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Abstract. Organic food products are highly susceptible to fraud. 
Currently, administrative controls are conducted to detect fraud, 
but having an analytical tool able to verify the organic identity of 
food would be very supportive. The state-of-the-art in food 
authentication relies on fingerprinting approaches that find 
characteristic analytical patterns to unequivocally identify 
authentic products. While wide research on authentication has been 
conducted for other commodities, the authentication of organic 
chicken products is still in its infancy. Challenges include finding 
fingerprints to discriminate organic from conventional products, 
and recruiting sample sets that cover natural variability. Future 
research might be oriented towards developing new authentication 
models for organic feed, eggs and chicken meat, keeping models 
updated and implementing them into regulations. Meanwhile, these 
models might be very supportive to the administrative controls 
directing inspections towards suspicious fraudulent samples.  
   

Introduction 
 

 Food products with high added value are susceptible to fraud. National 
and international regulations underpin mandatory label information, but   
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unfortunately, they are not sufficient to prevent food fraud [1]. Food fraud 

can occur intentionally or not, for instance during product cross-over in 

factories, or mislabeling errors. Products most susceptible to intentional fraud 

are those of high added value, for which consumers are willing to pay a 

higher price, but that are rather similar to other lower cost (and lower quality) 

products. Some examples of food fraud include foods from a particular 

geographical origin (i.e. foods under Protected Designations of Origin), or 

products from special production practices (i.e. organic, sustainable, animal 

welfare friendly products). Fraud committed at the first steps of the food 

production chain (i.e. in crops or feed) implies fraud in the final product (i.e. 

meat, milk, eggs). Therefore, it is important to control and to avoid fraud at 

all steps of the food chain.  

 All stakeholders are interested in fraud prevention. Fraud implies always 

an economic prejudice for the end consumer, but also to the retailer and the 

intermediate consumer/producer when fraud is committed at the first steps of 

the food chain. Moreover, fraud occurrence diminishes the quality of the 

sector and the confidence of consumers in the high quality product, which 

might have as consequence a decrease in the sector competitiveness. 

Accurate labelling is important to support fair trade [1]. Furthermore, fraud 

might become a food safety concern when it is committed using non-

authorized, unknown or uncontrolled substances.  

 An authentic product is one which strictly complies with the declaration 

given by the producer in terms of ingredients, natural components, absence of 

extraneous substances, production technology, geographical and botanical 

origin, production year, and genetic identity [2]. Authenticity in most food 

products is verified by means of administrative controls, certifications and 

inspections. However, this administrative system is rather expensive and slow 

because it requires one entire inspection for each product (including all steps 

in the production chain). This makes that fraudulent products easily scape 

undetected. The state-of-the-art research on food authentication is to find 

analytical tools that are able to distinguish authentic from non-authentic 

products. Such analytical tools would permit to analyze a great number of 

products in a relatively short period of time (depending on the analytical 

method involved) increasing therefore the number of inspected products with 

respect to the administrative system. Despite the evident supportive role of 

food authentication analytical tools to the administrative system, they are not 

currently applied in most food products. In most cases, the reason is that 

research has not been able to find suitable analytical tools to distinguish 

authentic from non-authentic products due to their similarities and natural 

variability of their composition. Moreover, implementing these analytical 

tools into legislation is nowadays a challenge.  
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1. Organic products 
  

 The Food and Agricultural Organization of the United Nations [3] 

defines „organic agriculture‟ as a holistic production management system 

which promotes and enhances agro-ecosystem health, including biodiversity, 

biological cycles, and soil biological activity. It emphasizes the use of 

management practices in preference to the use of off-farm inputs, taking into 

account that regional conditions require locally adapted systems. This is 

accomplished by using, where possible, agronomic, biological, and 

mechanical methods, as opposed to using synthetic materials, to fulfil any 

specific function within the system.  

 Nowadays, there is no common worldwide standard for the production 

and labeling of organic products. This complicates international trade of 

organic products. In Europe, the Council Regulation No 834/2007 [4] set the 

conditions on organic production and labelling of organic products. It was 

implemented by the Commission Regulation 889/2008 [5]. 

 Organic farming and the organic food market are rapidly growing [6,7]. 

Consumers purchase organic foods for different reasons, including animal 

welfare and environmental concerns, believe on an improved human health, 

and perceptions that organic foods are tastier than their conventional 

alternatives [8]. However, a recent literature review on health, nutritional and 

safety characteristics of organic and conventional foods concluded that 

published literature lacks strong evidence that organic foods are significantly 

more nutritious than conventional foods [9]. On the other hand, even if 

consumers believe that organic products taste better than conventional 

products, they failed in discriminating between organic and conventional 

products in a number of studies [6,10]. Furthermore, it has been shown that 

labeling associated with a food can create expectation regarding its sensory 

properties, and ultimately its acceptability [6,10].  

 As mentioned, organic produce tends to retail at a higher price than their 

conventional counterparts. This together with the relatively similar 

composition between organic and conventional products and the increase of 

organic food market makes them susceptible to fraud. Therefore, it is 

important to establish effective control systems to avoid fraud in the organic 

food sector. Currently, these are based on administrative controls and 

inspections, and there is no analytical tool routinely applied. However, some 

authentication models based on analytical determinations have been 

developed for some specific organic products [11].  

 Authentication of organic products is complex, and depends very much 

on the product examined. It is unlikely to find a unique marker that allows a 

general discrimination between organic and conventional farming [12]. 



Alba Tres et al.  102 

Instead, each type of organic product will require the development of a 

specific analytical tool, depending on its composition, characteristics and 

similarities with the corresponding conventional product. For instance, in 

chicken sector, fatty acid profile has been useful to discriminate organic from 

conventional hen feed [13], but it does not necessary imply that fatty acid 

profiling would be useful to authenticate other organic products. 

  
2. Considerations for developing authentication models 
 . 

2.1. Fingerprinting techniques 
 

 The global aim of an authentication model is that it can be used in the 

future for verifying the identity of unknown or suspicious samples. Apart 

from finding a suitable analytical marker to authenticate organic products, the 

statistical approach applied is of importance. Traditional analytical strategies 

for detecting adulterations have relied on the determination of the amount of 

a marker compound or compounds in a material and a subsequent comparison 

of the value(s) obtained with those from authentic products used as references 

(targeted approach). But this approach fails when the natural variability of 

the compounds in the authentic product is so large that reference values 

would need to be set so wide that some adulterations would still go 

unnoticed, which is the case of organic products [12]. Actually, the fewer the 

number of compounds used to authenticate a product, the easier to hide fraud 

by keeping the values of these target compounds in the fraudulent product 

within the limits established for the authentic product.  

 The state-of-the-art strategy in food authentication consists in finding, in 
high dimensional analytical data, (untargeted) patterns for the category to be 
authenticated that are different from those in other lower-quality categories. 
The pattern of unknown or doubtful samples might then be compared with 
that of the authentic one (which is considered the fingerprint of the authentic 
product) to verify its category. Indeed, these patterns might be built using raw 
analytical signals directly obtained from measuring equipment (i.e. 
chromatograms, Near Infrared –NIR- data). This fingerprinting approach has 
as advantage that it does not require to identify and quantify the compounds 
responsible for the discrimination (untargeted approach) to build the 
authentication model, although it is recommended to do so to be able to 
biologically understand why models are successful. The untargeted approach 
saves time invested in identifying and quantifying compounds, permits a 
faster application of the model, and allows dealing with any raw analytical 
data, even when the “shape” of this raw data complicates the identification 
and quantification of compounds (as it happens for instance with NIR data). 
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Also, the use of the raw analytical signals might imply an improved 
exploitation of the information included in the data. For instance, in 
chromatographic data, once peak integration and identification has been 
conducted a great part of the raw data is not further considered (all not 
integrated signal); however, these non-considered data might include very 
small peaks or differences in peak shapes that might contain very useful 
information on the identity of the samples. Due to the highly dimensional 
data collected in the fingerprinting approach, the application of chemometrics 
to build and validate authentication models is necessary. An intermediate 
approach between fingerprinting and the targeted approach is the application 
of selective fingerprinting in which authentication models are based on a 
great number of markers, half way between using only one or two single 
markers and the raw analytical data. This approach still requires the 
identification and quantification of the marker compounds, but it provides a 
more reliable and robust authentication tool than the targeted approach. 
  

2.2. Sample set 
 

 Classification models need to correctly identify the samples used to 

develop the model, but also samples in the future during its routine 

application. Therefore, several aspects need to be considered during model 

development to test and assure model‟s usefulness in the future. Here we will 

address those that might be particularly relevant in developing models for 

authenticating organic chicken products; more information in this respect 

might be encountered in previous literature [14,15]. 

 As for the authentication of other commodities, a proper sample set is 
essential to develop the model because its future applicability will depend on 

the number and type of samples used in model development. At least two 
sample sets are needed: one to build and optimize the model (training set) and 
a second one to externally validate the model by using it to predict the 
identity of samples in this new set (validation set) [14]. The authenticity of 
samples in both sets needs to be assured. Sample origin and identity (organic 
or conventional) need to be known. In this respect, it is important to remind 

that samples bought in supermarkets and stores cannot be considered 
authentic. Also, samples from experimental studies are neither valid as 
authentication samples because their production is so experimentally 
controlled that it might not reflect the real farming practices. Therefore, even 
though experimental studies and market surveys might provide some insights 
on possible authentication markers, they should not be considered valid as 

authentication studies. Unfortunately, most of the published studies on 
organic chicken products are market surveys [16–19] and experimental 
studies [20–22] rather than authentication studies. 
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Table 1. Possible sources of variability to take into consideration for developing 

authentication models for organic chicken products  

 

Source Examples of variability 

Regulations Changes in regulations within a country or region 

Product categories Categories included in the model (organic, free range, barn, cage,  
specialty eggs…) 

Animal Breed, age 

Feed ingredients Feed formulation (Authorized feed ingredients, price, availability) 

 Natural variability of feed ingredients  

Season  Differences in climate conditions between seasons 

 Grass availability and composition 

Geographical origin Differences in regulations between countries or regions 

 Differences in climate, environment, soil…. between regions 

 Farming practices in each location 

 
 The number of samples in the training and validation sets will mostly 

depend on the sources of variability included in the model. Consequently, this 

will condition the future applicability of the model because it can only be 

applied to authenticate samples belonging to the same sources of variability 

considered in the training and validation set. Therefore it is interesting that 

both sets cover as much natural variability as possible. Regarding organic 

chicken products, several sources of variability might be taken into 

consideration (Table 1). One of the first sources of variability is the changes 

in regulations regarding the production of (organic and conventional) chicken 

products, because they might imply a change the composition of the end 

products. Therefore, models developed on (feed, meat or egg) samples 

produced according to past regulations need to be (at least) validated with 

samples produced according to the present regulation.  

 Samples need to cover natural variation within the considered categories 

(Table 1). In organic chicken products, several subcategories exist for 

conventional products (cage, barn and free range). Therefore, all of them 

need to be represented in the set. If all categories are not included, models 

should only be used to verify the identity of samples belonging to the 
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included categories. For instance, van Ruth et al. [12] and Tres and van Ruth 

[23] did not include eggs produced by caged hens in their set. Therefore, in 

these studies, it would be necessary to validate and/or rebuild the models with 

cage eggs before using them to identify this category.  

 Another aspect to take into account is sample origin (Table 1). Models 

developed on sample sets collected in a confined geographical origin should 

only be used to authenticate samples from this particular origin [13]. Before 

being broadly used to identify samples from other origins, model 

performance needs to be validated using it to predict the identity of authentic 

samples from other origins. Sample origin might have an influence on certain 

composition parameters that depend for instance on the soil, latitude, altitude, 

environmental and climatic conditions. Differences in the regulations and 

farming practices within the organic chicken sector between geographical 

origins might also have an influence on some parameters. An example of 

geographical validation is the egg authentication study leaded by Van Ruth 

[12,24]. First, an authentication model to verify the organic identity of Dutch 

eggs was developed based on egg carotenoid profiling, and it was validated 

by authenticating eggs produced in New Zealand [12]. Later on, the model 

performance in authenticating eggs produced by other countries was 

evaluated (Austria, Belgium, Germany, Greece, Italy and Portugal), including 

countries outside Europe (Canada, Israel) [24]. The percentage of correctly 

classified organic eggs was above 90% for all countries, except for Israel.  

 Feed ingredient composition might also become a source of variability. 

As for any other natural product, natural variability makes that the 

composition of feed ingredients might change within and between years, 

between geographical origins, farming practices and feed ingredient 

producers. Moreover, feed formulations are designed depending on the 

regulations, and availability and price of ingredients; significant changes in 

any of these aspects might imply a change in the formulation that might 

affect meat and egg composition. Therefore, it is highly advisable that feed, 

meat and egg sample sets include samples produced in different seasons and 

years, as well as samples from animals fed with feeds from various 

producers.  For instance in Tres et al., [13,25] samples from two consecutive 

years and various feed producers were included. It would also be important to 

periodically validate the models by testing their performance in identifying 

samples from different production years. Published studies on the 

authentication of organic chicken products are so recent that no yearly effects 

have been detected so far; however, it is possible that in the future this aspect 

might become relevant, and thus, models will need to be updated.  
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 Seasonal influence on egg composition has been described in various 

experimental studies [21,22,26], especially for eggs laid by outdoor reared 

hens. The content of certain grass components, such as tocopherols and 

carotenoids, varies depending on the season [21,22,26]. This, together with 

grass availability led to differences in egg composition between seasons. 

Therefore, it is highly recommended that models based on these parameters 

are developed on sets that include samples from all seasons.  

 One of the advantages of fingerprinting models is that even if they are 

already developed, it is possible to easily test their performance in identifying 

samples from new origins, years, seasons… If this leads to a substantial 

reduction of model‟s performance, then it would be advisable to incorporate 

the new samples in model‟s data base, rebuild the model and validate it, so 

that the new source of variability is considered in model development. If this 

still does not provide a successful model, it might be necessary to build one 

specific model for each independent source of variability (i.e. one model per 

origin, per season…). Both approaches are correct, but model‟s robustness is 

improved if one single model could be used to authenticate samples from any 

source of variability.  

  
3. State-of-the-art in the analytical authentication of organic 

chicken products 
 

 As for other organic products, the production of organic eggs and meat 

has increased in the lasts years. Since they are products with added-value, 

they are highly susceptible to fraud [11]. However, research on developing 

analytical techniques to authenticate organic chicken products has only 

recently started, and only a few analytical techniques have been developed in 

this respect. In most cases, these techniques have been selected because 

comparative experimental (or market survey studies) revealed potential 

differences in the content of some compounds between organic and 

conventional chicken products. However, it is important to have in mind, that 

comparative experimental studies are not useful as authenticating studies but 

they might be a starting hypothesis to build models to discriminate various 

chicken product categories. In this section, we will cover the published 

authentication studies on chicken products. Moreover, we will summarize 

some of the market surveys and experimental studies on the effects of the 

rearing system on meat and egg composition. 

 In Europe, the production of organic chicken products requires that 

animals are fed with organic feed (that is to say that at least 95% of its dry 

matter should come from ingredients of organic farming) [5]. Moreover, for 
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the production of organic eggs hens should have access to an outdoor area      

(at least 4 m
2
/hen), and they cannot be kept in cages when they are indoors              

(6 hens/m
2
). Fraud at the feed level would imply a fraud in the end product, 

even though all the other conditions required for the production of organic 

products (such as animal housing) are respected. Therefore, the control of the 

organic production of chicken products should cover all stages of the 

production chain, from feed to the end product [13].  

 Within conventional chicken products, several categories exist in the 

European market, varying in price, quality and consumer demand. The 

European Council Directive 1999/74/CE [27] set minimum standards for the 

protection of laying hens. Conventional eggs include eggs from caged hens, 

barn and free range eggs [28]. For the production of free range eggs, hens 

should also have daytime access outdoors (min 4 m
2
/hen), and when being 

indoors, they cannot be kept in cages (9 hens /m
2
). Thus, as organic hens, free 

range hens can forage in soils, picking up grubs, beetles, worms, grass and 

seeds; they have more exposure to sunlight, and higher chances of physical 

activity. Hens laying barn and cage eggs do not have access outdoors, but in 

the case of barn hens, they cannot be kept in cages [28].  

 
3.1. Organic feed authentication 
 

 Studies on organic feed authentication are scarce. In several experimental 

studies in which the composition of organic and conventional eggs or chicken 

meat were compared feeds were also analyzed [20,21,29]. However, in most 

of these studies, feeds were experimental, specifically designed for a 

particular study, and not real market samples. In fact, in most cases the same 

ingredient composition was used, only differing in the organic or 

conventional source of each ingredient. However in the real market, strict 

regulations exist for the composition of organic feed, while a broader range 

of feed ingredients are authorized for conventional feed. This, together with 

the price and availability of ingredients, causes that ingredient composition of 

organic feed is usually different than that of conventional feed [13]. 

Therefore, these differences in feed formulas need to be covered by the 

authentication model so that it reflects real farming practices.   

 As far as we are concerned, only a study on the development of two 

analytical tools to authenticate organic chicken feed exists on published 

scientific literature [13,25]. The study was leaded by RIKILT – Wageningen 

University and Research Centre (The Netherlands), within the Cluster of 

Authenticity and Nutrients, a research group worldwide known as expert on 

authentication. Two models were developed to authenticate organic feeds 

used for laying hens in the Netherlands. One of the models was based on feed 
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fatty acid composition assessed by gas chromatography [13], and the other 

one was based on feed NIR spectra [25]. A total of 96 organic and 

conventional feed samples were collected in the Netherlands during two 

consecutive years. First, the fatty acid model was developed following a 

selective fingerprinting approach on 30 identified chromatographic peaks, 

combined with a PLS-DA algorithm (after data log10 transformation and 

scaling to unit variance). The classification model (Figure 1) was successful. 

It correctly identified all organic feed samples, and almost all conventional 

feed samples (Table 2). 

 

 
 

Figure 1. First two dimensions of PLS–DA on the fatty acid profiling data of organic 

and conventional feeds: (A) scores and (B) loadings plot (data preprocessing: log10 

transformation and scaling to unit variance; OSC = 1). (Reprinted with permission 

from [13]. Copyright © 2011 American Chemical Society). 
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 When examining PLS-DA scores and loadings plots (Figure 1) it was 

revealed that several fatty acids were responsible for the discrimination of 

organic and conventional feed. Fatty acids such as C24:0, C22:0 and C18:2 

n-6 and C18:3 n-3 were associated with the organic feed class. Fatty acids 

such as C12:0, C14:0, C16:1 n-9 and C16:1 n-7 were associated with the 

conventional feed class (Figure 1). These differences in fatty acid 

composition were attributed to differences in the ingredient composition 

between organic and conventional feed [13].  

 The determination of the fatty acid composition requires sample 

grinding, extraction of the feed lipid fraction by using solvents, and the 

determination (and quantification) of fatty acid methyl esters by gas 

chromatography. Therefore, the drawbacks of this method are the use of 

solvents and the costs related to the reagent expenses, gas chromatography 

and trained personnel. Also, the procedure, although quite fast, does not 

allow an immediate answer on the identity of the feed. These drawbacks led 

to search for alternative more rapid techniques that would provide a faster 

answer on the authenticity of a feed sample [25].  

 Near Infrared Spectroscopy (NIRS) is a nondestructive, easily applicable, 

and fast technique that requires minimal or no sample preparation and that 

permits the response of certain molecular bonds (such as O-H, N-H or C-H) 

to NIR radiation. NIRS generates a spectrum that may be characteristic of a 

sample and may be considered its “fingerprint” [30]. Its use in the feed sector 

is already quite commonly implemented, even in form of on line or in situ 

applications [31,32]. Due to these characteristics, Tres et al., [25] decided to 

evaluate it as a rapid authentication tool to verify the organic identity of feed. 

Classification models were developed on the same samples used in the fatty 

acid model [13]. PLS-DA classification models were successful in correctly 

identifying organic and conventional feed samples (Table 2). Apart from the 

NIR regions related to fat content, fatty acids and their unsaturation, regions 

related to the N-H stretch were also revealed as important in the NIR model 

 
Table 2. External validation of authentication models to verify the organic identity of 

laying hen feed 

 

Model     Approach 

      Organic 

   (% correctly 

  identified samples) 

 Conventional 

  (% correctly 

identified samples) 

 Reference 

Fatty acid composition  Selective fingerprinting           100%          90%      [13] 

NIR     Fingerprinting             91%          100%      [25] 
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[25]. This implied, that apart from fatty acid composition [13], the protein 

content and / or composition might differ between organic and conventional 

feeds [25].  

 Taking into consideration the results on model validation and the 

characteristics of both techniques, the model based on NIRS data was 

suggested as a screening model, and the model based on the fatty acid 

composition data as a confirmation model [25] (Figure 2). This combined 

approach permits to apply a fast technique that will correctly identify 

conventional feed. If some supposedly organic feed samples are identified 

as conventional by the model, their fatty acid composition will be analyzed 

and submitted to the fatty acid model. Its answer will determine if it is a 

real organic feed (that was revealed as false negative by the NIR model), or 

if it is a fraudulent feed (when the fatty acid model confirms it as 

conventional), reducing time, costs and environmental impact of solvent 

use [25].  

 

 
 

Figure 2. Decision tree combining NIRS and fatty acid models as screening and 

confirmation tools to verify the organic identity of a laying hen feed sample. 
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3.2. Organic egg authentication 
 

 While there have been numerous investigations on supplementation of 

layer‟s diets to enrich eggs in n-3 fatty acids, vitamins A and E and other 

lipid-soluble nutrients; there has been little work investigating the effects of 

different production systems on these nutrients [33] and even less work has 

been conducted with authentication purposes. As mentioned in section 2, 

markers revealed as different between organic and conventional products by 

comparative experimental studies and market surveys might be the starting 

hypothesis to build authentication models. For instance, Rogers [34] claimed 

that δ
15

N values are a promising indicator to differentiate free range and 

organic eggs from cage and barn eggs; however, a higher number of samples 

would be recommended to confirm these results (only 18 samples were 

collected, only 4 of them being organic eggs and 2 out of these were 

considered outliers). On the other hand, δ
13

C values did not lead to any 

significant separation among egg farming regimens [34].  

 Higher Se and lower P and Zn contents in organic eggs than in cage eggs 

have been reported [35,36] even though feeds had similar Se and Zn contents. 

Differences between farm locations, access to soil and grass and higher 

physical activity of organic hens would be related with these differences. 

However, these were comparative studies, for which especial feed 

formulations were designed. Thus, more studies comparing trace element 

content between eggs produced by hens fed commercial (conventional and 

organic) feed, and from various farm locations would be needed to estimate 

the potential use of trace elements as authentication tools. 

 Another parameter that showed variations between egg production 

systems in experimental studies is the content [21,22,26] and composition of 

tocopherols [20]. Variations between free-range and indoor kept hens were 

found, especially when available pasture was large. As far as we are 

concerned, no egg authentication studies have relied on these compounds, but 

it seems that their utility as authentication tools would mostly depend on the 

season and on the amount of available grass [21,22,26].     
 Variations in the fatty acid composition between different egg production 

systems have been revealed by experimental studies and market surveys 

[16,18,20,22]. But the number and type of fatty acids varying among rearing 

systems, and the magnitude of the differences depended on several study 

design parameters such as feed composition and the number and origin of egg 

samples. Moreover, laying hens diets on free-range conditions include grass, 

which has a relative high level of n-3 polyunsaturated fatty acids, tocopherols 

and some other non-saponifiable lipid components [21,22]. This has been 

attributed as one of the reasons leading to higher n-3 polyunsaturated fatty 
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acids in eggs laid by free-range and organic hens [22], especially when the 

available grass area was larger than the minimum required by current 

regulations [21,26]. However, it needs to be taken into account that grass 

composition varies between seasons, and therefore its influence on the fatty 

acid and tocopherol composition also depends on the season [21,26].  

 Even if the differences on the fatty acid composition between egg 

categories were relatively small, an authentication model to discriminate 

organic vs conventional eggs was developed on the egg fatty acid profile 

[23]. For this study, 48 authentic egg samples including organic, free-range 

and barn eggs were collected directly from farms in the Netherlands. The 

authentication model was based on a selective fingerprinting on the fatty acid 

composition data and a PLS-DA algorithm. Although results were only 

internally validated (by leave 10%-out cross-validation), they were quite 

satisfactory with the 92% of the organic and 87% of the conventional eggs 

correctly classified. Even if results were not directly comparable with those 

from the feed authentication study [13] because egg and feed samples from 

both studies were not related, the fatty acid approach as authentication tool 

was better for feed than for egg authentication. Reasons behind this fact 

might include, among others, the influence of hen metabolism on egg fatty 

acid composition [23]. Still the main fatty acids discriminating organic from 

conventional eggs were similar: polyunsaturated fatty acids were important 

for the discrimination of organic eggs, and C16:0 for conventional eggs. 

Results are partially contradictory with those of some market surveys [16–18] 

that reported higher contents of palmitic acid in organic eggs. This fact might 

be explained by differences in the study designs, number of recruited 

samples, and differences between the origin of samples and thus the farming 

practices and feed formulations. Regarding conventional egg categories, no 

differences were encountered between barn and free range eggs for the fatty 

acid composition [23], although higher contents of n-3 polyunsaturated fatty 

acids had been revealed by comparative experimental studies comparing eggs 

laid by indoors and outdoors reared hens [22,26]. Real farming practices, 

seasonal effects (especially variations on the amount of available grass and its 

composition) and other natural variability might have masked these variations 

in the authentication model.  

 In organic egg production, hen feed cannot be supplemented with 

carotenoids [4], while it is permitted in conventional eggs. Therefore, in 

organic egg production, carotenoids need to be originated from the organic 

feed components such as maize, and from other sources such as grass, 

vegetation, insects, worms, and additional organic matter from the soil. 

Differences in the egg carotenoid profile between different rearing systems 

were revealed in various experimental studies [16,21,37]. In particular, lutein 
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and zeaxanthin were the predominant xantophylls in organic egg yolks, 

whereas synthetic carotenoids such as β-apo-8‟-carotenoic acid ethyl esther 

or citranaxanthin occurred in higher amounts in non-organic eggs [37]. 

Moreover, carotenoid content was higher in eggs laid by hens pasturing in 

large grass areas, especially in spring and autumn, revealing a seasonal effect 

depending on the carotenoid content of grass [21,26].  

 Later, van Ruth et al., [12] developed an authentication model to verify 

the organic identity of eggs through a multivariate approach on the carotenoid 

profile determined by HPLC-Diode array detector. Their classification model 

was based on a K-Nearest Neighbors (KNN) algorithm, and was developed 

with a first set of eggs, including authentic organic, free-range and barn              

eggs (but not eggs from caged hens), and validated with a second set of 

(market) eggs. Using the carotenoid profile, they discriminated organic from 

conventional eggs, lutein/zeaxanthin being the dominating carotenoids in the 

organic egg pattern. Interestingly, they encountered some misclassified eggs 

which belonged to conventional farms in transition to organic practices, but 

which were not still authorized for producing organic eggs. However, they 

could not discriminate free-range from barn eggs, although in some 

experimental studies, carotenoids were higher (in spring and autumn) in eggs 

laid by pasturing hens (10 m
2
/hen) [21,26]. Later on, the model was validated 

and expanded to the authentication of eggs produced in other countries 

(Austria, Belgium, Germany, Greece, Italy and Portugal), including countries 

outside Europe (Canada, Israel) [24]. The percentage of correctly classified 

organic eggs was above 90% for all countries, except for Israel. 
 

3.3. Chicken meat authentication 
  

 As far as we are concerned, while a few studies on organic feed and egg 

authentication have already been published, no studies on organic chicken 

meat authentication have been published in scientific journals. Instead, 

several market surveys [19,38] and experimental studies [39] have been 

conducted. A study comparing meat composition of chickens reared indoors 

or outdoors (receiving the same feed) showed that the contents of Fe (total 

and haem iron) and saturated and n-3 polyunsaturated fatty acids were higher 

in meat from outdoor reared animals [39]. Unfortunately, in this study, free-

range and organic rearing systems were not compared. Chen et al. [40] found 

that long periods of outdoor access lead to thigh muscles richer in 

polyunsaturated fatty acids, and lower in several monounsaturated fatty acids. 

These findings are consistent with those of market surveys [38]. On the 

contrary, a market study conducted by Jahan et al., [41] led to different 

results on organic chicken meat fatty acid composition; but it needs to be 
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taken into account that the number of samples included in this study was very 

low and samples came from completely different origins.  

 Another strategy to find suitable markers to develop authentication 

models for organic chicken meat could be to look into promising markers for 

the authentication of organic meats from other species. Stable ratio mass 

spectrometry of carbon, nitrogen, and sulphur isotopes has been successful in 

differentiating organic and conventional Irish beef [1,11]. These differences 

are partly due to differences in the feed intake (grass or concentrate). 

However, the higher content of δ
15

N in conventional beef meat compared 

with organic meat might be a result of the mineral fertilizers applied to the 

soil where conventionally grown animals are fed [1,11].  

   
4. Challenges and future perspectives 
 

 One of the most important challenges in food authentication is to keep 

models updated and ready to be applied when needed. This requires that their 

performance is tested periodically with new sets of authentic samples. They 

might include similar samples to those in the training set, but also samples 

from other years, seasons or geographical origins, not only to keep models 

updated but also to expand their possible applicability. Efforts in this respect 

have already been done for the egg authentication models by the research 

group headed by Dr van Ruth [24] when they expanded their model to other 

countries. Updating and validating the models are essential so that models 

can be routinely used to detect fraudulent samples.  

 The ultimate aim of authentication models would be to incorporate them 

into regulations; however, more research is necessary before this can be 

achieved. For accomplishing this, great efforts would need to be done with 

regards to model inter-laboratory validation, among others. Moreover, it 

would be necessary to build and share a common data base compiling the 

analytical data obtained from authentic samples. Sharing this data base would 

permit that models can be built on the same data by various laboratories and 

would contribute to incorporate more natural variability into the models. 

Moreover, since it is recommendable to build models on the largest number 

of samples as possible [14], the availability of such a database would be an 

efficient tool and improved use of resources. Actually, this has already been 

suggested for other commodities such as olive oil [42], but it does not exist 

yet, although much more research has been conducted in the authentication of 

olive oil than in organic products.  

 Meanwhile authentication models might be very supportive to the current 

administrative controls and inspections. If analysis cost is not extremely high, 
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a great number of samples could be collected and analyzed. Only those 

showing suspicious values would then be submitted to an inspection 

procedure, focusing the inspection efforts and resources only to suspicious 

samples. In this respect, fast, easy and cost-effective analytical methods are 

desirable. In this line, a combination of a rapid screening model based on 

NIRS, and a confirmation model based on fatty acid profiling has been 

suggested as an authentication strategy for organic laying hen feed [25].  

 Apart from this, and according to what has been described in previous 

sections, it is evident that there is a lack of authentication models to verify 

the organic identity of feeds and eggs, and especially for chicken meat. 

Furthermore, the published authentication models have been mainly 

focused in discriminating organic from conventional products. However, 

the various conventional categories for chicken products also vary in price, 

quality and consumer demand (especially because of consumer‟s concerns 

on animal welfare). Therefore, it would be interesting to find suitable 

markers and models able to discriminate these categories. In some studies, 

differences between the composition of eggs laid by caged hens and other 

egg categories have been described [16,18]. Others, have found differences 

in composition between products from free range and indoor rearing 

[22,26,34]. These studies might become the starting point of future 

authentication models. 
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