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Abstract 

Al2O3 is the most abundantly produced nanomaterial and has been used in diverse fields, including 

the medical, military and industrial sectors. As there are concerns about the health effects of 

nanoparticles, it is important to understand how they interact with cells, and specifically with red 

blood cells. The hemolysis induced by three commercial nano-sized aluminum oxide particles 

(nanopowder  13 nm, nanopowder  <50 nm and nanowire 2-6 nm × 200-400 nm) was compared to  

aluminum oxide and has been studied on erythrocytes from humans, rats and rabbits, in order to 

elucidate the mechanism of action and the influence of size and shape on hemolytic behavior. The 

concentrations inducing 50% hemolysis (HC50) were calculated for each compound studied. 

The most hemolytic aluminum oxide particles were of nanopowder 13, followed by nanowire and 

nanopowder 50. The addition of albumin to PBS induced a protective effect on hemolysis in all 

the nano-forms of Al2O3, but not on  Al2O3. The drop in HC50 correlated to a decrease in 

nanomaterial size, which was induced by a reduction of aggregation 

Aluminum oxide nanoparticles are less hemolytic than other oxide nanoparticles, and behave 

differently depending on the size and shape of the nanoparticles. The hemolytic behavior of 

aluminum oxide nanoparticles differs from that of  aluminum oxide. 
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Introduction 

It is important to research the interactions of nanomaterials with membrane cells, because such 

interactions are critical in many applications such as biomedical imaging, drug delivery, disease 

diagnostics and DNA/protein structure probing (Verma and Stellaci, 2010). An increasing number 

of nanomaterials are being designed for biological applications, and this raises new concerns about 

the safety of nanotechnology (Nel et al. 2009). The small size, high surface curvature, large 

surface area, and abundant surface reactive sites may induce special reactions on the bio-surface. 

Cell membranes are the most important biological surfaces that nanomaterials interact with when 

they come into contact with organisms. Therefore, the effects of nanomaterials on cell membranes 

should be assessed for nanomaterial applications and safety. As there are concerns about the health 

effects of NPs, it is important to understand how they interact with cells and specifically with red 

blood cells (RBC), which have a central role in blood functions and compare to the material not in 

the nano size. 

Al2O3 is the most abundantly produced nanomaterial (NM). It is estimated to account for 

approximately 20% of the 2005 world market of NMs (Rittner, 2002). Al2O3 NMs have been used 

in diverse fields for medical, military and industrial purposes (Balasubramanyam et al. 2010). 

Recently, it has been demonstrated that Al2O3 NPs are effective bactericidal agents against ESBL-

producing strains of E. coli, regardless of the drug-resistance mechanisms that confer importance 

to these bacteria as emerging pathogens (Ansari et al. 2014). Aluminum NMs act as drug delivery 

systems that could encapsulate drugs to increase solubility, evade clearance mechanisms, and 

allow site-specific targeting of drugs to cells (Tyner et al. 2004). One of the most important uses 

of nanometer-sized alumina in medicine may be in orthopedic/dental implants. Reducing the grain 

size of aluminum oxide not only mimics the physiological bone cell size, but also increases 

mechanical resistance to wear. Additionally, a higher specific surface area allows for better 
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integration of the implant surface with bone. It is believed that the use of nanometric aluminum 

oxide could solve the current problems associated with implantation by enhancing 

osseointegration and preventing graft rejection (Yamamoto et al. 2004). The study of human 

health impacts of NMs is essential, due to their widespread usage and the dearth of literature on 

the risks they pose at cellular and molecular level. 

Some studies have reported the cytotoxic effect of aluminum oxide nanoparticles. It has been 

demonstrated that exposure to aluminum oxide nanoparticles caused dose-related cytotoxic effects 

through changes in lysosomal and mitochondrial dehydrogenase activity in CHO-K1 cells (Di 

Virgilio et al. 2010) . Other studies have demonstrated that they have a less cytotoxic effect than 

other nanoparticles (Zhang et al. 2011). Like other NPs, aluminum oxide nanoparticles pass 

through the cell membrane and accumulate in the cytoplasm of A549 cells after 6 h of exposure 

(Simon-Deckers et al. 2008) or after 48 hours of exposure in human fetal lung fibroblasts (Zhang 

et al. 2011). Aluminum oxide nanoparticles were demonstrated toxic to microalgae by interactions 

with the cell surface (Sadiq et al. 2011). NPs were observed in the cytoplasm of almost every cell. 

However, there are few studies in relation to its effects on membranes and this need to be explored  

The hemolysis assay is recommended as a reliable test for material biocompatibility (Lu et al. 

2009). In this study, we compared the effect on erythrocytes from human, rat and rabbit of three 

sizes of commercial aluminum oxide nano-particles and micro-sized aluminum oxide particles. 

 

Experimental 

Materials 

Aluminum oxide nanopowder of  <50 nm particle size (TEM) and >40 m2/g (BET), nanopowder 

of 13 nm particle size (TEM) and 85-115 m2/g (BET), nanowires 2-6 nm × 200-400 nm, and 

micro-sized aluminum oxide >98% purity, bovine albumin supplied by Sigma-Aldrich. 
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Characterization of the nanoparticles 

The three commercial aluminum oxide nanoparticles of 13 nm diameter, 50 nm diameter and 

nanowires (NWs) were characterized by high resolution transmission electron microscopy (TEM), 

and atomic force microscopy (AFM). 

The mean hydrodynamic diameter and the polydispersity index (PDI) of the NPs were determined 

by dynamic light scattering (DLS) using a Malvern Zetasizer ZS (Malvern Instruments, Malvern, 

UK). Before measurement, the NPs were appropriately diluted in phosphate buffered saline (PBS) 

and in PBS with albumin, and incubated for 24 hours at room temperature or at 37°C. Each 

measurement was performed using at least three sets of ten runs. 

 

Preparation of red blood cell suspensions 

Rat and rabbit blood was obtained from anesthetized animals by cardiac puncture and drawn into 

tubes containing EDTA. Human blood was obtained from healthy volunteers by venopunction. 

The procedure was approved by the institutional ethics committee. Red blood cells were isolated 

by centrifugation at 3000 rpm at 4°C for 10 min, and washed three times in isotonic PBS 

containing 123.3 mM NaCl, 22.2 mM Na2HPO4 and 5.6 mM KH2PO4 in distilled water (pH 7.4; 

300 mOsmol/ l). The cell pellets were then suspended in PBS solution at a cell density of 

8 × 10
9
 cells/ ml. 

 

 

Hemolysis assay 
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The membrane lytic activity of the aluminum oxide particles was examined by hemolysis assay. 

Twenty-five microliter aliquots of erythrocyte suspension were exposed to various concentrations 

of the compounds dissolved in PBS solution in a total volume of 1 ml. Two controls were 

prepared by suspending erythrocytes either in buffer alone (negative control) or in distilled water 

(positive control). The samples were incubated at 37°C and at room temperature under constant 

shaking for 1, 3 and 24 hours, and then centrifuged at 10,000 rpm for 5 min. Supernatants were 

taken, the absorbance of the hemoglobin release was measured at 540 nm using a Shimadzu UV-

160A spectrophotometer (Shimadzu, Kyoto, Japan), and the percentages of hemolysis were 

determined by comparison with positive control samples that were totally hemolyzed with distilled 

water. Dose-response curves were obtained from the hemolysis results, and concentrations 

inducing 50% hemolysis (HC50) were calculated (Nogueira et al. 2011). To discard possible 

interferences of aluminum oxide nanoparticles with hemoglobin, we determined the spectrum of 

hemoglobin and of the nanoparticles in a UV-spectrophotometer. The UV–vis absorption spectra 

were recorded on a UV–vis spectrophotometer (Shimazu, Tokyo, Japan) with a 1.0 cm quartz cell. 

 

Albumin effect 

The effect of albumin on the hemolytic activity of the nanomaterials was assessed under the same 

conditions, except that albumin at a concentration of 0.5 mg/ml was added to PBS. The hemolysis 

was determined for each product in the presence and absence of albumin in the medium, and the 

HC50 was calculated. 

Statistical data evaluation 
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All measurements are reported as mean ± standard deviation Un-paired two-tailed Student’s t-test 

with unequal variance was used for statistical analysis of results. p < 0.05 was considered 

significant. 

 

 

Results and discussion 

Nanoparticle characterization  

We characterized the nanomaterials by TEM. Figure 1 shows the three nanomaterials. The 

nanopowder of 50 nm had smaller nanoparticles of about 8-10 nm, forming agglomerates of about 

50 nm. The nanowires were shorter than the length declared by the supplier, at about 100 nm. The 

difference in primary size as given by the suppliers’ data and experimentally obtained data may be 

due to aggregation of the nanoparticles in the medium (PBS). 

The surface of the samples was characterized in detail using x quantitative roughness parameters, 

determined with special image analysis software for AFM (Nanoscope Analysis 1.5, Bruker), as 

shown in Figure 2. 

The determination of size by dynamic light scattering (DLS) corroborated the results observed by 

TEM, which were similar to the sizes declared by the suppliers (Table 1). In the case of 

nanopowder 50 nm, the values determined by DLS corresponded to the aggregates observed in the 

TEM images. There was a high degree of polydispersity, expressed by PDI values above 0.3 for 

all conditions and all NPs. The determination of size under different conditions shows that an 

increase in temperature from room temperature to 37°C induced a decrease in the size of the three 

nanoparticles studied. 

Hemolysis  
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The hemolytic assay has been used as a measure of particle reactivity because this method 

measures the ability of the particles to destroy the integrity of red blood cells as a predictor for the 

in vivo inflammatory potential of nanoparticles (Hedberg et al. 2010). Firstly, we determined the 

hemolytic effect of aluminum oxide nanoparticles in rabbit after 1, 3 and 24 hours of incubation at 

room temperature. The hemolytic concentration inducing 50% of hemolysis (HC50) was 

determined for each substance. There was a clear time effect on the rabbit erythrocyte hemolysis, 

with decreases in HC50 values after a longer time exposure (Figure 3). These nanoparticles were 

less hemolytic than others studied in the literature, such as silver (Choi et al. 2011) or cuprous 

oxide nanoparticles (Chen et al. 2013). The HC50 of aluminum oxide nanoparticles in rabbit 

erythrocyte was in the range of 10 to 24 mg/ml after 24 hours of incubation at room temperature. 

Due to the low hemolytic effect observed after 1 and 3 hours incubation, the following studies 

were performed at 24 hours incubation. 

The hemolytic effect varied in rabbit, rat and human erythrocytes (Figure 4). When we compared 

the three species, rat had more resistant erythrocytes, as demonstrated by the higher HC50 values, 

and was more similar to human erythrocytes (Figure 5). Rat erythrocytes had HC50 values that 

were around 4 to 6 times higher than rabbits for the Al2O3 of 50 nm and the Al2O3 nanowire, 

respectively. In the case of macro-sized aluminum oxide there are no statistical differences 

between species, by contrary in the case of nanoparticles there are significant differences between 

hemolytic behavior of rabbit and human erythrocytes (p<0.01). 

In human erythrocytes, macro-sized aluminum oxide is more hemolytic than the nanoparticles. 

Actually it can be said that macroscopic Al2O3 has more hemolytic effect than nanopowder 50. 

When particle size decreased to 13 nm hemolytic effects increased. 
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The limitations of hemolysis methods for studying nanoparticles have been discussed 

(Dobrovolskaia et al. 2008) . Nanoparticles should be well-dispersed and stabilized in a 

physiological solution before a hemolysis study. The crucial point is to use well-mixed samples. 

There are two general methods for mixing samples: using a tube rotator or rotating the tubes every 

30 minutes (Choi et al. 2011). We consider that a tube rotator is the best of these methods, as it 

ensures that the samples are well-mixed throughout the process, especially when incubation times 

are long, and to avoid sedimentation with high concentrations. The tube rotator is better than other 

proposed methods based on constant shaking (Sharma et al. 2014) where sedimentation could be 

present.  Another important point is the type of tubes that are used to mix the samples with the 

erythrocyte suspension. The best tubes are those with round bottoms for the same reasons as have 

been exposed before. 

Other mechanisms of particle interference with the assay have been identified (Dobrovolskaia et 

al. 2008), including the adsorption of hemoglobin by particles. This phenomenon could be 

observed with some nanoparticles, in presence of hemoglobin obtained from erythrocytes and 

incubated with the nanoparticles. In these cases there is a reduction in the absorbance of the 

hemoglobin in the supernatant  after centrifugation, because hemoglobin is adsorbed by the pellet 

including the nanoparticles. In our study, we did not observe these interferences, which made the 

test suitable for studying this kind of nanoparticles. 

The most common mechanism of interference is nanoparticle absorbance at or close to the assay 

wavelength (540 nm). This has been observed for gold nanoparticles, some nanoemulsions, 

fullerene derivatives, and doxorubicin-loaded particles (Dobrovolskaia et al. 2008). To discard this 

interference, we measured the absorption of aluminum oxide and nanoparticles alone, without red 

blood cells, at the higher concentration tested. For these products, absorption was not significant, 

as it corresponded to a maximum of 2% of the absorption found for hemoglobin (data not shown).  

Influence of size and shape  
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Hemolytic behavior differs depending on the size of the nanoparticles and the species studied. 

Macro-sized aluminum oxide has similar HC50 values, irrespective of the species, but this 

phenomenon was not observed for the nanoparticles. The most hemolytic aluminum oxide 

particles expressed by the lowest HC50 were of nanopowder 13, followed by nanowire and 

nanopowder 50. Nanopowder 50 showed at TEM that it consisted of particles of 8-10 nm, but 

organized in clusters of about 50 nm, with less of the surface in contact with the erythrocyte 

membrane than nanopowder 13, which determined the lower hemolytic effect. 

The shape and size of nanoparticles has been found to greatly influence their cellular uptake. In a 

study by Chithrani et al., uptake of 14-, 50-, and 74-nm gold nanoparticles was investigated in 

Hela cells (Chithrani et al. 2007). It was found that the kinetics of uptake and the saturation 

concentration varied with nanoparticle size. The uptake of the 50-nm particles was the most 

efficient, which indicates that there might be an optimal size for efficient nanomaterial uptake into 

cells. The effect of nanoparticle shape on its internalization was also examined: spherical particles 

of similar size were taken up 50% more than rod-shaped particles, which is explained by the 

greater membrane wrapping time required for the elongated particles. In other studies, 

nanoparticle size was shown to strongly affect the binding and activation of membrane receptors 

and subsequent protein expression (Jiang et al. 2008). It is crucial to examine the influence of the 

shape and size of nanomaterials on cell interactions, as this could have implications for toxicity 

(Nel et al. 2009). 

Particle size and surface area are key factors that affect hemolysis. In the case of silver 

nanoparticles, it was observed that the hemolytic properties of nano-sized particles were 

considerably greater than those of micron-sized particles at equivalent mass concentration (Choi et 

al. 2011). It was found that hemolysis caused by large agglomerates of protein-stabilized silver 

particles was significantly less than for smaller agglomerates (Zook et al. 2011). Porosity and the 

surface characteristics of the nanoparticles are the major factors that influenced the cellular 
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association of the nanoparticles. The impact of nanoparticle geometry became pronounced as the 

concentration further increased (Yu et al. 2011). 

One study supported surface-dependent hemolysis of silica, and suggested that mesoporous silica 

particles reduce hemolytic activity on RBC because of their lower external surface area (Slowing 

et al. 2009). Membrane fluidity and lateral organization may be influenced by nanoparticle 

attachment. Changes in membrane fluidity and lateral organization could be one of the reasons for 

NP toxicity. 

Influence of albumin  

The addition of albumin to PBS induced a protective effect on hemolysis in all the nano-forms of 

Al2O3, but not on micron-sized Al2O3 (Figure 6). The protective effect was demonstrated by 

increases in the HC50 values in the presence of albumin. These increases were of about 40 to 60%. 

In the case of the nanowire, albumin induced the highest protection against hemolysis (p< 0.01).  

Some studies have demonstrated that treatment of RBC with polystyrene nanoparticles induces 

(dose- and particle size-dependent) hemolysis in a protein-free medium, but supplementation of 

the suspension medium by albumin inhibits PS-NP hemolytic activity even at very low protein 

concentrations (0.05% wt). This shows that even when the protein corona is not fully formed and 

the surface of the NP is only partly covered by protein, the presence of protein molecules on the 

NP surface strongly modulated their interaction with biological cells (Barshtein et al. 2011). In a 

similar way, it has been demonstrated that the addition of serum albumin, which comprises about 

half of the blood serum protein, markedly attenuated hemolysis induced by fullerene (C60) 

nanoparticles. Albumin could prevent the interaction of nanoparticles with erythrocytes and 

subsequent damage to their membrane (Trpkovic et al. 2010). 

The surfaces of nanomaterials in a biological environment are modified by the adsorption of 

biomolecules (such as proteins and lipids), resulting in what is known as a particle-corona 
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complex (Lundqvist et al. 2008; Kapralov et al. 2012). The protective effect of serum or plasma 

was first observed many years ago for silica-induced hemolysis in human RBC (Harley and 

Margolis 1961). The lower toxicity of silica nanoparticles in the presence of serum has also been 

attributed to the higher agglomeration state and lower cellular uptake of silica nanoparticles (Dutta 

et al. 2007). There is considerable synergy between the NP surface chemical functionalities and 

the protein corona, leading to dramatically attenuated hemolytic behavior of NPs (Saha et al. 

2014). 

Nanomaterial surface properties, size, material, morphologies etc. strongly influence the protein 

corona composition (Monopoli et al. 2011; Walczyk et al. 2010). 

The presence of this protein corona should clearly reduce the hemolytic activity of the aluminum 

oxide nanoparticles studied in this work, compared to the absence of effect observed in the case of 

micro-sized aluminum oxide, in which the protein corona is not formed. 

Influence of temperature 

It is essential to understand temperature behavior at physiological conditions of particles that are 

in contact with the human body. The hemolysis assay is usually performed at body temperature 

(37°C) (Koziara et al. 2005) or room temperature (20-25°C) (Hedberg et al. 2010; Slowing et al. 

2009). 

The effect of temperature on hemolysis has been demonstrated in human red blood cells, which 

show an increase in hemolysis with temperature. At lower concentrations, hemolysis was similar 

at 37°C and at room temperature, but an increase in hemolysis was observed at increasing 

concentrations. The hemolytic activity of the nanoparticles in this study increased with 

temperature, which was in line with other studies performed with silica particles (Shi et al. 2012). 

Interestingly, the temperature dependence of hemolysis varied among the aluminum oxide 

nanoparticles, as can be observed by comparing the HC50 for each individual nanoparticle (Figure 
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7). The greatest effect was observed in the case of nanopowder 50 nm (p< 0.05). At a higher 

temperature, the aggregates of about 50 nm observed at room temperature were disaggregated. 

The small particles of 8-10 nm which are the constituents of the compound have a greater surface 

area and the hemolysis value was closer to the hemolysis observed for nanopowder 13 nm.  

Some studies have estimated the free energy profile for a structured assembly. The results clearly 

show that the successful assembly of NPs is energetically favorable at a lower temperature (Patra 

et al. 2014). By contrast, the aggregation of ZnO nanoparticles was found to be induced by 

temperature (Majedi et al. 2014). 

Studies performed to investigate the influence of temperature on the formation and composition of 

the protein corona on magnetic NPs have shown that changes in the incubation temperature can 

have significant effects, although this is not necessarily always the case. The effects are specially 

pronounced at physiological temperature, which suggests that studies on the formation of a protein 

corona should be carried out at well-controlled temperatures (Mahmoudi et al. 2013). 

The hemolytic behavior was higher after incubation at 37°C than at room temperature, as shown 

by the lower HC50 observed at higher temperature. The drop in HC50 correlated to a decrease in 

nanomaterial diameter, which was induced by a reduction of aggregation (Figure 8). There is a 

correlation between the percentage of decrease in hemolysis and the percentage of decrease in the 

size represented by a linear fit with an r of 0.98.  By contrast, this phenomenon is not observed in 

macro-sized Al2O3.  

Conclusions 

Aluminum oxide nanoparticles are less hemolytic than other oxide nanoparticles, and behave 

differently depending on the size and shape of the nanoparticles. The hemolytic behavior of 

aluminum oxide nanoparticles differs from that of micro-sized aluminum oxide.  Temperature is 

an important factor that influences the hemolytic behavior of aluminum oxide nanoparticles, with 
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increase hemolysis at 37ºC compared to room temperature. The conditions of the experiments 

should be clearly established when comparing different nanoparticles. 
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Table 1. Characterization of nanoparticles by DLS after 24 hours incubation at room temeperature 

and 37ºC and in presence of 0.5 mg/ml of albumin. 

 

 

Nanoparticle Supplier 

especification 

PBS 24h 

Room Tº 

(nm) DLS 

PBS 24h 

37ºC 

(nm) DLS 

PBS+Alb 0.5 

mg/ml 24h 

Room Tº  

(nm) DLS 

Nanopower 50 nm <50 nm (TEM) 17.40 ± 4.66 10.39 ± 2.43 17.17 ± 3.08 

Nanopower 13 nm 13 nm (TEM) 43.00 ± 0.88 36.10 ± 2.56 28.76 ± 0.72 

Nanowire 2-6 nm × 200-

400 nm (TEM) 

12.51 ± 0.98 10.04 ± 2.50 9.94 ± 1.40 
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Figure captions 

 

Figure 1 TEM of aluminum oxide nanoparticles: nanopowder 13 nm (a), nanopowder 50 nm (b) 

and nanowire (c)  

Figure 2  Representative AFM topography images (2D and 3D) and particle size histograms in (a) 

Al2O3 13 nm commercial NPs; (b) Al2O3 50 nm commercial NPs; and (c) Al2O3 commercial NWs 

show the presence of individual nanoparticles and aggregates 

Figure 3 Hemolytic effect of aluminum oxide nanoparticles compared to macroscopic aluminum 

oxide as a function of incubation time in rabbit erythrocytes (mean ± SD of at least three 

independent experiments)  

Figure 4  Behavior of human (   ), rabbit (   ) and rat (    ) erythrocytes exposed to different 

aluminum oxide nanoparticles and macroscopic aluminum oxide 

Figure 5 Hemolytic effect of aluminum oxide nanoparticles and micro-sized aluminum oxide 

expressed as HC50 in human, rat and rabbit erythrocytes after 24 hours of incubation 

Figure 6  Effect of albumin addition on the hemolysis induced by Al2O3 nano-forms and micro-

sized Al2O3 on rabbit red blood cells  

Figure 7  Effect of temperature of incubation on the HC50 induced by Al2O3 nano-forms and 

micro-sized Al2O3 on human red blood cells  

Figure 8 Correlation between the decrease in HC50 and the decrease in Al2O3 nanoparticle size  
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