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The road and the tale have both been long,
would you not say so?

The trip has been long and the cost has been high...
but no great thing was ever attained easily.

A long tale, like a tall Tower,
must be built a stone at a time.

–Stephen King,
The Dark Tower
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Abstract

Supply chain formation involves determining the participants and the ex-
change of goods within a production network. Today’s companies operate au-
tonomously, making local decisions, and coordinating with other companies to
buy and sell goods along their supply chains. Decentralized decision making is
well suited to this scenario since it better preserves the privacy of the partici-
pants, offers better scalability on large-scale scenarios, and is more resilient to
failure. Moreover, decentralized supply chain formation can be tackled either
by means of peer-to-peer communication between supply chain participants or
by introducing local markets that mediate the trading of goods. Unfortunately,
current approaches to decentralized supply chain formation, both in the peer-
to-peer and the mediated scenario, are unable to provide computationally and
economically efficient solutions to the supply chain formation problem.

The main goal of this dissertation is to provide computationally and eco-
nomically efficient methods for decentralized supply chain formation both in
the peer-to-peer and the mediated scenario. This is achieved by means of two
optimized max-sum based methods for supply chain formation.

On the one hand, we contribute to peer-to-peer supply chain formation via
the so-called Reduced Binarized Loopy Belief Propagation (rb-lbp) algorithm.
The rb-lbp algorithm is run by a multi-agent system in which each of the par-
ticipants in the supply chain is represented by a computational agent. Moreover,
rb-lbp’s message computation mechanisms allow the efficient computation of
max-sum messages. This results in an algorithm that is able to find solutions
to the supply chain formation problem of higher value than the state of the art
while reducing the memory, bandwidth and computational resources required by
several orders of magnitude.

On the other hand, we contribute to mediated supply chain formation via
the so-called CHaining Agents IN Mediated Environments (chainme) algorithm.
The chainme algorithm is run by a multi-agent system in which each of the par-
ticipants and each of the goods in the supply chain is represented by a computa-
tional agent. In chainme participant agents communicate exclusively with the
agents representing the goods who act as mediators. Likewise rb-lbp, chainme
is also endowed with a message computation mechanism for the efficient com-
putation of max-sum messages. This results in an algorithm that is able to
find economically efficient solutions while requiring a fraction of the computa-
tional resources needed by the state-of-the-art methods for both peer-to-peer
and mediated supply chain formation.

Finally, the design and implementation of both of our contributions to decen-

xi



tralized supply chain formation follow the same methodology. That is, we first
map the problem at hand into a local term graph over which max-sum can oper-
ate. Then, we assign each max-sum local term to a computational agent. Last,
we derive computationally efficient expressions to assess the max-sum messages
exchanged between these agents. Although our methodology proved to be valid
for the design of SCF algorithms, its generality makes it appear as a promising
candidate for other multi-agent coordination problems.
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Chapter 1

Introduction

In the current industrial global setting, enterprises are facing an era of changing
production paradigms. Instead of taking care of the whole production process,
from raw materials to final consumer-ready product, companies rely more and
more on outsourcing both the components and the processes needed to obtain
the desired goods [Collins et al., 2002]. That, paired with the fact that trans-
portation costs are decreasing while delivery times grow shorter, is leading to
the creation of the so called extended enterprise: the dynamic network of in-
terconnected organizations, from suppliers’ suppliers to customers’ customers,
which work collaboratively to bring value to the marketplace.

There is plenty of evidence of businesses shifting their production mod-
els towards this new paradigm [Norman et al., 2004]. Large traditional man-
ufacturing companies are increasingly outsourcing their production. Software
companies forward part of their work to subcontracted companies in India
[Borenstein and Saloner, 2001]. Start-ups form temporal coalitions that allow
them to compete with larger companies. In all these processes it is of critical
importance to be able to choose the right partners among those available in the
market.

This new production paradigm, in which companies no longer take care of the
whole production process but rather combine their resources, can be studied as
Supply Chain Formation (SCF). In the rest of this chapter we first, in Section 1.1
introduce the SCF problem and argue that there is a need for automating SCF.
Then, in Section 1.2 we introduce the different approaches to SCF found in
the literature highlighting their advantages and weaknesses. Furthermore, in
Section 1.3, we outline the contributions in this thesis to overcome some of these
shortcomings. Finally, in Sections 1.4 and 1.5, we provide a list publications
produced by this thesis and a guide for the reader to the thesis.

1
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Alice

CarolBob Dave
$7-$3-$2

-$1

Eve
-$1

Figure 1.1: Simple SCF scenario described in Example 1.

1.1 The Supply Chain Formation problem

In [Walsh and Wellman, 2003], the authors define a Supply Chain (SC) as “a
network of production and exchange relationships that spans multiple lev-
els of production or task decomposition”. The most basic supply chain is
that in which a supplier provides a consumer with a good. According to
[Walsh and Wellman, 2003], “Supply Chain Formation (SCF) is the process of
determining the participants in the supply chain, who will exchange what with
whom, and the terms of the exchanges.”

Next, we provide a simple example that illustrates the Supply Chain Forma-
tion problem. This example will serve to introduce key concepts to SCF.

Example 1. Consider a service requester, Dave, who wants to buy some break-
fast. The participants in the SC for providing Dave with his breakfast are
depicted in Figure 1.1. In this case, Dave is willing to pay $7 for a piece of cake.
The piece of cake can be produced by Carol given that she can obtain some flour
and eggs and she is paid $3 for baking the cake. Carol has to decide wether to
buy the flour either from Alice at $1 or from Bob at $2. Finally, Carol has to
buy eggs from Eve at $1 to produce the cake.

We say that Carol is a seller of cakes and a buyer of flour and eggs. Similarly,
flour and eggs are the inputs of Carol’s transformation while a piece of cake is the
output of her production process. In general, the input goods of a participant are
those she requires to perform her transformation. Similarly, her output goods
are those obtained after performing her transformation. In Example 1, flour is
the output good for both Alice and Bob and the input good for Carol. In the
same way, the cake is Carol’s output good and Dave’s input good. Whenever
a participant requires a good we say that she is a buyer for that good and,
whenever she produces a good we say she is acting as a seller for the produced
good. In Example 1, Alice and Bob are flour sellers, Eve is an eggs seller, Carol
is a flour and eggs buyer and a cake seller, and Dave is a cake buyer. A certain
set of goods are complementary for a participant when she needs to acquire
all of them in order to produce her output [Walsh and Wellman, 2003]. In the
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Alice

CarolBob Dave
$7-$3-$2

-$1

Eve
-$1

(a) Optimal configuration ($2).

Alice

CarolBob Dave
$7-$3-$2

-$1

Eve
-$1

(b) Suboptimal configuration ($1).

Alice

CarolBob Dave
$7-$3-$2

-$1

Eve
-$1

(c) Empty configuration ($0).

Alice

CarolBob Dave
$7-$3-$2

-$1

Eve
-$1

(d) Unfeasible configuration.

Figure 1.2: Solutions to the problem in Example 1. SC values inside parentheses.

example, Carol needs both flour and eggs in order to produce a cake. Neither
flour nor eggs are of any use to Carol unless she can obtain the other. Therefore,
flour and eggs are complementary goods for Carol.

The participants in a SC can either be part of the SC process (active) or not
(inactive). A SC configuration contains a subset of active participants. Further-
more, a SC configuration is feasible if all active participants are able to buy their
input goods as well as to sell their output goods [Walsh and Wellman, 2003]. For
instance, Figure 1.2a depicts one feasible SC configuration. Active participants
are shown in black while inactive participants are shown in grey. This configu-
ration, in which Alice, Carol, Dave and Eve are active while Bob is inactive, is
a feasible one since all active participants buy their input goods and sell their
output goods. On the other hand, the SC configuration in which Alice, Carol
and, Dave are active and Bob and Eve are inactive (Figure 1.2d) is not feasi-
ble since nobody is selling eggs to Carol. Besides the feasible configuration in
Figure 1.2a, Example 1 allows for two further feasible configurations:

• Bob, Carol, Dave, and Eve are active; while Alice is inactive. That is,
Carol buys flour from Bob and, eggs from Eve, bakes the cake and sells it
to Dave. This configuration is depicted in Figure 1.2b.

• None of the participants is active. This configuration is depicted in Fig-
ure 1.2c

Following [Walsh and Wellman, 2003], the value of a SC configuration is de-
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fined as the total surplus of the SC configuration. Each participant in a SC incurs
in an activation cost whenever she takes part on the SC. These costs correspond
to the amount a participant needs to be paid or the amount a participant is
willing to pay for taking part in the SC. Participants that need to be paid (e.g.
Alice, Bob, Carol and, Eve) have negative activation costs whereas participants
that are willing to pay (e.g. Dave) have positive activation costs. Therefore, the
value of a SC configuration, amounts to the addition of the activation costs of
all the active participants. The value of the SC configuration depicted in Fig-
ure 1.2a is $2 (7-3-1-1). Moreover, the values of the SC configurations depicted
in Figure 1.2b and Figure 1.2c are $1 and $0 respectively. Notice that the SC
configuration in which all the participants are inactive is always feasible and its
value is zero.

Solving the SCF problem amounts to finding the feasible SC configuration
with maximum value [Walsh and Wellman, 2003]. Recall that the SC in Ex-
ample 1 only allows the three feasible configurations depicted in Figures 1.2a,
1.2b, and 1.2c, whose values are $2, $1, and $0 respectively. Thus the optimal
solution to the SCF problem described in Example 1 is the one in Figure 1.2a
where Alice, Carol, Dave, and Eve are active.

So far, we have introduced the SCF problem with the help of a simple ex-
ample. In what follows, we argue that manually solving the SC problem is
unpractical for real-world problems and that there is a need for automated SCF.

1.1.1 The need for automated Supply Chain Formation

Today’s market is in constant change. Producers are faced with ever-
changing customer needs and resources costs and availability. Consequently
it is no longer possible to maintain SCs over extended periods of time
[Walsh and Wellman, 2003]. Thus, the ability to quickly form effective, mu-
tually beneficial trading partnerships becomes increasingly important. That is,
today’s companies are in need for support to swiftly create business collabora-
tions that allow them to readily respond to changing market needs. Moreover,
the logistical complexity of manufacturing and other business activities has been
increasing nearly exponentially [Collins et al., 2002]. The old approach for SCF,
where SCs were assessed manually after extended negotiations is no longer viable.
Furthermore, human irrationality coupled with the complexity of the problem
often lead to inefficient SCs [Winsper, 2012]. Therefore, there is a need for agile
and flexible methods that support temporal collaboration between enterprises
[Norman et al., 2004].

One such method is that of computational agents. Computational agents
are able to explore a larger number of offers. Moreover, they are able to
evaluate scenarios that are too complex for humans. Therefore, computational
agents are well suited for the task at hand [Collins et al., 2002]. Indeed, such
techniques have proved to be useful in real-world scenarios saving over $5 billion
to businesses by means of combinatorial auctions [Sandholm, 2008].

In this section we have introduced the SCF problem. Moreover, we have
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argued that manually solving the SCF problem becomes unpractical as the size
and complexity of SCs grow. Thus, the need for automating the SCF process
arises. In the next section we provide a brief overview of the approaches in
the literature to automated SCF. Moreover, we point out areas with room for
improvement as well as key questions that motivate this thesis.

1.2 Motivation

The SCF problem has been widely studied in the multi-agent systems
literature [Davis and Smith, 1983, Walsh et al., 2000, Collins et al., 2002,
Walsh and Wellman, 2003, Cerquides et al., 2007, Giovannucci et al., 2008,
Winsper and Chli, 2010, Mikhaylov et al., 2011, Winsper and Chli, 2013]. In
these approaches participants are represented by computational agents (par-
ticipant agents henceforth) that act in their behalf during the SCF process
[Norman et al., 2004]. After the deliberation is over, agents assess the new SC
in a fraction of the time required by the manual approach [Winsper, 2012].

The SCF problem has been addressed in the literature mainly by cen-
tralized methods [Walsh et al., 2000, Collins et al., 2002, Cerquides et al., 2007,
Giovannucci et al., 2008, Mikhaylov et al., 2011]. In centralized approaches,
participant agents initially submit bids (that encode their preferences) to
a central authority. This central authority assesses the SC configuration
with maximum value and notifies the participant agents of the outcome.
However, a much less explored field is that of decentralized approaches
for SCF which disregard a central authority when deciding which partic-
ipants must be active [Walsh and Wellman, 2000, Walsh and Wellman, 2003,
Winsper and Chli, 2010, Winsper and Chli, 2013].

Next we provide more details about both centralized and decentralized ap-
proaches to SCF. Moreover, we go one step further in the decentralized SCF
and differentiate between approaches that use direct communication between
participant agents and those that employ mediators for goods.

1.2.1 Centralized approaches

When facing the decision of how to solve the SCF problem one might be ini-
tially compelled to employ a centralized solution [Norman et al., 2004]. That
is, to rely on a central authority to assess the resulting SC. Several contribu-
tions employ an auctioneer to solve the SCF problem in a centralized manner by
means of Combinatorial Auctions (CAs)[Walsh et al., 2000, Collins et al., 2002,
Cerquides et al., 2007, Giovannucci et al., 2008, Mikhaylov et al., 2011]. CAs
[Cramton et al., 2006] are a negotiation mechanism well suited to deal with com-
plementarities among the goods at trade. Since production technologies often
have to deal with strong complementarities, SCF automation appears as a very
promising application area for CAs. Mixed Multi-Unit Combinatorial Auctions
(mmucas) were introduced in [Cerquides et al., 2007] as a generalization of stan-
dard CAs. mmucas extend the expressivity of standard CAs. Moreover, there
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Alice Bob DaveCarol Eve

Auctioneer

(a) Participants send bids.

Alice Bob DaveCarol Eve

Auctioneer

(b) Auctioneer computes solution.

Alice Bob DaveCarol Eve

Auctioneer

(c) Auctioneer notifies partici-
pants.

Figure 1.3: Information flow in a centralized architecture.

is a computationally efficient solver for mmucas [Giovannucci et al., 2008] that
provides the optimal SC.

In such scenario as described above, an auctioneer would determine the ac-
tive participants in the SC after collecting information about all the participants
involved in the production of a good or a set of goods. When solving the SCF
problem described in Example 1 in a centralized manner, each of the participants
(Alice, Bob, Carol, Dave and Eve) will rely on a participant agent to communi-
cate with a central auctioneer. Figure 1.3 depicts the information flow in such
scenario. First, participants send their bids to the auctioneer (Figure 1.3a);
then, the auctioneer computes the SC configuration (Figure 1.3b); finally, the
auctioneer communicates to each participant whether she should be active in
the SC or not (Figure 1.3c). The directed edges between participant agents
and auctioneer represent the information flows. Notice that, when solving the
problem in a centralized manner there is no communication between participant
agents.

However appealing a centralized optimal solution seems it might not be the
best strategy [Hayek, 1945]. In general, there are several arguments against
solving the SCF problem in a centralized manner and in favor of a decen-
tralized approach. First, due to the decentralized nature of the problem, no
central entity might have the allocative authority to perform such operation
[Walsh and Wellman, 2003]. Second, even finding a feasible configuration is
an NP-HARD problem [Walsh and Wellman, 2000, Fionda, 2009]. Therefore,
the SCF problem in large markets results in complex optimization problems
[Babaioff and Nisan, 2004] which might render impossible to solve the problem
in an exact manner due to computational constraints. Third, centralizing the
communication and the computation in a central entity introduces a single point
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Figure 1.4: Information flow in a P2P architecture.

of failure [Winsper, 2012]. Therefore, certain SCF problems are better addressed
by some form of decentralization. In the next section we introduce two forms of
decentralization.

1.2.2 Decentralized approaches

When facing the problem of assessing SCs in a decentralized manner, the first
question to answer is how to distribute knowledge [Hayek, 1945]. A common ap-
proach is for each participant in the SC to be represented by a participant agent
that acts on her behalf during the SCF process [Norman et al., 2004]. However,
the question of how agents communicate and assess the SC with maximum value
still remains open. On the one hand, participant agents in decentralized SCF
can engage in a peer-to-peer negotiation with their suppliers and consumers. On
the other hand, these participant agents, can resort to local markets in which
the goods they want to sell or buy are being traded. In what follows we outline
both approaches for solving the decentralized SCF problem.

Peer-to-peer approaches

A first approach to decentralized SCF is peer-to-peer (P2P) communication. In
P2P approaches, each participant agent directly communicates with the partic-
ipant agents of the buyers of the goods she is producing and the sellers of the
goods she is consuming [Winsper and Chli, 2013]. Therefore, the SCF process
takes place directly between the participant agents.

When solving the SCF problem described in Example 1 in a decentralized
manner with peer-to-peer communication, each participant agent will commu-
nicate with the participant agents of their potential partners. For instance,
Alice’s participant agent will only communicate with Carol’s since Carol is the
only participant interested in buying flour (Alice’s only output). Figure 1.4 de-
picts such scenario. The edges between participant agents represent the possible
information flows.

An interesting approach to solve the SCF problem in a decentralized man-
ner with P2P communication was proposed in [Winsper and Chli, 2010]. This
approach casts the SCF problem as an optimization problem that can be ap-
proximated using max-sum. Max-sum is a message passing algorithm that has
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been widely used in the coordination of agents with very promising results
[Farinelli et al., 2008, Stranders, 2009].

Although it is the first fully decentralized approach, the work in
[Winsper and Chli, 2010] suffers from several drawbacks. For instance, each of
the participant agents has to communicate with all its potential partners, thus
increasing its communication requirements. Moreover, a participant agent needs
to decide whether or not to collaborate with each potential partner. Therefore,
the growth of potential partners comes with increased communication and com-
putation for the participant agent.

Mediated approaches

An alternative to the direct communication between participant agents is the
introduction of a local market for each of the goods in the SC. Each of these
markets is represented by a mediator agent (mediator henceforth) that commu-
nicates with the sellers and buyers of the good at trade in the market. Therefore,
markets allow participants to reach new potential partners [Kalin, 2000] with no
extra cost in terms communication or computation for the participants. Notice
that markets can be profitable in a variety of ways such as advertising, charging
transaction fees, or membership fees. Furthermore, a broader selection of buy-
ers and sellers means that high profit can be achieved even if the fees are low
[Kalin, 2000].

When solving the SCF problem described in Example 1 in a mediated man-
ner, each participant agent will solely communicate with the mediators of the
goods she is interested in buying or selling. Figure 1.5 depicts such scenario.
For instance, Carol’s participant agent will communicate with the flour, egg
and cake mediators, whereas Alice’s participant agent will only communicate
with the flour mediator. The edges between participant agents and mediators
represent the possible information flows.

In [Walsh and Wellman, 2003], the authors propose samp-sb-d, a method
for solving the SCF problem in a decentralized manner with the use of
mediators. In this approach there is a mediator agent for each of the goods
at trade and participant agents communicate exclusively with the mediators
of the goods they are interested in buying or selling. On the one hand, each
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participant agent submits ascending bids to the mediators. On the other hand,
each mediator simultaneously runs an auction for the good it is in charge
of. Although this method achieves high economical efficiency, as discussed in
[Winsper and Chli, 2013], it incurs in a high penalty in terms of communication.
samp-sb-d is costly in terms of communication due to the fact that its mediators
need to re-evaluate and communicate the winners of the running auctions each
time they receive a new bid.

1.2.3 Analysis

So far we have introduced the different approaches in the literature to SCF in
terms of the agents involved in the process and how they organize and commu-
nicate. However, in the literature, there is no comparison in terms of economical
nor computational efficiency between these approaches for SCF. Moreover it is
unclear whether decentralized methods can perform efficiently in terms of com-
putation and the value of the SCs assessed. Therefore, the following research
questions remain unanswered:

Question 1. Can decentralized SCF methods be economically efficient?

Question 2. Can decentralized SCF methods be computationally efficient?

In the next section we detail our contributions in this thesis that aim to
answer the aforementioned research questions.

1.3 Contributions

In this thesis we contribute to the state-of-the-art with two methods for the
decentralized assembly of SCs. Both methods (rb-lbp and chainme) are based
on the max-sum algorithm. Moreover, rb-lbp follows the P2P architecture for
decentralized SCF whereas chainme follows the mediated architecture. Our
methods advance the state-of-the by providing a computational and economical
efficient way to solve the SCF problem in a decentralized manner. That is, we
propose two decentralized methods for SCF that:

1. Produce economically efficient solutions. We show that chainme is
able to find solutions to the SCF problem that are close to the optimal one
(98% of the optimal value). Moreover, chainme is able to find the optimal
solution in 78% of the instances. On the other hand, the value of the SCs
assessed by rb-lbp can be up to 2 times higher than those assessed by the
state-of-the art method for P2P SCF as the size of the problem grows.

2. Approximate solutions to the SCF problem in a computation-
ally efficient manner. On the one hand, rb-lbp uses over 700 times
less bandwidth, runs up to 20 times faster, and uses up to five orders of
magnitude less memory than the state-of-the-art methods for P2P SCF in
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large-scale scenarios. On the other hand, chainme is able to assess solu-
tions up to 100 times faster while using up to three orders of magnitude
less bandwidth than the state-of-the-art methods for mediated SCF with
no impact on the memory requirements.

Moreover, the design and implementation of both of our contributions to
decentralized supply chain formation follow the same methodology. Therefore,
we further contributed to the state of the art with:

3. A methodology for the design of decentralized decision making
algorithms that proved to be valid for the SCF problem. Furthermore its
generality makes it appear as a promising candidate for other multi-agent
coordination problems.

To summarize, we proposed a methodology for the design of decentralized
decision making algorithms that resulted in two max-sum based algorithms that
prove to be computationally efficient as well as to provide solutions of higher
value than the state-of-the-art methods for decentralized SCF.

1.4 Dissertation outline

The remaining of this dissertation is organized as follows. In Chapter 2, we
provide background knowledge on Periodic Double Auctions and the max-sum
algorithm. This background is needed for understanding the concepts in follow-
ing chapters.

In Chapter 3, we provide the context for our work. We introduce the state
of the art methods for Supply Chain Formation. Moreover, we classify this
methods into three broad categories: centralized SCF, decentralized P2P SCF,
and decentralized SCF with mediators for goods.

In Chapter 4, we provide a formalization of the SCF problem in which partic-
ipants have only knowledge of their potential buyers and sellers. Moreover, we
provide a method for solving the decentralized SCF problem with direct commu-
nication between participant agents. Furthermore, we experimentally evaluate
our approach against the state of the art in P2P SCF.

In Chapter 5, we provide a formalization of the SCF problem in which partic-
ipants have knowledge of markets trading their input and output goods. More-
over, we provide a method for solving the SCF problem in decentralized manner
in which participant agents communicate with mediators for goods. Further-
more, we experimentally evaluate our approach against the state of the art in
mediated SCF with mediators for goods. Finally, we provide a thorough compar-
ison between all the state-of-the-art methods for SCF regardless of their nature.

Finally, in Chapter 6, we draw some conclusions and describe lines for future
research.
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Chapter 2

Mathematical Background

In Chapter 1 we introduced the Supply Chain Formation (SCF) problem. More-
over, we argued that there is a need for automated SCF. Furthermore, we pointed
out that the automated assessment of Supply Chains (SCs) in a decentralized
manner is an emergent field that needs to be studied in depth. In this chapter, we
review some concepts that are the building blocks for the state-of-the-art meth-
ods for decentralized SCF as well as our own contributions. On the one hand,
we review periodic double auctions as a mechanism to assess the participants
in a SC in which there is only one good at trade (i.e. the exchanges of a single
good with multiple buy and sell offers). Periodic double auctions are used as the
main component in the SCF method proposed in [Walsh and Wellman, 2003].
On the other hand, we review the max-sum algorithm as a general technique for
decentralized coordination of multi-agent systems. In [Winsper and Chli, 2010],
the authors exploit the max-sum algorithm for the formation of SCs.

2.1 Periodic double auctions

In this section we review periodic double auctions, sometimes termed a call
market [Mccabe et al., 1990], as a mechanism to assess the participants in a SC.
Periodic double auctions are well suited to assess SC participants in a scenario
in which there is a single good to be exchanged between buyers and sellers. One
such scenario is described in the example below.

Example 2. Consider a vintage computer market such as the one depicted
in Figure 2.1. In this market, there are eight participants from which four
are looking to sell an Apple Macintosh and four are looking to buy an Apple
Macintosh. On the one hand, Alice, Bob, Carol, and Dave (the sellers) offer to
sell an Apple Macintosh for $2, $3, $4, and $5 each. On the other hand, Eve,
Frank, Gene, and Hank are willing to pay $6, $5, $2, and $1 respectively for an
Apple computer.

In the vintage computer market described in Example 2, solving the SCF

13
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Figure 2.1: Vintage computer market described in Example 2.

equals to finding the SC configuration with maximum value. That is, finding the
SC configuration in which the total surplus is maximized. The SC configuration
that maximizes the total surplus is that in which Alice and Bob sell the computer
to Eve and Frank for a total surplus of $6.

The SCF problem described in Example 2 can be tackled by means of a
periodic double auction. Two-sided or double auctions permit multiple buyers
and sellers to bid to exchange a designated commodity. In the periodic version
of the double auction an auctioneer collects buy and sell bids over a specified
period of time, then clears the market at the expiration of the bidding period.
In order to clear the market, the auctioneer needs to determine the winners of
the auction and the price at which the goods will be exchanged. The former
is decided by means of a clearing rule whereas the latter is fixed by means of
a pricing rule. We cover the process of deciding the winners of the auction in
Section 2.1.1 and the process of fixing the price in Section 2.1.2. Finally, in
Section 2.1.3 we provide an algorithm to assess both the active participants and
the price along with a complexity analysis of the algorithm in terms of memory,
communication and computation resources required to run a periodic double
auction.

2.1.1 Clearing rule

Going back to the SCF problem described in Example 2, after collecting buy and
sell bids from the participants, the auctioneer in a periodic double auction has
to decide which participants will be active in the resulting SC configuration (i.e.
which participants will exchange the computer). Intuitively, this can be done
by matching the best (cheaper) sellers with the best buyers until the exchanges
no longer produce surplus. That is, the auctioneer will first match Alice (−$2)
with Eve ($6) and then Bob (−$3) with Frank ($5). The auctioneer will stop
matching buy and sell bids at that point since the exchange between Carol (−$4)
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and Gene ($2) does not generate surplus. Therefore, the active participants in
the resulting SC configuration will be Alice, Bob, Eve, and Frank, corresponding
to the optimal solution to this SCF problem.

In general, we note the largest possible surplus as π∗. We refer to a π∗-
configuration as a set of buyers and sellers that achieve surplus π∗. Alice, Bob,
Eve, and Frank are active in the π∗-configuration and Carol, Dave, Gene, and
Hank are not. The number of buyers at trade in the π∗-configuration (2 in this
case) is noted as η.

In the general case, consider an auctioneer (mg) that aims to trade good g.
Let Sg be the set of sellers that are willing to sell g and Bg the set of buyers that
are willing to buy g. Table 2.1 describes a general periodic double auction, with
s1, ..., sη, ..., s|Sg| being the sellers ordered descendingly by offer; b1, ..., bη, ..., b|Bg|

being the buyers ordered descendingly by offer; νgsi is the offer from seller si to
the auctioneer for good g; and νgbj is the offer from buyer bj to the auctioneer for
good g. The buyers and sellers over the dashed line are in the π∗-configuration
whilst the ones below are not.

Sellers Buyers Fact

s1 b1 νgb1 + νgs1 > 0
...

...

sη bη νgbη + νgsη ≥ 0

sη+1 bη+1 νgbη+1 + νgsη+1 < 0
...

...

Table 2.1: General periodic double auction scenario.

So far we have covered how to decide the active participants in a periodic
double auction. However, the auctioneer must face one more decision: to assign
the price payed by buyers and received by sellers. In the following section we
cover two pricing rules.

2.1.2 Pricing rules

A price rule in a periodic double auction establishes the clearing price (τ) paid
by buyers and received by sellers. We focus on the (M+1)st and M-th price
rules [Wurman et al., 1998] . There are some constraints that the price has to
fulfil to ensure individual rationality [Fudenberg and Tirole, 1991] for the active
participants (i.e. no active participant receives negative surplus) and fairness
for the inactive participants (i.e. no inactive participant would receive a positive
surplus if active).

To ensure individual rationality, no seller at trade should be paid less than her
bid (τ ≥ −νgsη ) and no buyer at trade should pay more than her bid (τ ≤ νgbη ).
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To ensure fairness the price cannot be larger than the bid of any seller that is
left out of trade (τ ≤ −νgsη+1), and it cannot be smaller than the bid of any
buyer that is left out of trade (τ ≥ νgbη+1). Thus, the clearing price τ can take
any value such that τ− ≤ τ ≤ τ+ where

τ− = max(−νgsη , ν
g
bη+1) (2.1)

and

τ+ = min(−νgsη+1 , ν
g
bη ). (2.2)

The rule that sets the clearing price at τ− is known as the (M+1)st price
rule, whilst the rule that sets the price at τ+ is known as the M-th price rule
[Wurman et al., 1998]. The price interval (τ−, τ+) is known as the bid-ask in-
terval [Wurman et al., 1998]. Regarding Example 2, the (M+1)st price rule
would set the price at τ− = max(−(−3), 2) = $3 (corresponding to Bob’s offer),
whereas the M-th price would do it at τ+ = min(−(−4), 5) = $4, established by
Carol’s offer.

2.1.3 Periodic double auction clearing algorithm

So far, we have described the rules for determining the active participants in
a periodic double auction and fixing the price at which the goods could be
exchanged. In what follows we describe a general algorithm to determine both
the active participants in the π∗-configuration and the bid-ask interval for the
price. Recall from Section 1.2.3 that we are interested in studying whether
decentralized SCF can be computationally efficient. Therefore, at the end of this
section we study the complexity of the algorithm for periodic double auctions
since it is the basic building block of some of the methods in the state-of-the-art
for SCF [Walsh and Wellman, 2003].

As we have seen in Section 2.1.1, given a SC, assessing the active participants
in its π∗-configuration equals to matching the best buyers and sellers until the
exchanges do not generate surplus. Furthermore, as we have seen in Section 2.1.2,
determining the bid-ask interval equals to applying Equations 2.1 and 2.2 after
finding the π∗-configuration. Intuitively, assessing the set of active participants
in the π∗-configuration and the bid-ask interval amounts to:

1. Sorting sellers decreasingly by offer.

2. Sorting buyers decreasingly by offer.

3. Assessing the number of active participants (η) by matching buyers and
sellers in order until the matches stop generating surplus, that is, until the
buy offer is not able to cover the sell offer or there are no more offers.

4. Selecting the top η sellers and buyers to be active.

5. Assessing the bid-ask interval according to Equations 2.1 and 2.2.
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More formally, Algorithm 1 describes the procedure followed by the auc-
tioneer to assess the bid-ask interval (τ−, τ+) and the set of active buy-
ers (Bag ) and sellers (Sag ) in the π∗-configuration given a set of buy offers
(νgB = 〈νgb1 , . . . , ν

g

b|Bg|
〉), and a set of sell offers (νgS = 〈νgs1 , . . . , ν

g

s|Sg|
〉) for a

good g.

Algorithm 1 Clearing and pricing rules for a periodic double auction.

Require: A set of buy offers (νgB) and a set of sell offers (νgS)
1: Sort sellers decreasingly by offer getting:
2: S = 〈s1, . . . , s|Sg|〉
3: Sort buyers decreasingly by offer getting:
4: B = 〈b1, . . . , b|Bg|〉
5: η ← 0 // Assess the number of trading participants
6: while νgsη+1 + νgbη+1 ≥ 0 do
7: η ← η + 1
8: end while
9: Sag = {s1, . . . , sη} // Assess the set of active sellers at trade

10: Bag = {b1, . . . , bη} // Assess the set of active buyers at trade
11: τ− ← max(−νgsη , ν

g
bη+1) // Assess the bid-ask interval

12: τ+ ← min(−νgsη+1 , ν
g
bη )

13: return (Sag , B
a
g , τ
−, τ+)

Next, we analyze the resources necessary to run a periodic double auction.
Given P = S ∪ B, the set of participants interested on selling or buying good
g. First, the auctioneer needs to store the buy and sell offers received from
each of the participants, namely O(|P |) memory. Second, in a periodic double
auction, participants send their offers to the auctioneer and then are notified
of the bid-ask interval and wether they are active in the π∗-configuration or
not. Therefore, the communication requirements are also in O(|P |). Finally,
the costliest operation for the auctioneer is sorting the offers received from the
participants which takes O(|P | · log |P |) operations. Hence, running a periodic
double auction requires low computational resources.

2.2 Max-sum: Maximizing a function that de-
composes additively

As mentioned in Section 1.2, the SCF problem has been widely studied in the
multi-agent systems literature [Davis and Smith, 1983, Walsh et al., 2000,
Collins et al., 2002, Walsh and Wellman, 2003, Cerquides et al., 2007,
Giovannucci et al., 2008, Winsper and Chli, 2010, Mikhaylov et al., 2011,
Winsper and Chli, 2013]. Max-sum [Bishop et al., 2006], a message pass-
ing algorithm that can find approximate solutions to optimization prob-
lems, has been used to solve the SCF problem in a decentralized manner
[Winsper and Chli, 2012, Winsper and Chli, 2013]. Moreover, max-sum has
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shown good empirical performance in a wide range of multi-agent systems
coordination scenarios [Farinelli et al., 2008, Stranders, 2009, Kim et al., 2010,
Rogers et al., 2011, Pujol-Gonzalez et al., 2013b]. As mentioned in Section 1.3,
our contributions to decentralized SCF are based on the max-sum algorithm.
Therefore, in this section we review it, showing that it can be understood as an
exchange of messages over a graph.

In the following, let X = 〈x1, . . . , xn〉 be a sequence of variables, with each
variable xi taking states in a finite set Di known as its domain. The joint domain
DX is the cartesian product of the domain of each variable. We use xi to refer to
a possible state of xi, that is xi ∈ Di. Moreover, we use X to refer to a possible
state for each variable in X, that is X ∈ DX . Given a sequence of variables
Xf ⊆ X, a local term f is a function f : DXf → R. We say that Xf is the scope
of f , and Xf is a possible state for each variable in Xf . Finally, a term whose
scope is a single variable is said to be a simple term, and a term whose scope is
two or more variables is said to be a composite term.

A function g : DX → R is said to decompose additively if it can be broken
as a sum of local terms. That is, whenever there is a set of local terms F
(referred to as the additive decomposition F ) such that g(X) =

∑
f∈F f(Xf ).

Many problems, such as decoding [Forney Jr, 1973] or finding minimal graph
cuts [Tarlow et al., 2011], can be reduced to solving the problem of maximizing
a function that decomposes additively.

Formally, the problem of maximizing a function that decomposes additively
can be expressed as follows:

maximize g(X) =
∑
f∈F f(Xf )

subject to xi ∈ Di. ∀i ∈ {1, . . . , n}

Example 3. Consider a function g that takes variables x1, x2, and x3 as pa-
rameters. Moreover, consider the domains of x1, x2, and x3 to be D1 = {0, 1},
D2 = {0, 1, 2}, and D3 = {1, 2} respectively. Finally, consider that the value of
function g is assessed by g(x1, x2, x3) = x1 · x1 + x1 · x2 − x2 · x3.

It is easy to see that function g described in Example 3 can be de-
composed additively in three local terms. Taking terms f1(x1) = x1 · x1,
f2(x1,x2) = x1 · x2, and f3(x2,x3) = −(x2 · x3) with scopes Xf1 = {x1},
Xf2 = {x1, x2}, and Xf3 = {x2, x3} we obtain g’s additive decomposition
F = {f1, f2, f3}. Notice that the problem of maximizing function g has more
than one optimal solution. One of these optimal solutions is x1 = 1, x2 = 0,
x3 = 2, with a value of 1, that is g(1, 0, 2) = 1.

Max-sum provides an approximate solution for the problem of maximizing a
function that decomposes additively in three steps. First, it maps the problem
into a structure called local term graph. Then, it iteratively exchanges messages
between the vertices of that graph. Finally, it determines the states of the
variables. In the following sections, we review each of the three steps.
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(a) Variables simple vertices.

x1 x2 x3
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(b) Composite vertices.
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f2 f3

(c) Edges between vertices.

Figure 2.2: Local term graph for the additive decomposition of g in Example 3.

2.2.1 From an additively decomposable function to a local
term graph

The first step that max-sum performs to solve the problem of maximizing a func-
tion g that decomposes additively is mapping an additive decomposition F of g
into a graph known as the local term graph. The local term graph GLT is simply
a specialization of the local domain graph defined in [Aji and McEliece, 2000]
to the max-sum semiring. Each vertex of the GLT is, as its name suggests, a
local term in an additive decomposition F of our objective function g. An edge
between two terms in the GLT means that these two terms share one variable
and that they are willing to exchange information about the variable they share.
For each vertex v ∈ GLT , we note fv its associated term. We refer to vertices
associated with simple terms as simple vertices and to vertices associated to
composite terms as composite vertices.

Figure 2.2 illustrates the process of mapping the additive decomposition of
function g in Example 3 into a GLT . In this illustration we use circles to depict
simple vertices and squares to depict composite vertices. First, a simple vertex
is created for each of the variables (Figure 2.2a). Since f1 is a simple term
that only depends on x1 it is included in the simple vertex for variable x1.
Second, a composite vertex is created for each of the composite terms, that is,
f2 and f3 (Figure 2.2b). Finally, each composite vertex is connected to the
simple vertices of each of the variables in its scope (Figure 2.2c). That is, the
composite vertex associated to f2 is connected to the simple vertices for variables
x1 and x2. Similarly, the composite vertex associated to f3 is connected to the
simple vertices for variables x2 and x3.

In general, the local term graph used by max-sum is built from F as follows.
First, for each variable xi, a simple vertex is created, associating with it a term
(fxi) that is the addition of every simple term in F whose scope is xi. Second,
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for each composite term fj , a composite vertex is created. With a slight abuse
of notation, we label xi the simple vertex associated to variable xi and fj the
composite vertex associated to composite term fj . Finally, each composite vertex
is connected to the simple vertex of each of the variables in its scope. Notice
that, since composite vertices are only connected to simple ones and vice versa,
any pair of connected vertices in this graph share a single variable, the one
corresponding to the simple vertex. Furthermore, notice that the GLT is a
bipartite graph with two disjoint sets corresponding to the set of simple vertices
and the set of composite vertices.

2.2.2 Exchanging messages on a local term graph

After an additive decomposition of the function to maximize has been mapped
into a local term graph, max-sum proceeds by iteratively exchanging messages
over that local term graph. The procedure followed by each vertex v of the
local term graph, is a particular case of iterative GDL (see section VII in
[Aji and McEliece, 2000]). Each vertex of the local term graph is in charge
of receiving messages from its neighbors, composing new messages and sending
them to its neighbors. Recall from Section 2.2.1 that in a GLT any two vertices
connected by an edge share a single variable. Therefore, there will be messages
exchanged from simple vertices xi to composite vertices fj and vice versa. The
message exchanged between a pair of vertices is a vector of real numbers, one
for each possible state of the variable shared by both vertices. The exchange of
messages continues until a convergence criterion is met.

The message sent from a composite vertex f to its neighbor x (µxf ) is assessed
from the messages previously received by f as follows

µxf (x) = max
Xf\{x}

f(Xf ) +
∑

x′∈N(f)\{x}

µfx′(x
′)

 ∀x ∈ Dx (2.3)

where Xf\{x} can take every possible state of every variable in the scope of local
term f except x; f is the local term associated to the vertex, and N(f) \ {x} is
the set of neighbors of f excluding x.

On the other hand, the message sent from a simple vertex x to its neighbor
f (µfx) is assessed from the messages previously received by x as follows

µfx(x) = fx(x) +
∑

f ′∈N(x)\{f}

µxf ′(x) ∀x ∈ Dx (2.4)

where fx is the simple term associated to x and N(x)\{f} is the set of neighbors
of x excluding f . Next, we describe the algorithm followed by each of the vertices
in the GLT .

Initially, each vertex v will initialize the message from each of its neighbors
w to zeros. After that, for each neighbor w, it will assess message µwv according
to Equations 2.3 or 2.4, send the message to the corresponding neighbor, and
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Algorithm 2 Algorithm run by any vertex v of the local term graph

1: For each vertex w neighbor of v, initialize message µvw to zeros.
2: while not convergence and not maximum number of iterations do
3: Assess message µwv for each vertex w neighbor of v.
4: Send message µwv to each vertex w neighbor of v.
5: Receive message µvw from each vertex w neighbor of v.
6: end while

receive the message µvw from vertex w. The procedure, given by Algorithm 2, is
repeated until convergence or a maximum number of iterations is reached.

Max-sum is said to have converged after none of the messages change from
one iteration to another [Koller and Friedman, 2009]. A slightly less stringent
criterion for convergence is to stop max-sum after the preferred states for the
variables do not change from one iteration to another [Farinelli et al., 2008].
This second criterion is useful for instances in which the preferred state of the
variables converges but the messages marginally change at each iteration.

When the local term graph is a tree, max-sum is guaranteed to converge to the
optimal configuration [Weiss, 2000]. Otherwise, if the local term graph contains
cycles, the max-sum message exchange may converge to an approximation and
even fail to converge. Yet, if max-sum converges, it is known to provide neighbor-
hood maximum configurations [Weiss and Freeman, 2001, Vinyals et al., 2010].
For instance, in local term graphs with a single cycle, the neighborhood maxi-
mum is the global maximum and so max-sum is optimal in this case.

2.2.3 Determining the states of the variables

After the message exchange ends, it is necessary to determine the states of the
variables. That is, for each variable x of the function to optimize we need to
choose a state from its domain Dx. There are different strategies for fixing
the states of the variables. Here, we will review the most commonly used one:
independent variable marginals. With this approach, decisions on the state of
each variable are simultaneously taken by each simple term. These decisions can
be taken independently for each variable since each variable is represented by
only one simple term. The assignment of the state for a variable x in its single
term that maximizes its local value is then assessed as:

x∗ = arg max
x

fx(x) +
∑

f∈N(x)

µxf (x)

 . (2.5)

Assigning states this way is fast and simple. However, it could be the case
that the decisions taken by each of the vertices do not fit together. For instance,
take function g defined in Example 3. The assignment x1 = 1, x2 = 0, x3 = 2
is an optimal one with value g(1, 0, 2) = 1. However, the assignment x1 = 1,
x2 = 1, x3 = 1 is also optimal and has value g(1, 1, 1) = 1. The values assessed
by Equation 2.5 will be equal for both states of variable x3, but selecting the
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values for variables x1 = 1, x2 = 1, x3 = 2 independently will result in a
suboptimal solution with value g(1, 1, 1) = 0. Thus, some approaches such as
[Givoni and Frey, 2009, Pujol-Gonzalez et al., 2013b] determine the values of the
variables in a domain specific manner.

2.2.4 Reducing max-sum computational complexity

So far we have described max-sum as an algorithm to find approximate solu-
tions to an optimization problem; as long as it can be represented by a func-
tion that decomposes additively. Unfortunately, since assessing the message in
Equation 2.3 takes exponential time in the number of variables, max-sum might
perform poorly in terms of computation in problems that contain local terms
with large scopes. However, studying the particularities of a specific composite
local term can lead to reduce the complexity of assessing its outgoing messages
[Tarlow et al., 2010]. The following example illustrates this reduction.

Example 4. Consider the sequence of N -ary variables X = 〈x1, . . . , xn〉, with
each of the variables sharing the same domain D = {1, . . . , N}. Moreover, take
the composite local term f with scope Xf = 〈x1, . . . , xn〉 that takes value 0
whenever all the variables share the same state and −∞ otherwise. Formally,

f(x1, . . . ,xn) =

{
0, if xi = xi+1 1 ≤ i < (n− 1)

−∞, otherwise.

Assessing the max-sum message from local term f to a variable xi in its
scope for state xi (µxif (xi)) using Equation 2.3 would take exponential time on
the number of variables in f ’s scope. However, if we take a closer look at how
this message is computed and the particularities of local term f we can reduce
this complexity. Since we are assessing the message for variable’s xi state xi,
any assignment to variables Xf \ {xi} other than assigning all the variables to
xi will result in a message containing a value of −∞. Therefore, in order to
maximize the expression in Equation 2.3, all variables in Xf \ {xi} must take
value xi. Hence, we can compute the message from local term f to any variable
xi in its domain for a state xi as the addition of the messages received by f from
its neighboring variables for that same state. More formally, Equation 2.3 for
local term f can be assessed as:

µxif (xi) =
∑

x′∈N(f)\{xi}

µfx′(xi).

Thus, reducing the complexity of assessing the message from local term f to a
neighbor xi from exponential to linear.

In [Givoni and Frey, 2009], the authors provide the first simplified ex-
pressions to assess the outgoing messages from composite local terms.
Later on, the works in [Tarlow et al., 2010, Pujol-Gonzalez et al., 2013a,
Pujol-Gonzalez et al., 2013b] expand the collection of local terms that can have
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their output messages assessed in linear (or log-linear) time. These simplifica-
tions are usually performed over local terms that operate over binary variables
only. However, N -ary variables can be represented by converting variables with
N states into N binary variables with a 1-of-N constraint [Tarlow et al., 2010].
Moreover, since each variable is binary, it may appear from Equations 2.3 and
2.4 that the vertices must exchange two-valued messages. Therefore, one might
think that introducing additional variables comes at the cost of additional mes-
sages being passed since for each possible state of a variable two values would be
sent instead of one. In practice, for any message µwv , vertices can just exchange
a single-valued message νwv representing the difference between the two values
for its possible settings. Formally,

νwv = µwv (1)− µwv (0). (2.6)

Thus, preserving the amount of information exchanged between vertices.
The original two-valued message can be recovered from this scalar up to an
additive constant. For instance, we can recover µwv from νwv by defining
µwv (1) = νwv and µwv (0) = 0. However, this is not important because adding
a constant to all values of a message does not alter the output of the algorithm
[Givoni and Frey, 2009].

The technique described above will be key in the development of our contri-
butions to decentralized SCF both in peer-to-peer and mediated SCF. That is,
in Chapters 4 and 5 we will introduce new types of local terms whose message
calculation can be simplified in order to build computationally efficient methods
for decentralized SCF.

2.3 Conclusion

In this chapter we have reviewed periodic double auctions as a mechanism to
assess the participants in a SC in which there is only one good at trade. More-
over, we have reviewed the max-sum algorithm as a method for approximating
optimization problems in a decentralized manner. Both of these tools will be
key in understanding the state-of-the-art methods for SCF reviewed in the next
chapter. Finally, we have reviewed a technique to reduce the time complexity
required by the max-sum algorithm to operate. This technique will be the base
of the methods for decentralized SCF that we introduce in later chapters.





Chapter 3

Related Work

The Supply Chain Formation (SCF) problem has been widely studied
by the multi-agent systems community. Numerous contributions can be
found in the literature where participants are represented by computational
agents (e.g. [Davis and Smith, 1983, Walsh et al., 2000, Collins et al., 2002,
Walsh and Wellman, 2003, Cerquides et al., 2007, Giovannucci et al., 2008,
Winsper and Chli, 2010, Mikhaylov et al., 2011, Winsper and Chli, 2013]).
These computational agents act in behalf of the participants during the SCF
process [Norman et al., 2004]. Moreover, the agents representing the partici-
pants interact with each other for a period of time after which the new Supply
Chain (SC) is formed. By employing computational agents it is possible to form
SCs in a fraction of the time required by the manual approach [Winsper, 2012].

As discussed in Chapter 1, SCF methods can be classified in three categories
depending on the architecture they follow. A first division is to separate SCF
into centralized and decentralized architectures. Furthermore, we can separate
the decentralized methods into two further categories depending on whether the
communication between participants is either direct or mediated. In this chapter
we briefly review the contributions within these three categories and provide a
description of the state-of-the-art methods for each of them.

3.1 Centralized approaches

A compelling approach to address the SCF problem is to employ
a centralized method [Norman et al., 2004]. Unsurprisingly, the ma-
jority of the contributions in the literature follow a centralized ap-
proach (e.g. [Walsh et al., 2000, Collins et al., 2002, Cerquides et al., 2007,
Giovannucci et al., 2008, Mikhaylov et al., 2011]). In a centralized approach,
participant agents inform a central authority of their preferences (encoded as
offers). After collecting the offers of all participant agents, the central authority
determines the resulting SC. Subsequently, the aforementioned central author-
ity notifies the participants whether they are active in the resulting SC and the

25
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terms, such as prices, and with whom they will exchange goods.
Combinatorial Auctions (CAs) [Cramton et al., 2006] are a common mecha-

nism to solve the SCF problem because they are well suited to deal with com-
plementarities between goods. This sort of approaches make use of an auction-
eer that acts as the central authority of the system. After collecting the bids
from the participants, the auctioneer determines the SC of maximum value and
notifies the participants if they are active and the terms of the exchanges. In
[Walsh et al., 2000], the authors propose one such method of centralized SCF by
means of a CA. Moreover, the authors study the economic impact that partici-
pants bidding strategically have in the SC. In [Collins et al., 2002], the authors
introduce a model capable of dealing with temporal and precedence constraints.
Thus, providing solutions that represent a schedule for the execution of the SC.
Later, in [Cerquides et al., 2007], a new bidding language is introduced that
increases the expressiveness of standard CAs allowing to express bids that con-
tain multiple copies of the same transformation, transformations that take (or
produce) multiple units of the same good, offer different bundles of transforma-
tions, and different prices for a transformation depending on how many times it
is performed (bulge discounts). In [Giovannucci et al., 2008], the authors pro-
vide the means to reduce the computational complexity of solving the Winner
Determination Problem of the previous approach through a formal analysis of
the topology of the problem. Recently, in [Mikhaylov et al., 2011], the authors
propose to solve the SCF problem in a sequential manner. Therefore, the auc-
tioneer first accepts bids for her required goods and, in subsequent iterations,
she accepts bids for the required goods of previous iterations. Regardless of their
particularities, all the methods described above solve the Winner Determination
Problem in a similar manner which we describe next.

3.1.1 Solving the Supply Chain Formation problem

Solving the Winner Determination Problem (WDP) with CAs is usually achieved
by means of an Integer Program (IP). The IP receives as input the participants’
bids, a set of goods the auctioneer expects to end up with, and a set of the
goods that are readily available for the auctioneer. Moreover, the output of
the IP is a set of transformations to be executed that correspond to the bids
from the participants to be accepted. In the case the IP formulation takes into
account the order in which the tasks must be performed, the output would be a
sequence of transformations to execute in order to produce the required output
[Collins et al., 2002, Cerquides et al., 2007]. Next, we analyze the complexity of
the method introduced in [Cerquides et al., 2007].

The WDP proposed in [Cerquides et al., 2007] has a binary decision variable
for each task submitted by a participant and position on the solution. Moreover,
since the solution is a sequence of transformations to be executed, and all the
transformations can be potentially selected to be accepted, there would be as
many positions on the solution as tasks in the SC. This encoding is used in order
to cope with cyclic transformations (those that produce goods that are used in
previous levels of the SC). Therefore, in a problem with N transformations, there
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would be N2 binary variables (one for each transformation-position). Thus, the
number of variables in the IP grows quadratically with the number of transfor-
mations which hinders its scalability [Cerquides et al., 2007]. Moreover, a valid
solution must comply with a set of constraints over the bids and the accepted
transformations. That is, the IP needs to enforce, by means of constraints,
that it is possible to obtain the requested goods from the goods that are initially
available by applying the transformations in the solution in the given order while
respecting the bids submitted by the participants. Although it is possible to sig-
nificantly reduce the number of variables and constraints through formal analysis
of the topology of the problem, solving the WDP by means of IP still turns out
tot be impractical in high complexity scenarios [Giovannucci et al., 2008].

3.1.2 Analysis

Although solving the SCF in a centralized optimal manner seems to be appealing,
it might not be the best strategy [Hayek, 1945]. In general, there are several ar-
guments against solving the SCF problem in a centralized manner and in favor of
a decentralized approach. First, centralized approaches rely on a central author-
ity that possesses the private valuations of all agents and determines a feasible
allocation. By doing so, these approaches need for all participants to fully trust
the central authority. However, there are scenarios where that assumption can
not be taken so easily (e.g. temporal coalitions among companies without the in-
tervention of a third party mediator). Therefore, due to the decentralized nature
of the problem, no central entity might have the allocative authority to perform
such operation [Walsh and Wellman, 2003]. Second, even finding a feasible con-
figuration is an NP-HARD problem [Walsh and Wellman, 2000, Fionda, 2009].
Therefore, the SCF problem in large markets results in complex optimization
problems [Babaioff and Nisan, 2004] which might render impossible to solve the
problem in an exact manner due to computational constraints. Moreover, these
methods can also have scalability issues due to their centralized nature. Third,
the existence of a centralized entity introduces a single point of failure in the
system. Therefore, certain SCF problems (specially those related to large mar-
kets) are better addressed by avoiding the use of a central authority. In the next
section, we cover the state of the art in decentralized SCF and analyze whether
these solutions are economically (Question 1) and computationally (Question 2)
efficient.

3.2 Decentralized approaches

Decentralized SCF appears as an alternative to centralized SCF in order to
overcome some of its limitations. A special area of interest when facing the SCF
problem in a decentralized manner is that of how to distribute the knowledge
[Hayek, 1945]. Generally, participants in the SCF process are represented by
computational agents [Norman et al., 2004] usually referred to as participant
agents. These participant agents act on behalf of the participants during the
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Figure 3.1: Lime juice industry SC described in Example 5.

SCF process. However, one must still decide how the participant agents will
interact with each other in order to determine the active participants in the SC
and the terms of the exchanges.

As discussed in Section 1.2.2, a first approach to decentralized SCF considers
peer-to-peer (P2P) communication. In P2P SCF, participant agents only inter-
act with the participant agents representing their suppliers and consumers, this
approach is followed by [Winsper and Chli, 2010, Winsper and Chli, 2013]. A
decentralized alternative to P2P SCF is that of mediated SCF. In this setting,
participant agents resort to local markets in which the goods they want to sell
or buy are being traded [Walsh and Wellman, 2000, Walsh and Wellman, 2003].
In the following sections we elaborate on this distinction and review the state-
of-the-art for both P2P SCF and and mediated SCF.

3.2.1 Peer-to-peer Supply Chain Formation

In P2P approaches to SCF, each participant agent communicates directly with
the participant agents representing its potential buyers and sellers. That is, the
participant agents representing participants providing the goods it requires as
inputs and the participant agents representing participants consuming the goods
it produces. Therefore, the SCF process takes place between participant agents
with no intervention of any third party. Take, for instance, the example of a
local lime juice industry described bellow.

Example 5. The participants in the SC for our local lime juice industry are
depicted in Figure 3.1. In this setting, we have three lime producers (Alice,
Bob, and Carol), each of them can produce a kilo of limes at a particular cost:
Alice and Carol ask for $5 each, whereas Bob asks for $7. Then we have Dave,
the lime squeezer, who given a kilo of limes can produce a liter of juice for $10.
Thus, Dave acts as a buyer of limes and as a seller of juice. Finally, there are
three juice buyers (Eve, Frank, and Gene), each aiming at buying a liter of juice
at a given price: Eve offers $20, Frank $22, and Gene $18.

In this setting, lime producers Alice, Bob, and Carol will negotiate with
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Dave who will negotiate with Eve, Frank, and Gene. This communication will
take place directly between the participants without the intervention of any
third party. Next, we describe the state-of-the-art method for P2P SCF, namely
Loopy Belief Propagation [Winsper and Chli, 2013], which is based on the max-
sum algorithm described in Chapter 2.

Loopy belief propagation

In [Winsper and Chli, 2010], the authors introduce Loopy Belief Propagation
(lbp) as a method to solve the SCF in a decentralized manner with P2P com-
munication. The work in [Winsper and Chli, 2010] shows that the SCF problem
can be cast as an optimization problem that can be efficiently approximated
using max-sum. Thus, the authors offer the means of converting a SCF prob-
lem into a local term graph, as defined in Section 2.2, on which max-sum can
operate.

In lbp, the SCF problem is represented by a model in which each of the
participants’ decisions is encoded in single variable. In Example 5, Alice, Bob,
Carol, Dave, Eve, Frank, and Gene decisions would be encoded in variables xA,
xB , xC , xD, xE , xF , and xG. The states of each variable encode the individual
decisions that the participant needs to make regarding her exchange relation-
ships plus an inactive state. Moreover, the activation cost for a participant p
is encoded by means of a simple term fp, also called activation term. Each of
these activation terms has the participant’s variable as its scope and takes value
zero for the inactive state and the activation cost for any of the active states.
For instance, take xA, xD, and xE , the variables encoding Alice, Dave, and Eve
in Example 5. Table 3.1 lists the possible states each of these variables can take
as well as the value of their activation terms. For Alice’s variable, there are two
possible states (either sell to Dave or remain inactive) and the activation term
takes on value −5 (Alice’s activation cost) for the active state and 0 for the
inactive state. Notice that the states of xD (from σ2 to σ11) encode all possible
exchange relationships for Dave.

In order to ensure that decisions are consistent among participants, in lbp,
there is a compatibility term for each pair of variables representing potential
partners. A compatibility term fp1p2 encodes the compatibility between the
decisions of the two participants p1 and p2. Two participants are in incompatible
states whenever one of them is willing to trade with the other, but the other
one does not. Consider participant variable xD, its state σ2 is compatible with
xA’s state σ0, but it is incompatible with xA’s σ1 (Alice does not provide lime to
Dave!). If two states are compatible, the value of the compatibility term is zero,
otherwise is negative infinity. Thus, considering xA and xD, fAD(σ0, σ2) = 0
and fAD(σ1, σ2) = −∞.

To summarize, lbp maps the SCF problem into a set of participant variables
X = {x1, . . . , xN}, a set of activation terms FA = {f1, . . . , fN}, one per variable,
and a set F of compatibility terms. Then, solving the SCF problem amounts to
finding a state assignment for the participant variables in X that maximizes the
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xA
value semantics fA(xA)
σ0 sell to Dave −5
σ1 don’t sell 0

xD
value semantics fD(xD)
σ2 buy from Alice, sell to Eve 10
σ3 buy from Alice, sell to Frank 10
σ4 buy from Alice, sell to Gene 10
σ5 buy from Bob, sell to Eve 10
σ6 buy from Bob, sell to Frank 10
σ7 buy from Bob, sell to Gene 10
σ8 buy from Carol, sell to Eve 10
σ9 buy from Carol, sell to Frank 10
σ10 buy from Carol, sell to Gene 10
σ11 don’t buy, don’t sell 10

xE
value semantics fE(xE)
σ12 buy from Dave 20
σ13 don’t buy 0

Table 3.1: Example of states (and values) of agent variables.

following reward function:

RLBP(X) =
∑
xi∈X

fi(xi) +
∑
fkl∈F

fkl(xk,xl). (3.1)

Notice that the expression obtained in Equation 3.1 can be decomposed addi-
tively. Therefore, it can be mapped into a local term graph over which max-sum
can operate in order to find a solution to the SCF problem. Applying the steps
described in Section 2.2.1 to the SCF problem illustrated in Example 5 we obtain
the local term graph depicted in Figure 3.2. Recall that, for each composite term
fc a composite vertex (depicted by a box) is created and labeled fc. Moreover,
the simple terms which scope is a variable x are represented by a simple vertex
(depicted by a circle) and labeled x. In Figure 3.2, each dashed box represents
the local terms each of the participant agents needs to be aware of. Note that
to determine their compatibility, both Alice and Dave need to keep a copy of
compatibility term fAD. Moreover, Alice’s participant agent must know both
xA simple term and fAD composite term. On the other hand, Dave’s participant
agent needs to be aware of xD simple term and all of fAD, fBD, fCD, fDE , fDF ,
and fDG composite terms.

Once the SCF problem has been mapped into a local term graph, max-sum
can be readily applied to find a solution. In lbp participant agents exchange
messages with their potential partners following Equations 2.3 and 2.4. Conver-
gence in lbp occurs when all the participant agents find that their preferred state
is the same as in the previous iteration of the algorithm. The preferred state of
each variable is determined using independent variable marginals as discussed in
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Figure 3.2: Local term graph encoding the lime juice industry SC described in
Example 5.

Section 2.2.3. The preferred state extracted using these methods may produce
unfeasible SCs, thus lbp includes a final phase in which unfeasible parts of the
solution are pruned.

Recall from Section 1.2.3 that we are interested in finding out whether decen-
tralized SCF can be computationally efficient (Question 2). With that goal in
mind, in what follows, we provide a computational complexity analysis of lbp.

Example 5 makes us wonder about lbp’s memory and communication re-
quirements. Notice that participant variable xD requires 32 + 1 states and each
of Dave’s compatibility term requires 2 ·(32 +1) entries (the product of the num-
ber of states of the two participants). If Dave had another input good provided
by three other participants, xD would require 33 + 1 states and compatibility
terms with 2 ·(33 +1) entries. In general, the memory requirements for a partici-
pant agent in lbp exponentially grow with the number of goods and neighboring
participants. Notice that Equations 2.3 and 2.4 indicate that the size of mes-
sages between compatibility and activation terms is as large as the number of
states that the participant variable they share can take. In figure 3.2, lbp would
employ messages of size 32 + 1 to and from simple term xD.

From this discussion follows that in markets with high degrees of competition
(where goods are either produced or consumed by a wealth of participants), the
resulting local term graph is highly demanding in terms of memory, communi-
cation, and computational requirements. Next, we assess some upper bounds on
the amount of computation, memory, and bandwidth required by lbp at each
iteration of the max-sum algorithm. We assume that there are n participants,
each participant is connected to at most G goods, and each good is connected
to at most P participants. Hence, a participant has at most G · P potential
partners. Therefore, the requirements are:

Computation. The costliest operation for a participant agent is to assess
the messages from its compatibility terms to the neighboring agents’ activation
terms. Assessing the values for each compatibility term takes O(P 2G) oper-
ations. Moreover, each participant is in charge of G · P compatibility terms.
Therefore, each of the participants needs to perform O(G · P 2G+1) operations
on each max-sum iteration.
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Memory. Each compatibility term requires at most P 2G entries to store com-
patibility values. Since each participant agent shares compatibility terms with
G · P neighbors, the memory each participant agent requires is O(G · P 2G+1).

Communication. The messages between a compatibility term and an
activation term are of size O(PG), the number of states the shared variable can
take. Since each participant agent shares compatibility terms with at most G ·P
neighbors, it consumes O(G·PG+1) bandwidth. Finally, since we consider n par-
ticipants in the SC, lbp requires O(n ·G ·PG+1) bandwidth overall per iteration.

Even though lbp is the first P2P approach for decentralized SCF, the work in
[Winsper and Chli, 2010, Winsper and Chli, 2013] has some drawbacks. First,
the exponential resource requirements of lbp, particularly in markets with high
degrees of competition, significantly hinder its scalability. Furthermore, regard-
ing privacy, the message each agent receives from a trading partner also contains
information about her competitors. For example, in Figure 3.2 Dave’s partici-
pant agent would send a message to Alice’s that contains all his states and thus
Alice’s participant agent would be aware of the existence of other lime sellers.

An alternative to P2P communication between participant agents is the in-
troduction of local markets. In this setting, the market for each of the goods in
the SCF problem is represented by a computational agent that mediates between
the participant agents interested in buying or selling the good it is in charge of.
The following section covers these approaches for mediated SCF.

3.2.2 Mediated Supply Chain Formation

Decentralized SCF approaches that employ mediators for goods aim at alleviat-
ing part of the responsibility held by the participants in P2P SCF. In order to
do so, the concept of local markets is introduced as described in Section 1.2.2
architecture. In this setting, a local market is created for each of the goods
at trade in the SC. Moreover, for each local market there is a mediator agent
(mediator henceforth) that acts as intermediary for the good at trade in its mar-
ket. Each of the participant agents has access only to the local markets of the
goods it is interested in buying or selling [Kalin, 2000]. The introduction of me-
diators removes the need for direct communication between participant agents,
thus participant agents can reach more potential partners [Kalin, 2000] without
incurring in any extra cost in terms of communication or computation. Notice
that the mediators can be made profitable in a variety of ways such as charging
membership or transaction fees or advertising. Further, more buyers and sellers
for a good means that higher profit can be achieved by the mediators even if the
fees are low [Kalin, 2000].

In [Walsh and Wellman, 2000], the authors model the SCF problem as a
satisfiability problem and propose a method to solve it in a decentralized
manner using local markets and mediators. However, solving the SCF prob-
lem using this method can turn out to be prohibitively slow even on small
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problems [Walsh and Wellman, 2000]. In order to cope with the poor perfor-
mance of the work in [Walsh and Wellman, 2000], the authors propose a new
method in [Walsh and Wellman, 2003]. Although using the same representa-
tion as [Walsh and Wellman, 2000], the new method is based on periodic double
auctions which turns out to speed up the SCF. In what follows we describe this
periodic double auction based method for mediated SCF.

Sequential ascending auctions with simple bidding

In [Walsh and Wellman, 2003], the authors introduced the Simultaneous As-
cending (M+1)st Price with Simple Bidding protocol (noted as samp-sb hence-
forth). samp-sb aims at solving the SCF problem in a decentralized manner
with the use of mediators. In this approach participant agents, rather than ex-
changing information with each other, exchange information with a mediator
agent. In samp-sb there is a mediator agent for each of the goods at trade
and participant agents communicate exclusively with the mediators of the goods
they are interested in. Similarly, mediators only communicate with the partic-
ipant agents interested in buying or selling the good they are mediating. The
samp-sb protocol is composed of an auction mechanism along with some bid-
ding policies. In what follows we outline the auction mechanism along with the
bidding policies.

A samp-sb mechanism comprises a set of parallel auctions, one per good.
Each auction is run by a different agent, who plays the role of mediator for
the good. Each auction runs independently of the other auctions in the SC.
However, all auctions run simultaneously. Given a good g, each participant
agent interacts with the mediator of the good, mg, by submitting its offers to
buy or sell g. For instance, in Example 5, Dave’s participant agent would send a
sell offer message to the juice mediator mJ to sell juice and a buy offer message
to the lime mediator mL to buy limes.

Each auction is an increasing periodic double auction (see Section 2.1) with
price quotes. When a mediator receives a new bid, it sends each of its bidders
a price quote specifying the bid-ask interval (τ−, τ+) that would result if the
auction ended in the current bid state. The price quote also reports to each
participant agent whether it is winning or not. The price quotes are not issued
until all initial bids are received, but are subsequently issued immediately on
receipt of new bids.

When a participant agent receives a notification from a mediator it replies
following a simple, non-strategic bidding policy. Thus, bidding behaviour is
purely reactive. The samp-sb bidding policies require that, for each auction,
the prices of a participant’s agent successive buy offers increase by no less than
some (generally small) positive number δb and the prices of successive sell offers
increase by no less than δs. Inaction leaves previous bids standing in an auc-
tion. Specifically, samp-sb distinguishes between participants that produce no
output good (consumers) and participants that produce output goods (produc-
ers) regardless of whether they have input goods or not. In Example 5, Alice,
Bob, Carol, and Dave are said to be producers (they have an output good),
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whereas Eve, Frank, and Gene are said to be consumers. The bidding policies
for consumers and producers are described bellow.

Consumer bidding policy. The participant agent of a consumer c not win-
ning its input good g will bid by increasing the (M+1)st price (τ−) by the
minimum required increment δb (see Equation 3.2). The bid is issued whenever
the consumer’s gain is non-negative (Cc − τ−g − δb ≥ 0), otherwise it will stop
bidding. 1

νgc = τ−g + δb. (3.2)

Producer bidding policy. Every time the participant agent of a producer p
receives a quote, if it is currently winning the auction for its output good and
losing the auction for some input good g, it increases its last offer for g by the
minimum required increment (δb).

1

νgp = νgp + δb. (3.3)

Furthermore, if the quote is coming from an input good, p’s participant agent
updates its offer for its output good g (νgp) as2:

νgp = max(νgp + δs, Cp +
∑

g′∈N (p)\{g}

τ̂g′) (3.4)

where τ̂ ′g stands for the perceived cost of input good g′ and N (p) for the goods
participant p is interested on buying or selling. If p is currently winning g′, τ̂ ′g
is τ−, otherwise τ̂ ′g = max(τ+, τ− + δb).

Bidding continues until all messages have been received, no participant agent
chooses to revise its bids, and no auction changes its prices, or allocation. At this
point, the auctions clear; each bidder is notified of the final prices and how many
units she transacts per good. However, samp-sb may converge to solutions in
which some participants obtain a negative utility [Walsh and Wellman, 2003]. In
order to overcome this problem, the authors propose to include a final phase that
allows participant agents to decommit. Therefore, the resulting method (named
samp-sb-d) achieves higher economical efficiency than the original samp-sb.

With this description of the algorithm we can already assess the upper bounds
on the amount of computation, memory and bandwidth required by the agents
in samp-sb. Notice that, in samp-sb there is no concept of global iteration as
there was in lbp since the auctions run simultaneously with no synchronization.
However, each agent (be it a participant agent or a mediator) needs to perform
some steps each time it receives a message from a neighbor. That is, participant
agents must reevaluate and send their bids to mediators and mediators must
clear the auction and send the new prices to participant agents. We assume that

1Initial offers submitted for inputs goods are set to 0.
2The participant agent for a producer places its first output offer only after receiving the

first notification for all its inputs.
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there are n participants, each participant is connected to at most G goods, and
each good is connected to at most P participants. Therefore, the requirements
are:

Computation. Recall that the a producer’s participant agent that is winning
its output good updates its bids for any input good it is losing. Moreover, updat-
ing a bid has constant complexity and the number of input goods a participant
is connected to is G. Therefore, in the worst case, updating a participant agent’s
bids will require O(G) operations. On the other hand, the costliest operation
for a mediator is sorting the bids. However, recall that each new bid triggers a
clearing of the auction. Thus, mediators need only to worry about inserting new
bids in an already sorted set, which can be achieved with O(log P ) operations
[Wurman et al., 1998].

Memory. On the one hand, participant agents need to keep track of the bid-
ask interval for each of the goods they are interested in. Therefore, each partic-
ipant agent requires O(G) memory. On the other hand, mediators need to keep
track of the latest bids received from each of the participants it is connected to.
Thus, each mediator requires O(P ) memory.

Communication. In the worst case, a participant agent may have to send
new bids to the mediators in charge of all of its input goods. Therefore, a
participant agent may incur in O(G) cost in terms of bandwidth usage. On the
other hand, each time a mediator clears the auction it notifies the outcome to
the participant agents it is connected to, thus O(P ).

Although samp-sb-d can achieve high economic efficiency
[Winsper and Chli, 2013], it incurs in a high penalty in terms of commu-
nication [Winsper and Chli, 2013]. This penalty in communication comes from
the fact that mediators need to re-evaluate and communicate the winners of the
running auctions each time they receive a new bid. Moreover, since the updates
on the bids made by the participant agents follow a fixed increment, finding the
solution can turn out to be slow (for small increments and high prices) or even
miss to find a solution (if the increments are too big). In fact, we show that it
is an actual drawback in Chapter 5.

3.2.3 Analysis

Decentralized approaches for SCF appear as an interesting alternative to central-
ized methods for SCF. Moreover, these approaches alleviate some of the issues
present in centralized approaches. First, participants in decentralized SCF share
their preferences with local trusted parties rather than revealing their preferences
to a central authority. Second, decentralized SCF methods are more likely to
scale better for sufficiently large-scale scenarios since the computation can be
performed in a distributed manner. Third, decentralized SCF methods are more
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resilient to failure since they do not rely on a centralized entity. However, al-
though economically efficient approaches exist, the computational requirements
for the state-of-the-art decentralized SCF approaches can be higher than for the
centralized approaches.

3.3 Conclusion

In this chapter we have reviewed the state of the art on SCF for both centralized
and decentralized approaches. Moreover, for the decentralized case, we have
reviewed both peer-to-peer and mediated architectures. Although, centralized
optimal approaches seem appealing to solve the SCF problem, as discussed in
Section 3.1, employing them might not be satisfactory for several reasons. First,
centralized approaches rely on a central authority that possesses the private
valuations of all participants. However, participants might be reluctant to share
this information with any central authority. Second, given the hardness of the
SCF problem, centralized optimal solvers might suffer from scalability issues.
Third, the existence of a central authority introduces a single point of failure for
the SCF process. In order to overcome some of these limitations, as discussed in
Section 3.2, decentralized SCF appears as an attractive alternative. In peer-to-
peer SCF, participant agents interact directly with each other without the need
of any third party. However, the computational requirements of the state of the
art in peer-to-peer SCF, lbp, grow exponentially with the size of the problem,
thus hindering its scalability. On the other hand, in mediated SCF each of the
goods in the SC is represented by a computational agent that mediates between
the participant agents interested in buying or selling the good it is in charge of.
Although being able to achieve high economic efficiency, the state of the art for
mediated SCF, samp-sb-d, incurs in a high penalty in terms of communication.

In the following chapters we present our contributions to both peer-to-peer
and mediated SCF. These contributions aim at improving on the state of the
art in decentralized SCF and at answering the open research questions laid out
in Chapter 1.



Chapter 4

RB-LBP: Peer-to-peer
Supply Chain Formation

In previous chapters we have argued that there are several reasons to tackle
the SCF in a decentralized manner rather than in a centralized optimal one.
First, decentralized methods for Supply Chain Formation (SCF) better preserve
participants’ privacy since they only need to share their preferences with local
trusted parties rather than communicating them to a central authority. Second,
decentralized SCF offers better scalability for large scenarios due to the fact that
each participant is responsible of a small part of the computation. Third, de-
centralized SCF can be more resilient to failure since the failure of a participant
does not hinder the whole SCF process as would happen if the central authority
in a centralized approach was to fail. Moreover, peer-to-peer (P2P) methods
for SCF present an interesting approach to decentralized SCF since they do not
require the intervention of any third party to determine the participants in the
Supply Chain (SC). That is, in P2P SCF participants exchange information only
with the suppliers of the goods they require and the consumers of the goods they
produce. However, as discussed in Section 3.2.1, the state of the art in P2P SCF
(lbp) suffers from scalability issues. Therefore, it remains an open research ques-
tion whether P2P SCF can achieve economically and computationally efficient
solutions (Questions 1 and 2 in our introductory chapter).

In this chapter we propose the Reduced Binarized Loopy Belief Propagation
algorithm (rb-lbp henceforth), a novel method for P2P SCF with the aim of
coping with the scalability issues present in the state of the art for P2P SCF. rb-
lbp is based on the max-sum algorithm and simplifies the calculation of max-sum
messages through careful analysis of its local terms and the application of the
techniques described in Section 2.2.4. Thus, rb-lbp reduces the computation
required by the state of the the art in P2P SCF, lbp, to assess SCs from ex-
ponential to quadratic, and the memory and communication requirements from
exponential to lineal. Thus, rb-lbp is able to save several orders of magnitude
in terms of memory, communication and computation with respect to the state
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of the art in P2P SCF while the value of the resulting SCs is up to two times
higher.

The rest of this chapter is organized as follows. First, in Section 4.1, we
propose a novel additive decomposition of the SCF problem and its mapping into
a binary local term graph for P2P SCF. In Section 4.2 we describe the operation
of the rb-lbp algorithm and provide the means to assess the messages exchanged
between participant agents in an efficient manner. In Section 4.3, we provide a
complexity analysis of rb-lbp. Furthermore, we show that rb-lbp reduces the
state-of-the-art resource requirements from exponential to linear for memory and
bandwidth and from exponential to quadratic for the number of operations. In
Section 4.4, we conduct an experimental evaluation of our method and compare
it against the state of the art in P2P SCF. Our results show that our method
is 20 times faster than the state of the art. Similarly, resource requirements are
reduced between two and five orders of magnitude with respect to the state of
the art in large problems. Furthermore, rb-lbp finds solutions of higher value
than those found by the sate of the art. Finally, in Section 4.5, we identify the
weaknesses of rb-lbp, diagnose their causes and propose measures to mitigate
them.

4.1 A local term graph encoding for Peer-to-
peer Supply Chain Formation

In this section we propose a novel additive decomposition of the SCF problem
that can be mapped into a local term graph and approximated using the max-
sum algorithm. The local terms present in our additive decomposition of the
SCF problem are carefully chosen to allow us to apply the techniques described
in Section 2.2.4. Applying these techniques to our model will allow us to reduce
the computational complexity of our algorithm as we show on Section 4.2.2.
Moreover, our variables are binary which is known to facilitate the simplifica-
tion process [Tarlow et al., 2010]. Furthermore, in our model, each buy and
sell decision is decoupled (i.e. encoded in a different variable) from the rest of
buy and sell decisions. By decoupling these decisions we are able to reduce the
number of combinations to take into account as we show in Section 4.3.

Next, in Section 4.1.1 we describe the variables used in rb-lbp to encode
the SCF problem. Moreover, in Section 4.1.2 we introduce the local terms that
restrict the values these variables can take in order to assess feasible solutions.

4.1.1 Encoding participants’ decisions and their costs

In what follows we describe the encoding of participants’ decissions in our ad-
ditive decomposition by means of an example. Take for instance the lime juice
example (Example 5) in Chapter 3. Likewise every participant, Dave has to
decide whether to take part in the SC or not. This decision is encoded by means
of an activation variable xD that takes value one whenever Dave is to be active
and zero otherwise. Moreover, we need to encode Dave’s activation cost. For
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that end, we include an activation term fD(xD) that takes value -$10 (Dave’s
activation cost) whenever Dave is active (xD = 1) and zero otherwise.

Furthermore, as seen in Figure 3.1, Dave buys Lime good and sells Juice
good. Dave has three choices to buy Lime: he can acquire it either from Alice,
Bob, or Carol. Consequently, we employ option variables bALD, bBLD, and
bCLD to encode whether to buy from Alice, Bob, or Carol. For instance, if Dave
was to buy the Lime from Alice the corresponding option variable would take
on value one (i.e. bALD = 1). Similarly, Dave has three choices to sell Juice: he
can sell it to either Eve, Frank or Carol. Therefore, we encode the choice of sell-
ing Juice to each of the three possible buyers in variables sDJE , sDJF , and sDJG.

In general, for each participant p taking part in the SC we create two kind of
variables. On the one hand, we create an activation variable xp that encodes
whether participant p is active (xp = 1) or inactive (xp = 0), namely part of the
SC configuration or not. Moreover, in order to introduce participants’ activation
cost, we make use of activation terms. An activation term takes as parameter
an activation variable and takes as a value the activation cost of the participant
when the activation variable takes value one and zero otherwise. Formally, the
equation for an activation term fp for participant p can be expressed as:

fp(xp) =

{
Cp, if xp = 1
0, otherwise

(4.1)

Furthermore, for each possible buyer p′ of each of her input goods g, we
create an option variable spgp′ that encodes whether p is selling good g to
participant p′ (spgp′ = 1) or not (spgp′ = 0). Similarly, for each possible seller
p′ of each p’s input goods g, we create an option variable bp′gp that encodes
whether p is buying good g from participant p′ (bp′gp = 1) or not (bp′gp = 0).

4.1.2 Constraining participants’ decisions

It turns out clear that only some combinations of states are acceptable for the
variables described above. Thus, if Dave is inactive (xD = 0), he should not
buy Lime and so bALD, bBLD and bCLD should all be 0. Furthermore, whenever
Dave is active, he should buy Lime from only one of his providers, that is, one
and only one out of bALD, bBLD, and bCLD should be 1. We encode whether
a set of values is acceptable by means of a local term fS that takes as input
variables xD, bALD, bBLD, and bCLD. This local term takes value zero for valid
combinations and negative infinity otherwise. Since this local term guarantees
that only one of the providers is selected, we call it a selection term. Like-
wise, there will be a selection term fS with input variables xD, sDJE , sDJF ,
and sDJG to ensure that Dave can select one and only one buyer when active
and no buyer otherwise. Therefore, selection terms fS(xD,bALD,bBLD,bCLD)
and fS(xD, sDJE, sDJF, sDJG) guarantee Dave’s internal coherence as a decision
maker.

Furthermore, we need to guarantee that the decisions made for different
participants remain coherent with each other. For instance, in order for Dave to
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effectively buy Lime from Alice (encoded in variable bALD), he needs that Alice
decides to sell Lime to him (encoded in variable sALD). Therefore, we add a local
term fE(sALD,bALD) that takes value zero when both variables take the same
value and minus infinity otherwise, thus enforcing coherence among participants.
Since this local term enforces both variables to take the same value, we call it
equality term.

In general, in order to guarantee that only one of the providers of a given
good is selected, we make use of selection terms. Given a participant p offering
good g, a selection term links the activation variable from the participant
(namely xp) with the different choices for that good (namely b∗gp), and enforces
that one and only one option variable takes on value one if the activation variable
is active and that all option variables take on value zero otherwise. Note that
the role of the activation variable on a selection term is different from that of
the option variables. Formally, the equation for a selection term fS joining the
activation variable xp and option variables o1, . . . , on can be expressed as:

fS(xp,o1, . . . ,on) =

{
0, if

∑n
i=1 oi = xp

−∞, otherwise
(4.2)

Furthermore, in order to guarantee coherent decisions between participants,
we make use of equality terms. An equality term links buy and sell variables
regarding the same transaction (e.g. bALD and sALD) and enforces that both
variables take the same value. Formally, the equation for an equality term fE
joining variables b and s can be expressed as:

fE(b, s) =

{
0, if b = s
−∞, otherwise.

(4.3)

Notice that, contrarily to what happened with lbp, there is no need to keep
a table for these local terms (see Table 3.1). It is possible to simply calculate the
output of selection and equality terms using Equations 4.2 and 4.3. This allows
us to save large amounts of memory in local terms with large domains.

At this point we are ready to provide the additive decomposition that will be
used by rb-lbp to tackle the SCF problem following a P2P architecture. Our
objective function can be expressed as:

RRB-LBP(X) =
∑
xp∈Xp

fp(xp) +
∑
fS∈FS

fS(XfS ) +
∑

fE∈FE

fE(XfE ), (4.4)

where Xp is the set of participant variables, FS is the set of selection terms,
and FE is the set of equality terms. With this additive decomposition in hand,
it is possible to map the SCF into a binary local term graph. Recall from
Section 2.2.1 that building a local term graph from an additive decomposable
function amounts to: (i) creating a simple vertex for each variable (that
summarizes all the simple terms with that variable as their scope); (ii) creating
a composite vertex for each composite term; and (iii) connecting with an
edge each simple and composite vertex that share a variable. Thus, applying
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Figure 4.1: Supply chain as a binary local term graph.

this procedure to the SCF problem in Example 5 we obtain the local term
graph in Figure 4.1. Notice that the local terms inside each of the dashed
boxes correspond to the local terms that encode the decisions of each of the
participants in the SC.

In this section he have proposed a new encoding for the SCF formation
problem that employs only binary variables. Moreover, it is possible to map our
encoding into a local term graph over which the max-sum algorithm can operate
since we encode the problem by means of a function that can be decomposed
additively. In the next section we describe rb-lbp, a P2P SCF algorithm that
operates on the local term graph introduced above.

4.2 The rb-lbp algorithm

Reduced Binarized Loopy Belief Propagation (rb-lbp) is a message-passing al-
gorithm that is based on the max-sum algorithm applied to the local term graph
described in the previous section. Recall from Section 2.2 that max-sum ex-
changes messages between the vertices in a local term graph. Therefore, in
order to be able to provide a P2P method for SCF based on max-sum we need
to assign the vertices in the local term graph to some computational agents rep-
resenting the participants in the SC. In rb-lbp, there is a participant agent for
each participant in the SC. Each participant agent is in charge of the vertices
representing the local terms that encode its participant’s decisions. For instance,
back in Figure 4.1, Dave’s agent will be in charge of Dave’s activation (xD), op-
tion (bALD, bBLD, bCLD, sDJE , sDJF , and sDJG), selection, and equality vertices
that connect Dave’s option vertices with his potential partners’ option vertices.
Thus, the participant agents representing each pair of potential partners will
be connected through the equality vertices that join their option variables. For
instance, Alice’s participant agent is connected with Dave’s through the equality
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vertex that joins option vertices sALD and bALD.
Next, Section 4.2.1 contains rb-lbp’s algorithmic details. In Section 4.2.2

we describe the messages exchanged between participant agents.

4.2.1 Algorithm description

Participant agents in rb-lbp follow a protocol that has two phases. During the
first one, each participant agent uses the max-sum algorithm to send messages
to its neighbors in the local term graph. As a result of this first phase, each
participant agent finds out its preference for being active in the SC. During
the second phase, participant agents use the information obtained from the first
phase to decide which participants are going to be active in the resulting SC. In
what follows we describe both phases.

Algorithm 3 Algorithm run by a participant p in rb-lbp.

// Assess the participant’s preferred state.
1: Initialize all messages to zeros.
2: while not convergence and not reached maximum number of iterations do
3: Internal propagation.
4: Send max-sum message to each potential partner p′.
5: Receive max-sum message from each potential partner p′.
6: end while
7: Assess the preferred state x∗p according to Equation 2.5.

// Assess the SC configuration.
8: Ensure internal consistency.
9: while agent state is not consistent do

10: Notify potential partners of its willingness to collaborate.
11: Receive potential partners’ willingness to collaborate.
12: Ensure collaboration consistency.
13: end while

Assessing participant’s preferred states

In order to assess their preferred states, participant agents exchange messages
following the max-sum algorithm. Initially, all participant agents initialize their
messages to zero. Subsequently, participant agents exchange messages according
to the max-sum algorithm. Recall that participant agents exchange messages
through the equality vertices. Therefore, each participant agent needs only to
communicate with its potential partners. That is, the message exchange between
its vertices can be done internally without consuming any bandwidth resources.
This message exchange continues until convergence or reaching a maximum num-
ber of steps. After that, each participant agent assesses its preferred state by
means of the independent variable marginals method described in Section 2.2.3.

The procedure followed by a participant agent during the first phase of rb-
lbp is described in lines 1-7 of Algorithm 3. However, it is possible that the
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solution obtained after this first phase does not satisfy some of the constraints
(i.e. some of the local terms evaluates to negative infinity). Therefore, rb-lbp
includes a second phase to ensure the feasibility of the solution.

Assessing the Supply Chain configuration

In order to ensure that the decissions made by different participants are coherent
(i.e. if participant p is willing to collaborate with p′, p′ must be willing to
collaborate with p), rb-lbp includes a second phase in which the preferred states
obtained in the first phase are revised (and possibly mended). The mending
process has two main steps: during the first one, each participant agent ensures
that all of his internal constraints are satisfied; during the second one, participant
agents ensure that suppliers and consumers agree on their decision to collaborate.
That is, that equality constraints are satisfied.

At the first step, in order to guarantee internal consistency, each participant
agent checks each of its selection terms. When a selection term breaks (i.e.
evaluates to negative infinity), there are three possible cases:

• The activation variable is set to zero and some option variables set to one.

• The activation variable is set to one and all option variables are set to zero.

• The activation variable is set to one and there are more than one option
variables set to one.

In the first two cases, the participant agent will set all of its variables to zero.
In the third case, the participant agent will randomly select one of the option
variables and set it to one while setting the remaining ones to zero. While
this first step guarantees internal consistency, it could be the case that two
participant agents decide to take states that are not consistent with each other.
For instance, it could be the case that Dave’s agent decides to buy Lime from
Alice but Alice does not sell it to Dave.

At the second step, in order to guarantee collaboration consistency partici-
pant agents need to organize as a spanning tree to be able to act in sequence.
This can be done distributedly and efficiently [Attiya and Welch, 2004]. After
building the tree, the procedure continues as follows. First, simultaneously, each
agent sends to each of its neighbours its decision to collaborate with it or not.
Second, sequentially, each active agent will determine (based on the information
received at the previous step) whether all of its selected partners want to collab-
orate with it. If that is not the case, it will set all of its variables to 0 and send
this information to its neighbours. This second step is repeated until no agent
changes its states.

Notice that, since the participant agents can only go from being active to
being inactive, the process of assessing the solution is guaranteed to finish in a
number of steps no greater than the graph diameter. The procedure followed by
a participant agent during the second phase of rb-lbp is described in lines 8-13
of Algorithm 3.
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Recall that the assessment of max-sum messages for a composite term with k
binary variables takes time O(2k) (Section 2.2.4). Therefore, asssessing rb-lbp
messages can turn to be computanionally ineficient. To reduce the complexity
of the first phase, in the next section we introduce a simplification of the compu-
tation of rb-lbp’s max-sum messages that leads to an efficient message-passing
protocol for P2P SCF.

4.2.2 Efficient message updates

In rb-lbp, each vertex exchanges single-valued messages that represent its pref-
erences for its shared variable to take value one over taking value zero. We use
νwv to denote the single-valued message from vertex v to vertex w. Moreover,
we reduce the complexity of the computation of messages. This simplification
stems from taking benefit of the fact that our local terms represent constraints
and the alternatives that do not satisfy the constraint can directly be discarded.
A complete description of this simplifications is given in Appendix A. After
simplifications, messages in rb-lbp can be proved to be the following ones:

Message from activation vertex to selection vertex. The message sent
from agent’s p activation vertex xp to one of its selection vertices fS contains a
single value νfSp that can be assessed by:

νfSp = Cp +
∑

fS ′∈N (xp)\{fS}

νpfS ′ , (4.5)

where N (xp) \ {fS} is the set of selection vertices neighboring activation vertex
xP excluding fS , and Cp corresponds to the activation cost of the participant to
whom corresponds activation variable xp.

Message from option vertex to selection vertex. The message sent from
an option vertex o to a selection vertex fS contains a single value νfSo that can
be assessed by:

νfSo = νfE , (4.6)

where νfE is the equality vertex that option vertex o is connected to.

Message from option vertex to equality vertex. The message sent from
an option vertex o to an equality vertex fE contains a single value νfEo that can
be assessed by:

νfEo = νfS , (4.7)

where νfS is the selection vertex that option vertex o is connected to.
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Message from selection vertex to activation vertex. The message sent
from a selection vertex fS to its activation vertex xp contains a single value νpfS
that corresponds to the largest message received by fS from any of its neighbor-
ing option vertices. Formally,

νpfS = max
o∈N (fS)\{xp}

νfSo , (4.8)

where N (fS) \ {xp} is the set of option vertices neighboring composite vertex
fS .

Message from selection vertex to option vertex. The message sent from
a selection vertex fS to one of its option vertices o contains a single value νofS
that can be asssessed by:

νofS = min(νfSp ,− max
o′∈N (fS)\{xp,o}

νfSo′ ), (4.9)

where xp is the activation vertex connected to fS , and N (fS) \ {xp, o} is the set
of option vertices neighboring composite vertex fS excluding o.

Message from equality vertex to option vertex. The message sent from
an equality vertex fE to one of its option vertices o contains a single value νofE
that corresponds to the last message received from its other option variable o′.
Formally,

νofE = νfEo′ . (4.10)

Note that these simplified expressions to asssess the messages greatly reduce
the computational requirements needed by a participant agent. In the case of
the selection vertices we are reducing standard max-sum’s computation time
from O(2k) to O(k), where k is the number of variables in the domain of the
selection term. Importantly, as we formally prove in Appendix A, we are not
approximating the max-sum messsages but providing a praticularly efficient
way to assess them. Since the assessment of the messages is exact, it does not
affect the quality of the solution achieved by the max-sum algorithm. Therefore,
the first phase of rb-lbp is an instance of max-sum, and thus, it inherits all
max-sum’s convergence and quality properties.

In Section 2.2.3 we argued that the solution assessed when each agent inde-
pendently determines the values of its variables can sometimes break constraints.
In many cases this happens because there is a tie in the agent’s preferences. Con-
sider the example in Figure 3.1. There Dave has three possible providers, Alice
and Carol, selling Limes at the same price. The preferences of Dave’s participant
agent for each of the two producers will be exactly the same, and both variables
bALD and bCLD can be set to 1, breaking the selection constraint.

Here we propose a simple strategy to reduce the number of ties in
selection constraints. The main idea is to establish an ordering among
providers/consumers linked by a selection constraint in case that the expected
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benefit of collaborating with them is the same. For example, in the case above,
before agents start exchanging messages, Dave’s participant decides that it
prefers to buy from Alice rather than from Carol, provided that both make
the same offer. Each agent can accomplish this by assigning an economically
negligible random quantity to the value of collaborating with each of its poten-
tial partners. That is, each agent, for each of its option variables oi, selects
a small value εoi and the messages in Equations 4.8 and 4.9 are modified as
follows:

νpfS = max
o∈N (fS)\{xp}

(νfSo + εo), (4.11)

νofS = εo + min(νfSp ,− max
o′∈N (fS)\{xp,o}

νfSo′ ), (4.12)

4.3 Complexity analysis

Along the analysis conducted in Section 3.2.1 for lbp, in this section we provide
worst-case bounds on the amount of memory, the size of messages exchanged at
each iteration, and the computation time needed by rb-lbp agents. Moreover,
we compare these results with lbp’s complexity and argue that rb-lbp pro-
vides a significant reduction on the resources required to solve the SCF problem
following a P2P architecture. We assume that the maximum number of goods
that each participant is connected to is G, and that the maximum number of
participants connected to a single good is P . That is, each participant will need
to negotiate for at most G goods that can be traded with at most P other par-
ticipants each. Therefore, a participant will be linked with G · P neighbors in
the worst case.

Computation. At each iteration, each rb-lbp participant agent needs to as-
sess messages for O(G·P ) potential partners. Moreover, looking at the equations
of the messages we see that each message takes at most O(P ) operations. Thus,
the total computation time required by each rb-lbp participant agent is in
O(G · P 2) per iteration.

Memory. Each rb-lbp participant agent needs to store a real number per
variable in order to maintain preferences over a variable’s states. Since each
participant agent interacts with at most G · P other participant agents, the
amount of memory to store its preferences is O(G · P ). Regarding local terms,
each rb-lbp participant agent only needs to store its activation term (it can
avoid storing equality and selection terms thanks to the equations obtained in
Section 4.2.2). Hence, the memory that each rb-lbp participant agent needs is
in O(G · P ).

Communication. Each rb-lbp participant can be interested in buying or
selling at most G goods. Moreover, for each of these goods there would be at
most P other participants interested in trading that good with him. Therefore,
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Measure lbp rb-lbp
Operations (per iteration) O(G · P 2G+1) O(G · P 2)
Memory O(G · P 2G+1) O(G · P )
Bandwidth O(G · PG+1) O(G · P )

Table 4.1: lbp and rb-lbp worst case resource requirements.

since participant agents exchange a single-valued message for each of these
potential trades, a participant agent worst case communication requirements
are O(G · P ).

Table 4.1 compares the resouces required by the lbp and rb-lbp algorithms.
rb-lbp reduces the communication and bandwidth requirements from exponen-
tial to linear with respect to lbp. This reduction is achieved by decoupling
the participant’s buy and sell decisions. Moreover, rb-lbp reduces the compu-
tation requirements from exponential to quadratic with respect to lbp. This
reduction is achieved thanks to the simplified expressions to assess the max-sum
messages exchanged during the execution of the algorithm. In the next section
we empirically evaluate lbp and rb-lbp.

4.4 Experimental evaluation

In this section, we describe a series of experiments designed and performed
in order to quantify rb-lbp’s savings in terms of computation, memory and
communication with respect to the state of the art and to assess the performance
of rb-lbp in terms of the quality of the solution. First, we describe rb-lbp and
lbp implementation details and which tools were used in the process. Second,
we detail the experimental design. Last, we describe the metrics that were used
to measure the performance of both methods and provide a thorough analysis
of the collected data.

4.4.1 Implementation of peer-to-peer Supply Chain For-
mation algorithms

Both lbp and rb-lbp were implemented as an extension of libDAI [Mooij, 2010].
libDAI is an open source C++ library that implements various probabilistic
inference methods. libDAI was a perfect starting point for our implementation
since both lbp and rb-lbp are based on the max-sum algorithm, which is already
implemented in libDAI.

In order to implement lbp we used libDAI’s max-sum implementation with
two extensions: (i) lbp’s convergence criterion that slightly differs from the
one in use in libDAI and (ii) lbp’s post-convergence process for eliminating
incompatibilities described in Section 4.2.1.

The implementation of rb-lbp was more challenging since it is a special-
ization of the standard max-sum algorithm. Our main modifications to libDAI
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were:

1. Local terms as functions. One of the strengths of rb-lbp is that it does
not need tables to store its local terms since they can be calculated from
their inputs, saving memory in the process. Therefore, our first change
in the implementation was to extend the local terms in libDAI (which are
stored as tables) to allow such behaviour.

2. Reduced messages. The introduction of binary variables allows rb-
lbp to greatly simplify the calculation of messages and the amount of
information exchanged between local terms. Therefore, we had to modify
the logic related to message calculation and message passing.

3. Local terms with preferences. The inclusion of preferences as tie-
breaking mechanism in rb-lbp resulted in a slight modification of the
implementation of the local terms in libDAI.

Finally, in our implementation of rb-lbp, in order to avoid ties, we gen-
erated values of εoi (see Section 4.2.2) by sampling a uniform distribution in
the range [−0.00005, 0.00005]. Next, we describe the datasets used to conduct
the empirical evaluation. Our implementation of lbp and rb-lbp can be freely
downloaded from [Penya-Alba et al., 2012e].

4.4.2 Experimental design

In this section we describe the design of the experiments conducted to eval-
uate the performance of rb-lbp. In [Winsper and Chli, 2010], Winsper and
Chli evaluate their method in the SCs described by Walsh and Wellman in
[Walsh and Wellman, 2003]. These SCs are relatively small (33 participants at
most), which makes them poor candidates to evaluate an algorithm’s scala-
bility. However, these SCs have been studied in detail by Winsper et al. in
[Winsper and Chli, 2010] and represent a good reference point for a more de-
tailed comparison of lbp and rb-lbp.

For these small SCs we follow the same initialization procedure as described
in [Walsh and Wellman, 2003] and followed in [Winsper and Chli, 2010]. Selling
prices for producers are drawn randomly from a uniform distribution U(0,1).
Moreover, buying prices for final consumers are fixed to the value that ap-
pears below each consumer in Appendix C. These prices were calculated in
[Walsh and Wellman, 2003] to ensure the existence of a solution in which a prof-
itable SC configuration exists in 90% of the instances.

Our main concern is to evaluate how rb-lbp scales compared to lbp and
to quantify the savings in terms of resources required to find a solution. For
that purpose, we need large-scale SCs. In order to generate larger networks we
resorted to the test-suite for Mixed Multi-Unit Combinatorial Auctions (MMU-
CATS) described in [Vinyals et al., 2008]. MMUCATS is specifically designed
to mimic real-world SCF problems. We generate SCs with 50 goods and a num-
ber of participants ranging from 40 to 500. Since the number of goods is fixed
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across scenarios, the degree of competition in the SCs grows with the number of
participants. The problems used to evaluate rb-lbp can be freely downloaded
from [Penya-Alba et al., 2012c].

For each scenario, we generate 100 problems. We solve problems using the
implementations for rb-lbp and lbp described above. Our tests are run on an
Intel(R) Xeon(TM) CPU running at 3.20GHz with 2GB of RAM on linux-2.6
x86 64. For each problem we record the following values:

Maximum memory. Measured as the maximum amount of memory needed
by any participant agent in the problem to store both its preferences and its
local terms.

Maximum bandwidth. Measured by the maximum quantity transmitted
and received by any participant agent in an iteration of the problem. Note
that in lbp and rb-lbp participant agents has the same network usage for all
the iterations of the algorithm.

Problem solving time. Time taken to solve the problem. This time includes
the time necessary for the post-processing of the allocations (Section 4.2.1) both
for lbp and rb-lbp.

Value benefit over LBP. Calculated by dividing the value of the SC assessed
by rb-lbp by the value of the supply chain assessed by lbp. The values of the
supply chains are assessed using Equation 3.1 and Equation 4.4 for lbp and
rb-lbp respectively.

4.4.3 Empirical evaluation

In this section we analyze the results obtained after evaluating separately SCs
from [Walsh and Wellman, 2003] and larger networks with higher degrees of
competition generated with MMUCATS. Hardness in the problems we gener-
ated using MMUCATS presented high variability. Therefore, the distribution of
the results we obtained was long-tailed and non-symmetrical.

In order to improve readability of the plots and maintain consistency
in how results are reported, we use median values instead of mean values
[Wilcox and Keselman, 2003] both for Walsh and Wellman’s SCs and large-scale
network structures. Moreover, we provide plots in logarithmic scale for those
measures in which the difference in performance between rb-lbp and lbp was
large.

Small network structures

In this section we turn our attention to the SCs from [Walsh and Wellman, 2003].
Figure 4.2a shows that lbp requires from 2 up to 13 times more memory than
rb-lbp depending on the SC. This difference is specially large for the SCs named
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bigger and unbalanced that represent markets with high competition. Figure 4.2b
shows that the maximum bandwidth consumed by a participant agent during
an lbp iteration is up to 5 times larger than rb-lbp’s. Again, the difference is
more obvious for bigger and unbalanced SCs since network usage and memory
requirements are tightly coupled in lbp.
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Figure 4.2: RB-LBP vs LBP in Walsh’s SCs.

The values of the SC configurations obtained by our implementation of lbp
match the results reported in [Winsper and Chli, 2010]. rb-lbp’s average SC
values are identical to lbp’s. Due to the small size of the networks, both lbp
and rb-lbp converge to a SC configuration in the order of the millisecond, being
negligible the difference between both methods.

Large network structures

In this section we focus on the scalability of rb-lbp and lbp. In Sections 3.2.1
and 4.2.1 we mention that lbp and rb-lbp are not guaranteed to converge to a
feasible solution and that, if convergence is not reached, both methods halt after
a certain number of iterations. Contrarily to what happened in the previous
section, problems with high degrees of competition did not always converge.
Therefore, in our experiments, problems run either until convergence or for
a maximum of 250 iterations. Moreover, due to computational constraints,
problems in which the memory requirements for an agent exceed 100MB or the
memory needed by the whole network exceeded 1GB were discarded. Note that,
since rb-lbp agents have much lower memory requirements than lbp agents,
we only encountered such cases for lbp.

Figure 4.3 shows the median values over 100 runs of the maximum memory
required per agent for both rb-lbp and lbp. Observe that lbp’s memory re-
quirements grow exponentially with the number of participants while memory
requirements for rb-lbp grow linearly. Moreover, for networks with higher de-
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Figure 4.3: Maximum memory re-
quirement.

Figure 4.4: Maximum bandwidth
per agent.

Figure 4.5: Median problem solving
time.

Figure 4.6: RB-LBP benefit over
LBP.

grees of competition, the memory requirements for lbp are up to 5 orders of
magnitude (105 times) greater than for rb-lbp.

Figure 4.4 shows the median value of the maximum bandwidth required per
agent during one iteration for both rb-lbp and lbp. In this case, bandwidth
usage also displays an exponential growth for lbp while it is lineal for rb-lbp.
Bandwidth usage for lbp is up to 787 times greater than for rb-lbp.

Figure 4.5 shows the median value of the time required for rb-lbp and lbp
to provide a solution for the problems. In this case, the exponential behaviour
of lbp is confirmed as well as the polynomial behaviour of rb-lbp. Moreover,
rb-lbp is up to 20 times faster than lbp for the problems tested.

Finally, it is worth noting that none of those benefits come at the expense
of the quality of the solution. Moreover, Figure 4.6 shows that the value of the
SC configurations obtained by rb-lbp is almost never smaller and eventually
more than 2 times larger than those obtained by lbp.

These results place rb-lbp as the best performing method for P2P SCF.
On the one hand, rb-lbp is able to assess SCs of higher value than the state-
of-the-art for P2P SCF while running up to 20 times faster, requiring up to
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787 less bandwidth, and reducing the memory requirements up to five orders of
magnitude. However, the quality of the SCs assessed by lbp and rb-lbp gets
further from the optimal as the complexity of the SC rises. Figure 4.7 shows
the optimality of the SCs assessed by lbp and rb-lbp1. In the next Section
we argue that the low performance in terms of solution quality of the P2P SCF
methods in the state of the art (including rb-lbp) might be due to the model
and implementation chosen.

Figure 4.7: Optimality of the solutions assessed by RB-LBP.

4.5 Conclusion

In this chapter we have proposed rb-lbp, a P2P method for SCF. rb-lbp is
based on a novel additive decomposition of the SCF, its mapping into a local
term graph, and a computationally efficient application of the max-sum algo-
rithm. Moreover, the local terms in rb-lbp’s additive decomposition are care-
fully selected in order to be able to introduce optimizations in max-sum’s mes-
sage calculation. These simplifications reduce the state-of-the-art for P2P SCF
resource requirements from exponential to linear for memory and bandwidth,
and from exponential to quadratic as to the number of operations. Experimen-
tally, these simplifications allow rb-lbp to find solutions to the SCF problem 20
times faster than lbp, the state of the art in P2P SCF. Similarly, bandwidth and
memory requirements are reduced over 700 times and 5 orders of magnitude in
rb-lbp over lbp in large scale problems. Furthermore, the reduction in resource
requirements does not come at the expense of solution quality. That is, rb-lbp
produces SCs whole values are up to two times of higher than those produced
by lbp. However, the quality of the solutions found by both methods (lbp and
rb-lbp) decreases as the number of participants in the SC grows. Next, we
argue that this is a consequence of applying the max-sum algorithm to the P2P
architecture.

Take into consideration the scenario in which two sellers and two buyers are
interested in exchanging a good. As Figure 4.8 shows, both methods for P2P

1The optimal value was computed using a linear program.
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Figure 4.8: P2P cyclic local term graphs from a cycle-free SCF problem.

SCF generate local term graphs that contain cycles even though the original SCF
problem contained no cycles. In general, both rb-lbp and lbp mappings into a
local term graph introduce cycles that are not part of the original SCF problem
whenever there is a good with more than one buyer and more than one seller.
Recall form Section 2.2.2 that max-sum is guaranteed to converge to the optimal
solution when the underlying local term graph is a tree. However, in cyclic local
term graphs max-sum optimality is not guaranteed and it may even fail, to con-
verge thus providing potentially unfeasible solutions [Weiss and Freeman, 2001].
Hence the number of cycles in the underlying local term graph is a determin-
ing factor for the quality of the solutions found by max-sum based algorithms.
Therefore, rb-lbp and lbp solution quality will be affected by max-sum’s sub-
optimality in cyclic local term graphs. In the next chapter, we introduce a
new algorithm for decentralized SCF that addresses this problem by introducing
mediators for goods.





Chapter 5

CHAINME: Mediated
Supply Chain Formation

In previous chapters we have argued that decentralized approaches can be better
suited to solve the Supply Chain Formation (SCF) problem for several reasons.
First, in decentralized SCF, participants share their preferences with trusted
parties in a local environment rather than trusting this information to a global
central authority. Second, by distributing the computation among all the par-
ticipants in the SC they are more likely to better scale to large-scale scenarios.
Third, decentralized SCF methods are more resilient to failure since they do not
rely on a centralized entity. The state-of-the-art approaches for decentralized
SCF can be classified into two architectures: peer-to-peer (P2P), and mediated.

In P2P SCF each participant is represented by a participant agent that com-
municates directly with the participant agents representing the sellers of the
goods it is interested in buying and the buyers of the goods its participant is
producing. In Chapter 4, we have shown that the state of the art algorithm
for P2P SCF, lbp [Winsper and Chli, 2013], suffers from high computational
requirements issues. Moreover, in the same chapter we have proposed rb-lbp a
method for P2P SCF that lowers the computational resources required to find
solutions to the SCF problem with respect to lbp while obtaining better-valued
solutions. However, the quality of the solutions found by both of these methods
for P2P SCF is further from the optimal as the complexity of the SC rises.

Decentralized methods for SCF with mediators for goods benefit from in-
troducing the concept of local markets for each of the goods in the SC. Each
local market is represented by a mediator agent that interacts with the buy-
ers and sellers of the good it is in charge of. Thus, the mediator is in charge
of relaying communication and task allocation. Therefore, markets allow par-
ticipants to reach new potential partners [Kalin, 2000] with no extra cost in
terms of communication or computation. Although economically efficient ap-
proaches exist, the state of the art method for mediated SCF, samp-sb-d
[Walsh and Wellman, 2003], suffers from high communication requirements as

55
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discussed in [Winsper and Chli, 2013].

In this chapter we propose the CHaining Agents IN Mediated Environments
(chainme) algorithm, a novel method for mediated SCF. With chainme we aim
at providing a method for mediated SCF that provides economically efficient so-
lutions while keeping a low profile in terms of the computational requirements
required to find the SC configurations. chainme is based on the max-sum algo-
rithm. However, chainme’s computation is significantly reduced with respect
to standard max-sum’s through careful analysis of the local terms employed by
chainme and the application of the message simplification techniques described
in Section 2.2.4.

The rest of this chapter is organized as follows. First, in Section 5.1, we pro-
pose a novel additive decomposition of the SCF problem into a local term graph
for mediated SCF. In Section 5.2, we describe the operation of the chainme al-
gorithm and provide computationally efficient expressions to assess the messages
exchanged between chainme agents. In Section 5.3, we provide a complexity
analysis of chainme. In Section 5.4, we conduct an experimental evaluation of
our method and compare it against the state-of-the-art for decentralized SCF
(both P2P and mediated). The results show that chainme is able to produce
economically efficient solutions while reducing the computational requirements
from one to four orders of magnitude with respect to the state-of-the-art meth-
ods. Finally, in Section 5.5, we conclude.

5.1 A local term graph encoding for mediated
Supply Chain Formation

In this section we provide a novel additive decompositon of the SCF that can be
mapped into a local term graph and approximated using the max-sum algorithm
following a mediated architecture. Our model will contain only binary variables
and the local terms are chosen in order to be able to apply the techniques
described in Section 2.2.4 in order to simplify message calculation. Next, in
Section 5.1.1 we describe the encoding of the participants’ decisions in binary
varibales. Then, in Section 5.1.2, we describe the constraints introduced in order
to ensure feasible solutions.

5.1.1 Encoding participants’ decisions and their costs

In what follows we describe the encoding of participants’ decisions in chainme’s
additive decomposition of the SCF problem. Take the lime juice industry in
Example 5. In chainme’s encoding there is a binary variable for each of the
participants in the SC. Each participant variable xp encodes whether partic-
ipant p is active (xp = 1) or not (xp = 0) in the SC. Furthermore, in order to
encode participants’ activation cost, we introduce a simple term (fp) for each
participant p with its scope limited to the activation variable representing that
participant. The activation term fp(xp) for participant p can be described by
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fp(xp) =

{
Cp , if xp = 1

0 , if xp = 0,
(5.1)

where Cp is the activation cost for participant p. That is, for the active state the
term takes on value the participants activation cost and for the inactive state it
takes on value zero.

Take the SC described in Example 5. In chainme’s mapping, there is an
activation variable and an activation term per participant. There is an activation
variable xA and an activation term fA(xA) for Alice, an activation variable xB
and an activation term fB(xB) for Bob, and so on for the rest of participants.

Notice that, in order to encode a particiant’s decisions, chainme’s encoding
only needs one variable whereas rb-lbp needed as many variables as possible
partners for the participant plus the activation variable. Therefore, chainme
requires less memory than rb-lbp in order to encode participants’ decisions,
since all variables in both chainme and rb-lbp are binary.

So far, we have described how participants’ decisions are encoded in
chainme’s additive decomposition of the SCF problem. In the next section,
we describe how participants’ decisions are constrained so that a SC configura-
tion remains feasible.

5.1.2 Constraining participants’ decisions

In Chapter 1, we argued that a solution to a SCF problem is feasible whenever
all participants are able to buy their input goods and sell their output goods.
Notice that this is equivalent to saying that a solution to a SCF problem is
feasible whenever the number of active sellers for each good is equal to the
number of active buyers. In chainme, we say that a good is at equilibrium
whenever this condition is met. Thus, in a feasible solution, all the goods in the
SC will be at equilibrium.

In order to constrain participants’ decisions so that the solution remains
feasible we introduce an equilibrium term for each of the goods in the SC. An
equilibrium term for good g is a composite term noted as mg whose domain
contains the variables related to its sellers (Sg) and buyers (Bg). We use Sg =
{xp|p ∈ Sg} to denote the variables of the sellers of g, and Bg = {xp|p ∈ Bg} to
denote the variables of the buyers of g. Formally, an equilibrium term can be
defined as:

mg(Sg,Bg) =

0 , if
∑

xs∈Sg
xs =

∑
xb∈Bg

xb

−∞ , otherwise
(5.2)

In the additive decomposition of the SC in Example 5, where there were two
goods are at trade (Lime and Juice), we be two equilibrium terms mL(SL,BL)
and mJ(SJ,BJ).

At this point we are ready to provide the additive decomposition that will
be used by chainme to tackle the SCF problem in a decentralized manner fol-
lowing a mediated architecture. Therefore, chainme’s objective function can be
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expressed as:

RCHAINME(Xp) =
∑
xp∈Xp

fp(xp) +
∑

mg∈Mg

mg(Sg,Bg) (5.3)

With this additive decomposition we can now map the SCF into a local term
graph following the steps listed in Section 2.2.1. Thus, applying this procedure
we can obtain the local term graph corresponding to the SCF problem described
in Example 5 depicted in Figure 5.1. Notice that, in contrast with rb-lbp, in
chainme’s decomposition there is a single simple term for each of the partic-
ipants and a single composite term for each of the goods at trade. Moreover,
chainme’s decomposition produces local term graphs that contain less cycles
than those produced by lbp and rb-lbp which are known to negatively affect
the solutions assessed by the max-sum algorithm [Weiss and Freeman, 2001].
Take for instance the SCF problem depicted in Figure 5.2a. chainme will pro-
duce the local term graph in Figure 5.2d that contains no cycles whereas lbp and
rb-lbp produced cyclic graphs (Figures 5.2b and 5.2c). In general, chainme
will produce local term graphs that contain cycles only if the undirected version
of the original SC contained cycles. This is because we are basically substituting
each participant by a simple term and each good by a composite term.
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(a) Lime juice industry SC.
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mL mJ

(b) Local term graph.

Figure 5.1: chainme local term graph for the SC in Example 5.

In this section we have provided a way to map the SCF problem into a local
term graph over which max-sum can operate. Now, in the next section we in-
troduce the chainme algorithm that distributes the local term graph resulting
from this mapping among different autonomous agents and subsequently ap-
proximates the SCF problem encoded by Equation 5.3 via message-passing over
the graph.

5.2 The chainme algorithm

chainme is a max-sum based message-passing algorithm involving participants
and mediators. Recall from Section 2.2 that max-sum exchanges messages be-
tween vertices of a local term graph. Thus, we need to distribute the vertices in
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Figure 5.2: P2P cyclic local term graphs from a cycle-free SCF problem.

the local term graph provided in the previous section among computational
agents in order to provide a decentralized, mediated algorithm for SCF. In
chainme, there is a participant agent for each of the participants in the SC.
Each participant agent is responsible for the simple vertex representing its par-
ticipant’s activation variable. Furthermore, for each of the goods at trade there
is an agent that will act as mediator for that good. Each mediator agent is re-
sponsible for the equilibrium term representing its good. Figure 5.3 depicts the
distribution of chainme’s local term graph vertices into participant and media-
tor agents. Therefore, chainme is a message-passing protocol in which messages
flow back and forth from participant agents to mediator agents. Thus, each par-
ticipant agent in chainme communicates only with the mediator agents of the
goods it wants to buy or sell. Likewise, each mediator agent only communicates
with the participant agents willing to buy or sell the good it mediates.
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Figure 5.3: chainme’s local term distribution among agents.
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Section 5.2.1 contains chainme’s algorithmic details. In Section 5.2.2 we
describe the messages exchanged between participant and mediator agents.

5.2.1 Algorithm Description

chainme agents follow a established protocol that has two main phases. During
the first phase, chainme agents run the max-sum algorithm over the chainme
local term graph (introduced in Section 5.1). As a result of this first phase,
each participant finds out how valuable it is for the SC as a whole when it is
active (i.e. buying or selling goods) and hence, its preferred state. Based on that
information, during the second phase, chainme agents decide which participants
are going to take part in the SC. Next, we describe both phases in detail.

Algorithm 4 Algorithm run by a participant agent p in chainme.

// Assess the participant’s preferred state.

1: For each mediator mg neighbor of p, initialize message µgp to zeros.
2: while not convergence and not reached maximum number of iterations do
3: Send max-sum message to each mediator mg neighbor of p.
4: Receive max-sum message from each mediator mg neighbor of p.
5: end while
6: Assess the preferred state x∗p according to Equation 2.5.

// Assess the SC configuration.

7: Send x∗p to each mediator mg neighbor of p.
8: while not convergence and participant p is available do
9: Receive from each of its good’s mediators whether participant p should

be active (x∗p = 1) or not (x∗p = 0).
10: Set participant p to be activate if all of its good’s mediators want it to

be active.
11: Send the new state x∗p to each of its good’s mediators.
12: end while

Assessing participants’ preferred states

In order to assess the participants’ preferred states, participant and mediator
agents exchange messages following the max-sum algorithm. When the algo-
rithm starts all participant and mediator agents initialize their messages to zero.
Subsequently, each participant agent p sends a message to each of the mediator
agents of the goods it is interested in. The message from a participant agent to a
mediator agent encodes the participant’s preference for each of its states (active
or inactive). Participant agents assess the max-sum messages over their activa-
tion terms. Similarly, each mediator agent mg sends a message to each of the
participant agents interested in buying or selling the good it is mediating. The
message from a mediator agent to a participant agent encodes the preference of
the mediator agent for that participant to be included in or excluded from the
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Algorithm 5 Algorithm run by a mediator mg in chainme.

// Assess the participants’ preferred state.

1: For each participant p neighbor of mg, initialize message µpg to zeros.
2: while not convergence and not reached maximum number of iterations do
3: Send max-sum message to each participant p neighbor of mg.
4: Receive max-sum message from each participant p neighbor of mg.
5: end while

// Assess the SC configuration.

6: Receive states from each neighboring participant.
7: while not convergence do
8: Define inactive participants as I = {p ∈ N (g)|x∗p = 0}.
9: Remove inactive participants from the neighbors (N (g) = N (g) \ I).

10: Determine preferred participants states S∗g, B∗g according to Equation 5.4.
11: Send to each neighbor in N (g) whether it should be active or not.
12: Receive state updates from each neighboring active participants.
13: end while

solution. Mediator agents assess their max-sum messages over their equilibrium
terms.

This process runs iteratively until convergence (or a maximum number of
iterations is reached). After that, each participant agent assesses its preferred
state by means of Equation 2.5. The procedure followed by a participant agent
during the first phase is described in lines 1-6 of Algorithm 4, whereas the
procedure followed by a mediator agent is described in lines 1-5 of Algorithm 5.
However, it is possible that the preferred states chosen by the participant agents
in this first phase lead to an unfeasible solution. Therefore, chainme includes
a second phase to ensure the feasibility of the solution that we describe next.

Assessing the SC configuration

The decisions taken individually by the participant agents as a result of the
previous phase may not correspond to a feasible SC configuration. Hence, during
this phase, mediator and participant agents follow a protocol to ensure that
the final SC configuration is feasible. This is achieved by iterating a two-step
process. During the first step, participant agents communicate their preference
for the active state to the mediator agents. During the second step, mediators
communicate to participants whether they are eligible to be active.

At the first step each participant agent sends its preferred state to all of its
neighboring mediator agents. Once a participant agent decides that it is inactive,
it will no further change its state. Accordingly, each mediator agent, after re-
ceiving the preferred states from all its neighboring agents, removes the inactive
agents from the set of potential buyers and sellers for its good. After that, each
mediator recomputes the preferred states for its remaining neighbors following
Equation 5.4 below, which can be derived from an extension of Equation 2.5 for
composite local terms. Subsequently, each mediator agent sends to each of its
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participant agents whether it is required to be active or inactive.

X∗mg
= arg max

Sg,Bg

mg(Sg,Bg) +
∑
s∈Sg

µgs(xs) +
∑
b∈Bg

µgb(xb)

 . (5.4)

When a participant agent receives the state from each of its neighboring
mediators, it decides to be remain active only if all of its neighboring mediator
agents requested it to be active. Again, each participant agent sends its preferred
state to all the mediator agents it is connected to.

Participant and mediator agents continue exchanging messages in an inter-
leaved manner until no participant agent changes its preferred state. Participant
agents who still prefer to be active after this process finishes will be the active
participants in the SC and will compose the SC configuration. Notice that,
similarly to what happened with rb-lbp, this phase is guaranteed to finish in
a number of steps no greater than the graph diameter since participant agents
can only go from being active to being inactive. The process to determine which
participants are active is described in lines 6-12 of Algorithm 4 and lines 6-13
of Algorithm 5 for participant and mediator agents respectively.

Note that the assessment of messages from mediator to participant agents in
line 3 of Algorithm 5 is particularly inefficient. Conventionally, the assessment
of the max-sum message for a local term over k binary variables takes time
O(2k). Thus, computational complexity of mediator agents is exponential in the
number of participant agents it is connected to. To reduce the complexity of this
phase, in the next section, we introduce a simplification of the computation of
chainme’s max-sum messages that leads to a computationally efficient message-
passing protocol between participant and mediator agents.

5.2.2 Efficient message updates

In chainme, agents exchange single-valued messages that encode the preference
for the active state against the inactive one. We use νgp to denote the message
from participant agent p to the mediator agent of good g, and νpg to denote
the message from the mediator agent of good g to participant agent p. In this
section we provide equations to assess this messages in a computationally effi-
cient manner. This simplification stems from taking benefit of the fact that our
equilibrium term represents a constraint and the alternatives that do not satisfy
the constraint can directly be discarded. A complete description of this simplifi-
cations is given in Appendix B. After simplifications, messages in chainme can
be proven to be the following ones:

Message from participant to mediator agent The message from partic-
ipant agent p to the mediator agent of good g contains a single value νgp . It is
computed as the addition of all messages received by p, excluding the message
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received from g, plus the participant’s activation cost. Formally,

νgp = Cp +
∑

g′∈N (p)\{g}

νpg′ , (5.5)

where N (p) is the set of goods p is required to sell or buy if active, and νpg′ is
the last message received by agent p from the mediator of good g′.

Message from mediator to participant agent To assess the messages sent
from the mediator agent of a good to a participant agent we build upon the bid-
ask interval introduced in Section 2.1.2. Specifically, the mediator agent of good
g computes the bid-ask interval (τ+, τ−), and the sets of active buyers (Bag ) and
active sellers (Sag ) by executing Algorithm 1. In so doing, the messages received
from the buyers (νgb1 , . . . , ν

g
b|Bg|

) are used as buy offers, whereas the messages

received from the sellers (νgs1 , . . . , ν
g
s|Sg|

) are used as sell offers.

Now, the messages from a mediator to a participant agent can be proven to
be the following ones.

• The message from the mediator of good g to a seller s contains a single
value νsg that is assessed as:

νsg =

{
τ+, if s ∈ Sag
τ−, otherwise .

(5.6)

• The message from the mediator of good g to a buyer b contains a
single value νbg that is assessed as:

νbg =

{
−τ−, if b ∈ Bag
−τ+, otherwise.

(5.7)

Hence, the messages from mediators to participants coincide (disregarding
signs) with the bid (τ−) and ask (τ+) values in a periodic double auction that
takes the participants’ messages as bids. Furthermore, the message from a medi-
ator to a participant agent does not depend on the particular message received
from that participant agent, but only on whether the participant is active or
inactive. Finally, the participants that are preferred as active by a mediator are
those in her set of active buyers and sellers.

Note that the assessment of messages from mediators to participants is partic-
ularly efficient. Recall that the assessment of the max-sum message for a local
term over k binary variables takes time O(2k). Conversely, chainme’s messages
help us reduce this time to O(k · log k) (the time taken to order messages) for
the equilibrium term. Importantly, as we formally prove in Appendix B, we are
not approximating the max-sum messages, but providing a particularly efficient
way to assess them. Since the assessment of the messages is exact, it does not
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affect the quality of the solution achieved by the max-sum algorithm. Therefore,
the first phase of chainme is an instance of max-sum, and thus, it inherits all
max-sum convergence and quality properties. Additionally, as we argue next,
this simplified versions of the messages give semantics to the standard max-sum
messages.

Unraveling the semantics of CHAINME’s messages

As we show in Section 5.2.2, after simplifications the computations of messages
from mediators to participants at a given iteration requires to compute a bid-
ask interval for a particular periodic double auction. This makes us think that
there is a relationship between the messages exchanged in chainme and other
concepts used in other disciplines such as auction theory and economics. In this
section we elaborate on these connections by expressing the semantics of the
messages in chainme in terms of the social value of participants in a double
auction. Intuitively, messages from mediator to participant agents indicate their
local social value, and participant agents use the social value to guide their local
decision making.

We define the local social value for a good g of a participant p as the difference
between the benefit for the remaining participants of having p at trade versus
not having her at trade. Consider as example the mediation scenario shown in
Example 2, to assess the local social value of Alice for that good (say g), first,
we need to assess the largest possible benefit for the other agents when Alice is
active (υ∗A) and when she is not active (υ∗−A). Therefore, the local social value for
good g of Alice is SVg(A) = υ∗A−υ∗−A. Recall that, in a periodic double auction,
π∗ denotes the largest possible surplus, and we refer to a π∗-configuration as
a set of buyers and sellers that achieve surplus π∗. Since Alice is active in the
π∗-configuration, υ∗A is π∗ minus the contribution of Alice, namely her offer (νgA).
Thus, υ∗A = π∗−νgA = $6 - ($-2) = $8. To assess υ∗−A we remove Alice offer. The
best configuration will definitely have Bob and Eve (since Eve is paying more
than Frank and Bob was happy with that what Frank was paying). Furthermore,
since Frank’s offer covers the price requested by Carol, the best configuration
also includes Frank and Carol, and thus υ∗−A is $4, setting the local social value
for good g of Alice for good g to SVg(A) = υ∗A − υ∗−A =$4.

Having defined what a participant local social value is for a given good and
taking the messages from participants as offers, next we make two connections:

• The message sent from a mediator to participant in chainme approximates
the participant’s local social value for that mediator.

• The message sent from a participant to a mediator in chainme approxi-
mates the marginal social value of that participant.

We detail these two connections in the rest of this section.

Messages to participant agents approximate their local social value.
To show how the message from a mediator to a participant approximates her
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local social value, first we detail how a mediator for good g computes the local
social value for every participant it is linked to depending on whether the agent is
active in the π∗-configuration or not. A general mediation scenario is described in
Section 2.1. Consider first the case of any seller sk active in the π∗-configuration.
The benefit when sk is active, υ∗sk , is simply π∗ − νg

sk
. Notice that we subtract

the message from the seller to the good’s mediator (νg
sk

) because it should not

be considered benefit to the other participants but to sk itself. To assess υ∗−sk
we need to remove offer νg

sk
and recompute the best configuration. All pairs

(si, bi) with i < k are profitable because they were profitable before removing
seller sk. Furthermore, all pairs (si+1, bi) with k ≤ i < η are also profitable,
since each pair (si+1, bi+1) was profitable before removing sk and the offer for
bi is at least as good as that of bi+1. To assess the best attainable benefit after
removing sk, we must consider whether: (i) to add a new seller (namely sη+1);
or (ii) to remove one of the current buyers (namely bη). Thus, we have that
υ∗−sk = π∗ − νg

sk
− min(−νgsη+1 , ν

g
bη ). Moreover, the local social value for an

active seller sk for good g is SVg(s
k) = min(−νgsη+1 , ν

g
bη ). Therefore, a mediator

can compute the active seller’s local social value as the ask price τ+.
Following this line of reasoning, a mediator for good g can assess the local

social value for any seller s as:

SVg(s) =

{
min(−νgsη+1 , ν

g
bη ) = τ+, if s ∈ Sag

max(−νgsη , ν
g
bη+1) = τ−, otherwise,

(5.8)

and the local social value for any buyer b as:

SVg(b) =

{
−max(−νgsη , ν

g
bη+1) = −τ−, if b ∈ Bag

−min(−νgsη+1 , ν
g
bη ) = −τ+, otherwise.

(5.9)

Recall that Sag and Bag stand for the set of active sellers and buyers for good
g respectively.

Notice that there is a direct correspondence between equations 5.8 and 5.9
and the equations 5.6 and 5.7 used to compute messages from mediators to
participants in chainme.

Messages from participants approximate their marginal value. To
show how the messages from a participant to a mediator agent approximate
the participant’s marginal value for that good, first we detail how a participant
computes her value when there are complementarities over a set of goods (the
activation cost of a participant depends on acquiring a set of input goods and
selling a set of output goods). In this case, we define the value of a participant
p as her activation cost (Cp) plus the local social values of that participant for
each good is connected to. Formally,

Vp = Cp +
∑

g∈N (p)

SVg(p) (5.10)
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In this case, since there is more than one good involved, we can also define the
marginal value for a good as the participant value without the value contributed
by g. The message from a participant to a good’s mediator is her marginal value
for that good, namely her value without the value contributed by g, to signal
her significance in the supply chain excluding g. This amounts to subtracting
the local social value of p for g from the agent’s value. Therefore, the marginal
value of a participant p for a good g is:

Vp−g = Vp − SVg(p) (5.11)

Notice that, taking the messages from mediators as local social values, there
is a direct correspondence between Equation 5.11 and Equation 5.5 used to
compute messages from a participant to a mediator in chainme.

5.3 Complexity analysis

In this section, in order to complete the complexity analyses provided in Sec-
tions 3.2.1 and 4.3, we provide worst-case bounds on the amount of memory,
the size of the messages exchanged at each iteration, and the computation time
needed by chainme agents. Moreover, we compare chainme’s complexity with
the state of the art for mediated SCF, samp-sb-d, and our own contribution for
P2P SCF, rb-lbp. Hereafter, we assume that the maximum number of partic-
ipants a good is connected to is P , and the maximum number of goods that a
participant is connected to is G.

Computation. At each iteration, each participant needs to assess messages for
G mediator agents. Moreover, if we make use of Equation 5.11, each participant
requires only O(G) operations to assess those messages. On the other hand, the
costliest operation for a mediator agent is ordering the messages received from
the participant agents, which takes O(P · logP ) operations per iteration.

Memory. Each participant agent needs to store the last message received from
each of the mediator agents it is connected to plus its activation cost. Therefore,
the memory requirements for a chainme participant agent are O(G). On the
other hand, each mediator agent needs to store the messages received from each
of the participant agents it is connected to, namely O(P ) memory.

Communication. Each participant agent communicates exclusively with the
mediator agents for the goods it is interested in buying or selling. Moreover,
a participant is interested in at most G goods and each message exchanged
contains a single value. Therefore, each participant agent needs to send O(G)
messages per iteration. Analogously, each mediator agent is connected to at
most P participant agents with whom it exchanges a single value. Therefore,
each mediator agent needs to send O(P ) in the worst case.
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Measure chainme samp-sb-d rb-lbp

Memory (overall)
participant O(G) O(G) O(G · P )
mediator O(P ) O(P )

Bandwidth (per iteration)
participant O(G) O(G) O(G · P )
mediator O(P ) O(P )

Operations (per iteration)
participant O(G) O(G) O(G · P 2)
mediator O(P · logP ) O(logP )

Table 5.1: Worst case resource requirements.

Table 5.1 compares the resources needed by the chainme, rb-lbp, and samp-
sb-d algorithms. Computational requirements for samp-sb-d mediators are in
the order of O(logP ) [Wurman et al., 1998]. Finding other values for samp-
sb-d is direct from its description in [Walsh and Wellman, 2003]. Values for
rb-lbp are those provided in Chapter 4. chainme closely matches memory
and communication worst case requirements of both samp-sb-d and rb-lbp.
Moreover, chainme requires less resources than rb-lbp in terms of number of
operations and a factor of P more resources than samp-sb-d. However, as we
show in the next section, chainme needs less iterations to find a solution. This
results in chainme finding solutions to the SCF using significantly less resources
than both samp-sb-d and rb-lbp.

5.4 Experimental evaluation

In this section we benchmark chainme against the state-of-the-art decentralized
SCF algorithms: samp-sb-d, and rb-lbp. We aim at providing a quantification
of chainme’s resource requirements as well as the quality of the solutions that
our method finds and to contrast these results with the worst case analysis
conducted in the previous version. First, we describe samp-sb-d and chainme
implementation details and the tools used in the process. Then, we detail our
experimental design. Finally, we describe the metrics that we used to measure
the performance of these methods for decentralized SCF, and provide a thorough
analysis of the collected data.

5.4.1 Implementation mediated Supply Chain Formation
algorithms

The implementation of the chainme algorithm was conducted in a similar way
as that for rb-lbp described in Section 4.4.1. That is, chainme was imple-
mented as an extension of libDAI [Mooij, 2010], an open source C++ library
for probabilistic inference. Since chainme is a specialization of the standard
max-sum algorithm implemented in libDAI, some features were added to the
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library. Namely,

1. Local terms as functions. While libDAI’s terms need to be stored in
memory as tables, chainme’s do not since they can be expressed as func-
tions. Therefore, our first extension to libDAI was to implement chainme
local terms as functions, thus reducing memory requirements.

2. Simplified message calculation. All the messages from a mediator
agent to all the participant agents it is connected to depend on the same
two values, namely τ+ and τ−. Therefore, instead of calculating each mes-
sage separately as happens with libDAI’s local terms, our implementation
of chainme’s equilibrium terms includes the precalculation of τ+ and τ−

prior to sending the messages to each of the participants. Thus, by extract-
ing the part of message calculation that is common for all the neighbors
of an equilibrium term, we reduce chainme’s computational requirements
with respect to its standard max-sum counterpart.

3. Solution assessment. Recall from Section 5.2 that the assessment of
solutions after chainme’s max-sum phase has finished is specific to this
algorithm. As a consequence of this, we implemented chainme’s solution
assessment as an additional procedure after the termination of the max-
sum phase.

Finally, samp-sb-d algorithm was implemented in C++ following the de-
scription of the algorithm in [Walsh and Wellman, 2003]. The code for all three
algorithms can be freely downloaded from [Penya-Alba et al., 2014a].

5.4.2 Experimental design

We are interested in evaluating the performance of chainme against samp-sb-d,
the state of the art in mediated SCF. Moreover, we are interested in evaluating
the benefits, if any, of mediated SCF with respect to P2P SCF. Our experimental
design follows that of Section 4.4.2. That is, we use the test-suite described in
[Vinyals et al., 2008] to generate SCF problems. Moreover, we generate SCs with
50 goods and a number of participants ranging from 40 to 500. For each scenario
we generate 100 different SCs. The generated problems can be downloaded from
[Penya-Alba et al., 2014a].

Each of the problems is solved with the implementations of samp-sb-d, rb-
lbp, and chainme described in the previous section. Our tests were run on an
Intel(R) Xeon(TM) CPU running at 3.20GHz with 2GB of RAM on linux-2.6
x86 64. For each problem we record the following values:

Bandwidth. While chainme and rb-lbp agents exchange single-valued mes-
sages, samp-sb-d’s mediator agents send multiple-valued messages to the par-
ticipant agents they are connected to. Thus, for each agent involved in the
SCF process, be it a participant or a mediator agent, we record the number of
messages sent times the size of the message.
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Computation. We measure the computation needed by an agent as the num-
ber of operations the agent performs1.

Solution quality. We normalize solution quality to the 0-1 scale by dividing
the value of the SCs found by the different methods by the value of the op-
timal solution.2 Hence, a quality of one means that the solution found is optimal.

Recall form Section 5.3 that the memory requirements for agents in all the
three algorithms compared is proportional to the number of neighbors the agent
is connected to. Moreover, the memory used by these agents does not increase
during the execution of each of the algorithms. Therefore, we do not record
the memory requirements since they will produce similar results for all three
methods. In what follows, we provide an analysis of the results obtained after
running the experiments and recording the results obtained.

5.4.3 Empirical evaluation

In this section we study the scalability of chainme and compare it with
that of samp-sb-d and rb-lbp. Following the empirical evaluation in Sec-
tion 4.4.3 we impose a hard limit of 250 iterations after which the execu-
tion of rb-lbp and chainme is stopped and a solution is assessed. samp-
sb-d is run until convergence since convergence is guaranteed in this protocol
[Walsh and Wellman, 2003].

The distributions obtained for the measures described in the previous sec-
tion are long-tailed and skewed. Therefore we use the median instead of
the mean as a measure of central tendency following the recommendations in
[Wilcox and Keselman, 2003]. Where possible we do also show the 20th and
80th percentile as a measure of dispersion. First, we analyze the resource re-
quirements of each algorithm. Then, we analyze the quality of the solution
obtained (in terms of the value of the SC) by each algorithm.

Resource requirements

Recall that chainme and samp-sb-d are mediated algorithms whilst rb-lbp is
not. That is, chainme and samp-sb-d employ mediator agents alongside par-
ticipant agents, whereas in rb-lbp there are only participant agents. For that
reason we benchmark bandwidth usage along four different dimensions: total
bandwidth used by all agents, maximum bandwidth used by any participant,

1A fair assessment of the amount of computation performed by mediators is difficult. The
costliest operation for both samp-sb-d and chainme mediators is assessing the bid-ask interval.
chainme uses algorithm 1 whose worst-case complexity is O(P ·logP ) (P stands for the number
of participants a mediator is connected to). Thus, we record P · logP operations each time
the bid-ask interval is assessed in chainme. On the other hand, the assessment of the bid-ask
interval in samp-sb-d can be done in O(logP ) following [Wurman et al., 1998]. Hence, we
record logP operations each time the bid-ask interval is assessed in samp-sb-d.

2The optimal solutions are found using a centralized mixed integer programming solver.
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total bandwidth used by mediators, and maximum bandwidth used by any me-
diator.

Figure 5.4 shows how the different algorithms performed in terms of band-
width usage. Note that rb-lbp is left out of Figures 5.4c and 5.4d due to its
lack of mediator agents. In Figure 5.4a we see that chainme consumes at most
1/60th of the bandwidth used by rb-lbp and that the savings when compared
to samp-sb-d are of at least three orders of magnitude. Moreover, as shown in
Figure 5.4b, these savings remain even when considering only participant agents.
Furthermore, the savings increase from three to four orders of magnitude when
considering only mediator agents (Figures 5.4c and 5.4d).

(a) Total bandwidth. (b) Maximum bandwidth per participant.

(c) Total mediators bandwidth. (d) Maximum bandwidth per mediator.

Figure 5.4: chainme, rb-lbp, and samp-sb-d bandwidth requirements. Plots
use a log-scale for the y axis.

Next, we turn our attention to the computational requirements of the three
algorithms at hand (samp-sb-d, rb-lbp and chainme). Figure 5.5 shows how
the different algorithms performed in terms of computation. Again, rb-lbp is
left out of Figures 5.5c and 5.5d due to its lack of mediator agents. In Figures 5.5a
and 5.5b we see that the number of operations performed by chainme is at least
2 orders of magnitude smaller than that of the runner-up. This difference is
confirmed when we only consider mediators in Figures 5.5c and 5.5d.

Given the complexity results provided in Section 5.3 it might seem unex-
pected that chainme performs better than samp-sb-d in terms of computational
requirements. However, samp-sb-d message update policies can slow down the
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(a) Total operations. (b) Maximum operations per participant.

(c) Total mediators operations. (d) Maximum operations per mediator.

Figure 5.5: chainme, rb-lbp, and samp-sb-d computations. Plots use a log-
scale for the y axis.

algorithm by increasing the number of iterations needed to find a solution as
discussed in Section 3.2.2. This increase on the number of iterations can be ob-
served in Figure 5.6. Notice that samp-sb-d requires more than one thousand
more iterations than chainme to find a solution. Moreover, rb-lbp fails to find
a solution within the limit of 250 iterations whereas chainme finds solutions well
bellow this limit. This phenomenon can be explained by the fact that chainme’s
additive decomposition produces local term graphs that contain less cycles than
those produced by rb-lbp as argued in Section 5.1 (which is a known factor for
max-sum convergence [Weiss and Freeman, 2001]).

Solution quality

In this section we focus our attention on the quality of the solutions assessed by
chainme. Figure 5.7a shows the median and dispersion of the solution quality
for chainme, rb-lbp, and samp-sb-d. We observe that both mediated meth-
ods (chainme and samp-sb-d) outperform rb-lbp (which implements a P2P
architecture). Moreover, the quality of the solutions assessed by rb-lbp rapidly
decreases as the number of participants in the SC increases. On the other hand,
both chainme and samp-sb-d find solutions that are close to the optimal one
although the later shows a slight decrease on the quality of the solution as the
number of participants increases.



72 Chapter 5. CHAINME: Mediated Supply Chain Formation

Figure 5.6: chainme, rb-lbp, and samp-sb-d iterations to convergence.

(a) Median quality. (b) Number of optimal solutions.

Figure 5.7: chainme, rb-lbp, and samp-sb-d solution quality.

Figure 5.7b plots the number of problems for which each method was able
to find the optimal solution. The number of problems optimally solved by
samp-sb-d and rb-lbp decreases very rapidly as the number of participants
increases. By contrast, chainme is able to find the optimal solution in most of
the problems, even in scenarios with a large number of participants. In the 500
participants scenario, chainme converges to the optimal solution in more than
70% of the problems, whereas the other methods almost never find it.

These experiments place chainme as the best performing algorithm for de-
centralized SCF. On the one hand, it requires less computational resources than
the state-of-the-art. Moreover, chainme reduces the bandwidth required to find
a solution to no more than 1/60th of the runner-up. Furthermore, the number
of operations required by chainme to assess solutions is at least two orders of
magnitude smaller than those required by the next best performing algorithm.
On the other hand, chainme is able to find solutions that are of higher quality
than those found by the other methods. Moreover, chainme finds the optimal
solution in over 70% of the instances even for problems with 500 participants.
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5.5 Conclusion

In this chapter we have introduced chainme, a novel method for mediated SCF.
chainme is based on an additive decomposition of the SCF problem that can
be approximated by the max-sum algorithm. Moreover, we have provided com-
putationally efficient expressions to assess max-sum messages that significantly
lower the resources required by chainme with respect to standard max-sum.
The experimental evaluation of the chainme algorithm shows that it is able to
find solutions requiring less than 1/60th of the bandwidth required by rb-lbp
(our method for P2P SCF), and that the savings in terms of bandwidth are of
at least three orders of magnitude when compared with samp-sb-d (the state of
the art for mediated SCF). Moreover, chainme savings in terms of number of
operations are of at least two orders of magnitude when compared with rb-lbp
and samp-sb-d. Finally, these savings do not come at the expense of the solu-
tion quality. That is, chainme is able to find solutions that are closer to the
optimal one than the other methods and finds the optimal solution more often
even for lager problems.





Chapter 6

Conclusions and Future
Work

In this chapter, we draw some conclusions about the work developed in this
dissertation and we show some paths open to future development.

6.1 Conclusions

The Supply Chain Formation (SCF) problem has been widely studied in the
multi-agent systems literature. Moreover, as we discussed in Chapter 1, the ma-
jority of contributions tackle the SCF problem in a centralized manner. However,
as argued in Section 3.1, employing a centralized solution might not be satisfac-
tory for the following reasons:

• Centralized approaches rely on a central authority that possesses the pri-
vate valuations of all participants. However, participants might be reluc-
tant to share this information with any central authority.

• Centralized optimal solvers might suffer from scalability issues given the
hardness of the SCF problem.

• The existence of a central authority introduces a single point of failure for
the SCF process.

In order to overcome of these limitations, as discussed in Section 3.2, de-
centralized SCF appears as an attractive alternative. Decentralized approaches
in the literature to the SCF problem can be categorized under two categories:
peer-to-peer (P2P) and mediated. In P2P SCF, participant agents interact di-
rectly with each other without the need of any third party. On the other hand,
in mediated SCF each of the goods in the Supply Chain (SC) is represented by
a computational agent that mediates between the participant agents interested
in buying or selling the good it is in charge of.
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Although solving the SCF problem in a decentralized manner has been stud-
ied in the literature both in a P2P and in a mediated manner, current state-
of-the-art methods for decentralized SCF incur in high computational penalties.
Moreover, there is no comparison in terms of economical efficiency of these meth-
ods. With this background, in Chapter 1, we posed the following open research
questions:

• Can decentralized SCF methods be economically efficient?

• Can decentralized SCF methods be computationally efficient?

With the goal of answering these questions, in this thesis, we have contributed
to the state of the art with two algorithms for decentralized SCF that are com-
putationally efficient and provide higher quality solutions to the SCF problem
than the current approaches in the state of the art. One of the main contribu-
tions of this thesis was rb-lbp, an algorithm to solve the SCF problem following
a P2P architecture. On the other hand, we contribute to the state of the art in
mediated SCF with chainme, an algorithm to solve the SCF problem in a de-
centralized manner with the use of mediators for goods. Both contributions are
based on the max-sum algorithm and exploit the particularities of our encodings
in order to reduce computational complexity. Moreover, the methodology we
applied to both rb-lbp and chainme has proven to be effective signaling its
potential for other coordination problems.

Next, in Section 6.1.1, we provide a summary of the methodology followed to
develop both rb-lbp and chainme. Then, in Section 6.1.2, we provide a detailed
summary of rb-lbp, our contribution to P2P SCF. Finally, in Section 6.1.3, we
summarize in more detail chainme, our contribution to mediated SCF.

6.1.1 A methodology for the design of decentralized deci-
sion making algorithms

We decided to tackle the decentralized SCF problem by means of decentralized
decision making algorithms based on max-sum that are run by a multi-agent
system. We set our goal to develop a methodology to build a local term graph
over which the max-sum algorithm could run in a computationally efficient man-
ner in order to approximate an objective function that decomposes additively.
Recall from Section 2.2 that max-sum is a message passing algorithm that has
shown good empirical performance in a wide range of multi-agent coordination
scenarios. Unfortunately, assessing standard max-sum messages takes exponen-
tial time. However, it is possible to reduce its time complexity by studying the
particularities of specific local terms as described in Section 2.2.4. In order to
design and implement computationally efficient solutions to the SCF problem
both in P2P and mediated scenarios we adopted a common methodology. Our
methodology consists in the following steps:

1. Identify decision makers. Each decision maker in a SC is represented
by a computational agent.
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2. Encode decisions in binary variables. For each of the decision makers
identified in the previous step, break down its decisions into binary ones.
By encoding each decision in a binary variable we avoid the problem of
coupling several decisions into a single variable.

3. Ensure coherence. Introduce constraints in the form of local terms in
order to ensure that only feasible combinations of variables’ states remain
acceptable.

4. Assign variables and local terms to agents. Assign the responsibility
of sending and receiving the max-sum messages for each variable and local
term to the corresponding agent identified at step 1.

5. Efficient computation of messages. Apply the technique described
in Section 2.2.4 to the local terms obtained at step 3 in order to reduce
standard max-sum’s exponential time complexity.

6. Decode max-sum’s solution. Since max-sum can converge to unfeasible
solutions or even fail to converge, devise a domain specific method for
removing unfeasibilities in the solutions found by the max-sum algorithm.

Notice that the steps described above are not exclusive to the SCF problem
and can be applied to more general optimization problems. Therefore, we be-
lieve that applying the methodology followed in this work can reduce the design
and implementation time of solutions to other multi-agent system coordination
problems.

In the next sections we provide a summary of how we applied this method-
ology to the SCF problem and the results it yielded.

6.1.2 Peer-to-peer Supply Chain Formation

As described in Section 3.2.1, in P2P SCF there is a participant agent repre-
senting each of the participants in the SC. Moreover, each participant agent
communicates only with the agents representing the sellers of the goods its par-
ticipant is interested in buying and the buyers of the goods its participant is
interested in selling.

As we show in Section 3.2.1, the computational requirements of lbp, the
state of the art in P2P SCF, grow exponentially with the size of the problem,
thus hindering the scalability of this method.

In order to provide a computationally efficient algorithm for P2P SCF, in
Chapter 4, we proposed rb-lbp. rb-lbp is designed following the methodology
described in the previous section as we detail next.

The first step in our methodology is that of identifying decision makers. Since
we are dealing with a P2P SCF, it turns out clear that the decision makers in
our scenario are the SC participants themselves.

To encode decisions in binary variables (step 2), we encode each participant’s
decision to take part in the SC in a binary variable. Moreover, we decouple each
buy and sell decision into a separate variable.
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Furthermore, we ensure internal coherence (step 3) of each participant by
means of selection terms and coherence among participants by means of equality
terms. That is, each selection term relates to the buy or sell decision of a certain
good and ensures that an active participant chooses only one partner for the
good in question and each equality term ensures that potential partners agree
on whether to exchange a certain good or not.

In order to apply the max-sum algorithm to a multi-agent system, it is nec-
essary to assign each variable and local term to a computational agent (step 4).
Therefore, in rb-lbp, there is a participant agent representing each of the par-
ticipants in the SC. Moreover, each participant agent, is responsible for the
variables encoding its participant’s decisions and the local terms constraining
them. The local terms ensuring coherence among each pair of potential partners
are shared by both participant agents.

Applying the technique described in Section 2.2.4 to reduce the computa-
tional complexity of max-sum message assessment (step 5) results in an im-
provement in worst case resource requirements over lbp, the state-of-the-art
method for P2P SCF. Specifically, with rb-lbp, we reduce memory and band-
width requirements from exponential to linear, and the number of operations
per iteration from exponential to quadratic.

Finally, in order to decode max-sum’s solutions (step 6), in rb-lbp, we simply
remove from the solution any participant that is not able to buy all of its input
goods and sell its output goods.

With the purpose of evaluating rb-lbp’s performance we conducted an ex-
perimental analysis. The results show that rb-lbp is able to find higher-valued
solutions while reducing the memory, bandwidth and computational resources
required by several orders of magnitude with respect to lbp, the state-of-the-
art method for P2P SCF. However, as a result of the experiments, we observed
that the quality of the solutions found by both lbp and rb-lbp degrades as the
number of participants in the SC increases. Moreover, we linked this behaviour
to the number of cycles in the local term graphs produced by both methods.
Furthermore, we argued that this is a consequence of applying the max-sum
algorithm to the P2P architecture.

Summary of rb-lbp contributions

To summarize, our main contributions to the state of the art in P2P SCF are:

• A novel encoding of the SCF into a local term graph containing only binary
variables.

• A mapping of the local term graph into a multi-agent system that allows
to solve the SCF problem following a P2P architecture.

• A set of expressions to assess the messages exchanged between the partic-
ipant agents in a computationally efficient manner.
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• A P2P algorithm for SCF that requires several orders of magnitude less
memory, bandwidth and computational resources, and finds better valued
solutions than lbp, the state of the art for P2P SCF.

Thus, with rb-lbp, we answer the first of our research questions by showing
that decentralized SCF can be computationally efficient in the P2P setting.
However, the question about economical efficiency remains open. We try to
address this question with our contribution to mediated SCF.

6.1.3 Mediated Supply Chain Formation

As described in Section 3.2.2, in mediated SCF there is a participant agent
representing each participant in the SC. Moreover, for each of the goods in
the SC, there is a mediator agent that acts as a local market for that good.
Therefore, participant agents communicate only with the mediator agents for
the goods they are interested to buy or sell.

Although in Chapter 4 we provided a computationally-efficient method for
decentralized SCF, the quality of the solutions found by this method degrades
as the size of the problem increases. On the other hand, in Section 3.2.2, we
argued that, although being able to achieve high economic efficiency, samp-sb-
d, the state of the art for mediated SCF, incurs in a high penalty in terms of
communication.

Thus, in Chapter 5, we proposed chainme, a mediated method for SCF.
chainme is designed following the methodology described in Section 6.1.1 as we
detail next.

The first step in our methodology is that of identifying decision makers
(step 1). Since chainme is targeted at mediated SCF, it turns out clear that
the decision makers in our scenario are both the participants in the SC and the
mediators for each of the goods in the SC.

To encode participant’s decisions (step 2) we introduce a binary variable for
each of the participants encoding whether she is active in the SC or not. On the
other hand, we ensure coherence (step 3) by means of equilibrium terms, one
per each good at trade, that enforce that the number of active sellers is equal to
the number of active buyers for each of the goods at trade.

In order to solve the SCF problem by means of a max-sum based multi-agent
system, it is necessary to assign each variable and local term to a computational
agent (step 4). Therefore, in chainme, there is a participant agent representing
each of the participants in the SC. Moreover, each participant agent is responsible
for its participant’s variable. On the other hand, for each good in the SC there
is a mediator agent that is responsible for the equilibrium term constraining the
exchanges of that good.

Applying the technique described in Section 2.2.4 to reduce the computa-
tional complexity of max-sum’s message assessment (step 5) results in chainme
requiring the same worst case memory and communication resources as samp-
sb-d the state-of-the-art method for mediated SCF, and rb-lbp. Moreover,
chainme reduces the operations required per iteration with respect to rb-lbp.
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Finally, to decode max-sum’s solutions (step 6), each mediator agent in
chainme matches the best buyers and sellers for the good it is representing
and marks them to be active. Then, each participant agent decides to be active
in the SC if it is able to buy all of its input goods and sell all of its output goods.

With the purpose of quantifying chainme’s savings in terms of computa-
tional resources and evaluating the quality of the SC configurations found by
chainme we conducted an experimental analysis. The results show that, when
compared against both rb-lbp and samp-sb-d, chainme requires a fraction of
the bandwidth an operations needed by the next best performing algorithm and
has the same memory requirements. Moreover, chainme finds SC configurations
of higher value than the competition. Furthermore, the value of the solutions
found by chainme is within 98% of the optimal value.

Summary of chainme contributions

To summarize, our main contributions to the state of the art in mediated SCF
are:

• A novel encoding of the SCF into a local term graph containing only binary
variables.

• A mapping of the local term graph into a multi-agent system that allows
to solve the SCF problem following a mediated architecture.

• An efficient computation of messages exchanged between the participant
agents and the mediator agents.

• A method that allows to find solutions to the SCF problem in a decentral-
ized manner reducing the memory requirements to 1/60th, and the number
of operations by two orders of magnitude with respect to the state of the
art while finding solutions that are close to the value of the optimal one.

Thus, with chainme, we answer both of our research questions by showing
that decentralized SCF can be computationally and economically efficient in a
mediated setting. However, as we argue in the next section there are many paths
for future development in the area of decentralized SCF.

6.2 Future work

In this thesis we have tried to make headway in the decentralized assessment of
Supply Chains (SCs) both in peer-to-peer (P2P) and mediated scenarios. This
thesis also reveals several paths to future developments both on decentralized
Supply Chain Formation (SCF) and on improving the results obtained by apply-
ing the max-sum algorithm to other coordination problems. Next, we elaborate
on both lines of future work.
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6.2.1 Decentralized Supply Chain Formation

Although we have contributed to the state of the art on decentralized SCF with
two computationally efficent algorithms, there is room from improvement on the
quality of the solutions found by current P2P SCF methods. Recall that the
value of the SC configurations found by both lbp [Winsper and Chli, 2013] and
rb-lbp (Chapter 4) degrades as the number of participants in the SC increases.
Both methods are based on the max-sum algorithm and, as we argued in Sec-
tion 4.5, applying this algorithm to P2P SCF results in graphs that contain
cycles which is known to affect negatively max-sum’s performance. Therefore,
we think it would be interesting to study how other techniques from the De-
centralized Constraint Optimization community perform in the SCF problem.
Moreover, both lbp and rb-lbp ensure feasibility of the solutions by just remov-
ing participants from the solution until it is feasible. Thus, more sophisticated
decoding methods could lead to better valued solutions.

In general, all the methods reviewed in this thesis (including rb-lbp
and chainme) that tackle the SCF problem in a decentralized manner lack
the expressivity found in centralized approaches such as [Collins et al., 2002],
[Cerquides et al., 2007], and [Witzel and Endriss, 2012]. That is, none of the
reviewed methods takes into account features such as temporal constraints or
allowing participants to express bids that contain multiple copies of the same
transformation, transformations that take (or produce) multiple units of the
same good, offer different bundles of transformations, and different prices for a
transformation depending on how many times it is performed (bulge discounts).
Therefore, we think it would be interesting to study how to add expressiveness
to current decentralized methods for SCF while keeping their computational and
economical efficiency. For instance, it would be possible to add this features by
means of additional constraints to the methods we proposed.

Finally, in this thesis we have provided the means to solve the Winner De-
termination Problem in a decentralized manner. However, since no payment
function has been defined, the design of a mechanism would require the defini-
tion of one such payment function. Therefore, the design of this function and the
analysis of the properties of the corresponding mechanisms should be pursued
as future work.

6.2.2 Improving the performance of max-sum

The decoding of the solutions found by the max-sum algorithm is a key as-
pect to consider when using max-sum to solve an optimization problem since
max-sum may converge to solutions that break some constraints. So far, max-
sum based methods in the literature [Givoni and Frey, 2009, Kim et al., 2010,
Winsper and Chli, 2013] tend to include a domain specific decoding phase in
order to turn the solutions found by the max-sum algorithm into feasible ones.
The design of this decoding phase is not trivial and the quality of the final solu-
tion can be greatly affected by the method chosen. Therefore, max-sum based
methods would benefit from the study of general solution decoding methods.
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Finally, the design and implementation of both of our contributions to de-
centralized SCF follow the methodology described in Section 6.1.1. Although
our methodology proved to be valid for the design of SCF algorithms, its gen-
erality makes it appear as a promising candidate for other multi-agent coor-
dination problems. A key aspect of our methodology is providing computa-
tionally efficient message computation for max-sum local terms. Moreover, in
this thesis we have provided computationally efficient message computation for
three new local terms. Furthermore, we can find in the literature more ex-
amples of these computationally efficient local terms [Givoni and Frey, 2009,
Tarlow et al., 2010, Pujol-Gonzalez et al., 2013a, Pujol-Gonzalez et al., 2013b].
Since these local terms can be understood as logical operators (e.g. select one
variable, all variables must take the same value, etc), we think it could be
possible to build a general framework to solve coordination problems follow-
ing our methodology and using these local terms as building blocks. That is,
a designer could build a solver to a coordination problem just by “plugging”
together these building blocks without the need to understand the inner work-
ings of the max-sum algorithm, thus speeding up the design of solvers. An
interesting take on building such a framework is the Binary MaxSum library
[Pujol-Gonzalez and Penya-Alba, 2014]. However, as of today, this library is
limited to a collection of computationally efficient local terms. We think it
would require the implementation of a general method for decoding solutions
and a design tool to specify problems in order to turn this library in the frame-
work described above.



Appendix A

RB-LBP Efficient Message
Computation

We devote this chapter to provide computationally efficient expressions to assess
the value of the messages exchanged in rb-lbp’s local term graph described in
Chapter 4. Therefore, in Section A.1, we provide a description of the expressions
used in standard max-sum to assess the messages exchanged between vertices in
the local term graph. Then, in Section A.2, we study the particularities of rb-
lbp’s local terms. Finally, in Section A.3 we provide computationally efficient
expressions to assess the single-valued messages exchanged between rb-lbp’s
local terms.

A.1 Message exchange in standard max-sum

The max-sum algorithm consists of a series of message exchanges between simple
and composite vertices in a local term graph. Recall from Section 2.2.1 that a
simple vertex is a vertex representing a local term whose scope is a single variable,
whereas a composite vertex is a vertex representing a local term whose scope
is two or more variables. Moreover, the message exchange between vertices is
repeated until the algorithm either converges or is stopped. Furthermore, recall
from Section 2.2.2 that, in standard max-sum, the message from a composite
vertex f to a simple vertex x is assessed by Equation A.1.

µxf (x) = max
Xf\{x}

f(Xf ) +
∑

x′∈N(f)\{x}

µfx′(x
′)

 ∀x ∈ Dx (A.1)

where Xf\{x} can take every possible state of every variable in the scope of local
term f except x, f is the local term associated to the composite vertex, and
N(f) \ {x} is the set of neighbors of f excluding x.

On the other hand, the message from a simple vertex x to a composite vertex
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f (µfx) is given by Equation A.2.

µfx(x) = fx(x) +
∑

f ′∈N(x)\{f}

µxf ′(x) ∀x ∈ Dx (A.2)

where fx is the simple term associated to x and N(x)\{f} is the set of neighbors
of x excluding f .

Notice that these messages depend not only on the messages received from
neighboring vertices but also on the value taken by the local term they represent.
Moreover, the computation of messages from composite vertex to simple vertex
takes exponential time. However, as argued in Section 2.2.4 this complexity can
be reduced by studying the particularities of each particular local term. In the
next section, we study the particularities of rb-lbp’s local terms and provide
slightly simplified expressions to assess the messages between rb-lbp’s local
term graph vertices.

A.2 Message computation

In this section we study the messages computed by the selection and equality
terms employed by rb-lbp. Each of these local terms encode a hard constraint.
That is, some of the possible assignments to the variables of a local term
are unfeasible and can be discarded. Therefore, it is possible to simplify the
maximum in Equation A.1 by not considering the assignments that break the
constraint. Consequently, we provide slightly simplified versions of Equation A.1
for equality and selection terms both for the active and inactive states of a
variable. For simplicity, we start with equality terms.

Computing the message from equality vertex to option vertex. Con-
sider equality term fE joining option variables o and o′ described by the following
equation:

fE(o,o′) =

{
0, if o = o′

−∞, otherwise.

Moreover, consider that the last messages received by vertex fE from vertex o′

is µfEo′ . We can readily assess the new message from fE to o (µofE ):

µofE (0) = max
o′

(
fE(o′, 0) + µfEo′ (o′)

)
.

Since fE(o, 0) has a value of −∞ if o′ = 1, we can assure that o′ = 0 is the
assignment that maximizes the expression, and thus

µofE (0) = fE(0, 0) + µfEo′ (0)

= µfEo′ (0).
(A.3)

In a similar way we obtain:

µofE (1) = µfEo′ (1). (A.4)
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Note that the message from fE to o is the last message received by fE from
o′. Since the equality term is symmetrical, the message from fE to o′ is the
last message received by fE from o. We reproduce bellow the equations for the
message sent from an equality vertex to an option vertex, both for the inactive
and the active states.

µofE (0) = µfEo′ (0)

µofE (1) = µfEo′ (1)

Computing the message from selection vertex to activation vertex.
Consider a generic selection term fS , joining an activation variable a with option
variables o1, . . . , on described by the following equation:

fS(a,o1, . . . ,on) =

{
0, if

∑n
i=1 oi = a

−∞, otherwise.

Moreover, consider that the last messages received by vertex fS from ver-
tices a, o1, . . . , on, are respectively µfSa , µ

fS
o1 , . . . , µ

fS
on . We start by assessing the

message from fS to a, analyzing the case when a = 0:

µafS (0) = max
o1,...,on

(
fS(0,o1, . . . ,on) +

n∑
i=1

µfSoi (oi)
)
.

Since the activation variable is 0, the only possible combination of values re-
turning a non-infinite value for fS is setting all option variables oi to 0 and thus

µafS (0) =
∑

o∈N (fS)\{a}

µfSo (0), (A.5)

where N (fS) \ {a} is the set of option vertices connected to selection vertex fS .
On the other hand, the message for a = 1 is:

µafS (1) = max
o1,...,on

(
fS(1,o1, . . . ,on) +

n∑
i=0

µfSoi (oi)
)
.

Since the activation variable is 1, the selection term is only satisfied when one
of its option variables takes on value 1 and the remaining ones take on value 0.
It follows that:

µafS (1) = max
o∈N (fS)\{a}

(
µfSo (1) +

∑
o′∈N (fS)\{a,o}

µfSo′ (0)
)
, (A.6)

where N (fS) \ {a, o} is the set of option vertices connected to selection vertex
fS but option vertex o. We reproduce bellow the equations for the message sent
from an selection vertex to an activation vertex, both for the inactive and the
active states.
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µafS (0) =
∑

o∈N (fS)\{a}

µfSo (0)

µafS (1) = max
o∈N (fS)\{a}

(
µfSo (1) +

∑
o′∈N (fS)\{a,o}

µfSo′ (0)
)

Computing the message from selection vertex to option vertex. The
message sent from vertex fS to each option vertex oi is assessed in the same
way. We start with the case oi = 0. For compactness we note O−i the set of all
option variables attached to local term fS except oi.

µoifS (0) = max
a,O−i

(
fS(a,oi = 0,O−i) + µfSa (a) +

∑
o∈O−i

µfSo (o)
)
.

There are two ways in which the selection constraint can be satisfied. Either
by setting every variable to 0 or by setting activation variable a to 1 and selecting
exactly one of the option variables to take on value 1. Therefore, the equation
to assess the message from a selection vertex to an option variable will follow
the pattern:

µoifS (0) = max(AllZeros, max
o′∈O−i

Select(o′)). (A.7)

On the one hand, the expression obtained after setting all variables to zero,
AllZeros, can be expressed as:

AllZeros = µfSa (0) +
∑

o′∈O−i

µfSo′ (0). (A.8)

On the other hand, the expression obtained after setting activation variable
to one and only one selection variable to zero, Select(o′), can be expressed as:

Select(o′) = µfSa (1) + µfSo′ (1) +
∑

o′′∈O−i\{o′}

µfSo′′(0). (A.9)

Finally, in case oi = 1, we have that:

µoifS (1) = max
a,O−i

(
fS(a,oi = 1,O−i) + µfSa (a) +

∑
o∈O−i

µfSo (o)
)
.

The only way to satisfy the selection constraint is by setting a to 1 and all
the option variables other than oi to 0. Thus,

µoifS (1) = µfSa (1) +
∑

o′∈O−i

µfSo′ (0). (A.10)
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Therefore, the messages from a selection vertex to an option vertex both for
the inactive and the active states can be assessed by the following equations.

µoifS (0) = max(AllZeros, max
o′∈O−i

Select(o′))

µoifS (1) = µfSa (1) +
∑

o′∈O−i

µfSo′ (0)

Note that to assess the messages from composite to simple vertices partici-
pant agents do not need to store the tables representing composite terms. Since
the size of a selection term grows exponentially with the number of options, the
equations above yield large savings in memory requirements.

A.3 Message simplification

In this section we take the expressions to assess standard max-sum messages from
the previous section and derive computationally efficient expressions to assess
the equivalent single-valued messages exchanged between rb-lbp vertices. The
derivation of the expressions for each message follows the same pattern. First,
we take the difference between the message for the active state and the inactive
state of a variable obtained in the previous section. Then, we remove terms that
cancel out. Finally, we apply the following simplification:

νwv = µwv (1)− µwv (0). (A.11)

We start by deriving the efficient messages from simple vertices to composite
vertices. In general, the message from a simple vertex to a composite vertex can
be assessed by means of the equation in the following lemma.

Lemma 1. The single-valued message from a simple vertex x to a composite
vertex g can be assessed as:

νgx = fx(1)− fx(0) +
∑

g′∈N (x)\{g}

νxg′ . (A.12)

Proof. We begin by taking the difference between the messages sent by simple
vertex x to composite vertex f (Equation 2.4) for the active and the inactive
states of x. From there, it is just a matter of expanding both messages and
applying Equation A.11.
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νfx = µfx(1)− µfx(0)

=

(
fx(1) +

∑
f ′∈N (x)\{f}

µxf ′(1)

)
−

(
fx(0) +

∑
f ′∈N (x)\{f}

µxf ′(0)

)

= fx(1)− fx(0) +
∑

f ′∈N (x)\{f}

µxf ′(1)−
∑

f ′∈N (x)\{f}

µxf ′(0)

= fx(1)− fx(0) +
∑

f ′∈N (x)\{f}

νxf ′ .

In what follows, we provide computationally efficient expressions to assess
the single-valued message sent from an activation vertex to a selection vertex,
from an option vertex to a selection vertex, and from an option vertex to an
equality vertex.

Theorem 1. The single-valued message from a participant’s p activation vertex
xp to a selection vertex fS can be assessed as:

νfSxp = Cp +
∑

fS ′∈N (xp)\{fS}

ν
xp
fS ′
.

Proof. The simple term fa associated to vertex a is the addition of all the simple
terms that have variable a in their scope (see Section 2.2.1). In the case of an
activation vertex xp this simple term corresponds to p’s activation term fp.
Recall that, in rb-lbp, an activation term takes on the value of participant’s
p activation cost for xp = 1 and zero otherwise (see Section 4.1.2). Therefore,
using Equation A.12 from Lemma 1 we have that

νfSxp = fp(1)− fp(0) +
∑

f ′∈N (xp)\{f}

ν
xp
f ′

= Cp − 0 +
∑

f ′∈N (xp)\{f}

ν
xp
f ′

= Cp +
∑

fS ′∈N (xp)\{fS}

ν
xp
fS ′
.

Theorem 2. The single-valued message from an option vertex o to a selection
vertex fS can be assessed as:

νfSo = νofE .
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Proof. We begin from Equation A.12. Since option variables are not in the
scope of any simple terms, we can cancel the first two terms in Equation A.12.
Moreover, since an option vertex is connected only to a selection vertex fS and
an equality vertex fE we can simplify the summation. Therefore, we have that

νfSo = fo(1)− fo(0) +
∑

f ′∈N (o)\{f}

νxf ′

=
∑

f ′∈N (o)\{f}

νof ′

= νofE .

Theorem 3. The single-valued message from an option vertex o to an equality
vertex fE can be assessed as:

νfEo = νofS .

Proof. Follows the same reasoning as Theorem 2. That is we begin from Equa-
tion A.12. Then, we cancel the first two terms from Equation A.12 since option
variable o is not in the scope of any simple term. Last, we simplify the summa-
tion. Therefore, we have that

νfEo = fo(1)− fo(0) +
∑

f ′∈N (o)\{f}

νxf ′

=
∑

f ′∈N (o)\{f}

νof ′

= νofS .

Next, we turn our attention to the more challenging case of deriving efficient
messages from composite vertices to simple vertices.

Theorem 4. The single-valued message from an equality vertex fE, which is
connected to option vertices o and o′, to option vertex o is exactly the last message
received by the equality vertex from option vertex o′. Formally,

νofE = νfEo′ .

Proof. We begin by taking the difference between the messages sent by equality
vertex fE to option vertex o for the active and the inactive state of option
variable o. From there, it is just a matter of applying Equations A.3, A.4, and
A.11.

νofE = µofE (1)− µofE (0)

= µfEo′ (1)− µfEo′ (1)

= νfEo′ .
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Theorem 5. The single-valued message from a selection vertex fS to its activa-
tion vertex a can be assessed as the maximum message received from its option
vertices o1, . . . , on. Formally,

νafS = max
o∈N (fS)\{a}

νfSo .

Proof. We begin by taking the difference between the messages sent by selection
vertex fS to the activation vertex a for its active and the inactive state. Next,
we apply Equations A.6 and A.5. Then, we simplify the terms that cancel out.
In the final step, we apply Equation A.11.

νafS = µafS (1)− µafS (0)

= max
o∈N (fS)\{a}

(
µfSo (1) +

∑
o′∈N (fS)\{a,o}

µfSo′ (0)
)
−

∑
o∈N (fS)\{a}

µfSo (0)

= max
o∈N (fS)\{a}

(
µfSo (1)− µfSo (0)

)
= max
o∈N (fS)\{a}

νfSo .

Theorem 6. The single-valued message from a selection term fS to any of
its option terms can be assessed from the message received from the activation
vertex a and the best message received from any of the option vertex (o1, . . . , on).
Formally,

νofS = min(νfSa ,− max
o′∈N (fS)\{a,o}

νfSo′ ).

Proof. We begin by taking the difference between the messages sent by a selec-
tion term fS to the option variable o for its active and the inactive state. Next,
we apply Equations A.10 and A.7. Then, we expand the expressions AllZeros
and Select(o′) according to Equations A.8 and A.9. Afterward, we simplify the
terms that cancel out. In the final step, we apply Equation A.11.

νofS = µofS (1)− µofS (0)

= µfSa (1) +
∑

o′∈N (fS)\{a,o}

µfSo′ (0)−max(AllZeros, max
o′∈N (fS)\{a,o}

Select(o′))

= µSa (1) +
∑

o′∈N (fS)\{a,o}

µSo′(0)

−max
(
µfSa (0) +

∑
o′∈N (fS)\{a,o}

µfSo′ (0),

max
o′∈N (fS)\{a,o}

(
µfSa (1) + µfSo′ (1) +

∑
o′′∈N (fS)\{a,o,o′}

µfSo′′(0)
))

= min
(
µfSa (1)− µfSa (0),− max

o′∈N (fS)\{a,o}

(
µfSo′ (1)− µfSo′ (0)

))
= min

(
νfSa ,− max

o′∈N (fS)\{a,o}
νfSo′
)
.
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Summarizing, the single-valued messages sent from rb-lbp simple vertices
to composite vertices can be assessed by means of the following expressions.

νfSxp = Cp +
∑

fS ′∈N (xp)\{fS}

ν
xp
fS ′

νfSo = νofE

νfEo = νofS

Moreover, the single-valued messages sent from rb-lbp composite vertices
to simple vertices can be assessed by means of the following expressions.

νofE = νfEo′

νafS = max
o∈N (fS)\{a}

νfSo

νofS = min(νfSa ,− max
o′∈N (fS)\{a,o}

νfSo′ )

Notice that, in the worst case, we have reduced the number of operations re-
quired to assess the message from a composite vertex to a simple vertex from ex-
ponential to linear. Moreover, the messages exchanged between vertices contain
a single value rather than two values as would be required for binary variables
in standard max-sum. Therefore, in this chapter we have provided expressions
to assess the max-sum messages exchanged between rb-lbp’s vertices in a com-
putationally efficient manner.





Appendix B

CHAINME Efficient
Message Computation

We devote this chapter to provide computationally efficient expressions to assess
the value of the messages exchanged in chainme’s local term graph. Therefore,
in Section B.1, we review the expressions used in standard max-sum to assess
the messages exchanged between the vertices in the local term graph. Then,
in Section B.2, we study the particularities of chainme local terms. Finally,
in Section B.3 we provide computationally efficient expressions to assess the
single-valued messages exchanged between chainme’s local terms.

B.1 Message exchange in standard max-sum

The max-sum algorithm consists of a series of message exchanges between simple
and composite vertices in a local term graph. Recall from Section 2.2.1 that a
simple vertex is a vertex representing a local term whose scope is a single variable,
whereas a composite vertex is a vertex representing a local term whose scope
is two or more variables. Moreover, the message exchange between vertices is
repeated until the algorithm either converges or it is stopped. Furthermore, recall
from Section 2.2.2 that, in standard max-sum, the message from a composite
vertex f to a simple vertex x is assessed by Equation B.1.

µxf (x) = max
Xf\{x}

f(Xf ) +
∑

x′∈N(f)\{x}

µfx′(x
′)

 ∀x ∈ Dx (B.1)

where Xf\{x} can take every possible state of every variable in the scope of local
term f except x; f is the local term associated to the composite vertex, and
N(f) \ {x} is the set of neighbors of f excluding x.

On the other hand, the message from a simple vertex x to a composite vertex
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f (µfx) is given by Equation B.2.

µfx(x) = fx(x) +
∑

f ′∈N(x)\{f}

µxf ′(x) ∀x ∈ Dx (B.2)

where fx is the simple term associated to x and N(x)\{f} is the set of neighbors
of x excluding f .

Notice that these messages depend not only on the messages received from
neighboring vertices but also on the value taken by the local term they represent.
Moreover, the computation of messages from composite vertex to simple vertex
takes exponential time. However, as argued in Section 2.2.4 this complexity can
be reduced by studying the particularities of each particular local term.

B.2 Message computation

In this section we study the particularities of chainme equilibrium terms. More-
over, we provide simplified expressions to assess the max-sum message sent from
an equilibrium vertex to an activation vertex for both the active and the inac-
tive state. This simplification is possible since equilibrium terms represent hard
constraints which allows us to reduce the number of combinations to take into
account when assessing the maximum in Equation B.1.

Following standard max-sum equations, the message sent from the equilib-
rium vertex of the mediator agent for good g to the activation vertex of par-
ticipant agent s representing a seller of good g for the state xs is assessed as

µsg(xs) = max
Sg−s,Bg

(
mg(〈Sg−s,xs〉,Bg) +

∑
p∈Sg−s∪Bg

µgp(xp)

)
, (B.3)

where Sg−s denotes the sellers for good g excluding seller s, and Sg−s denotes
the variables corresponding to the sellers in Sg−s. Similarly, Bg denotes the
buyers for good g and Bg denotes the participant variables of the buyers of good
g.

Similarly, the message from the mediator agent for good g to the participant
agent b representing one buyer of g for the state xb can be assessed as

µbg(xb) = max
Sg,Bg−b

(
mg(Sg, 〈Bg−b,xb〉) +

∑
p∈Sg∪Bg−b

µgp(xp)
)
, (B.4)

where Bg−b denotes the buyers for good g excluding buyer b, and Bg−b denotes
the variables corresponding to the sellers in Bg−b. Similarly, Sg denotes the
sellers for good g and Sg denotes the participant variables of the sellers of good
g.

In order to provide the simplified version for the assessment of messages sent
from a mediator to a participant agent we need first to introduce a series of
definitions and lemmas that will be used as building blocks for our proofs.
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Definition 1. We define the value of an assignment 〈Sg,Bg〉 for good g, wg,
as

wg(Sg,Bg) = mg(Sg,Bg) +
∑

p∈Sg∪Bg

µgp(xp), (B.5)

where µgp(xp) denotes the value of the last message received by g from neighbor
p for state xp, and Sg and Bg are the sellers and buyers of good g.

Definition 2. The optimal value for a good g, w∗g , is the maximum attainable
value for any assignment. That is,

w∗g = max
Sg,Bg

(
wg(Sg,Bg)

)
. (B.6)

Definition 3. Optimal assignment, 〈S∗g,B∗g〉, for a good g’s sellers and buy-
ers, is an assignment that has the optimal value.

Definition 4. The number of exchanges in the optimal assignment, k(Sg,Bg),
is the number of seller variables taking value one in the optimal assignment.

Note that, by the definition of the equilibrium term, the number of seller
variables taking value one is the same as the number of buyer variables taking
value one.

Recall that νgp is the difference between two states, namely νgp = µgp(1) −
µgp(0). Let S�g = 〈s�1 , . . . , s�|Sg|〉 be a sequence of the sellers for good g ordered

decreasingly by the value of the last message sent to good g. Similarly, let
B�g = 〈b�1 , . . . , b�|Bg|〉 be a sequence of the buyers of good g ordered decreasingly

by the value of the last message sent to good g.

Lemma 2. In the optimal assignment, either s�1 and b�1 are active or all par-
ticipants are inactive.

Proof. Let 〈S∗g,B∗g〉∗ be an optimal assignment with k(Sg,Bg) > 0 in which
s�1 = 0. Making any of the active sellers inactive and making s�1 active instead
will increase the value of w∗g since it will equal to w∗g−νgsi+ν

g

s�1
, and νg

s�1
> νgsi for

any si 6= s�1 , and we have a contradiction. The same reasoning can be applied
to b�1 .

Lemma 3. The optimal value for good g can be assessed as

w∗g =

η∑
j=1

(
µgsj (1) + µgbj (1)

)
+

|Sg|∑
j=η+1

µgsj (0) +

|Bg|∑
j=η+1

µgbj (0), (B.7)

where η = max{j|νgsj + νgbj ≥ 0}, sj ∈ Sg, and bj ∈ Bg.

Proof. By induction on η.
Base case. Taking η = 0, in Equation B.7 we get

w∗g =

r∑
j=1

µg
s�j

(0) +

t∑
j=1

µg
b�j

(0). (B.8)
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Assume there exists another assignment with a value higher than w∗g . By
Lemma 2, such assignment must contain s�1 and b�1 . But removing s�1 and
b�1 from that assignment will increase the value of the assignment (since
νg
s�1

+ νg
b�1
< 0 for η = 0), contradicting the existence of such assignment.

Induction case. Assuming that the lemma holds for η − 1. Let 〈S∗g,B∗g〉
be an optimal assignment with η > 0. By Lemma 2 we know that xs�1 = 1

and xb�1 = 1. Taking S ′g = Sg \ {s�1 } and B′g = Bg \ {b�1 }, we have that

k(S ′g,B′g) = k(Sg,Bg)− 1 = η − 1 since we have just removed s�1 and b�1 .
Hence, by induction, in a scenario without seller s�1 and buyer b�1 , the value

of the optimal assignment will be:

w∗g =

η∑
j=2

(
µg
s�j

(1) + µg
b�j

(1)
)

+

|Sg|∑
j=η+1

µg
s�j

(0) +

|Bg|∑
j=η+1

µg
b�j

(0). (B.9)

Adding seller s�1 and buyer b�1 back, we have that

w∗g = µg
s�1

(1) + µg
b�1

(1) +

η∑
j=2

(
µg
s�j

(1) + µg
b�j

(1)
)

+

|Sg|∑
j=η+1

µg
s�j

(0) +

|Bg|∑
j=η+1

µg
b�j

(0)

=

η∑
j=1

(
µg
s�j

(1) + µg
b�j

(1)
)

+

|Sg|∑
j=η+1

µg
s�j

(0) +

|Bg|∑
j=η+1

µg
b�j

(0).

(B.10)

Note that η relates to the number of active buyers and sellers that would take
place in the optimal assignment. In other words, η = k(Sg,Bg). Furthermore,
we can define the set of active buyers and the set of active sellers in the optimal
assignment as follows.

Definition 5. We define the set of active sellers of good g in the optimal as-
signment, Sag , as those participants that are sellers of good g and active in the
optimal assignment. More formally,

Sag = {pi|pi ∈ Sg, pi ∈ {s�1 , . . . , s�η }}. (B.11)

Definition 6. We define the set of active buyers for good g in the optimal
assignment, Bag , as those participants that are buyers of good g and active in
the optimal assignment. More formally,

Bag = {pi|pi ∈ Bg, pi ∈ {b�1 , . . . , b�η }}. (B.12)

At this point we have all the tools we need to provide more efficient expres-
sions to assess the message sent from a mediator agent to a participant agent
for both its active and its inactive state. First, in Lemma 4, we provide the
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expression to assess the message from mediator g to the participant agent rep-
resenting a seller s for the inactive state. Then, in Lemma 5, we provide the
expression to assess the message for the active state. Finally, in Lemmas 6 and
7, we provide the expression to assess the messages from mediator g to buyer b
for its the inactive and inactive respectively.

Lemma 4. The message from mediator g to one of its sellers s ∈ Sg for its
inactive state can be assessed as

µsg(0) =

{
w∗g − µgs(1) + max(νgsη+1 ,−νgbη ), if s ∈ Sag
w∗g − µgs(0) otherwise.

(B.13)

Proof. We want to obtain the expression for the message from the mediator
of good g to its seller s for the inactive state, µsg(0), from the expression of the
optimal value for good g, w∗g . In order to do so, we will explore two scenarios, one
in which the seller is part of the optimal assignment and one in which she is not.
For each of the scenarios we will find the differences between the expression for
the optimal value (Equation B.6) and the equation used in standard max-sum to
assess the message from good g to seller s for the inactive state (Equation B.3).
After assessing these differences, proving the lemma will be straightforward.

Assume that s is not part of the optimal assignment (s 6∈ Sag ). The expression
for the optimal value and the expression for the message from good g to seller
s for the inactive state are almost identical. In fact, the only difference is that
the latter lacks the last message received by the mediator for good g from seller
s for the inactive state. Therefore, if s is not part of the optimal assignment,
the message from the mediator for good g to seller s for the inactive state can
be assessed by subtracting µgs(0) from the value of the optimal assignment.

Now, assume that s is part of the optimal assignment (s ∈ Sag ). In this case,
the expression for the optimal value and the expression for the message from
the mediator for good g to seller s will differ in two things. First, similarly as
happened in the previous case, the expression for the optimal value will contain
the last message received from s for the active state (s is active in the optimal
assignment). Second, by forcing s to be inactive, we are removing s from the
optimal assignment, thus breaking the equilibrium constraint defined by mg.
To mend it, we need to either add a new seller or remove a buyer from the
assignment. The best seller we can add to the assignment is be s�η+1. And the
best buyer we can remove is be b�η . The expression follows directly from this
reasoning.

Lemma 5. The message from mediator g to one of its sellers s for its active
state can be assessed as

µsg(1) =

{
w∗g − µgs(1), s ∈ Sag
w∗g − µgs(0) + max(−νgsη , ν

g
bη+1), otherwise.

(B.14)

Proof. Follows the same reasoning as Lemma 4. We want to obtain the expres-
sion for the message from the mediator of good g to its seller s for the active
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state, µsg(1), from the expression of the optimal value for good g, w∗g . In order to
do so, we will explore two scenarios, one in which the seller is part of the optimal
assignment and one in which she is not. For each of the scenarios we will find
the differences between the expression for the optimal value (Equation B.6) and
the equation used in standard max-sum to assess the message from good g to
seller s for the inactive state (Equation B.3). After assessing these differences,
proving the lemma will be straightforward.

Assume that s is part of the optimal assignment (s ∈ Sag ). The expression
for the optimal value and the expression for the message from good g to seller s
for the active state are almost identical. In fact, the only difference is that the
latter lacks the last message received by the mediator for good g from seller s for
the active state. Therefore, if s is part of the optimal assignment, the message
from the mediator for good g to seller s for the active state can be assessed by
subtracting µgs(1) from the value of the optimal assignment.

Now, assume that s is not part of the optimal assignment (s 6∈ Sag ). In this
case, the expression for the optimal value and the expression for the message from
the mediator for good g to seller s will differ in two things. First, similarly as
happened in the previous case, the expression for the optimal value will contain
the last message received from s for the inactive state (s is inactive in the optimal
assignment). Second, by forcing s to be active, we are adding s to the optimal
assignment, thus breaking the equilibrium constraint defined by mg. To mend
it, we need to either add a new buyer or remove a seller from the assignment.
The best buyer we can add to the assignment is be b�η+1. And the best seller we
can remove is be s�η . The expression follows directly from this reasoning.

Lemma 6. The message from mediator g to one of its buyers b ∈ Bg for its
inactive state can be assessed

µbg(0) =

{
w∗g − µ

g
b(1) + max(νgbη+1 ,−νgsη ), if b ∈ Bag

w∗g − µ
g
b(0) otherwise.

(B.15)

Proof. The demonstration is identical to that of Lemma 4 exchanging sellers for
buyers.

Lemma 7. The message from mediator g to one of its buyers b ∈ Bg for its
active state can be assessed as

µbg(1) =

{
w∗g − µ

g
b(1), b ∈ Bag

w∗g − µ
g
b(0) + max(−νgbη , ν

g
sη+1), otherwise.

(B.16)

Proof. The demonstration is identical to that of Lemma 5 exchanging sellers for
buyers.

B.3 Message simplification

In this section we provide simplified equations to assess the single-valued mes-
sages exchanged between mediator and participant agents in chainme in a com-
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putationally efficient manner. Moreover, we prove that the expressions provided
in Chapter 5 are equivalent to standard max-sum’s. We begin by proving in The-
orem 7 that the expression used by chainme to assess the message sent from a
participant agent to a mediator agent (Equation 5.5) is equivalent to standard
max-sum’s. Then, we prove the equivalence of the expressions to assess the
message sent from a mediator agent to a participant agent representing a seller
(Equation 5.6) and to a participant agent representing a buyer (Equation 5.7)
respectively in Theorems 8 and 9.

Theorem 7. The single-valued message from participant agent p to the mediator
for good g (νgp) can be assessed as the addition of all messages received by p
from its neighboring mediators, excluding the message received from g, plus p’s
activation cost. More formally,

νgp = Cp +
∑

g′∈N (p)\{g}

νpg′ . (B.17)

Proof. The simple term fp associated to vertex p is the addition of all the simple
terms that have variable xp in their scope (see Section 2.2.1). In the case of
an activation vertex xp, this simple term corresponds to p’s activation term.
Recall that, in chainme, an activation term takes on the value of participant’s
p activation cost (Cp) for xp = 1 and zero otherwise. Recall from Lemma 1
that the single-valued message from a simple term to a composite term can be
assessed by the following expression:

νfx = fx(1)− fx(0) +
∑

f ′∈N (x)\{f}

νxf ′ . (B.18)

Therefore, using Equation B.18, we have that

νgp = fp(1)− fp(0) +
∑

g′∈N (p)\{g}

νxf ′

= Cp − 0 +
∑

g′∈N (p)\{g}

νpg′

= Cp +
∑

g′∈N (p)\{g}

νpg′ .

Next, in order to provide the efficient expressions for the messages sent from
a mediator to a seller and from a mediator to a buyer, we will make use of the
bid-ask interval (τ−, τ+) from Section 2.1.2. Recall that these values can be
assessed as follows:

τ− = max(−νgsη , ν
g
bη+1) (B.19)

τ+ = min(−νgsη+1 , ν
g
bη ). (B.20)
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Theorem 8. The single-valued message from the mediator of good g to its seller
s can be assessed as:

νsg =

{
τ+, if s ∈ Sag
τ−, otherwise

(B.21)

Proof. We begin by taking the difference between the messages sent by mediator
for good g to a seller s for the inactive and the active state (Equations B.13 and
B.14 from Lemmas 4 and 5). From there, it is just a matter of expanding both
messages and applying the definition of τ+ and τ− given by Equations B.19
and B.20.

νsg = µsg(1)− µsg(0)

=

w
∗
g − µgs(1)−

(
w∗g − µgs(1) + max(νgsη+1 ,−νgbη )

)
, s ∈ Sag

w∗g − µgs(0) + max(−νgsη , ν
g
bη+1)−

(
w∗g − µgs(0)

)
, otherwise.

=

{
−max(νgsη+1 ,−νgbη ), s ∈ Sag
max(−νgsη , ν

g
bη+1), otherwise.

=

{
min(−νgsη+1 , ν

g
bη ), s ∈ Sag

max(−νgsη , ν
g
bη+1), otherwise.

=

{
τ+, if s ∈ Sag
τ−, otherwise

(B.22)

Next, we focus on the messages sent from a mediator to the buyers for the
good she is mediating.

Theorem 9. The single-valued message from the mediator of good g to her buyer
b can be assessed as:

νbg =

{
−τ−, if b ∈ Bag
−τ+, otherwise

(B.23)

Proof. Follows the same reasoning as that applied in Theorem 8. We begin by
taking the difference between the messages sent by mediator for good g to a
buyer b for the inactive and the active state (Equations B.15 and B.16 from
Corollaries 6 and 7). From there, it is just a matter of expanding both messages
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and applying the definition of τ+ and τ− given by Equations B.19 and B.20.

νbg = µbg(1)− µbg(0)

=

w
∗
g − µ

g
b(1)−

(
w∗g − µ

g
b(1) + max(νgbη+1 ,−νgsη )

)
, if b ∈ Bag

w∗g − µ
g
b(0) + max(−νgbη , ν

g
sη+1)−

(
w∗g − µ

g
b(0)

)
, otherwise

=

{
−max(νgbη+1 ,−νgsη ), if b ∈ Bag
max(−νgbη , ν

g
sη+1), otherwise

=

{
−max(νgbη+1 ,−νgsη ), if b ∈ Bag
−min(νgbη ,−ν

g
sη+1), otherwise

=

{
−τ−, if b ∈ Bag
−τ+, otherwise

(B.24)

In this chapter we have provided expressions to assess the max-sum messages
exchanged between chainme‘s vertices in a computationally efficient manner.
Bellow, we provide a summary of these expressions.

νgp = Cp +
∑

g′∈N (p)\{g}

νpg′

νsg =

{
τ+, if s ∈ Sag
τ−, otherwise

νbg =

{
−τ−, if b ∈ Bag
−τ+, otherwise

Notice that, in the worst case, we have reduced the number of operations
required to assess the message from a composite vertex to a simple vertex from
exponential to log-linear (the time required to sort the messages received by the
equilibrium term).





Appendix C

Walsh and Wellman’s
Supply Chain Formation
problems

In this chapter collect the SCs described by Walsh and Wellman in
[Walsh and Wellman, 2003]. These SCs are relatively small (33 participants at
most), therefore they are not good candidates to test the scalability of SCF
methods. However, these SCs have been studied in detail by Winsper et al. in
[Walsh and Wellman, 2003, Winsper and Chli, 2010, Winsper and Chli, 2013]
and represent a good reference point for a more detailed for comparing SCF
methods.

Each figure represents a different SC network. Moreover, boxes repre-
sent participants, whereas circles represent goods at trade. Take for instance
the SC represented in Figure C.1. In this SC there are give participants
(p1, p2, p3, p4, and c2) and three goods at trade (g1, g2, and g3). Furthermore,
arrows represent potential flows of goods. For instance, in Figure C.1, partic-
ipant p1 is willing to sell good g1 to participant p3. Finally, the label bellow
the rightmost participants in each SC represents its activation cost. These costs
are calculated in order to ensure the existence of a solution in which a prof-
itable SC configuration exists in 90% of the instances when the activation costs
for the rest of the participants are drawn from a uniform distribution U(0,1)
[Walsh and Wellman, 2003]. Back in Figure C.1, the activation cost for partici-
pant c2 is set to 1.216.
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Figure C.1: Supply Chain Formation problem SIMPLE.
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Figure C.2: Supply Chain Formation problem BIGGER.
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Figure C.3: Supply Chain Formation problem GREEDY-BAD.
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Figure C.4: Supply Chain Formation problem MANY-CONS.
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Figure C.5: Supply Chain Formation problem TWO-CONS.
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Figure C.6: Supply Chain Formation problem UNBALANCED.
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Rodŕıguez-Aguilar, J. A., and Tambe, M. (2013b). Engineering the decentral-
ized coordination of uavs with limited communication range. In Advances in
Artificial Intelligence, pages 199–208. Springer.

[Pujol-Gonzalez and Penya-Alba, 2014] Pujol-Gonzalez, M. and Penya-Alba, T.
(2014). Binary max-sum. https://binarymaxsum.github.io/.

[Rogers et al., 2011] Rogers, A., Farinelli, A., Stranders, R., and Jennings, N. R.
(2011). Bounded approximate decentralised coordination via the max-sum
algorithm. Artificial Intelligence, 175(2):730–759.

[Sandholm, 2008] Sandholm, T. W. (2008). Expressiveness in Mechanisms and
its Relation to Efficiency: Our Experience from $ 40 Billion of Combinatorial
Multi-attribute Auctions, and Recent Theory.

[Stranders, 2009] Stranders, R. (2009). Coordinating teams of mobile sensors
for monitoring environmental phenomena.

[Tarlow et al., 2010] Tarlow, D., Givoni, I. E., and Zemel, R. S. (2010). Hop-
map: Efficient message passing with high order potentials. In International
Conference on Artificial Intelligence and Statistics, pages 812–819.

[Tarlow et al., 2011] Tarlow, D., Givoni, I. E., Zemel, R. S., and Frey, B. J.
(2011). Graph cuts is a max-product algorithm. In Proceedings of the 27th
Conference on Uncertainty in Artificial Intelligence.

[Vinyals et al., 2010] Vinyals, M., Cerquides, J., Farinelli, A., and Rodŕıguez-
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