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ABSTRACT 

Bread is one of the most widely consumed foods. Its impact on human health is currently 

of special interest for researchers. We aimed to identify biomarkers of bread consumption 

by applying a nutrimetabolomic approach to a free-living population. An untargeted 

HPLC-q-TOF-MS and multivariate analysis was applied to human urine from 155 

subjects stratified by habitual bread consumption in three groups: non-consumers of bread 

(NCB, n=56), white-bread consumers (WHB, n=48) and whole-grain bread consumers 

(WGB, n=51). The most differential metabolites (VIP ≥1.5) included compounds 

originating from cereal plant phytochemicals such as benzoxazinoids and alkylresorcinol 

metabolites, and compounds produced by gut microbiota (such as enterolactones, 

hydroxybenzoic and dihydroferulic acid metabolites). Pyrraline, riboflavin, 3-

indolecarboxylic acid glucuronide, 2,8-dihydroxyquinoline glucuronide and N-α-

acetylcitrulline were also tentatively identified. In order to combine multiple metabolites 
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in a model to predict bread consumption, a stepwise logistic regression analysis was used. 

Receiver operating curves were constructed to evaluate the global performance of 

individual metabolites and their combination. The area under the curve values [AUC 

(95% CI)] of combined models ranged from 77.8% (69.1%-86.4%) to 93.7% (89.4%-

98.1%), whereas the AUC for the metabolites included in the models had weak values 

when they were evaluated individually: from 58.1 % (46.6-69.7 %) to 78.4% (69.8%-

87.1%). Our study showed that a daily bread intake significantly impacted on the urinary 

metabolome, despite being examined under uncontrolled free-living conditions. We 

further concluded that a combination of several biomarkers of exposure is better than a 

single biomarker for the predictive ability of discriminative analysis. 

Keywords: Nutrimetabolomics, Food metabolome, Biomarkers, Bread, HPLC-q-TOF-

MS, Metabolic Fingerprinting  

 

1. INTRODUCTION 

Recently, metabolomics started being applied in nutritional sciences (i.e., 

nutrimetabolomics) in order to discover new biomarkers of intake and to explore the 

complex relationships between the consumption of dietary compounds and health 

outcomes (Ismail et al. 2013). In this regard, the study of food metabolome, being a data-

driven approach, is expected to be more objective in the measurement of dietary exposure 

(Llorach et al. 2012) than traditional methods, such as food frequency questionnaires 

(FFQs), 24-hour dietary recalls or food diaries. 

Bread is a fundamental component of the Mediterranean Diet (MeDiet) belonging to the 

cereal group, which is one of the three basic elements of the MeDiet included in all daily 

meals (Bach-Faig et al. 2011). Thus, it could contribute to the beneficial effects reported 

for this dietary pattern (Sofi et al. 2010). In Spain, bread, mainly white bread, is the most 

widely consumed cereal (Spanish Agency for Food Safety and Nutrition 2011). Bread 

provides important amounts of complex carbohydrates, fibre and B vitamins, among other 

bioactive compounds (Quilez and Salas-Salvado 2012). Recent scientific publications 

suggest some potential health benefits of cereals and bread with respect of chronic diet-

related diseases, such as cardiovascular disease (CVD) and type-2 diabetes mellitus. 

However, these relationships have been mainly observed for whole-grain bread or cereals 
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(Gil et al. 2011), whereas the associations for white bread are not clear, and have been 

associated with increased adiposity and weight gain (Bautista-Castano et al. 2012a; 

Bautista-Castano and Serra-Majem 2012b; Williams 2012).  

Thus the application of nutrimetabolomics to a high-cardiovascular-risk population could 

provide new insights into this potential relationship. Recently, changes in metabolomic 

profiles due to dietary intervention with different types of bread were evaluated in some 

studies, providing a list of potential biomarkers of dietary intake (Beckmann et al. 2013; 

Bondia-Pons et al. 2013; Bondia-Pons et al. 2011; Lankinen et al. 2011; Moazzami et al. 

2012; Nielsen et al. 2014). Due to the intervention character of these studies, they were 

performed on a relatively small number of subjects and under specifically controlled 

dietary conditions. Therefore, the identified biomarkers need further research on their 

validity in epidemiological studies, in which diet is evaluated in uncontrolled conditions. 

In the present work we evaluated the differences in metabolomic profiles of habitual bread 

consumers from a general uncontrolled population of volunteers. Analysing a larger 

population and under free-living conditions, we expect to obtain more representative data 

on the metabolome fingerprints of bread consumers, with interest especially in the 

identification of biomarkers of habitual bread consumption. Since biomarkers may be 

affected by subject-specific characteristics, it should be necessary to consider the 

specifications of population used in the present study when proposed biomarkers will be 

applied elsewhere. Therefore, the principal objective of the study was to discover novel 

biomarkers of habitual bread exposure applying an untargeted HPLC-q-TOF-MS-based 

metabolomic approach. We anticipated that biomarkers identified in this study would help 

to provide a more accurate estimation of intake and to generate new insights into 

biological mechanisms underlying the health-related effects of bread consumption.  

 

2. MATERIALS AND METHODS 

This study is a cross-sectional assessment of baseline data obtained from a subset of 275 

participants from the PREDIMED Study (ISRCTN 35739639; http://www.predimed. 

org). 
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2.1. PREDIMED study  

The PREDIMED study is a large, parallel-group, multicentre, randomized, and controlled 

clinical trial aimed at assessing the effects of the Mediterranean diet on the primary 

prevention of CVD. Protocol details of the PREDIMED trial have been reported 

elsewhere (Estruch et al. 2013; Martinez-Gonzalez et al. 2012). The trial protocol was 

conducted according to the Declaration of Helsinki and was approved by the institutional 

review boards of all the centres involved. All participants had signed an informed consent. 

Briefly, participants were free-living men (55–80 years) and women (60–80 years), 

without CVD and fulfilling at least one of the two following criteria: type 2 diabetes 

mellitus, or three or more major cardiovascular risk factors (Martinez-Gonzalez et al. 

2012). Urine samples were collected at baseline visit without any previous dietary 

restrictions in addition to demographic and social data of the volunteers according to the 

PREDIMED study protocol (Martinez-Gonzalez et al. 2012). All participants completed 

a validated semi-quantitative 137-item FFQ (Fernandez-Ballart et al. 2010), and nutrient 

and energy intakes were calculated using Spanish food composition tables (Mataix Verdú 

2003). 

 

2.2. Stratification of study population   

The current study was focused on establishing markers of habitual bread exposure in a 

free-living population. For this purpose, participants from three PREDIMED trial centres 

(Barcelona, Valencia and Navarra) were stratified on the basis of their FFQ data in three 

bread consumer groups: (i) non-consumers of bread (NCB) (n=56), subjects who 

consume ≤3 portions of any type of bread monthly (1 portion=75gr); (ii) white-bread 

consumers (WHB) (n=48), subjects with at least 1 portion/day intake of white bread (≤3 

portions of whole-grain bread monthly); and (iii) whole-grain bread consumers (WGB) 

(n=51), subjects with at least 1 portion/day intake of whole-grain bread (≤3 portions of 

white bread monthly). The selection of subjects took into account that all groups were 

homogeneous by gender, age (±5 years), smoking habit, and fruit and vegetable 

consumption (±200 gr/day). Considering the criteria for sample selection by bread 

consumption category, a subgroup of 155 subjects were evaluated in the study: 56 males 
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and 99 females with a mean age (±SD) of 68±6 years and a mean BMI (±SD) of 29±4 

kg/m2.  

 

2.3. Urine samples collection and preparation 

Morning fasting spot urine samples were collected, aliquoted, encoded and frozen at -80 

ºC until used (Martinez-Gonzalez et al. 2012). On the day of analysis, urine samples were 

placed in the refrigerator for gradual thawing and then a 150 L aliquot of each sample 

was centrifuged at 12,000 rpm for 5 min at 4 ºC. A 50 L of the supernatant was diluted 

1:1 with Milli-Q water, vortexed and placed into a 96-well plate for HPLC-q-TOF-MS 

analysis (Llorach et al. 2009). No preservatives were used at any stage of the collection 

and manipulation of the urine samples. 

 

2.4. HPLC-q-TOF-MS analysis and data acquisition  

HPLC-q-TOF-MS analysis was performed using an Agilent 1200 Series Rapid 

Resolution HPLC system coupled to a hybrid quadrupole TOF QSTAR Elite (AB Sciex). 

15 L of the prepared samples were injected using a thermostatted auto-injector at 4 ºC 

into an RP Luna® C18(2) column (5 m, 50 x 2.0mm; Phenomenex, Torrance, CA, USA). 

The MS acquisition was performed in positive and negative modes using a 

TurboIonSpray source in full scan mode, within the m/z range 70-700. The parameters of 

chromatography and mass spectrometer used in the present study were developed 

previously by our group and reported elsewhere (Llorach et al. 2009; Tulipani et al. 2011). 

In order to avoid possible bias, batches were equilibrated to represent the variability of 

all the samples to be analysed (i.e. samples of each batch had similar characteristics, like 

the number of males or the number of each bread consumption group, among others), and 

sequences of injections were randomized. Throughout the whole data analysis process, 

four types of quality control (QC), described and applied in previous studies (Tulipani et 

al. 2011), were analysed in order to monitor the system stability and functionality, in 

addition to evaluation of the quality and the reproducibility of the acquired data (Tulipani 

et al. 2011).  
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The MS/MS confirmatory experiments were performed using the same mass and 

chromatographic conditions applying collision energy from +20 V to +38 V, depending 

on the analysed compound. 

 

2.5. Data processing 

The HPLC-q-TOF-MS raw data were extracted and aligned using MarkerView TM 1.2.1. 

software (AB Sciex, Toronto, Ontario, Canada). Peak detection was performed using a 

minimum spectral peak width of 1 ppm, a minimum RT peak width of 3 scans, a noise 

threshold of 5, and a subtraction multiple factor of 1.5. Alignment used 0.05 Da mass 

tolerance and 0.07 min RT tolerance windows. Consequently, a data set containing 5000 

mass features present in at least 12 samples was obtained and then subjected to 

multivariate analysis. Data from positive and negative ionization modes were included in 

two separate data sets in order to analyse them individually. 

 

2.6. Multivariate statistical analysis 

The mass signals data sets were log-transformed and Pareto-scaled before their 

multivariate statistical analysis using SIMCA-P+13.0 software (Umetrics, Umeå, 

Sweden). Principal component analysis (PCA) was applied to evaluate the quality of the 

data acquisition. Partial least squares discriminant analysis with orthogonal signal 

correction (OSC-PLS-DA) was used to explore the differences in metabolomes among 

the three bread consumer groups (Llorach-Asuncion et al. 2010). OSC filtration was used 

to reduce the variability not associated with dietary classification, as has been done in 

other recently published nutrimetabolomic studies (Pujos-Guillot et al. 2013). The quality 

of the models was evaluated by R2Y(cum) and Q2(cum) parameters (Llorach-Asuncion 

et al. 2010). Validation of the models was evaluated by a permutation test (n=200). Those 

mass signals with variable importance for projection (VIP) values ≥1.5 in at least one 

component of the OSC-PLS-DA model were selected as the most relevant to explain the 

differences in metabolic profiles.  
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2.7. Identification of metabolites  

The differential mass features selected after multivariate analysis were identified by a 

multistep procedure (Tulipani et al. 2011). First, clustering analysis with Pearson distance 

and Ward’s minimum variance (PermutMatrix 1.9.3.0 software) was applied in order to 

identify the mass features corresponding to the same metabolite (source-generated ion 

fragments, isotopes and adducts). Then, metabolites were tentatively identified on the 

basis of their exact mass information (±5 mDa of accepted mass difference) for 

corresponding source-generated ion fragments. Following this, MS/MS confirmatory 

experiments were carried out. These data were compared to those from the scientific 

bibliography and the following databases: MetFrag (http://msbi.ipb-halle.de/MetFrag/), 

MassBank (http://www.massbank.jp/), Metlin (http://metlin.scripps.edu/index.php) and 

Human Metabolome Database (HMDB; http://www.hmdb.ca). Additionally, an in-house 

database mainly focused on the metabolites expected from the intake of dietary 

phytochemicals was also queried. Finally, the biological interpretation was performed 

using information from published research reports and from online databases such as 

HMDB and Kyoto Encyclopedia of Genes and Genomes (http://www.genome.jp). The 

level of identification was assigned according to the classification of the Metabolomics 

Standard Initiative (Sumner et al. 2007). 

 

2.8. Univariate analysis of identified metabolites and development of combined 

urinary biomarker models 

Data from OSC-PLS-DA analyses were further analysed by univariate methods using R 

3.0.2 software (R Core Team 2014). The Kolmogorov-Smirnov test was used to check 

the normal data distribution. Features with skewed distributions were analysed by the 

Kruskal-Wallis test, whereas for features with normal distributions the ANOVA test was 

used. Differences among groups were determined using the Mann-Whitney or the t-Test 

comparisons for non-parametric or parametric tests, respectively. 

Finally, to investigate whether the combination of more than one biomarker from food 

metabolome improves the discrimination of bread consumption groups, we conducted 

forward stepwise logistic regression analyses (IBM SPSS Statistics 20 software, SPSS 

Inc., Chicago, IL, USA). Three separate models were performed in order to compare NCB 

http://www.genome.jp/
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versus WHB, NCB versus WGB, and WHB versus WGB. Based on Qi et al. (2012), each 

model was constructed using a dichotomous variable on bread consumption as dependent 

variable and identified metabolites from food metabolome as independent variable. 

Correlations between bread intake and the combined models were evaluated using 

Spearman’s rank-correlation coefficient. 

 

2.9. Evaluation of biomarkers 

The global performance of each identified metabolite and biomarker model was evaluated 

by receiver operating (ROC) curves (Robin et al. 2011), using area under the curve (AUC) 

value. The optimum cut-off for sensitivity and specificity of the biomarkers was 

determined as the minimum distance to the top-left corner (Xia et al. 2013). 

 

 

3. RESULTS AND DISCUSSION 

3.1 Data processing and quality control 

A PCA was used for the evaluation of the quality of the data acquisition analysing the 

variability of the urine and QC samples. As shown in Supporting Information Figure S1, 

replicates of each QC type were positioned clustered among themselves. The PCA on the 

urine samples showed 8 outlying samples in the positive ionization mode data set (data 

not shown). To avoid a possible effect of these samples during data processing, they were 

removed from the raw data (before peak picking process).  

 

3.2. Urinary metabolome analysis 

To identify differences associated with bread consumption in the urinary metabolome 

among the NCB, WHB and WGB groups an OSC filter was applied before PLS-DA 

analysis. The OSC-PLS-DA analysis (Figure 1) resulted in a 2-latent variable model with 

R2Y(cum) and Q2(cum) values of 0.93 and 0.73, respectively, for positive ionization 

mode, and 0.94 and 0.70 for negative ionization mode, indicating that both models were 

able to classify each subject in the correct bread consumption group. The permutation 

tests showed negative Q2 intercepts (-0.23 and -0.22 for positive and negative ionization 
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modes, respectively), validating the model (Llorach-Asuncion et al. 2010; Pujos-Guillot 

et al. 2013). In both OSC-PLS-DA models, the NBC group was separated from the two 

bread consumption groups in the first latent variable, whereas the second one separated 

the WHB group from the other two.  

 

Fig. 1 Scores plot of OSC-PLS-DA model obtained from urine samples for (A) 

positive and (B) negative ionization modes. The coloured dots correspond to each 

bread consumption group (NCB: grey diamonds; WHB: white circles; WGB: black 

circles). 

   

 

3.3. Detection and identification of bread consumption biomarkers  

In order to select the most discriminative urinary metabolome markers of each bread 

consumption group, a cut-off of ≥1.5 for VIP value was applied. On the basis of clustered 

mass features, exact masses for in-source fragments and experimental MS/MS 

fragmentations, a total of eighteen metabolites were tentatively identified. They are 

summarized in Table 1. Additionally, Table S1 (Supporting Information) summarizes 

clustered mass features of tentatively identified compounds and Figure S2 (Supporting 

Information) provides the mass spectra of the MS/MS experiments conducted with the 

urine samples. These discriminating metabolites were classified into 2 groups, namely 

food metabolome compounds and endogenous metabolites. All identified markers from 

food metabolome showed higher urinary levels in regular-bread consumers, whereas one 

metabolite from endogenous metabolome (2,8-dihydroxyquinoline glucuronide) was 

more abundant in WGB consumers and another one (N-α-acetylcitrulline) was more 

abundant in the NCB group. Table 1 also shows the significant identified metabolite 

differences among the three groups. 



10 

 

Table 1. Metabolites identified in human subjects with different bread consumption levels. 

RT 

(min) 

Detected 

mass (m/z) 
Assignation Metabolite tentatively identification 

Level of 

identification1 

NBC vs 

WHB 

NBC vs 

WGB 

WHB vs 

WGB 

   Benzoxazinoid-related compounds     

0.88 188.0049 [M – H]- 2-aminophenol sulphate III ↑ ↑ - 

1.48 328.1036 [M + H]+ HPAA glucuronide2 III ↑ ↑ - 

 326.0851 [M – H]-   - ↑ - 

2.07 168.0609 [M + H]+ HHPAA III - ↑ ↑ 

3.40 372.0925 [M + H]+ HMBOA glucuronide3 III ↑ - - 

 370.0772 [M – H]-   ↑ ↑ - 

3.68 326.0922 [M – H]- HBOA glycoside III - ↑ ↑ 

3.72 152.0671 [M + H]+ HPPA III - ↑ - 

4.78 196.0596 [M + H]+ HMBOA3 III ↑ ↑ - 

 194.0410 [M – H]-   ↑ ↑ - 

   Alkylresorcinol metabolites     

2.85 357.0791 [M – H]- DHPPA glucuronide III ↑ ↑ ↑ 

3.12 233.0118 [M – H]- 3,5-Dihydroxyphenylethanol sulphate III - ↑ - 

5.75 289.0412 [M – H]- DHPPTA sulphate III - ↑ ↑ 

   Microbial-derived metabolites     

3.67 313.0558 [M – H]- Hydroxybenzoic acid glucuronide III ↑ ↑ - 

4.72 275.0219 [M – H]- Dihydroferulic acid sulphate III - ↑ ↑ 

6.32 299.1278 [M + H – glucuronide]+ Enterolactone glucuronide4 III - ↑ ↑ 

 473.1447 [M – H]-   - ↑ ↑ 
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RT 

(min) 

Detected 

mass (m/z) 
Assignation Metabolite tentatively identification 

Level of 

identification1 

NBC vs 

WHB 

NBC vs 

WGB 

WHB vs 

WGB 

Markers of heat-treated food products 

2.73 255.1345 [M + H]+ Pyrraline5 II - ↑ - 

 253.1172 [M – H]-   - ↑ ↑ 

   Other exogenous metabolites     

3.25 338.0871 [M + H]+ 3-Indolecarboxylic acid glucuronide6 II - ↑ ↑ 

 336.0697 [M – H]-   - ↑ ↑ 

4.65 377.1475 [M + H]+ Riboflavin7 II ↑ ↑ ↑ 

   Endogenous metabolites  -   

0.63 218.1140 [M + H]+  N-α-Acetylcitrulline3,8  III - ↓ - 

4.20 338.0882 [M + H]+ 2,8-Dihydroxyquinoline glucuronide9 II - ↑ ↑ 

 160.0382 [M – H – glucuronide]-   - ↑ ↑ 

All features in the table were statistically significant. The significance level was obtained by Kruskal-Wallis analysis or by analysis of variance 

(ANOVA), according to their distribution. Pairwise comparisons were analysed by the Mann-Whitney test or the t-Test for non-parametric and 

parametric tests, respectively. ↑, indicates significantly higher levels in the second group of the comparison; ↓, indicates significantly lower levels 

in the second group of the comparison. 

1Level of identification has been assigned according to Sumner et al. 2007. Structural identification agrees with Beckmann et al. 20132, MetFrag3, 

Metlin: MID647344,  Hellwig and Henle 20125,  Andersen et al. 20145, Dong et al. 20126, MassBank Record PR1003997, MassBank Record 

BML010528, and Zhen et al. 20079 (MS/MS information in Supporting Information Figure S2; and LC-MS pattern information in Supporting 

Information Table S1).  

Abbreviations: DHPPA, 3-(3,5-dihydroxyphenyl) propanoic acid; DHPPTA, 5-(3,5-dihydroxyphenyl) pentanoic acid; HBOA, 2-hydroxy-1,4-

benzoxazin-3-one; HHPAA, 2-hydroxy-N-(2-hydroxyphenyl) acetamide ; HMBOA, 2-hydroxy-7-methoxy-2H-1,4-benzoxazin-3-one; HPAA, N-

(2-hydroxyphenyl) acetamide; HPPA, 2-hydroxy-N-(2-hydroxyphenyl) acetamide; NCB, non-consumers of bread; RT, retention time; WGB, 

whole-grain bread consumers; WHB, white-bread consumers. 
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3.4. Biological interpretation 

With regard to the markers belonging to food metabolome, it is important to highlight 

that most of them were related to compounds derived from cereal plant phytochemicals 

such as benzoxazinoids, alkylresorcinols and other compounds produced by gut 

microbiota. Specifically, urinary levels of 2-hydroxy-7-methoxy-2H-1,4-benzoxazin-3-

one (HMBOA) glucuronide, 2-hydroxy-1,4-benzoxazin-3-one (HBOA) glycoside and 

HMBOA were higher in both types of regular bread consumers than in NCB. These 

compounds are secondary metabolites of wheat and belong to the benzoxazinoids 

(Moraes et al. 2008). Recent metabolomic studies have reported an increase in urinary 

excretions of some benzoxazinoid metabolites in human intervention studies with 

different types of whole-grain breads (Beckmann et al. 2013; Bondia-Pons et al. 2013) 

and after a 5-week dietary intervention with high fibre doses (Johansson-Persson et al. 

2013). Furthermore, Adhikari et al. (2013) analysed for the first time the absorption, 

metabolism and excretion of dietary benzoxazinoids in humans and reported that these 

compounds are bioavailable in the human organism after their dietary intake, adding more 

scientific evidence of their role as potential bioactive compounds from bread (Adhikari 

et al. 2013). Additionally, some precursors of benzoxazinoids such as 2-aminophenol 

sulphate and hydroxylated phenylacetamides [N-(2-hydroxyphenyl) acetamide (HPAA) 

glucuronide, 2-hydroxy-N-(2-hydroxyphenyl) acetamide (HHPAA) and HPAA] were 

also increased in bread consumption groups. 

Interestingly, two alkylresorcinol metabolites [3-(3,5-dihydroxyphenyl) propanoic acid 

(DHPPA) glucuronide and 5-(3,5-dihydroxyphenyl) pentanoic acid (DHPPTA) sulphate] 

were also tentatively identified. Their levels were higher among WGB consumers. 

Related to this type of compound, 3,5-dihydroxyphenylethanol sulphate and 

enterolactone glucuronide were also characteristic of the WGB group in concordance with 

recently published results by Bondia-Pons et al. (2013). The other microbial-derived 

compounds excreted in higher amounts by bread consumers were hydroxybenzoic acid 

glucuronide and dihydroferulic acid sulphate. Microbial metabolites are directly related 

to dietary consumption (Moco et al. 2012). In addition, they may also be influenced by 

individual gut microbiota composition. Due to interindividual variation in microbiota 

composition (Lozupone et al. 2012), the sensibility and specificity of the microbial 

metabolites used for bread exposure prediction can be reduced. However, their 
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combination in biomarker panels from food metabolome could provide more accurate 

measurements of dietary exposure, as it is displayed in the next section. 

Pyrraline, a compound related to the Maillard reaction that can be absorbed after its intake 

through heat-treated foodstuffs, such as bakery products like bread (Hellwig et al. 2012), 

was also tentatively identified. It is a derivative compound from the amino acid lysine 

formed during the Maillard reaction which provides the aroma and palatable traits specific 

for heat-treated foods like bread (Hellwig and Henle 2012). Thus, since pyrraline can be 

characteristic for various types of heat-treated foods, it alone cannot be a specific 

biomarker of bread consumption (see Table S3 in the next section). In fact, bread from 

whole flour has a high protein content and low level of lysine blockage (Michalska et al. 

2008). This could explain why pyrraline was more characteristic of WGB group than 

WHB. Its inclusion in the combined biomarker models (discussed in the next section) 

provides additional and complementary information reinforcing the capacity to 

distinguish between different habitual bread consumption patterns and improving the 

sensibility and specificity to predict habitual bread exposure. 

Another detected marker that could be related to food metabolome was riboflavin. This 

compound is a B vitamin with an important role in the intermediate energy metabolism 

(Depeint et al. 2006) present in bread and wheat compositions (Spanish Food 

Composition Database (BEDCA) 2010). Therefore, the higher levels of riboflavin 

detected in regular-bread consumers could come directly from bread consumption. 

Finally, WGB group had greater levels of 3-indole carboxylic acid (3-ICA) glucuronide, 

a compound related to tryptophan metabolism (Roux et al. 2012). In this context, 3-ICA 

has been described as an end metabolite synthesized from conversions of tryptophan to 

indole-3-carboxaldehyde (Magnus et al. 1982). However, this amino acid has also been 

detected in whole-grain bread (Jiang and Peterson 2013). Thus, the 3-ICA glucuronide 

could be generated exogenously and/or endogenously. 

Regarding urinary endogenous metabolites, this study showed that the compound 2,8-

dihydroxyquinoline-ß-D-glucuronide (2,8-DHQ glucuronide) is present in a higher 

proportion in WGB consumers than in other two groups. Variations of this compound 

have been observed in previous metabolomics studies (Li et al. 2013; Zhen et al. 2007). 

This compound was significantly elevated in the urine of mice treated with a peroxisome 

proliferator-activated receptor (PPARα) agonist, suggesting that this metabolite could be 
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a potential urinary biomarker of PPARα agonists (Zhen et al. 2007). In this context, the 

activation of PPARα through diet or by synthetic agonists may cause an improvement in 

lipid profile and by extension impact on cardiovascular health. More recently, Li et al. 

also observed an increase in 2,8-DHQ-β-D-glucuronide urinary excretion after treatment 

with a drug that previously had shown effects on glucose and lipid metabolism (Li et al. 

2013). The greater levels of 2,8-DHQ-β-D-glucuronide observed among WGB 

consumers suggests a potential mechanism for previously observed associations between 

whole-grain foods and lipid metabolism in epidemiological studies (McKeown et al. 

2002) through PPARα. In contrast with the other tentatively identified metabolites, N-a-

acetylcitrulline (NAC) urine excretion was higher among NCB than in WGB. In the urea 

cycle, NAC takes part in the arginine synthesis. Arginine is an amino acid that has been 

related to improvements in parameters related to cardiovascular disease (Tousoulis et al. 

2002). The higher concentrations of NAC observed in NCB could be associated with a 

lower activity of the arginine synthesis pathway, which could have some mechanistic link 

with alterations in some atherosclerotic risk factors. 

 

3.5. Combination of detected biomarkers to improve the prediction of bread intake  

In order to assess whether one of the food metabolome compounds or a combination of 

them can effectively discriminate among groups of bread consumers, stepwise logistic 

regressions were performed. As a result, three different combination models for each 

ionization mode were developed. Table S2 (Supporting Information) shows the 

metabolites included in all combined biomarker models. As can be seen in this table, in 

the positive ionization mode HMBOA and riboflavin were selected for NCB versus both 

bread consumption groups (in negative ionization mode only HMBOA fulfils this 

characteristic), whereas HHPAA, enterolactone glucuronide and pyrraline contributed to 

the discrimination of WGB consumers from the other two groups (DHPPTA sulphate and 

dihydroferulic acid sulphate for negative ionization mode). The reported daily bread 

intake significantly correlated with values of combined models (in all cases, p<0.001). 

This association was strong for NCB versus WGB models (0.70 and 0.74 for positive and 

negative ionization modes, respectively), and moderate for NCB versus WHB (0.46 and 

0.44 for positive and negative ionization modes, respectively) and WHB versus WGB 

(0.60 and 0.48 for positive and negative ionization models, respectively) models 
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(Martinez-Gonzalez et al. 2006). Figure 2 displays ROC curves for the designed models 

and for all individual metabolites that took part in each combined model. As can be seen, 

the best discrimination was observed between the NCB and WGB groups (AUC>90%), 

whereas the performance of the other combined models was lower than the former (AUC 

between 75% and 90%) (Xia et al. 2013). However, all combined biomarker models had 

higher AUC values than any individual metabolite, whose AUC were <80%. Table S3 

summarizes the parameters of all ROC curves presented in Figure 2. It is important to 

point out that the combination of the detected food metabolome compounds in biomarker 

models by stepwise logistic regression improved the predictive power of discriminative 

analysis for bread consumer groups. The use of these combinations of metabolites could 

provide more accurate information about the habitual bread intake in free-living 

populations or the level of exposition to a dietary intervention with bread. 

 

Finally, for the interpretation of these results it is important to take into account that no 

specification either on cereal origin (e.g., wheat, rye, barley…), or on technological 

treatments (e.g., bakery bread, baguette, sliced bread…) of consumed breads was 

discerned in the administered FFQ. Moreover, the participants of the present study were 

elderly at high cardiovascular risk and not representative of the general population, so 

results should be extrapolated with some caution to other populations. Thus, it could be 

interesting to quantify these metabolites in different populations in order to know if they 

could be markers of bread intake whatever individuals were studied. In spite of these 

limitations, it is important to underline that the included subjects were free-living 

volunteers, who provided highly reliable data. Furthermore, it is also important to 

highlight the relatively large number of subjects included in this non-targeted HPLC-q-

TOF-MS nutrimetabolomics study. 
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Fig. 2 Receiver operating characteristic (ROC) curves of combined models and of 

identified metabolites from food metabolome in the positive (I) and negative (II) 

ionization modes for (a) NCB versus WHB, (b) NCB versus WGB, and (c) WHB 

versus WGB comparisons. 

 

Abbreviations: DHPPA, 3-(3,5-dihydroxyphenyl) propanoic acid; DHPPTA, 5-(3,5-

dihydroxyphenyl) pentanoic acid; HHPAA, 2-hydroxy-N-(2-hydroxyphenyl) acetamide; 

HMBOA, 2-hydroxy-7-methoxy-2H-1,4-benzoxazin-3-one; HPAA, N-(2-hydroxy-

phenyl)acetamide; HPPA, 2-hydroxy-N-(2-hydroxyphenyl) acetamide. 
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4. CONCLUDING REMARKS 

The results of the present study showed that a daily bread intake is reflected in urinary 

metabolome. The variation in metabolome of the regular consumers of bread was 

associated with eighteen metabolites, which were related mainly to food metabolome and 

to endogenous metabolomic differences.  

Globally, the higher urinary excretion of food metabolome metabolites could discriminate 

regular bread consumers from non-consumers in a free-living uncontrolled population. 

The combination of more than one of these metabolites into a complex biomarker model, 

improved the predicting capacity of habitual bread consumption exposure. Therefore, we 

anticipate that the proposed food metabolome biomarkers, especially as combined 

models, could be of great support in accurate and precise evaluation and confirmation of 

bread intake in addition to traditional dietary assessment methods.  

Differences in endogenous metabolites might reveal unexplored mechanisms responsible 

for the beneficial effects of bread consumption previously observed in epidemiological 

studies and, thus, would help to generate new hypotheses on the relationship between the 

intake of bread and health. In this case, the greater levels of 2,8-DHQ-β-D-glucuronide 

observed among WGB consumers could suggest novel hypotheses about the biological 

mechanisms involved in the beneficial effects observed for whole-grain cereals through 

PPARα receptors, which requires further investigation. 
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