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Abstract 8 

With the aim of better understanding avalanche risk in the Catalan Pyrenees, the present work focuses on the analysis of 9 

major (or destructive) avalanches. For such purpose major avalanche cartography was made by an exhaustive 10 

photointerpretation of several flights, winter and summer field surveys and inquiries to local population. Major avalanche 11 

events were used to quantify the magnitude of the episodes during which they occurred, and a Major Avalanche Activity 12 

Magnitude Index (MAAMI) was developed. This index is based on the number of major avalanches registered and its 13 

estimated frequency in a given time period, hence it quantifies the magnitude of a major avalanche episode or winter. 14 

Furthermore, it permits a comparison of the magnitude between major avalanche episodes in a given mountain range, or 15 

between mountain ranges, and for a long enough period, it should allow analysis of temporal trends. Major episodes from 16 

winter 1995/96 to 2013/14 were reconstructed. Their magnitude, frequency and extent were also assessed. During the last 17 

19 winters, the episodes of January 22-23 and February 6-8 in 1996 were those with highest MAAMI values, followed by 18 

January 30-31, 2003, January 29, 2006, and January 24-25, 2014. To analyze the whole twentieth century, a simplified 19 

MAAMI was defined in order to attain the same purpose with a less complete dataset. With less accuracy, the same 20 

parameters were obtained at winter time resolution throughout the twentieth century. Again, 1995/96 winter had the highest 21 

MAAMI value followed by 1971/72, 1974/75 and 1937/38 winter seasons. The analysis of the spatial extent of the different 22 

episodes allowed refining the demarcation of nivological regions, and improving our knowledge about the atmospheric 23 

patterns that cause major episodes and their climatic interpretation. In some cases, the importance of considering a major 24 

avalanche episode as the result of a previous preparatory period, followed by a triggering one was revealed. 25 
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1 Introduction 28 

At mountain areas that receive frequent large storms, the 10-year and the 100-year avalanche in a particular path may be 29 

similar in size. In contrast, in some generally low-snowfall areas, the 100-year avalanche may be many times larger than 30 

the 10-year avalanche. The historical record or the damage to vegetation provide good evidence of avalanche potential in 31 

the heavy-snowfall locations, while the low-snowfall locations require extensive applications of indirect techniques to 32 

determine the size of the long-return-period event (Mears, 1992). 33 

The Catalan Pyrenees, especially in its southern side present a low and irregular snowfall regime (García et al., 2007). In 34 

this region, migration of people from mountainous areas to cities during the sixties and seventies of the last century caused 35 

a major human dispersal and thus difficulty in finding historical memory. These factors make that avalanche risk, due to 36 

low frequency avalanches, still presents many unknowns despite being significant. In any case, either through surveys to 37 

the Pyrenean population, or through searching in historical archives, nowadays we know that in Catalonia there are at least 38 

11 villages that have historically been affected by avalanches (Rodés and Miranda, 2009; Avalanche Database of Catalonia, 39 

BDAC), some of which almost completely destroyed (Gessa, 1444; Tavascan-Plau, 1604; Àrreu, 1803), and numerous 40 

isolated houses, affected or destroyed. Furthermore there are frequent episodes of lower intensity affecting mountain 41 

infrastructures (e.g. roads, ski resorts, power lines) every winter. This high frequency activity is what causes victims in 42 

winter sports (about 1.5 fatalities per average winter in the Pyrenees of Catalonia, Martinez and Oller, 2004). 43 

Knowing how often major episodes occur, their intensity, and their tendency through time, in relation to climate variability, 44 

are basic questions to better understand hazard and to manage avalanche risk in this mountain range. 45 

Different works have dealt with the characterization of major avalanche episodes in the Pyrenees, from different points of 46 

view. Esteban et al. (2005) relate the avalanche activity to the snowfall regime and characterize the different synoptic 47 

circulation patterns that can generate fresh snow depths susceptible to produce avalanches from a set of 15 years. Garcia-48 

Sellés et al. (2007 and 2009) proposed the study from the analysis of atmospheric circulation associated with the 49 

occurrence of major avalanches documented through monitoring and surveillance. From episodes identified during the past 50 

40 years, they determined and classified which are the atmospheric configurations that generated them, and they obtained  51 

the probability of occurrence for each one of the regions established for the regional avalanche forecasting. Finally, Muntán 52 

et al. (2004 and 2009) identified new events from dendrochronological analysis of tree rings from trees affected by 53 

avalanches, from which they reconstructed major episodes and determined their triggering atmospheric and snowpack 54 

conditions over the past 40 years. They also identified probable events up to 100 years ago. 55 
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Extensive work has been performed in the French Alps (Eckert et al., 2010b; 2013) and the French Pyrenees (Eckert et al., 56 

2007; 2010a; 2013; Eckert, 2009), with observational avalanche data obtained from the EPA (Enquête Permanente sur les 57 

Avalanches). Avalanche events from around 3900 paths were systematically recorded since the beginning of the 20th 58 

century. The main goal of this work was to analyze avalanche activity throughout time and space in order to determine 59 

trends or changes, and its possible relation with climate change, from the use of advanced statistical procedures. Two 60 

periods showing different trends were determined during the last 60 years with a change point around 1978 and a retreat of 61 

avalanche runouts over the last 61 winters for high magnitude events, although the probability of a high magnitude event 62 

has remained constant, suggesting that climate change has recently had little impact on the avalanching rhythm in France. 63 

Studies in other mountain ranges based on avalanche records as quantifiers of the magnitude of avalanche episodes, do 64 

establish indexes (e.g. Avalanche Activity Index, AAI) to quantify the daily degree of activity or the degree of activity for a 65 

greater period of time with variable accuracy depending on the available data (Schweizer et al., 1998; Laternser and 66 

Schneebeli, 2002; Haegeli and McClung, 2003; Eckert et al., 2010a). Others (Germain et al., 2009), used similar indexes to 67 

quantify avalanche activity identified from dendrochronological analysis. In all these works the methodology and scale of 68 

work is adapted to the completeness and quality of the database used in each case. 69 

In the present work, we analyzed individual major avalanches to quantify the magnitude and frequency of major avalanche 70 

episodes in the Catalan Pyrenees. We considered a "major avalanche" (MA) as the avalanche which extent exceeds the 71 

reach of the usual (frequent) avalanches, causing damage in case there is forest or infrastructures in the vicinity (Schaerer, 72 

1986). These avalanches have been described as destructive by Schneebeli et al (1997) and specifically catastrophic when 73 

they affect villages and cause damage to property (buildings, roads and other infrastructures; Höller, 2009). We observed 74 

that these avalanches typically have a return period over 10 years. We considered a "major avalanche episode" (MAE) as 75 

the period in which the release of one or more MA occurs due to snowpack instability generally caused by a severe storm 76 

with high snowfalls accompanied by substantial drifting snow, but also temperature variations causing snowmelt and or 77 

fluctuations of the freezing level, designated as “avalanche cycle” by other authors (Höller, 2009; Eckert et al., 2011). It 78 

can last from a few hours to several days. It’s relation to climatic factors makes its study highly valuable to improve 79 

avalanche forecasting (Birkeland et al., 2001; García et al., 2009; Eckert et al., 2011). 80 

We worked with MA because they cause damage and therefore risk, and because this fact allows collecting a complete data 81 

set of avalanches obtained from a threshold defined by the observed damage, as applied by Fitzharris (1980). 82 

The objectives of this paper are: (i) to reconstruct major avalanche episodes occurred over the Pyrenees of Catalonia during 83 

the twentieth and early twenty-first century, (ii) to determine their magnitude, (iii) frequency, and (iv) spatial extent. 84 
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The rest of the paper is organized as follows. Section 2 presents the main particularities to consider in relation to the 85 

avalanching process and climatic behavior of the study area. Section 3 describes the data set used for this work and how it 86 

was treated. Section 4 analyses MAE from time and space point of views considering two temporal periods according to 87 

data accuracy. Section 5 discusses the obtained results while section 6 summarizes the main outcomes of the work. 88 

2 Study area 89 

The study area comprises the Catalan Pyrenees, or southeastern part of the Pyrenean range (Figure 1), an area of 5000 km2. 90 

The highest peaks just exceed 3000 m a.s.l. Where the terrain is prone to avalanche release, avalanches can trigger from 91 

above 1400 m a.s.l., and they can reach elevations as low as 600 m a.s.l. (Oller et al., 2006). In this area, the Cartographic 92 

and Geological Institute of Catalonia (ICGC) carries out an observation and surveillance survey from which avalanche data 93 

is added in the Avalanche Database of Catalonia (BDAC, Oller et al., 2005). 94 

The forest, widespread all across the range, plays a key role in the detection of MA. The timberline oscillates between 2100 95 

and 2500 m a.s.l. (Carreras et al., 1996). Above these elevations, the density of trees decreases dramatically to a point 96 

(treeline) from which only some individuals develop as a bush. Trees act as sensors that record any disturbance or impact 97 

affecting their growth. The effects remain for years and can be used to map avalanches even after the disappearance of the 98 

avalanche deposit. Therefore, their mapping can be more systematic than the mapping of avalanches that have not caused 99 

destruction to forest. Avalanches that affect human settlements and infrastructures were also considered, but vulnerable 100 

elements are distributed irregularly and sometimes they are variable in time, and this fact makes the analysis more complex. 101 

High-frequency avalanches generally occur above the timberline. Currently it is not possible to get a systematic record of 102 

such avalanches, as observations are made mainly from fixed points covering small areas of the territory, or they are 103 

registered selectively in case of accident. They are impossible or very difficult to detect after the thaw if they don’t produce 104 

any further evidence. In addition, even low-frequency avalanches releasing and arriving above the timberline are very 105 

difficult to detect after the thaw. For that reason, these areas, glacial cirques and hanging valleys above 2000 m, were 106 

considered areas without information, or blind areas (shaded in green in Figure 1). In these areas it was not possible to 107 

obtain an exhaustive inventory of major avalanches. 108 
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 109 

Figure 1. Location of the Catalan Pyrenees. Nivological regions are demarcated by violet boundaries: AR (Aran-Franja 110 

nord de la Pallaresa), RF (Ribagorçana-Vall Fosca), PL (Pallaresa), PP (Perafita-Puigpedrós), CM (Vessant nord del Cadí-111 

Moixeró), PR (Prepirineu), TF (Ter-Freser). Areas susceptible to avalanche activity (shaded in red). Areas without MA 112 

information (shaded in green). Climate varieties identified by García et al., 2007.  113 

In 1990 the study area was divided into 8 nivological regions (NR) for operational forecasting (García et al., 1996). In 1994 114 

these regions were reduced to 7 (Figure 1). This division was based on climate characteristics, snowpack evolution and 115 

avalanche activity (García-Sellés et al., 2007) for a better characterization of the snow conditions and for a better 116 

communication of the avalanche forecasting bulletin (BPA). Hence, it was the empirical result of 20 years of avalanche 117 

forecasting. It is not a climatic classification in a strict sense, because at present meteorological data series are not long 118 

enough to support it (García-Sellés et al., 2007). These regions are Aran-Franja nord de la Pallaresa (AR), Ribagorçana-119 

Vall Fosca (RF), Pallaresa (PL), Perafita-Puigpedrós (PP), Vessant nord del Cadí-Moixeró (CM), Prepirineu (PR), Ter-120 

Freser (TF). All the regions drain their waters towards the Mediterranean sea with the exception of the western half of AR 121 

which drains towards the Atlantic ocean.  122 

Three climate varieties were defined (García-Sellés et al., 2007). The north-western part has a humid oceanic climate with 123 

regular winter precipitation (AR region). The total amount of new snow is about 500-600 cm in winter and the winter 124 

average temperature is -2.5°C at 2200 m a.s.l.. Towards the south of the western Catalan Pyrenees (RF, PL, PP and CM 125 

regions), the weather gains continental traits, and winter precipitation decreases. The average new snow depth at 2200 m 126 

a.s.l. is 250 cm in winter and the average temperature is -1.3°C. The prevailing winds are from the north and northwest, and 127 

they are more intense than in the oceanic domain, often with gusts over 100 km/h. In the eastern Pyrenees the 128 

Mediterranean influence takes predominance. Winter precipitation increases though irregularly distributed (PR and TF 129 

regions) and it is linked to Mediterranean cyclogenesis. The prevailing winds come from north and highest gusts often 130 
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exceed 200 km/h at 2000 m a.s.l. The total amount of new snow at 2200 m a.s.l. is about 350-450 cm and winter average 131 

temperature is -0.8°C. 132 

García-Sellés et al (2009) identified the atmospheric patterns which generate MAE over the Pyrenees of Catalonia. They 133 

worked with 25 episodes from 1972 to 2007 (35 winters), obtaining 6 atmospheric patterns at synoptic scale at a 134 

geopotential height of 500 hPa that cause major avalanche episodes (Table 1). They observed that the most common pattern 135 

(39% of variance) were north and northwest advections. The 2nd and 3rd patterns, significantly similar to middle and low 136 

levels (east and southeast advections), occurred with a frequency of 31%. The other patterns have a lower frequency and 137 

they constitute the remaining 25%. This classification was used in the present work to analyze the selected MAE. 138 

Table 1. Synthesis of the atmospheric patterns defined by García-Sellés et al (2009) 139 

Comp
onent 

500 hPa synoptic configuration 
Low levels synoptic 

configuration 
No. of 

episodes 
Snow and avalanche conditions 

Typical 
NR 

Acronym 

1 

Azores high pressures extended over the Atlantic 
Ocean and deep low pressure on the axis Baltic Sea-
Italian Peninsula 

N and NW advection  12 

Intense snowfalls, very low 
temperature, very active snowdrift. 
Major powder avalanches, sometimes 
wet. 

AR N/NW 

2 

Long trough at 500 hPa exhibiting an oblique axis 
oriented NW–SE, due to the Siberian high over 
Europe which diverts troughs to the Mediterranean 
Basin 

Low pressures, SE 
flow 

4 
Weak layers in the snowpack. Heavy 
precipitation. Dense flow avalanches 

PR, TF E/SE1 

3 

A blocking high pressures situation at 500 hPa over 
Central and North-Western Europe and a cut-off low 
centered over the south of the Iberian Peninsula–
North of Africa 

High pressures, E 
and SE advection 

4 
Intense snowfalls, mild temperatures. 
Dense and wet avalanches 

PR, TF, 
RF 

E/SE2 

4 
A deep low with a very cold core over the Lion Gulf 

N and NE advection 1 
Strong northern winds and heavy 
snowfalls. Major powder avalanches 

Any 
region 

CL 

5 
A wide low pressure is located at high and low levels 
in the west of the Iberian Peninsula S and SW advection 2 

Very intense precipitation, mild 
temperatures. Dense dry and wet 
avalanches 

PR, 
CM, 
RF, TF 

S/SW 

6 
A ridge from the subtropical anticyclonic belt spreads 
further north over the Western Mediterranean Sea Worm advection 2 

Sudden melting processes on snow 
cover which contains persistent weak 
layers 

Any 
region 

A 

3 Material and methods 140 

3.1 Major avalanche data 141 

We worked with avalanches recorded in the BDAC of the ICGC (Oller et al., 2005). Data were collected over the past 25 142 

years. Currently the BDAC stores 3052 avalanche observation (AO) records, dated from 1971 to present, and 459 143 

avalanche enquiry (AE) registers (called generically avalanche enquiries although they include enquiries –oral- information 144 

s. s. and also historical documentation) from the Middle Ages to 1997. In the BDAC, each register is mapped and different 145 

qualitative and quantitative data are recorded (release date and conditions, morphometrics, flow characteristics, damage). 146 

AO data come from the ICGC observation network created in 1988 (Furdada et al., 1990) and AE data come from 147 

systematic field surveys performed from 1986 to 2006 to elaborate the Avalanche Paths Map (Oller et al., 2006) even 148 

though nowadays if new findings are made they get recorded likewise. 149 
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For this study an extra effort was done to complete and improve the MA data of the BDAC. Specially, the 150 

photointerpretation of different flights with complete coverage of the Catalan Pyrenees was reinforced. Moreover, 151 

additional work was done to prepare data for treatment: (i) selection of major avalanches, (ii) debugging data to avoid 152 

mistakes and repetitions and (iii) completing the series from field work, inquiries to population and photointerpretation. 153 

Altogether, we used a dataset consisting of 654 major avalanches, 477 of which dated, at least, at winter season resolution, 154 

and the rest, dated with less accuracy. 155 

Avalanche information was obtained through various sources (Figure 2): (i) event observation, (ii) photointerpretation, (iii) 156 

historical information and (iv) dendrochronology. Each source contributes in a different manner, these being 157 

complementary sources (Ancey, 2004; Corona et al., 2012), the joint use of which improves the reconstruction of the 158 

registered avalanches. An outline of advantages and drawbacks depending on the source is given further below. 159 

Based on the completeness of the series, we defined 3 periods: (i) P1, with very sporadic records prior to the twentieth 160 

century obtained from historical documents largely. Usually they are isolated events that affect localities. The oldest events 161 

are dated to the fifteenth century. The length of the runout of most of these avalanches has not been repeated since then. 162 

The MA register has not have enough continuity to be used in the time analysis, but the runout distance of these avalanches 163 

have interest as a reference distance in relation to the length of other avalanches, all in the same avalanche path, as in  the 164 

corresponding NR. (ii) P2, which covers the twentieth century, until winter 1994/95. Mostly, the record was obtained from 165 

inquiries to the local population, but also from dendrochronological analyses (Muntán et al., 2004 and 2009). The dataset is 166 

incomplete but probably the most important events were recorded. P3 (iii), from winter 1995/96 to the present, the record 167 

of MA can be considered systematic and complete. Avalanches were mapped from the observation of phenomena and 168 

evidence on the vegetation and infrastructures. 169 

Although there are records since the 15th century (P1) in the dataset, we worked with P2 and P3 data as it was considered 170 

that the series were reasonably complete with respect to the episodes of greater magnitude (Figure 2). 171 
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  172 

Figure 2. Decadal distribution of MA (Major Avalanches) recorded, and source of the data in P2 and P3 periods. Date of 173 

winter has the format Y1Y1Y1Y1Y2Y2, where Y1Y1Y1Y1 is the year in which the winter season starts, and Y2Y2 identifies 174 

the consecutive year. 175 

3.1.1 Event observation 176 

Events can be mapped from direct observation of their effects during winter or from effects on vegetation or infrastructures 177 

once winter is over. We call terrain mapping the group of methods used to map avalanches through their effects. In MAE, 178 

during winter, the large number of fallen avalanches requires a good mapping strategy, because the lapse of time before 179 

avalanche deposits disappear might be short or weather conditions can be adverse to carry out the task. So, when possible, 180 

helicopter flights were done just after the MAE in order to obtain an overview of the extent of the episode and the released 181 

avalanches and to take photos. This previous work allowed a prioritization for subsequent mapping in the field of the most 182 

important avalanches; while the remaining avalanches were mapped from the pictures taken from the air. The mapping of 183 

the avalanche in the field increased the accuracy of the observations made from the air. 184 

All this procedure was possible, on the one hand, if there were appropriate flying conditions (visibility and good wind 185 

conditions) and good accessibility over land to the avalanche sites, and, on the other hand, if subsequent snowfalls, drifted 186 

snow accumulations or high temperatures, had not altered the deposit conservation, hindering its identification. 187 

Orthoimages and topographic base 1:5000 were used as reference maps, as well as GPS, allowing to georeference all field 188 

observations accurately up to reaching metric resolution. For smaller magnitude MAE, the work was done exclusively over 189 

land. 190 

Temporal accuracy of the data is often at episode resolution (daily or almost daily). Normally, although we have no 191 

accurate temporal information of all avalanches recorded, episodes can be reconstructed from the analysis of the avalanche 192 
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characteristics and their spatial distribution. Spatial resolution is variable. If the cartography was made from an oblique 193 

photo, and not many references (trees, rocks, forms) could be identified on the landscape, the error could be up to 100 m. 194 

Besides, if there were good references, the error could be reduced to around 10 m. If the cartography was done in the field 195 

by using a high precision GPS, error was less than 10 m. However, for events involving very dry and non cohesive snow, 196 

with a powder part, the furthest point of the runout is sometimes impossible to locate because of the low definition of the 197 

deposit (Eckert et al., 2010a). 198 

Summer field work after avalanche occurrence was always necessary, even though the avalanche had been mapped in 199 

winter. When the avalanche was destructive, especially to forest, it was mapped during summer from the damage to trees. 200 

In addition, conditions for accessing to the site are better and there is not the haste of the winter inspection. Evidence may 201 

be diverse, but mapping mostly relies on the external signs that avalanches have left on vegetation. 202 

In addition, it is possible to map the boundaries of the affected area several years after if there is dead wood. Tree remains 203 

can last around 10 years at least before they disappear by decay (Elena Muntán, personal observations). The degradation 204 

rate of dead wood depends on moisture, temperature and species. As a general rule, humidity and average temperature is 205 

lower as we ascend in the Pyrenees and thus, tree wood debris lasts longer at high altitudes. In situ stumps of resinous 206 

conifers can last appreciably longer. These are, however, the limits of the avalanche destruction, and it is not possible to 207 

clearly distinguish the damage caused by the dense part of the avalanche from the powder part, if a mixed avalanche took 208 

place. Only when the avalanche occurred the winter before the field inspection, it was still possible to see the scattered 209 

twigs carried by the powder part and map the limits of the area. At this stage, mapping from evidence provided information 210 

exclusively from the track and the runout of the avalanche path. When using a high resolution GPS the georeferenciation 211 

accuracy can be very good (10 to 1 m), but if evidences are not clear, the identification of the limits of the avalanche can be 212 

more imprecise. 213 

3.1.2 Photointerpretation 214 

The analysis of aerial photographs guaranteed the completeness of the MA cartography, given its geographical extent and 215 

precision. Photointerpretation was used to search for evidences of MA not detected from event observation, to complement 216 

the information obtained from other sources. By comparing aerial photographs before and after the episodes, not only the 217 

avalanches that had destroyed the forest could be mapped, but also the extent of the devastated forest could be quantified. 218 

In addition, by this method, it was possible to examine the whole of the affected territory quickly and economically. The 219 

first available flight covering the Catalan Pyrenees in a digital format is the “American flight” performed from 1956 to 220 

1957. The second digital flight covering this region was done 33 years later (1990), but the frequency of new flights has 221 
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increased up to present, with flights from the Cartographic and Geological Institute of Catalonia (ICGC) almost every year. 222 

This fact allows a very detailed monitoring of recent activity. 223 

The temporal accuracy of data depends on the frequency of the successive flights. In any case, the current resolution is, at 224 

best, the winter season. However, depending on the distribution and characteristics of MAE occurrence during the time 225 

window without ortoimages, some events can be dated at episode resolution. This resolution decreases very fast as we go 226 

back in time because the spacing between flights increases rapidly. The combined use of the other information sources 227 

improves the dating of the observed events. The spatial resolution depends on the images resolution, which has been 228 

improved from the first flights available (scale 1:33.000), to the recent flights (mainly 1:5.000), then obtaining a metric 229 

resolution when mapping. For dense flow avalanches, with a well defined deposit, the accuracy can be metric using recent 230 

aerial images. In the case of avalanches with a powder part, the precision is lower, obtaining a boundary corresponding to 231 

the extent of the avalanche with destructive capacity. Photointerpretation should always be supported by field observation 232 

in order to get a better accuracy. 233 

3.1.3 Historical information 234 

A basic source of historical information is the survey to people living in the affected areas, preferably the elderly, which 235 

allows obtaining information of a longer time period. This technique revealed the occurrence of avalanches during the 236 

twentieth century, mainly. Enquiry data is not continuous and systematic, and the information provided by respondents is 237 

often inaccurate, and in some cases wrong (Ancey, 2006). However, sometimes this information can be refined by other 238 

sources. In any case, this information has improved significantly the knowledge of avalanche activity during the twentieth 239 

century (P2 period). 240 

Temporal accuracy of recounted avalanches is often very imprecise. Only 23% of the registered events were dated to winter 241 

season resolution. The spatial accuracy is very variable also; it is generally possible to know the place affected by the 242 

avalanche, but not its actual limits. 243 

Search in historical archives and documents directly or indirectly provided evidence of the occurrence of avalanches. This 244 

technique allowed us to find events before the twentieth century. It is a very time-consuming and specialized method 245 

because it requires the review of a large amount of documentation to find little information. But whatever data found is 246 

important because normally, if the avalanche was recorded, it is because it caused damage. 247 

By contrast to other sources, the exact date of the event occurrence is often found in historical records, being the time 248 

resolution, daily. The spatial accuracy is very variable, because usually information describes where the damage was, but it 249 
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is hard to know the actual reach of the avalanche. In general, the obtained information should be considered as a minimum 250 

distance in the runout. Even more difficult is to get information of the starting zone. 251 

Note also that historical data are usually biased towards events that have caused damage to structures or loss of life on the 252 

one hand, and non-existent in areas depopulated on the other (Corona et al., 2012). 253 

3.1.4 Dendrochronology 254 

Dendrochronology provides data about frequency and extent of avalanche events from the analysis of tree rings. It is 255 

therefore necessary that there is forest in the vicinity of the avalanche path. Samples from trees are collected and analysed 256 

using prevailing dendrogeomorphological methods such as described by Stoffel (2013). Especially, growth-disturbed trees 257 

located in the lower track and runout were analysed to find out high-magnitude events reaching the largest distances. In 258 

every avalanche path, we used reference chronologies (Stokes, 1968) built from undisturbed trees in the nearby forest to 259 

verify datings. Events can be dated with annual resolution by this technique and the time interval depends on tree age, data 260 

ranging from the oldest evidence to the present. From a spatial point of view, depending on the sampling effort, a resolution 261 

of the order of 10 m can be obtained. Thus, we included data from dendrochronology in the dataset in the few cases where 262 

there was enough information related to runout extent (Muntán et al., 2004, 2009). 263 

3.2 Major avalanche data characterization 264 

We worked with data from 654 MA registered in 515 avalanche paths. In Figures 3, 4 and 5 some characteristics of these 265 

MA are compared with all the avalanche observations (AO) registered in the BDAC. Avalanche observations are mainly 266 

avalanches that cause winter sports accidents and affect roads, ski resorts, infrastructures, buildings, etc., or occur close to 267 

them, they are gathered from fixed observation points and they include artificially released avalanches. They permit 268 

comparison of a random sample of avalanches documented since 1971 until today (AO), with MA, a selected set of 269 

naturally released avalanches that comply with Schaerer definition as explained in previous sections. It is necessary to 270 

clarify the term "random" because if AO are recorded it is because they have caused some disturbance in human activity. 271 

Although deviations from random are expected because of the existence of avalanches triggered artificially, different 272 

periods of observation depending on the observer or the affected infrastructure, etc., these are not dealt with in this study. 273 

Here AO data have only been used for comparison with MA data. 274 

As shown in Figure 3, major avalanches are medium to large size avalanches (sizes 3 and 4 mainly, according to the 275 

Canadian snow avalanche size classification system, McClung and Schaerer, 2006), with remarkable destructive capacity. 276 

But small size avalanches can also be considered MA if they caused damage as indicated in figure 3. Clearly MA are 277 
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infrequent avalanches, as can be seen using AO distribution as the reference distribution. Interestingly, proportions among 278 

MA are similar to those found out by Barbolini and Keylock (2002) for a single avalanche path (Sudavik avalanche path, 279 

Iceland; classes 3+3.5, 45%, and classes 4+4.5, 50% in their case), when explaining which are the most frequent avalanche 280 

sizes reaching an extreme runout.  281 

 282 

Figure 3. Size of documented Major Avalanches (MA, n = 528 out of 654) and size of avalanches observed and 283 

documented in BDAC since 1971 (BDAC-AO, n = 2054 out of 3052) according to the Canadian snow avalanche size scale 284 

(McClung and Schaerer, 2006). 285 

Regarding the type of observed dynamics (Figure 4), major avalanches are mostly avalanches in which a powder part 286 

(aerosol) has been observed (purely powder or mixed ones). They are drier and therefore lighter, faster and more powerful 287 

than regular avalanches, which are mostly wet snow ones. 288 
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 289 

Figure 4. Type of Major Avalanche dynamics (MA; n=223 out of 654) in relation to Avalanche Observation registered in 290 

the BDAC since 1971 (BDAC-AO; n=1371 out of 3052). 291 

This behavior is due to the fact that occurrence of the episodes is registered mainly in January, in a very marked peak, 292 

decreasing logarithmically towards May (figure 5), being January and February the coldest months in the Catalan Pyrenees 293 

(SMC, UB, ICC, 1997). It explains why MA are mainly dry (57%) and often present a powder part (39%). AO are more 294 

uniformly and normally distributed, being February the month with the maximum frequency of avalanches recorded. 295 
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Figure 5. Frequency of Major Avalanches (MA, n=279 out of 654) in relation to Avalanche Observation (AO) registered in 297 

the BDAC since 1971 (n=1644 out of 3052). 298 

3.3 Data treatment 299 

We worked with periods P3 (19 winters from 1995/96 to 2013/14) and P2+P3 (113 winters from 1900/01 to 2013/14), 300 

separately, taking into account the different resolution of the data. The common MA parameters available for both periods, 301 

useful for the goal of this work were the spatial distribution, the temporal distribution and the runout distance. Runout 302 

distance and date of occurrence data together with vegetation analysis were after used for frequency/intensity 303 

determination. 304 

3.3.1 Common parameters: spatial, temporal distribution and runout distance 305 

All the recorded events were georeferenced according to their X and Y coordinates. 306 

Winter season was considered the time unit to work in P2+P3. This fact forced us to discard many events in P2 that were 307 

not possible to date at that resolution. However, in P3, most of the events were dated at MAE time resolution. 308 

Runout distance is the most sensitive parameter, because accuracy is variable depending on the source of information. The 309 

runout distance considered was determined from the destructive effects of the avalanche. This is the only common 310 

parameter for both periods, P2 and P3. Actually, what we compared is the minimum extent of the avalanche (Corona et al., 311 

2012) as explained before. It should be noted that the range of uncertainty is significant, and it must be taken into account 312 

in the interpretation of results. 313 

The extent of the different events for each avalanche path was mapped on the digital topographic and orthophoto bases 314 

1:5000 of the ICGC, as shown in the example of Figure 6. 315 

3.3.2 Frequency/Intensity 316 

The relationship frequency/intensity of each event was obtained from the relative position of the different distances 317 

measured in the runout zone (Figure 6). In general it is expected that in a given avalanche path, as the average intensity 318 

increases downhill in the runout zone, the average frequency decreases (McClung, 2008). Thus, intensity is indirectly 319 

determined from the observed frequency. This is based on the principle that the farther the reach of the avalanche, the more 320 

intense it is, and the rarer is the avalanche, the more the probability of being observed decreases (Mears, 1992). The 321 

parameter used to find out this relationship was the relative runout distance between different events, in relation to the 322 

frequency of occurrence in each avalanche path. 323 
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 324 

Figure 6. Example of runout distances reached by different avalanches in a given avalanche path, mapped (left) and plotted 325 

in a topographic profile (right). HF, MF and LF: high, medium and low frequency avalanche reaches. 326 

The return period is the time interval in which the runout distance is achieved or exceeded in a given point. Frequency is 327 

the reciprocal of the return period. It is therefore possible, in principle, to map return periods in the runout zone 328 

corresponding to different distances downhill, for example, 1 year, 10 years, 100 years, corresponding to a mean annual 329 

probability of 1, 0.1 , 0.01. These distances increase in the runout zone at the same time that the return period increases 330 

(McClung and Schaerer, 2006). Given the lack of data generally everywhere, avalanche frequency can be estimated as an 331 

order of magnitude (Mears, 1992; Weir, 2002). Mears (1992) indicated that the return period (T) describes a range of time. 332 

According to the author, given this uncertainty, for an avalanche to which we assign a return period of 10 years based on 333 

our observations, the return period would be between 3 and 30 years, while a 100-year avalanche would have a T between 334 

30 and 300 years. In any case, the range of uncertainty diminishes in relation to the number of events available for each 335 

avalanche path. 336 

Based on the classification table of mountain hazards by Weir (2002), a classification of the avalanche frequency was 337 

defined for each avalanche path (Table 2). The error assigned to the frequency is indicated according to Mears (1992). 338 

Table 2. Frequency classes established for the treated avalanches (based on Weir, 2002). Values in parentheses indicate the 339 

range of uncertainty. 340 

Frequency classes 
Return period 

(y) 

Annual 
probability of 
occurrence 

Very high (VHF) 5 (1-10) 0.2 (1-0.1) 
High (HF) 10 (5-30) 0.1 (0.2-0.03) 
Moderate (MF) 30 (10-100) 0.03 (0.1-0.01) 
Low (LF) 100 (30-300) 0.01 (0.03-0.003) 
Very low (VLF) 300 (>100) <0.003 (<0.01) 

 341 

To determine the frequency in the runout zone three criteria (absolute and relative) were considered: (i) number of times 342 

that events with similar runout distances were repeated in relation to the lapse of time between them (absolute), (ii) 343 
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vegetation clues as a reference (absolute), and (iii) space/time relationship between runout distances of avalanches recorded 344 

in each avalanche path (relative). 345 

Very high frequency avalanches were not considered MA according to the criteria used in this study. There are no cases in 346 

which these avalanches have affected forest. High frequency avalanches affect forest often, but not always. At least 20% of 347 

the high frequency avalanches recorded in forested paths, did not affect forest. This means that possibly the record of high 348 

frequency avalanches is not complete in P3 (we cannot guarantee a complete record if there is no evidence). On the 349 

contrary, we consider that the register of moderate to very low frequency avalanches is almost complete in P3 (figure 7). 350 

The long time interval between one avalanche and the next allows the forest to recover and, in the following episode, it will 351 

be affected. The same, but more pronounced, happens with low and very low frequency avalanches. 352 

The number of MA in which the frequency could be determined in P1, P2 and P3 is shown in Figure 7. As it can be 353 

observed, the older is the period, the lower is the frequency of the registered MA. Time filters high frequency events, which 354 

are less destructive and therefore less perceived by the inhabitants, and only the most important MA reach us from written 355 

and oral sources. 356 

 357 

Figure 7. Number of Major Avalanches (MA) from which we could determine its frequency in P1, P2 and P3 time periods 358 

(n=633 out of 654). HF, MF, LF, VLF: high, moderate, low and very low frequency major avalanches. 359 

In Figure 8 the distribution of the registered episodes in P3, number of MA registered per episode and its estimated 360 

frequency is displayed. The mean is 1.6 MAE per winter, but with a high variability (standard deviation equals 1.6), with 361 

some winters without MAE and winters with up to 5 MAE. Only 7 winters register more than 10 MA, and the largest 362 

episodes just exceeded 50 MA (22-23 January and 6-8 February 1996, 30-31 January 2003 and 24-25 January 2014). High 363 
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frequency avalanches from 1995/96 episodes were probably underestimated because at that time, the surveillance service 364 

was at its initial stage and it was less efficient than nowadays. 365 

 366 

Figure 8. Frequency assigned to Major Avalanches (MA) per Major Avalanche Episode (MAE) in P3 period. Date of 367 

episodes has the format YYYYMMD1D1D2D2, where D1D1 is the first and D2D2 the last day of the episode. HF, MF, LF: 368 

high, moderate and low frequency. 369 

In three of the registered MAE (6-8 February 1996; 30-31 January 2003; 24-25 January 2014), urban areas were attained by 370 

MA. In the first case a hostel was seriously damaged, in the second case a house was totally destroyed and another partially 371 

damaged, and in the third case, a touristic-apartments building was damaged at functional level. These three episodes are 372 

the ones which registered most avalanche occurrences. It is important to point out  that all the damaged buildings were built 373 

after the seventies of the twentieth century in previously uninhabited areas. 374 

The distribution of MA activity per winter and estimated frequencies in P3 (Figure 9) show how the lowest frequencies 375 

were registered during the first half of this period, being the second half more active owing to the number of major-376 

avalanche winters and the frequency of MAE occurrences (Figure 10). 377 
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378 

Figure 9. Frequency assigned to Major Avalanches (379 

Y1Y1Y1Y1Y2Y2, where Y1Y1Y1Y1 is the year in which the winter season starts, and Y380 

HF, MF, LF: high, moderate and low frequency.381 

382 

Figure 10. Number of Major Avalanche Episodes (MAE) per winter registered for P3, and observed avalanche dynamics 383 

(light blue: aerosol, dark blue: dense dry, orange: dense wet, red: slushflow). Date of winter has the format Y384 

where Y1Y1Y1Y1 is the year in which the winter season starts, and Y385 
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4 Analysis and results 386 

4.1  Analysis of the period P3 (1995/96-2013/14) 387 

4.1.1 Temporal analysis 388 

A primary objective of this study was to quantify the magnitude of the registered MAE. For such a purpose an index was 389 

conceived, similarly to Schweizer et al (1998) and Haegeli and McClung (2003). In the case of these authors, they applied 390 

an index on a daily basis (Avalanche Activity Index, AAI), that is to get a value of the daily activity of avalanches. They 391 

based it on the avalanche size, according to the Canadian avalanche size scale (McClung and Schaerer, 2006). They used 392 

the sum of all observed avalanches considering a weight according to its size. In our case, since we only worked with MA, 393 

mostly sizes 3 and 4, we used the frequency to emphasize the exceptionality of the episode. Major avalanches were 394 

classified in 4 classes (from 2, high frequency, to 5, very low frequency) and a weight inversely proportional to the 395 

estimated frequency of each avalanche was assigned (0.1, 0.3, 1 and 3). Like that we gave prominence to the lower 396 

frequency avalanches, the most intense, and at the same time, the small weight of HF MA prevents significant deviations 397 

caused by the incompleteness of this frequency class. The obtained parameter was called Major Avalanche Activity 398 

Magnitude Index (MAAMI). The MAAMI quantifies the magnitude of a MA for a period of time. It can be applied to the 399 

time scale allowed by the data resolution, e. g., episode, month, winter. In P3 we could apply this index at MAE resolution 400 

following the expression 1. 401 

������ � �� N	
�
max	�N	
�� ∙ 0,1� � �

N�
�
max	�N�
�� ∙ 0,3� � �

N�
�
max	�N�
�� ∙ 1� � �

N��
�
max	�N��
�� ∙ 3�� 4,4�  (expression 1) 

 402 

For each episode (e), avalanches were grouped according to their frequency and were divided by the maximum value 403 

registered in the dataset for standardization. NHFe is the number of high frequency MA recorded in an episode e, and 404 

max(NHFe) is the maximum number of recorded high frequency MA in a MAE. The resulting value for each frequency 405 

class is multiplied by the weight assigned to it. The final value is divided by 4.4, to obtain a result between 0 and 1. 406 

The MAAMIe is also an exceptionality index of the MAE for the analyzed period. The resulting values respond to a 407 

logarithmic scale. Following the same reasoning about the weight assigned to the exceptionality of an avalanche, values 408 

were classified as shown in table 3. 409 

Table 3. MAAMI values classification. 410 

MAAMI 
Classes Numerical value 
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Low <0.03 
Moderate 0.03 – 0.1 
High 0.l – 0.3 
Very high >0.3 

 411 

In P3 period (19 winters) the MAAMIe was calculated for the 29 recorded episodes (Figure 11). We obtained high values 412 

for January and February 1996 episodes, even though January could be considered to be very high. For 30-31 January 413 

2003, 29 January 2005, 29 January 2006, 18-19 February 2013 and 24-25 January 2014, the MAAMIe values were 414 

moderate, and for the rest of MAE values were low. 415 

 416 

Figure 11. MAAMIe values obtained for P3, and observed avalanche dynamics (light blue: aerosol, dark blue: dense dry, 417 

orange: dense wet, red: slushflow) per Major Avalanche Episode (MAE). The scale of the ordinate axis is logarithmic. Date 418 

of episodes has the format YYYYMMD1D1D2D2, where D1D1 is the first and D2D2 the last day of the episode. 419 

For each episode, the extent of the area deforested by avalanches was mapped and measured (Figure 12). This parameter is 420 

also an indicator of the exceptionality of the episode. We correlated the MAAMIe values with the deforested area values 421 

and we obtained a Pearson correlation coefficient of 0.96, which reinforces the validity of the MAAMIe as an indicator of 422 

MAE magnitude. 423 
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 424 

Figure 12. Deforested area per Major Avalanche Episode (MAE), for P3. The scale of the ordinate axis is logarithmic 425 

(2013/14 MAE deforested areas were not added to the dataset because the mapping process was not finished at the date of 426 

the publication of this work). 427 

The obtained MAAMIe values were associated with each atmospheric circulation pattern defined by García-Sellés et al. 428 

(2009). In table 4 all registered episodes, observed dynamics per episode and corresponding MAAMIe values are listed. 429 

Table 4. Registered Major Avalanche Episodes in P3 period and corresponding number of registered MA, observed 430 

dynamics, deforested area and MAAMIe values. 431 

Episode N 
Estimated frequency (N) 

Comp. Observed dynamics Deforested 
area (Ha) 

MAAMIe 
H M L 

1996012223 53 9 30 14 S/SW Dense dry and aerosol 187.7 0.295 

1996020608 54 16 33 5 N/NW Aerosol 114.3 0.159 

1996032222 1 1 0 0 A Dense wet 0.0 0.001 

1997012121 6 2 4 0 E/SE2 Dense dry and dense wet 2.9 0.009 

1997121818 3 0 3 0 E/SE1 Slushflow 0.0 0.006 

2000041515 1 1 0 0 S/SW Dense wet 0.0 0.001 

2001013131 1 0 1 0 N/NW Aerosol 0.7 0.002 

2003013031 53 31 22 0 N/NW Dense dry and aerosol 47.1 0.064 

2003022727 6 3 3 0 E/SE1 Dense dry 8.6 0.008 

2004010203 1 1 0 0 N/NW Aerosol 0.0 0.001 

2005012929 13 6 5 2 N/NW Aerosol 4.9 0.046 

2006012929 17 7 7 3 E/SE2 Dense dry and aerosol 16.7 0.067 

2006032626 1 1 0 0 A Dense wet 0.9 0.001 

2008042424 3 2 1 0 S/SW Dense dry 2.1 0.003 

2009021015 7 5 2 0 N/NW Dense dry and aerosol 2.9 0.007 

2009122424 1 1 0 0 S/SW Dense wet 0.0 0.001 

2010022628 6 4 2 0 S/SW Dense wet 0.7 0.007 

2010030809 15 3 12 0 CL Aerosol 1.6 0.027 
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2011040101 1 1 0 0 A Dense wet 0.1 0.001 

2012021718 4 3 1 0 N/NW Dense wet 1.5 0.004 

2013011920 20 18 2 0 S/SW Dense wet and dense dry 9.2 0.015 

2013020811 3 2 1 0 N/NW Dense dry 0.0 0.003 

2013021515 3 3 0 0 N/NW Dense wet and dense dry 0.7 0.002 

2013021819 33 23 10 0 E/SE1 Dense wet 22.3 0.034 

2013030505 4 4 0 0 S/SW Dense wet 3.0 0.002 

2013112022 3 2 1 0 N/NW Dense dry and aerosol ND 0.003 

2014012425 55 38 17 0 N/NW Dense wet ND 0.060 

2014030404 1 0 1 0 N/NW Dense dry ND 0.002 

2014030808 1 0 1 0 A Dense dry/wet ND 0.002 

 432 

Major avalanche episodes with greatest MAAMIe values correspond to the pattern S/SW (with a high variability) as shown 433 

in Figure 13, and in the second place, to patterns E/SE2 and N/NW with less variability. The MAAMIe decreases 434 

considerably in CL and even more in E/SE1 MAE. It is merely testimonial in A MAE, since in these situations major 435 

avalanches have occurred sporadically. 436 

 437 

Figure 13. MAAMIe values (mean and standard deviation) related to their assigned atmospheric patterns. 438 

In relation to the month of MAE occurrence (Figure 14), the highest values were obtained in January and February and, in 439 

decreasing order the following months until spring. November and December also registered low MAAMIe values. In those 440 

episodes in which a powder part was observed, the MAAMI e values were the highest, indicating that these are the most 441 

intense episodes. In contrast, the more dense and wet the avalanches, the lower the MAAMIe values (Figure 15). 442 
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 443 

Figure 14. MAAMIe values (mean and standard deviation) related to the month of occurrence. 444 

 445 

Figure 15. MAAMIe values (mean and standard deviation) of the episodes recorded in function of the observed dynamics. 446 

However, these data must be interpreted with caution, since in some cases the standard deviation is greater than the 447 

average, indicating that we need to increase the sample size to confirm the results. 448 

Considering winter season as the temporal unit for the same time period used for episode analysis (P3), we obtained the 449 

results shown in figure 16. From the 19 winters in P3 period, MAE were registered in 16 winters, being 1995/96 the most 450 
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important Major Avalanche Winter (MAW), with very high MAAMI w values. On a second position, winters 2005/06, 451 

2002/03, 2013/14, 2012/13 and 2004/05 (in decreasing order), registered moderate values, and the other winters registered 452 

low MAAMI w values, despite being significative in 2009/10. 453 

 454 

Figure 16. MAAMIw values obtained for the period P3. Date of winter has the format Y1Y1Y1Y1Y2Y2, where Y1Y1Y1Y1 is 455 

the year in which the winter season starts, and Y2Y2 identifies the consecutive year. The scale of the ordinate axis is 456 

logarithmic. 457 

Note that when working considering winter season as the time period, the dataset is larger than when working with 458 

episodes, because we can add data dated at winter time resolution to the dataset. This is due to the inaccuracy of temporal 459 

data when the avalanche mapping has been done from vegetation clues in summer, in the field, or by photointerpretation. 460 

We applied a logarithmic transformation to the MAAMIw values (log_MAAMIw) in order to obtain those for statistical 461 

treatment. We obtained a dataset with a good significance with the test of Shapiro-Wilk (p-value 0.32 for a α level 0.05), 462 

which means that the function fits to a normal distribution. Considering the data set (log_MAAMIw) a normal distribution, 463 

we obtained the estimated probability values (table 5). They indicate the annual estimated probability of occurrence of a 464 

log_MAAMI w value lower than a given value. For example, the annual estimated probability of occurrence of a winter 465 

with a MAAMIw value lower than 0.001 is 40% while the annual estimated probability of registering a winter with a 466 

MAAMI w lower than 0.3 is 97% (conversely, a MAAMI higher than 0.3 is 3%). 467 

Table 5. Exceedance estimated probability of MAAMIw occurrence. The 95% confidence interval of the fitted distribution 468 

is [1.54x10-4; 1.01x10-2]. 469 
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Very low <0.001 <0.40 
Low 0.001 – 0.03 0.40 – 0.83 

Moderate 0.03 – 0.1 0.83 – 0.93 
High 0.1 – 0.3 0.93 – 0.97 

Very high >0.3 >0.97 
 470 

As explained in section 3, urban areas were affected in 6-8 February 1996, 30-31 January 2003 and 24-25 January 2014 471 

episodes, for which moderate to very high MAAMIe values were obtained. According to the results shown in table 5, the 472 

estimated annual probability of occurrence of a MAAMIw higher than 0.03 (moderate) which could affect urban areas, is 473 

17%. 474 

4.1.2 Spatial analysis 475 

From the spatial distribution of the MA recorded in each MAE, the most likely affected area was reconstructed. Our 476 

reconstruction was based on the criterion that the behavior of air masses is strongly influenced by relief, causing 50 to 70% 477 

of mountain precipitation in winter (McClung and Schaerer, 2006). Orographic precipitation models include the assumption 478 

that precipitation is produced at a rate that is directly proportional to the rate at which the air is lifted (vertical component of 479 

wind velocity) over the mountains. The first mountain struck will usually induce the most precipitation and subsequent 480 

barriers receive less as the moisture supply in the air mass diminishes (McClung and Schaerer, 2006). This assumption is 481 

easily confirmed in the distribution of avalanches depending on the direction of the air mass that generated MAE. 482 

In several occasions the occurrence of avalanches downwind from the direction of the air mass was observed. In other 483 

cases, the orographic lifting generated by the relief caused the triggering of avalanches on different aspects, possibly 484 

because the air mass was associated with weaker winds that did not condition the formation of overaccumulations 485 

downwind. On numerous occasions, the occurrence of major avalanches was not observed until reaching the highest 486 

elevations of the mountain range, although the air mass passed through avalanche prone areas but with lower elevations. 487 

Taking these observations into account, we based the delimitation of the spatial extent of the different MAE according to 488 

the following criteria: (i) when the registered avalanche or avalanches were located in a valley open to the direction of the 489 

air mass, the whole valley was considered affected unless the extent of the episode could be clearly cut in a part of the 490 

valley, (ii) if the direction of the air mass was perpendicular to the valley, and last avalanches in the direction of the air 491 

mass were located upwind, the limit of the episode was mapped along the ridge of the valley, (iii) in the case that 492 

avalanches were registered on the leeward of the ridge, the border of the episode was mapped at the bottom of the valley. 493 

An example of how we mapped the spatial extent of MAE is shown in Figure 17 for  winter 2002-2003. 494 
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 495 

Figure 17. Map of the episodes inferred from the registered avalanches. Example from 2002/03 winter. Two episodes were 496 

reconstructed: 30-31 January (component N/NW) and 27 February (component E/SE1). 497 

These arguments fitted very well for MAE which associated atmospheric pattern was the triggering factor of conditions 498 

leading to MA occurrence. Instead of this, in some episodes the spatial distribution of the recorded MA showed a typical 499 

configuration from other patterns. In these cases, the criteria explained in the previous paragraph had to be adapted. For 500 

instance, the 18-19 February 2013 MAE, classified as E/SE1, showed a typical N/NW pattern affected area (Figure 18), 501 

meaning that this MAE is the result of a preparation period and a later triggering one. During the first part, the unstable 502 

conditions are prepared, but it is in the second part that the episode is triggered. In fact, before 18-19 February 2013, two 503 

N/NW MAE occurred successively (8-11, and 15 February) with low MAAMI e values (few MA were registered). These 504 

which prepared the conditions for the following episode, a E/SE1, which tipically affects the easternmost PR and TF 505 

nivological regions, but in this case it affected only AR region, registering moderate MAAMIe values. This fact reinforces 506 

the idea that the study of MAE from a climatic point of view needs a wider temporal approach, considering previous 507 

atmospheric conditions (García et al., 2013), and at the same time, it supports the relationship between avalanche activity 508 

and a cumulative NAO index demonstrated by Keylock (2003). 509 
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 510 

Figure 18. Map of 18-19 February 2013 episode inferred from the registered avalanches. 511 

In order to better define the nivological regions (NR), the spatial extent of the different MAE was grouped according to 512 

their associated atmospheric patterns, described by García et al., 2009 (previously shown in table 1), and frequency and 513 

MAAMI e values were represented superimposed (Figures 19 to 25). 514 

The N/NW configuration was the most frequent atmospheric pattern, with 10 recorded episodes. This pattern affects the 515 

north-western part of the study area more frequently than other parts (Figure 19, left). It is characterized by intense 516 

snowfalls, strong winds from north and northwest and very active snow drift processes. These episodes affected in a 517 

relative uniform way the AR region, and their frequency decreased towards the south, in PL and RF regions. The Eastern 518 

Pyrenees were only affected by one N/NW episode, except for the region TF and PP, the northern ones, which registered 519 

two other episodes close to their northern boundaries. In general these episodes showed high MAAMIe values (figure 19, 520 

right), but the sum of all gives a quite homogeneous result for all the regions with the highest values along the southern 521 

boundary of AR region. In the majority of cases, air masses coming from N and NW are the main drivers for N/NW 522 

episodes, but although AR region is the most affected, the strong weight of the MAAMIe obtained for the MAE of 6-8 523 

February 1996, which origin was at least during the 22-23 January 1996 MAE, a S/SW pattern, gives a MA distribution 524 

more typically caused by a S/SW than by a N/NW MAE. 525 

 526 
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 527 

Figure 19. Spatial extent of the Major Avalanche Episodes (MAE) generated by N/NW atmospheric pattern. Frequency of 528 

MAE occurrence (left) and sum of the MAAMIe values of the superimposed events (right). NR: Nivological Regions; 529 

ASA: Avalanche susceptibility area. 530 

Three E/SE1 episodes (Figure 20) were recorded. Two of them affected regions PR and CM with low MAAMIe values. 531 

One of these episodes corresponded to the slushflows occurrence in 1997/98 winter (Furdada et al., 1999), an exceptional 532 

phenomenon since avalanche activity is recorded in the Catalan Pyrenees, which affected a limited area. The third episode 533 

was registered in 18-19 February 2013 which as explained before, affected only the AR region although the atmospheric 534 

pattern associated to this episode was characterized by a southeast maritime flow at surface levels producing heavy 535 

precipitations in regions closest to the Mediterranean Sea. This MAE registered moderate values, the highest for a E/SE1 536 

MAE. 537 

 538 

Figure 20. Spatial extent of the Major Avalanche Episodes (MAE) generated by E/SE1 atmospheric pattern. Frequency of 539 

MAE occurrence (left) and sum of the MAAMIe values of the superimposed events (right). NR: Nivological Regions; 540 

ASA: Avalanche susceptibility area. 541 



29 
 

The E/SE2 atmospheric pattern typically affects eastern and southern regions by worm and very humid Mediterranean 542 

flows on surface penetrating from east. Only two episodes were registered (Figure 21), but the affected areas do not 543 

overlap. The first episode affected RF region and the southern part of PL region, while the second one affected almost all 544 

the Eastern Pyrenees, excepting PP region. MAAMIe values were low for the first episode and moderate for the second. As 545 

a whole, the spatial extent of this pattern affected the southern part of the Pyrenees. 546 

 547 

Figure 21. Spatial extent of the Major Avalanche Episodes (MAE) generated by E/SE2 atmospheric pattern. Frequency of 548 

MAE occurrence (left) and sum of the MAAMIe values of the superimposed events (right). NR: Nivological Regions; 549 

ASA: Avalanche susceptibility area. 550 

There was only one CL atmospheric pattern episode registered (Figure 22), specifically the one of 8-9 March 2010, 551 

characterized by heavy snowfalls and northern strong winds, García et al (2009). It affected exclusively TF region with 552 

low/moderate MAAMIe values. 553 

 554 

 555 
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Figure 22. Spatial extent of the Major Avalanche Episodes (MAE) generated by CL atmospheric pattern. Frequency of 556 

MAE occurrence (left) and sum of the MAAMIe values of the superimposed events (right). NR: Nivological Regions; 557 

ASA: Avalanche susceptibility area. 558 

S/SW episodes, typically characterized by south and southwestern wind flows carrying warm and humid air from the 559 

Atlantic and even the Mediterranean on lower levels over the Pyrenees, were the second pattern according to their 560 

frequency (7 MAE registered, Figure 23). They affected all NR but mainly the RF region and the western part of the PL 561 

region. Towards the east and the north, frequency decreased, affecting the rest of NR. In general, the recorded MAAMIe 562 

values were high for the southern regions (RF, PL, PP, CM, PR, TF), but low when they affected the northern one (AR). In 563 

fact, the highest MAAMIe value of the dataset is reached with the S/SW MAE of 22-23 January 1996, which is the only 564 

one considered a very high value. This value has an important weight in the results. 565 

 566 

Figure 23. Spatial extent of the Major Avalanche Episodes (MAE) generated by S/SW atmospheric pattern. Frequency of 567 

MAE occurrence (left) and sum of the MAAMIe values of the superimposed events (right). NR: Nivological Regions; 568 

ASA: Avalanche susceptibility area. 569 

Despite the fact that in A episodes the warm air mass can embrace a very large area of the Pyrenees, it only caused the 570 

triggering of avalanches occasionally. During P3 period, we identified three episodes (Figure 24), registering the lowest 571 

MAAMI e values. 572 
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 573 

Figure 24. Spatial extent of the Major Avalanche Episodes (MAE) generated by A atmospheric pattern. Frequency of MAE 574 

occurrence (left) and sum of the MAAMIe values of the superimposed events (right). NR: Nivological Regions; ASA: 575 

Avalanche susceptibility area. 576 

The superimposition of all the P3 MAE (29 episodes, Figure 25) showed a higher frequency in the AR, RF and western PL, 577 

in western Pyrenees, and TF, PR and CM in eastern Pyrenees. It is important to emphasize that PP region was only affected 578 

by 2 major episodes and therefore it is the region with the lowest MAE frequency. This is possibly due to its location, 579 

sheltered from the air masses that generate MAE, by the surrounding ranges. Instead of this, the southern regions registered 580 

higher MAAMIe values in comparison with the northern one AR (which drains towards the north), with the exception of its 581 

eastern arm (which drains towards the south). The highest values were recorded at the eastern arm of the AR region and 582 

northern RF and PL regions in the western part, and TF, CM and PF regions at the eastern part of the Pyrenees. Again, this 583 

result is dominated by the very high MAAMIe values from 1995/96 winter, which affected all the southern NR. 584 

 585 

Figure 25. Map with the superimposition of all the registered Major Avalanche Episodes (MAE). Frequency of MAE 586 

occurrence (left) and sum of the MAAMIe values of the superimposed events (right). NR: Nivological Regions. 587 
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According to the spatial distribution of MAE and its corresponding MAAMIe values, the NR were redefined to better 588 

characterize the MAE spatial distribution. The new divisions were called Major Avalanche Nivological Regions (MANR). 589 

From west to east they are: GA (Garona), PN (Nord Pallaresa), RP (Ribagorçana-Pallaresa oest), PE (Pallaresa est), SN 590 

(Nord Segre), SL (Segre-Llobregat), TF (Ter-Freser) (Figure 26). 591 

These regions can also be grouped according to the climatic influence, in oceanic influence regions, affected mainly by 592 

N/NW episodes (GA and PN); continental influence regions, affected mainly by S/SW episodes, but also N/NW (RP, PE 593 

and SN); and Mediterranean regions, affected by a high variety of atmospheric patterns (up to 5; SL and TF, figure 26). 594 

 595 

Figure 26. Major Avalanche Nivological Regions (MANR) defined from the frequency and spatial distribution of the 596 

registered Major Avalanche Episodes (MAE). Frequency of MAE occurrence in P3 is indicated in brackets. Black lines 597 

indicate main climatic divisions and dashed black lines, secondary divisions. 598 

We divided AR NR into GA (chiefly Val d’Aran valley, western part of AR draining towards the north) and PN (eastern 599 

arm of the former AR, draining towards the south). The GA region is affected mainly by N/NW episodes (Table 6) and less 600 

frequently by S/SW and E/SE1 MAE. The PN region is a transitional MANR, affected by N/NW MAE as GA region, and 601 

less frequently by a more wider variety of MAE due to its open configuration towards the south. RP MANR is composed 602 

by the addition of the western part of PL NR to RF NR owing to their similar behavior. PE region is the remaining part of 603 

PL NR, similar to PN but less active. In regions RP and PE, N/NW episodes occur less frequently than in AR and PN. They 604 

are both affected also by E/SE2 and S/SW atmospheric patterns, but the main difference between them is the frequency of 605 



33 
 

affectation by S/SW episodes. RP is the region most affected by S/SW episodes, which affect PE region less frequently. 606 

GA, PN and RP regions register the highest frequency of MAE occurrence. PE region is affected equally by N/NW 607 

episodes, and by southern component episodes, particularly E/SE2 and S/SW. N/NW episodes with high MAAMIe values 608 

are powerful enough to cross regions GA and PN. Episodes E/SE2 and S/SW can reach the top of the Noguera Pallaresa 609 

valley and adjacent valleys (PN region) due to its SW-NE direction, but they can’t cross the French border ridges. SN is the 610 

region which presents the least MAE activity. It is affected only by the two main episodes of 1995/96 winter (S/SW and 611 

N/NW atmospheric patterns), and by one small N/NW MAE registered in 2013/14 winter. The low activity in this region 612 

may be due to the fact that it is located downwind of most air masses. Andorra mountains protect it from N/NW episodes 613 

and the Cadí range in the south protects it from E/SE1 and E/SE2 episodes mainly. SL region presents more frequent 614 

activity. This region and the TF region are the most varied regions in relation to the diverse origin of the MAE that affect 615 

them, mainly by southern episodes, but also by the N/NW episode of February 1996. In fact, SL is the only MANR that is 616 

affected by MAE generated by all described atmospheric patterns. It is logical, since the main orographic barrier oriented 617 

East-West (Serra del Cadí range), perpendicular to the direction of air masses coming from lower latitudes, dominates this 618 

region. Usually the main MA activity is observed on the north face of this range. The last region, TF, is affected by almost 619 

the same number of episodes than SL, but in this case it is not affected by E/SE1 episodes. Specifically, it is affected by 2 620 

N/NW episodes, one E/SE2, one CL and one S/SW. It is the only area affected by CL atmospheric pattern. 621 

From a climatological point of view, the occurrence of the several atmospheric patterns leading major avalanches is closely 622 

linked to low frequency atmospheric circulation patterns such as North Atlantic Oscillation (NAO) and Western 623 

Mediterranean Oscillation (WeMO) (García-Sellés et al., 2010). Two patterns are observed: the whole Catalan Pyrenees 624 

shows a good correlation between major avalanche activity and negative phase of NAO, but the oceanic domain has the 625 

particularity of concentrating major avalanche episodes in weak positive phases of NAO (N/NW). Even though for the 626 

period 1971–2008 NAO index shows a positive trend, there have been major avalanche situations linked to periods of 627 

highly negative phase of NAO (E/SE1, E/SE2, S/SW) (García-Sellés et al., 2010). 628 

Table 6. Number of episodes identified in each MANR. Warm advection atmospheric pattern (A) was not considered 629 

because MAAMIe values associated to A episodes are very low. The intensity of the color indicates how often they have 630 

been repeated. 631 

 MAE according to its associated atmospheric pattern 

MANR N/NW E/SE1 E/SE2 NE S/SW Total 

GA 9 1   2 12 (21%) 

PN 6 1 1  3 11 (20%) 
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RP 4  1  7 12 (21%) 

PE 4  1  2 7 (13%) 

SN 2    1 3 (5%) 

SL 1 2 1 1 1 6 (11%) 

TF 2  1 1 1 5 (9%) 

 632 

4.2 Analysis of the period P2+P3 (1900/01-2013/14) 633 

4.2.1 Temporal analysis 634 

To characterize episodes recorded during P2+P3 period, we worked at winter season time resolution in order to adapt to P2 635 

data limitations. Since the dataset was not complete, the calculation of the MAAMI was simplified considering the 636 

minimum frequency obtained from the entire MA registered per winter in each MANR, according to expression 2. 637 
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 638 

This index was called Simplified Major Avalanche Activity Magnitude Index (SMAAMI), where min(Fw) corresponds to 639 

the lowest frequency of the MA recorded in one winter (w) for each of the 3 MANR (i stands for these regions). A low 640 

correlation MAAMIw-SMAAMI forced us to simplify the 7 MANR to 3, according to the main climatic divisions, for 641 

which the Pearson correlation was 0,75. The weight for the estimated frequencies (again, 0.1, 0.3, 1 and 3 from high to very 642 

low frequency MA) was assigned in order to highlight the less probable episodes. Divisor values correspond to the 643 

maximum value of the frequency (3) and maximum number of climatic regions (N=3) for standardization of the data. 644 

The SMAAMI is a simplification of the MAAMI devised in case of less complete data series. It is based on the assumption 645 

that larger destructive avalanches are easier to remember than high frequency avalanches. Hence, the result has to be 646 

interpreted as an approximation. It highlights the maximum values registered in each region and therefore those episodes 647 

with low frequency MA and less extensive, against very extensive episodes but with high frequency MA. 648 

In figure 27 the calculated SMAAMI values for P2+P3 are represented. Winter season 1995/96 shows the highest 649 

SMAAMI value, while the episodes of 1971/72, 1974/75, 1937/38, 2004/05, and 2005/06 show high SMAAMI values (in 650 

decreasing order), together with 14 other winters bordering the value 0.1. The remaining recorded MAE (25 winters) 651 

register moderate and low SMAAMI values. 652 
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 653 

Figure 27. SMAAMI values obtained for P2+P3 period. Date of winter has the format Y1Y1Y1Y1Y2Y2, where Y1Y1Y1Y1 is 654 

the year in which the winter season starts, and Y2Y2 identifies the consecutive year. 655 

P2+P3 provides a longer time period than P3 but more incomplete. For its analysis we adopted a compromise solution as 656 

was adopted by Keylock et al. (1999). We classified SMAAMI values into 6 classes in order to compare frequencies 657 

(Figure 28). Low values are better explained using P3 data, because the exhaustive surveillance task guaranties a good high 658 

frequency MAW record. On the other hand, we considered that in P2+P3 high SMAAMI values were more reliable because 659 

instead of being an incomplete data set, highest MAW should be those which would have been preserved through oral 660 

sources. For this reason, class 5 was assumed to contain the most realistic frequencies for both datasets. From this class to 661 

the lower ones, the distribution was scaled according to P3 distribution. Of course this is an approximation in order to 662 

reduce the lack of data in P2 and this weakness has to be taken into account when interpreting the results. 663 

 664 

Figure 28. Relative frequency of SMAAMI classes for P2+P3 and P3 separately. 665 
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The statistical analysis of the resulting dataset provided good significance with the K-S test fitting to a Poisson distribution 666 

(p-value 0.28 for a α level 0.05). We obtained the probability values (table 7). They indicate the annual estimated 667 

probability of occurrence of a SMAAMI value lower than a given value. For example, the annual probability of occurrence 668 

of a winter with a SMAAMI value lower than 0.03 is 39% while the annual probability of registering a winter with a 669 

SMAAMI higher than 0.2 is 4%. 670 

Table 7. Exceedance probability of SMAAMI occurrence. The 95% confidence interval of the fitted distribution is [2.89; 671 

3.38]. 672 

SMAAMI  
Estimated accum. 

probability 
class value  

1 <0.01 <0.18 

2 0.01-0.03 0.18-0.39 

3 0.03-0.06 0.39-0.62 

4 0.06-0.1 0.62-0.79 

5 0.1-0.2 0.79-0.90 

6 >0.2 >0.96 

 673 

Comparing the MAAMIw annual probability estimates (table 5) with those of SMAAMI (table 7), as could be expected, 674 

according to the different distribution function to which each dataset was fitted, values are significantly different. 675 

MAAMI w values are more than a 50 % higher for moderate values, decreasing to less than 10% for high values. It clearly 676 

indicates that although there is a high correlation between MAAMIw and SMAAMI, data shows a different MAE 677 

occurrence. This difference could be due to (i) the incompleteness of the P2 series, and (ii) the short period of P3 series.  678 

4.2.2 Spatial analysis 679 

Given the lack of information in P2, it was not possible to reach the same level of accuracy for the data set P2+P3. In many 680 

cases, the period P2 only registers one MA per winter. In this case the value 1 was assigned to the MANR that at least 681 

recorded a MA per winter. The results (Figure 29) show how for P2+P3, GA is the region where MAW were registered 682 

more often, followed by RP, PN and TF. Regions PE and SL were affected in a similar way and finally SN was the less 683 

affected region. This result, although NR are different, is remarkably similar to the one obtained for García-Sellés et al 684 

(2007), analyzing 1939-2006 period. 685 
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 686 

Figure 29. Frequency of Major Avalanche Winters (MAW) obtained for the period P2+P3 (values in brackets). 687 

5 Discussion 688 

This study provides a better understanding to the characterization of MAE over the Catalan Pyrenees. It was essential to 689 

have an exhaustive database with a detailed cartographic record of major avalanches. It allowed to reconstruct 29 major 690 

avalanche episodes from winters 1995/96 to 2013/14 (period P3) considering spatial distribution of MA and the 691 

atmospheric circulation patterns defined by García et al. (2009). On the one hand, it completes the information provided by 692 

these authors and on the other hand it incorporates new episodes. We did not follow, however, the same criterion to 693 

consider major avalanches. In the case of García et al. (2009) the criterion followed for considering MA was the size of the 694 

avalanche, while in the present work, the criterion was based on the destructiveness of the event. This makes the episodes 695 

considered not match in some cases.  696 

The Major Avalanche Activity Magnitude Index (MAAMI) allowed quantifying the magnitude of avalanche episodes over 697 

the Pyrenees of Catalonia for the first time. This is a significant result because it enables quantifying and comparing the 698 

magnitude of avalanche episodes over a desired or possible time period. The SMAAMI index is a simplified resource when 699 

not much data are available and allows quantifying the magnitude of MAE at winter season resolution. It is based on the 700 

identification of the lower frequency MA recorded for each MANR per winter. It allowed us to reconstruct the series of the 701 

twentieth and early twenty-first centuries (P2+P3 periods), although it is not complete. The results show that the episodes 702 

of January and February 1996 are still the greatest known in the last 19 winters, and possibly two of the greatest in the last 703 

100 years. This result is in accordance with that of Muntán et al. (2009), for the last 40 years. Other winters with high 704 
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SMAAMI values were 1971/72, 1974/75, 1937/38, 2004/05 and 2005/06 (in decreasing order). Although for the temporal 705 

periods P3 and P2+P3 we obtained a good correlation, probabilities obtained in both periods were significantly different. 706 

This result is probably due to the scattered dataset in P2 and the short temporal period in P3, in relation with the climatic 707 

variability typical of the studied area. 708 

We also could characterize the MAE according to its associated atmospheric pattern in P3. It is important to note that 709 

southern atmospheric patterns (E/SE1, E/SE2, S/SW and A) are more varied and frequent that northern ones (N/NW, CL). 710 

The most surprising result was the high values of S/SW episodes. Registered S/SW episodes were the most powerful, while 711 

N/NW episodes were the most frequent. These results are dominated by 1995/96 episode, very infrequent according to the 712 

obtained probability, and for that reason results were probably biased. E/SE2 episodes recorded similar magnitude as 713 

N/NW ones, but they were much less frequent. Regarding the frequency with which the different atmospheric circulation 714 

patterns took place in P3, S/SW was more times observed than in the work of García et al. (2009), although component 715 

N/NW is the most registered, as was also indicated by these authors. The time window was different and the selection 716 

criteria of MAE too, and these facts could have had an influence on the results. Further analysis should clarify the reason 717 

for these differences. However, the spatial analysis results of this study match well with the results of García-Sellés et al. 718 

(2010), where major avalanche regions for the Catalan Pyrenees were grouped by applying clustering techniques. 719 

Attending to the major avalanche activity occurring at the same time (daily scale), regions were grouped in the three 720 

climatic domains: oceanic, continental and Mediterranean. On that study RP region was considered out of the oceanic 721 

domain as the shortest proximity distance by Ward method was shown to continental regions, but at the same time the 722 

isolated GA as oceanic domain showed a unique proximity relationship just with RP. That agrees with the fact that in this 723 

study, where recent winters are taken into account, RP, GA and PN show the first position in major avalanche activity, 724 

which could be expected from an oceanic region. 725 

Regarding the risk, MAW which affected buildings reached MAAMIw values equal or higher than moderate. The estimated 726 

annual probability of occurrence of a MAW higher than moderate is 17%. All the affected buildings were touristic built 727 

after the seventies of the twentieth century. A better planning policy could avoid these accidents, too frequent under our 728 

point of view. 729 

The spatial reconstruction of MAE from the registered MA showed, on the one hand, how MA distribution is controlled by 730 

snowpack-atmospheric evolution, and orography. In general, MA spatial distribution agrees with the low level air 731 

movement direction of the atmospheric pattern that triggers the MAE, following the valleys and diminishing its power 732 

when mountain ranges are arranged against its moving direction. Yet in 4 out of 29 MAE, MA distribution showed clear 733 
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characteristics from other patterns. This was the case of 6-8 February 1996, a N/NW pattern with a S/SW configuration, the 734 

19-20 January 2013, a S/SW pattern with a N/NW configuration, the 18-19 February 2013 (Figure 18), a E/SE1 pattern 735 

with a N/NW configuration, and 5 March 2013, a S/SW pattern with a N/NW configuration. This fact confirms that a MAE 736 

can not only be characterized by the atmospheric pattern that triggered it, but also by a previous preparatory period which 737 

should be considered (García-Sellés et al., 2013). This period, variable in time, prepares the conditions that can favour MA 738 

activity. These situations can also be identified indirectly using a cumulative NAO index (CNI), which exhibits a closer 739 

relationship to avalanche activity than the standard index (Keylock, 2013; García-Sellés et al., 2010). This preparatory 740 

process was not considered in the present work when classifying the MAE, only the atmospheric patterns triggering MAE 741 

were considered.  742 

The analysis of MAE frequency, distribution and extent has enabled us to define 7 MANR different to the current NR, 743 

more adjusted to MAE extent, magnitude and frequency. These regions improve the characterization of MAE, but do not 744 

replace the existing NR, which are also used for high and very high-frequency events (not dealt with in this work), and 745 

which were defined for the communication of regional avalanche forecasting. 746 

According to the climatic zoning defined by Garcia et al. (2007), in P3, MANR GA and PN would have greater oceanic 747 

influence. However GA region, 75% of the received episodes were N/NW, namely 12 (21 %). In contrast PN region was 748 

also affected (around 50%) by episodes S/SW, E/SE1 and E/SE2, adding more episodes to the N/NW ones (11, 20%). 749 

Eastward frequency decreases, from RP to SN regions, where in this last region the minimum affectation is recorded due to 750 

its location downwind of most components. This area has only been stricken by the MAE that affected almost all regions. 751 

Thus, MANR RP (21%), PE (13%) and SN (3 %), are located in the area of continental influence. It is an area with a strong 752 

gradient, where one of the most frequently affected and the less frequently affected regions (RP and SN) are located. In the 753 

eastern sector, MAE increase in frequency in SL and TF regions (11% and 9% respectively) due to the Mediterranean 754 

influence. 755 

The results in P2+P3 also present some significant differences with the results obtained in P3 period (Figures 26 and 29). A 756 

surprising result was that the homogeneity of MAE frequency registered in GA, RP and PN regions when analyzing P3 757 

(around 20% each one) showed a positive deviation towards GA and TF regions, while the continental climate regions were 758 

less frequently affected in P2+P3. These results are in accordance to those obtained by Garcia-Sellés et al (2007) for the 759 

period 1939-2006. This imbalance between P3 and P2+P3 periods is also identified when comparing the temporal sequence 760 

in both time periods. In our opinion it could be due to three factors: (i) the deviation caused by data obtained through 761 

inquiries in P2, which favours the collection of data from historically denser populated areas, (ii) the incompleteness of the 762 
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P2 series, and (iii) the climate variability typical of this area, which makes atmospheric circulation to have different 763 

patterns at multiannual resolution, in relation to the relatively short time period analyzed in P3. We believe that a longer 764 

dataset would allow checking these results. 765 

In spite of the fact that our most complete dataset (P3) covers from 1995-96 to 2013-14, 19 winters, and this is a short time 766 

interval, some trends can be pointed out which could be linked to the recent climate change. The number of MAE has 767 

increased in the second half of this period and at the same time, wet MAE, which register high MAAMIe values (figures 10 768 

and 11) are more frequent. We believe that the time interval is too short for obtaining solid conclusions, but the 769 

maintenance of the MA surveillance, and an effort to complete the MA catalogue in P2 could provide very interesting 770 

information in relation to possible trends and its connection with climate change, as the results obtained by Eckert et al. 771 

(2010a, 2010b, 2013), or Laternser and Schneebeli (2002). 772 

6 Conclusions 773 

The work with cartographic information of avalanche data series allowed to better quantify and characterize major 774 

avalanche episodes  in space and time during the last 19 winters and improved the treatment of the avalanche data series of 775 

the twentieth century in the Pyrenees. 776 

The proposed index, MAAMI (and its simplified version SMAAMI), is intended to categorize the magnitude of major 777 

avalanche episodes or winters. The time scale depends on the resolution of available data. It was developed to facilitate 778 

comparing episodes, obtaining frequencies, and if the series are long enough, to find trends on major avalanche activity. 779 

MAAMI obtained values at major avalanche episode time resolution showed a very high correlation coefficient with its 780 

corresponding deforested area. 781 

The obtained results confirm 1995/96 winter as the one which recorded the highest MAAMI and SMAAMI values from the 782 

early twentieth century to the present (P2, from 1900 to 1995, and P3, from 1995 to 2014). It also identified 1937/38, 783 

1971/72, 1974/75, 2005/06 and 2004/05 as the winters with high SMAAMI values. Regarding the episodes (P3 period), 22-784 

23 January and 6-8 February 1996 registered the highest MAAMIe values, followed by 30-31 January 2003, 29 January 785 

2005, 29 January 2006, 18-19 February 2013 and 24-25 January 2014 episodes, with moderate values. 786 

This index is useful for risk analysis in major avalanche events, both in forecasting and in crisis management. It can be 787 

used to define risk scenarios for civil protection purposes. Urban areas have been affected by avalanches with moderate to 788 
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very high MAAMIe values, all of them by a N/NW atmospheric pattern. A better knowledge of these episodes would 789 

improve its temporal and spatial forecasting. 790 

By employing this index, the former nivological regions were revised and new regions MANR were defined which better 791 

characterize major avalanche activity over the Catalan Pyrenees (from west to east: GA, PN, RP, PE, SN, SL and TF). 792 

Among these regions, GA, PN and RP stand out for the highest number of major avalanche episodes, and RP and PN for 793 

the greatest MAAMIe values registered in P3. It is remarkable to note that region GA, despite being the area with the 794 

highest snow precipitation of the Catalan Pyrenees, registers a similar number of episodes than its neighbouring regions RP 795 

and PN. Concerning both periods P2 and P3, GA is the region registering the highest number of major avalanche episodes. 796 

In the future, a larger dataset should be used to check these results. 797 

Regarding period P2 there was a significant number of recorded major avalanches that could not be dated at enough time 798 

resolution to be dealt with in this paper. In the future, intensive efforts will be required to rebuild this part of the series and 799 

improve our knowledge. The completion of P2 would give more consistency to the dataset and would allow the use of more 800 

advanced data analysis methods such as those used by Eckert et al (2010), not applied in this work. We still can get more 801 

information, especially in the field by using dendrochronology. In the same way, the study of P1 (previous to 1900) should 802 

help us to better understand the situations that generate the lowest frequency avalanches, only recorded in this period, and 803 

be prepared for when they happen again. 804 
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