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Abstract

■ Language acquisition is a complex process that requires
the synergic involvement of different cognitive functions, which
include extracting and storing the words of the language and
their embedded rules for progressive acquisition of grammati-
cal information. As has been shown in other fields that study
learning processes, synchronization mechanisms between neu-
ronal assemblies might have a key role during language learn-
ing. In particular, studying these dynamics may help uncover
whether different oscillatory patterns sustain more item-based
learning of words and rule-based learning from speech input.
Therefore, we tracked the modulation of oscillatory neural ac-
tivity during the initial exposure to an artificial language, which
contained embedded rules. We analyzed both spectral power

variations, as a measure of local neuronal ensemble synchroni-
zation, as well as phase coherence patterns, as an index of the
long-range coordination of these local groups of neurons. Syn-
chronized activity in the gamma band (20–40 Hz), previously
reported to be related to the engagement of selective atten-
tion, showed a clear dissociation of local power and phase co-
herence between distant regions. In this frequency range, local
synchrony characterized the subjects who were focused on
word identification and was accompanied by increased coher-
ence in the theta band (4–8 Hz). Only those subjects who were
able to learn the embedded rules showed increased gamma
band phase coherence between frontal, temporal, and parietal
regions. ■

INTRODUCTION

Learning any new skill is a dynamic process that requires
the coordination of different brain networks and cognitive
functions. In particular, language is one of the most impor-
tant skills that humans have to acquire early in life and often
again later in adulthood. Investigation of oscillatory brain
activity is an interesting tool used to approach the interplay
between different cognitive processes and brain networks
during language learning. Neural oscillations represent a
fundamental mechanism that allows the precise coordina-
tion of activity between distant regions of the brain as well
as regional synchronization. Additionally, this measure rep-
resents a remarkable instrument for the investigation of
the rapid changes associated with learning-induced brain
plasticity (Benchenane et al., 2010). These types of studies
have been particularly relevant for understanding the brain
dynamics underlying learning and memory but also for
our understanding of how different cognitive functions
relate to different synchronization patterns at different fre-
quency bands (see Table 1 in Uhlhaas & Singer, 2010, for
a recent review).

Although an increasing number of studies have recently
focused on discovering the oscillatory activity behind lan-
guage comprehension (Bastiaansen, Magyari, & Hagoort,
2010; Weiss et al., 2005; Hagoort, Hald, Bastiaansen, &
Petersson, 2004; Weiss & Mueller, 2003; Bastiaansen, van
Berkum, & Hagoort, 2002b; Rohm, Klimesch, Haider, &
Doppelmayr, 2001), surprisingly, studies that investigate
the brain dynamics in terms of oscillatory activity related
to language acquisition (see Buiatti, Peña, & Dehaene-
Lambertz, 2009) are lacking. In language comprehension,
modulations that are associated with semantic processing
with diverse results at different frequency bands have been
reported (Davidson & Indefrey, 2009; Weiss & Mueller,
2003; Rohm et al., 2001). More consistent results have been
observed in relation to syntactic processing with the low
beta frequency band appearing to be specificallymodulated
as a function of syntactic complexity (Weiss et al., 2005;
Weiss & Mueller, 2003) and displaying an interruption of
the activity with unstructured sentences or upon the intro-
duction of grammatical violations (Bastiaansen et al., 2010;
Davidson & Indefrey, 2009). Gradual increases in theta
power and coherence that are related to the progressive
building up of the working memory trace of the linguis-
tic input have also been found during sentence compre-
hension (Weiss et al., 2005; Bastiaansen, van Berkum, &
Hagoort, 2002a). In this context, concurrent increased
gamma coherence has been observedwith greater syntactic
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complexity andhas been interpreted as to represent greater
attentional effort (Weiss et al., 2005). Interestingly, the
theta–gamma relationships in that study have been inter-
preted to be consistent with the idea that theta and gamma
frequencies interact during memory encoding to store rep-
resentations of sensory inputs (Lisman, 1999; Jensen &
Lisman, 1998). Although this has not been explored yet, this
mechanism might be particularly relevant in the course of
language acquisition.

Despite the absence of language learning studies, some
previous work on reading difficulties observed in dyslexic
children has shown an association between theta activity
and learning deficits (Klimesch et al., 2001). Additionally,
a recent study has suggested that induced gamma band
responses observed for musical sounds in professional
musicians and children aftermusical trainingmay be related
to learning in many cognitive domains such as language
(Trainor, Shahin, & Roberts, 2009). Thus, it is likely that
language acquisition, like other general domain learning
abilities, might engage the dynamic coordination of distinct
neuronal assemblies that are related to different cognitive
functions. The study of brain oscillatory activity has led to
the observation that the synchronization and desynchroni-

zation in different frequency bands allows the selection,
blocking out, and enhancement of information (Schroeder
& Lakatos, 2009). These oscillatory dynamics may help
humans tune to speech in a manner that shows prefer-
ences for this type of stimulation from a few days of age
(Vouloumanos & Werker, 2007) and progressively de-
tects different regularities that characterize speech input
(Gomez & Maye, 2005; Saffran & Wilson, 2003; Marcus,
Vijayan, Rao, & Vishton, 1999; Saffran, Aslin, & Newport,
1996). Thus, our cognitive system is equipped to decode
the speech signal and eventually acquire the two major
milestones that will allow us to develop complex adult lan-
guage: word learning for lexical development and rule
learning for grammar acquisition. Indeed, infantsʼ language
acquisition shows a functional distinction between the
way our cognitive system is able to track words and rules
in language. Infants start using words with no-rule-based
productive variations (Tomasello & Brooks, 1999; Clark,
1998) before they start using rules productively, and second
language learners have a hard time avoiding grammatical
errors while flawlessly learning vocabulary (Weber-Fox &
Neville, 1996). Data from infants at different ages and adults
also suggest that learners have an initial tendency to rely
first on the extraction of adjacent dependencies, which is
relevant for word acquisition, before shifting to the detec-
tion of nonadjacent dependencies, which are more neces-
sary for the extraction of grammatical relationships (Gomez
& Maye, 2005; Gomez, 2002).
Our working hypothesis is that this synchronization

mechanism might play a key role during language learn-
ing for the extraction of words and rules from speech input.
Indeed, a recent study by Buiatti and colleagues nicely
showed that the explicit extraction of words from a non-
sense speech stream is accompanied by a frequency en-
trainment with perceived acoustic boundaries (Buiatti
et al., 2009). In addition, it has also been shown that rapid
changes in brain activity differentiate the extraction of
words and rules from the speech stream. In a previous
study (De Diego-Balaguer, Toro, Rodriguez-Fornells, &
Bachoud-Levi, 2007), brain electrophysiological activity
(ERPs) was registered while participants were trying to
learn an artificial language that contained embedded rules.
Through exposure time, a gradual increase in the amplitude
of an early positive component in the range of 200 msec
(P2) was observed to be correlated with rule learning per-
formance. This modulation was similar to those observed
in other studies on perceptual grouping (Snyder, Alain, &
Picton, 2006; Reinke, He, Wang, & Alain, 2003; Hillyard,
Hink, Schwent, & Picton, 1973) and was clearly dissociated
from the N400 modulation, which is related to lexical
acquisition (Cunillera et al., 2009; Dobel, Lagemann, &
Zwitserlood, 2009; Cunillera, Toro, Sebastian-Galles, &
Rodriguez-Fornells, 2006; Mestres-Misse, Rodriguez-
Fornells, & Munte, 2006; McLaughlin, Osterhout, & Kim,
2004; Sanders, Newport, & Neville, 2002).
The aim of the present study was to further understand

whether different specific cognitive mechanisms and brain

Table 1. Materials Used for Different Artificial Languages

Embedded
Structures

Middle
Syllables Word Nonword

Rule
Word

Language 1

le__di ka, fi, ro lerodi dirole Lemadi

bo__ma

to__ne

Language 2

ba__gu fe, pi, lo bapigu gupiba Badogu

do__ke

mo__ti

Language 3

pa__mi te, la, ko patemi mitepa Pabumi
nu__de

ri__bu

Language 4

da__lu na, tu, go dagolu lugoda Dabilu

me__po

re__bi

Middle syllables could be combined with the three structures of the lan-
guage. Each language had a filler version with a random combination of
the same syllables. Word, Nonword, and Rule Word columns provide
examples of test items.

3106 Journal of Cognitive Neuroscience Volume 23, Number 10



dynamics underlie word and rule learning in the very early
stages of exposure to a new language. The achievement of
this goal requires the ability to track the evolution of
the learning process in real time. In our previous study,
we directly tackled the on-line language learning process
involved in rule extraction (De Diego-Balaguer et al.,
2007). However, whereas the ERP measures in that study
were helpful to dissociate word learning from rule learn-
ing functionally, the specific cognitive functions and the
brain dynamics that sustain these two types of learning
could not be fully understood with that analysis. In the
present work, we employed trial-by-trial wavelet-based
time-frequency (TF) analysis to study the ongoing modu-
lation of oscillatory neural activity (Herrmann, Munk, &
Engel, 2004; Tallon-Baudry & Bertrand, 1999). These trial-
by-trial analyses of oscillatory activity allow a better tem-
poral resolution in terms of the evolution of the activity
through the learning process and make them a better
measure for the evaluation of neural plasticity than the
standard ERP approach (Miltner, Braun, Arnold, Witte, &
Taub, 1999). In addition, this analysis has been effectively
used to understand the brain dynamics underlying differ-
ent cognitive functions (Makarov, Panetsos, & de Feo, 2005;
Laufs et al., 2003).
In addition, although incoming stimulation is initially

processed locally, learning requires the simultaneous cross
talk between different regions of the brain that influences
this local activity (Stevens, 2009). These brain plasticity
changes occur through the modification of neural efficacy
between cortical regions (Hebb, 1949), and they could be
characterized by different coherence patterns in local brain
regions and between distal brain regions (Singer, 1995).
There is also evidence that supports that large-scale coor-
dination between fronto-parietal and sensory cortices
enables top–down influences on attention (Corbetta &
Shulman, 2002) and that such coordination is reflected in
the dynamicmodification of coherent oscillatory synchroni-
zation between neuronal groups in distant cortical areas
(Siegel, Donner, Oostenveld, Fries, & Engel, 2008; Fries,
2005; Buzsaki & Draguhn, 2004; Engel, Fries, & Singer,
2001). Thus, in addition to the analysis of local (spectral
power at electrode level) scale synchrony EEG bands, in
the present study, a large-scale (coherence across distant
electrodes) analysis was performed. Mostly on the basis of
single-cell recordings in monkeys, each type of measure
has been identified as a critical “middle ground” between
cortical mechanisms and cognitive functions (see, for a re-
view, Varela, Lachaux, Rodriguez, &Martinerie, 2001). They
have also been proven to be independently modulated as a
function of memory ( Jensen & Tesche, 2002; Sarnthein,
Petsche, Rappelsberger, Shaw, & von, 1998) and attention
(Maunsell & Treue, 2006; Miller & DʼEsposito, 2005) in dif-
ferent measures of coherence and in different modalities.
We believe that the coherence analysis ( phase synchrony)
can add important information to understand to which de-
gree different cortical regions show synchronous coher-
ence in a specific frequency band, which is interpreted as

the degree to which two regions are consistently coordinat-
ing their respective neural activities associated with specific
cognitive functions (Varela et al., 2001; Lachaux, Rodriguez,
Martinerie,&Varela, 1999). It has beenproposed that neural
oscillators showing a similar temporal pattern (i.e., inter-
electrode phase synchrony) might indicate large-scale
integration mechanisms among different neural assem-
blies (Lachaux et al., 1999).

In the present investigation, this analysis will permit the
examination of the variations in functional connectivity in
different frequency bands throughout the learning process
of an artificial language with embedded words that follows
simple nonadjacent dependency rules. If word and rule
learning are achieved by the involvement of the same brain
dynamics, then subjects who learned the rules and those
who, at the end of the learning phase, were not able to ex-
tract this information should not show remarkable differ-
ences in their oscillatory patterns, as long as they have
comparable word learning abilities. Common modulations
through the learning phase in the two groups should cor-
respond to those processes related to word learning. In
contrast, differential oscillatory patterns, in terms of power
spectra of different frequency bands involved and interelec-
trode phase synchrony, should give us information about
the specific brain dynamics, which characterize rule learn-
ing. In addition, in the current investigation, the results of
the on-line variations in the oscillatory activity during the
learning process are complemented by a second behavioral
experiment to better understand the evolution of the learn-
ing performances half way through the learning period,
when the observed variations in oscillatory activity start
to emerge. To determine whether the two groups of par-
ticipants also differ earlier in the learning process, this sec-
ond experiment follows the evolution of the performances
and characterizes participants who were able to learn the
rules and those who were only able to extract the words
of the speech stream.

EXPERIMENT 1

Methods

Participants

Twenty-four right-handed volunteers (seven men, mean
age = 25 years, SD = 6 years) participated in the study.
None of them had a history of neurological or hearing
deficits. Written consent was obtained from each volunteer
before the experiment. The experiment was approved by
the local ethics committee of the University of Barcelona.
Four participants were discarded from the analysis because
of excessive eye movements.

Stimuli

Four artificial language streams were created according
to the same principle used by Peña, Bonatti, Nespor, and
Mehler (2002). They contained trisyllabic words built
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following a rule that established that their initial syllable
determined their ending (paliku, paseku, paroku) irre-
spective of the middle element, thus forming a structure
similar to some morphosyntactic rules (heplays, hewants,
hewalks) (see Figure 1). There were three different frames,
and the intervening middle syllable could take up to three
values, for a total of nine different words per language.
None of the syllables were repeated across languages. De-
tails of the exact stimuli used can be found in De Diego-
Balaguer et al. (2007) and are included in Table 1. This type
of material has been shown to induce learning of abstract
rules as shown by the acquisition of categories on the basis
of the underlying dependencies (Endress & Bonatti, 2007)
and by the transfer of these rules to new material with
no physical overlap with the learned language (De Diego-
Balaguer et al., 2008).

Streams and test items were synthesized using the
MBROLA speech synthesizer software (Dutoit, Pagel, Pierret,
Bataille, & van der Vreken, 1996) concatenating diphones
at 16 kHz from the Spanish male database (es2) (tcts.fpms.
ac.be/synthesis/mbrola.html). All phonemes had the same
duration (116 msec) and pitch (200 Hz; equal pitch rise
and fall, 216 with pitch maximum at 50% of the phoneme)
in the language streams. Thus, words in the language
streams had a duration of 696 msec each. They were sepa-
rated by 25-msec pauses to induce the extraction of struc-
tural information (Peña et al., 2002) and were concatenated
in a pseudorandom order so that a word was never imme-
diately repeated in the stream. As the same three middle
syllables appeared in the three frames of a given language,
the transitional probability between the initial and middle
syllable or between this one and the final syllable was
0.33. The transitional probability between the first and
the last syllable of every word was 1.0, whereas the corre-
sponding probability between the last syllable of any word
and the first syllable of the following one was 0.5. To have
the same length in the different streams and fit the dura-

tion to the necessary millisecond precision for the ERP re-
cordings, we used Adobe Audition™ to slightly stretch the
audio files.

Procedure

During the learning phase of the experiment, participants
were presented with four different languages counter-
balanced across individuals. They listened to 4 min of
each language leading to 336 word observations. For each
language, participants were told that theywould hear a non-
sense language and that their task was to pay attention to
it because they would be asked afterwards to recognize
words of this language After listening to each stream, par-
ticipants were tested using a two-alternative forced-choice
recognition test. Thus, the learning procedure was per-
formed four times. Isolated test items were created and
presented in pairs (Figure 1). The two test items of each
trial were separated by 704 msec. For half of the streams,
participants were tested for word acquisition, such that
they had to choose between words from the exposed
language and nonwords in each trial (see Figure 1). For
the other half, rule learning was evaluated, such that par-
ticipants had to choose between a nonword and a rule
word. Each test item (9 words, 9 rule words, 18 nonwords)
appeared twice, leading to 72 rule word, 72 word, and
144 nonword presentations. Participants were instructed
to listen to the two alternative stimuli and wait until an in-
dication on the screen appeared to respond with the right
or left button of the mouse. Nonwords were new items
formed with the same three syllables of a previously ex-
posed word in the wrong order: the first and last syllables
were placed in the inverse order (see Figure 1). Partici-
pants should, thus, encode the order of presentation of
the syllables and their position (Endress & Bonatti, 2007)
to detect this sequence as an invalid item. Rule words were
new words with the same initial and final syllable of a word

Figure 1. Schematic
illustration of one of the
artificial language streams
used in the learning phase
and examples of items
used in the two alternative
forced-choice tests performed
after learning to evaluate
word and rule acquisition.
Each word was composed
of three syllables; the first
and the last of them were
placed following a dependency
rule. Words (i.e., patemi)
and rules (i.e., the structure
pa__mi) could be acquired
from the same material. One
of the possible structures
that can be learned is highlighted in bold. The “_” represents the 25-msec pause between words. After a learning phase lasting 4 min, a
behavioral test was administered. Half of the streams were tested for word acquisition and half for rule learning using a two-alternative
forced-choice test.
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from the exposed language while a syllable corresponding
to another word was inserted in the middle position (see
Figure 1). Thus, although these new words followed the
structure of words in the artificial languages, the partici-
pants had not heard these rule words before.
The experiment was run individually in an electrically

and acoustically shielded room on a PC computer using
the Presentation Software (nbs.neuro-bs.com/). Stimuli
were played through Sennheiser (HMD224) headphones
connected to the computer, via a Proaudio Spectrum
16 soundcard.

Electrophysiological Recording

EEG activity was recorded from the scalp by using tin elec-
trodes mounted in an electrocap (Electro-Cap Interna-
tional, Eaton, OH) and located at 29 standard locations
(Fp1/2, Fz, F7/8, F3/4, Fc1/2 Fc5/6, Cz, C3/4, T3/4, Cp1/2,
Cp5/6, Pz, P3/4, T5/6, Po1/2, O1/2). Biosignals were re-
referenced off-line to the mean of the activity at the two
mastoids. Vertical eye movements were monitored with an
electrode at the infraorbital ridge of the right eye. Electrode
impedances were kept below 3 kΩ. The electrophysiologi-
cal signals were filtered with a bandpass of 0.01–50 Hz
(half-amplitude cutoffs) and digitalized at a rate of 250 Hz.
Trials with base-to-peak EOG amplitude of more than
100 μV or amplifier saturation were automatically rejected
off-line.

Data Analysis

Single-Trial TF Analysis

Data were analyzed off-line using Matlab (Mathworks,
Natick, MA). Epochs of 3000 msec (750 sample points), in-
cluding 1000 msec previous word entrance, 700 msec word
presentation, and 2300 msec post word presentation were
used in the TF analysis. Hereafter, the word trial refers to
each word presentation in the stream. TF was computed by
a continuous wavelet transformation (CWT) on single-trial
data for each subject and electrode using a complex Morlet
wavelet defined as Equation 1,

wð f ; tÞ ¼ 2πσ2
t

� �−1=2
e
−t2

2σ2t e2iπf0t; ð1Þ

where the relation f0/σf (where σf = 1/(2πσt)) was set at 7
(Tallon-Baudry, Bertrand, Delpuech, & Pernier, 1996).
The TF representation of the signal s(t), at trial k, fre-
quency f and time t was computed as Equation 2,

Fkð f ; tÞ ¼ wðt; f Þ � skðtÞ; ð2Þ

where × denotes the complex convolution within a
spectral band ranging from 1 to 45 Hz in a 1 × 1 45 wavelet
scales (1 Hz resolution, sliding window 25 msec step). For

every timewindow and frequency bin, instantaneous ampli-
tude (spectral power) was computedby taking themodulus
of the resulting CWT coefficient, squaring and adding them
(i.e., for each time and frequency bin). The long epochused
in the analysis avoided edge effects during wavelet trans-
formation. Importantly, to study neural oscillatory activity
independent of ERP responses, ERP average was removed
from each trial before TF analysis (Makeig, 1993).

To trace the continuous brain oscillatory pattern activity
associated to the learning process, the spectral power anal-
ysis was computed on blocks of 50 word trials grouped
following the order of appearance during the experiment
(i.e., Words 1–51: first block; Trials 51–101: second block,
etc., pooling together the four exposed languages). For
each subject, words from each of the four languages were
first divided as a function of the minute of exposure and
pooled together. Then 50 consecutive word trials were
selected for each block (mean number of word trials per
language per block = 12.42, SD = 0.17), first for Minute 1
until all word trials free of artifacts were consumed. The
same procedure was used for words in the second minute
and so on. Hence, a total of 750 word trials free of artifacts
were used, which gave rise to 15 blocks of 50 words over
the four languages learned per subject. Therefore, each
block corresponded approximately to 9 sec of exposure
to the language. As the objective of the study was to follow
the ongoing neural mechanisms underlying the word and
rule learning processes from speech, time-to-time modu-
lations of spectral power (divided in blocks of 50 words
across languages) during the stimuli presentation were
measured as amplitude changes compared with a baseline
of −75 to 0 msec window previous to the presentation of
the language in the first block. Given the short interword
time window derived from the experimental paradigm
(i.e., 25 msec), there was a tradeoff between frequency
resolution and power calculation for the theta band. We,
therefore, decided to include a long prestimuli baseline of
1 sec in the initial analysis, which is sufficient to reliably
capture more than three theta cycles to calculate the spec-
tral power. Having accurately decomposed the data into
its frequency domain, we used a short time window (i.e.,
75 msec, equivalent to approximate ½ theta cycle at 7 Hz)
to normalize the poststimuli power spectra. This period
was set to avoid the influence of brain activity changes
evoked by the previous word presentation during base-
line period. However, a longer baseline of−200 to 0 msec
was also used for the analyses of this frequency band (4–
8 Hz) to ensure that the effects observed were not base-
line dependent.

Power spectrum analysis was centered in five commonly
studied frequency bands, namely theta (4–8 Hz), alpha (8–
12 Hz), beta (13–29 Hz), and low gamma (30–40 Hz). To
deal with the problem of comparing multiple frequen-
cies simultaneously, we averaged the power data of each
frequency according to the bands described, which is a
common method in TF studies (Hagoort et al., 2004).
Mean 0–700 msec spectral band power changes related
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to the learning process were submitted to an omnibus
repeated measures ANOVA including 16 electrodes (Fp1/
2, F7/8, F3/4, Fc5/6, Cp1/2, Cp5/6, P3/4, and T5/6) optimally
covering the whole scalp distribution of the effects and
four within-subject factors: Block (15 levels) × Anterior–
Posterior (frontal and parietal locations) × Hemisphere
(right and left) × Laterality (medial and lateral) (Cunillera
et al., 2006). These analyses allowed us to observe the
variations in each frequency band as a function of exposure
to the language stream as well as the topographical dis-
tribution of these effects. When necessary, degrees of
freedom were corrected using the Greenhouse–Geisser
epsilon value.

In addition, to study the spectral features specifically
characterizing the rule learning process, we further com-
pared the differences in the TF domain for two extreme
groups of participants: those who better learned the rules
of the languages and thosewhowerenot able to learn them.
Importantly, both groups were nevertheless matched for
their word learning capacity.Weused anM/EEG-based non-
parametric permutation test (Cluster-based nonparametric
permutation test) described by Maris, Schoffelen, and Fries
(2007) to avoid the need to define frequency bands on
a priori basis. Importantly, this analysis also deals with the
multiple comparison problem given the multiple number
of electrodes, frequencies, and word blocks. This method
provides two important advantages: (1) it provides a sim-
ple way to solve the multiple comparison problem and (2)
it is nonparametric, insofar as it does not depend on para-
metric assumptions about the probability distribution of
the data. This analysis was also implemented to control
for possible statistical bias when considering specific fre-
quency bands to be modulated throughout language
learning in previous ANOVA of spectral power bands. We
first calculated a paired t test value (i.e., Good vs. Poor
learners) for each of the 16 electrodes used in the previous
ANOVA and for each frequency and word block. We then
clustered the data that resulted larger than the threshold
of p < .05 (uncorrected) and also followed an adjacency
criteria so that at least one bin was contiguous in the Elec-
trode× Frequency×Word Block Space. The permutation
distribution was then obtained by (1) collecting the trials
of the two relevant experimental conditions (e.g., Good
vs. Poor) in a single set, (2) randomly partitioning the trials
into two subsets, (3) for each cluster, computing the sum
of the t2 values and then taking a test statistic equal to the
maximum of the cluster level statistic, and (4) repeating
Steps 2 and 3 1000 times to construct a histogram. The
nonparametric statistical test was finally performed by
calculating a “Monte Carlo” p value under the permuta-
tion distribution and comparing it with an alpha level
of 0.05.

EEG Coherence Analysis

To evaluate interelectrode phase coherence, we used the
approach proposed by Pfurtscheller and Andrew (1999).

Briefly, the phase difference between a pair of electrodes
is evaluated for each trial, frequency, and time point on
the basis of the wavelet analysis decomposition of EEG
data previously described. Then, the sum of difference
phase vectors modulated by the product of the amplitude
of the two signals is computed for all trials. Finally, this
value is normalized by dividing it by the product of the
auto-spectra of both signals. Mathematically this can be
computed as

Cxy e jw� � ¼ Sxy e jwð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx e jwð Þ⋅Syy e jwð Þp

;

wherein Sxy(e
jw), Sxx(e

jw), and Syy(e
jw) are cross- and

auto-spectra, respectively, and, j and w are the upper
and lower frequency limits studied. Because the cross-
spectra Sxy(e

jw) is generally complex, the coherence is
a complex function and can be viewed as follows:

Cxy e jw
� � ¼ Cxy e jw

� ��� ��e jλ e jwð Þ;

wherein |Cxy(e
jw)| is the amplitude coherence and λ(e jw)

is the phase coherence. Coherence ranges from 0 to 1 and
indicates the degree of synchrony (i.e., consistency) of the
two electrodes across trials. Thus, 0 would indicate a com-
plete random distribution of the phase difference and,
therefore total absence of synchrony, whereas 1 would in-
dicate a perfect overlapping of all phase differences across
trials, hence perfect synchrony.
Compared with other approaches previously used (e.g.,

Lachaux et al., 1999), in this method, the phase difference
vector is modulated by the product of the amplitudes of
both electrodes. Therefore, although synchrony does not
depend on the amplitude, the relative weight of each trial
in the global coherence magnitude affects the final compu-
tation. This is particularly interesting because only those
trials containing “real information” (and not noisy trials)
will have an impact in the final coherence measure. Coher-
ence analysis was performed in the present study at single-
trial level, and EEG spectral power was obtained from 0 to
700 msec word onset and extracted by a CWT to all elec-
trode locations (see Single-Trial TF Analysis).
A similar M/EEG-based nonparametric permutation test

(Cluster-based nonparametric permutation test) used in
the power analyses was also implemented for statistical
comparisons between Good and Poor learnersʼ coherence
data. The analyses followed the parameters described
in previous nonparametric permutation test for spectral
power data between groups, except that in this case, we
only implemented it to compare the differences between
groups in theta (4–8 Hz), alpha (8–12 Hz), and gamma co-
herence (20–30 Hz) separately. The range of the gamma
frequency in this analysis was adjusted to that range that
appeared significant in the previous power analyses (i.e.,
from 20 Hz, see Figure 3). Clustering data was restricted
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to sensorswhose paired t test value exceeded a threshold of
p < .05 (uncorrected) and fulfilled an adjacency criteria of
electrode contiguity, which we defined by those sensor
pairs that shared at least one sensor showing another
significant ( p < .05, uncorrected) contiguous sensor pair.
This analysis was performed for each block separately, and
the block showing a cluster of sensors with maxima sum of
t values was used to create the empirical permutation distri-
bution. The permutation distribution and significant thresh-
old (corrected) was obtained following the exact same
steps as in the power data.

Results

Language Learning Accuracies

The behavioral measures showed that participants were
able to both recognize words (62% ± 13.3%; t(19) = 4.04,
p < .001) and extract the underlying structure from the
language streams (54.5% ± 8.5%; t(19) = 2.34, p< .03) sig-
nificantly better than chance (50% for a two-alternative
forced-choice, one-sample t Test). Better performance in
the test for word recognition than for rule generalization
(t(19) = 2.4, p < .02) was observed. Concerning the two
groups of participants that differed in their rule learning
accuracy, we used the groups defined in the previous study
(De Diego-Balaguer et al., 2007) to compare the previously
reported ERP results with the current TF analyses. In

short, the eight participants with the highest performances
(>58%) were included in the Good learner group (mean=
63%, SD=5%), and the eight lowest performers, thosewho
performed at chance in the rule learning test (mean= 46%,
SD = 4), were assigned to the Poor learner group (t(14) =
−7.84, p < .0001). Performance in word learning was
comparable in the two groups (Good learners: 67% ±
14%, Poor learners: 59% ± 10%; t(14) = −1.39, p < .1).
The remaining four participants with intermediate values
were excluded from the group analyses.

Brain Oscillatory Dynamics Associated with Language
Learning Process

Results for the whole group. POWER SPECTRUM ANALYSIS.
TF results during the learning process at Fz locations are
depicted in Figure 2A. TF charts of continuous blocks re-
vealed a modulation of the four main spectral bands with
time, which comprised the theta (4–8 Hz), alpha (8–12 Hz),
beta (13–29 Hz), and gamma (30–40 Hz) bands. This
was confirmed by a main effect of Block in the repeated
measures ANOVA for theta (F(14, 266) = 3.56, p < .001,
η2 = 0.15), alpha (F(14, 266) = 2.67, p = .001, η2 = 0.12),
beta (F(14, 266) = 2.42, p = .001, η2 = 0.12), and gamma
(F(14, 266) = 3.81, p = .0001, η2 = 0.17) indicating spectral
changes as a function of language exposure. Moreover,
the evolution of the spectral power showed a different
modulation through time: whereas theta and alpha bands

Figure 2. Spectral power modulations as a function of language exposure during the learning phase. (A) Grand mean continuous tracking of
spectral power (2–45 Hz) modulations during the language learning process at the Fz electrode. TF charts correspond to Blocks 1, 3, 5, 7, 9, 11,
13, and 15, including 50 consecutive stimuli words each. (B) Grand mean theta, alpha, beta, and gamma scalp topography spectral power distribution
at the selected blocks of language exposure. Frequency band displayed corresponded to those bands that showed significant power modulation
during the language learning process. Asterisks at the third beta and gamma scalp distribution denote that scale plot is in the range of −70% to
100% power change in this plot. (C) Mean theta, alpha, beta, and gamma band power evolvement throughout language learning for the whole
group measured by blocks of 50-word exposures averaged through all electrodes. Bars indicate block-to-block SEMs.
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significantly increased linearly (F(1, 19) = 17.65, p < .001,
η2 = 0.48 and F(1, 19) = 13.16, p= .002, η2 = 0.41, respec-
tively), the beta and gamma bands were modulated in
a cubic mode (F(1, 19) = 7.35, p = .01, η2 = 0.29 and
F(1, 19) = 13.19, p < .002, η2 = 0.41, respectively). This
increase can be clearly observed in Figure 2C for both
the theta and alpha bands, whereas the increase observed
in the beta and gamma bands reached its maximum at
the third block and decreased afterward. The linear in-
crease in the theta band showed the same pattern in the
analysis with the longer baseline (−200 to 0) (F(1, 19) =
6.29, p = .02, η2 = 0.28).

As can be observed in Figure 2A, these power modula-
tions were block dependent but were constant throughout
the 0–700 msec word length. Although a peak in fre-
quency seems to be observed around 400 msec in the
theta band, rapid differences in the 0–700 msec range
are difficult to detect at low-frequency ranges (i.e., theta
and alpha band modulations) because of the uncertainty
principle of the wavelet analyses. That is, an increase
in frequency resolution involves a decrease in time sensi-
tivity (see Methods). It is nevertheless worth noticing
that, at higher frequencies (i.e., the gamma modula-
tion) where this limitation is not present, a sustained
power activity still characterizes the learning process.
Therefore, for further analyses and description of the
results, we focused in the entire time interval between 0
and 700 msec.

The topographical analysis of the 16 selected electrodes
for the theta band showed no significant interactions either
with scalp locations (all p> .05) or power evolution during
the learning process (interaction between block and topo-

graphical factors, in all cases p > .05); this indicates that
the theta band was distributed bilaterally in both anterior
and posterior areas throughout the learning process
in both the analyses with short and long baselines. Like-
wise, no main effect on the scalp distribution was observed
for the alpha band (all p > .05). However, in this case, the
distribution varied as a function of the time of exposure,
showing a progressive increase in posterior central loca-
tions throughout the learning process (Block × Anterior–
Posterior: F(14, 266) = 1.77, p= .043, η2 = 0.09). In contrast
to the previous analysis, the beta and gammabands showed
a progressive increase in frontal areas of the scalp through-
out language exposure (Block × Anterior–Posterior, beta
band: F(14, 266) = 2.22, p = .007, η2 = 0.1; gamma band:
F(14, 266) = 2.13, p = .01, η2 = 0.1). Furthermore, gamma
band power was more pronounced in the right com-
pared with the left hemisphere (Laterality × Hemisphere:
F(1, 19) = 4.97, p= .04, η2 = 0.21). The topographical repre-
sentation of each band power throughout word exposure
can be observed in Figure 2B.

Good versus Poor rule learners. POWER SPECTRUM ANALYSIS.
To elucidate the implication of the oscillatory patterns
observed specifically during the rule learning process, we
carried out a random permutation analyses comparing
two subsamples of the group: the group of Good learners
formed by those participants who showed the highest
scores in the rule learning test and the group of Poor learn-
ers that consisted of participants who performed at chance
in this test. Both groups were matched in their word learn-
ing performances (see accuracy results). The cluster-based
permutation analyses yielded a single cluster of sensor

Figure 3. Results of the nonparametric cluster-based permutation analysis to spectral power data between Good and Poor rule learners. (A) A
single cluster of sensor frequency data was identified as significant ( p = .006, corrected for multiple comparisons) at later stages of language
exposure. The gray spots indicate the number of sensor frequencies that represent significant results ( p < .05, uncorrected) when comparing
both groups. (B) Estimated distribution of max summed t values for clusters when combining Good and Poor learnersʼ power data. Dotted line
indicates the max t value obtained from the gamma cluster identified at later stages of language learning. The sensors that were included in the
gamma cluster are represented in the top left. In the top right, color bars indicate the average of gamma power (2–40 Hz), sensors, and word
blocks included in the cluster for Good and Poor learners. Bars show a clear enhancement of gamma power in Poor learners only.
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frequencies representing significant results ( p= .006; cor-
rected for multiple comparisons) (Figure 3A). This cluster
corresponded to an increased gamma band activity for
Poor learners (Figure 3B). The range of frequencies in this
cluster included those of the gamma band studied at the
whole group level, but it spanned lower frequencies cor-
responding to the beta band (20–45 Hz). This cluster was
distributed over the last period of language learning (i.e.,
Blocks 10–15) and included frontal, parietal, and occipital
sensors, which were slightly left lateralized for frontal and
parietal electrodes (see scalp representation in Figure 3B).
A second cluster with similar sensor frequency characteris-
tics as the previous one was apparent at the very beginning
of the learning process (see Figure 3A), although these re-
sults were not significant. Neither theta nor alpha bands
yielded significant results in this analysis (all this contrasts
p > .1; corrected).

Coherence Analysis

The results of the coherence analyses also showed that the
differences between groups were evident in the progres-
sion of brain dynamics as a function of exposure to the lan-
guage. Figure 4A shows the electrode pairs that displayed
significant coherence values ( p < .05) averaged for all the
learning processes for Good and Poor learners. Statistical
significance was determined as the square value of correla-
tion thresholds at p < .05. Averaging the whole learning
period, the pattern of coherence was relatively similar in
the two groups and was only significant between adjacent
electrodes. The results indicate that both groups showed
significant theta (4–8 Hz) and gamma (20–40 Hz) coher-
ence through widely distributed scalp locations with no

clearly specific pattern. Significant coherence appeared
only between adjacent electrodes indicating simple volume
conduction effects between nearby areas. Substantial dif-
ferences between groups were nevertheless observed re-
garding the strength of the synchrony patterns between
more distant electrodes in frontal and left temporal sites
and between parietal and left temporal sites in the theta
band, greater for poor learners (Figure 4A, right). Notably,
coherence in the alpha band showed practically no elec-
trode pair synchrony differences between groups.

To elucidate the progression through time of these syn-
chrony differences, the interelectrode coherence was fur-
ther computed as a function of the block of exposure. For
the purpose of comparison with the results obtained in the
power analyses, the same eight relevant periods depicted
in Figure 2A and B were analyzed (Blocks 1, 3, 5, 7, 9, 11,
13, and 15). A systematic pattern emerged when time of
exposure was taken into account highlighting clear distinct
long-range patterns of neural synchrony underlying the
learning process in the two groups. Although the two
groups showed almost no differences in coherence in the
first 10 sec of exposure (1–50 words), a clear dissociation
in their theta and gamma band coherence patterns arose
after approximately 1 min of exposure (i.e., 250 words, Fig-
ure 4B). Poor learners showedprogressive enhanced neural
synchrony between temporal and parietal areas and be-
tween frontal and parietal areas in the theta band. Good
learners revealed progressive enhancement of high fre-
quency coherence in the gamma band between bilateral
frontal and temporal electrodes and between parietal and
temporal electrodes ( p < .05) (Figure 4B). The applica-
tion of the permutation test to control for multiple com-
parison effects showed that, at the theta band, significant

Figure 4. Theta (4–8 Hz), alpha (8–12 Hz), and gamma band (20–40 Hz) long-range coherence changes as a function of language exposure.
(A) Significant interelectrode coherence in the theta, alpha, beta, and gamma bands throughout the entire language learning process (800 words)
for Good and Poor learners separately. Differences in coherence between Good and Poor learners are also displayed. Enhanced interelectrode
coherence for Good compared with Poor learners corresponds to positive values, whereas negative values indicate greater interelectrode coherence
for Poor learners. (B) Differences between Good and Poor learners for each spectral band (theta, alpha, and gamma) at Blocks 1, 3, 5, 7, 9, 11, 13,
and 15 including 50 consecutive stimuli words each. Significantly higher coherence for Good than Poor learners is plotted with red lines, whereas
significantly greater interelectrode coherence for Poor than Good Learners is represented with blue lines. Dotted lines indicate transition from first to
second minute, second to third minute, and third to fourth minute of exposure to the language. Baseline for all the analyses was −75 to 0 msec
for the analyses displayed in this figure. **p < .05, corrected for multiple comparisons and cluster in which the sum of t values was maximal;
*p < .05, corrected for multiple comparisons.
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clusters ( p< .05, corrected) belonged toBlocks 3, 5, 11, and
13 for Poor learners with the max summed t values
for Cluster 1 at Block 3 (101–150 words). For the Good
learner group, the gamma band clusters with significant
results ( p < .05, corrected) belonged to Blocks 5, 9, 11,
and 13 with max summed t values for Cluster 1 at Block 11
(451–500 words).

The difference between the amount of coherence in the
gamma and the theta bands significantly correlated with
the performance in the different tests in the two groups
only at specific blocks. This difference was positively cor-
related with rule learning performance very early in the
learning process (Block 3: r = .75, p < .05) and later at
Block 9 (r = .75, p < .05) for Good learners. These blocks
coincide with the first and last peaks of the coherence
clusters. Interestingly, for word learning, the direction of
the correlation was inverted in the two groups. Whereas a
positive correlation was significant during the first and sec-
ond minutes for Good learners (Block 3: r = .71, Block 5:
r = .62, Block 7: r = .66, Bloc 9: r = .65; all p < .05), a
negative correlation was observed at the end of the third
minute for Poor learners (Block 11: r = −0.75, Block 13:
r = −.79; p < .05) corresponding to the later significant
coherence cluster.

These correlations to specific blocks and the evolution
of the oscillatory patterns as a function of exposure sug-
gest that these differences may reflect a shift in the learn-
ing patterns of the two groups, with Good learners being
more focused on structural information, and Poor learners
being more focused on whole word memorization. How-
ever, because in this experiment measures of behavioral
performance were only recorded at the end of the learn-
ing process (i.e., after 4 min of exposure to the language),
we could not reject the possibility that these differences
may nevertheless reflect a better general performance
in the group of Good learners throughout learning. We,
therefore, performed a second experiment with a different
group of participants to explore the evolution of the per-
formances at shorter language exposures corresponding to
the time points where differences between groups started
to emerge in the EEG analyses.

EXPERIMENT 2

Thus, to understand the evolution of the rule learning per-
formance through time in the two groups of learners better,
we carried out a second post hoc experiment where per-
formances in word and rule learning were recorded after
2 min and after 4 min of exposure. If the electrophysiologi-
cal responses differentiating Good from Poor rule learners
corresponded to a shift in the learning strategies, then the
two groups should show a comparable performance in rule
learning at 2 min of exposure despite the better perfor-
mance shown after 4 min by the Good learners. In contrast,
if these differences do not reflect a shift in strategy but
rather a general better performance in the group of Good
learners throughout learning then, at 2 min as well as at

4 min, Good learners should show better performance
than Poor learners.

Methods

Participants

Thirty-two new volunteers (fourmen;mean age= 21, SD=
1.2; 31 are right-handed) participated in the study. None
of them had a history of neurological or hearing deficits.
Written consent was obtained from each volunteer before
the experiment, and all participants received course credits
for their participation.

Stimuli and Procedure

Participants in this experiment were presented with the
four languages used in Experiment 1. For two of the lan-
guages, participants were tested after 2 min of exposure
and, for the other two languages, after 4 min of exposure,
this latter test reproducing the same condition as Experi-
ment 1. For each condition, the 2 min and 4 min, one of
the languages was tested for word learning and the other
for rule learning forming a Latin square design. In this case,
test items were presented only once, leading to 19 test
trials per language.

Results

The results at 4 min replicated the effects observed in
Experiment 1. Participants were able to learn both words
(t(31) = 8.48, p < .0001) and rules (t(31) = 4.36, p < .0001)
above chance and displayed better performance in the
word learning test (74% ± 17.8%) than the rule learning
test (58.4% ± 14.3%) (t(31) = 3.81, p < .001). Follow-
ing the same procedure as in Experiment 1, the 12 partici-
pants with the highest performances in the 4-min test
(>63%)were included in theGood learner group (mean=
73.2%, SD = 7.2%), and the 12 lowest performers at
the rule learning test (mean = 43.9%, SD = 7.2%) were
assigned to the Poor learner group (t(22) = 9.95, p <
.0001). Performance in word learning was comparable in
the two groups (Good learners: 69.3%± 2%, Poor learners:
75.9% ± 1.8%; t(22) =−0.8, p< .4) (see Figure 5). The re-
maining eight participants with intermediate performances
were excluded from the group analyses.
After this segregation into groups, a repeated measures

ANOVA was carried out including two within-subject
factors, Time (2–4 min) and Learning (Word Rule), and
one between-subject factor, Group (Good − Poor learn-
ers of the rule). A significant interaction was obtained
(Time × Learning × Group: F(1, 22) = 13.77, p < .001),
confirming the prediction that the two groups shifted
their learning strategy after the first 2 min of exposure (see
Figure 5). In contrast to the observed results at 4 min
(Learning × Group: F(1, 22) = 23.07, p < .0001), at 2 min
of exposure, the two groups displayed the same level
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of performance for the word learning and the rule learn-
ing conditions (all p> .7; Learning × Group: F< 1). Both
groups showed a good level of overall achievement. Per-
formances were above chance levels at this time point for
word learning in both groups (Good: words t(11) = 5.7,
p < .0001; Poor: words t(11) = 6.9, p < .0001), for rule
learning in the Poor learner group (t(11) = 2.64, p <
.023), and marginally significant for rule learning in the
Good learners group (t(11) = 2.1, p < .055). The idea
of a shift in strategy is further reinforced by two addi-
tional results. On the one hand, good learners improved
their rule learning performance from 2 to 4 min of expo-
sure (t(11) = −2.88, p < .015). On the other hand, despite
poor learners correctly learning the rule after 2 min of ex-
posure (t(11) = 2.64, p < .023), they showed a significant
decrease in performance at 4 min (43.9%; t(11) = 3.48,
p < .005).

Discussion

By studying both synchronization of local neuronal assem-
blies (i.e., electrode-wise spectral power variations) as
well as their spatially distributed coordination patterns
(i.e., large-scale phase synchrony modulations) (Varela
et al., 2001), we have been able to observe dissociations
in these responses that occur during the learning of words
and during the extraction of the embedded rules in an arti-
ficial language. Theta, alpha, beta, and gamma bands
showed progressive spectral power modulations during
the learning process. To isolate the changes specifically re-
lated to rule extraction from speech, we compared two
groups of participants that were matched in their word
learning performance but different in their rule learning
abilities. We found that the gamma band was differentially
modulated in the two groups, both in terms of spectral
power as well as phase synchrony patterns. A boost in
long-range gamma band phase synchrony was observed
in the Good learner group. This systematic pattern of
phase coherence coordinating bilateral frontal and tem-

poral regions was observed from the third minute of the
learning period. In contrast, greater gamma band activity
in Poor learners appeared only in measures of local syn-
chrony, toward the end of the learning phase. However,
the pattern of long-range synchronization was focused
on the theta band in this group, displaying widespread
phase synchronization between frontal and parietal elec-
trodes. The implication of these band-specific modula-
tions is discussed in the following sections.

Theta Band Modulations

In our learning task, language was presented as a continu-
ous auditory stream inducing participants to constantly
evaluate new inputs and compare them with previously
presented syllable sequences to detect possible matchings
for word candidates. In that sense, in the current study, the
whole group of participants showed a progressive increase
in theta power through learning. However, this power was
accompanied by a greater long-range theta fronto-parietal
phase synchrony in the Poor learner group of participants
only. Theta synchrony between these regions has been re-
ported in human studies involving periods of information
retention and has been attributed to a commonmechanism
of neural interaction that sustains working memory func-
tions (Sarnthein et al., 1998). In our study, this increased
activity appeared after the period when differences in per-
formance between Good and Poor rule learners might
have started to emerge as indicated by the results of Experi-
ment 2, that is, after 2 min of exposure. This change in the
pattern of performance along with a theta power compa-
rable to the group of Good learners but accompanied by
higher theta fronto-parietal coherence suggests that Poor
rule learners might have applied a language learning strat-
egy that relies more heavily on the enhancement of mem-
ory traces of the words. Therefore, the increased theta
coherence observed in the group of Poor learners might
reflect the sharpening or increase in neural efficiency of this
memory-matching process across the learning blocks. Be-
cause Good learners rely on a different learning strategy,

Figure 5. Performance in
Experiment 2 for the word
and rule learning test after 2
and 4 min of exposure to the
language streams. Good and
Poor learners are segregated as
a function of their performance
after 4 min of exposure to
observe their performance
after shorter exposure (2 min).
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this sharpening process reflected by theta band modula-
tions was not observed (notice the differences of theta
phase synchrony in Figure 4B). These findings are consis-
tent with the increased theta coherence found by Weiss
et al. (2005) during sentence comprehension related to
updating of episodic memory information.

Gamma Band Modulations

The most interesting results were obtained in the gamma
band range. Increased synchrony in the gamma band has
been previously associated with attention and memory
( Jensen, Kaiser, & Lachaux, 2007). Because of its important
role in neuronal communication and synaptic plasticity,
this frequency band has been interpreted as an index of
increased synchrony between the neural representations
or cell assemblies created during the learning process
(Gruber, Keil, & Muller, 2001; Miltner et al., 1999). In the
present study, a clear dissociation was evident in the two
groups of learners. Poor learners displayed greater local
neural synchrony in the gamma band, mostly at bilateral
fronto-temporal electrodes, whereas Good learners en-
gaged long-range synchronization between frontal, parietal,
and temporal electrodes.

As previously mentioned, the process of learning a new
language seems to demand the involvement of working
memory but also an ongoing matching of bottom–up sen-
sory information with top–down biases. Several studies
have reported enhancement of induced gamma band
power in the 40-Hz range when perceiving a coherent
object (Busch, Herrmann, Muller, Lenz, & Gruber, 2006;
Gruber, Tsivilis, Montaldi, & Muller, 2004; Tallon-Baudry
et al., 1996), and its role has been emphasized in matching
stimuli to memory templates (Osipova et al., 2006; Gruber
et al., 2004; Herrmann et al., 2004; Tallon-Baudry, Bertrand,
Peronnet, & Pernier, 1998). Similarly, increased induced
gamma band activity in the anterior temporal electrode
sites has been found when participants listened to correctly
identified speech compared with those not identified from
degraded speech signals (Hannemann, Obleser, & Eulitz,
2007). These findings suggest that local gamma band en-
hancement during language learning could reflect the
matching process between auditory input and lexical candi-
dates that are built up continuously and incrementally dur-
ing the ongoing exposure to the language. Gruber, Muller,
and Keil (2002) argued that this activity might arise as a
learning process on the basis of strengthening and refresh-
ing lexical memory traces that are continuously handled in
working memory. Indeed, memory formation or mainte-
nance has been shown to be accompanied by neural oscil-
latory synchrony in the gamma range (Gruber & Muller,
2005; Pesaran, Pezaris, Sahani, Mitra, & Andersen, 2002; Fell
et al., 2001; Tallon-Baudry et al., 1998). These proposals are
consistent with our data that shows a clear frontal and tem-
poral enhancement of sustained gamma band power that is
not present at the initial presentations of the language
words. This increase is progressively enhanced at the end

of the learning phase when memory traces of words are
likely to be created (i.e., see Figures 2 and 3) and appears
in those participants who could learn the words of the
language but failed to identify the underlying rules. The ab-
sence of this local gamma power increase in Good learners
suggests that this group was not using a template-matching
strategy during learning.1

On the other hand, it is worth mentioning that power
differences between groups identified a cluster of spectral
power including frequencies in the gamma band range (30–
40 Hz) but also spanning the high beta band (20–30 Hz).
This result is consistent with recent studies addressing
the importance of neural oscillatory activity in the beta
range that is associated with rule-based (i.e., syntactic) pro-
cessing in sentence comprehension (Bastiaansen et al.,
2010; Davidson & Indefrey, 2007; Weiss et al., 2005).
In our previous work (De Diego-Balaguer & Lopez-

Barroso, 2010;DeDiego-Balaguer et al., 2007), we hypothe-
sized that rule learning, in contrast to word memorization,
required discarding of irrelevant variable information and,
thus, orienting the focus of attention to the relevant infor-
mation to be chunked. This orienting of attention might be
a core aspect for the acquisition of language rules. Gomez
and Maye (2005) previously argued that tracking of adja-
cent elements, which are necessary for word learning, is
actually the default strategy used when confronted with a
new language, whereas rule extraction requires a shift in
focus to the nonadjacent elements of the sequence, which
involves filtering out the variable and nonuseful informa-
tion. In that sense, a recent study (Rose, Sommer,&Buchel,
2006) showed that attention reallocation to global instead
of local features of a complex visual scene underlies the
process of binding neural representations to a global per-
cept. More important to our study, this work showed that
this shift could be mediated by long-range gamma band
coherence (Rose et al., 2006). This result is consistent with
our results because long-range gamma band coherence
was not accompanied by power modulation at the sensor
level. Such findings highlight the relevance of gammaphase
synchrony as a neural mechanism underlying long-range
connectivity in the present results. In relation to language
comprehension, this interpretation is also in agreement
with the greater coherence in the gamma band reported to
be related to increased syntactic complexity (Weiss et al.,
2005). The long-range synchronization observed is also
consistent with the results of the following fMRI studies:
those that report increased activation in the posterior pa-
rietal cortex as a function of rule learning during artificial
language exposure and during switching between two dif-
ferent language tasks (Opitz & Friederici, 2003; Gurd et al.,
2002; Sohn, Ursu, Anderson, Stenger, & Carter, 2000) in
addition to the involvement of frontal and subcortical
areas (Bahlmann, Schubotz, & Friederici, 2008; Forkstam,
Hagoort, Fernandez, Ingvar, & Petersson, 2006; Lieberman,
Chang, Chiao, Bookheimer, & Knowlton, 2004).
The results of the correlations of the gamma–theta co-

herence differencewith the performance of the participants
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in the two learning tasks supports the idea that word learn-
ing could have been performed using different strategies
in the two groups. Good learners appear to rely more on
gamma coherence and Poor learners rely more on theta
band coherence. In addition, Poor learners display greater
gammapower alongwith greater theta coherence. This pos-
sibility is also consistent with the results of Experiment 2,
which indicated that both groups displayed comparable
word and rule learning after 2 min of exposure despite their
different performance in rule learning after 4 min. The con-
solidation of the information learned with these different
strategies is reflected in different evolutions of the per-
formances in the two groups. An improved performance
through time is observed in the Good learners for rule
learning, and this indicates greater reliance on the use of
structural/grammatical information in performing the task.
In contrast, Poor learners relying more on whole word
information led to a decrease in the rule learning test per-
formance as exposure progressed.
The dissociated local and long-range gamma syn-

chronization modulations observed in Poor and Good
learning groups align with recent results from magneto-
encephalography in the visual domain. Combining the two
types of synchrony measures used in our study, Siegel and
colleagues (2008) showed that top–down bias of attention
was mainly reflected by long-range synchrony mechanisms
in the gamma band, whereas stimulus-dependent neuronal
activity was associated with changes in local visual sensory
synchrony in the same frequency range. In our study, real-
location of attention might exert top–down filtering to the
relevant information that carries the rule while discarding
irrelevant variable information (Gomez, 2002). This type of
attentional bias has been described as having an important
role in sentence comprehension (Astheimer & Sanders,
2009) and may underlie the increased gamma band coher-
ence observedwith syntactic complexity (Weiss et al., 2005).
Indeed, recent intracortical results from Womelsdorf et al.
(2007) demonstrated that gamma band synchronization
of neural groups enhances their effective synaptic strength
by cognitive top–down influences, which facilitates sen-
sory information in terms of sensitization of stimulus-
driven processing by means of increased expectations of
specific features (Summerfield et al., 2006; Friston, Penny,
& David, 2005). This modulation has also been described
in speech perception and could have a particularly impor-
tant role in the learning process (Davis & Johnsrude, 2007;
Hickok & Poeppel, 2007). However, although we have
favored an attentional account in this interpretation, oscil-
lations in the gamma band represent a versatile neuro-
physiological mechanism that may serve many roles in
addition to mediating attentional processes.

Conclusions

The study of neural oscillatory activity has been fruitful in
understanding top–down and bottom–up interactions in
perceptual processes (Buschman & Miller, 2007; Engel

et al., 2001). By applying these analyses to word and rule
acquisition from speech in adults, the results obtained in
the present study suggest that there are different roles of
attention and memory processes while learning these two
types of information. Word learning was characterized as
an increased coherence in the theta band (4–8 Hz), most
likely reflecting the matching between the words handled
in working memory and incoming stimulation and pro-
gressively reinforcing the memory traces for new words. In
contrast, rule learning was associated with a clear increase
in synchrony between frontal and temporal areas in the
gamma band. This result supports the hypothesis of a pos-
sible role of the reorienting of attention for rule learning.
However, this consideration requires an extension of our
findings and analyses to other experiments that focus on
tracing the neural mechanisms underlying the process of
language learning. We believe the results presented in this
study open a new perspective in understanding how high
cognitive functions tightly operate in the process of very
early stages of language learning.

Acknowledgments

This work has been supported by the Spanish Ministerio de Edu-
cación y Ciencia postdoctoral grants EX2005-0404 to R. D. B. and
2007-0956 to L. F. and research grants SEJ2005-06067/PSIC and
PSI2008-03901 to A. R. F. and PSI2008-3885 to R. D. B. We thank
Josep Marco-Pallarés for the advice on analysis methods, Toni
Cunillera and Matti Laine for helpful discussions on the data,
and Marco Buiatti and two anonymous reviewers for their valu-
able comments on a previous version of the manuscript.

Reprint requests should be sent to Ruth de Diego-Balaguer, Dept.
de Psicologia Bàsica, Faculty of Psychology, University of Barce-
lona, Pg. Vall dʼHebron 171, 08035 Barcelona, Spain, or via e-mail:
ruth.dediego@icrea.cat.

Note

1. Importantly, it has been recently shown that induced gamma
band power increases in the EEG are tightly driven by saccadic eye
movements (Yuval-Greenberg, Tomer, Keren, Nelken, &Deouell,
2008). However, these findings were confined to induced gamma
power that occurred in a specific time window of 200-300 msec
stimuli onset. In the present study, the induced gamma band
power increase arose along the 696-msec word presentation
(see Figure 2A), which excludes the possibility that eye move-
ments could be considered the main origin of these increments.
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