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Palmerolide A (1A) is a melanoma-inhibiting macrolide (LC50 

= 18 nM) isolated from an Antarctic tunicate collected at the NSF 

Palmer Station.
1
 Three total syntheses have been reported,

2
 as 

well as formal syntheses
3
 and several fragments.

3h–q
 Some years 

ago we planned and started a total synthesis of 1A, summarised 

in Figure 1.
4
 Unfortunately, the formation of the C15–C16 single 

bond by coupling of two C(sp
2
) carbon atoms proved to be a 

bottleneck in the process. We attempted a Negishi cross coupling
5
 

from an alkenylzinc halide (fragment C9–C15, see below, via 

Zr/Zn exchange), without success. A Stille reaction
6
 (fragment 

C9–C15, with PdCl2(NCPh)2, in DMF–THF) was likewise 

unsuccesful.
4
 In the meantime, it was reported by Nicolaou, 

Chen, et al.
2b,d,e

 that the key C15–C16 bond could be formed in a 

previous step by means of a variant of the Stille reaction, with 

AsPh3 and LiCl in NMP.
6
 In this context, we have just solved the 

problem of the C15–C16 coupling via a Negishi reaction. It may 

be of help for other difficult couplings of polyfunctional 

substrates. We also envisage to apply the procedure to the 

synthesis of palmerolide D (1D), which is the most potent 

member of the series,
1c

 in the near future. 

 

Figure 1.  Chemical structures of the main palmerolides. 

The synthesis of fragment C1–C8(9), 2, where the terminal 

methylene (C9) would be eliminated as ethene during the ring-

closing metathesis (RCM), started from a known heptynol,
7
 

which was subjected to protection, TMS removal, controlled 

reduction, TBS removal, Swern oxidation and HWE reaction 

(Scheme 1, see Supplementary Data for details). 

The synthesis of fragment C16–C23, 3, was initiated from 

the known aldol (2S,3R,5E)-3-(tert-butyldimethylsilyloxy)-6-

iodo-2,5-dimethyl-5-hexen-1-al
2b

 (see Scheme 1, last row), 

although we obtained it
4
 via a Ti enolate of N-propanoyl-1,3-

thiazolidine-2-thione,
8
 protection with TBSOTf and reduction 

with DIBALH. We converted such a 6-iodohexenal into 3 by 

Wittig reaction followed by cleavage of the O–TBS bond. The 

reaction of 2 with 3 using MNBA (the Shiina method)
9
 gave the 

desired substrate, 4, in 80% yield. 

 

Scheme 1.  Synthesis of 4 from 2 + 3 (C1–C8 + C16–C23). 

ART ICLE  INFO  AB ST R ACT  

Article history: 

Received 

Received in revised form 

Accepted 

Available online 

The esterification of fragment C1–C8 (2) with fragment C16–C23 (3) to give iodo derivative 4, 

followed by a Pd-catalyzed coupling with a C9–C15 fragment (7 or 8), may provide a common 

precursor of most palmerolides. Ligands and reaction conditions were exhaustively examined to 

perform the C15–C16 bond formation via Negishi reaction. With simple models, pre-activated 

Pd–Xantphos and Pd–DPEphos complexes were the most efficient catalysts at RT. Zincation of 

the C9–C15 fragment (8) and cross coupling with 4 required 3 equiv of t-BuLi, 10 mol % of Pd–

Xantphos and 60 ºC. 
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The synthesis of fragments C(8)9–C15, where C8 would 

disappear during the RCM to link C1–C8(9) with C(8)9–C15, is 

summarised in Scheme 2. Opening of the known epoxide (2R,3S)-

1,2-epoxy-3-(4-methoxybenzyloxy)-4-pentene
10

 with a proparg-

ylic anion
11

 was followed by TMS removal, Mitsunobu inversion 

and protection of the free OH group with TBSOTf, to give 5.
4
 

From 5, we prepared stannane 6, the desired iodoalkene 7 and the 

bis(TBS)-substituted iodoalkene 8 (through a PMB-to-TBS 

change with TBSOTf and Et3N).
12

 

 

Scheme 2.  Preparation of 6–8 (fragments C9–C15). 

Iodo derivative 4 was ready for the C15–C16 coupling with a 

fragment such as 6.
13

 With few further synthetic steps, a formal total 

synthesis of 1A or the first total syntheses of other palmerolides 

would have been completed.
4,13

 However, we persisted in examining 

the C15–C16 bond formation by Negishi coupling.
14

 

The fragments to be joined (either 4 + 7 or 4 + 8) are both 

expensive advanced intermediates, so that no large excess of one of 

them should be used to drive the coupling reactions to completion. 

Thus, in our trials the molar ratios between the first partner 

(alkenyl–ZnX) and the second partner (alkenyl–I) should be kept 

around 1.1–1.2 to 1.0. The positive side would be that our results 

could be extrapolated to other difficult C(sp
2
)–C(sp

2
) couplings of 

advanced synthetic intermediates. To our knowledge, relatively few 

studies aimed at finding the best ligands and conditions to perform 

state-of-the-art Negishi alkenyl–alkenyl couplings involving 

trisubstituted olefins have been published to date.
15,16

 

To find the best coupling conditions, we also had one model of 

7 and 8 (see 9, Table 1) and one model of 4 (see 10, Table 1).
17

 

Since the direct insertion of various sources of Zn into alkenyl 

iodides shown in Table 1 (even in DMA or DMF at 80 ºC)
18

 did 

not work, we attempted the procedure reported by Knochel et al.
19

 

(addition of LiCl), which is so useful for RX and many ArX, but it 

did not work with our iodides in refluxing THF.
20

 Thus, we were 

forced to revisit classical lithiation reactions with t-BuLi, followed 

by Li-to-Zn exchange with ZnX2.
21

 ZnCl2 and ZnBr2 gave 

identical results, provided that the samples were anhydrous.
15,16,21

 

We preferred ZnBr2, however, as it is less hygroscopic. 

Table 1 summarises around 90 trials (most of them 

unsuccessful) in which many representative catalysts, such as 

Pd(PPh3)4, Pd2dba3/Xantphos, Pd2dba3/DPEphos, Pd2dba3/XPhos 

and Pd2dba3/RuPhos, were compared.
22

 The standard Pd(PPh3)4 

gave rise to full consumption of the second partner only on 

heating (compare entries 1–4); addition of one further equiv of t-

BuLi was not relevant. On the other hand, the bidentate ligand-

containing solutions (entries 5–7) were capable of completing 

the reaction of 9 with 10 (to give 11) in 4 h hours at RT. 

Xantphos and DPEphos gave similar excellent results, so we 

used them indistinctly. In these experiments at RT, a crucial step 

 

 

was to solve (to "activate") the catalyst by heating the 

suspension of Pd2dba3
23

 in THF, under Ar, for few seconds with 

the diphosphine or biphenylphosphine, until clear solutions were 

obtained.
24

 These were yellowish green in the cases of Xantphos 

and Ruphos, yellow with DPEphos and reddish orange with 

XPhos. Without this previous activation, the combination of these 

phosphines with Pd2(dba)3 showed no advantage over Pd(PPh3)4. 

On the other hand, biphenylphosphines plus Pd2(dba)3 

(entries 8 and 9) were less active, even after such a previous 

activation. However, when the Pd
0
–XPhos complex was 

generated from o-palladacycle [PdCl(NH2CH2CH2C6H4)XPhos] 

(XPhos-Pd-G1) and from 2-NH2-2'-[Pd(OMs)XPhos]biphenyl 

(XPhos-Pd-G3),
25

 conversions improved (up to 70% after 6 h, 

see entries 10 and 11, with 25% of recovered 10). 

 

 
Table 1 

Optimisation of Ligands and Conditions for the Coupling of 

Iodoalkenes 7–9 with 10 

 

Entry RI Coupling conditionsa Diene, %b 

1 9 1% Pd(PPh3)4, RT, 16 h 11, 70 

2 9 2% Pd(PPh3)4, RT, 4 h 11, 50 

3 9 2% Pd(PPh3)4, RT, 4 h (+t-BuLi) 11, 50 

4 9 5% Pd(PPh3)4, 60 ºC, 4 h 11, 85 

5 9 1% Pd2dba3, 2.5% Xantphos,c RT, 4 h 11, 88 

6 9 1% Pd2dba3·CHCl3, 2.5% Xantphos,c RT, 4 

h 

11, 87 

7 9 1% Pd2dba3, 2.5% DPEphos,c RT, 4 h 11, 88 

8 9 1% Pd2dba3, 3% XPhos,c RT, 6 h 11, 25d 

9 9 1% Pd2dba3, 3% RuPhos,c RT, 6 h 11, 30d 

10 9 2% XPhos-Pd-G1, RT, 6 h 11, 70d 

11 9 2% XPhos-Pd-G3, RT, 6 h 11, 70d,e 

12 7 5% Pd2dba3, 12% Xantphos, 60 ºC, 16 h         0d 

13 7 5% Pd2dba3, 12% Xantphos, 60 ºC, 16 h (+t-BuLi)         0d 

14 8 5% Pd2dba3, 12% Xantphos, 60 ºC, 16 h         0d 

15 8 5% Pd2dba3, 12% Xantphos, 60 ºC, 16 h (+t-BuLi) 12, 78 

a At 0.2 M concentrations. Catalyst/reagent percentages in mol %. All 

reactions under Ar, with 110 mol % of the first alkenyl iodide, 120 mol % of 

anhydrous ZnBr2 (or ZnCl2) and 210–220 mol % of t-BuLi unless otherwise 

indicated (as "+t-BuLi", where 330 mol % of t-BuLi was added), referred to the 

second iodoalkene, 10. 
b Conversions (by NMR) or, in bold red, isolated yields after flash column 

chromatography (when conversions were 100%). 
c The wine-red suspension of Pd2dba3 in THF plus the phosphine was heated 

for few seconds until a solution was obtained. After cooling to RT, the PdLn 

solution was added via cannula to the reaction flask (all under Ar). Without this 

ligand exchange the reaction rates were much slower. Colour did not change 

with 2-(di-tert-butylphosphino)-2',4',6'-triisopropyl-3,6-dimethoxybiphenyl, t-

BuBrettPhos; the mixture was inefficient at RT. 
d Part or all of 10 was recovered unchanged; the de-iodinated alkenes from 

7–9 were also isolated. 
e This experiment was performed with pre-activation of the catalyst (XPhos-

Pd-G3 + RCH=CHZnX for 30 s at 60 ºC, orange-to-brown colour change), 

cooling at RT and addition of 10. 
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Compounds 7 and 8 did not react with 10 under the best 

conditions up to this point, with 2.2 equiv of t-BuLi, even with 

more catalyst, even on heating (see entries 12 and 14). Use of 3 

equiv of t-BuLi, which Smith et al.
16a

 had successfully applied to a 

difficult C(sp
3
)–C(sp

2
) coupling, probably involving RZn

t
Bu as 

intermediates,
16a

 had no effect in the case of 7 (entry 13), whereas 8 

did react (entry 15, 100% conversion, 78% isolated yield of 12).
26

 

Thus, the presence of PMBO groups (and presumably of other 

coordinating and/or prone to be lithiated PGs) is contraindicated. 

Moreover, for substrates with silyloxy groups, 3.3 equiv of t-BuLi 

are essential. The addition of 200 mol % of LiBr to the alkenylzinc 

halide, as an alternative to the use of 3.3 equiv of t-BuLi, so useful 

in other couplings,
27

 did not help in our case. 

We finally undertook the coupling of the organozinc halide 

from 8 with 4 (Scheme 3) using the optimised conditions shown 

in entry 15. To our delight, the conversion was complete. After 

flash column chromatography and preparative TLC, compound 

13 was isolated in 74% yield (not optimised). 

 

Scheme 3.  Negishi cross-coupling reaction of 8 with 4. 

 

In conclusion, with the goal of obtaining samples of palmerolides 

to check their mechanism(s) of action, we first improved the 

difficult C15–C16 Negishi coupling using model compounds. The 

pre-activated Pd–Xantphos complex ("active" yellowish green 

solution) and the pre-activated Pd–DPEphos complex ("active" 

yellow solution) turned out to be the most efficient catalysts. In 

other words, several excellent catalysts and procedures for other 

cross couplings did not work so efficiently in the present case. 

Excess t-BuLi and suitable PGs (silyl groups but not PMB) are also 

essential when the zincates or organozinc halides to be coupled 

contain oxygen functional groups. We plan to synthesise again 13 

(and analogues with two different silyl PGs, if necessary) in 

sufficient amounts to attempt a synthesis of 1D and analogues 

relying on this optimised procedure. 
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