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Abstract:  

 

The ecological fallacy (EF) is a common problem regional scientists 
have to deal with when using aggregated data in their analyses. 
Although there is a wide number of studies considering different 
aspects of this problem, little attention has been paid to the potential 
negative effects of the EF in a time series context. Using Spanish 
regional unemployment data, this paper shows that EF effects are not 
only observed at the cross-section level, but also in a time series 
framework. The empirical evidence obtained shows that analytical 
regional configurations are the least susceptible to time effects relative 
to both normative and random regional configurations, while 
normative configurations are an improvement over random ones. 
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1. Introduction 

 

The ecological fallacy (EF) is a well-known error in statistical inference that occurs 

when conclusions for aggregated data do not reflect the reality of individuals belonging 

to this aggregation. This problem has also been referred to as aggregation bias in the 

literature. EF was first introduced by Robinson (1950) and studied by many other 

authors since that time, among them Richardson et al. (1987), Piantadosi et al. (1988), 

Greenland and Morganstern (1989), and Richardson (1992).  

EF is a common problem regional scientists have to deal with because the units of 

study (regions) in most cases are derived from data aggregated from smaller units. The 

reasons to aggregate these basic spatial units into larger ones could be related to the 

necessity to create meaningful units for analysis (Yule and Kendall 1950), to preserve 

confidentiality, to minimize population differences, to reduce the effects of outliers or 

inaccuracies in the data, or, simply to facilitate the visualization and interpretation of 

information in maps (Wise et al. 1997, 2001). 

Researchers have developed two approaches to minimize the effects of EF. The 

first approach, and perhaps the most studied, has been to formulate statistical models or 

estimation procedures to reduce the aggregation bias. Gotway and Young (2002) 

provide a complete overview of various statistical solutions related to this topic. The 

second approach, proposed by Openshaw (1977), formulates a geographical solution to 

this problem. It consists of reducing the aggregation bias by controlling the way small 

areas are aggregated into larger regions rather than performing sophisticated data 

transformations or parameterizations to control the aggregation effects. 

This paper follows the second approach to study the power of spatial aggregation 

models to minimize the EF effects in a time series context. This temporal dimension has 

been omitted in the previous literature. Two types of spatial aggregations are considered 

in this paper: i) normative regions (officially predefined official aggregations such as 

counties, districts or states), and ii) analytical regions designed using three algorithms 

whose aggregation criteria include a temporal dimension. 

Based on the idea that intraregional homogeneity is a way to minimize 

aggregation bias, it is expected that in studies involving time series analysis the spatial 

units (regional configuration) are consistent through time, i.e. for a given regional 

configuration the intraregional homogeneity remains as high and stable as possible. 

When such a consistency does not exist, a specific regional configuration could be 
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meaningful in period t but it may become unsuitable in period t+k. When the regional 

configuration does not take into account the possible time variation, it may not be 

possible to determine whether the obtained results reflect the underlying nature of the 

considered phenomena or an improper spatial aggregation of data. In this case, 

statistical inference will be based on regions that are representing different realities 

depending on time. To our knowledge, the only work that has partially considered this 

issue is Norman et al. (2003) who suggest possible approaches to harmonize time series 

data collected from geographical units that have had boundary changes over time.  

This paper uses data from unemployment rates in Spain to illustrate in a simple 

way the capacity of spatial aggregation models to minimize the EF effects in a time 

series context. Throughout the paper, it will be assumed that there is a necessity to 

aggregate data from smaller regional units into big ones in order to characterize the 

geographical distribution of unemployment and its evolution. In particular, provincial 

(NUTS III) time series of unemployment rates in Spain are used to assess intraregional 

homogeneity using the Theil’s inequality index and its temporal stability when these 

provinces are aggregated into NUTS II and NUTS I regions.1 These components are 

also analyzed in a large number of regional configurations in order to assess whether or 

not the use of analytical instead of normative regions could be useful for minimizing the 

EF effects. 

The rest of the paper is organized as follows: Section 2 briefly describes the 

design of this research and some methodological issues. Section 3 presents the results of 

the analysis of regional homogeneity and temporal stability of normative and analytical 

regions. Finally section 4 summarizes the main conclusions of this study. 

 

2. Research design and methodological issues 

 

This section explains the motivation for analyzing the Spanish regional unemployment 

rates and describes the methodology applied in the next section of the paper. 

 

2.1. Motivation for the analysis 

 

There are three characteristics that make Spanish unemployment rates a good candidate 

for exploring the role of aggregation models in minimizing the aggregation bias in a 

time series context. They are regional disparities, spatial dependence and temporal 
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dynamics. These three characteristics of unemployment rates will be briefly described 

for the quarterly time series data of the 47 Spanish provinces (NUTS III regions) 

between 1976 and 2003.  

Regional disparities. Like many other economic variables, unemployment rates 

show important regional disparities that make their analysis unrepresentative at a 

nationwide level (Jimeno and Bentolila 1998; Alonso and Izquierdo 1999; López-Bazo 

et al. 2005). For the analyzed period, Spanish unemployment rates at the provincial 

level range from 0.12% (1976QIII) to 45.12% (1995QI), with a maximum variation 

range of 35.64% (1995QI). A better understanding of the magnitude of these disparities 

can be seen in Figure 1, which shows the variation coefficient of NUTS III 

unemployment rates during 1976-2003. This dispersion was considerably higher during 

the second half of the 70’s.  

These disparities make the study of aggregation effects of major interest to 

researchers because the more heterogeneous the areas the higher the possibility to have 

aggregation bias. This heterogeneity makes aggregating areas into homogeneous and 

spatially contiguous regions challenging. 

Spatial dependence. Another characteristic of Spanish unemployment rates is the 

presence of positive spatial dependence at the NUTS III level (López-Bazo et al. 2002). 

The Moran’s I statistic (Moran 1948) of first-order spatial autocorrelation was 

estimated.2 The values for the standardized Moran’s I, Z(I), are shown in Figure 2. All 

Z-values are greater than 2, indicating that the null hypothesis of a random distribution 

of the variable throughout the territory (non spatial autocorrelation) should be rejected. 

Spatial dependence has two implications for this study. First, for spatial 

aggregation models, the presence of positive autocorrelation relaxes the requirement of 

contiguity constraint. If such positive dependence did not exist, spatial aggregation 

algorithms would not have a major advantage compared to other regional configurations 

generated at random. Second, for EF, the positive spatial autocorrelation provides a way 

to reduce the loss of information after the aggregation. The decrease in variance is 

moderated by the positive autocorrelation (Arbia 1986; Cressie 1993).  

Time dynamics. Previous studies have reported important changes over time in 

the Spanish unemployment rates (Blanchard and Jimeno 1995; Marimon and Zilibotti 

1998; López-Bazo et al. 2002) as well as significant differences among regions in terms 

of both cyclical sensitivity and persistence of regional unemployment (Bentolila and 

Jimeno 1995). To illustrate these changes, Figure 3 presents the average quarterly 
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unemployment rates for two sub-periods, 1976-1990 and 1991-2003, which corresponds 

to the two long business cycles experienced by the Spanish economy in the last 40 

years. Important differences are found in both sub-periods with average unemployment 

rates ranging from 4.2% to 25.6% for 1976-1990, and 6.9% to 34.4% for 1991-2003. A 

comparison between sub-periods shows a tendency toward higher values of 

unemployment rates. In fact, only five out of forty-seven Spanish provinces reduce the 

average unemployment rates with respect to the first sub-period. 

These changes over time facilitate the evaluation of EF from a time dimension. 

These dynamics make it possible to evaluate the contribution of spatial aggregation 

algorithms to the reduction of EF over time. The challenge here is to design consistent 

regional configurations that keep intraregional homogeneity high and stable so that EF 

effects are reduced.  

  Summarizing, the need for aggregating areas into homogeneous regions is 

related to the presence of regional disparities; the contiguity constraint is related to the 

presence of a positive spatial autocorrelation; and changes over time stress the role of 

consistent regional configurations.  

 

FIGURES 1, 2 and 3 ABOUT HERE 

 

2.2. Spatial aggregation methods 

 

This subsection briefly describes the spatial aggregation (regionalization) algorithms 

that will be used to design analytical regions. It is important to note that this subsection 

does not attempt to provide a survey of the different regionalization methods suggested 

in the literature nor to assess their relative performance. Literature reviews of 

regionalization methods have been done by Fischer (1980), Murtagh (1985), Gordon 

(1996, 1999) and Duque et al. (2006). 

There are two common characteristics among the regionalization algorithms that 

will be used in this paper. First, they aggregate a given set of areas into a predefined 

number of spatially contiguous regions while optimizing some aggregation criteria. And 

second, the three methods included are supervised, since they all assume that there is a 

prior knowledge about the aggregation process, including: relevant variables for the 

aggregation, number of regions to be designed, the regional spatial contiguity constraint 

and the existence of aggregation criteria. Although more than one classification variable 
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could be used, we preferred to take a univariate approach to keep it as simple as 

possible and focus on the potential time effects of the EF. The capability of dealing with 

both cross-sectional and time variation is one of the reasons to select the three following 

regionalization procedures: K-means two stages, ARISeL and RASS.  

 

K-means two stages 

 

K-means in two stages is probably the simplest regionalization method. It was proposed 

by Openshaw (1973) as a methodological approach for regionalizing large datasets. The 

first stage applies any conventional partitioning clustering algorithm, in this case the k-

means algorithm (MacQueen 1967), to aggregate areas that are similar in terms of a set 

of variables. In the second stage, each cluster is revised in terms of spatial contiguity by 

applying the following rule: if the areas included in the same cluster are geographically 

disconnected, then each subset of contiguous areas assigned to the same cluster is 

defined as a different region.3 Openshaw and Wymer (1995) formalized this method on 

a step-by-step basis for classifying and regionalizing census data.  

Note that the number of clusters defined in the first stage is always less than or 

equal to the number of contiguous regions resulting in the second stage. Thus, 

adjustments in the number of clusters are required in order to obtain the desired number 

of regions which, in some cases, is not possible. For example, an increment (reduction) 

of one unit in the number of clusters in the first stage can generate an increment 

(reduction) greater than one in the number of regions in the second stage (Wise et al. 

1997). 

Openshaw and Wymer (1995) stressed that regional homogeneity is guaranteed in 

the first stage. Moreover, this strategy may also help in providing evidence of spatial 

dependence between the areas. Thus, when the clusters in the first stage tend to be 

spatially contiguous, it may imply that the classification variables have some spatial 

pattern.  

However, as shown by MacQueen (1967), this algorithm only allows improving 

moves. This characteristic makes the algorithm to converge quickly in part because it 

can be easily trapped in suboptimal solutions. Finally, only improving moves make the 

algorithm very sensitive to changes in the initial centroids. 
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ARISeL (Automatic Regionalization with Initial Seed Location) 

 

Duque and Church (2004) introduced the Automatic Regionalization with Initial Seed 

Location (ARISeL) algorithm where special attention is paid to the design of a good 

initial feasible solution before performing a local search by moving areas between 

regions. It is an extension of AZP-tabu, a well-known algorithm proposed by Openshaw 

and Rao (1995). The algorithm has two stages. The first stage uses a seeded regions 

strategy to generate an initial feasible solution.4 Information about how the aggregation 

criterion changes through the assignation process is used to make changes in the initial 

set of seeds. This first stage generates a set of feasible solutions from which the best 

solution is chosen for further refinement in a second stage which proceeds by applying a 

local search process based on a tabu search algorithm (Glover 1977, 1989, 1990). Using 

a good feasible solution as an input to the second stage reduces both the possibility of 

getting trapped by a local optimal solution and the number of moves performed during 

the second stage. 

 

RASS (Regionalization Algorithm with Selective Search) 

 

Regionalization Algorithm with Selective Search (RASS) was developed by Duque 

(2004). Its main assumption is that the design of contiguous and homogeneous regions 

is relevant only if there are disparities between the areas which justify the design of 

more than one region, and some evidence of spatial dependence which justifies the 

requirement of spatial contiguity. If these two properties are present in the data set, then 

the available information about the relationships between areas can be crucial in 

directing the search process in a more selective, efficient and less random fashion. The 

algorithm starts by selecting a subset of m neighboring regions. The areas belonging to 

those regions are passed to an optimization model to re-aggregate them into m regions. 

Next, taking into account information about the relationships between the areas, the 

algorithm decides which region should leave the set of neighboring regions and which 

region should be added to the set in order to run the optimization model again. Thus, the 

set of regions passed to the optimization model keeps changing throughout the iteration 

process until a convergence criterion is satisfied. 

The aim of RASS is to take advantage of the optimization model by applying it to 

a set of regions instead of trying to solve the whole problem at once. The local 
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improvements achieved with the optimization model may be more difficult to obtain 

with an area-swapping scheme. 

Table 1 describes the aggregation criteria (or objective function) used in each 

algorithm.5 They all consist of a measure of intraregional heterogeneity that takes into 

account a time dimension. The aim of each algorithm is to minimize the objective 

function value in such a way that the intraregional heterogeneity over time is as low as 

possible. In the context of unemployment time series, this implies that neighboring 

areas (provinces) with similar unemployment rates during the period 1976-2003 will be 

likely to be assigned to the same region.  

 

TABLE 1 ABOUT HERE 

 

3. Empirical evidence 

 

3.1. Normative and analytical regions 

 

Figure 4 presents the analytical and normative aggregations at the two considered scales 

(15 and 6 regions), as well as their respective objective function value.6 Note that 

analytical regions were designed in such a way that the regional configuration for six 

regions is nested inside the regional configuration of 15 regions. This nested structure is 

also a characteristic of the NUTS regions.   

Three results can be derived from this figure: first, regional configurations using 

analytical techniques are quite different from the normative ones. Second, according to 

the objective function values, the internal heterogeneity (objective function value) is 

clearly lower for analytical regions than for normative ones. And third, analytical 

regions are closely related to the spatial distribution of unemployment rates presented in 

Figure 3. It is important to note that when applying the k-means algorithm it was 

impossible to design six regions. For k=3, five, instead of six, contiguous regions were 

generated, which was closes to the desired number of regions. 

 

FIGURE 4 ABOUT HERE 
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3.2. Measuring intraregional heterogeneity: Theil's inequality index 

 

As it was introduced in section 1, this paper relies on the assumption that intraregional 

homogeneity is a way to reduce the aggregation bias, or EF. In this subsection 

intraregional homogeneity will be described for both analytical and normative regions. 

The aim is to evaluate the capacity of these two types of aggregation methods to keep 

intraregional homogeneity as stable and high as possible over time.  

 Following a similar approach to the one applied in a different context by Batty 

and Sikdar (1982), intraregional homogeneity will be measured by applying the Theil's 

inequality index (Theil 1976).7 Figure 5 shows the Theil index, total and decomposed, 

when average unemployment rates (1976-2003) of Spanish provinces (NUTS III) are 

aggregated into 15 and six regions. The most relevant result from Figure 5 is that the 

inequality within normative regions (upper left portion of the figure) represents a 

considerably high portion of total inequality. On the contrary, with analytical regions 

the portion of inequality within regions is clearly lower. When looking at the scale 

effects, all the aggregations show, as expected, an increment of intraregional inequality 

that seems to be more evident in normative regions where the inequality within regions 

is almost as high as the inequality between regions. 

 

FIGURE 5 ABOUT HERE 

 

In order to test the time effects of the EF, the Theil index was calculated for each 

quarter from 1976QIII to 2003QIII.8 Results are shown in Figure 6. An important goal 

when normative regions (NUTS) were designed, more than 25 years ago, was that those 

regions should minimize the impact of the (inevitable) process of continuous change in 

regional structures. However, the obtained results show for both scales, NUTS II and 

NUTS I, an important variability of intraregional inequality over time (upper portion of 

Figure 6) that reflects important intraregional changes being inconveniently aggregated. 

Conversely, when designing analytical regions the time variation of the relative share of 

the within component is clearly low. 

From Figure 6, it appears that the intraregional inequality component in normative 

regions and the level of global spatial autocorrelation (see Figure 2) are negatively 

correlated over time. The Pearson's correlation coefficient for the series is -0.84 at 
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NUTS II level, and -0.80 at NUTS I level. Both are significant at the 1% confidence 

level. For analytical regions this correlation is, on average, -0.55 at both scales. 

 

FIGURE 6 ABOUT HERE 

 

3.3. Statistical inference: analytical and normative regions versus randomly 

generated regions 

 

Taking into account the previous results, an interesting aspect to analyze is whether the 

differences in the values of the Theil index components between normative and 

analytical regions are statistically significant. Three dimensions are covered: objective 

function value (aggregation criterion that measures the level of regional homogeneity), 

number of regions, and time effects. This analysis implies the consideration of inference 

in the context of regional inequality analysis.9  

To begin with, Tables 2 and 3 summarize part of the results obtained in the 

previous subsection. In particular, they show that the relative share of the within 

component of the Theil index is directly related to the objective function value and 

inversely related to the number of regions. 

 

TABLES 2 and 3 ABOUT HERE 

 

In order to obtain an uncertainty measure for the Theil index components at 

different objective function values, 500 different regional configurations for 15 and six 

regions were pseudo-randomly generated taking as a starting point the 47 provinces 

(NUTS III).10 It is worth mentioning that the simulations were done in such a way that 

each obtained regional configuration is feasible in terms of contiguity constraint. 

Moreover, special attention was paid to cover a wide range of possibilities in terms of 

internal homogeneity, but keeping in mind that extremely homogenous or extremely 

heterogeneous regional configurations will probably be less frequent. Figure 7 shows 

the histograms for the objective function values for the 500 simulated regional 

configurations at both scales. 

Figure 8 shows the box plot diagram of the within component of Theil index for 

the 500 simulations for each scale. When considering six regions, the box plots show a 

lower dispersion range than the one obtained for 15 regions. This result reinforces the 
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relevance of scale in the analysis of inequality, not only in the value of the within 

component, but also on its variability. 

 

FIGURES 7 and 8 ABOUT HERE 

 

At this point it is interesting to explore whether the observed differences in the 

within component of Theil index hold for different objective function values. Figure 9 

shows the scatter plots of the objective function values versus the within component of 

Theil index. For each scale, the 500 points were divided into three groups according to 

the objective function value (x-axes). Figure 10 shows the box plots for the within 

component of Theil index for low, medium and high objective function values. As can 

be seen in both figures, dispersion in the values of the within component increases for 

higher values of the objective function, but the differences are not as high as expected.  

These simulations were also used to build confidence intervals of the relative 

share of the within component of Theil index for the normative and the analytical 

regions. The results are shown in Table 4. From these results, it is possible to conclude 

that there are significant differences in the within component of the Theil index at the 

two different scales and also between normative regions and analytical regions.  

 

FIGURES 9 and 10 ABOUT HERE 

 

TABLE 4 ABOUT HERE 

 

Finally the time variation of the within component of the Theil index for each 

regional configuration was checked to determine if it was different from the time 

variation obtained for the simulated regional configurations. With this aim, the standard 

deviation along time was calculated for the within component of the Theil index for 

each regional configuration (NUTS, K-Means, ARISeL and RASS) and the average 

value for the 500 simulated regional configurations. The results are shown in Table 5. In 

all cases the value of the standard deviation is lower than for the simulated regional 

configurations. It implies that both the normative and the analytical regionalization 

procedures are more consistent over time than random regional configurations. 

However, it is notable that analytical regions have lower standard deviation values, a 

result that was also discussed in subsection 3.2. 
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TABLE 5 ABOUT HERE 

 

4. Conclusions 

 

Using data for Spanish unemployment rates at the provincial level, the results obtained 

in this paper reaffirm the need for considering the potential effects of the ecological 

fallacy (EF) in a time series context. 

Based on the assumption that intraregional homogeneity is a feasible way to 

minimize the negative effects of EF, this paper compares the differences in regional 

inequality when using officially established aggregations to the results obtained from 

designed analytical regions. Using the Theil index as a measure of inequality, regional 

homogeneity and scale effects have been evaluated in a time series framework. 

The results showed that although both the normative and the analytical regional 

configurations are more consistent over time than random regional configurations, the 

analytical regions appear to be a more effective way to minimize the aggregation bias 

when the time dimension is considered.  

Analytical regionalization algorithms that allow the inclusion of a time dimension 

within the aggregation criterion can be very useful in countries, like the United 

Kingdom, where administrative boundaries are subject to many changes that make the 

production of comparable statistics over time difficult (Norman et al. 2003). Although 

analytical regionalization techniques have been applied before (Openshaw 1984; 

Openshaw and Rao 1995; Commission of the European Communities et al. 1997; 

Martin et al. 2001), this paper reports on an aspect that has received little attention in the 

literature; the importance of including a time dimension that makes the resulting regions 

more consistent. 

Further research will be conducted in two directions. First, simulation tools may 

be applied to evaluate the persistence of the results for datasets with different 

characteristics in terms of regional disparities, spatial dependence and time dynamics. 

And second, a deeper analysis of the space-time relationship between spatial 

dependence and regional consistency could contribute greatly to this field. 
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Notes:  
 
[1] Nomenclature des Unites Territoriales Statistiques (NUTS) is the geographical 
system established by the Eurostat for the production of regional statistics within the 
European Union. According to Eurostat, "normative regions are the expression of a 
political will; their limits are fixed according to the tasks allocated to the territorial 
communities, to the sizes of population necessary to carry out these tasks efficiently and 
economically, or according to historical, cultural and other factors" (Eurostat, 2006). 
 
[2] We discarded the use of the global Moran statistic due to the relatively low number 
of geographical units considered. 
 
[3] Note the difference between cluster and region. A cluster does not satisfy spatial 
contiguity constraints, whereas a region does. 
 
[4] The main characteristic of seeded regions is that each region is the result of selecting 
one area (seed area) to which other neighboring areas are assigned. This methodology 
was first proposed by Vickrey (1961) for solving districting problems. 
 
[5] See Gordon (1999) for more information about other heterogeneity measures in 
classification models. 
 
[6] The objective function values of k-means two stages have been expressed in terms 
of equation (2) in order to facilitate comparisons. The objective function values for 
NUTS aggregations are also expressed in terms of equation (2) 
 
[7] See annex A for a description of the decomposition of the Theil index in the within 
and the between components. 
 
[8] Data on unemployment rates for the different levels of aggregation are freely 
available on the Spanish Instituto Nacional de Estadística’s website: http://www.ine.es. 
 
[9] To our knowledge, the only previous work that has considered this issue is Rey 
(2001). 
 
[10] These simulations also take into account the nested configuration of both scales. 
Thus, every solution for 15 regions has its nested solution for 6 regions. 
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Figure 1. Variation coefficient for the unemployment rate at NUTS III level 
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Figure 2. Z-Moran statistic for the unemployment rate at NUTS III level 
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Figure 3. Average unemployment rates at NUTS III level 
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 Figure 4. Regional configurations at scales 15 and 6 
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Figure 5. Theil index for the average unemployment rate 1976-2003 at scales 15 and 6 
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Figure 6. Theil index for the unemployment rate 1976-2003 at scales 15 and 6 
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Figure 7. Histograms for the value of the objective function for the simulated regional 
configurations (15 regions, left; 6 regions, right) 

 
 
 
 

Figure 8. Box plot for the within component of Theil index for the simulated regional 
configurations (15 regions, left; 6 regions, right) 
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Figure 9. Scatter plot for the within component of Theil index and the values of the 
objective function for the simulated regional configurations  

(15 regions, left; 6 regions, right) 
 

 
 
 
 

Figure 10. Box plot for the within component of Theil index for low, medium and high 
values of the objective function for the simulated regional configurations  

(15 regions, left; 6 regions, right) 
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Table 1. Aggregation criteria used in each algorithm 
 

 OF: Minimize (Z) Parameters 

K-means Z  Uit kt 2
t1

T


iRk


k1

K
  (1) 

k=1,..,K. Index of regions 
i. Index of areas 
Rk Set of areas in region k 
t=1,…,T. Index of time periods 
Uit Unemployment rate in area i in period t 
kt Average Unemployment rate in region k in 
period t 

ARISeL 
 
RASS 

Z  Uit U jt 2
t1

T


i, jRk i j


k1

P
  (2)

k=1,..,K. Index of regions 
i and j. Index of areas 
Rk Set of areas in region k 
t=1,…,T. Index of time periods 
Uit Unemployment rate in area i in period t 

 
 

Table 2. Summary results of the objective function value and the relevance of the within 
component when considering 15 regions 

 

15 regions Objective function 
Relative share of the within component 

of the Theil index for average unemployment 
NUTS II 5636.3 29.8% 
K-MEANS 3545.9 4.7% 
ARISEL 1977.1 6.9% 
RASS 1951.3 6.5% 

 

Table 3. Summary results of the objective function value and the relevance of the within 
component when considering 6 regions 

 

6 regions Objective function 
Relative share of the within component 

of the Theil index for average unemployment 
NUTS I 14022.9 49.7% 
K-MEANS 9750.1 11.9% 
ARISEL 7931.9 25.1% 
RASS 8059.3 21.6% 

 

Table 4. Confidence intervals for the relative share of the within component of the Theil 
index for average unemployment 

 
 15 regions 6 regions 
NUTS 19.0%-40.6% 38.4%-61.0% 
K-MEANS 0%-15.5% 0.7%-23.2% 
ARISEL 0%-17.7% 13.8%-36.4% 
RASS 0%-17.4% 10.3%-32.9% 

Confidence level: 5% 
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Table 5. Standard deviation along time of the within component of the Theil index 
 

 15 regions 6 regions 
Simulations* 0.012 (0.001) 0.016 (0.001) 
NUTS I / II 0.005 0.007 
K-MEANS 0.003 0.005 
ARISEL 0.003 0.006 
RASS 0.003 0.006 

* Average value for the 500 regional configurations. In parenthesis, the standard deviation. 
 

 
Annex A. The Theil index 
 
The Theil index has been computed as follows: 
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where n is the number of provinces (47), up is the provincial unemployment rate 

indexed by p, and U represents the Spanish unemployment rate U  u p
p1

n
  

 
Overall inequality can be completely and perfectly decomposed into a between-group 
component Tg

' , and a within-group component ( Tg
W ). Thus:T  Tg

' Tg
W . With 
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  where i indexes regions, with ni representing the number of provinces 

in group i, and Ui the unemployment rate in region i., and Tg
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 , 

where each provincial unemployment rate is indexed by two subscripts: i for the unique 
region to which the province belongs, and subscript p, where, in each region, p goes 
from 1 to ni. 
 

 
 


