequence

lim←−
p∈P

I // lim←−
p∈P

I/G // R1 lim←−
p∈P

G // R1 lim←−
p∈P

I = 0
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implies that
R1 lim←−

p∈P
G = 0;

in other words, one should show that the natural map

lim←−
p∈P

I // lim←−
p∈P

I/G

is surjective; however, this surjectivity follows very easily from the fact that P is finite
and both I and I/G are weakly flasque. The interested reader may like to consult [74,
Proposition 1.6] for details.

On the other hand, since part (iv) follows directly combining parts (i) and (iii), we go
on proving part (v). Given G an object of Inv(P,A), we have constructed in part (i) a
flasque inverse system Π0(G). In this way, setting Q0 := Coker

(
G // Π0(G)

)
we have

the following short exact sequence of inverse systems:

0 // G // Π0(G) // Q0 // 0.

Now, replacing G by Q0 and setting Π1(G) := Π0(Q0) one obtains another short exact
sequence:

0 // Q0 // Π1(G) // Q1 // 0.

Iterating this process, we build a (possibly infinite) flasque resolution 0 //G //Π∗(G);
whence part (v) also holds.

In this way, it only remains to prove part (vi). Actually, what we show is that the right
derived functors of the inverse limit (U j)j≥0 :=

(
Rj lim←−p∈P

)
j≥0

and the cohomology of the

Roos cochain complex (V j)j≥0 :=
(
Hj(Roos∗(−))

)
j≥0

are isomorphic universal δ-functors.
Indeed, on one hand it is clear that both (U j)j≥0 and (V j)j≥0 are universal δ-functors

with
U0 = R0 lim←−

p∈P
= lim←−

p∈P
= H0(Roos∗(−)) = V 0.

On the other hand, given any j ≥ 1 and any injective inverse system I it is also clear that

U j(I) = Rj lim←−
p∈P

Ip = 0 = Hj(Roos∗(I)) = V j(I);

the reader should notice that the equality 0 = Hj(Roos∗(I)) is a direct application of
Proposition 4.1.31. Summing up, combining the previous two facts one obtains a canonical
isomorphism (

Rj lim←−
p∈P

)
j≥0

∼=
(
Hj(Roos∗(−))

)
j≥0

of universal δ-functors, just what we finally wanted to check.
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Existence of enough projective inverse systems

Our next goal is to review, for the convenience of the reader, the fact that the category
of inverse systems has enough projective objects and describe explicitly a certain class of
projectives which will play certain role later on in this chapter.

The below result is just [108, Satz 2].

Theorem 4.1.33 (Nöbeling). For any inverse system G, there exists a projective one F
and an epimorphism F // //G.

Proof. Fix p ∈ P . Since Gp is an A-module and the category of A-modules has enough

projectives, there exists a projective A-module Fp and an epimorphism Fp
πp // //Gp. In this

way, we can define an inverse system (namely, F≤p) in the following manner; on one hand,
for any q ∈ P set

(F≤p)q :=

{
Fp, if q ∈ (0

P̂
, p],

0, otherwise.

On the other hand, if q′ ≤ q then set

(π≤p)qq′ :=

{
1Fp , if q ∈ (0

P̂
, p],

0, otherwise.

In this way, F≤p =
{

(F≤p)q , (π≤p)qq′
}
defines an inverse system; moreover, we can produce

a map F≤p
µ≤p //G in the next way; indeed, given q ∈ P one sets

(µ≤p)q :=

{
gpq ◦ πp, if q ∈ (0

P̂
, p],

0, otherwise.

Here, Gp
gpq //Gq is one of the structural morphisms of the inverse system G. Moreover, it

is straightforward to check that, for any p ∈ P , µ≤p defines a morphism of inverse systems.
Therefore, setting

F :=
⊕
p∈P

F≤p,

one has that the universal property of the direct sum ensures the existence of a unique map

F
µ //G such that µ ◦ ip = µ≤p, where F≤p

ip //F are the canonical insertion maps. In
this way, it only remains to check that µ is an epimorphism; however, the surjectivity of µ
is equivalent to the surjectivity of µp (for any p ∈ P ). But, fixed p ∈ P , the surjectivity of
µp boils down to the surjectivity of πp, which is clear; the proof is therefore completed.

Before going on, we want to single out the following fact, which has been obtained
during the proof of Theorem 4.1.33, because it will play some role in this chapter.
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Theorem 4.1.34. Given a projective A-module F and given p ∈ P , the inverse system
F≤p defined by

(F≤p)q :=

{
Fp, if q ∈ (0

P̂
, p],

0, otherwise

is a projective object of Inv(P,A); in particular, A≤p is so. Furthermore, any inverse system
G admits a projective (not necessarily minimal) resolution

. . . // F1
// F0

// G // 0

such that, for any i ∈ N, Fi can be expressed as a direct sum of projectives of the form A≤p.

4.1.4 Existence of enough injective and projective direct systems

On one hand, it is known that any category of modules over an arbitrary ring has enough
injective and projective objects; on the other hand, we have shown in Proposition 4.1.19
that, whenever P is a finite poset, the category Dir(P,A) is equivalent to the category of
left modules over the incidence algebra I(P op, A). Therefore, combining these facts one
obtains the following:

Theorem 4.1.35. If P is a finite poset, then the category Dir(P,A) has enough injective
and projective objects.

Remark 4.1.36. The reader should notice that Theorem 4.1.35 guarantees the existence of
enough projective objects, but it does not provide a priori any information about how such
projectives look like.

Existence of coflasque direct systems

Now, we encounter a similar problem with respect to the previous case; indeed, projective
direct systems are not suitable for our homological purposes. For this reason, we have to
introduce the following subclass of objects of Dir(P,A); it is worth noting that the following
terminology is not completely standard.

Definition 4.1.37. Let P F //A be a direct system; moreover, we regard P as a topo-
logical space with the Alexandrov topology. It is said that F is coflasque if, for any open
subsets U ⊆ V ⊆ P , the natural insertion map

lim−→
u∈U

F (u) // lim−→
v∈V

F (v)

is injective.

Again, we have to introduce a bigger subclass in Dir(P,A).
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Definition 4.1.38. It is said that a direct system F is weakly coflasque if, for any p0 ≤ q0,
the natural insertion map

lim−→
q∈[q0,1P̂ )

F (q) // lim−→
p∈[p0,1P̂ )

F (p)

is injective.

The following elementary property which weakly coflasque direct systems verify will
play some role later on (cf. Proposition 4.1.42); it may be regarded as the analogue in this
setting of Lemma 4.1.30.

Lemma 4.1.39. Any direct summand of a coflasque (respectively, weakly coflasque) direct
system is also coflasque (respectively, weakly coflasque).

Proof. We only deal with the coflasque piece of the statement, because the reaminder weakly
coflasque part can be proved in exactly the same way. Indeed, let F ′ be a direct system
such that F = F ′ ⊕ F ′′ for some coflasque direct system F and for some (a priori non
necessarily coflasque) direct system F ′′; so, the natural splitted short exact sequence

0 // F ′ // F // F ′′ // 0

induces, for any pair U ⊆ V of open subsets of P , the following commutative diagram with
exact rows, where the vertical columns are the corresponding natural insertion maps:

0 // lim−→u∈U F
′(u)

��

// lim−→u∈U F (u)

��

// lim−→u∈U F
′′(u)

��

// 0

0 // lim−→v∈V F
′(v) // lim−→v∈V F (v) // lim−→v∈V F

′′(v) // 0.

Since the central vertical arrow is injective (because of F is coflasque) the Snake’s Lemma
ensures that the leftmost vertical one is also injective. In particular, this shows that F ′ is
also coflasque; the proof is therefore completed.

We also want to state now the homological analogues of Proposition 4.1.29 and Propo-
sition 4.1.31; in both cases, the proof is left to the interested reader.

Proposition 4.1.40. Let 0 //F ′ //F //F ′′ //0 be a short exact sequence in
Dir(P,A). If F and F ′′ are weakly coflasque, then so is F ′.

Proposition 4.1.41. Let F be a projective direct system. Then, for any j ≥ 1 one has
that Hj (Roos∗(F )) = 0.

Next result shows, in particular, that Dir(P,A) has enough coflasque objects and that
such class of direct systems can be used in order to calculate the left derived functors of
the direct limit.
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Proposition 4.1.42. The following statements hold.

(i) Any direct system can be expressed as a homomorphic image of a coflasque direct
system.

(ii) Any projective direct system is coflasque.

(iii) Any weakly coflasque direct system is acyclic with respect to the direct limit functor.

(iv) The left derived functors of the direct limit can be computed through either coflasque
or weakly coflasque resolutions.

(v) Given a direct system F valued on A, there exists a coflasque resolution

Π∗ (F ) // F // 0.

(vi) For any i ≥ 0, one has that

Hi(Roos∗(F )) = Li lim−→
p∈P

F (p).

The reader should notice that this part is exactly part (ii) of Lemma 4.1.3.

Proof. Let F be an object of Dir(P,A) and fix p ∈ P . We consider the following direct
system:

Π0(p) := Π0(F )(p) :=
⊕
p≤p0

F (p0).

Moreover, given p ≤ q we set Π0(p) //Π0(q) as the natural insertion. In this way, Π0

defines a direct system which we claim is coflasque.
Before showing so, we check that, for any open subset W of P , one has that

lim−→
w∈W

Π0(w) ∼=
⊕
w∈W

F (w).

Indeed, given w0 ∈W consider the natural inclusion ⊕w≤w0F (w)
jw0 //⊕w∈WF (w); on the

other hand, we also consider the natural insertion map

Π0(w0)
iw0 // lim−→

w∈W
Π0(w).

In this way, the universal property of the direct limit guarantees the existence of a unique
homomorphism of A-modules

lim−→
w∈W

Π0(w)
ϕ //

⊕
w∈W

F (w)
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such that ϕiw0 = jw0 ; on the other hand, the universal property of the direct sum ensures
the existence of a unique homomorphism of A-modules⊕

w∈W
F (w)

ψ // lim−→
w∈W

Π0(w)

such that ψjw0 = iw0 . We claim that ψ and ϕ are mutually inverses; indeed, we only have
to point out that

(ψϕ) iw0 = ψ (ϕiw0) = ψjw0 = iw0

and
(ϕψ) jw0 = ϕ (ψjw0) = ϕiw0 = jw0 ,

whence ψϕ and ϕψ satisfy respectively the same universal problem as the identity on⊕
w∈W

F (w) and lim−→
w∈W

Π0(w),

whence they are mutually inverses; in particular, one has a canonical isomorphism

lim−→
w∈W

Π0(w) ∼=
⊕
w∈W

F (w).

Now, we want to show that Π0 is coflasque; let U ⊆ V be open subsets of P . Under the
previous isomorphism, the natural insertion map

lim−→
u∈U

Π0(u) // lim−→
v∈V

Π0(v)

boils down to the natural inclusion⊕
u∈U

F (u) //
⊕
v∈V

F (v),

which is clearly injective since U ⊆ V . Summing up, we have checked that Π0 is a coflasque
direct system; finally, the natural map Π0

//F clearly defines an epimorphism of A-
modules; in this way, part (i) holds.

Now, we prove part (ii). Let R be a projective direct system; by part (i), R can be
expressed as the homomorphic image of a coflasque direct system Π0(R). Regardless, since
R is projective one has that R is a direct summand of Π0(R), whence it is also coflasque
by a direct application of Lemma 4.1.39. In this way, part (ii) also holds.

Now, we provide a sketch of proof of part (iii). Let F be a weakly coflasque direct
system and let

0 // K // R // F // 0

be a short exact sequence in Dir(P,A), where R is a projective direct system; since F and R
are weakly coflasque, the analogous coflasque of Proposition 4.1.29 (aka Proposition 4.1.40)
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implies that K is also weakly coflasque. Therefore, the long exact sequence of left derived
functors of the direct limit yields, for any j ∈ N, the following exact sequence:

Lj+1 lim−→
p∈P

R // Lj+1 lim−→
p∈P

F // Lj lim−→
p∈P

K // Lj lim−→
p∈P

R.

If j ≥ 1, then
Lj+1 lim−→

p∈P
R = 0 = Lj lim−→

p∈P
R

(indeed, projective direct systems are clearly acyclic with respect to the direct limit functor)
and therefore one has, for any j ≥ 1, a canonical isomorphism

Lj+1 lim−→
p∈P

F ∼= Lj lim−→
p∈P

K.

In this way, by applying increasing induction on j it is enough to check out that the exact
sequence

0 = L1 lim−→
p∈P

R // L1 lim−→
p∈P

F // lim−→
p∈P

K // lim−→
p∈P

R

implies that
L1 lim−→

p∈P
F = 0;

in other words, one should show that the natural map

lim−→
p∈P

K // lim−→
p∈P

R

is injective; however, this surjectivity follows from the fact that P is finite and both K and
R are weakly coflasque.

On the other hand, since part (iv) follows directly combining parts (i) and (iii), we go
on proving part (v). Given F an object of Dir(P,A), we have constructed in part (i) a
coflasque direct system Π0(F ). In this way, setting K0 := ker

(
Π0(F ) // F

)
we have

the following short exact sequence of direct systems:

0 // K0
// Π0(F ) // F // 0.

Now, replacing F by K0 and setting Π1(F ) := Π0(K0) one obtains another short exact
sequence:

0 // K1
// Π1(F ) // K0

// 0.

Iterating this process, we build a (possibly infinite) coflasque resolution 0 //Π∗(F ) //F ;
whence part (v) also holds.
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In this way, the only thing it remains to prove is part (vi); in fact, what we show is that
the left derived functors of the direct limit (Uj)j≥0 :=

(
Lj lim−→p∈P

)
j≥0

and the homology of

the Roos chain complex (Vj)j≥0 := (Hj(Roos∗(−)))j≥0 are isomorphic universal δ-functors.
Indeed, on one hand it is clear that both (Uj)j≥0 and (Vj)j≥0 are universal δ-functors

with
U0 = L0 lim←−

p∈P
= lim←−

p∈P
= H0(Roos∗(−)) = V0.

Moreover, given any j ≥ 1 and any projective direct system F it is also clear that

Uj(F ) = Lj lim←−
p∈P

Fp = 0 = Hj(Roos∗(F )) = Vj(F ).

Here, the reader should point out that the equality 0 = Hj(Roos∗(F )) is a direct conse-
quence of Proposition 4.1.41. In this way, combining the previous two facts one obtains a
canonical isomorphism (

Lj lim←−
p∈P

)
j≥0

∼= (Hj(Roos∗(−)))j≥0

of universal δ-functors, just what we finally wanted to check.

4.2 Homological spectral sequences

Hereafter, A will denote a commutative Noetherian ring. To any ideal I ⊆ A one may
associate a poset P as follows: let I = I1 ∩ . . . ∩ In be its minimal primary decomposition,
then P is the poset given by all the possible sums of the ideals I1, . . . , In ordered by reverse
inclusion but we underline that we have to identify these sums when they describe the same
ideal. More generally, building from this poset P we can construct, for each A-module M ,
the inverse system M/[∗]M given by (M/IpM)p∈P .

The aim of this section is to construct several spectral sequences even though we will
be mostly interested on those involving local cohomology modules. The method will be
as follows. Firstly, given any object M of A, we shall construct a direct system over P of
objects of A. Then, using the homological Roos complex we shall build a double complex
with a finite number of non-zero columns (or rows) that will rise to a spectral sequence that,
with the help of a technical lemma, will converge to a certain object of A. We refer to [114,
Chapter 10] for any unexplained fact and terminology about spectral sequences. Finally,
we are to study the degeneration of such spectral sequences and their attached extension
problems in the spirit of [6].

The following concept may be attached to any finite poset. It will be useful later on in
order to illustrate some of our ideas and results.
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Definition 4.2.1 (Hasse, Voght). Let P be a finite poset. The Hasse-Voght diagram of P
is obtained by drawing the elements of P as dots, with x drawn lower than y if x < y, and
with an edge between x and y whenever y covers x; that is, if x < y and no z ∈ P satisfies
x < z < y.

Example 4.2.2. Perhaps, some Hasse-Voght diagrams illustrate our ideas. In case n = 2,
the picture is evident. Regardless, it turns out that the situation gets more subtle in case
n = 3; the reader should notice that the below pictures correspond to the direct system
F given by the assignment F (p) = Ip (remind that we are ordering these ideals by reverse
inclusion, for this reason we obtain a direct system).

I

I1

;;

I2

cc

I1 + I2

cc ;;

A

OO

I

I1

77

I2

OO

I3

gg

I1 + I2

OO 77

I1 + I3

gg 77

I2 + I3

gg OO

I1 + I2 + I3

gg OO 77

A

OO

A similar picture is obtained in case we draw the Hasse-Voght diagram attached to the
inverse system M/[∗]M ; by simplicity, we only illustrate the picture in case n = 3:

M/IM

uu �� ))
M/I1M

�� ))

M/I2M

uu ))

M/I3M

uu ��
M/(I1 + I2)M

))

M/(I1 + I3)M

��

M/(I2 + I3)M

uu
M/(I1 + I2 + I3)M

��
0

From now onward, we omit the initial element of the poset P̂ in our Hasse-Voght di-
agrams. For a concrete realization of the previous general pictures, just take the ring
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A = K[x1, . . . , x6], where K is any field. Firstly, if I = 〈x1, x2〉 ∩ 〈x3, x4〉 ∩ 〈x5, x6〉 then our
poset can be drawn in the following way:

I

〈x1, x2〉

55

〈x3, x4〉

OO

〈x5, x6〉

ii

〈x1, x2, x3, x4〉

OO 55

〈x1, x2, x5, x6〉

ii 55

〈x3, x4, x5, x6〉

ii OO

〈x1, x2, x3, x4, x5, x6〉

ii OO 55

Regardless, if I = 〈x1, x2〉 ∩ 〈x1, x3〉 ∩ 〈x2, x3〉 then it turns out that our picture becomes
more simple:

I

〈x1, x2〉

88

〈x1, x3〉

OO

〈x2, x3〉

ff

〈x1, x2, x3〉

ff OO 88

Here, we are using our convention that we identify these sums when they describe the same
ideal.

4.2.1 Some obstructions

Before constructing our homological spectral sequences, we want to come back to Remark
4.1.11; as we explained there, given an inverse system G it is unclear for us whether the
natural restriction map

G(0
P̂

) = lim←−
p∈P̂

G(p) // lim←−
p∈P

G(p)

is an isomorphism. In fact, for the purposes of this chapter, we are mostly interested in the
following particular case of such question.

Question 4.2.3. Let M be an object of A. We shall denote by M/[∗]M the inverse system
defined by the family (M/IpM)p∈P and homomorphisms M/IqM // //M/IpM for p ≤ q.
Is it true that

lim←−
p∈P

M/IpM ∼= M/IM,

where I := I1 ∩ . . . ∩ In?
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Remark 4.2.4. We want to stress again that Question 4.2.3 is nothing but a particular case
of the one raised implicitly in Remark 4.1.11.

It is worth mentioning here that Question 4.2.3 was partially answered in [31, Example
3.3] in case M = A. We state the result but we refer to op. cit. for details.

Theorem 4.2.5 (Brun,Bruns, Römer). Assume that P is a subset of a distributive lattice
of ideals of A (with respect to sum and intersection). Then, there is an isomorphism

lim←−
p∈P

A/Ip ∼= A/I.

Actually, a slightly more general result holds again in caseM = A. Once more, we shall
refer to [31, page 216] for details.

Theorem 4.2.6 (Brun,Bruns, Römer). We suppose that the following assumptions hold.

(a) A/[∗] is flasque.

(b) The natural homomorphism
A // lim←−

p∈P
A/Ip

is surjective.

Then, there is a canonical isomorphism

A/I ∼= lim←−
p∈P

A/Ip.

Our next goal is to show that it might have some obstructions to a positive answer
in full generality of Question 4.2.3; the first step in that direction is the next elementary
statement, whose proof is left to the interested reader.

Lemma 4.2.7. Let M be an object of A. Then, the following statements hold.

(i) The map

rn,M : M −→
n∏
i=1

M/IiM

m 7−→ (m+ I1M, . . . ,m+ InM)

has kernel IM and image isomorphic to M/IM .

129



(ii) M/IM = Im(rn,M ) ⊆ ker(∆n,M ), where

∆n,M :
n∏
i=1

M/IiM −→
∏

1≤i<j≤n
M/(Ii + Ij)M

(mi + (IiM) | 1 ≤ i ≤ n) 7−→ (mi −mj + (Ii + Ij)M | 1 ≤ i < j ≤ n).

In other words, Lemma 4.2.7 implies that, if Im(rn,M ) = ker(∆n,M ), then Question
4.2.3 has a positive answer. Now, we want to show that this equality works when n = 2,
but for n ≥ 3 it might be not true.

Remark 4.2.8. When n = 2, one has the short exact sequence of A-modules

0 //M/IM
r2,M //M/I1M ×M/I2M

∆2,M //M/(I1 + I2)M // 0

and therefore the equality Im(r2,M ) = ker(∆2,M ) holds. However, in case n ≥ 3 it is unclear
for us whether the equality Im(rn,M ) = ker(∆n,M ) holds or not.

In case n = 3, we can bound more precisely our doubts.

Example 4.2.9 (Case n = 3). In this case, the diagonal map adopts the following concrete
aspect:

M/I1M ⊕M/I2M ⊕M/I3M
∆3,M //M/(I1 + I2)M ⊕M/(I1 + I3)M ⊕M/(I2 + I3)M

(m1 + I1M,m2 + I2M,m3 + I3M) 7−→ (m2 −m1 + (I1 + I2)M,m1 −m3 + (I1 + I3)M,

m3 −m2 + (I2 + I3)M).

Thus, (m1 + I1M,m2 + I2M,m3 + I3M) belongs to ker(∆3,M ) if and only if there are
(xj , yj) ∈ IjM × IjM (where j ∈ {1, 2, 3}) such that

m2 −m1 = x1 + x2

m1 −m3 = y1 + x3

m3 −m2 = y2 + y3.

On the other hand, (m1 + I1M,m2 + I2M,m3 + I3M) lies on Im(r3,M ) if and only if there
are zj ∈ IjM (where j ∈ {1, 2, 3}) such that m1 + z1 = m2 + z2 = m3 + z3. In this way, we
may consider the linear system with variables z1, z2, z3; namely,

z1 − z2 = x1 + x2

z3 − z1 = y1 + x3

z2 − z3 = y2 + y3.
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This linear system has as matrix 1 −1 0 x1 + x2

−1 0 1 y1 + x3

0 1 −1 y2 + y3

 .

After performing some elementary transformations, we obtain the following matrix in re-
duced row echelon form: 1 0 −1 −x3 − y1

0 1 −1 −x1 − x2 − x3 − y1

0 0 0 x1 + x2 + x3 + y1 + y2 + y3

 .

4.2.2 Construction of direct limit spectral sequences

As we have previously announced, we proceed to construct several spectral sequences using
the homological Roos functor as a crucial building block. Recall that A stands for the
category of A-modules, where A is a commutative Noetherian ring.

Construction 4.2.10. Let P̂ ×A
T[∗] //A be an additive bivariate functor which verifies

the following requirements:

(i) For any p ∈ P̂ , Tp is a covariant, left exact, univariate functor which commutes with
arbitrary direct sums.

(ii) If p ≤ q then there exists a natural transformation of derived functors RiTp //RiTq .

In addition, we also have to suppose that T[∗] verifies one (and only one) of the following
two assumptions.

(a) For any p ∈ Spec(A) and for any maximal ideal m of A, there exists an A-module X
such that, for any p ∈ P̂ ,

Tp(E(A/p))m =

{
X, if p ∈W(Ip, J) and p ⊆ m,

0, otherwise.

It must be mentioned that X may depend on p and m, but not on p. Moreover, here

W(Ip, J) :=
{
q ∈ Spec(A) | Inp ⊆ q + J for some integer n ≥ 1

}
,

and J is an ideal of A which does not depend on any of the previous choices.

(b) For any p ∈ Spec(A) and for any maximal ideal m of A, there exists an A-module Y
such that, for any p ∈ P̂ ,

Tp(E(A/p))m =

{
Y, if p /∈W(Ip, J) and p ⊆ m,

0, otherwise.
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It must be mentioned that Y may depend on p and m, but not on p. Once again, J is
an ideal of A which does not depend on any of the previous choices.

Hereafter in this subsection, we set T := T1
P̂
; moreover, we also define the cohomological

dimension of T , denoted cd(T ), in the following way:

cd(T ) := max{i ∈ N | RiT (X) 6= 0 for some A−module X}.

We want to single out in the next result some elementary properties which the subsets
of the form W(Ip, J) verify because they will play a crucial role later on (cf. Lemma 4.2.15).

Lemma 4.2.11. Let p, p′ ∈ P , let p ∈ Spec(A), and let J be an ideal of A. Then, the
following statements hold.

(i) If p ∈W(Ip, J) ∩W(Ip′ , J), then p ∈W(Ip + Ip′ , J).

(ii) If p ≤ p′ and p ∈W(Ip, J), then p ∈W(Ip′ , J).

Proof. First of all, suppose that p ∈ W(Ip, J) ∩W(Ip′ , J); by the very definition of the
subsets W’s, there are integers n ≥ 1 and m ≥ 1 such that Inp ⊆ p + J and Imp′ ⊆ p + J .
Now, setting k := n+m it follows that

(Ip + Ip′)
k =

k∑
j=1

In−jp Ijp′ =

m∑
j=1

In−jp Ijp′ +

k∑
j=m+1

In−jp Ijp′ ⊆ I
n
p + Imp′ ⊆ p + J ;

whence p ∈W(Ip + Ip′ , J) and therefore part (i) holds.
On the other hand, assume that p ≤ p′ and p ∈ W(Ip, J). Thus, there is an integer

l ≥ 1 such that I lp ⊆ p+ J ; however, Ip′ ⊆ Ip and therefore it follows that I lp′ ⊆ I lp ⊆ p+ J ,
whence p ∈W(Ip′ , J), just what we finally wanted to prove.

Let M be any A-module. We shall denote by RiT[∗](M) the direct system defined by
the system (RiTp(M))p∈P and homomorphisms RiTp(M) //RiTq(M) for p ≤ q given by
the previously mentioned natural transformations.

Basic examples

Before going on, we provide examples that there are functors verifying the established
conditions in Construction 4.2.10. In all of these examples, let N be a finitely generated
A-module with finite projective dimension.

Our first example is concerned with the so-called generalized local cohomology modules.
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Example 4.2.12 (Generalized local cohomology). The direct system of functors T[∗] =
Γ[∗](N,−) of generalized torsion functors given by Tp(M) := ΓIp(N,M) verifies all the fore-
going requirements established in Construction 4.2.10; moreover, in this case T = ΓI(N,−).
Indeed, first of all we remind that, for any p ∈ P̂ and for any A-module M ,

Hj
Ip

(N,M) := lim−→
k∈N

ExtjA

(
N/IkpN,M

)
;

in particular,
ΓIp(N,M) = lim−→

k∈N
HomA

(
N/IkpN,M

)
.

Now, fix k ∈ N. Using the adjoint associativity between Hom and tensor product (cf. [114,
Theorem 2.76]) one has that

HomA

(
N/IkpN,E(A/p)

)
∼= HomA

(
N,HomA

(
A/Ikp , E(A/p)

))
On the other hand, since N is finitely related it follows that

lim−→
k∈N

HomA

(
N,HomA

(
A/Ikp , E(A/p)

))
∼= HomA

(
N, lim−→

k∈N
HomA

(
A/Ikp , E(A/p)

))
.

Summing up, one has that

lim−→
k∈N

HomA

(
N/IkpN,E(A/p)

)
∼= HomA

(
N,ΓIp (E(A/p))

)
.

Moreover, it is well known (cf. [30, 10.1.11]) that

ΓIp(E(A/p)) =

{
E(A/p), if p ∈ V(Ip),

0, if p /∈ V(Ip).

In this way, combining these two facts it follows that

ΓIp(N,E(A/p)) ∼= HomA(N,ΓIp(E(A/p))) =

{
HomA(N,E(A/p)), if p ∈ V(Ip),

0, if p /∈ V(Ip).

Finally, given any m ∈ Max(A) one has, as a direct application of [30, 4.1.7] (indeed, N is
finitely generated and the localization map A //Am is flat), that

ΓIp(N,E(A/p))m =

{
HomAm (Nm, E(A/p)m) , if p ∈ V(Ip) and p ⊆ m,

0, otherwise.

Our next example revolves around the so-called generalized Nagata’s ideal transforms.
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Example 4.2.13 (Generalized ideal transform). The direct system of functors T[∗] = D[∗](N,−)
of generalized Nagata’s ideal transforms verifies all the previous requirements (cf. [43]). In
this case, T = DI(N,−). Indeed, fix p ∈ P̂ ; firstly, the reader should remind that, by
definition, for any A-module M ,

DIp(N,M) := lim−→
k∈N

HomA

(
IkpN,M

)
.

By [43, Lemma 2.1], there is an exact sequence

0 −→ ΓIp(N,E(A/p)) −→ HomA(N,E(A/p)) −→ DIp(N,E(A/p)) −→ H1
Ip(N,E(A/p)).

So, since E(A/p) is injective, it follows that

H1
Ip (N,E(A/p)) = lim−→

k∈N
Ext1

A

(
N/IkpN,E(A/p)

)
= 0,

whence one can arrange the previous exact sequence in the following way:

0 // ΓIp(N,E(A/p)) // HomA(N,E(A/p)) // DIp(N,E(A/p)) // 0.

Therefore, combining this short exact sequence with the calculation carried out in the
previous part it follows that

DIp(N,E(A/p)) =

{
HomA(N,E(A/p)), if p /∈ V(Ip),

0, if p ∈ V(Ip).

Finally, given any m ∈ Max(A) one has, as a direct application of [30, 4.1.7] (indeed, N is
finitely generated and the localization map A //Am is flat), that

DIp(N,E(A/p))m =

{
HomAm (Nm, E(A/p)m) , if p /∈ V(Ip) and p ⊆ m,

0, otherwise.

Our final example takes care about the so-called local cohomology with respect to pairs
of ideals.

Example 4.2.14 (Local cohomology with respect to pairs of ideals). Let J be an arbitrary
ideal of A. The direct system of torsion functors with respect to pairs of ideals T[∗] = Γ[∗],J
is given by Tp(M) := ΓIp,J(M); that is, the (Ip, J)-torsion module with respect to M . The
reader should remind that, for any ideal K of A, the torsion functor ΓK,J is defined in the
following manner:

ΓK,J(M) :=
{
m ∈M | K lm ⊆ Jm for some l ∈ N

}
.
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Furthermore, it is known (cf. [133, Proposition 1.11]) that T[∗] verifies the previous require-
ments. In particular, T = ΓI,J . Moreover, once more from [133, Proposition 1.11] one
deduces that

ΓIp,J(E(A/p)) =

{
E(A/p), if p ∈W(Ip, J),

0, if p /∈W(Ip, J).

Here, W(Ip, J) := {p ∈ Spec(A) | Inp ⊆ p + J for some integer n ≥ 1}.

Main result

Next fact computes the abutment of our homological spectral sequences. It may be regarded
as a generalization of [6, Lemma of page 38].

Lemma 4.2.15. If E is any injective object of A then the augmented homological Roos
complex Roos∗

(
T[∗] (E)

)
//T (E) //0 is exact.

Proof. First of all, suppose that T[∗] verifies requirement (a) of Construction 4.2.10; so, as
Roos∗(−) and T[∗](−) commutes with arbitrary direct sums we deduce from the Matlis-
Gabriel Theorem (cf. [131, 3.2.3 and 3.2.5]) that we may assume, without loss of generality,
that there is p ∈ Spec(A) such that E = EA(A/p), a choice of injective hull of A/p over
A. Moreover, as being exact is a local property it is enough to check that, for any maximal
ideal m of A, the chain complex

Roos∗
(
T[∗] (E)

)
m

// T (E)m
// 0

is exact. Indeed, we can express P as the disjoint union of Q and Q′, where

Q := {q ∈ P | Iq ⊆ m},
Q′ := {q ∈ P | Iq 6⊆ m}.

Notice that Q is clearly a subposet of P . In this way, we have to distinguish two cases.
Firstly, if p 6⊆ m, then the previous chain complex is identically zero, whence we are done.
Otherwise, suppose that p ⊆ m; in this case, we split Q as the disjoint union Q = Q1 ∪Q2,
where

Q1 := {p ∈ Q | p ∈W(Ip, J)},
Q2 := {p ∈ Q | p /∈W(Ip, J)}.

Now, we have to distinguish two cases. Indeed, if p /∈ W(Ip, J) then the previous chain
complex is identically zero and therefore we are done. Otherwise, suppose that p ∈W(Ip, J)
for at least one p; in this case, this assumption combined with Lemma 4.2.11 ensure that
Q1 is a non-empty subposet of P of the form [r, 1

P̂
), where r ∈ P such that

Ir =
∑
q∈Q1

Iq := J.
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Indeed, since the ideal J is clearly the greatest ideal among the ideals of Q1 (we want to
stress that here is where we are using the finiteness of Q1 combined with Lemma 4.2.11),
it turns out that there is an element r ∈ P such that Ir = J and therefore Q1 = [r, 1

P̂
).

Summing up, our chain complex

Roos∗
(
T[∗] (E)

)
m

// T (E)m
// 0

agrees with the one obtained considering the Roos chain complex on Q1 instead of P ; finally,
this augmented chain complex where we only consider the subposetQ1 in the construction of
the Roos chain complex equals the augmented one for computing the simplicial homology of
the topological space [r, 1

P̂
) with coefficients in X. But we have checked in Lemma 4.1.14

that this topological space is contractible; this concludes the proof provided T[∗] verifies
assumption (a) of Construction 4.2.10.

Hereafter in this proof, we assume that T[∗] verifies assumption (b) of Construction
4.2.10 and that p ⊆ m; now, consider the short exact sequence of direct systems

0 // |Y ||P1
// |Y | // |Y ||P−P1

// 0. (4.3)

Here, P1 := {p ∈ P | p ∈W(Ip, J), Ip ⊆ m} and |Y ||P1
(respectively, |Y ||P−P1

) denotes
the direct system with constant value Y in all the points of P1 (respectively, P − P1) and
zero elsewhere; moreover, its non-zero structural homomorphisms are all identities on Y .
As he have seen in the first part of this proof, we can write P1 = [r, 1

P̂
) for some r ∈ P .

On the other hand, (4.3) induces the following short exact sequence of chain complexes:

0 // Roos∗
(
|Y ||P1

)
// Roos∗ (|Y |) // Roos∗

(
|Y ||P−P1

)
// 0. (4.4)

Furthermore, regarding that T[∗] verifies assumption (b) of Construction 4.2.10 it follows
that Roos∗

(
|Y ||P−P1

)
= Roos∗

(
T[∗] (E)

)
m
, whence we can rewrite (4.4) in the following

manner:

0 // Roos∗
(
|Y ||P1

)
// Roos∗ (|Y |) // Roos∗

(
T[∗] (E)

)
m

// 0. (4.5)

However, Roos∗
(
|Y ||P1

)
(respectively, Roos∗ (|Y |)) turns out to be the chain complex for

computing the reduced simplicial homology of the topological space P1 = [r, 1
P̂

) (respec-
tively, P ); since both P1 and P are contractible (cf. Lemma 4.1.14) one has that both
Roos∗

(
|Y ||P1

)
and Roos∗ (|Y |) are exact.

Summing up, all the foregoing implies that (4.5) is a short exact sequence of chain
complexes with two of them exact; whence the remainder one (namely, Roos∗

(
T[∗] (E)

)
m
)

is so, just what we finally wanted to prove.

Remark 4.2.16. The reader is encouraged to compare the first part of the proof of Lemma
4.2.15 with the argument used by S.Yassemi in order to obtain a Mayer-Vietoris long
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exact sequence for his so-called generalized section functors (cf. [143, Theorem 2.11]). On
the other hand, it is worth noting that the argument employed in the second part of the
proof of Lemma 4.2.15 turns out to be a straightforward generalization of the one used by
A.Castaño Domínguez in his sheafified setting (cf. [36, Proposition 3.4]). As the reader can
easily point out, both are particular cases of Lemma 4.2.15.

Next statement is the main result of this subsection.

Theorem 4.2.17. Let M be any A-module. Then, we have the following spectral sequence

E−i,j2 = Li lim−→
p∈P

RjTp(M)
i
+3 Rj−iT (M)

in the category of A-modules.

Proof. Let 0 //M //E∗ be an injective resolution of M in the category A. Applying
to this resolution the functor T[∗] one gets the following cochain complex of direct systems:

0 // T[∗](M) // T[∗](E
0) // T[∗](E

1) // . . .

Now, we use the Roos chain complex in order to produce the bicomplex Roos−i
(
T[∗]

(
Ej
))

=
Roosi

(
T[∗]

(
Ej
))
; the reader should point out that we put a minus in the i index because

we want to work with a bicomplex where the two variables are cohomological. We hope the
following picture illustrates all this paragraph:

...

��

...

��

...

��
0 // Roos1

(
T[∗] (M)

)
��

// Roos1

(
T[∗]

(
E0
))

��

// Roos1

(
T[∗]

(
E1
))

��

// . . .

0 // Roos0

(
T[∗] (M)

)
��

// Roos0

(
T[∗]

(
E0
))

��

// Roos0

(
T[∗]

(
E1
))

��

// . . .

0 // T (M)

��

// T
(
E0
)

��

// T
(
E1
)

��

// . . .

0 0 0

Moreover, we have to stress that the vertical differentials are the ones of the Roos chain
complex and the horizontal ones are the induced by the injective resolution of M ; so, the
bicomplex Roosi

(
T[∗]

(
Ej
))

produces two spectral sequences; namely, the ones provided
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respectively by the first and the second filtration of the previous bicomplex. In this way,
the first thing one should ensure is that both spectral sequences converge and calculate
their common abutment.

On one hand, the reader should notice that the E2-page of one of such spectral sequences
is obtained by firstly computing the homology of the columns and then computing the
cohomology of the rows; regardless, Lemma 4.2.15 guarantees that all the columns of the
bicomplex Roosi

(
T[∗]

(
Ej
))

are exact up to the column Roos∗
(
T[∗] (M)

)
. Therefore, this

fact implies that this spectral sequence collapses, whence its abutment turns out to be
R∗T (M).

On the other hand, the other spectral sequence that we can produce is the one obtained
by firstly taking cohomology on the rows and then calculating the homology of the columns;
in such case, one obtains as E1-page

E−i,j1 = Roosi
(
RjT[∗] (M)

)
.

In addition, since the boundary map of the E1-page is the one of the Roos chain complex,
and such chain complex computes the ith left derived functor of the direct limit, its E2-page
turns out to be

E−i,j2 = Li lim−→
p∈P

RjTp(M).

Summing up, combining all the foregoing facts one obtains the spectral sequence

E−i,j2 = Li lim−→
p∈P

RjTp(M)
i
+3 Rj−iT (M)

in the category of A-modules; the proof is therefore completed.

Examples revisited

Now, we specialize our general construction to the specific functors which have been previ-
ously introduced; as usual, in all these examples N will always stand for a finitely generated
A-module with finite projective dimension.

Example 4.2.18 (Generalized local cohomology). When T[∗] = Γ[∗](N,−) is the system of
generalized torsion functors, we get the following spectral sequence:

E−i,j2 = Li lim−→
p∈P

Hj
Ip

(N,M)
i
+3 Hj−i

I (N,M).

This spectral sequence is a generalization of the Mayer-Vietoris spectral sequence obtained
in [6]. In case the ideal has two components I = I1 ∩ I2, we recover partially the Mayer-
Vietoris long exact sequence obtained by Yassemi in [143, Corollary 2.14]:

. . . // Hj
I1

(N,M)⊕Hj
I2

(N,M) // Hj
I (N,M) // Hj+1

I1+I2
(N,M) // . . .
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For the sake of simplicity, we single out the version of it that we shall consider in this
chapter, especially for the case when N = A is the ring itself.

E−i,j2 = Li lim−→
p∈P

Hj
Ip

(M)
i
+3 Hj−i

I (M).

We have to recall that for the particular case when the ideal has two components I = I1∩I2,
i. e., the associated poset has three vertices corresponding to I1, I2 and I1 + I2, we recover
the usual Mayer-Vietoris long exact sequence of local cohomology modules:

. . . // Hj
I1

(M)⊕Hj
I2

(M) // Hj
I (M) // Hj+1

I1+I2
(M) // . . .

It is also worth mentioning that the Mayer-Vietoris spectral sequence considered in [95,
Theorem 2.1] by G. Lyubeznik is slightly different at the E1-page (because he used a different
poset associated to the ideal I) but they coincide at the E2-page; indeed, it follows from
the fact that our poset is cofinal with respect to Lyubeznik’s one. It has been previously
illustrated with the Hasse-Voght diagrams of Example 4.2.2.

Example 4.2.19 (Generalized ideal transforms). When T[∗] = D[∗](N,−) is the direct system
of generalized Nagata’s ideal transform functors, we obtain the following spectral sequence:

E−i,j2 = Li lim−→
p∈P

RjDIp(N,M)
i
+3 Rj−iDI (N,M) .

We have to point out that, when N = A,

E−i,j2 = Li lim−→
p∈P

RjDIp(M)
i
+3 Rj−iDI(M).

In fact, such spectral sequence for ordinary Nagata’s ideal transforms may be regarded
as the module version obtained by A.Castaño Domínguez in [36, Theorem 3.5]. On the
other hand, this spectral sequence is very closely related with the previous Mayer-Vietoris
spectral sequence for local cohomology modules because of the well-known isomorphism
(cf. [30, Theorem 2.2.6])

RjDJ(M) ∼= Hj+1
J (M)

for any j ≥ 1 and for any ideal J of A.
Finally, we have to underline that, when n = 2, we recover the long exact sequence

0 −→ DI1+I2(M) −→ DI1(M)⊕DI2(M) −→ DI(M) −→ H2
I1+I2(M)

. . . −→ Hj
I1

(M)⊕Hj
I2

(M) −→ Hj
I (M) −→ Hj+1

I1+I2
(M) −→ . . .

obtained in [30, Exercise 3.2.5].
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Example 4.2.20 (Local cohomology with respect to pairs of ideals). Let J be an arbitrary
ideal of A. If T[∗] = Γ[∗],J is the direct system of torsion functors with respect to pairs of
ideals, then we obtain the following spectral sequence:

E−i,j2 = Li lim−→
p∈P

Hj
Ip,J

(M)
i
+3 Hj−i

I,J (M).

It turns out that, when n = 2, this spectral sequence degenerates into the following long
exact sequence:

. . . // Hj
I1,J

(M)⊕Hj
I2,J

(M) // Hj
I,J(M) // Hj+1

I1+I2,J
(M) // . . .

This long exact sequence may be regarded as a Mayer-Vietoris long exact sequence for local
cohomology modules with respect to pairs of ideals; it is worth mentioning that, at the
best of our knowledge, this is the first time that such long exact sequence appears in the
literature.

An amended counterexample

We conclude this subsection by showing that the previous formalism can NOT be applied in
case T[∗] = HomA(A/[∗],−). In particular, we shall check in a particularly simple example
that the spectral sequence established by the authors in [6, Remark 1.4 (iii)] can not be
recovered using our foregoing formalism. Later on, we shall see (cf. Theorem 4.2.25) that
there is a spectral sequence which is the most similar (but not exactly the same) to the one
obtained in [6, Remark 1.4 (iii)].

Counterargument 1. Let K be any field, set A := K[[x, y, z]] and

I := 〈xy, xz, yz〉 = 〈x, y〉 ∩ 〈x, z〉 ∩ 〈y, z〉.

Moreover, set E := EA(K) as a choice of injective hull of K over A. In this case, the reader
should notice that

I1 = 〈x, y〉, I2 = 〈x, z〉, I3 = 〈y, z〉,
I1 + I2 = I1 + I3 = I2 + I3 = 〈x, y, z〉,
I1 + I2 + I3 = 〈x, y, z〉.

So, in such case, the poset P attached to I has the following Hasse-Voght diagram:

I

〈x1, x2〉

88

〈x1, x3〉

OO

〈x2, x3〉

ff

〈x1, x2, x3〉

ff OO 88
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Our goal in this example is to compute explicitly the following augmented chain complex:

Roos∗(HomA(A/[∗], E)) // HomA(A/I,E) // 0. (4.6)

In addition, since it is noteworthy that, for any ideal J of A, there is a canonical isomorphism
of A-modules

HomA(A/J,E) −→ (0 :E J)

f 7−→ f(cls(1))

it turns out that (4.6) is canonically isomorphic to the next augmented chain complex:

Roos∗((0 :E [∗])) // (0 :E I) // 0,

which, in this case, is nothing but

0 // Roos1((0 :E [∗])) d1 // Roos0((0 :E [∗])) d0 // (0 :E I) // 0. (4.7)

So, our aim is to calculate explicitly (4.7). Firsly, we determine its spots:

(a) Its 0th spot is

Roos0((0 :E [∗])) = (0 :E m)⊕ (0 :E I3)⊕ (0 :E I2)⊕ (0 :E I1).

Geometrically, this term corresponds to the vertices of the Hasse-Voght diagram at-
tached to P .

(b) By the very definition of the homological Roos complex, it follows that its 1th piece is

Roos1((0 :E [∗])) = (0 :E m)⊕ (0 :E m)⊕ (0 :E m).

Geometrically, this term corresponds to the edges of the previous picture of P .

Secondly, we have to compute its differentials; namely, d0 and d1.

(i) The 0th differential turns out to be

(0 :E m)⊕ (0 :E I3)⊕ (0 :E I2)⊕ (0 :E I1)
d0−→ (0 :E I)

(a, a1, a2, a3) 7−→ −a+ a3 − a2 + a1.

(ii) The first differential d1 is given by

(0 :E m)⊕ (0 :E m)⊕ (0 :E m)
d1−→ (0 :E m)⊕ (0 :E I3)⊕ (0 :E I2)⊕ (0 :E I1)

(b3, b2, b1) 7−→ (0, b2 − b3, b1 − b3, b1 − b2).
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Summing up, the augmented chain complex (4.7) is the one induced by the augmented
chain complex

0 // E⊕3 A1 // // E⊕4 A0 // E // 0,

where A0 :=
(
−1 1 −1 1

)
and

A1 :=


0 0 0
−1 1 0
−1 0 1
0 −1 1

 .

Applying Matlis duality (−)∨, one obtains the following coaugmented cochain complex:

0 // A/I // A/m⊕A/I3 ⊕A/I2 ⊕A/I1
// A/m⊕A/m⊕A/m // 0.

As the reader can notice, such coaugmented cochain complex is the induced one given by
the next complex:

0 // A
At0 // // A⊕4

At1 // A⊕3 // 0,

where

At0 =


−1
1
−1
1

 and At1 =

0 −1 −1 0
0 1 0 −1
0 0 1 1

 .

Regardless, neither the previous lifted complex nor the induced one are exact. Indeed, we
have checked that the lifted complex is not exact using Macaulay2 (cf. [55]). Of course, the
reader might think that perhaps the lifted complex is not exact, but the induced complex
after taking equivalence classes is so. Unfortunately, this is not the case, because of the
element (cls(1), cls(x), cls(y), cls(z)) is a member of the kernel of the map given by At1 which
does not belong to the image of the map given by At0.

Our next goal is to show that there is a spectral sequence which is quite similar with
the one obtained in [6, Remark 1.4 (iii)].

Construction 4.2.21. Let A T //A be a contravariant, left exact, univariate functor. Build-
ing over T , we produce a new functor (namely, T ) in the following manner:

Inv(P,A)
T // Dir(P,A)

G = (Gp)p∈P 7−→ (T (Gp))p∈P .

Moreover, we also assume that T commutes with finite direct sums and that T (A) = Z for
some A-module Z; in particular, one has that

lim−→
p∈P
T (A≤q) = Z,
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where q ∈ P (notice that Z only depends on T , but not on q).

Of course, the example on which are mostly interested is the next one:

Example 4.2.22. LetN be an arbitrary A-module. Then, the functor HomA (−, N) is clearly
left exact, contravariant, and commutes with finite direct sums; whence HomA (−, N) can
be regarded as a particular case of Construction 4.2.21.

The reader should remind that our aim is to build an spectral sequence; next lemma
provides its abutment.

Lemma 4.2.23. Let G be a projective object of Inv(P,A) of the form

G =
⊕
j∈J

A≤qj ,

where J is a finite index set and qj ∈ P (cf. Theorem 4.1.34). Then, the augmented chain
complex

Roos∗ (T (G)) −→

(
lim−→
p∈P
◦T

)
(G) −→ 0

is exact.

Proof. Since Roos∗, T and the direct limit functor commutes with finite direct sums we
may suppose, without loss of generality, that G = A≤q for some fixed q ∈ P ; regardless,
in this case, our augmented chain complex is exactly the one for computing the simplicial
homology of the interval [q, 1

P̂
) (indeed, notice that we have to take this interval because

T is contravariant) with coefficients in Z. But [q, 1
P̂

) is contractible by Lemma 4.1.14; the
proof is therefore completed.

The following result provides the announced spectral sequence.

Theorem 4.2.24. There is a first quadrant spectral sequence

E−i,j2 = Li lim−→
p∈P

RjT (A/[∗])
i
+3 Hj−i

(
lim−→
p∈P
◦T

)
(A/[∗]) ,

where the abutment denotes the cohomology of the cochain complex

0 −→ lim−→
p∈P
T (A/[∗]) −→ lim−→

p∈P
T (F0) −→ lim−→

p∈P
T (F1) −→ . . .

and
. . . // F1

// F0
// A/[∗] // 0

denotes a projective resolution of A/[∗] in Inv(P,A), where any Fi is made up by direct
summands of the form A≤p (p ∈ P ).
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Proof. Let F• //A/[∗] //0 be a projective resolution of A/[∗] as described in the state-
ment of the result; applying to this resolution the functor T , we obtain the following cochain
complex of direct systems:

0 // T (A/[∗]) // T (F•) .

Now, we produce the bicomplex Roos−i (T (Fj)) = Roosi (T (Fj)); the reader should point
out that we put a minus in the i index because we want to work with a bicomplex where
the two variables are cohomological. We hope the following picture illustrates all this
paragraph:

...

��

...

��

...

��
0 // Roos1 (T (A/[∗]))

��

// Roos1 (T (F0))

��

// Roos1 (T (F1))

��

// . . .

0 // Roos0 (T (A/[∗]))

��

// Roos0 (T (F0))

��

// Roos0 (T (F1))

��

// . . .

0 // lim−→p∈P T (A/[∗])

��

// lim−→p∈P T (F0)

��

// lim−→p∈P T (F1)

��

// . . .

0 0 0

Moreover, we have to stress that the vertical differentials are the ones of the Roos chain
complex and the horizontal ones are the induced by the projective resolution of A/[∗]; so,
the bicomplex Roosi (T (Fj)) produces two spectral sequences; namely, the ones provided
respectively by the first and the second filtration of the previous bicomplex. In this way,
the first thing one should ensure is that both spectral sequences converge and calculate
their common abutment.

On one hand, the reader should notice that the E2-page of one of such spectral sequences
is obtained by firstly computing the homology of the columns and then computing the
cohomology of the rows; regardless, Lemma 4.2.23 guarantees that all the columns of the
bicomplex Roosi (T (Fj)) are exact up to the column Roos∗ (T (A/[∗])). Therefore, this
fact implies that this spectral sequence collapses, whence its abutment turns out to be the
announced one.

On the other hand, the other spectral sequence that we can produce is the one obtained
by firstly taking cohomology on the rows and then calculating the homology of the columns;
in such case, one obtains as E1-page

E−i,j1 = Roosi
(
RjT (A/[∗])

)
.
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In addition, since the boundary map of the E1-page is the one of the Roos chain complex,
and such chain complex computes the ith left derived functor of the direct limit, its E2-page
turns out to be

E−i,j2 = Li lim−→
p∈P

RjT (A/[∗]) .

Summing up, combining all the foregoing facts one obtains the spectral sequence

E−i,j2 = Li lim−→
p∈P

RjT (A/[∗])
i
+3 Hj−i

(
lim−→
p∈P
◦T

)
(A/[∗])

in the category of A-modules; the proof is therefore completed.

In case T = HomA(−, N), where N is an arbitrary A-module, we obtain a more trans-
parent result; namely:

Theorem 4.2.25. The following assertions hold.

(i) There is a canonical isomorphism

HomA

(
lim←−
p∈P

A/Ip, N

)
∼= lim−→

p∈P
HomA (A/[∗], |N |) ,

where |N | is the constant inverse system given by N with identities as structural maps.

(ii) There is a first quadrant spectral sequence

E−i,j2 = Li lim−→
p∈P
ExtjA (A/[∗], |N |)

i
+3 Extj−iA

(
lim←−
p∈P

A/Ip, N

)
.

(iii) If, in addition, A/[∗] is flasque, then the previous spectral sequence can be written in
the following way:

E−i,j2 = Li lim−→
p∈P
ExtjA (A/[∗], |N |)

i
+3 Extj−iA (A/I,N) .

Proof. On one hand, part (ii) follows directly combining part (i) jointly with Theorem
4.2.24; on the other hand, part (i) is well known. The proof is therefore completed.

We conclude this part with the following:
Example 4.2.26. When I = I1 ∩ I2, the spectral sequence obtained in Theorem 4.2.25 boils
down to the long exact sequence

. . . −→ ExtiA (A/ (I1 + I2) , N) −→ ExtiA (A/I1, N)⊕ ExtiA (A/I2, N) −→ ExtiA (A/I,N)

−→ Exti+1
A (A/ (I1 + I2) , N) −→ . . .

obtained after applying the functor HomA (−, N) to the natural short exact sequence:

0 // A/I // A/I1 ⊕A/I2
// A/ (I1 + I2) // 0.
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4.2.3 Degeneration of homological spectral sequences

So far in this chapter, we have constructed several spectral sequences which involve the
left derived functors of the direct limit functor. The goal of this section is to provide suffi-
cient conditions in order to guarantee that the previously mentioned homological spectral
sequences degenerate at the E2-page.

Preliminary calculations

We shall collect in this subsubsection some preliminary facts which will simplify the proofs
of the main result of this subsection.

Definition 4.2.27. Let q ∈ P and let M be an object of A. The direct system represented
by M on q (namely, Mq) is defined as follows: for any p ∈ P ,

(Mq)p :=

{
M, if p = q,

0, otherwise.

Next result computes the direct limit of this special construction. The reader is encour-
aged to compare such statement with [31, Lemma 8.7].

Lemma 4.2.28. Let q ∈ P and let M be an object of A. For any i ∈ N,

Li lim−→
p∈P

(Mq)p ∼= H̃i−1((q, 1
P̂

);M),

where the tilde denotes reduced simplicial homology. We agree that the reduced homology of
the empty simplicial complex is M in degree −1 and zero otherwise.

Proof. First of all, set the following direct systems:

(M>q)p :=

{
M, if p ∈ (q, 1

P̂
),

0, otherwise,
and (M≥q)p :=

{
M, if p ∈ [q, 1

P̂
),

0, otherwise.

In this way, one obtains the following short exact sequence in Dir(P,A):

0 //M>q
//M≥q //Mq

// 0.

Therefore, we can consider the long exact sequence of reduced homology attached to the
previous one; regardless, since [q, 1

P̂
) is contractible (cf. Lemma 4.1.14) it follows that

H̃i (P ;M≥q) ∼= H̃i

(
[q, 1

P̂
);M

)
= 0

for all i ≥ 0. In this way, such long exact sequence of reduced homology boils down to the
following isomorphisms:

H̃0 (P ;Mq) = 0 and H̃i−1 (P ;M>q) ∼= H̃i (P ;Mq) for any i ≥ 1,
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where the non-zero isomorphisms are given by the connecting homomorphism. Moreover,
we also have, for any i ≥ 1, canonical isomorphisms

H̃i−1 (P ;M>q) ∼= H̃i−1

((
q, 1

P̂

)
;M
)
and H̃i (P ;Mq) ∼= Hi (P ;Mq) ∼= Li lim−→

p∈P
(Mq)p.

Summing up, for any i ≥ 1 one obtains a natural isomorphism

Li lim−→
p∈P

(Mq)p ∼= H̃i−1((q, 1
P̂

);M),

just what we finally wanted to show.

Another important ingredient in our later proofs will be the so-called universal coeffi-
cients theorem. We omit the proof and refer to [114, Theorem 7.55] for additional details.

Theorem 4.2.29 (Universal coefficients theorem for homology). Let B a (not necessarily
commutative) ring, let M be a left B-module, and let K• be a chain complex of flat right
B-modules whose chain subcomplex of boundaries has all terms flat. Then, for all n ∈ N
there is a short exact sequence

0 // Hn(K•)⊗B M
λn // Hn(K• ⊗B M)

µn // TorB1 (Hn−1(K•),M) // 0,

where

Hn(K•)⊗B M
λn // Hn(K• ⊗B M)

cls(z)⊗m 7−→ cls(z ⊗m)

and both λn and µn are canonical.

Main result of degeneration involving homological spectral sequences

Now, we introduce the main result of this subsection. It is worth mentioning here that the
assumptions imposed in the below result are a slight generalization of the ones imposed in
[6, Theorem 1.2] and [31, Theorem 1.1].

Theorem 4.2.30. Let A be a commutative Noetherian ring containing a field K, let T[∗]
be the functor introduced in Section 4.2 and let M be an object of A verifying the following
requirements.

(a) For any p ∈ P , RjTp(M) = 0 up to a unique value of j (namely, hp).

(b) For any pair of distinct elements p and q of P , HomA(RhpTp(M),RhqTq(M)) = 0.
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Then, the spectral sequence

E−i,j2 = Li lim−→
p∈P

RjTp(M)
i
+3 Rj−iT (M)

degenerates at the E2-page.

Proof. Part (a) of our assumptions implies that there is a canonical isomorphism of direct
systems

RjT[∗](M) ∼=
⊕
j=hq

(
RhqTq(M)

)
q
.

Fix i ∈ N. Applying to this previous isomorphism the ith left derived functor of the direct
limit over P , we get the following canonical isomorphism:

Li lim−→
p∈P

RjT[∗](M) ∼=
⊕
j=hq

Li lim−→
p∈P

(
RhqTq(M)

)
q
.

Moreover, Lemma 4.2.28 implies that there is a canonical isomorphism:

Li lim−→
p∈P

RjT[∗](M) ∼=
⊕
j=hq

H̃i−1((q, 1
P̂

);RhqTq(M)).

In this way, the universal coefficients theorem for homology implies that there is a canonical
isomorphism

Li lim−→
p∈P

RjT[∗](M) ∼=
⊕
j=hq

(
H̃i−1((q, 1

P̂
);K)⊗K RhqTq(M)

)
.

Now, set ti := dimK(H̃i−1((q, 1
P̂

);K)). As the natural map

K⊗K RhqTq(M) // RhqTq(M)

given by the assignment r ⊗ x 7−→ rx is a canonical isomorphism of A-modules and
RhqTq(M) is an object of A, it follows that K ⊗K RhqTq(M) can be regarded as an ob-
ject of A and therefore the abstract isomorphism

H̃i−1((q, 1
P̂

);K)⊗K RhqTq(M) ∼= RhqTq(M)⊕ti

implies that we can regard RhqTq(M)⊕ti also as an object of A, whence

Li lim−→
p∈P

RjT[∗](M) ∼=
⊕
j=hq

RhqTq(M)⊕ti

can be considered as an abstract isomorphism in the category A. In this way, combining
the previous isomorphism joint with part (b) of our assumptions one obtains the announced
degeneration.
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Remark 4.2.31. It is noteworthy that, during the proof of Theorem 4.2.30, we do not need
to consider the Tor term appearing in the general statement of the universal coefficients
theorem for homology because such term vanishes; indeed, this is due to the fact that our
coefficient ring is just the field K.

When a spectral sequence degenerates at the E2-page, it is natural to ask for the corre-
sponding filtration which such degeneration provides. This is the content of the following
direct consequence of Theorem 4.2.30.

Corollary 4.2.32. Let A be a commutative Noetherian ring containing a field K, let T[∗]
be the functor introduced in Section 4.2 and let M be an object of A verifying the following
requirements.

(a) For any p ∈ P , RjTp(M) = 0 up to a unique value of j (namely, hp).

(b) For any pair of distinct elements p and q of P , HomA(RhpTp(M),RhqTq(M)) = 0.

Then, for each 0 ≤ r ≤ cd(T ) there is an increasing filtration {Grk}r≤k≤dim(A) of RrT (M)
by A-modules such that

Grk/G
r
k−1
∼=

⊕
{q∈P | k+r=hq}

(
H̃k−1((q, 1

P̂
);K)⊗K RhqTq(M)

)
for all r ≤ k ≤ dim(A).

Proof. Under these assumptions, Theorem 4.2.30 ensures that the spectral sequence

E−i,j2 = Li lim−→
p∈P

RjTp(M)
i
+3 Rj−iT (M)

degenerates at the E2-page; moreover, if one inspects carefully the proof of Theorem 4.2.30
then one notices that we have shown, in fact, that

E−i,j2 =
⊕

{q∈P | j=hq}

(
H̃i−1((q, 1

P̂
);K)⊗K RhqTq(M)

)
.

Now, fix 0 ≤ r ≤ cd(T ). In this way, combining the degeneration at the E2-page obtained in
Theorem 4.2.30 joint with the very definition of convergence of a spectral sequence (as for-
mulated, for instance, in [114, pp. 626–627]), one gets a bounded filtration {Grk}r≤k≤dim(A)

of RrT (M) by A-modules such that

Grk/G
r
k−1
∼= E−k,k+r

2 .

Therefore, combining such isomorphism with the description of the E2-page which we have
provided during this proof, one finally obtains that

Grk/G
r
k−1
∼=

⊕
{q∈P | k+r=hq}

(
H̃k−1((q, 1

P̂
);K)⊗K RhqTq(M)

)
for all r ≤ k ≤ dim(A), just what we finally wanted to show.
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Specific examples

Our next aim is to exhibit particular settings on which the results obtained in Theorem
4.2.30 and Corollary 4.2.32 can be applied. Our first example is concerned with ordinary
local cohomology modules.

Example 4.2.33 (Ordinary local cohomology modules). When T[∗] = Γ[∗] is the ordinary tor-
sion functor, the conclussions obtained in Theorem 4.2.30 and Corollary 4.2.32 can be ap-
plied in case, for any p ∈ P , Ip is a cohomologically complete intersection ideal (cf. Definition
4.2.37); for a more down-to-earth situation, just take I either as a Stanley-Reisner ideal or,
more generally, suppose that I defines an arrangement of linear varieties. From this point
of view, our results in this specific setting recover and extend the ones obtained by Àlvarez
Montaner, García López and Zarzuela in [6, Section 2].

Our next example revolves around Nagata’s ideal transforms.

Example 4.2.34 (Ideal transforms). When T[∗] = D[∗] is the ordinary ideal transform functor,
the conclussions obtained in Theorem 4.2.30 and Corollary 4.2.32 can be applied in case,
for any p ∈ P , Ip is a principal ideal; regardless, in such case all this business boils down
to the following well known short exact sequence:

0 // ΓaA (A) // A // Aa // H1
aA(A) // 0.

Here, I = aA for some a ∈ A.

4.2.4 Extension problems in the homological framework

In the spirit of [6, Section 3], the aim of this section is to focus on the study of the
extension problems attached to the corresponding filtrations produced by the degeneration
of our previously introduced homological spectral sequences.

General starting setup

Our starting point is the following collection of short exact sequences:

0 // Grk−1
// Grk

// Grk/G
r
k−1

// 0

0 // Grk
// Grk+1

// Grk+1/G
r
k

// 0

...
...

. . . . . . . . .

0 // Grdim(A)−1
// Grdim(A)

// Grdim(A)/G
r
dim(A)−1

// 0.
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Hereafter, we omit the superscript r. Moreover, we have to point out that, for any k,

(sk) : 0 // Gk−1
// Gk // Gk/Gk−1

// 0

may be regarded as an element of Ext1
A(Gk/Gk−1, Gk−1).

From now onward in this subsection, T[∗] = (Tp)p∈P is the direct system of functors
which has been previously introduced and T := T1

P̂
. In this way, the following preliminary

calculation is just a mild generalization of [6, Lemma of page 47].

Lemma 4.2.35. We assume, in addition, that Ext1
A(RhpTp(M),RhqTq(M)) = 0 provided

hp ≥ hq + 2. Then, the natural maps

Ext1
A(Gk/Gk−1, Gk−1) // Ext1

A(Gk/Gk−1, Gk−1/Gk−2)

are injective for all k ≥ 2.

Proof. Consider the short exact sequence

(sk−1) : 0 //Gk−2
//Gk−1

//Gk−1/Gk−2
//0.

In this way, applying to (sk−1) the functor HomA(Gk/Gk−1,−) one obtains the following
exact sequence:

Ext1
A(Gk/Gk−1, Gk−2) // Ext1

A(Gk/Gk−1, Gk−1) // Ext1
A(Gk/Gk−1, Gk−1/Gk−2).

Therefore, applying once more HomA(Gk/Gk−1,−) to the short exact sequence (sl) for
l ≤ k − 2 and descending induction, it turns out that we are only required to check that
Ext1

A(Gk/Gk−1, Gl/Gl−1) = 0 for any l ≤ k − 2. However, applying Corollary 4.2.32 it is
enough to show that Ext1

A(RhpTp(M),RhqTq(M)) = 0, where hq ≤ j − 2 and hp = j. But
such vanishing holds by assumption.

Mayer-Vietoris spectral sequence of local cohomology modules

In the sequel, we restrict our attention to study the extension problems attached to the
Mayer-Vietoris spectral sequence of local cohomology modules in case it degenerates; namely,

E−i,j2 = Li lim−→
p∈P

Hj
Ip

(A)
i
+3 Hj−i

I (A).

Here, A is any regular ring containing a field K.
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Extension problems inside the ring of differential operators

Our next aim is to show that such extension problems are non-trivial with a slightly different
argument from the one used in [6]. Before doing so, we review the following notion; the
interested reader is referred to [93] for further details.

Theorem/Definition 4.2.36 (Lyubeznik). Let (R,m,K) be an equicharacteristic local

ring, so that its completion R̂ admits a surjective ring homomorphism A
π // // R̂ , where

A := K[[x1, . . . , xd]] for some d ∈ N, and set I := ker(π). Then, the following statements
hold.

(a) The digit λi,j(R) := dimK HomA(K, H i
m(Hd−j

I (A))) is finite and just depends on R and
(i, j), but neither on A nor on π.

(b) One has that λi,j(R) = lengthDA|K(H i
m(Hd−j

I (A))).

We refer to λi,j(R) as the (i, j)-Lyubeznik number of R.

We still have to introduce another preliminary concept (cf. [63]).

Definition 4.2.37 (Hellus, Schenzel). Let R be a commutative Noetherian ring and let
I be an ideal of R. It is said that I is cohomologically complete intersection provided
Hj
I (R) = 0 for all j 6= ht(I).

Remark 4.2.38. Just a brief comment about terminology. In several papers (see, for in-
stance, [111]), the phrase A ring R is relative Cohen-Macaulay with respect to an ideal I of
R is the same as saying that I is cohomologically complete intersection.

Now, we are ready to illustrate that, in general, the extension problems attached to the
Mayer-Vietoris spectral sequence

E−i,j2 = Li lim−→
p∈P

Hj
Ip

(A)
i
+3 Hj−i

I (A)

are non-trivial.

Counterargument 2. In case n = 2, suppose that I1 and I2 are both cohomologically
complete intersection ideals, with gradeA(Ii) := c for all i ∈ {1, 2}, such that I1 + I2 is a
cohomologically complete intersection ideal with gradeA(I1 + I2) = c + 1. In this case, it
is straightforward to check that the attached filtration (because, in this case, the spectral
sequence degenerates without further assumptions) boils down to the following short exact
sequence:

0 // Hc
I1

(A)⊕Hc
I2

(A) // Hc
I (A) // Hc+1

I1+I2
(A) // 0.
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If such exact sequence could be splitted in the category of DA|K-modules, then there would
be an isomorphism

Hc
I (A) ∼= Hc

I1(A)⊕Hc
I2(A)⊕Hc+1

I1+I2
(A)

in the category of DA|K-modules and therefore, for any i,

λi,d−c(A/I) = λi,d−c(A/I1) + λi,d−c(A/I2) + λi,d−c−1(A/I1 + I2).

But this equality is, in general, not true. For a concrete example, just take the square-
free monomial ideal I := 〈x, yz〉 inside K[[x, y, z]], where K is any field. The unjustified
calculations were carried out with the Macaulay2 package [5]. In this case, d = 3, c = 2,
I1 = 〈x, y〉, I2 = 〈x, z〉, and I1 + I2 = 〈x, y, z〉. The ring R := K[[x, y, z]]/I is a complete
1-dimensional Gorenstein Stanley-Reisner ring; whence

λ1,1(R) = 1 6= 2 = λ1,1

(
K[[x, y, z]]

I1

)
+ λ1,1

(
K[[x, y, z]]

I2

)
+ λ1,0

(
K[[x, y, z]]

m

)
and therefore the extension problems attached to the Mayer-Vietoris spectral sequence

E−i,j2 = Li lim−→
p∈P

Hj
Ip

(A)
i
+3 Hj−i

I (A)

are, in general, non-trivial in the category of DA|K-modules.
We end this part with the following:

Remark 4.2.39. It turns out that, when the ground field K has characteristic zero, the
Ext groups have only an structure as finite dimensional K-vector spaces. Indeed, it comes
from the fact that the Ext groups between two (either algebraic or analytic) holonomic
D-modules have just an structure as finite dimensional vector spaces (cf. [75, Theorem 3.1]
and [76, Theorem 4.8]). Actually, these Ext groups can be effectively computed using
Macaulay2 (cf. [109]).

Extension problems in the category of F-modules

The goal of this subsection is to use again Counterargument 2 in order to show that, in
general, the extension problems in the category of FA-modules are non-trivial. Firstly, we
need to review the following:

Construction 4.2.40 (Lyubeznik). Set

UA|K :=
⋃
e≥0

HomA(F e∗A,F
e
∗A).

It is well known that DA|K ⊆ UA|K. Now, consider an FA-module M ∼
ψ //F ∗M and set

ψe := F ∗e−1(ψ) ◦ F ∗e−2(ψ) ◦ . . . ◦ ψ : M ∼
//F ∗eM.
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Now, for any u ∈ HomA(F e∗A,F
e
∗A) and any m ∈M , set

u ·m :=
(
ψ−1
e ◦ (u⊗ 1M ) ◦ ψe

)
(m).

It is straightforward to check (cf. [94, page 116]) that this action is well defined and compat-
ible with the addition and multiplication operations on UA|K and makes M a UA|K-module.
Moreover, an FA-module homomorphism M //M ′ is automatically an UA|K-module ho-
momorphism; in this way, we have an additive, covariant, faithful (but not necessarily full),
univariate functor

FA −Mod // UA|K −Mod .

In addition, as DA|K ⊆ UA|K composing the previously constructed functor with the forget-
ful one given by such inclusion of rings one finally gets a functor

FA −Mod
ξA,K // DA|K −Mod .

Roughly speaking, ξA,K may be regarded as a sort of analitification functor in prime
characteristic. We are to use this construction to check that the extension problems in the
category of FA-modules are non-trivial.

Counterargument 3. In case n = 2, suppose that I1 and I2 are both cohomologically
complete intersection ideals, with gradeA(Ii) := c for all i ∈ {1, 2}, such that I1 + I2 is a
cohomologically complete intersection ideal with gradeA(I1 + I2) = c + 1. In this case, it
is straightforward to check that the attached filtration (because, in this case, the spectral
sequence degenerates without further assumptions) boils down to the following short exact
sequence:

0 // Hc
I1

(A)⊕Hc
I2

(A) // Hc
I (A) // Hc+1

I1+I2
(A) // 0.

If such exact sequence could be splitted in the category of FA-modules, then there would
be an isomorphism

Hc
I (A) ∼= Hc

I1(A)⊕Hc
I2(A)⊕Hc+1

I1+I2
(A)

in the category of FA-modules. Applying the functor ξA,K we would obtain an isomorphism
in the category of DA,K-modules. But this is impossible taking into account Counterargu-
ment 2.

4.3 Cohomological spectral sequences

As in the homological setup, the goal of this section is to build some spectral sequences, in
spite of the fact that we are mostly interested on those involving local cohomology modules.
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4.3.1 A formalism for producing cohomological spectral sequences

The reader is encouraged to compare the following construction with the ones carried out
in 4.2.10 and 4.2.21.

Construction 4.3.1. Let A T //A be a covariant, left exact, univariate functor. Building
from T , we produce the following endofunctor on Inv(P,A); namely,

Inv(P,A)
T // Inv(P,A)

M = (Mp)p∈P 7−→ T (M) := (T (Mp))p∈P .

In addition, we suppose that T commutes with arbitrary direct sums and that T verifies
one (and only one) of the following two assumptions.

(a) For any p ∈ Spec(A) and for any maximal ideal m of A, there exists an A-module X
such that

T (E (A/p))m =

{
X, if p ∈W(J,K) and p ⊆ m,

0, otherwise.

It is worth noting that X only depends on p and m. Here, J and K are ideals of A
which do not depend on any of the previous choices.

(b) For any p ∈ Spec(A) and for any maximal ideal m of A, there exists an A-module Y
such that

T (E (A/p))m =

{
Y, if p /∈W(J,K) and p ⊆ m,

0, otherwise.

It is worth noting that Y only depends on p and m. Here, J and K are ideals of A
which do not depend on any of the previous choices.

Specific examples

Before introducing examples where the previous assumptions are fulfilled, we have to review
the following notion.

Definition 4.3.2 (Bijan-Zadeh). Let Φ be a non-empty set of ideals of A. It is said that
Φ is a system of ideals of A if, whenever a, b ∈ Φ, there is an ideal c in Φ such that c ⊆ ab.
The reader should notice that, regarding a system of ideals Φ as poset ordered by reverse
inclusion, Φ turns out to be a filtered poset. Keeping this in mind, one can define the
bivariate functor H i

Φ(−,−) by

H i
Φ(N,M) := lim−→

a∈Φ

ExtiA(N/aN,M).
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As it was already pointed out by Bijan-Zadeh in [14, page 174], when N = A and, for some
j ∈ Z,

Φ = {a ∈ LA | dim(A/a) ≤ j},
H i

Φ(A,−) is naturally equivalent with the functor H i
j(−) (respectively, H i

[j](−)) studied in
[10] (respectively, used in [37, Definition 5.1]). Here, LA denotes the lattice of all the ideals
of A.

Example 4.3.3. Before going on, we present several instances where the previous assump-
tions are fullfilled. In what follows, J,K will denote arbitrary ideals of A and N will stand
for a finitely generated object of A with finite projective dimension. In this case, we are
interested in the inverse system M = A/[∗]. In what follows, we shall use the fact that
filtered direct limits commute with finite inverse limits.

(i) HomA(N,−) verifies such assumptions. Indeed, it is enough to point out that

HomA

(
N, lim←−

p∈P
A/Ip

)
∼= lim←−

p∈P
HomA (N,A/[∗]) .

Moreover, given p ∈ Spec(A) and m ∈ Max(A) it follows, again as a direct consequence
of [30, 4.1.7], that

HomA(N,E(A/p))m =

{
HomAm (Nm, E(A/p)m) , if p ⊆ m,

0, otherwise.

(ii) The ordinary torsion functor ΓJ(−) also verifies the previous assumptions. This fact
follows from the next chain of isomorphisms:

ΓJ

(
lim←−
p∈P

A/Ip

)
∼= lim−→

t∈N
HomA

(
A/J t, lim←−

p∈P
A/Ip

)
∼= lim−→

t∈N
lim←−
p∈P
HomA

(
A/J t, A/[∗]

)
∼= lim←−

p∈P
lim−→
t∈N
HomA

(
A/J t, A/[∗]

) ∼= lim←−
p∈P
H0
J (A/[∗]) .

Furthermore, the reader should also remind, given p ∈ Spec(A) and m ∈ Max(A),
that

ΓJ (E(A/p))m =

{
E(A/p)m, if p ∈ V(J) and p ⊆ m,

0, otherwise.

(iii) The generalized torsion functor ΓJ(N,−) verifies these requirements too. It may be
verified in the following way:

ΓJ

(
N, lim←−

p∈P
A/Ip

)
∼= HomA

(
N,ΓJ

(
lim←−
p∈P

A/Ip

))
∼= HomA

(
N, lim←−

p∈P
H0
J (A/[∗])

)
∼= lim←−

p∈P
HomA

(
N,H0

J (A/[∗])
) ∼= lim←−

p∈P
H0
J (N,A/[∗]) .
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In addition, we also have to point out, for any p ∈ Spec(A) and m ∈ Max(A), that

ΓJ (N,E(A/p))m =

{
HomAm (Nm, E(A/p)m) , if p ∈ V(J) and p ⊆ m,

0, otherwise.

(iv) The generalized Nagata’s ideal transform functor DJ(N,−) also verifies the previous
assumptions. Indeed, we only have to notice that

DJ

(
N, lim←−

p∈P
A/Ip

)
∼= lim−→

t∈N
HomA

(
J tN, lim←−

p∈P
A/Ip

)
∼= lim−→

t∈N
lim←−
p∈P
HomA

(
J tN,A/[∗]

)
∼= lim←−

p∈P
DJ(N,A/[∗]).

In addition, we also have to point out, for any p ∈ Spec(A) and m ∈ Max(A), that

DJ (N,E(A/p))m =

{
HomAm (Nm, E(A/p)m) , if p /∈ V(J) and p ⊆ m,

0, otherwise.

(v) The torsion functor ΓJ,K with respect to (J,K) verifies the previous requirements.
Indeed, set W̃ (J,K) as the set of ideals a of A such that J t ⊆ a +K for some t ∈ N.
We regard W̃ (J,K) as poset with order given by reverse inclusion of ideals. In this
way, applying [133, Theorem 3.2] it follows that

ΓJ,K

(
lim←−
p∈P

A/Ip

)
∼= lim−→

a∈W̃ (J,K)

Γa

(
lim←−
p∈P

A/Ip

)
.

In this way, combining this previous isomorphism joint with the fact that W̃ (J,K) is
filtered it follows that

ΓJ,K

(
lim←−
p∈P

A/Ip

)
∼= lim−→

a∈W̃ (J,K)

Γa

(
lim←−
p∈P

A/Ip

)
∼= lim−→

a∈W̃ (J,K)

lim←−
p∈P
H0

a (A/[∗])

∼= lim←−
p∈P
H0
J,K (A/[∗]) .

Moreover, we also notice, for any p ∈ Spec(A) and m ∈ Max(A), that

ΓJ,K (E(A/p))m =

{
E(A/p)m, if p ∈W(J,K) and p ⊆ m,

0, otherwise.
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(vi) Let Φ be a system of ideals. We claim that ΓΦ(N,−) also verifies these requirements;
indeed, it is enough to point out that

ΓΦ

(
N, lim←−

p∈P
A/Ip

)
∼= lim−→

a∈Φ

HomA

(
N/aN, lim←−

p∈P
A/Ip

)
∼= lim−→

a∈Φ

lim←−
p∈P
HomA (N/aN,A/[∗])

∼= lim←−
p∈P

lim−→
a∈Φ

HomA (N/aN,A/[∗]) ∼= lim←−
p∈P
H0

Φ (N,A/[∗]) .

Furthermore, we have to point out, for any p ∈ Spec(A) and m ∈ Max(A), that

ΓΦ (N,E(A/p))m =

{
lim−→a∈Φ

HomAm (Nm/amNm, E(A/p)m) , if p ⊆ m,

0, otherwise.

4.3.2 Construction of cohomological spectral sequences

As we have previously explained, our goal is to construct an spectral sequence which involves
the right derived functors of the inverse limit. The following lemma turns out to be the
first step in such construction.

Lemma 4.3.4. Let Υ be an injective inverse system of the form⊕
j∈J

(EjP )≥qj ,

where J is a (not necessarily finite) index set, qj ∈ P , Ej is an indecomposable injective
A-module, and [

(EjP )≥qj
]
p

:=

{
Ej , if p ∈ [qj , 1P̂ ),

0, otherwise.

Then, the coaugmented cochain complex

0 //

(
lim←−
p∈P
◦T

)
(Υ) // Roos∗(T (Υ))

is exact.

Proof. As T and Roos∗(−) commutes with arbitrary direct sums we may assume, without
loss of generality, that Υ = (E(A/p)P )≥q for some (p, q) ∈ Spec(A)× P .

Now, we carry out a similar strategy as the one employed in the proof of Lemma 4.2.15;
indeed, fix a maximal ideal m of A. By the usual generalities, it is enough to show that the
cochain complex

0 //

(
lim←−
p∈P
◦T

)
(Υ)m // Roos∗(T (Υ))m
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is exact. If p 6⊆ m then the previous coaugmented cochain complex is zero and we are done;
therefore, from now on we suppose that p ⊆ m.

First of all, suppose that T verifies requirement (a) of Construction 4.3.1; on one hand,
if p /∈W(J,K), then our coaugmented cochain complex is identically zero, whence we are
done. On the other hand, if p ∈W(J,K), then such coaugmented cochain complex turns
out to be equal to the one for computing the simplicial cohomology of the topological space
[q, 1

P̂
) with coefficients in X. But such topological space is contractible by Lemma 4.1.14;

this fact concludes the proof just in case T verifies assumption (a) of Construction 4.3.1.
In this way, from now on in this proof we suppose that T verifies hypothesis (b) of

Construction 4.3.1 (and also that p ⊆ m). On one hand, if p ∈W(J,K), then our coaug-
mented cochain complex is identically zero, whence we are done. On the other hand, if
p /∈ W(J,K), then such coaugmented cochain complex turns out to be equal to the one
for computing the simplicial cohomology of the topological space [q, 1

P̂
) with coefficients

in Y . But such topological space is contractible by Lemma 4.1.14; therefore, the proof is
completed.

Next spectral sequence will play a key role in what follows.

Theorem 4.3.5. The following statements hold.

(i) There is a first quadrant spectral sequence

Ei,j2 = Ri lim←−
p∈P

RjT (A/[∗])
i
+3 Ri+j

(
lim←−
p∈P
◦T

)
(A/[∗]) .

(ii) If, in addition, there is a natural equivalence of functors

lim←−
p∈P
◦T ∼= T ◦ lim←−

p∈P
,

then the previous spectral sequence can be arranged in the following manner:

Ei,j2 = Ri lim←−
p∈P

RjT (A/[∗])
i
+3 Ri+jT

(
lim←−
p∈P

A/Ip

)
.

(iii) If, furthermore, A/[∗] is flasque, then the previous spectral sequence becomes into the
next one:

Ei,j2 = Ri lim←−
p∈P

RjT (A/[∗])
i
+3 Ri+jT (A/I) .

Proof. Let 0 //A/[∗] //I• be an injective resolution of A/[∗] in the category of inverse
systems; regarding Theorem 4.1.24, we can choose any spot of I• (say, Ii) such that

Ii ∼=
⊕
j∈Ji

(EjiP )≥qji ,
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as in Lemma 4.3.4. Moreover, applying to such resolution the functor T one gets the
following cochain complex of inverse systems:

0 // T (A/[∗]) // T (I•) .

Thus, solving each spot of this cochain complex through the Roos cochain complex, we
obtain the bicomplex Roosi

(
T
(
Ij
))
; we hope the following picture explains our last sen-

tence:
...

...
...

0 // Roos1 (T (A/[∗]))

OO

// Roos1
(
T
(
I0
))

OO

// Roos1
(
T
(
I1
))

OO

// . . .

0 // Roos0 (T (A/[∗]))

OO

// Roos0
(
T
(
I0
))

OO

// Roos0
(
T
(
I1
))

OO

// . . .

0 // lim←−p∈P (T (A/[∗]))

OO

// lim←−p∈P
(
T
(
I0
))

OO

// lim←−p∈P
(
T
(
I1
))

OO

// . . .

0

OO

0

OO

0

OO

In this way, we produce two spectral sequences; namely, the ones obtained respectively
through the horizontal and vertical filtrations associated to the bicomplex Roosi

(
T
(
Ij
))
.

Furthermore, the reader should notice that both spectral sequences converge because both
stem from a bicomplex concentrated in the first quadrant; therefore, our next aim is to
calculate their common abutment.

On one hand, the E2-page of one of our spectral sequences is obtained by firstly com-
puting cohomology on columns and then calculating cohomology of the resulting rows;
regardless, Lemma 4.3.4 ensures that all the columns of Roosi

(
T
(
Ij
))

are acyclic up to
Roos∗ (T (A/[∗])), whence such spectral sequence collapses, providing a natural isomor-
phism between its E2-sheet and

R∗
(

lim←−
p∈P
◦T

)
(A/[∗]) .

This is exactly the abutment we are looking for.
On the other hand, the E2-sheet of our remainder spectral sequence is the one obtained

by firstly computing cohomology on rows and then computing cohomology on the resulting
columns; it is left to the reader to check out that such E2-page turns out to be

Ei,j2 = Ri lim←−
p∈P

RjT (A/[∗]) .
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Summing up, one obtains the following spectral sequence

Ei,j2 = Ri lim←−
p∈P

RjT (A/[∗])
i
+3 Ri+jT

(
lim←−
p∈P

A/Ip

)
,

just what we finally wanted to show in part (i). Finally, part (ii) follows immediately
from the well known theory of Grothendieck spectral sequences (cf. [114, Theorem 10.47]
for further details).

Remark 4.3.6. It is worth mentioning here that part (ii) of Proposition 4.3.5 can be regarded
as an extension of the argument pointed out by M.Brun, W.Bruns and T.Römer in [31,
Remark 8.8].

Examples revisited

The goal of this part is to specialize Theorem 4.3.5 on the functors which have been previ-
ously considered at the beginning of Subsection 4.3.1; as usual, throughout these examples
N will stand for a finitely generated A-module with finite projective dimension.

The first example is concerned with the Hom functor.

Example 4.3.7 (Covariant Hom). When T = HomA(N,−), we obtain the following spectral
sequence:

Ei,j2 = Ri lim←−
p∈P
ExtjA (|N |, A/[∗])

i
+3 Exti+jA (N,A/I) ,

where, as usual, |N | denotes the constant inverse system given by N with identities on
N as structural morphisms. On the other hand, when I = I1 ∩ I2 this spectral sequence
degenerates without assumptions to the long exact sequence

. . . −→ ExtjA (N,A/I) −→ ExtjA (N,A/I1)⊕ ExtjA (N,A/I2) −→ ExtjA (N,A/(I1 + I2))

−→ Extj+1
A (N,A/I) −→ . . .

obtained after applying the functor HomA(N,−) to the natural short exact sequence

0 // A/I // A/I1 ⊕A/I2
// A/ (I1 + I2) // 0.

The second one revolves around generalized local cohomology.

Example 4.3.8 (Generalized local cohomology). When T = ΓJ(N,−) for some ideal J of A,
we obtain the following spectral sequence:

Ei,j2 = Ri lim←−
p∈P
HjJ (|N |, A/[∗])

i
+3 H i+j

J (N,A/I) .
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Moreover, if I = I1 ∩ I2 then such spectral sequence boils down to the long exact sequence

. . . −→ Hj
J (N,A/I) −→ Hj

J (N,A/I1)⊕Hj
J (N,A/I2) −→ Hj

J (N,A/(I1 + I2))

−→ Hj+1
J (N,A/I) −→ . . .

obtained after applying the functor ΓJ(N,−) to the natural short exact sequence

0 // A/I // A/I1 ⊕A/I2
// A/ (I1 + I2) // 0.

The third one treats the case of generalized ideal transforms.

Example 4.3.9 (Generalized ideal transforms). When T = DJ(N,−) for some ideal J of A,
we obtain the following spectral sequence:

Ei,j2 = Ri lim←−
p∈P
DjJ (|N |, A/[∗])

i
+3 Di+j

J (N,A/I) .

In addition, if I = I1 ∩ I2 then the previous spectral sequence becomes into the long exact
sequence

. . . −→ Dj
J (N,A/I) −→ Dj

J (N,A/I1)⊕Dj
J (N,A/I2) −→ Dj

J (N,A/(I1 + I2))

−→ Dj+1
J (N,A/I) −→ . . .

obtained after applying the functor DJ(N,−) to the natural short exact sequence

0 // A/I // A/I1 ⊕A/I2
// A/ (I1 + I2) // 0.

We go on our particular collection of examples with local cohomology with respect to
pairs of ideals.

Example 4.3.10 (Local cohomology with respect to pairs of ideals). When T = ΓJ,K for
some ideals J and K of A, we obtain the following spectral sequence:

Ei,j2 = Ri lim←−
p∈P
HjJ,K (A/[∗])

i
+3 H i+j

J,K (A/I) .

Moreover, if I = I1 ∩ I2 then such spectral sequence boils down to the long exact sequence

. . . −→ Hj
J,K (A/I) −→ Hj

J,K (A/I1)⊕Hj
J,K (A/I2) −→ Hj

J,K (A/(I1 + I2))

−→ Hj+1
J,K (A/I) −→ . . .

obtained after applying the functor ΓJ,K to the natural short exact sequence

0 // A/I // A/I1 ⊕A/I2
// A/ (I1 + I2) // 0.
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Our final example involves local cohomology with respect to inverse systems of ideals.

Example 4.3.11 (Local cohomology with respect to inverse systems of ideals). When T = ΓΦ

for some inverse system of ideals Φ of A, we obtain the next spectral sequence:

Ei,j2 = Ri lim←−
p∈P
HjΦ (|N |, A/[∗])

i
+3 H i+j

Φ (N,A/I) .

Moreover, if I = I1 ∩ I2 then such spectral sequence boils down to the long exact sequence

. . . −→ Hj
Φ (N,A/I) −→ Hj

Φ (N,A/I1)⊕Hj
Φ (N,A/I2) −→ Hj

Φ (N,A/(I1 + I2))

−→ Hj+1
Φ (N,A/I) −→ . . .

obtained after applying the functor ΓΦ(N,−) to the natural short exact sequence

0 // A/I // A/I1 ⊕A/I2
// A/ (I1 + I2) // 0.

Preliminary results

Our next aim is to give an alternative description of the E2-page of the spectral sequence
provided by Proposition 4.3.5. Such description involves some previous technical results.

The first one is the so-called universal coefficients theorem for cohomology. As in the
homological framework, we omit its proof and refer to [114, Theorem 7.59] for further
explanations.

Theorem 4.3.12 (Universal coefficients theorem for cohomology). Let B a (not necessarily
commutative) ring, let M be a left B-module, and let K• be a chain complex of projective
left B-modules whose chain subcomplex of boundaries has all terms projective. Then, for
all n ∈ N there is a short exact sequence

0 // Ext1
B(Hn−1(K•),M)

λn // Hn(HomB(K•,M))
µn // HomB(Hn(K•),M) // 0,

and both λn and µn are canonical.

The second technical tool which we shall need later on is the following result, whose
proof we omit because of it is the dual version of Lemma 4.2.28.

Lemma 4.3.13. Let M be an object of A. Then, for any i ∈ N,(
Ri lim←−

p∈P

)
((Mq)p) ∼= H̃ i−1((q, 1

P̂
);M),

where the tilde denotes reduced simplicial cohomology. As usual, we agree that the reduced
cohomology of the empty simplicial cochain complex is M in degree −1 and zero otherwise.
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Now, we are ready for the promised calculation of the E2-sheet of the spectral sequence
given by Theorem 4.3.5.

Proposition 4.3.14. There is a natural isomorphism(
Ri lim←−

p∈P

)
(RjT (A/[∗])) ∼=

⊕
j=dq

RdqT (A/Iq)
⊕ti ,

where
ti := dimK

(
H̃i−1((q, 1

P̂
);K)

)
.

Proof. Since RjT (A/Ip) = 0 up to a single value of j it follows that there is a canonical
isomorphism of inverse systems

RjT (A/[∗]) ∼=
⊕
j=dq

(RdqT (A/Iq))q.

Fix i ∈ N. Applying to this previous isomorphism the ith right derived functor of the
inverse limit over P , we get the following canonical isomorphism:

Ri lim←−
p∈P

RjT (A/[∗]) ∼=
⊕
j=dq

Ri lim←−
p∈P

(
RdqT (A/Iq)

)
q
.

Moreover, Lemma 4.3.13 implies that there is a canonical isomorphism:

Ri lim←−
p∈P

RjT (A/[∗]) ∼=
⊕
j=dq

H̃ i−1((q, 1
P̂

);RdqT (A/Iq)).

In this way, the universal coefficients theorem for cohomology implies that there is a canon-
ical isomorphism

Ri lim←−
p∈P

RjT (A/[∗]) ∼=
⊕
j=dq

HomK

(
H̃i−1((q, 1

P̂
);K),RdqT (A/Iq)

)
.

Now, set ti := dimK(H̃i−1((q, 1
P̂

);K)). As the evaluation at 1 map

HomK(K,RdqT (A/Iq)) // RdqT (A/Iq)

is a canonical isomorphism of A-modules and RdqT (A/Iq) is an object of A, it follows
that HomK(K,RdqT (A/Iq)) can be regarded as an object of A and therefore the abstract
isomorphism

HomK

(
H̃i−1((q, 1

P̂
);K),RdqT (A/Iq)

)
∼= RdqT (A/Iq)

⊕ti

implies that we can regard RdqT (A/Iq)
⊕ti also as an object of A, whence

Ri lim←−
p∈P

RjT (A/[∗]) ∼=
⊕
j=dq

RdqT (A/Iq)
⊕ti

can be considered as an abstract isomorphism in the category A.
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Main result in the cohomological framework

In this way, we can finally establish the spectral sequence on which we are mainly interested
in this cohomological framework; more precisely, next result can be regarded as a refinement
of Proposition 4.3.5.

Theorem 4.3.15. Let K be any field, let A be a commutative Noetherian ring containing
K, let I be an ideal of A with minimal primary decomposition given by

I = I1 ∩ . . . ∩ In,

and let P be the poset given by all the possible sums of the ideals I1, . . . , In ordered by reverse
inclusion. We further assume (cf. Theorem 4.2.6) that the inverse system A/[∗] is flasque
and that the natural map

A −→ lim←−
p∈P

A/Ip

induces a natural isomorphism
A/I ∼= lim←−

p∈P
A/Ip.

Moreover, we also suppose that, for any p 6= q,

HomA

(
RdpT (A/Ip) ,RdqT (A/Iq)

)
= 0

and that, for any p ∈ P , RjT (A/Ip) = 0 up to a single value of j (namely, dp). Then,
there exists a third quadrant spectral sequence of the form:

Ei,j2 =
⊕
j=dq

RdqT (A/Iq)
⊕ti

i
+3 Ri+jT (A/I) ,

where
ti := dimK

(
H̃i−1

((
q, 1

P̂

)
;K
))
.

Moreover, such spectral sequence degenerates at the E2-sheet.

Moreover, we also want to state the cohomological analogue of Corollary 4.2.32; in this
case, the details are left to the interested reader.

Corollary 4.3.16. Under the assumptions of Theorem 4.3.15, for each 0 ≤ r ≤ cd(T )
there is an increasing filtration {Hr

k}r≤k≤dim(A) of RrT (A/I) by A-modules such that

Hr
k/H

r
k−1
∼=

⊕
{q∈P | r−k=dq}

(
T dq (A/Iq)⊗K H̃k−1

((
q, 1

P̂

)
;K
))
.
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4.3.3 Extension problems in the cohomological framework

In Subsection 4.2.4, we studied the extension problems attached to the filtration produced
in Theorem 4.2.30 and Corollary 4.2.32. Our next goal is to carry out a similar business
with the filtration produced in Theorem 4.3.15; indeed, under its assumptions Theorem
4.3.15 implies that we have a collection of short exact sequences

0 // Hr
k−1

// Hr
k

// Hr
k/H

r
k−1

// 0

0 // Hr
k

// Hr
k+1

// Hr
k+1/H

r
k

// 0

...
...

. . . . . . . . .

0 // Hr
dim(A)−1

// Hr
dim(A)

// Hr
dim(A)/H

r
dim(A)−1

// 0.

Maybe, it is convenient to remind here that, according to Corollary 4.3.16, for each r the
quotients Hr

k/H
r
k−1 can be decomposed in the following manner:

Hr
k/H

r
k−1
∼=

⊕
{q∈P | r−k=dq}

(
T dq (A/Iq)⊗K H̃k−1

((
q, 1

P̂

)
;K
))
.

From now on, we omit the superscript r; in addition, the reader should point out that, for
each k,

(hk) : 0 // Hk−1
// Hk

// Hk/Hk−1
// 0

can be considered as a member of Ext1
A (Hk/Hk−1, Hk−1).

Next result is just a reformulation of Lemma 4.2.35 in this setup; since its proof is
exactly the same as the one of Lemma 4.2.35, we omit the details.

Lemma 4.3.17. We assume, in addition, that Ext1
A
(
RdpT (A/Ip) ,RdqT (A/Iq)

)
= 0 pro-

vided dp ≥ dq + 2. Then, the natural maps

Ext1
A(Hk/Hk−1, Hk−1) // Ext1

A(Hk/Hk−1, Hk−1/Hk−2)

are injective for all k ≥ 2.

In other words, Lemma 4.3.17 tells us that in order to determine the extension problems
associated to the filtration given in Theorem 4.3.15, it is enough to look at the extension
groups Ext1

A
(
RdpT (A/Ip) ,RdqT (A/Iq)

)
, where dp = dq + 1.

4.3.4 Extension problems attached to a local cohomology spectral se-
quence

The final aim of this chapter is to study the extension problems associated to the spectral
sequence produced in Theorem 4.3.15 in case T = Γm; we think it will be illustrative to
single out such result in this very particular case for the convenience of the reader.
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Theorem 4.3.18. Let K be any field, let A be any commutative Noetherian ring containing
K, let I be an ideal of A with minimal primary decomposition given by

I = I1 ∩ . . . ∩ In,

and let P be the poset given by all the possible sums of the ideals I1, . . . , In ordered by reverse
inclusion; suppose that all of them are contained in a certain maximal ideal of A (namely,
m). We further assume (cf. Theorem 4.2.6) that the inverse system A/[∗] is flasque and
that the natural map

A −→ lim←−
p∈P

A/Ip

induces a natural isomorphism
A/I ∼= lim←−

p∈P
A/Ip.

Moreover, we also suppose that, for any p ∈ P , A/Ip is a Cohen-Macaulay domain. Then,
there exists a third quadrant spectral sequence of the form:

Ei,j2 =
⊕
j=dq

H
dq
m (A/Iq)

⊕ti
i
+3 H i+j

m (A/I) ,

where
ti := dimK

(
H̃i−1

((
q, 1

P̂

)
;K
))
.

Moreover, such spectral sequence degenerates at the E2-sheet.

Discussion 4.3.19. At this point, maybe it is convenient to provide specific situations where
the assumptions of Theorem 4.3.18 are fulfilled.

(i) When I is a squarefree monomial ideal inside a polynomial ring over a field; indeed, in
this case I admits a minimal primary decomposition in terms of face ideals and these
specific prime ideals are closed with respect to sum; whence the poset P is, under
these assumptions, made up of face ideals, which clearly satisfy all the requirements
of Theorem 4.3.18.

(ii) When I defines an arrangement of linear varieties; in this case, I admits a minimal
primary decomposition in terms of prime ideals generated by linear forms, which is a
family of prime ideals closed under sum. Therefore, under these assumptions P is made
up by prime ideals generated by linear forms, which also verify all the assumptions of
Theorem 4.3.18.

(iii) Let Q be an affine semigroup (cf. [103, Theorem 7.4]), let K be any field, and suppose
that the semigroup ring A = K[Q] is either:

(a) normal; or
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(b) simplicial and Cohen-Macaulay.

Moreover, let I ⊆ K[Q] be a squarefree monomial ideal (cf. [103, Definition 7.9]). We
claim that Theorem 4.3.18 can also be applied in this case; indeed, I admits a minimal
primary decomposition in terms of monomial prime ideals (cf. [103, Example 7.13]).
In addition, for any monomial prime ideal p it is known (see [33, Theorem 6.3.5],
[141, Paragraph below Remark 3.4] in the normal case, and [142, Lemma 2.4] in the
remainder case) that A/p is a Cohen-Macaulay ring. Therefore, the poset P is made
up by Cohen-Macaulay monomial prime ideals, which is just what we need to check.

(iv) Let A be a commutative Noetherian ring containing a field K, and let y1, . . . , yn
be an A-regular sequence contained in the Jacobson radical of A. Moreover, let

I := JK[Y1, . . . , Yn], where K[Y1, . . . , Yn]
ψ //A is the map of K-algebras which sends

each indeterminate Yi to yi, and J is a squarefree monomial ideal in the usual sense.
Thus, since ψ is flat (cf. [116, Theorem 2.1]), it follows that Theorem 4.3.18 can also
be applied in this setting.

The reader should appreciate some difference between the statement of Theorem 4.3.18
and the one of Theorem 4.3.15; indeed, we do not need to require any vanishing of Hom’s
because of the following:

Lemma 4.3.20. Let K be any field, let A be any commutative Noetherian ring containing
K, and let p, q be two prime ideals of A contained in a fixed maximal one (say, m) such that
q 6⊆ p. Then, one has that

HomA

(
H
dp
m (A/p) , H

dq
m (A/q)

)
= 0.

Proof. First of all, in order to simplify notation, set Hp := H
dp
m (A/p) and Hq := H

dq
m (A/q);

we assume, to get a contradiction, that there is a

0 6= ψ ∈ HomA (Hp, Hq) .

By [30, 7.3.2], AttA (Hp) = {p} and AttA (Hq) = {q}, where Att denotes the set of attached
primes as defined, for instance, in [30, 7.2]; in this way, we get the following commutative
square:

Hp

����

ψ // Hq

Q ∼
// Im(ψ).
?�

OO

Here, Q := Hp/ ker(ψ) and the bottom isomorphism is the one provided by the First
Isomorphism Theorem. So, since AttA(Q) ⊆ AttA(Hp) (indeed, this fact follows from [30,
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7.2.6]) and AttA (Hp) = {p} one has that AttA(Q) is either empty or the singleton set {p};
however, Q 6= 0 because we are assuming that ψ 6= 0, whence AttA(Q) = {p}. Moreover,
as Q ∼= Im(ψ) this implies that AttA(Im(ψ)) = {p}. On the other hand, since Im(ψ) ⊆ Hq

it is clear that √
(0 :A Hq) ⊆

√
(0 :A Im(ψ));

regardless, combining [30, 7.2.11] and the foregoing facts it follows that

q =
√

(0 :A Hq) ⊆
√

(0 :A Im(ψ)) = p.

But this contradicts our assumption that q 6⊆ p, whence ψ must be zero; the proof is
therefore completed.

Before going on, we want to raise the following:

Question 4.3.21. Let K be any field, let A be K[[x1, . . . , xd]], and let p, q be two prime ideals
of A such that both A/p and A/q are Cohen-Macaulay and that dp = dq + 1. Is it true that

Ext1
A

(
H
dp
m (A/p) , H

dq
m (A/q)

)
= 0?

The reader should point out that an affirmative answer to the previous question, com-
bined with Lemma 4.3.17, would imply that the calculations carried out in the next sub-
subsection determines all the extension problems attached to the filtration produced by the
degeneration of the spectral sequence provided by Theorem 4.3.18.

In this way, the final aim of this chapter is to show that the extension problems asso-
ciated to the filtration produced by the degeneration of the spectral sequence provided by
Theorem 4.3.18 are non-trivial; regarding our previous comments, it is clear that we can
not ensure that we are determining all the extension problems attached to such filtration.

Extension problems in the ungraded setting

Our goal in this part is to show that the extension problems attached to filtration produced
by the degeneration of the spectral sequence provided by Theorem 4.3.18 are, in general,
non-trivial.

Firstly, we review the well known duality between Ext and Tor groups obtained through
Matlis duality; we omit the proof and refer to [131, 3.4.14] for details.

Proposition 4.3.22. Let (R,m,K) be a local ring, let j ∈ Z and let X0, X1 be R-modules.
As usual, (−)∨ denotes the Matlis duality functor HomR(−, ER), where ER denotes a choice
of injective hull of K over R. Then, the following statements hold.

(a) TorRj (X0, X1)∨ ∼= ExtjR(X0, X
∨
1 ).
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(b) If, in addition X0 is finitely generated, then one has that

TorRj (X0, X
∨
1 ) ∼= ExtjR(X0, X1)∨.

In any case, both isomorphisms are canonical.

Now, we are ready to show that the extension problems extension problems associated to
the filtration produced by the degeneration of the spectral sequence provided by Theorem
4.3.18 in this ungraded setting are non-trivial. This fact follows directly from the next
technical result, which is interesting in its own right.

Proposition 4.3.23. Let K be any field, set A := K[[x1, . . . , xd]] and let y1, . . . , yn be an A-
regular sequence. Moreover, for each 1 ≤ t ≤ n, set It := 〈y1, . . . , yt〉 and Ht := Hd−t

m (A/It).
Then, the following statements hold.

(i) HomA(A/It+1, A/It) = 0.

(ii) HomA(A/It, A/It) = A/It.

(iii) Ext1
A(A/It+1, A/It) = A/It+1.

(iv) Ext1
A ((0 :E It) , (0 :E It+1)) = A/It+1.

(v) Ext1
A(Ht, Ht+1) = A/It+1.

Proof. Let Y1, . . . , Yn be indeterminates and, moreover, consider the natural map of K-
algebras S := K[Y1, . . . , Yn] //A which sends Yj into yj for each 1 ≤ j ≤ n. Thus, using
Hartshorne’s results (cf. [60, Proposition 1 and Corollary 1]) it follows that

(It :A It+1) = (〈Y1, . . . , Yt〉 :S 〈Y1, . . . , Yt+1〉)A = 〈Y1, . . . , Yt〉A = It,

whence
HomA(A/It+1, A/It) ∼=

(It :A It+1)

It
= 0,

just what we firstly wanted to check.
On the other hand, consider the short exact sequence

0 // A/It
·yt+1 // A/It // A/It+1

// 0.

In this way, applying the functor HomA(−, A/It) to this short exact sequence the functor
HomA(−, A/It) one obtains the following exact one:

0 // HomA(A/It+1, A/It) // HomA(A/It, A/It)
·yt+1 // HomA(A/It, A/It)

// Ext1
A(A/It+1, A/It) // Ext1

A(A/It, A/It)
·yt+1 // Ext1

A(A/It, A/It).
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Thus, since

HomA(A/It, A/It) ∼=
(It :A It)

It
= A/It

and HomA(A/It+1, A/It) = 0 one can rewrite the previous exact sequence in the following
way:

0 −→ A/It
·yt+1−→ A/It −→ Ext1

A(A/It+1, A/It) −→ Ext1
A(A/It, A/It)

·yt+1−→ Ext1
A(A/It, A/It).

Therefore, since the cokernel of A/It
·yt+1 //A/It is A/It+1 one obtains the following exact

sequence:

0 −→ A/It+1 −→ Ext1
A(A/It+1, A/It) −→ Ext1

A(A/It, A/It)
·yt+1−→ Ext1

A(A/It, A/It). (4.8)

Now, we claim that Ext1
A(A/It, A/It) = (A/It)

⊕t; indeed, Ext1
A(A/It, A/It) can be com-

puted asH1(HomA(K•(y1, . . . , yt), A/It)); that is, the first cohomology group of the cochain
complex obtained by applying the functor HomA(−, A/It) to the Koszul resolution of A/It
(namely, K•(y1, . . . , yt)). Regardless, taking into account the very definition of the Koszul
complex, we know that all the matrices which represent the differentials in K•(y1, . . . , yt)
have all their entries in It; thus, this single fact implies that all the differentials of the
cochain complex HomA(K•(y1, . . . , yt), A/It) vanish and therefore one obtains that

Ext1
A(A/It, A/It) = H1(HomA(K•(y1, . . . , yt), A/It)) = (A/It)

⊕t .

In this way, bearing in mind this fact we can arrange the exact sequence (4.8) in the
following way:

0 // A/It+1
// Ext1

A(A/It+1, A/It) // (A/It)
⊕t ·yt+1 // (A/It)

⊕t .

But the endomorphism on (A/It)
⊕t given by multiplication by yt+1 is injective; whence one

finally obtains that
A/It+1

∼= Ext1
A(A/It+1, A/It).

In particular, part (iii) holds.
In addition, we have to point out that part (iv) follows combining part (iii) joint with

Proposition 4.3.22 and Matlis duality in the following way: indeed, we have to notice that

(A/It+1)∨ = Ext1
A(A/It+1, A/It)

∨ ∼= TorA1
(
A/It+1, (A/It)

∨) ∼= TorA1
(
(A/It)

∨ , A/It+1

)
and therefore

A/It+1
∼= (A/It+1)∨∨ ∼= TorA1

(
(A/It)

∨ , A/It+1

)∨ ∼= Ext1
A ((0 :E It) , (0 :E It+1)) ,

whence part (iv) also holds.
Finally, since A/It is a complete intersection ring for any t it is, in particular, quasi

Gorenstein. In this way, combining this fact joint with part (iv) one has that

Ext1
A(Ht, Ht+1) ∼= Ext1

A ((0 :E It) , (0 :E It+1)) = A/It+1,

just what we finally wanted to show.
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Extension problems in the graded setting

The main purpose of this part is to determine explicitly the extension problems attached to
the spectral sequence provided by Theorem 4.3.18 in case our ambient is a polynomial ring
graded in a suitable way. As the reader will easily see, our way of proceeding will follow
the same steps used in the ungraded setting, making the appropriate changes.

Firstly, we are to review the following auxiliary notions (cf. [88, Definition 4.1.6 and
Definition 4.1.17]).

Definition 4.3.24 (Kreuzer, Robbiano). Let K be a field, let S be the polynomial ring
K[x1, . . . , xd] and let m ≥ 1 be an integer.

(i) Given a matrix W ∈ Mm×d(Z), we can consider the Zm-grading on S for which
K ⊆ S0 and the indeterminates are homogeneous elements whose degrees are given by
the columns of W . In this case, it is said that S is graded by W . Moreover, we refer
to the rows of W as the weight vectors of the indeterminates x1, . . . , xd.

(ii) Now, suppose that S is graded by a matrix W ∈ Mm×d(Z) of rank m and let
w1, . . . , wm be the weight vectors. It is said that the grading on S given by W
is of positive type provided there exist a1, . . . , am ∈ Z such that all the entries of
a1w1 + . . . + amwm are positive. In this case, it is also said that W is a matrix of
positive type.

Example 4.3.25. We exhibit some examples of positive type matrices.

(a) The standard grading on Z (that is, deg(xi) = 1 for all i) is given by matrix
(
1 . . . 1

)
,

which is clearly of positive type.

(b) The standard Zd-grading on S (that is, deg(xi) = ei, where ei denotes the element of
Zd which has all its components 0 up to a 1 in the ith position) is given by W = the
identity matrix of size d. It is also clear in this case that W is of positive type; indeed,
just take ai = 1 for all i in the definition.

The reason for which we consider matrices of positive type is the following result, which
says that polynomial rings with gradings of positive type and finitely generated graded
modules over them have finite dimensional homogeneous components. We omit its proof
and refer to [88, Proposition 4.1.19] for details.

Proposition 4.3.26 (Kreuzer, Robbiano). Let K be a field, let S be the polynomial ring
K[x1, . . . , xd] graded by a matrix W ∈ Mm×d(Z) of positive type, and let M be a finitely
generated W -graded S-module. Then, the following statements hold.

(a) We have S0 = K.
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(b) For all a ∈ Zm, we have dimK(Ma) < +∞.

Remark 4.3.27. It is worth mentioning that the conclussion of the previous proposition also
works in greater generality; the interested reader may like to consult [103, Theorem 8.6] for
additional details.

In this way, hereafter K will denote a field and S will stand for the polynomial ring
K[x1, . . . , xd] graded by a positive type matrix W ∈Mm×d(Z). Moreover, let y1, . . . , yn be
homogeneous elements of S (with deg(yj) = Dj ∈ Zm) which forms an S-regular sequence
and, for any 1 ≤ t ≤ n, set It := 〈y1, . . . , yt〉. On the other hand, borrowing notation from
[33, 1.5] (see also [30, 13.1.8]) ∗HomS(−,−) will stand for the internal Hom in the category
of W -graded S-modules, and set (−)∨ := ∗HomK(−,K).

Next result gives the W -graded analogue of Proposition 4.3.22. Albeit its proof is the
adaptation in this graded context of [131, Proof of 3.4.14], we provide it for the convenience
of the reader.

Proposition 4.3.28. Let j ∈ Z and let X0, X1 beW -graded S-modules. Then, the following
statements hold.

(a) TorSj (X0, X1)∨ ∼= ∗ ExtjS(X0, X
∨
1 ).

(b) If, in addition, X0 is finitely generated, then one has that

TorSj (X0, X
∨
1 ) ∼= ∗ ExtjS(X0, X1)∨.

In any case, both isomorphisms are canonical.

Proof. Firstly, we prove part (a). Indeed, set T j and U j to be the functors TorSj (−, X1)∨

and ∗ ExtjS(−, X∨1 ). Since (−)∨ is exact and contravariant, it follows that both (T j)j∈N and
(U j)j∈N form a positive strongly connected sequences of contravariant functors. Moreover,
it is well known that

∗HomK(X0 ⊗S X1,K) ∼= ∗HomS(X0,
∗HomK(X1,K))

for any W -graded S-module X0; on the other hand, it is also clear that T jP = 0 = U jP
for j ≥ 1 and any ∗projective module P . Therefore, applying the appropriate dual of
[30, 13.3.5] one has that there exist uniquely determined natural equivalences of functors
T j +3U j ; whence part (a) follows directly from this fact.

Finally, we prove part (b). In this case, we set T j and U j as the functors TorSj (−, X∨1 )
and ∗ ExtS(−, X1)∨. In this case, (T j)j∈N and (U j)j∈N both form a positive strongly con-
nected sequence of covariant functors. In addition, for a finitely generated W -graded S-
module X0 one has a canonical isomorphism

X0 ⊗S ∗HomK(X1,K) ∼= ∗HomK(∗HomS(X0, X1),K).
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Again, T jP = 0 = U jP for j ≥ 1 and any ∗projective module P . Therefore, applying
the appropriate dual of [30, 13.3.5] one has that there exist uniquely determined natural
equivalences of functors T j +3U j ; whence one has that part (b) also holds.

The following statement can be regarded as the W -graded analogue of Proposition
4.3.23.

Proposition 4.3.29. Preserving the foregoing assumptions and notations, the following
statements hold.

(i) ∗HomS(S/It+1, S/It) = 0.

(ii) ∗HomS(S, S) ∼= S.

(iii) ∗HomS(S/It, S/It) ∼= S/It.

(iv) ∗HomS (S/It, (S/It)(−Dt+1)) ∼= (S/It)(−Dt+1).

(v) ∗ Ext1
S(S/It+1, S/It) ∼= (S/It+1)(Dt+1).

(vi) ∗ Ext1
S((S/It+1)∨ , (S/It)

∨) ∼= (S/It+1)(Dt+1).

(vii) ∗ Ext1
S(Ht, Ht+1) ∼= (S/It+1)(Dt+1), where Ht (respectively, Ht+1) stands for the local

cohomology module Hd−t
m (S/It) (respectively, Hd−t−1

m (S/It+1)).

Proof. First of all, we have to point out that, since S/It is finitely generated, one has that
∗HomS(S/It+1, S/It) is nothing but HomS(S/It+1, S/It) in case the grading is forgotten.
Regardless, we have checked in part (i) of Proposition 4.3.23 that HomS(S/It+1, S/It) = 0;
whence part (i) follows directly from this fact.

Second, as ∗HomS(S, S) (respectively, ∗HomS(S/It, S/It)) are nothing but HomS(S, S)
(respectively, HomS(S/It, S/It)) when the grading is forgotten, we obtain that both part
(ii) and (iii) hold. Moreover, we can also get part (iv) in the below way:

∗HomS (S/It, (S/It)(−Dt+1)) = ∗HomS (S/It, S/It) (−Dt+1) = (S/It)(−Dt+1).

Now, consider the next short exact sequence of W -graded S-modules and homogeneous
homomorphisms:

0 // (S/It)(−Dt+1)
·yt+1 // S/It // S/It+1

// 0.

Applying to such short exact sequence the functor ∗HomS(−, (S/It)(−Dt+1)) one obtains
the following exact sequence of W -graded S-modules and homogeneous homomorphisms:

0 −→ ∗HomS(S/It+1, (S/It)(−Dt+1)) −→ ∗HomS(S/It, (S/It)(−Dt+1))
·yt+1−→ ∗HomS((S/It)(−Dt+1), (S/It)(−Dt+1)) −→ ∗ Ext1

S(S/It+1, (S/It)(−Dt+1))

−→ ∗ Ext1
S(S/It, (S/It)(−Dt+1))

·yt+1−→ ∗ Ext1
S((S/It)(−Dt+1), (S/It)(−Dt+1)).
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Regardless, we have checked in the foregoing parts that ∗HomS(S/It+1, (S/It)(−Dt+1)) =
0, ∗HomS(S/It, (S/It)(−Dt+1)) = (S/It)(−Dt+1), and that one also has the equality
∗HomS((S/It)(−Dt+1), (S/It)(−Dt+1)) = S/It. In this way, we can rewrite the previous
exact sequence in the next way:

0 −→ (S/It)(−Dt+1)
·yt+1−→ S/It −→ ∗ Ext1

S(S/It+1, (S/It)(−Dt+1))

−→ ∗ Ext1
S(S/It, (S/It)(−Dt+1))

·yt+1−→ ∗ Ext1
S((S/It)(−Dt+1), (S/It)(−Dt+1)).

Moreover, since the cokernel of (S/It)(−Dt+1)
·yt+1 //S/It is S/It+1, it follows that we have

the following exact sequence:

0 −→ S/It+1 −→ ∗ Ext1
S(S/It+1, (S/It)(−Dt+1)) −→ ∗ Ext1

S(S/It, (S/It)(−Dt+1))
·yt+1−→ ∗ Ext1

S((S/It)(−Dt+1), (S/It)(−Dt+1)). (4.9)

Now, we claim that

∗ Ext1
S(S/It, (S/It)(−Dt+1)) ∼=

t⊕
j=1

(S/It)(Dj −Dt+1).

Indeed, it is well known that ∗ Ext1
S(S/It, (S/It)(−Dt+1)) is the first cohomology group

of the complex ∗HomS(K•(y1, . . . , yt), (S/It)(−Dt+1)), where K•(y1, . . . , yt) denotes the
homological Koszul resolution of S/It. However, since all the spots in the cochain complex
∗HomS(K•(y1, . . . , yt), (S/It)(−Dt+1)) are S/It-modules and all the differentials ∂i in such
cochain complex are represented by matrices with entries in It, it follows that all these
differentials are zero and therefore

∗ Ext1
S(S/It, (S/It)(−Dt+1)) = ker(∂1) =

t⊕
j=1

(S/It)(Dj −Dt+1).

In addition, by similar reasons one also has that

∗ Ext1
S((S/It)(−Dt+1), (S/It)(−Dt+1)) ∼=

t⊕
j=1

(S/It)(Dj).

In this way, the map

∗ Ext1
S(S/It, (S/It)(−Dt+1))

·yt+1 // ∗ Ext1
S((S/It)(−Dt+1), (S/It)(−Dt+1))

can be rewritten in the following way:

t⊕
j=1

(S/It)(Dj −Dt+1)
·yt+1 //

t⊕
j=1

(S/It)(Dj).
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But this homomorphism is clearly injective. In this way, combining this fact joint with
(4.9) one finally obtains that

S/It+1
∼= ∗ Ext1

S(S/It+1, (S/It)(−Dt+1)) = ∗ Ext1
S(S/It+1, S/It)(−Dt+1),

whence part (v) holds too. The reader should notice that the righmost equality is well
known (cf. [30, 14.1.10]).

Now, we can deduce part (vi) combining part (v) jointly with Proposition 4.3.28 in the
following manner:

S/It+1
∼=
(
(S/It+1)∨

)∨ ∼= (∗ Ext1
S(S/It+1, (S/It)(−Dt+1))∨

)∨
∼= TorS1 (S/It+1, [(S/It)(−Dt+1)]∨)∨ ∼= TorS1 ((S/It)

∨(Dt+1), S/It+1)∨

∼= ∗ Ext1
S((S/It)

∨ (Dt+1), (S/It+1)∨).

Finally, the graded local duality theorem (cf. [30, 14.4.1]) implies that (S/It)
∨(−c) ∼= Ht

and (S/It+1)∨(−c) ∼= Ht+1, where c = c1 + . . .+ cd and c1, . . . , cd are the columns of matrix
W . Whence

∗ Ext1
S(Ht, Ht+1) ∼= ∗ Ext1

S((S/It)
∨ (−c), (S/It+1)∨ (−c)) ∼= ∗ Ext1

S((S/It)
∨ , (S/It+1)∨).

But the leftmost term is isomorphic to (S/It+1)(Dt+1); the proof is therefore completed.

A generalization of Gräbe’s formula

As the title says, the goal of this part is to show how the results obtained in Proposition
4.3.29 (overall, part (vii)) recover and generalize the so-called Gräbe’s formula obtained by
H.-G.Gräbe in [54, Theorem 2].

More precisely, next result, which is just a particular case of Proposition 4.3.29, provides
such generalization.

Theorem 4.3.30. Let K be a field, and let S be the polynomial ring K[x1, . . . , xd] graded
by a positive type matrix W ∈ Mm×d (Z). Moreover, for any 1 ≤ t ≤ d set Ft as the
face ideal of S generated by x1, . . . , xd and Ht := Hd−t

m (S/Ft). Then, there is a canonical
isomorphism

∗ Ext1
S (Ht, Ht+1) ∼= (S/Ft+1) (ct+1) ,

where ct+1 denotes the (t+1)th column of matrixW ; furthermore, such natural isomorphism
is induced by multiplication by xt+1.

Remark 4.3.31. When W is the identity matrix of size d, Theorem 4.3.30 is exactly what
Gräbe shows in [54, Theorem 2]; on the other hand, E.Miller proved in his thesis (cf. [102,
Corollary 6.24] that Gräbe’s formula is equivalent to the one obtained by M.Mustaţǎ in
[106, Theorem 2.1 and Corollary 2.2]; keeping in mind this fact, Theorem 4.3.30 can also
be regarded as a generalization of Mustaţǎ’s formula.

176



Bibliographical notes

Generalized local cohomology modules were introduced by J.Herzog in his Habilitationss-
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left derived functors of the direct limit. Of course, at the same time other authors produced
similar results and constructions, such as in [42] and [91]; the interested reader may like to
consult [72] for additional information.
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Appendix A

Cartier algebras of Stanley-Reisner
rings: computational issues

In Chapter 2, we have studied the Cartier algebra CR provided R is a complete Stanley-
Reisner ring. It turns out that CR can only be principally generated or infinitely generated
as R-algebra and that this fact only depends on the minimal primary decomposition of the
corresponding Stanley-Reisner ideal. Moreover, in Chapter 2 we have given examples of
complete Stanley-Reisner rings with principal Cartier algebra and examples with infinite
Cartier algebra.

The main purpose of this appendix is to describe some of the results obtained in Chapter
2 in computational terms. Namely, we provide the pseudo-code of some of the procedures
which we wrote in order to study the above-mentioned examples. CoCoA has been used
extensively in the implementation of the methods described below. The code is located in
[24].

A.1 Theorems which become procedures

A.1.1 Principal generation

We start reminding the main result of Chapter 2 (cf. Theorem 2.3.5) in computational
terms.

Theorem A.1.1. Let K be an F -finite field, let d ∈ N, let S := K[x1, . . . , xd] be the
polynomial ring in d variables over K, let J be a squarefree monomial ideal of S, set T :=
K[[x1, . . . , xd]] and I := JT . Then, the following statements are equivalent.

(i) CT/I is principally generated.

(ii)
(
J [2] :S J

)
= J [2] + 〈LCMJ〉, where LCMJ denotes the least common multiple of a

minimal monomial squarefree generating set for J .
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In this way, this result can be easily translated into a procedure. It is described in
Algorithm 1.

Algorithm 1 IsPrincipal(I)

Input: squarefree monomial ideal I inside a polynomial ring S over any field.
Output: true if CT/I is principally generated and false, otherwise.

K ← I [2]

J ← (K :S I)
K ← K + 〈LCMI〉
if J ⊆ K then
return true

end if
return false

A.1.2 Gorensteinness of rings

Recall that in Chapter 1 (cf. Proposition 1.4.19) we have proved that if R is Gorenstein
then CR is principally generated. In this way, it is of some interest for us to have a method
for testing when a computable ring is Gorenstein.

We have implemented in our package a well-known criterion in order to determine when
a quotient of a polynomial ring is Gorenstein. First of all, we remind this criterion. We
skip its proof and refer to [33, Theorem 3.2.10] for further details.

Theorem A.1.2. Let K be any field, let d ∈ N, let S = K[x1, . . . , xd] and let I be an ideal
of S. Then, the following statements are equivalent.

(i) A := S/I is Gorenstein.

(ii) One has that

dimK ExtiS(A,K) =

{
1, if i = dim(A),

0, otherwise.

We shall translate this result into a method for determining the Gorensteinness of a
quotient of a polynomial ring. It is described in Algorithm 2.

A.2 Building examples

In this section, we are to introduce procedures which were designed in order to explore con-
crete examples which later became theoretical results, as it has been described in Chapter
2.
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Algorithm 2 IsGorenstein(I)

Input: ideal I inside a polynomial ring S over any field.
Output: true if S/I is Gorenstein and false, otherwise.

K← S/m
A← S/I
d← dim(A)
L← {ExtiS(A,K) | 0 ≤ i ≤ d}
n← #L−#{i ∈ L | ExtiS(A,K) = 0}
if n > 1 then
return false

end if
if dimK ExtdS(A,K) 6= 1 then
return false

end if
return true

A.2.1 Squarefree Veronese ideals

Throughout this subsection, let d ∈ N, let K be a computable field of characteristic zero
and set S := K[x1, . . . , xd].

Definition A.2.1. Let I be an ideal of S. We say that I is a squarefree Veronese ideal if
there is k ∈ {1, . . . , d} such that

I =
⋂

1≤i1<...<ik≤d
〈xi1 , . . . , xik〉.

In this case, I will be denoted Ik,d.

Now, we recall Alexander duality just for squarefree monomial ideals which involve all
the variables of our current polynomial ring.

Definition A.2.2. Let I be a squarefree monomial ideal of S and let I = Iα1 ∩ . . . ∩ Iαs
be its minimal primary decomposition in terms of face ideals such that m = Iα1 + . . .+ Iαs .
Set

I1 := 〈xα1 , . . . ,xαs〉

and we refer to the ideal I1 to be the the Alexander dual of I.

As it was pointed out in Chapter 2,

I1k,d = Id−k+1,d.
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In this way, we only need to produce dd/2e squarefree Veronese ideals because the other
ones will be produced by Alexander duality.

A function of our package was built in order to produce all the squarefree Veronese ideals
of a given polynomial ring over a field of characteristic zero. Indeed, a field of characteristic
zero because of our implementation uses Alexander duality, which is computed explicitly
using [115].

Now, we write down our algorithm as one may see in Algorithm 3.

Algorithm 3 SqVeroneseIdeals()

Input: polynomial ring over a computable field of characteristic zero.
Output: the list L containing all the squarefree Veronese ideals.

q ← dd/2e
L← {}
for i = 1 to q do
I ← intersection of all face ideals of height i
L← {L, I, I1}

end for
return L

A.2.2 Ideals with disjoint variables

We start by introducing the following concept.

Definition A.2.3. Let K be any field, let d ∈ N, let S := K[x1, . . . , xd] and let I be a
squarefree monomial ideal of S. We say that I is an ideal with disjoint variables if there
exists (t, d1, . . . , dt) with d = d1 + . . .+ dt and d1 ≥ d2 ≥ . . . ≥ dt > 0 such that

I =
t⋂
i=1

〈xbi−1+1, . . . , xbi〉,

where, for each j ∈ {1, . . . , t},

b0 := 0 and bj :=

j∑
l=1

dl.

It was proved in Chapter 2 (cf. Proposition 2.4.9) that, up to 〈x1 · · ·xd〉 and 〈x1, . . . , xd〉,
the rest of squarefree monomial ideals with disjoint variables have infinitely generated
Cartier algebra. Moreover, it was also asked (but not proved) in Chapter 2 as well that
M∆ (cf. Definition 2.4.18) is reached in some ideal with disjoint variables.

The following algorithm produces all the squarefree monomial ideals with disjoint vari-
ables. We shall need the following:
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Notation A.2.4. Given a list of integers L of length l with L = [L1, . . . , Ll] and given
j ∈ {1, . . . , l}, set

L≤j := [L1, . . . , Lj ], L≥j := [Lj , . . . , Ll].

Our promised procedure is detailed in Algorithm 4.

Algorithm 4 IdealsOfSeparateIndeterminates()

Input: polynomial ring S in d variables over any field.
Output: all the squarefree monomial ideals of S with disjoint variables.

L← Partitions of d
l← #L
X ← {}
for i = 1 to l do
P ← Li // L = [L1, . . . , Ll]
J ← 〈1〉
Y ← {x1, . . . , xd}
p← #P
for j = 1 to p do
J ← J ∩ 〈Y≤Pj 〉
Y ← Y≥Pj+1

end for
X ← {X, J}

end for
return X

A.3 Some elementary procedures involving test ideals

The following two algorithms are, in fact, results obtained by J.CowdenVassilev in [137].
In the first one, a computable description of the test ideal of a Stanley-Reisner ring is given
(cf. [137, Theorem 3.7]).

Theorem A.3.1. Let K be an F -finite field of characteristic p, let d ∈ N, let S :=
K[x1, . . . , xd], let I be a squarefree monomial ideal and let I = Iα1 ∩ . . .∩ Iαs be its minimal
primary decomposition in terms of face ideals. Then,

τ (S/I) =
s∑
i=1

(
Iα1 ∩ . . . ∩ Iαi−1 ∩ Iαi+1 ∩ Iαi+2 ∩ . . . ∩ Iαs

)
.

In the second one, a filtration of F -pure ideals of a Stanley-Reisner ring is given (cf. [137,
Corollary 3.4]). We shall preserve the assumptions of the previous theorem.
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Theorem A.3.2. There exists a saturated filtration of F -pure ideals

I = J0 ⊆ J1 ⊆ Jl−1 =
s∑
i=1

Iαi ⊆ Jl = S

such that, for each i ∈ {0, . . . , l − 1}, Ji+1 = τ (S/Ji).

Remark A.3.3. The fact that Jl−1 is of the previous form is, in fact, a result due to
I. Aberbach and F.Enescu (cf. [1, Proposition 4.10]). It is also worth mentioning that
R.Y. Sharp (cf. [122, Corollary 3.8]) obtained a Cowden-type filtration in the complete lo-
cal case without imposing F -finiteness on the coefficient field.

These two results can be translated into two methods. These procedures are described
in Algorithm 5 and Algorithm 6, respectively.

Algorithm 5 TestIdeal(I)

Input: a squarefree monomial ideal I inside a polynomial ring S over any ground field.
Output: the test ideal τ (S/I).

L← {Iα1 , . . . , Iαs} // I = Iα1 ∩ . . . ∩ Iαs
J ← 〈0〉
for i = 1 to s do
K ← Iα1 ∩ . . . ∩ Iαi−1 ∩ Iαi+1 ∩ Iαi+2 ∩ . . . ∩ Iαs
J ← J +K

end for
return J

Algorithm 6 CowdenFiltration(I)

Input: a squarefree monomial ideal I inside a polynomial ring S over any ground field.
Output: the filtration of F -pure ideals given in Theorem A.3.2.

J ← I
L← {}
repeat
L← {L, J}
J ← TestIdeal(J)

until J = 〈1〉
return {L, 〈1〉}
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A.4 A CoCoA session

In this section, by means of a CoCoA session, we shall explain the usage of our previous
procedures.

First of all, we test the function which produces all the squarefree Veronese ideals of a
given polynomial ring. We begin fixing a polynomial ring and loading our package.

Use R::=QQ[x[1..7]];
Source "testidsq.cpkg";
Alias Test:=$contrib/testidsq;

Now, we are ready for computing all the squarefree Veronese ideals of R.

L:=Test.SqVeroneseIdeals();
L;
[Ideal(x[1]x[2]x[3]x[4]x[5]x[6]x[7]),
Ideal(x[1], x[2], x[3], x[4], x[5], x[6], x[7]),
Ideal(x[2]x[3]x[4]x[5]x[6]x[7], x[1]x[3]x[4]x[5]x[6]x[7],
x[1]x[2]x[3]x[5]x[6]x[7], x[1]x[2]x[3]x[4]x[5]x[7],
x[1]x[2]x[3]x[4]x[5]x[6], x[1]x[2]x[3]x[4]x[6]x[7], x[1]x[2]x[4]x[5]x[6]x[7]),
Ideal(x[4]x[5], x[3]x[4], x[4]x[6], x[2]x[4], x[4]x[7], x[1]x[4], x[3]x[5],
x[5]x[6], x[2]x[5], x[5]x[7], x[1]x[5], x[3]x[6], x[2]x[3], x[3]x[7],
x[1]x[3], x[2]x[6], x[6]x[7], x[1]x[6], x[1]x[7], x[2]x[7], x[1]x[2]),
Ideal(x[3]x[4]x[5]x[6]x[7], x[2]x[4]x[5]x[6]x[7], x[1]x[4]x[5]x[6]x[7],
x[2]x[3]x[4]x[6]x[7], x[1]x[3]x[4]x[6]x[7], x[2]x[3]x[4]x[5]x[6],
x[1]x[3]x[4]x[5]x[6], x[1]x[2]x[4]x[6]x[7], x[1]x[2]x[4]x[5]x[6],
x[1]x[2]x[3]x[5]x[7], x[1]x[2]x[3]x[4]x[7], x[1]x[2]x[3]x[4]x[5],
x[1]x[2]x[3]x[4]x[6], x[1]x[2]x[3]x[5]x[6], x[1]x[2]x[3]x[6]x[7],
x[1]x[2]x[4]x[5]x[7], x[1]x[2]x[5]x[6]x[7], x[1]x[3]x[4]x[5]x[7],
x[2]x[3]x[4]x[5]x[7], x[1]x[3]x[5]x[6]x[7], x[2]x[3]x[5]x[6]x[7]),
Ideal(x[1]x[2]x[7], x[1]x[6]x[7], x[2]x[6]x[7], x[1]x[2]x[6],
x[2]x[3]x[6], x[3]x[6]x[7], x[1]x[3]x[6], x[1]x[3]x[7], x[2]x[3]x[7],
x[1]x[2]x[3], x[3]x[5]x[6], x[2]x[3]x[5], x[3]x[5]x[7], x[1]x[3]x[5],
x[2]x[5]x[6], x[5]x[6]x[7], x[1]x[5]x[6], x[1]x[5]x[7], x[2]x[5]x[7],
x[1]x[2]x[5], x[3]x[4]x[5], x[4]x[5]x[6], x[2]x[4]x[5], x[4]x[5]x[7],
x[1]x[4]x[5], x[3]x[4]x[6], x[2]x[3]x[4], x[3]x[4]x[7], x[1]x[3]x[4],
x[2]x[4]x[6], x[4]x[6]x[7], x[1]x[4]x[6], x[1]x[4]x[7], x[2]x[4]x[7],
x[1]x[2]x[4]), Ideal(x[4]x[5]x[6]x[7], x[3]x[5]x[6]x[7], x[2]x[5]x[6]x[7],
x[1]x[5]x[6]x[7], x[3]x[4]x[5]x[7], x[2]x[4]x[5]x[7], x[1]x[4]x[5]x[7],
x[2]x[3]x[6]x[7], x[1]x[3]x[6]x[7], x[2]x[3]x[5]x[6], x[1]x[3]x[5]x[6],
x[2]x[3]x[4]x[6], x[1]x[3]x[4]x[6], x[1]x[2]x[6]x[7], x[1]x[2]x[5]x[6],
x[1]x[2]x[4]x[6], x[1]x[2]x[3]x[7], x[1]x[2]x[3]x[5], x[1]x[2]x[3]x[4],
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x[1]x[2]x[3]x[6], x[1]x[2]x[4]x[5], x[1]x[2]x[4]x[7], x[1]x[2]x[5]x[7],
x[1]x[3]x[4]x[5], x[2]x[3]x[4]x[5], x[1]x[3]x[4]x[7], x[2]x[3]x[4]x[7],
x[1]x[3]x[5]x[7], x[2]x[3]x[5]x[7], x[1]x[4]x[5]x[6], x[2]x[4]x[5]x[6],
x[3]x[4]x[5]x[6], x[1]x[4]x[6]x[7], x[2]x[4]x[6]x[7], x[3]x[4]x[6]x[7])]

We check Proposition 2.4.7 in this particular case using our package.

[Test.IsPrincipal(X)|X In L];
[True, True, True, True, True, True, True]

Secondly, we shall show in a particular case that IdealsOfSeparateIndeterminates() produces
all the squarefree monomial ideals with disjoint variables of a given polynomial ring.

N:=Test.IdealsOfSeparateIndeterminates();
N;
[Ideal(x[7], x[6], x[5], x[4], x[3], x[2], x[1]), Ideal(x[3]x[7], x[2]x[7],
x[1]x[7], x[3]x[6], x[2]x[6], x[1]x[6], x[3]x[5], x[2]x[5], x[1]x[5], x[3]x[4],
x[2]x[4], x[1]x[4]), Ideal(x[2]x[7], x[1]x[7], x[2]x[6], x[1]x[6], x[2]x[5],
x[1]x[5], x[2]x[4], x[1]x[4], x[2]x[3], x[1]x[3]), Ideal(x[1]x[7], x[1]x[6],
x[1]x[5], x[1]x[4], x[1]x[3], x[1]x[2]), Ideal(x[2]x[4]x[7], x[1]x[4]x[7],
x[2]x[3]x[7], x[1]x[3]x[7], x[2]x[4]x[6], x[1]x[4]x[6], x[2]x[3]x[6],
x[1]x[3]x[6], x[2]x[4]x[5], x[1]x[4]x[5], x[2]x[3]x[5], x[1]x[3]x[5]),
Ideal(x[1]x[4]x[7], x[1]x[3]x[7], x[1]x[2]x[7], x[1]x[4]x[6], x[1]x[3]x[6],
x[1]x[2]x[6], x[1]x[4]x[5], x[1]x[3]x[5], x[1]x[2]x[5]),
Ideal(x[1]x[3]x[7], x[1]x[2]x[7], x[1]x[3]x[6], x[1]x[2]x[6], x[1]x[3]x[5],
x[1]x[2]x[5], x[1]x[3]x[4], x[1]x[2]x[4]),
Ideal(x[1]x[2]x[7], x[1]x[2]x[6], x[1]x[2]x[5], x[1]x[2]x[4], x[1]x[2]x[3]),
Ideal(x[1]x[3]x[5]x[7], x[1]x[2]x[5]x[7], x[1]x[3]x[4]x[7], x[1]x[2]x[4]x[7],
x[1]x[3]x[5]x[6], x[1]x[2]x[5]x[6], x[1]x[3]x[4]x[6], x[1]x[2]x[4]x[6]),
Ideal(x[1]x[2]x[4]x[7], x[1]x[2]x[3]x[7], x[1]x[2]x[4]x[6], x[1]x[2]x[3]x[6],
x[1]x[2]x[4]x[5], x[1]x[2]x[3]x[5]),
Ideal(x[1]x[2]x[3]x[7], x[1]x[2]x[3]x[6], x[1]x[2]x[3]x[5], x[1]x[2]x[3]x[4]),
Ideal(x[1]x[2]x[3]x[5]x[7], x[1]x[2]x[3]x[4]x[7], x[1]x[2]x[3]x[5]x[6],
x[1]x[2]x[3]x[4]x[6]),
Ideal(x[1]x[2]x[3]x[4]x[7], x[1]x[2]x[3]x[4]x[6], x[1]x[2]x[3]x[4]x[5]),
Ideal(x[1]x[2]x[3]x[4]x[5]x[7], x[1]x[2]x[3]x[4]x[5]x[6]),
Ideal(x[1]x[2]x[3]x[4]x[5]x[6]x[7])]

We can check as well Proposition 2.4.9 in this particular case.

[Test.IsPrincipal(X)|X In N];
[True, False, False, False, False, False, False, False, False, False, False,
False, False, False, True]
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Building from this function we have generated, using once more our package, Table A.1. In
this table, d is the number of variables of the current polynomial ring, M∆ is the numerical
function introduced in Chapter 2 (cf. Definition 2.4.18) and I∆ is the squarefree monomial
ideal with disjoint variables in which this upper bound is reached.

Table A.1: Table involving ideals with disjoint variables

d M∆ I∆

3 2 〈x1〉 ∩ 〈x2, x3〉
4 4 〈x1, x2〉 ∩ 〈x3, x4〉
5 8 〈x1〉 ∩ 〈x2, x3〉 ∩ 〈x4, x5〉
6 18 〈x1, x2〉 ∩ 〈x3, x4〉 ∩ 〈x5, x6〉
7 26 〈x1〉 ∩ 〈x2, x3〉 ∩ 〈x4, x5〉 ∩ 〈x6, x7〉
8 64 〈x1, x2〉 ∩ 〈x3, x4〉 ∩ 〈x5, x6〉 ∩ 〈x7, x8〉
9 83 〈x1, x2〉 ∩ 〈x3, x4〉 ∩ 〈x5, x6〉 ∩ 〈x7, x8, x9〉
10 210 〈x1, x2〉 ∩ 〈x3, x4〉 ∩ 〈x5, x6〉 ∩ 〈x7, x8〉 ∩ 〈x9, x10〉
11 275 〈x1, x2〉 ∩ 〈x3, x4〉 ∩ 〈x5, x6〉 ∩ 〈x7, x8〉 ∩ 〈x9, x10, x11〉
12 664 〈x1, x2〉 ∩ 〈x3, x4〉 ∩ 〈x5, x6〉 ∩ 〈x7, x8〉 ∩ 〈x9, x10〉 ∩ 〈x11, x12〉
13 875 〈x1, x2〉 ∩ 〈x3, x4〉 ∩ 〈x5, x6〉 ∩ 〈x7, x8〉 ∩ 〈x9, x10〉 ∩ 〈x11, x12, x13〉

Now, we want to mention the following question.

Question A.4.1. Does the length of the Cowden filtration determine the principal generation
of the Cartier algebra?

In other words, one might ask whether the generation (principal or infinite) of the
Cartier algebra is reflected in Cowden’s filtration. Our first intuition was that if the length
of Cowden filtration was 1, then the Cartier algebra would be principally generated.

As the following examples illustrate, our intuition was wrong.

Use R::=ZZ/(2)[x,y,z];
I:=Ideal(xy,yz);
J:=Ideal(xy,xz,yz);
K:=Ideal(xyz);
L:=[I,J,K];
[Test.IsPrincipal(X)|X In L];
[False, True, True]
M:=[Test.CowdenFiltration(X)|X In L];
M[1];
M[2];
M[3];
[Ideal(xy, yz), Ideal(y, z, x), Ideal(1)]
-------------------------------
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[Ideal(xy, xz, yz), Ideal(z, y, x), Ideal(1)]
-------------------------------
[Ideal(xyz), Ideal(xy, xz, yz), Ideal(z, y, x), Ideal(1)]
-------------------------------

A.4.1 A couple of topological examples

We end this appendix with two final examples. More precisely, we determine whether the
Cartier algebra CR is principally generated or not, where

R := F2[[x1, . . . , xd]]/I∆

and I∆ is a squarefree monomial ideal which stems from the triangulation of some non-
trivial topological spaces.

The first one is the real projective plane P2
R.

Example A.4.2. Consider the complete, Stanley-Reisner ring

F2[[x1, x2, x3, x4, x5, x6]]/I∆,

where

I∆ := 〈x1x2x3, x1x2x4, x1x3x5, x1x4x6, x1x5x6, x2x3x6, x2x4x5, x2x5x6, x3x4x5, x3x4x6〉.

Using once more CoCoA, we have checked that it is a Cohen-Macaulay, 3-dimensional ring.
It is not Gorenstein because its type is 6. Now, we determine whether its Cartier algebra
is principally generated or infinitely generated using our package.

Use S::=ZZ/(2)[x[1..6]];
I:=Ideal(x[1]x[2]x[3],x[1]x[2]x[4],x[1]x[3]x[5],x[1]x[4]x[6],x[1]x[5]x[6],
x[2]x[3]x[6],x[2]x[4]x[5],x[2]x[5]x[6],x[3]x[4]x[5],x[3]x[4]x[6]);
Test.IsPrincipal(I);
True
-------------------------------

Whence such Cartier algebra is principally generated.

The second one is the so-called 4-fold dunce cap.

Example A.4.3. Consider the complete, Stanley-Reisner ring

F2[[x1, x2, x3, x4, x5, x6, x7, x8, x9]]/I,

where I will be described below. We have checked, using once more CoCoA, that it is a
non Cohen-Macaulay, 3-dimensional ring with depth 2. We proceed to verify whether its
Cartier algebra is principally generated or infinitely generated.

188



Use S::=ZZ/(2)[x[1..9]];
I:=Ideal(x[1]x[2]x[3], x[1]x[2]x[5], x[1]x[2]x[8], x[1]x[3]x[6], x[1]x[3]x[9],
x[1]x[4]x[5], x[1]x[4]x[6], x[1]x[4]x[7], x[1]x[4]x[8], x[1]x[4]x[9],
x[1]x[5]x[7], x[1]x[5]x[8], x[1]x[5]x[9], x[1]x[6]x[7], x[1]x[6]x[8],
x[1]x[6]x[9], x[1]x[7]x[8], x[1]x[7]x[9], x[1]x[8]x[9], x[2]x[3]x[4],
x[2]x[3]x[7], x[2]x[4]x[6], x[2]x[4]x[7], x[2]x[4]x[8], x[2]x[4]x[9],
x[2]x[5]x[6], x[2]x[5]x[7], x[2]x[5]x[8], x[2]x[5]x[9], x[2]x[6]x[7],
x[2]x[6]x[8], x[2]x[6]x[9], x[2]x[7]x[9], x[3]x[4]x[5], x[3]x[4]x[6],
x[3]x[4]x[7], x[3]x[4]x[8], x[3]x[4]x[9], x[3]x[5]x[6], x[3]x[5]x[7],
x[3]x[5]x[8], x[3]x[5]x[9], x[3]x[6]x[8], x[3]x[6]x[9], x[3]x[7]x[8],
x[3]x[7]x[9], x[3]x[8]x[9], x[4]x[5]x[7], x[4]x[5]x[8], x[4]x[5]x[9],
x[4]x[6]x[7], x[4]x[6]x[9], x[4]x[7]x[8], x[4]x[7]x[9], x[5]x[6]x[7],
x[5]x[6]x[8], x[5]x[6]x[9], x[5]x[7]x[8], x[5]x[7]x[9], x[5]x[8]x[9],
x[6]x[8]x[9], x[7]x[8]x[9]);
Test.IsPrincipal(I);
False
-------------------------------

Whence such Cartier algebra is infinitely generated.

We conclude this appendix with the following:

Remark A.4.4. Our motivation to study these previous topological examples comes from
the study carried out by A.K. Singh and U.Walther in [127]. On the other hand, regarding
the main result obtained by J.Àlvarez Montaner and K.Yanagawa in [7], from the previ-
ous computation follows that, whereas the real projective plane has a triangulation which
admits an elementary collapse (cf. [100, Definition 3.3.1] for unexplained terminology), the
triangulation of the 4-fold dunce hat does not admit such an ellementary collapse.
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Appendix B

Computing F-pure ideals

In Chapter 3, we have established a procedure in order to describe the so-called F -pure
ideals of a polynomial ring K[x1, . . . , xd] provided K is F -finite. Furthermore, we have as
well given theoretical evidence that this method might be of some help to tackle the same
problem dropping the F -finiteness assumption over the ground field K.

The aim of this appendix is twofold. Firstly, we shall explain with detail and write
down the pseudocode of our procedure in case K = Fp. Finally, by means of a Macaulay2
session, we are to illustrate the usage of our computational packages in specific examples.
It is worth mentioning that Macaulay2 has been used extensively both in constructing and
exploring examples, as well as implementing the method described both in Chapter 3 and
herein. The code is located in [25].

B.1 Basic constructions

We start introducing the building blocks of our algorithm. As a convention in what follows,
unless otherwise is specified, we shall denote by S the polynomial ring Fp[x1, . . . , xd].

B.1.1 The infinity norm of a polynomial

We recall the following well-known notion which has been already appeared previously in
this mimeograph (cf. Definition 1.4.8).

Definition B.1.1. Let g ∈ S and write

g =
∑
α∈Nd

gαx
α,

with gα ∈ Fp and gα = 0 up to a finite number of terms.
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(i) We define the support of g (which will be denoted supp(g)) as

supp(g) :=
{
α ∈ Nd | gα 6= 0

}
.

(ii) We define the infinity norm of g (which will be denoted ||g||∞) as

||g||∞ := max
α∈supp(g)

||α||∞,

where
||α||∞ := max{a1, . . . , ad}.

and α := (a1, . . . , ad).

In this way, the computation of the infinity norm of a polynomial is described in Algo-
rithm 7.

Algorithm 7 Gauge(g)

Input: polynomial g ∈ S.
Output: the infinity norm ||g||∞ of g.

L← supp(g).
X ← {}.
for all Y ∈ L do
X ← {X,max(Y )}

end for
return max(X)

B.1.2 The eth root ideal

We recall that in Chapter 3 we have defined, for any ideal J of S, a new ideal Ie(J) which
is characterized as the smallest one (namely, K) such that J ⊆ K [pe].

In this section, we present a method in order to compute Ie(J). It is worth mentioning
that such procedure was already described in [82, Section 6] and implemented in [83].

First of all, we recall from Chapter 3 the necessary theoretical background (cf. Proposition
3.1.7).

Proposition B.1.2. The following statements hold.

(i) If J1, . . . , Jr are ideals of S, then

Ie(J1 + . . .+ Jr) =

r∑
l=1

Ie(Jl).

The reader should notice that this fact implies that it is enough to know how to calculate
Ie(J) when J is a principal ideal.
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(ii) Let g ∈ S. If
g =

∑
0≤||α||∞≤pe−1

gp
e

α xα,

then Ie(g) is the ideal of S generated by all the gα’s.

Therefore, we can turn Proposition B.1.2 into an effective method for computing Ie(J)
as follows.

Algorithm B.1.3 (Effective computation of the eth root ideal). We shall assume, for the
sake of simplicity and without loss of generality, that our input ideal J is generated by a
single element g ∈ S.

(a) Consider the polynomial ring S1 := S[y1, . . . , yd] = Fp[x1, . . . , xd, y1, . . . , yd] and put on
S1 any term ordering such that, in this order, the indeterminates x1, . . . , xd are greater
than the indeterminates y1, . . . , yd.

(b) Consider the list G := {y1 − xp
e

1 , . . . , yd − x
pe

d }.

(c) Reduce the input g with respect to the list G using the division algorithm in S1 given
by the previous term ordering. Save the remainder of the result in a new list; namely,
H.

(d) Regarding the elements of H as polynomials in the variables x1, . . . , xd, set I ′ as the
ideal generated by the coefficients of the elements of H. Whence I ′ is an ideal of
Fp[y1, . . . , yd].

(e) Output the ideal I ′S, where I ′S is the extended ideal with respect to the following
trivial homomorphism of Fp-algebras:

Fp[y1, . . . , yd] // Fp[x1, . . . , xd] = S

y1 7−→ x1, . . . , yd 7−→ xd.

Hereafter, EthRootIdeal(e, J) is to denote the method which, given any ideal J of S,
returns as output Ie(J).

B.1.3 The hash operation

Now, we shall exhibit an algorithm for computing J#e (cf. Definition 3.2.2 of Chapter 3),
where J is any ideal of S and e ∈ N. Such procedure is described in Algorithm 8.
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Algorithm 8 HashOperation(e, J, u)

Input: a non-negative integer e, an ideal J of S and a fixed element u of S.
Output: the ideal J#e which contains all the uΦe-fixed ideals contained in J .

q ← pe

De ← dGauge(u)/(q − 1)e
K ← J
repeat
H ← K
K ← H ∩

(
H [q] :S H

)
∩ EthRootIdeal(e, uH)

K ← 〈K ∩ SDe〉
until H = K
return K

B.1.4 Some Linear Algebra over finite fields

We recall that one crucial step in the algorithm described in Chapter 3 involves the calcu-
lation of {

mK ⊆ V ⊆ K | dimFp V/mK = 1
}
,

whereK is any ideal of S. This problem is equivalent to compute all the Fp-vector subspaces
of Ftp of codimension 1, where t denotes the minimum number of generators of K.

In our package, this is achieved after making the following steps.

(a) Generate all the matrices of size 1× t over Fp.

(b) Compute the kernel of such matrices. For every row matrix, such kernel can be gener-
ated by t−1 vectors. These t−1 vectors can be regarded as rows of a matrix with t−1
rows and t columns. In this way, we have produced all the matrices of size (t− 1)× t
over Fp of maximal rank.

(c) Use the matrices which have been built in part (b) in order to compute the foregoing
set.

We shall denote by Preimages(K) the procedure that, given any ideal K of S, returns as
output the previous set. It is noteworthy that the cardinal of such set is(

t

t− 1

)
p

=
(pt − 1)(pt−1 − 1) · · · (p2 − 1)

(pt−1 − 1) · · · (p2 − 1)(p− 1)
=
pt − 1

p− 1
= 1 + p+ . . .+ pt−1.

B.2 The algorithm

Thus, we are ready to describe a recursive procedure for producing all the uΦe-fixed ideals
of S. It is described in Algorithm 9.
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Algorithm 9 FPureAlgorithm(e, I,G, L, u)

Input: e ∈ N and u ∈ F e∗S. In the first step, I = 〈1〉#e , L = {} and G = {}.
Output: L will be the list of all uΦe-fixed ideals of S.

G← {G, I}
if I = EthRootIdeal(e, uI) and I /∈ L then
L← {L, I}

end if
M ← I/mI
t← minimum number of generators of M
if t > 0 then
if t > 1 then
H ← Preimages(I)
for all X ∈ H do
J ← HashOperation(e,X, u)
if J = EthRootIdeal(e, uJ) and J /∈ L then
L← {L, J}

end if
if J /∈ G then
L← {L,FPureAlgorithm(e, J,G, L, u)}

end if
end for

else
K ← HashOperation(e,mI, u)
if K /∈ G then
L← {L,FPureAlgorithm(e,K,G,L, u)}

end if
end if

end if
return L
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Remark B.2.1. It is worth mentioning that the list G which appears in Algorithm 9 must
be regarded as a list of exclusion in order to avoid superflous calculations. Actually, in our
experiments with Macaulay2 we have verified that the introduction of such list is necessary
in order to guarantee that the program terminates.

B.2.1 A variant for a Frobenius splitting

The aim of this subsection is to propose a variant of our previously introduced algorithm
in case uΦe is a Frobenius splitting (cf. Definition 3.1.4). It turns out that this fact leads
to introduce some simplifications in our original method.

First of all, we introduce a procedure in order to determine whether uΦe is a Frobenius
splitting. It is described in Algorithm 10.

Algorithm 10 IsSplitting(e, u)

Input: e ∈ N and u ∈ F e∗S.
Output: true if uΦe defines a Frobenius splitting and false, otherwise.

q ← pe

f ← x(q−1)1// u = gf + r
if g = 1 then
return true

end if
return false

Now, we introduce a recursive method to compute all the uΦe-fixed ideals of S under
the additional assumption that uΦe defines a Frobenius splitting. As the reader may easily
point out, this new procedure is just a mild modification of Algorithm 9.

Such method is described in Algorithm 11. We have to remind that, in the below
method, uΦe is assumed to define a Frobenius splitting. This fact is straightforward to
check using Algorithm 10.

We end this subsection with the following:

Remark B.2.2. The unique difference between Algorithm 9 and Algorithm 11 is that, once
we know that uΦe is a Frobenius splitting, this fact implies, for any ideal I of S, that I#e is
uΦe-fixed. Indeed, by the definition of the hash operation (cf. Definition 3.2.2) I#e is a uΦe-
compatible ideal, whence it is uΦe-fixed provided uΦe is a Frobenius splitting (cf. Lemma
3.1.5).

B.3 A Macaulay2 session

In this section, by means of a Macaulay2 session, we shall illustrate the algorithm described
in this appendix.
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Algorithm 11 SplittingAlgorithm(e, I, L, u)

Input: e ∈ N and u ∈ F e∗S. In the first step, I = 〈1〉#e , L = {} and G = {}.
Output: L will be the list of all uΦe-fixed ideals of S.

G← {G, I}
if I /∈ L then
L← {L, I}

end if
M ← I/mI
t← minimum number of generators of M
if t > 0 then
if t > 1 then
H ← Preimages(I)
for all X ∈ H do
J ← HashOperation(e,X, u)
if J /∈ L then
L← {L, J}

end if
if J /∈ G then
L← {L,FPureAlgorithm(e, J,G, L, u)}

end if
end for

else
K ← HashOperation(e,mI, u)
if K /∈ G then
L← {L,FPureAlgorithm(e,K,G,L, u)}

end if
end if

end if
return L
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We begin clearing the previous input and loading our scripts.

clearAll;
load "~/FPureAlgorithm.m2";

We start computing all the fixed ideals of a polynomial ring in three variables with respect
to the element u = xyz.

p=2;
F=ZZ/p;
R=F[x,y,z];
L=first entries vars(R);
u=product(L);
time L=FPureIdeals(u);
-- used 7.93653 seconds
#L
20

Indeed, we obtain the twenty squarefree monomial ideals in the indeterminates x, y, z.
Finally, we conclude with the following example, which is interesting because uΦ1 is far

from being a Frobenius splitting. Moreover, in this case, the characteristic of our ground
field is greater than two.

p=5;
F=ZZ/p;
R=F[x,y,z];
N=p-1;
L=first entries vars(R);
L=apply(i->i^N);
u=sum toList L;
u=u^N;
L=FPureIdeals(u);
-- used 5254.22 seconds
#L
66

In this case, we recover the ideals described in Example 3.3.10 of Chapter 3.
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Appendix C

A Koszul-type resolution over the
Frobenius-Ore extension ring

The Frobenius-Ore extension ring has played a central role throughout this mimeograph;
indeed, given a local ring R which verifies Serre’s condition S2 we saw in Chapter 1
(cf. Example 1.4.18) that R[Θ;F ] turns out to be the Frobenius algebra of operators at-
tached to the top local cohomology module Hdim(R)

m (R). Moreover, we also showed in
Chapter 2 (cf. Theorem 2.3.5) that the Frobenius algebra associated to the injective hull
of the residue field of a complete, Stanley-Reisner ring is of the form B[uΘ;F ] when-
ever such Frobenius algebra is principally generated, where B = K[[x1, . . . , xd]]/I∆ and
u = (x1 · · ·xd)p−1.

The purpose of this Appendix is to exhibit an explicit finite free resolution in the cate-
gory of left A[Θ;F ]-modules, where A is a commutative Noetherian ring of prime charac-
teristic p; more precisely, given y1, . . . , yn elements of A, we shall produce a chain complex
(namely, CK• (y1, . . . , yn)) which, in case y1, . . . , yn forms an A-regular sequence, produces
a finite free resolution of A/I [p]

n in the category of left A[Θ;F ]-modules, where In is the
ideal generated by the yi’s. From this point of view, under the regularity assumptions,
CK• (y1, . . . , yn) may be regarded as a sort of Koszul resolution in the category of left
A[Θ;F ]-modules.

Unless otherwise is specified, from now on S denotes the polynomial ring Z/pZ[x1, . . . , xn].
Our strategy, slightly loosely speaking, will consist on firstly construct the announced res-
olution in the category of left S[Θ;F ], prove that it defines a free resolution, and then
transport such construction to an arbitrary ring A of prime characteristic p under the
homomorphism of Z/pZ-algebras S //A which maps each xi into yi.
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C.1 The Cartier-Koszul chain complex

Definition C.1.1. We define the Cartier-Koszul chain complex with respect to x1, . . . , xn
as the chain complex

0 // CKn+1
∂n+1 // CKn

∂n // . . .
∂1 // CK0

// 0.

Here, for each 0 ≤ l ≤ n+ 1,

CKl :=
⊕

1≤i1<...<il≤n
S[Θ;F ](ei1 ∧ . . . ∧ eil)

⊕
⊕

1≤j1<...<jl−1≤n
S[Θ;F ](ej1 ∧ . . . ∧ ejl−1

∧ u),

where e1, . . . , en corresponds respectively to x1, . . . , xn and u corresponds to Θ− 1. Here,
we are adopting the convention that CK0 := S[Θ;F ].

Moreover, one defines CKl
∂l //CKl−1 as the unique homomorphism of left S[Θ;F ]-

modules which, on basic elements, acts in the following manner; on one hand, given 1 ≤
i1 < . . . < il ≤ n, set

∂l (ei1 ∧ . . . ∧ eil) :=

l∑
r=1

(−1)r−1xir
(
ei1 ∧ . . . ∧ eir−1 ∧ eir+1 ∧ eir+2 ∧ . . . ∧ eil

)
.

On the other hand, given 1 ≤ j1 < . . . < jl−1 ≤ n, set

∂l
(
ej1 ∧ . . . ∧ ejl−1

∧ u
)

:= (−1)l−1
(

Θ−
(
xj1 · · ·xjl−1

)p−1
) (

ej1 ∧ . . . ∧ ejl−1

)
+

l−1∑
r=1

(−1)r−1xpjr
(
ej1 ∧ . . . ∧ ejr−1 ∧ ejr+1 ∧ ejr+2 ∧ . . . ∧ ejl−1

∧ u
)
.

Henceforth, we shall denote such chain complex by CK•(x1, . . . , xn).

Before going on, we make the following useful:

Discussion C.1.2. Given a free, finitely generated left S-moduleM (whenceM is abstractly

isomorphic to S⊕r for some r ∈ N), we denote by S[Θ;F ]⊗S S⊕r
λM //S[Θ;F ]⊕r the natural

isomorphism of left S[Θ;F ]-modules given by the assignment s⊗m 7−→ sm; moreover, we
denote by

0 // Kn
dn // Kn−1

// . . . // K2
d2 // // K1

d1 // K0
// 0
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the Koszul chain complex of S with respect to x1, . . . , xn regarded as a chain complex in
the category of left S-modules. The reader should notice that, for each 0 ≤ l ≤ n, we have
the following commutative diagram:

S[Θ;F ]⊗S Kl+1

1S[Θ;F ]⊗dl+1 //

λKl+1

��

S[Θ;F ]⊗S Kl

λKl
��⊕

1≤i1<...<il+1≤n S[Θ;F ](ei1 ∧ . . . ∧ eil+1
)

d′l+1 //
⊕

1≤i1<...<il≤n S[Θ;F ](ei1 ∧ . . . ∧ eil).

Here, d′l+1 denotes the map ∂l+1 restricted to the direct summand

⊕
1≤i1<...<il+1≤n

S[Θ;F ](ei1 ∧ . . . ∧ eil+1
).

As we shall see quickly, this fact turns out to be very useful in what follows.

The first thing we have to check out is that CK•(x1, . . . , xn) defines a chain complex in
the category of left S[Θ;F ]-modules. This fact follows from the next:

Proposition C.1.3. For any 0 ≤ l ≤ n, one has that ∂l∂l+1 = 0.

Proof. Regarding the very definition of the ∂’s, we only have to distinguish two cases.

On one hand, given 1 ≤ i1 < . . . < il+1 ≤ n one has, keeping in mind Discussion C.1.2,
that

∂l
(
∂l+1

(
ei1 ∧ . . . ∧ eil+1

))
= d′l

(
d′l+1

(
ei1 ∧ . . . ∧ eil+1

))
=
(
λKl−1

◦
(
1S[Θ;F ] ⊗ dl−1

)
◦ λ−1

Kl

)
◦
(
λKl ◦

(
1S[Θ;F ] ⊗ dl

)
◦ λ−1

Kl+1

) (
ei1 ∧ . . . ∧ eil+1

)
=
(
λKl−1

◦
(
1S[Θ;F ] ⊗ (dl ◦ dl+1)

)
◦ λ−1

Kl+1

) (
ei1 ∧ . . . ∧ eil+1

)
=
(
λKl−1

◦
(
1S[Θ;F ] ⊗ 0

)
◦ λ−1

Kl+1

) (
ei1 ∧ . . . ∧ eil+1

)
= 0;

indeed, the reader should notice that dldl+1 = 0 because they are the usual chain differen-
tials in the Koszul chain complex of S with respect to x1, . . . , xn.

201



On the other hand, given 1 ≤ j1 < . . . < jl ≤ n, one has that

∂l (∂l+1 (ej1 ∧ . . . ∧ ejl ∧ u)) = ∂l

(
(−1)l

(
Θ− (xj1 · · ·xjl)

p−1
)

(ej1 ∧ . . . ∧ ejl) +

l∑
r=1

(−1)r−1xpjr
(
ej1 ∧ . . . ∧ ejr−1 ∧ ejr+1 ∧ ejr+2 ∧ . . . ∧ ejl ∧ u

))
=

l∑
r=1

(−1)r+l−1
(
xpjrΘ− (xj1 · · ·xjl)

p−1 xjr

) (
ej1 ∧ . . . ∧ ejr−1 ∧ ejr+1 ∧ ejr+2 ∧ . . . ∧ ejl

)
+

l∑
r=1

r−1∑
k=1

(−1)r+k−2xpjkx
p
jr

(
ej1 ∧ . . . ∧ ejk−1

∧ ejk+1
∧ ejk+2

∧ . . . ∧ ejr−1 ∧ ejr+1 ∧ ejr+2 ∧ . . . ∧ ejl ∧ u
)

+

l∑
r=1

l∑
k=r

(−1)r+k−2xpjkx
p
jr

(
ej1 ∧ . . . ∧ ejr−1 ∧ ejr+1 ∧ ejr+2 ∧ . . . ∧ ejk−1

∧ ejk+1
∧ ejk+2

∧ . . . ∧ ejl ∧ u
)

+

l∑
r=1

(−1)l+r−2
(
xpjrΘ−

(
xj1 · · ·xjr−1xjr+1xjr+2 · · ·xjl

)p−1
xpjr

) (
ej1 ∧ . . . ∧ ejr−1 ∧ ejr+1 ∧ ejr+2 ∧ . . . ∧ ejl

)
.

Regardless, the reader should notice that, starting from the top, the first summand (re-
spectively, the second summand) cancels out the fourth summand (respectively, the third
summand) and therefore the whole expression vanishes, just what we finally wanted to
check.

Now, we are to describe CK•(x1, . . . , xn) for some small values of n for the convenience
of the reader.

(i) When n = 1, CK•(x1) turns out to be the chain complex

0 // S[Θ;F ]
∂2 //// S[Θ;F ]⊕2 ∂1 // S[Θ;F ] // 0,

where ∂2 is represented by right multiplication by matrix
(
xp−1

1 −Θ xp1
)
and ∂1 is

represented by right multiplication by matrix
(
x1 Θ− 1

)T .
(ii) When n = 2, CK•(x1, x2) boils down to the chain complex

0 // S[Θ;F ]
∂3 // S[Θ;F ]⊕3 ∂2 // S[Θ;F ]⊕3 ∂1 // S[Θ;F ] // 0,

where ∂3 is given by right multiplication by matrix
(
Θ− (x1x2)p−1 (−1)pxp2 xp1

)
,

∂2 is given by right multiplication by matrix −x2 x1 0

xp−1
1 −Θ 0 xp1

0 xp−1
2 −Θ xp2


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and ∂1 is given by right multiplication by matrix
(
x1 x2 Θ− 1

)T .
Before showing some basic properties of the Cartier-Koszul chain complex, we want to

establish a certain technical fact, which is interesting in its own right; actually, one should
regard this result as a non-obvious consequence of Kunz’s Theorem (cf. Theorem 1.4.1).

Proposition C.1.4. S[Θ;F ] is a flat right S-module.

Proof. By its very definition (cf. Subsection 1.4.3),

S[Θ;F ] =
⊕
e≥0

SΘe.

Moreover, it is known that tensor product commute with filtered colimits (in particular,
with filtered direct sums). In this way, combining these facts it is enough to check out that,
for any e ≥ 0, SΘe is a flat right S-module.

Fix e ≥ 0. Firstly, albeit the notation SΘe might suggest that it is just a left S-module,
this is not the case because, since S is regular, SΘe can be identified with ΘeS1/pe , where
S1/pe denotes the ring of pe-roots of S; from this point of view, it is clear that SΘe may be
also regarded as a right S-module. Therefore, keeping in mind the previous identification
one has that the map ΘeS1/pe //S1/pe given by the assignment Θes1/pe 7−→ s1/pe defines
an abstract isomorphism of right S-modules, whence SΘe is (abstractly) isomorphic to
S1/pe in the category of right S-modules and then the result follows from the fact that
S1/pe is a flat right S-module because of Kunz’s Theorem (cf. Theorem 1.4.1); the proof is
therefore completed.

Next result provides some useful properties of CK•(x1, . . . , xn).

Proposition C.1.5. Let

0 // Kn
dn // Kn−1

// . . . // K2
d2 //// K1

d1 // K0
// 0

be the Koszul chain complex of S with respect to x1, . . . , xn (regarded as a chain complex in
the category of left S-modules) and suppose that each differential dl is represented by right
multiplication by matrix Ml; moreover, for each l ≥ 0 M

[p]
l denotes the matrix obtained by

raising all the entries of Ml to its pth power. Then, the following statements hold.

(a) ∂1 is represented by right multiplication by matrix
(
x1 . . . xn Θ− 1

)T .
(b) ∂n+1 is represented by right multiplication by matrix

(
(−1)n

(
Θ− (x1 · · ·xn)p−1

)
M

[p]
n

)
.
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(c) For each 1 ≤ l ≤ n− 1, ∂l+1 is represented by right multiplication by matrix(
Ml+1 0

(−1)lDl M
[p]
l

)
,

where Dl is a diagonal matrix with non-zero entries Θ− (xi1 · · ·xil)
p−1, where 1 ≤ i1 <

. . . < il ≤ n. It is worth noting that we are adopting the convention that Mn+1 = 0 =
M0.

(d) H0 (CK•(x1, . . . , xn)) ∼= S/I
[p]
n as left S[Θ;F ]-modules, where the reader should remind

that In = Sx1 + . . .+ Sxn.

(e) Hn+1 (CK•(x1, . . . , xn)) = 0.

Proof. First of all, parts (a), (b) and (c) follows from the very definition of CK•(x1, . . . , xn).
On the other hand, using part (a) it follows that

H0 (FK•(x1, . . . , xn)) =
S[Θ;F ]

Im(∂1)
∼=

S[Θ;F ]

S[Θ;F ]In + S[Θ;F ](Θ− 1)
∼= S/I [p]

n .

Therefore, part (d) also holds. So, it only remains to check part (e).
Consider the composition

S[Θ;F ]
∂n+1 // S[Θ;F ]⊕ S[Θ;F ]⊕n

π // S[Θ;F ]⊕n,

where π denotes the corresponding projection. In this way, the reader should notice that
π∂n+1 turns out to be, up to isomorphisms, 1S[Θ;F ] ⊗ d

[p]
n (indeed, this fact follows directly

from the commutative square established in Discussion C.1.2); regardless, since d[p]
n is an

injective homomorphism between free left S-modules, and S[Θ;F ] is a flat right S-module
(cf. Proposition C.1.4), one has that 1S[Θ;F ] ⊗ d

[p]
n is an injective homomorphism between

free left S[Θ;F ]-modules. Therefore, π∂n+1 is also an injective homomorphism, whence
∂n+1 is so. This fact concludes the proof.

Now, we want to single out the following technical fact because it will play a key role
during the proof of the main result of this part.

Lemma C.1.6. Preserving the notations introduced in Proposition C.1.5, one has, for any
0 ≤ l ≤ n, that M [p]

l Dl−1 = DlMl.

Proof. Fix 0 ≤ l ≤ n. Proposition C.1.3 implies that ∂l∂l+1 = 0; moreover, according to
part (c) of Proposition C.1.5, ∂l and ∂l+1 are represented respectively by right multiplication
by matrices (

Ml 0

(−1)l−1Dl−1 M
[p]
l−1

)
, and

(
Ml+1 0

(−1)lDl M
[p]
l

)
.
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In this way, combining these two facts it follows that(
Ml+1 0

(−1)lDl M
[p]
l

)(
Ml 0

(−1)l−1Dl−1 M
[p]
l−1

)
= 0;

in particular, we must have (−1)lDlMl + (−1)l−1M
[p]
l Dl−1 = 0, which is equivalent to say

that
(−1)l

(
DlMl −M

[p]
l Dl−1

)
= 0.

Whence M [p]
l Dl−1 = DlMl, just what we finally wanted to show.

C.1.1 Main result

Now, we state and prove the first main result of this Appendix, which is the following:

Theorem C.1.7. CK•(x1, . . . , xn) provides a free resolution of S/I [p]
n in the category of

left S[Θ;F ]-modules.

Proof. Proposition C.1.5 implies that it is enough to check out, for any 1 ≤ l ≤ n, that
Hl (CK•(x1, . . . , xn)) = 0.

So, fix 1 ≤ l ≤ n. Our goal is to show that ker(∂l) ⊆ Im(∂l+1); in other words, we have

to prove that the chain complex CKl+1
∂l+1 //CKl

∂l //CKl−1 is midterm exact. First of
all, the reader should remind that CKl = K ′l ⊕K ′′l , where

K ′l :=
⊕

1≤i1<...<il≤n
S[Θ;F ](ei1 ∧ . . . ∧ eil), and

K ′′l :=
⊕

1≤j1<...<jl−1≤n
S[Θ;F ](ej1 ∧ . . . ∧ ejl−1

∧ u).

Furthermore, Discussion C.1.2 implies that the chain complexes

K ′• : 0 // K ′n
d′n // K ′n−1

// . . . // K ′2
d′2 //// K ′1

d′1 // K ′0
// 0

and

(K ′•)
[p] : 0 // K ′n

(d′n)[p]

// K ′n−1
// . . . // K ′2

(d′2)[p]

//// K ′1
(d′1)[p]

// K ′0
// 0

are respectively canonically isomorphic to S[Θ;F ]⊗SK• and S[Θ;F ]⊗SK [p]
• ; in particular,

since S[Θ;F ] is a flat right S-module (cf. Proposition C.1.4), K ′• and (K ′•)
[p] are both acyclic

chain complexes in the category of left S[Θ;F ]-modules. On the other hand, we also have
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to keep in mind that d′l and (d′l)
[p] are respectively represented by right multiplication by

matrix Ml and M
[p]
l (cf. Proposition C.1.5 and its corresponding notation).

Now, let P ∈ ker(∂l) ⊆ FKl. Since FKl = K ′l ⊕ K ′′l , we may write P = (P ′, P ′′) for
certain P ′ ∈ K ′l and P ′′ ∈ K ′′l ; in this way, as P ∈ ker(∂l) it follows that

(
0 0

)
=
(
P ′ P ′′

)( Ml 0

(−1)l−1Dl−1 M
[p]
l−1

)
=
(
P ′Ml + P ′′(−1)l−1Dl−1 P ′′M

[p]
l−1

)
,

which leads to the following system of equations:

P ′Ml + P ′′(−1)l−1Dl−1 = 0, P ′′M
[p]
l−1 = 0.

In particular, since P ′′M [p]
l−1 = 0 one has that P ′′ ∈ ker((d′l−1)[p]) = Im((d′l)

[p]); therefore,
there is Q′′ ∈ K ′′l such that Q′′M [p]

l = P ′′. Using this fact, it follows that

P ′Ml +Q′′(−1)l−1M
[p]
l Dl−1 = 0.

Regardless, Lemma C.1.6 tells us that M [p]
l Dl−1 = DlMl, whence

P ′Ml +Q′′(−1)l−1DlMl = 0,

which is equivalent to say that
(
P ′ +Q′′(−1)l−1Dl

)
Ml = 0. In this way, one has that

P ′ +Q′′(−1)l−1Dl ∈ ker(d′l) = Im(d′l+1)

and therefore there exists Q′ ∈ K ′l+1 such that Q′Ml+1 = P ′ +Q′′(−1)l−1Dl.
Summing up, setting Q := (Q′, Q′′) ∈ FKl+1, it follows that(
Q′ Q′′

)( Ml+1 0

(−1)lDl M
[p]
l

)
=
(
Q′Ml+1 +Q′′(−1)lDl Q′′M

[p]
l

)
=
(
P ′ +Q′′(−1)l−1Dl +Q′′(−1)lDl P ′′

)
=
(
P ′ P ′′

)
and therefore we can conclude that P ∈ Im(∂l+1), which is exactly what we wanted to
show.

C.2 The Cartier-Koszul chain complex in full generality

Our next aim is to define the Cartier-Koszul chain complex over an arbitrary commutative
Noetherian ring of prime characteristic p, and explore some specific situations on which we
can ensure that defines a finite free resolution.

In this way, unless otherwise is specified, hereafter A denotes a commutative Noetherian
ring of prime characteristic p, and y1, . . . , yn denote arbitrary elements of A; moreover, we
regard A as an S = Fp[x1, . . . , xn]-algebra under the natural homomorphism S //A of
Fp-algebras which sends each xi to yi.
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Definition C.2.1. We define the Cartier-Koszul chain complex of A with respect to
y1, . . . , yn as the chain complex

CK•(y1, . . . , yn;A) := A⊗S CK•(x1, . . . , xn).

Keeping in mind the previous definition, next result is a direct consequence of Theorem
C.1.7.

Theorem C.2.2. We suppose that the natural map S //A is flat. Then, one has that
CK•(y1, . . . , yn;A) defines a finite free resolution of A/I [p]

n in the category of left A[Θ;F ]-
modules, where In is the ideal of A generated by the yi’s.

One possible application of Theorem C.2.2 is given in the next:

Theorem C.2.3. Let A be a commutative Noetherian ring containing a field of prime
characteristic p, and let y1, . . . , yn be an A-regular sequence which is contained in the Ja-
cobson radical of A. Then, CK•(y1, . . . , yn;A) defines a finite free resolution of A/I [p]

n in
the category of left A[Θ;F ]-modules, where In is the ideal of A generated by the yi’s.

Proof. It is known, as a consequence of results obtained independetly by I.Kaplansky and
R.Hartshorne (cf. [116, Theorem 2.1] and the references therein) that, under these assump-
tions, the natural map S //A is flat; whence the result follows directly from Theorem
C.2.2.

Actually, we know that, under slightly different assumptions, CK•(y1, . . . , yn;A) also
defines a finite free resolution; before establishing such result, we have to review the follow-
ing:

Definition C.2.4. Let R be an arbitrary ring, let s ∈ N, and let f1, . . . , fs be a sequence
of elements in R. It is said that f1, . . . , fs is a Koszul regular sequence provided the Koszul
chain complex K•(f1, . . . , fs;R) provides a free resolution of R/Is, where Is is the ideal
generated by the f ’s.

Keeping in mind the previous notion, we are ready for proving the next:

Theorem C.2.5. Let A be a commutative Noetherian ring of prime characteristic p, and let
y1, . . . , yn be an A-Koszul regular sequence. Then, CK•(y1, . . . , yn;A) defines a finite free
resolution of A/I [p]

n in the category of left A[Θ;F ]-modules, where In is the ideal generated
by the yi’s.

Proof. Mutatis mutandi the same proof of Theorem C.1.7 replacing S by A and x1, . . . , xn
by y1, . . . , yn; indeed, a simple inspection of the proof of Theorem C.1.7 reveals that we
only used there the regularity of S (in order to apply Kunz’s theorem) and the fact that
the Koszul chain complex K•(x1, . . . , xn) defines a finite free resolution of the coefficient
field of S; the proof is therefore completed.

207



In this way, combining Theorem C.2.3 and Theorem C.2.5 we obtain the second main
result of this Appendix, which turns out to be the final result of this mimeograph.

Theorem C.2.6. Let A be a commutative Noetherian ring of prime characteristic p, and
let y1, . . . , yn be a sequence of elements in A. Moreover, we assume that one of the following
statements hold.

(i) y1, . . . , yn is an A-regular sequence contained in the Jacobson radical of A.

(ii) A is regular and y1, . . . , yn is an A-Koszul regular sequence.

Then, CK•(y1, . . . , yn;A) defines a finite free resolution of A/I [p]
n in the category of left

A[Θ;F ]-modules, where In is the ideal generated by the yi’s.
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