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Introduction

The complexity of the dependence structure between the random variables in various

fields (see, for example, Frees and Valdez 1998, Genest and Favre 2007) has led statis-

ticians to develop new methods that allow us to model a wide range of dependency

structures. The concept was introduced by Sklar (1959) in his pioneer work on copulae.

It was not until the 80´s that Genest and MacKay (1986b) shed light on the importance

of this type of functions. They show that, by simple calculations, it is possible to de-

rive many of their properties (on what is now called Archimedean copula), giving a

geometric interpretation of the Kendall coefficient of concordance.

The outstanding property of copulae is that they can isolate the function of the de-

pendency from the marginals and provide a simple way to generalise the dependence

beyond the linear correlation. Since then several methods have been introduced in the

estimation, simulation and inference regarding copulae. We can mention, among oth-

ers, the parametric and nonparametric methods investigated by Genest et al. (1995) and

Fermanian et al. (2004).

The essential objective in the insurance and finance field is to analyse the distribution

associated with the total loss generated by a multivariate random vector (X1, . . . , Xk)
′

of dependent losses or risk factors; in this work we define the total loss as: S = X1 +

. . .+Xk and the aim is to estimate the risk of loss. Considering the relationship between

the risk factors Xj , j = 1, . . . , k, the risk analysis may be faced with two problems:

first, what are the copula that best reflect the dependence structure between this factors.

Second, how the distribution function of the marginals should be estimated and inserted

in the copula.

The most common approach for the adjustment of copulae is to assume that the copula

belongs to a particular family, then to estimate the dependence parameters by the max-

imum pseudo-likelihood method proposed by Genest et al. (1995) and Shih and Louis

(1995). To select the copula there are some adequacy tests. This type of inference is

relatively recent and began with the work of Fermanian et al. (2004) and Genest et al.

(2006), but there are comparatively few to cover the many types of copulae and their

multiple properties.
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On the other hand, the presence of rare events complicates the study in the sense that

a failure in estimating of the model can generate large losses. The press article The

Formula That Killed Wall Street (see, Salmon 2009) is a clear example of where the

misuse of a copula can lead.

We should also bear in mind that the method of estimating the marginals may be crucial

to model the dependence behaviour of the variables. According to Nelsen (2006), in

the coupling of the joint distribution with marginals, the copula captures the aspect

that links them. We test this phenomenon during this work dealing with extreme value

data. Although the copula function is independent of the functions of the marginals

distributions (except some cases such as the Sarmanov copula as we see below), the

selected marginal distribution functions can influence significantly the estimated risk of

loss when rare events are detected.

To estimate the parameters of copula, in this work we propose to use smoothing meth-

ods based on the kernel estimator instead of the classical pseudo-observations. The use

of the range statistics as reference does not affect the dependence structure because

all copulae are invariant under monotonous transformation, but a substantial lack of

efficiency can occur, caused by the variability of the range statistics when inserted in

the copula. This lack of efficiency also occurs when we estimate quantiles using order

statistics. It is known that empirical adjustment of the distribution does not always lead

to the best estimator.

In this Thesis we investigate how to respond to the previous two questions, i.e. how

to select the copula and how to estimate marginal distributions when we have extreme

values or rare events.

1. First, we start with the identification of the presence of rare events in the historical

data. Once confirmed, by the adequacy test on copula, we proceed to identify the

type of dependence structure between the variables or at least rule out the copulae

that are not suitable.

2. Estimate the marginals and insert them in the copula.

3. Estimate the risk of loss.
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Thus we have three objectives. The first is to develop a test that will be able to detect the

existence of extreme values in terms of copulae. In the literature, there is little related

research. We can mention the first contribution of Ghoudi et al. (1998) based on the

integral probability transformation, later Ben Ghorbal et al. (2009) improve the test by

reducing the bias of the statistic used for the contrast. Kojadinovic et al. (2011) analyse

the test of extreme value copula using a max-stable hypothesis. Finally, there are other

tests of extreme value copula based on the Pickand function of dependence (see, for

example, Bucher 2011).

The second point is to estimate the marginal distribution, but unlike the most popular

nonparametric estimation with pseudo-observations, we use a modified kernel method

to estimate them. This method has never been tested before and its effectiveness has

been proved using simulations.

The good fit of the marginal and the rapprochement of the choice of copula lead us to

give a best fit to estimate the bivariate function distribution. This leads to the third point

which is to estimate the total risk of loss. Here, we also develop new results about the

Value-at-Risk, the risk measure most used by analysts.

We can say that this Thesis addresses two fundamental aspects of risk quantification.

The first is related to the theory of copula and estimating the risk of loss. The second

is related to the use of nonparametric and semiparametrics methods for estimating the

cumulative distribution function and the quantiles. All methods presented in this Thesis

were programmed with R (the programmes are available from the author).

The work has been divided into six chapters and the final conclusions. The first chap-

ter summarises the required results of the theory of copulae, estimation, inference and

simulation. The second chapter contains an introduction to the extreme value theory,

where we summarize some results related to some univariate distributions and bivariate

extreme value theory and copulae.

Chapters 3, 4, 5 and 6 correspond to four works that have been published and/or pre-

sented in different journals and congresses. Concretely, the third chapter corresponds to

the paper titled "Testing extreme value copulas to estimate the quantile", published in
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SORT-Statistics and Operations Research Transactions, Bahraoui et al. (2014c). In this

chapter we generalize the test proposed by Kojadinovic et al. (2011).

The fourth chapter contains the work titled "Extreme value copulas and marginal ef-

fects", published in New Perspectives on Stochastic Modeling and Data Analysis (in

preparation), Bahraoui et al. (2014b). We have studied the effect of using different ex-

treme value marginal distribution for estimating the risk. The risk measure used is the

Value-at-Risk (VaR). Finally, in order to control the risk, we estimate the bounds of the

VaR for the aggregate loss.

The chapter 5 includes the paper titled "Quantifying the risk using copulae with non-

parametric marginals" published in Insurance: Mathematics and Economics, Bolancé

et al. (2014). In this chapter we show that copulae and kernel estimation can be mixed

to estimate the risk of an economic loss. We analyse the properties of the Sarmanov

copula. We find that the maximum pseudo-likelihood estimation of the dependence pa-

rameter associated with the copula, using double transformed kernel estimation to esti-

mate marginal cumulative distribution functions, is a useful method for approximating

the risk of extreme dependent losses when we have large data sets.

Moreover, in the chapter 6, we include our latest work titled "Estimating extreme value

cumulative distribution functions using kernel approach" that has been presented at two

specialised conferences: RISK2013 (5a Reunión de Investigación en Seguros y Gestión

del Riesgo) and Risk Management in Insurance 2014, Bahraoui et al. (2013; 2014a).

This chapter has been divided into two parts; in the first, we analyse the domain of at-

traction of different mixtures of Extreme Value Distributions (EVDs) and, in the second,

we describe a new transformed kernel estimator of the cumulative distribution function

based on transformations and bias correction.

For illustrating the applicability of all proposed methods in the four chapters described

above we use a bivariate sample of losses from a real database of auto insurance claims.

Finally, we include a chapter with the main conclusions and future research. Some defi-

nitions and results which are necessary in the calculations are shown in the Appendices.



Chapter 1

Dependence

Copulas (derived from the Latin word copũlæ: link, tie) were used by Sklar (1959) in his

theorem on multivariate distributions. Fisher (1997) noted in the Encyclopedia of Statis-

tical Sciences that copulae are interesting for statisticians for two basic reasons. Firstly,

for their application for studying nonparametric measures of dependence, secondly, as a

starting point for constructing multivariate distributions representing dependency struc-

tures. Moreover, Genest and Favre (2007) noted that copulae can be used for renewing

the parametric estimation methods and constructing goodness of fit tests.

1.1 Theory of copulae

In this section, following the definitions of Nelsen (2006), dependence is discussed in

terms of copulae. The main contributions of this type of functions are that they are able

to explain dependence in a more sophisticated way than the linear correlation does, and

that they make it possible the construction of multivariate models with a non Gaussian

structure. We present here the most important properties derived from the theory of

copulae for the bivariate case, which can be extended to a higher dimension.

Definition 1.1.1. A two-dimensional copula is a distribution function defined in [0, 1]2

with uniform marginal distribution functions U(0, 1).
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Any two-dimensional copula must fulfill these three conditions:

(A1) C(u1, u2) ∀(u1, u2) ∈ [0, 1]2 increasing in each component.

(A2) C(u, 1) = C(1, u) = u,∀u ∈ [0, 1].

(A3) C(b1, b2)− C(b1, a2)− C(a1, b2) + C(a1, a2) ≥ 0,

∀(a1, b1), (a2, b2) ∈ [0, 1]2 such that a1 ≤ b1, a2 ≤ b2.

The first property (A1) ensures that our copula is a bivariate distribution. The second,

(A2) indicates that the marginals are uniformly distributed U(0, 1). The third, (A3) en-

sures that the copula is a distribution function.

The inversion method is widely used in order to simulate copulae (and probability distri-

butions in general). Then, it is only necessary to simulate uniformly distributed U(0, 1)

random values in order to obtain a simulated copula.

Let F be a continuous distribution function in R and F−1 be the inverse

function defined as:

F−1(α) = inf
{
x | F (x) = α

}
, α ∈]0, 1[.

If U is a uniform U(0, 1) random variable, then the distribution function of

F−1(U) is F . On the other hand, if X is a random variable with a distribu-

tion function given by F , then F (X) is uniformly distributed U(0, 1).

Note that if H is the joint distribution of a random variable (X1, X2) with marginals F1

and F2 and we consider the function

C(u1, u2) = H
(
F−1

1 (u1), F−1
2 (u2)

)
,

then we have:

C(u1, 1) = H
(
F−1

1 (u1),∞
)

= P
(
X1 ≤ F−1

1 (u1)
)

= P (F1(X1) ≤ u1) = u1.
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The same occurs with u2, therefore C fulfills condition A2. The remaining two con-

ditions result from the properties of a probability distribution. The theory of copulae

started with the research carried out by Sklar (1959) and it is almost impossible to ac-

complish a study on dependence without using this theorem. By using the well-known

Sklar´s theorem, the author proves that any multivariate distribution can be written in

terms of a copula where the dependency structure is isolated.

Let H be a two-dimensional distribution function with marginals F1 and

F2, then there exist a copula C : [0, 1]2 −→ [0, 1] such that:

H(x1, x2) = C
(
F1(x1), F2(x2)

)
∀x1, x2 ∈ R. (1.1)

Moreover, C is unique if F1 y F2 are continuous, otherwise, C is uniquely

determined on Rang(F1)×Rang(F2).

Conversely, if C is a copula and F1 and F2 are distribution functions,

then the function H defined in (1.1) is a joint distribution function with

marginals F1 and F2.

It is clear that the joint probability distribution of (X1, X2) includes the marginals F1

and F2 and the dependence represented by C. For modeling a two-dimensional sample

we can choose a model for the marginals and, independently, a suitable model for the

copula.

Next, we describe the most important parametric copulae, although it is difficult to find

a unique classification in the literature. Firstly, the so-called fundamental copulae are

associated to extreme dependency cases. Secondly, the implicit copulae, which are ex-

tracted from the Sklar´s theorem and have closed-form expressions. Finally, the explicit

copulae, which also have a closed-form expression and the structure depends only on

a single dependency parameter. Here we describe the Gaussian and t-Student copula

in the implicit case, and additionally the Sarmanov copula. After that, we also ana-

lyze the properties of Archimedean copulae for the explicit case. Then we examine the

properties of the most relevant extreme value copulae, which describe the dependency
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structure of extreme values. In the nonparametric case, we also consider the empirical

copula which can be useful in the estimation stage.

1.2 Fundamental copulae

One of the simplest copulae is the product copula or independence copula, which results

from the independency of the two variables:

C
∏

(u1, u2) = u1u2. (1.2)

Other copulae describing the dependence between two random variables are the

counter-monotonicity and monotonicity copulae, which coincide with the lower and

upper Fréchet bounds, respectively. The lower and upper Fréchet bounds are defined by

Fréchet (1957).

∀u1, u2 ∈ [0, 1], is fulfilled for each copula C:

max
(
u1 + u2 − 1, 0

)
= Cmin(u1, u2) ≤ C(u1, u2) ≤ Cmax(u1, u2) = min(u1, u2). (1.3)

1.3 Implicit copulae

The implicit copulae are defined as copulae associated to elliptic distributions. Their

most important feature is that they represent symmetric dependency relationships, and

then becomes irrelevant whether we are analyzing the right or left tail of the distribution.

The most popular examples are the Gaussian copula and t-Student copula, which are

defined next.

Definition 1.3.1. Let ρ be the linear correlation coefficient between two random

variables X1 and X2, the Gaussian copula with parameter ρ is:
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CGa
ρ (u1, u2) = Φρ

(
Φ−1(u1),Φ−1(u2)

)
=

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π
√

1− ρ2
exp

(
2ρst− s2 − t2

2(1− ρ2)

)
dsdt,

where Φρ is the two-dimensional standard Normal distribution with correlation coeffi-

cient equal to ρ, and Φ is the standard Normal one-dimensional distribution.

The t-Student copula is defined in the same way. Specifically, let tυ be the (central)

t-Student distribution function, where υ indicates the degree of freedom. Then, it is

equivalent to:

tυ(x) =

∫ x

−∞

Γ((υ + 1)/2)√
πυΓ(υ/2)

(
1 +

s2

υ

)−υ+1
2

ds,

where Γ is Euler function.

The corresponding two-dimensional distribution function with correlation parameter ρ

is equal to:

tυ,ρ(x1, x2) =

∫ x1

−∞

∫ x2

−∞

1

2π
√

1− ρ2

(
1 +

s2 + t2 − 2ρst

υ(1− ρ2)

)−υ+2
2

dsdt.

Definition 1.3.2. The two-dimensional t-Student copula with parameter ρ is defined as:

Ct
ρ,υ(u1, u2) = tυ,ρ

(
t−1
υ (u1), t−1

υ (u2)
)

=

∫ t−1
υ (u1)

−∞

∫ t−1
υ (u2)

−∞

1

2π
√

1− ρ2

(
1 +

s2 + t2 − 2ρst

υ(1− ρ2)

)−υ+2
2

dsdt.

When the degree of freedom increases, the t-Student copula becomes more similar to

the Normal copula.

In Figures 1.1 and 1.2 the simulated Gaussian and t-Student copulae are represented,

respectively. We observe differences in the tails of the two copulae, when the values

get close to (0.0) or (1.1), the t-Student copula presents a higher degree of dependence
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compared to the Normal copula. This is due to the fact that the t-Student distribution

decreases slower than the Normal distribution, and therefore the possibility to achieve

dependence in the tail is higher.

FIGURE 1.1: Density of a Gaussian copula ρ = 0.5.

FIGURE 1.2: Density of a t-Student copula ρ = 0.5, υ = 4.
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1.3.1 Sarmanov copula

Let (X1, X2) be a bivariate random vector with marginal probability distribution func-

tions (pdfs) f1 and f2. Also, let φ1 and φ2 two bounded non-constant function such

that: ∫ +∞

−∞
f1(t)φ1(t)dt = 0,

∫ +∞

−∞
f2(t)φ2(t)dt = 0,

then the joint bivariate pdf introduced by Sarmanov (1966), is defined as:

h(x1, x2) = f1(x1)f2(x2)
(

1 + ωφ1(x1)φ2(x2)
)
.

From Sklar’s theorem (1.1) the associated copula can be expressed as:

C(u1, u2) = u1u2 + ω

∫ u1

0

∫ u2

0

φ1

(
F−1

1 (t)
)
φ2

(
F−1

2 (s)
)
dtds (1.4)

and its density is:

c(u1, u2) = 1 + ωφ1

(
F−1

1 (u1)
)
φ2

(
F−1

2 (u2)
)
, (1.5)

where F1 and F2 are the cumulative distribution functions (cdfs) of X1 and X2, respec-

tively.

Parameter ω is a real number that satisfies the condition 1 + ωφ1(x1)φ2(x2) ≥ 0 for all

x1 and x2.

Note that when ω = 0, X1 and X2 are independent. This parameter is related to the

correlation between X1 and X2 (if it exists) (see, Lee 1996) as:

corr(X1, X2) = ω
ν1ν2

σ1σ2

, (1.6)

where ν1 = E(X1φ1(x1)), ν2 = E(X2φ2(x2)) and σ2
1 = var(X1), σ2

2 = var(X2).

When we take φ1(x1) = 1− 2F1(x1) and φ2(x2) = 1− 2F2(x2), we have the classical

Farlie-Gumbel-Morgenstern (FGM) copula. In this case the dependence parameter has

the range −1/3 ≤ ω ≤ 1/3.
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Another special case is when we consider functions of the type:

φ1(x1) = x1 − µX1 and φ2(x2) = x2 − µX2 , (1.7)

where µX1 = E(X1) and µX2 = E(X2). In this case, Lee (1996) shows that, if the
support of f1 and f2 is contained in [0, 1], the range of the dependence parameter is:

max

(
−1

µX1
µX2

,
−1

(1− µX1
)(1− µX2

)

)
≤ ω ≤ min

(
1

µX1
(1− µX2

)
,

1

(1− µX1
)µX2

)
. (1.8)

1.4 Archimedean copulae

The term "Archimedean" for this type of copulae was introduced by Ling (1965). This

family was developed by Sklar and Schweizer (1983) and became widely known as a

result of their applications to finance and other areas. Before that, the Canadian statisti-

cian Christian Genest contributed with his research to increase the application of these

functions in the field of statistics. There are several reasons that justify their application,

among others:

1. There are many parametric formulations, and therefore many dependency struc-

tures.

2. They have interesting properties.

3. They are easily constructed and simulated.

An Archimedean copula is obtained by using its generator, as it is explained in the

following definition.

Definition 1.4.1. Let ϕ : [0, 1] → [0,∞] be a decreasing function that fulfills the

condition ϕ(1) = 0. The pseudo-inverse of ϕ is defined as:

ϕ[−1](u1) =

 ϕ−1(u1) if 0 ≤ u1 ≤ ϕ(0)

0 if ϕ(0) ≤ u1 ≤ +∞.
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The pseudo-inverse ϕ[−1] is continuous, not increasing in [0,+∞] and strictly decreas-

ing in [0, ϕ(0)], moreover:

ϕ
(
ϕ[−1](t)

)
= min(t, ϕ(0)) =

 t if 0 ≤ t ≤ ϕ(0)

ϕ(0) ifϕ(0) ≤ t ≤ +∞.

Specifically, this type of copula is characterized by (see, Nelsen 2006):

Let ϕ and ϕ[−1] be the functions defined previously and let C : [0, 1]2 −→

[0, 1] be the function:

C(u1, u2) = ϕ[−1]
(
ϕ(u1) + ϕ(u2)

)
. (1.9)

Then C is a copula if and only if ϕ is convex.

When ϕ(0) = +∞ we say that the generator is strict. In this case C(u1, u2) =

ϕ−1
(
ϕ(u1) + ϕ(u2)

)
and the copula is an strict Archimedean copula.

The Archimedean family of copulae fulfills the symmetric property, which means

that C(u1, u2) = C(u2, u1), the associative property, that is
(
C(u1, u2), u3

)
=

C
(
u1, C(u2, u3)

)
and, finally, its generator is invariant, that is to say, if we multiply

it by any positive constant k, kϕ is also a generator of C (see, Nelsen 2006). The most

well-known examples of Archimedean copulae are described next.

1.4.1 Gumbel copula

Let ϕ(t) = (− ln t)θ, then according to (1.9) and for θ ∈ [1,+∞) we have:

Cθ(u1, u2) = exp
(
−[(− ln(u1))θ + (− ln(u2))θ]1/θ

)
.

In the limits of θ we have C1 = C
∏

, which represents the product copula, and C+∞ =

Cmax is the upper bound Fréchet copula.

In Figure 1.3 the density of a Gumbel copula with parameter θ = 2 is represented. We

observe that it takes large values in the extreme (1, 1), whereas in the extreme (0, 0)



14

takes low values. This is due to the fact that the Gumbel copula includes a dependency

structure only in the right tail, as we will see later on.

FIGURE 1.3: Density of a Gumbel copula θ = 2.

FIGURE 1.4: Density of a Clayton
copula θ = 2 (left).

FIGURE 1.5: Density of a Frank
copula with θ = 5 (right).
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1.4.2 Clayton copula

The generator of a Clayton copula is defined by θ ∈ [−1, 0[∪ ]0,+∞),

ϕθ(t) =
t−θ − 1

θ
.

By using expression (1.9), we obtain the expression of the Clayton copula family given

by:

Cθ(u1, u2) = max
(
(u−θ1 + u−θ2 − 1)−1/θ, 0

)
.

For θ > 0, the Clayton copula is strict and equal to:

Cθ(u1, u2) =
(
u−θ1 + u−θ2 − 1

)−1/θ
.

For θ > 0, the Clayton copula is complete, that is to say, limθ→0Cθ(u1, u2) = C
∏

is

the product copula and C−1 = Cmin is the lower Fréchet bound. Finally, C+∞ = Cmax

is equivalent to the upper Fréchet bound. The density of a Clayton copula presents large

values in the extreme (0,0), as shown in Figure 1.4, and low values in (1,1). Its structure

is similar to the Gumbel copula but in the opposite way. This is due to the fact that this

type of copulae are able to identify dependence in the left tail.

1.4.3 Frank copula

It is defined by the parameter θ ∈ (−∞, 0[∪ ]0,+∞) and its generator is:

ϕθ(t) = ln

(
1− eθ

1− e−θt

)
.

The Frank copula is defined as:

Cθ(u1, u2) = −1

θ
ln

(
1− (1− eθu1)(1− eθu2)

1− e−θ

)
.

The main characteristic of the Frank copula is that it does not present dependence in the

extremes, but in the center, as it is shown in Figure 1.5.



16

1.5 Extreme value copula

This type of copulae are associated with the extreme value theory. Nelsen (2006) noted

that extreme value copulae are obtained by transforming other copulae. To obtain an

extreme value copula we use the following result.

Let (X11, X21), (X12, X22), . . . , (X1n, X2n) be a two-dimensional sample of indepen-

dent and identically distributed observations, with joint distribution denoted by H . We

assume that it has an associated copula C with marginals F1 and F2. If we define the or-

der statistics X(1n) = max
{
X11, X12, . . . X1n

}
for X1, we observe that its distribution

is given by:

P
(
X(1n) ≤ x1

)
= P

(
∪X1i ≤ x1

)
=
[
P (X11 ≤ x1)

]n
.

In a similar way, the distribution of X(2n) = max
{
X21, X22, . . . X2n

}
is obtained.

Therefore, F(1n)(x1) = [F1(x1)]n y F(2n)(x2) = [F2(x2)]n, and we conclude that:

H(n)(x1, x2) = P
(
X(1n) ≤ x1, X(2n) ≤ x2

)
=

[
H(x1, x2)

]n
=
[
C(F1(x1), F2(x2))

]n
=

[
C([F(1n)(x1)]1/n, [F(2n)(x2)]1/n)

]n
.

So, we have that

C(n)(u1, u2) = Cn
(
u

1/n
1 , u

1/n
2

)
, ∀u1, u2 ∈ [0, 1]. (1.10)

This proves the next result (see, Nelsen 2006).

If C is a copula and n is a positive integer number, then the function C(n)

defined in (1.10) is a copula. Moreover, if for i = 1 . . . n, (X1i, X2i) are in-

dependent and identically distributed, with copula C, thenC(n) is the copula

associated to variables X(1n) = max{X1i} and X(2n) = max{X2i}.
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Definition 1.5.1. A copula is max − stable, if for any positive real number r and for

all u1, u2 in the interval [0, 1], we have that:

C(u1, u2) = Cr
(
u

1/r
1 , u

1/r
2

)
.

Example 1.5.1. The Gumbel copula Cθ:

Cθ(u1,u2) = exp
(
−[(− ln(u1))θ + (− ln(u2))θ]1/θ

)
,

belongs to the max− stable class of copulae. It can be easily proved that Cθ(u1, u2) =

Cr
θ

(
u

1/r
1 , u

1/r
2

)
.

Following a similar approach as in extreme value theory, which will be presented in the

next chapter, an extreme value copula is the limit of a copula in the maximum when it

exists. Therefore, as a definition we have:

Definition 1.5.2. A copula C∗ is an extreme value copula, if a copula C exists such that:

C∗ = lim
n→∞

Cn(u
1/n
1 , u

1/n
2 ),

for u1, u2 ∈ [0, 1]. Moreover, C is the so-called domain of attraction of C∗.

The connection between a max − stable copula and an extreme value copula is clear

and coincide when the limit exists (see, Nelsen 2006).

1.6 Empirical copula

The empirical copula, introduced by Deheuvels (1979), is based on an approximation

of the multivariate distribution by using ranges. The empirical distribution is simply the

distributions of the ranges along the sample. A natural approximation would be to use

the Sklar’s theorem:

Cn(u1, u2) = Hn

(
F−1

1 (u1), F−1
2 (u2)

)
,



18

where Hn is the empirical distribution of (X1, X2):

Hn(x1, x2) =
1

n

n∑
i=1

I
(
X1i ≤ x1, X2i ≤ x2

)
,

therefore, if F1n and F2n are the empirical distributions of X1 and X2, being Ri and Si

their corresponding ranges (the order of each element in the sample), then the empirical

copula is:

Cn(u1, u2) =
1

n

n∑
i=1

I
(
X1i ≤ F−1

1n (u1), X2i ≤ F−1
2n (u2)

)
, (1.11)

Cn(u1, u2) =
1

n

n∑
i=1

I
(
Ri

n
≤ u1,

Si
n
≤ u2

)
. (1.12)

1.7 Measures of association

In general, we say that two variables are associated if there is not independence between

them. However, there are several concepts of association, for example: linear correla-

tion (measured by the linear correlation coefficient of Pearson), concordance (which is

different from dependence, and it is measured by the Spearman’s ρ and the Kendall’s τ )

and, finally, the dependence in the tail (see, Cherubini et al. 2004).

1.7.1 Pearson’s ρ

Let X1 and X2 be two continuous random variables, the correlation between X1 and X2

is:

ρX1,X2 =
E
(

(X1 − µX1)(X2 − µX2)
)

σX1σX2

, (1.13)

where µX1 = E(X1), µX2 = E(X2), σ2
X1

= V ar(X1) and σ2
X2

= V ar(X2). This mea-

sure is widely used due to its nice properties. When X1 and X2 are independent then

ρX1,X2 = 0. Nevertheless, the opposite is in general false, except for the case when the
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distribution is Normal. That is to say, it is possible that the coefficient is equal to zero

but the variables X1 and X2 are not independent. Due to this property it is difficult to

capture dependence in the no-linear case.

The measures incorporated by using copulae have the advantage of being invariant un-

der monotone transformations of the marginals and, therefore, they avoid the difficulties

of using the Pearson’s ρ.

1.7.2 Range correlation

Range correlation coefficients are the Spearman’s ρ and the Kendall’s τ . They are also

called association measures and they consist on measuring the degree of intensity of a

monotone relationship between two variables.

Definition 1.7.1. Let (X1i, X2i), (X1j, X2j) two observations of a continuous random

variable vector (X1, X2), then we say that (X1i, X2i) y (X1j, X2j) are concordant if:

(X1i −X1j)(X2i −X2j) > 0.

On the contrary, we say that they are discordant if:

(X1i −X1j)(X2i −X2j) < 0.

Definition 1.7.2. Copula C1 is less concordant than copula C2 if:

C1(u1, u2) ≤ C2(u1, u2) ∀u1, u2 ∈ [0, 1]

and it is denoted as C1 ≺ C2.

1.7.3 Spearman’s ρ

The idea is to apply the correlation (1.13) directly to the ranges, and then an empirical

version is obtained.

Specifically, if Ri, i = 1, . . . , n, is the range of the observations (X11, . . . , X1n) and



20

Si, i = 1, . . . , n, is the range of the observations (X21, . . . , X2n), the range correlation

is equal to the correlation of the sample (R1, S1), . . . , (Rn, Sn) and the Spearman’s ρ

coefficient is equal to:

ρS = ρ(R,S)

and its estimator is:

ρ̂S = 1− 6

n(n2 − 1)

n∑
i=1

(Ri − Si)2.

This coefficient has the advantage of being invariant under an increasing transformation

of the observations, that is to say, if C1 ≺ C2, then we have ρS(C1) ≤ ρS(C2).

When Ri = Si, there is perfect positive dependence, (in this case, ρS = 1), whereas

Ri = n+ 1− Si indicates perfect negative dependence which corresponds to the value

ρS = −1. When copulae are used, the coefficient is equal to (see, Nelsen 2006):

ρS = 12

∫ 1

0

∫ 1

0

(
C(u1, u2)− u1u2

)
du1du2 = 12

∫ 1

0

∫ 1

0

C(u1, u2)du1du2 − 3.

1.7.4 Kendall’s τ

Let Cn and Dn be the number of concordant and discordant pairs, respectively, in a

sample (X1i, X2i), i = 1 . . . n, the Kendall’s τ is defined as:

τn =
Cn −Dn(

n

2

) =
4

n(n− 1)
Cn − 1. (1.14)

If we introduce the indicator:

Iij =

 1 si X1i < X1j and X2i < X2j, ∀i 6= j

0 otherwise

and Iii = 1, ∀i = 1 . . . n,

we observe that

Cn =
1

2

n∑
i=1

∑
i 6=j

(Iij + Iji) =
n∑
i=1

∑
i 6=j

Iij = −n+
n∑
i=1

n∑
j=1

Iij.
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Let

Wi =
1

n

n∑
j=1

Iij,

then formula Cn reduces to:

Cn = −n+
n∑
i=1

nWi = −n+ n2W, (1.15)

where

W =
1

n

n∑
i=1

Wi.

By doing a simple calculation we obtain the empirical expression of the Kendall’s τ .

We simply replace Cn (1.15), in expression (1.14):

τn =
4nW − n− 3

n− 1
.

For calculating τ = P (C)− P (D) in its theoretical version, where P (C) and P (D) are

the concordance and discordance probabilities, we use τn as an unbiased estimator of τ .

In terms of copulae, Genest and Rivest (1993) propose to calculate τ as:

τ = τ(C) = 4

∫ 1

0

∫ 1

0

C(u1, u2)dC(u1, u2)− 1. (1.16)

The dependency parameter fulfills the same monotonic property as the Sperman’s ρ,

this means that if C1 ≺ C2 we have that:

τ(C1) ≤ τ(C2).

By using the expression of the Fréchet bounds, regarding the copula C, we conclude

that:

τ(Cmin) = −1 ≤ τ(C) ≤ τ(Cmax) = 1,

where Cmin and Cmax are the Fréchet bounds defined in (1.3).
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1.7.5 Kendall’s τ for the Archimedean case

As a result of (1.16), the Kendall’s τ expressed in terms of the expectation is:

τ(C) = 4E
(
C(u1, u2)

)
− 1.

For the Archimedean copula Cϕ, we use the relationships defined in theorem of Genest

and MacKay (1986b):

Let X1 and X2 two random variables of an Archimedean copula, the

Kendall’s τ is equal to:

τ(Cϕ) = 1 + 4

∫ 1

0

ϕ(t)

ϕ′(t)
dt, (1.17)

except for the Frank’s copula which cannot be inverted in expression (1.17) (numerical

methods are used in this case). By using (1.17) the dependency parameter θ can be

calculated. Specifically we have:

τGumbel(X1, X2) = 1− 1

θ
,

τClayton(X1, X2) =
θ

θ + 2
,

τFrank(X1, X2) = 1− 4

(
1−D1(θ)

)
θ

,

where Dm(θ) is the Debye function with m = 1:

Dm(θ) =
m

θm

∫ θ

0

t

et − 1
dt.
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1.8 Dependence in the tail

Definition 1.8.1. The dependency coefficient of the right tail of two variables X1 and

X2 with distribution functions F1 and F2, respectively, is:

λu := λu1(X1, X2) = lim
α→1−

P
{
X2 > F−1

2 (α)|X1 > F−1
1 (α)

}
∈ [0, 1]. (1.18)

Similarly, the dependency coefficient of the left tail is:

λl := λl(X1, X2) = lim
α→0+

P
{
X2 ≤ F−1

2 (α)|X1 ≤ F−1
1 (α)

}
∈ [0, 1]. (1.19)

The coefficient λu = 0 indicates asymptotic independence of the right tail, whereas

λl = 0 indicates asymptotic independence of the left tail.

We note that in the case of the Gaussian copula λu = λl = 0, that is to say, dependence

is only identified in the center, whereas there is asymptotic independence in both tails.

Nevertheless, the t-Student copula has dependence in the center and also in both tails.

λu = λl = 2tυ+1

(√
υ + 1(−

√
1− ρX1X2)/(

√
1 + ρX1X2)

)
.

In general, for the family of elliptic copulae we have:

λu = λl.

If λu > 0, extreme events tend to occur simultaneously.

In terms of copulae, the dependency coefficient in the right tail can be expressed as:

λu = lim
α→1−

P
[
X2 > F−1

2 (α), X1 > F−1
1 (α)

]
P [X1 > F−1(α)]

= lim
α→1−

C(α, α)

1− α
,

where C(u1, u2) = 1 − 2u2 + C(u1, u2) is the survival copula. On the other hand,

dependence in the left tail is equivalent to:

λl = lim
α→0+

C(α, α)

α
.
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1.8.1 Dependency parameters in the tail for the Archimedean fa-

milies

For the Archimedean copulae we recall the following two results which can be used

(see, for example, Joe 1997;for the proff):

• Let C be a strict Archimedean copula with generator ϕ. If (ϕ−1)
′
(0) is finite then:

C(u1, u2) = ϕ−1
(
ϕ(u1) + ϕ(u2)

)
does not have dependence in the upper tail. Moreover if C has dependence in the

right tail, then (ϕ−1)
′
(0) = −∞ and the coefficient of dependency of the right

tail is given by:

λu = 2− 2 lim
α−→0

[(ϕ−1)
′
(2α)

(ϕ−1)′(α)

]
. (1.20)

• Let C be a strict Archimedean copula. The coefficient of dependency in the left

tail for the copula C(u1, u2) = ϕ−1(ϕ(u1) + ϕ(u2)) is equal to:

λl = 2 lim
α−→∞

[(ϕ−1)
′
(2α)

(ϕ−1)′(α)

]
. (1.21)

For the Gumbel copula the coefficients of dependency in the tail are:

λu = 2− 21/θ, y λl = 0,

and for the Clayton copula these coefficients are:

λu = 0, y λl =

 2−1/θ si θ > 0

0 si θ < 0.

Finally, the Frank copula does not have dependence neither in the right nor in the left

tail:

λu = λl = 0.
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1.9 Nonparametric estimation of a copula

The dependency structure is frequently estimated by using the maximum likelihood

method. A feasible alternative consist of using pseudo-observations. It is worth men-

tioning the pioneer work carried out by Genest (1987) on the Frank copula. Later,

Genest and Rivest (1993) analyzed Archimedean copulae and their inferences. Before

presenting these methods, we define the empirical distributions in both the discrete and

continuous case, as described by De Matties (2001).

Definition 1.9.1. Let X11 . . . X1n be an independent random variable. The empirical

distribution function is defined as:

Fn(x) =
Cardinal

{
i|1 ≤ i ≤ n,X1i ≤ x

}
n

, ∀x ∈ ]−∞,+∞[.

In the continuous case the empirical distribution is obtained by using the order statistic.

Definition 1.9.2. Let a,b be two real numbers such that:

a ≤ min (X11, ..., X1n) ≤ max (X11...X1n) ≤ b,

and letX(11), ...X(1n) be the values of a sampleX11...X1n sorted in increasing order. We

define X(10) = a and X(1(n+1)) = b. The continuous empirical distribution function is:

Pn
(
x; a,X(11)..., X(1n), b

)
,

which is equal to 0 if x ≤ a and equal to 1 if x ≥ b. For values of x such that a <

x < b, it takes the corresponding value given by the linear segment which connects

the mean points of the bars of the intervals [X(1i), X(1(i+1))]. The mean point of the bar

in the left side [X(11), X(12)] is connected with the point (a, 0) and the one of the bar

[X(1(n−1)), X(1n)] in the right side is connected with the point (b, 1).
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1.9.1 Procedure by Genest and Rivest

Genest and Rivest (1993) propose an estimator based on using pseudo-observations,

which are defined as follows:

Definition 1.9.3. Let C be a copula associated to a two-dimensional random variable

(X1, X2), such thatH is the joint distribution function and F1, F2 are the marginals. For

i, j = 1 . . . n, the pseudo-observations are equal to:

Zi = Ĥ(X1i, X2i) =
Cardinal

{
(X1j, X2j)|X1j < X1i, X2j < X2i

}
n− 1

. (1.22)

The objective is to estimate the univariate distribution function

K(t) = P (C(u1, u2) ≤ t) = P (H(X1, X2) ≤ t) , (1.23)

taking into account that u1 = F1(X1) y u2 = F2(X2) are uniforms U(0, 1).

Definition 1.9.4. A nonparametric estimator of K(t) can be written as:

Kn(t) =
1

n

n∑
i=1

[
i : Zi ≤ t

]
.

Genest and Rivest (1993) proved that the distribution of Zi defined in (1.22) converges

to K(t) = P
[
H(X1, X2) ≤ t

]
. Moreover, the empirical distribution function Kn(t) of

the variable Zi is
√
n-consistent estimator of K(t) (it converges in probability to K(t)).

In general, the function K(t) is not distributed as an U(0, 1) (K(t) ≥ t, ∀t[0, 1]). This

function is known as Kendall distribution function, given that it has a close relationship

with the Kendall’s τ defined in (1.16):

τ = 3− 4

∫ 1

0

K(t)dt. (1.24)
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Only for Archimedean copulae the function K guarantees the uniqueness of the copula.

In some cases, this function is used to derive inference for the copulae, as the goodness-

of-fit tests (see, for example, Genest and Rivest 2001, Genest et al. 2009, Nelson et al.

2001; 2003;among others).

1.9.2 Inference regarding the copula parameter

Genest and Rivest (1993) proved that the distribution of the estimator τn of the Kendall’s

τ defined in (1.14) is:

τn − τ
4S

∼ N(0, 1). (1.25)

Where

S2 =
1

n

n∑
i=1

(
Zi + Z̃ − 2Z

)2

,

and Z̃ , Z are two terms equivalent to:

Z̃ =
1

n− 1

n∑
i=1

Iij =
1

n− 1

n∑
i=1

{
j : X1i ≤ X1j, X2i ≤ X2j

}
,

Z =
1

n

n∑
i=1

Zi.

By applying the Delta method to the transformation of θ = g(τ) which results in (1.25)

(where g is a differentiable function) the assymptotic distribution of θ̂n = g(τn) is equal

to:

θ̂n − θ ∼ N

(
0,

1

n
(4Sg′(τn))2

)
.

Finally, if ξα/2 is the quantile of the standard Normal distribution N(0, 1), a confidence

interval for θ at a confidence level 100(1− α)% is equal to:

θ̂n ± ξα/2
1√
n

4S|g′(τn)|.
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1.10 Maximum likelihood method

The maximum likelihood method (MLE) consist of finding the set of parameters which

come from the copula and marginals simultaneously. According to Cherubini et al.

(2004) the procedure consist on the following steps:

1. Identification of the marginals.

2. Definition of a suitable copula.

If we consider a two-dimensional sample (X11, X21), . . . , (X1n, X2n) which has a para-

metric representation, so the marginals associated to the random variables X1 and X2

are of the form {F1α ;α ∈ A} y {F2β ; β ∈ B}, (A and B parameter classes) respec-

tively, the two-dimensional parametric law, according to the Sklar’s theorem, is equal

to:

H(x1, x2) = Cθ
(
F1α(x1), F2β(x2)

)
,

and the density (when it exists) is given by:

h(x1, x2) = cθ
(
F1α(x1), F2β(x2)

)
f1α(x1)f2β(x2),

where cθ = ∂2Cθ(u1, u2)/∂u1∂u2, f1α and f2β are the densities of F1α and Fβ2 , respec-
tively. The log-likelihood function is equal to:

L(θ, α, β) =

n∑
i=1

ln
[
cθ(F1α(X1i), F2β (X2i))

]
+

n∑
i=1

ln(f1α(X1i)) +

n∑
i=1

ln(f2β (X2i)). (1.26)

The maximum likelihood estimator is obtained by maximizing the function (1.26),

(θ̂, α̂, β̂)MLE = maxL(θ, α, β).

By using this method, the optimization process might be quite time-consuming. More-

over, it can also happen that no solution is found to the maximization problem. In order

to solve these problems, Joe (1997) introduced the so-called inference from marginals

procedure, which consists on:
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1. Firstly, the parameters α and β are estimated separately by maximizing the log-

likelihood function of the marginals

n∑
i=1

ln
(
f1α(X1i)

)
, and

n∑
i=1

ln
(
f2β(X2i)

)
.

2. Secondly, for i = 1 . . . n is established û1i = F1α̂(X1i) and û2i = F2β̂
(X2i).

3. Finally, the estimator θ̂ is chosen as the one which maximizes the function:

L(θ) =
n∑
i=1

ln
(
Cθ(û1i, û2i)

)
.

1.11 Pseudo-likelihood estimation

It is a nonparametric method and consists of approximating the marginals F1 y F2 by

using the empiricals:

F1n(x) =
1

n

n∑
i=1

I
(
X1i ≤ x1

)
, and F2n(x2) =

1

n

n∑
i=1

I
(
X2i ≤ x2

)
.

These estimators have nice properties. Based on the convergence established by the

Glivenko-Cantelli theorem:

sup
x∈R
|F1n(x)− F1(x)| → 0 and sup

x∈R
|F2n(x)− F2(x)| → 0.

The log-likelihood function in this case is equal to:

L(θ) =
n∑
i=1

ln
[
cθ
(
F1n(X1i), F2n(X2i)

)]
.

An estimator of the parameter θ will have the following expression:

arg max
θ̂∈Θ

L(θ̂).
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Another alternative consists on replacing the pseudo-observations with their ranges. The

change can be justified by arguing that it has no impact on the dependency structure,

as the copula does not depend on the marginals, the log-likelihood function in this case

can be expressed as:

L(θ) =
n∑
i=1

ln

[
cθ

(
Ri

n+ 1
,
Si

n+ 1

)]
.

Note that n + 1 appears in the denominator in order to avoid numerical problems in

(1, u2) and (u1, 1) when differentiating the function ln[cθ(., .)].

1.12 K-Plot

The K-Plot is a two-dimensional graphical tool, which shows the dependency structure.

It is proposed by Genest and Boies (2003) and it is inspired on the QQ-plot. When data

are independent the dots in the graph are close to the diagonal x1 = x2 and any departure

from this diagonal line indicates dependence in the data. Perfect positive dependence,

when it occurs, will be depicted with a curve over the diagonal, and perfect negative

dependence will result in a line below the diagonal. The technique consist on plotting

the pairs (Wi,n, H(i)) such that:

H(1) < . . . < H(n)

is the order statistic associated to the quantities of H1 . . . Hn which represent the modi-

fied pseudo-observations:

Hi =
Cardinal

{
(X1j, X2j)|X1j ≤ X1i, X2j ≤ X2i

}
n− 1

=
nZi − 1

n− 1
. (1.27)

On the other hand, Win is the expected value of the i-th order statistic under the hypoth-

esis that the copula W = C(u1, u2) is an independence copula:

Win = n

(
n− 1

i− 1

)∫ 1

0

tk0(t)[K0(t)]i−1[K0(t)]n−1dt,
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where

K0(t) = t− t log(t), t ∈ [0, 1].

Finally, k0(w) is the density of K0(t).

Example 1.12.1. In Figure 1.6 the perfect positive dependence is shown with the K-Plot

by using a sample of 100 generated values of a variable X ∼ exp(1) and with its cubic

relationship Y = X3. On the other hand, in Figure 1.7 the perfect negative dependence

is shown by using a sample of 100 generated values of a variable X ∼ exp(1) and with

the relationship Y = −X2.

FIGURE 1.6: K-Plot of a perfect positive dependence.

1.13 Simulating from copula

In general, to generate a two-dimensional random variable from a copula we use a

procedure based on the conditional distribution of the random vector (U1, U2), (see,
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FIGURE 1.7: K-Plot of a perfect negative dependence.

Nelsen 2006):

P (U2 ≤ u2|U1 = u1) = Cu1(u2),

where Cu1(u2) = lim
δu1→0+

C(u1 + δu1, u2)− C(u1, u2)

δu1

=
∂C(u1, u2)

∂u1

.

The algorithm is implemented as follows:

1. Firstly, two independent random variables u1 and t are generated from a Uniform

distribution U(0, 1).

2. Set u2 = C
[−1]
u1 (t) where C [−1]

u1 denotes a quasi-inverse of Cu1 . The quasi-inverse

is:

C [−1]
u1

(t) =


inf {x|Cu1(x) ≤ t} if t = 0

C−1
u1

(t) if t ∈ (0, 1)

inf {x|Cu1(x) ≤ t} if t = 1

3. The desired pair is (u1, u2).
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However, the conditional distribution for the Gumbel copula is not invertible. So, to

generate the random variable from this copula we can use the following two algorithms:

Firstly, the algorithm proposed by Genest and MacKay (1986a) (which works only in

the bivariate case) consisting on:

1. Generating two independent random variables ũ1 and t from the Uniform distri-

bution U(0, 1).

2. Setting z = K−1(t), whereK(s) = s− ϕ(s)
ϕ′(s)

, where ϕ(·) is the generator function

for the Gumbel Archimedean copula .

3. Setting u1 = ϕ−1(ũ1ϕ(z)) and u2 = ϕ−1((1− ũ1)ϕ(z)).

Secondly, the algorithm proposed by Chambers et al. (1976) (which works for any di-

mension) consisting on:

1. Generating two independent random variables d1 and d2 from an Exponential

distribution Exp(1).

2. Generating a stable distribution S with the parameters (1/α, 1, 1, 0) where α is

the estimated parameter of the copula.

3. Setting u1 = ϕ−1(d1
S

) and u2 = ϕ−1(d2
S

)

Finally, for the Gaussian and t-Student copulae we propose to use a classical simulation

method (see, Devroye 1986). This method ensures that the simulated values for the

t-Student have heavier tails than those of the Gaussian. It consists on:

1. Generating two independent random variables u1 and t from the Uniform distri-

bution U(0, 1).

2. Setting X1 = F−1(u1) and Z2 = F−1(t), where F is the marginal cdf used to

construct the copula.
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3. Transforming these variables by rotation about the origin:

X1 = X1

X2 = ρX1 +
√

1− ρ2Z2.

4. Transforming back into uniform variables applying cdf:

u1 = F (X1)

u2 = F (X2).



Chapter 2

Extreme value distributions

Extreme Value Theory (EVT) deals with the measurement and fitting of events which

have a very low probability to occur. According to Coles (2001), extreme values are

scarce and very often larger sample sizes are required in order to carry out the estima-

tion. Then, an extrapolation from observable to unobservable levels should be done and

EVT provides the procedure in order to do it. EVT is also related to the study of the

minimum and maximum of a random variable.

From a historical perspective, EVT was intensively developed at the beginning of 1920,

firstly with the pioneer work by Bortkiewicz (1922), who worked with the distribution

of the range of random samples from the normal distribution, and later with the con-

tributions of Von Mises (1923) and Fréchet (1927), who calculate the expectation and

studied the limiting distribution. Finally, Fisher and Tippet (1928) provided the three

possible limiting distributions of an extreme value distribution. Later, Von Mises (1936)

provides the conditions for the weak convergence to each of these limit distributions.

In the forties, Gnedenko (1943) unified these results and presented a necessary and

sufficient condition for the convergence of the maximum of a sequence of random

variables. It was in 1958 when Gumbel (1958) drew the attention of engineers and

statisticians interested in a formal application of EVT, but according to Kotz and

Nadarajah (2000), Fuller (1914) used EVT for investigating foods, whereas Griffith

(1921) applied the same theory to discuss the phenomena of rupture and flow in solids.

Nowadays, EVT is used in different areas of risk management (see, for example, the

book by Embrechts et al. 1997;on finance and insurance). Additionally, in the book
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by Beirlant et al. (2004) there are several examples of the application of EVT in the

fields of hydrology, meteorology and natural phenomena. There are also several books

on EVT for the two-dimensional case, among others Tiago de Oliveira (1984), Resnick

(1987), Galambos (1978) and Coles (2001). Finally, it is worth mentioning the articles

by Abdous et al. (1999) and Caperaá et al. (2000) dealing with extremes in terms of the

dependency function.

Let X1, . . . , Xn be n independent and identically distributed variables, the maximum

is:

Mn = max
{
X1 . . . , Xn

}
,

where X1, . . . , Xn are independent and identically distributed variables, with distribu-

tion function F . The exact distribution of Mn is obtained by taking into account that:

P (Mn ≤ x) = P
(
X1 ≤ x, . . . , Xn ≤ x

)
= P

(
X1 ≤ x

)
. . . P

(
Xn ≤ x

)
= F n(x). (2.1)

As noted by Coles (2001), this is not very useful in practice as the distribution F is

unknown. A possibility is to estimate F by using standard statistical methods and then

replace it in (2.1), but then it is possible that small errors in the estimation of F could

result in bigger errors in the power F n.

An alternative approximation consist of assuming that the distribution is unknown and

then finding the distribution family to which F n belongs to. However, F n is asymptot-

ically degenerate, i.e. if the the right end point of F is r(F ) = sup{t|F (t) < 1}, we

have:

lim
n→∞

F n(x) = lim
n→∞

FMn(x) =

 0 si x < r(F )

1 si x ≥ r(F ).
(2.2)

This is proved by taking into account that ∀ε > 0:
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P
(
|Mn − r(F )| ≥ ε

)
= P

(
Mn ≥ r(F ) + ε) + P (Mn ≤ r(F )− ε

)
= P

(
Mn ≤ X − ε

)
= F n

(
r(F )− ε

)
and as F (r(F )− ε) < 1 it can be proved that Mn converges in probability to r(F ), (and

this implies its convergence in distribution to (2.2). Therefore, the distribution of Mn is

asymptotically degenerate.

The problem is solved if the variable Mn is linearly renormalized with

M∗
n =

Mn − an
bn

, (2.3)

where an > 0 and bn ∈ R are two sequences. Appropriate values of these constants

stabilize the scale and location of M∗
n. Fisher and Tippet (1928) prove that:

If two real series an > 0 and bn ∈ R exist such that:

P
(Mn − an

bn
≤ x

)
→ G(x) when n→∞, (2.4)

where G is a non degenerate distribution, then G belongs to the following

families:

Maximal Fréchet

G(x) =

 0 if x ≤ µ

exp(−(x−µ
σ

)−α) if x > µ.
(2.5)

Maximal Weibull

G(x) =

 exp(−(µ−x
σ

)α) if x < µ

1 si x ≥ µ.
(2.6)
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Maximal Gumbel

G(x) = exp(−e(x−µ)/σ), x ∈ R (2.7)

where µ ∈ R,σ > 0 and α > 0.

According to Jenkinson (1955), these three types of parametric distributions can be

unified in a single extreme value distribution family:

Gµ,σ,ξ(x) = exp
{
−
(
1 + ξ

(
x−µ
σ

))−1/ξ
}

if ξ 6= 0

Gµ,σ,ξ(x) = exp
{
− exp

(
−x−µ

σ

)}
if ξ = 0

(2.8)

and it is defined in the set {x : 1 + ξ(x−µ)/σ > 0}, where µ is the location parameter,

σ > 0 is the scale parameter and ξ ∈ R is the shape parameter.

It is also called tail index because it indicates the tail thickness, that is to say, the larger,

the heavier the tail of the distribution is. In this chapter we describe the extreme value

distribution (EVD) that we will use in posterior analysis.

2.1 Domain of attraction

When the limit Gµ,σ,ξ exists and it is not degenerate, then we say that the variable X

or its distribution function F belongs to the maximum domain of attraction of Gµ,σ,ξ

and it is denoted by MDA (Gµ,σ,ξ). Specifically, we look for necessary and sufficient

conditions on F so that belongs to the MDA (Gµ,σ,ξ). Regarding extremes, the problem

consist on knowing which is the domain of attraction of a distribution and how to choose

the series an and bn.

In general, a distribution function F belongs to the domain of attraction of distribution

Gµ,σ,ξ, with normalization parameters an > 0 and bn ∈ R if:

lim
n→∞

nF̄ (anx+ bn) = −n log
(
Gµ,σ,ξ(x)

)
, x ∈ R. (2.9)
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When Gµ,σ,ξ(x) = 0 the limit is infinite.

The domains of attraction of some important distributions can be found in (see, Castillo

et al. 2004, Embrechts et al. 1997), among them:

1. Pareto, Burr, Cauchy and log-gamma distributions belong to the Fréchet MDA.

2. Normal, log-normal, Gamma and Weibull distributions belong to the Gumbel

MDA.

3. Uniform and Beta distributions belong to the Weibull MDA.

In this section, we obtain the domain of attraction of some distributions which have been

used in several articles which are part of the core of this thesis, such as the Generalized

Champernowne, Weibull and some mixtures of log-normal and Pareto distributions.

2.1.1 Champernowne distribution

The Generalized Champernowne distribution was developed by Buch-Larsen et al.

(2005). Its probability distribution function (pdf) and cumulative distribution function

(cdf) are:

fα,M,c(x) =
α(x+ c)α−1

(
(M + c)α − cα

)
(x+ c)α + (M + c)α − 2cα

and

Fα,M,c(x) =
(x+ c)α − cα

(x+ c)α + (M + c)α − 2cα
,

with parameters α > 0, M > 0 and C ≥ 0. This distribution converges to a Pareto

distribution in the tail:

fα,M,c(x) −→ α[(M + c)α − cα]

xα
,

with a restricted domain x ∈ [((M + c)α − cα)1/α,∞).

Buch-Larsen et al. (2005) analyzed the role of the three parameters associated with

the Generalized Champernowne distribution and conclude that α is a parameter that

controls the shape of the tail; M is a scale parameter and, finally, c controls the shape
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of the distribution near zero, although, it also plays the role of a scale parameter. The

Generalized Champernowne distribution has a very flexible shape. It is similar to a

Lognormal distribution for low values and tends to a Generalized Pareto for extreme

values of the variable (see, Buch-Larsen et al. 2005).
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FIGURE 2.1: Density of the Champernowne distribution with different parameters.

In Figure 2.1, we visualize the effect of the parameters c and α in the shape of the pdf

with M = 3. We observe that as c increases the mode of the shape moves to the right

and as α decrease the tail is heavier.

In the next proposition we establish what is the MDA of the Champernowne distribution,

later we prove this result.

Proposition 2.1.1. The Generalized Champernowne distribution belongs to the MDA

of Fréchet.

Proof. (Castillo et al. 2004;p.203) defines the necessary and sufficient condition on

F (x) for belonging to the MDA of Gµ,σ,ξ defined in expression (2.8):
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lim
x→0

F−1(1− x)− F−1(1− 2x)

F−1(1− 2x)− F−1(1− 4x)
= 2−ξ (2.10)

where ξ is the shape parameter of Gµ,σ,ξ. The quantile of the Generalized Champer-

nowne distribution with α > 0,M > 0 and c ≥ 0 is:

F−1(x) =

(
x[(M + c)α − 2cα] + cα

1− x

) 1
α

− c ∀u ∈ [0, 1[. (2.11)

Replacing this term in expression (2.10) we obtain:

limx→0
F−1(1− x)− F−1(1− 2x)

F−1(1− 2x)− F−1(1− 4x)
=

limx→0

(
(1−x)[(M+c)α−2cα]+cα

x

) 1
α −

(
(1−2x)[(M+c)α−2cα]+cα

2x

) 1
α

(
(1−2x)[(M+c)α−2cα]+cα

2x

) 1
α −

(
(1−4x)[(M+c)α−2cα]+cα

4x

) 1
α

=
1− 1

2α

1
2α

(1− 1
2α

)

= 2α

with ξ = −α < 0, then the MDA of the Generalized Champernowne distribution is the

same as the type Fréchet distribution. Thus a possible choice of normalized parameters

is: an = 0 and

bn = F−1(1− 1

n
) =

(
(1− 1

n
)[(M + c)α − 2cα] + cα

1
n

) 1
α

− c.

The same result can be obtained by using the following condition (see, for example,

Embrechts et al. 1997):

lim
x→∞

1− F (tx)

1− F (x)
= lim

x→∞

(x+ c)α + (M + c)α − 2cα

(tx+ c)α + (M + c)α − 2cα

= t−α.
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2.1.2 Weibull distribution

This distribution is used in the field of reliability and in the fit of failure times in physical

systems. The pdf of the Weibull is:

fk,λ(x) =

 k
λ
(x
λ
)k−1e−( k

λ
)k si x ≥ 0

0 si x < 0,

and its cdf is:

Fk,λ(x) = 1− e−( x
λ

)k .

The mean and variance are, respectively:

E(X) = λΓ(1 +
1

k
) and V ar(X) = λ2

[
Γ(1 +

2

k
)− Γ2(1 +

1

k
)
]
,

such that, Γ(x) =
∫ +∞

0
tx−1e−tdt is the Euler’s Gamma function.

The Weibull distribution has a shape or location parameter k and a scale parameter λ.

A value k < 1 indicates that failures decrease with time, when k = 1 the failure rate is

constant in time and, finally, k > 1 indicates that failures increase with time.

In Figure 2.2 we show the pdf of the Weibull. For k < 1 we observe that the density

tends to +∞ close to x = 0 and for k = 1 the density tends to a finite value in x = 0.

When 1 < k < 2 the density equals zero in the origin and finally when k > 2 the

distribution is bell-shaped. In general, as k increases the distribution converges to a

Dirac distribution with support in x = λ.

Finally, according to Castillo et al. (2004), this distribution belongs to the MDA of

Gumbel.

2.1.3 Log-normal-Pareto mixtures

The mixture of these two distributions is interesting because they are flexible and easily

fit extreme value data. The approach consist of using the log-normal for the main body
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FIGURE 2.2: Weibull density with different parameters.

of the distribution and the Pareto for the tail. Both distributions are widely used in

insurance and finance (see, for example Klugman et al. 2004). Due to its analytical

properties, the log-normal has been used as the basic distribution in the Black-Scholes

model in finance. The application of the Pareto has not stopped to increase since firstly

used by Pareto (1896) for modeling the income distribution.

The density of the mixture is:

f(x) = pf1(x) + (1− p)f2(x)

f(x) = p
1

xσ
√

2π
e
−1
2

(
log(x)−µ

σ
)2 + (1− p) ρλρ

(x+ λ)ρ+1
∀x > 0, 0 < p < 1

and its cumulative distribution is:

F (x) = pF1(x) + (1− p)F2(x)

F (x) = p

∫ log(x)

−∞

1

σ
√

2π
e
−1
2

( t−µ
σ

)2dt+ (1− p)
(
1− (

λ

x+ λ
)ρ
)
.

In the next figure (2.3), we observe that the density of the mixture is flexible and depends



44

on the weight p given to the main body of the variable. As we prove in Chapter 3, the
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FIGURE 2.3: Density of the mixture

mixture for 0 < p < 1 belongs to MDA of Fréchet.

2.2 Bivariate extreme value

The first references about bivariate extreme value distributions are Tiago de Oliveira

(1958), Sibuya (1960) and Geffroy (1959). In Beirlant et al. (2004) a review of these

approaches can be found. Nevertheless, the expression introduced by Pickands (1981)

eclipsed the others for being a general compact formulation in terms of copulae. Nowa-

days, it is almost impossible to talk about extreme value distributions and copulae with-

out quoting it. Similarly to the univariate case, if we denote (X11, X21), . . . , (X1n, X2n)

a two-dimensional sample, the behavior in the extremes is given by the convergence in

distribution of the vector Mn = (MX1,n,MX2,n) where:
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MX1,n = max
{
X11, . . . , X1n

}
and MX2,n = max

{
X21, . . . , X2n

}
.

That is, we look for the series aX1,n, aX2,n > 0 and bX1,n, bX2,n ∈ R (if exist) such that:

lim
n→∞

P
(MX1,n − aX1,n

bX1,n

≤ x1,
MX2,n − aX2,n

bX2,n

≤ x2

)
= M(x1, x2) (2.12)

As opposed to the univariate case, we observe that Mn does not necessarily belong to

the original sample, (see, Coles 2001), and this makes it difficult the generalization to

the multivariate case.

In case that the variables X1 and X2 are independent and belong to the domain of

attraction of one of the three possible distributions unified in (2.8), the renormalized

limit of Mn also belongs to the product of these distributions, which is additionally its

MDA. Specifically, if we consider:

Mn = (MX1,n,MX2,n)

An = (aX1,n, aX2,n) y Bn = (bX1,n, bX2,n),

we have:

lim
n→∞

P
(Mn −An

Bn
≤ (x1, x2)

)
= lim

n→∞
P
(MX1,n − aX1,n

bX1,n
≤ x1,

MX2,n − aX2,n

bX2,n
≤ x2

)
= lim

n→∞
P
(MX1,n − aX2,n

bX1,n
≤ x1

)
lim
n→∞

P
(MX2,n − aX2,n

bX2,n
≤ x2

)
= GµX1

,σX1
,ξX1

(x1)GµX2
,σX2

,ξX2
(x2).

If the variables are not independent, the two following results (see, Galambos 1978)

lead to a limit expression for Mn. The first one says, according the theorem of Sklar

(1959) that the associated copula to the distribution (2.12) is unique and the second one

proves the max-stable property.
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1. Any limit that satisfies (2.12) is continuous, additionally the marginals of Mn

belong to the three extreme value families for the univariate case.

2. Let (X11, X21), . . . , (X1n, X2n) be a two-dimensional sample, then, if

aX1,n, aX2,n > 0 exists and bX1,n, bX2,n ∈ R and there exists M(x1, x2) defined in

2.12, the distribution function M is not degenerate if only if the marginals belong

to the univariate extreme value families and the associated copula satisfies:

C(u1, u2) = Ck
(
u

1
k
1 , u

1
k
2

)
,

∀k ∈ N∗ = N \ {0}.

The last result does not specify the general expression of the extreme value distribu-

tion, although it provides the necessary and sufficient condition in terms of copulae

which characterize this types of distributions. Nevertheless, the expression for Mn

can be obtained just by knowing the resulting copula and the theorem of Pickands

(1981) provides us with this copula when we have standard Fréchet marginals, that

is: FX1(x1) = e
− 1
x1 , x1 > 0, FX2(x2) = e

− 1
x2 , x2 > 0.

Before discussing the result of Pickands (1981) it is necessary to standardize the

marginal to isolate the dependency structure. According to (Resnick 1987;p253), the

transformation of the marginals has no impact on the resulting two-dimensional distri-

bution. Specifically, if we choose the series aX1,n = aX2,n = 0 and bX1,n = bX2,n = n :

P
(MX1,n

n
≤ x

)
= P

(MX2,n

n
≤ x

)
= (e−

1
nx )n

= e−
1
x

and the distribution of the maximum of each marginal does not depend on n, therefore

if Mn is re-scaled with:

M∗
n =

(MX1,n

n
,
MX2,n

n

)
Pickands (1981) proves the following:
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If
(
X1i, Xi2

)
are independent vectors with standard Fréchet marginal dis-

tributions, then if:

lim
n→∞

P
(MX1,n

n
≤ x1,

MX2,n

n
≤ x2

)
= G(x1, x2) (2.13)

exists and it is not degenerate, G tends to the following expression:

G(x1, x2) = e−V (x1,x2) x1 > 0, x2 > 0,

where

V (x1, x2) = 2

∫ 1

0

max
( w
x1

,
1− w
x2

)
dH(w),

and H is a distribution function defined in [0, 1] which satisfies:

∫ 1

0

wdH(w) =
1

2
.

Pickands (1981) also proves that the distribution G can be written as:

logG(x1, x2) = −
( 1

x1

+
1

x2

)
A
( x2

x1 + x2

)
x1 > 0, x2 > 0, (2.14)

where A is a function defined in [0, 1] which satisfies the conditions: max(t, (1− t)) ≤

A(t) ≤ 1. It is also related to the function H by the following expression:

A(t) =

∫ 1

0

max
(
wt, (1− w)(1− t)

)
dH(w),

and the extreme value copulae is deduced from (2.14)

C(u1, u2) = exp
(

log(u1u2)A
( log(u1)

log(u1

)
+ log(u2)

)
)

0 ≤ u1, u2 ≤ 1. (2.15)

This copula does not depend on the marginals, therefore the distribution G defined in

(2.13) represents the class of two-dimensional extreme values.
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Example 2.2.1. Here we present some copula functions defined from Pickands depen-

dence function:

1. Independence copula: A(t) = 1.

2. Gumbel copula: A(t) =
(
tθ + (1− t)θ

) 1
θ , where θ ≥ 1.

3. Galambos copula: A(t) = 1−
(
t−θ + (1− θ)−θ

)−1
θ , where θ > 0.

4. Hüsler-Reiss copula: A(t) = (1−t)Φ(z1−t)+tΦ(zt), where zt =
(

1
θ
+ θ

2
log( t

1−t)
)
,

for θ ≥ 0, and Φ being the standard normal cdf.



Chapter 3

Testing extreme value copulae to estimate the quantile

We generalize the test proposed by Kojadinovic et al. (2011) which is used for testing

whether the data belongs to the family of extreme value copulas. We prove that the gen-

eralized test can be applied whatever the alternative hypothesis. We also study the effect

of using different extreme value copulas in the context of risk estimation. To measure

the risk we use a quantile. Our results have been motivated by a bivariate sample of

losses from a real database of auto insurance claims. Methods are implemented in R.

3.1 Introduction

Let S be the sum of k dependent random variables (X1, ..., Xk)
′, i.e. S = X1 + ...+Xk.

The distribution of S depends on the multivariate distribution, i.e. on the relationship

between the random variables Xj , j = 1, ...k (see, Sarabia and Gómez-Déniz 2008;for

a review about the methods of construction of multivariate distributions). Analyzing the

distribution of S is essential in finance and insurance for quantifying the risk of loss.

In this regard, there are studies that have analyzed the stochastic behavior of the sum

of dependent risks and the way in which the dependency between these marginal risks

may affect the total risk of loss (see, Bolancé et al. 2008b, Cossette et al. 2002, Denuit

et al. 1999, Kaas et al. 2000). The aim of this paper is to analyze the test proposed by

Kojadinovic et al. (2011) that allows to test whether or not our data have been generated

by an extreme value copula. We conclude that weak convergence of the test statistic

is true for any of the alternative hypothesis. Using a real data base, we have analyzed
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how the error in the selection of the copula can affect the risk estimate. Throughout this

paper we simplify the notation to the bivariate case.

As noted by Fisher (1997), copulae are interesting for statisticians due to two basic

reasons: firstly, because of their application in the study of nonparametric measures of

dependence and, secondly, as a starting point for constructing multivariate distributions

that capture dependency structures, even when the marginals follow extreme value dis-

tributions (EVD). Also, we know that the choice of the marginals may be crucial to

model the dependency behavior of variables. According to Nelsen (2006), when cou-

pling the marginals in the joint distribution, the copula captures the link between the two

behaviors. The relationship between the joint distribution and the marginals is estab-

lished in the fundamental theorem proposed by Sklar (1959). This theorem shows that

a bivariate cumulative distribution function (CDF) H of a random vector of variables

(X1, X2) with marginal cumulative distribution functions (CDFs) F1 and F2 includes a

copula C according to the following expression:

H(x1, x2) = C
(
F1(x1), F2(x2)

)
∀x1, x2 ∈ R. (3.1)

Due to the fact that the joint distribution (and therefore the dependency structure) is

unknown, specific tests for choosing the best copula are necessary. This has been the

motivation for developing tests for the adequacy of copulae. It is worth mentioning the

paper by Genest and Rivest (1993) on inference for bivariate Archimedean copulae, the

test proposed in Scaillet (2005) on the positive quadrant dependence hypothesis and,

finally, the test of symmetry in bivariate copulae introduced in Genest et al. (2012).

Regarding the inference for extreme value copulae, we can mention the test proposed

in Genest et al. (2011) based on a Cramér-von Mises statistic and the test analyzed

in Ghorbal et al. (2009) based on an U -statistic. However, Kojadinovic et al. (2011)

uses the max− stable property to test the adequacy of an extreme value copula that is

also based on the Cramér-von Mises statistic. In our study we find a similar result for

the bivariate case and we obtain the weak convergence of the statistic proposed in the

general case. In section 3.2, first, we present our main result and, second, we describe

three examples of copulae which are extreme value copulae: Gumbel, Galambos and
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Hustler-Reiss. In section 3.3 we describe a real database of auto insurance claims which

we use in the empirical application. In section 3.4 we report the results of our empirical

study, firstly we apply the test described in section 3.2 and, secondly, we calculate the

quantile using different extreme value copulae and compare these results with those

obtained when using a widely known non extreme value copula, such as a Gaussian

copula. We use two alternative marginal distributions and we compare them: the log-

normal, that is a EVD Type I (Gumbel), and the Champernowne distribution, which

converges to a Pareto in the tail and therefore is an EVD Type II (Frechet). We also note

that the Champernowe distribution looks more like to log-normal near 0.

3.2 Test for extreme value copulae

We know that the class of extreme value copulae corresponds to the class of max −

stable copulae (see, for example, Segers 2012). A copula is max − stable if for every

positive real number r and all u1, u2 in [0, 1], C(u1, u2) = Cr(u
1/r
1 , u

1/r
2 ). Then we

formulate the null hypothesis and its alternative as:

 Hr
0 : C(u1, u2) = Cr(u

1/r
1 , u

1/r
2 ), ∀u1, u2 ∈ [0, 1],∀r > 0

Hr
1 : C(u1, u2) 6= Cr(u

1/r
1 , u

1/r
2 ), ∃u1, u2 ∈ [0, 1],∃r > 0

.

Specifically we need to test the max− stable hypothesis, H0 :
⋂
r>0H

r
0

H1 :
⋃
r>0H

r
1 ,

in practice we only can test Hr
0 for some values of r. From Kojadinovic et al. (2011),

it seems that r < 1 is not so good, so they consider only values of r greater than

1. Let (Xi1, Xi2), ∀i = 1, ...n be a bivariate sample of n independent and identically

distributed observations. We consider the functions:

Dr
n(u1, u2) =

√
n
(
Cn(u1, u2)− Cr

n(u
1/r
1 , u

1/r
2 )
)

Dr(u1, u2) =
√
n
(
C(u1, u2)− Cr(u

1/r
1 , u

1/r
2 )
)
,
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where Cn(u1, u2) is the empirical copula defined as:

Cn(u1, u2) =
1

n

n∑
i=1

I
(
F̂1n(Xi1) ≤ u1, F̂2n(Xi2) ≤ u2

)
, u1, u2 ∈ [0, 1]2,(3.2)

where I(·) is an indicator function that takes value 1 if the condition in brackets is

true and 0 otherwise. F̂1n and F̂2n are the empirical marginal cumulative distribution

functions. To test themax−stable property we need to analyze if we can use Dr
n(u1, u2)

as an estimator of Dr(u1, u2). Then we find the convergence to a Gaussian process of

the difference Dr
n(u1, u2) − Dr(u1, u2). We use the result by Fermanian et al. (2004)

for the weak convergence of the empirical copula process Cn to a Gaussian process G

in the space of all bounded real-valued functions on [0, 1]2 equipped with the uniform

metric, i.e. l∞([0, 1]2), which is expressed as follows:

√
n
(
Cn(u1, u2)− C(u1, u2)

)
 G(u1, u2)

= B(u1, u2)− ∂1C(u1, u2)B(u1, 1)− ∂2C(u1, u2)B(1, u2), (3.3)

where ∂jC(u1, u2), j = 1, 2 are the partial derivatives of the function C respect to uj

and indicates weak convergence (see, Appendix ) and B is a Brownian bridge (see,

Definition in Appendix ) on [0, 1]2 with covariance functions:

E
[
B(u1, u2)B(u′1, u

′
2)
]

= C(u1 ∧ u′1, u2 ∧ u′2)− C(u1, u2)C(u′1, u
′
2),

where ∧ is the minimum.

Proposition 3.2.1. If the partial derivatives of a copula C(u1, u2) are continuous then

for any r > 0 we have:

Drn(u1, u2)− Dr(u1, u2) Cr(u1, u2) = G(u1, u2)− rCr−1(u
1/r
1 , u

1/r
2 )G(u

1/r
1 , u

1/r
2 ), (3.4)

in l∞([0, 1]2). The result in (3.4) is true under Hr
0 and Hr

1 .

Kojadinovic et al. (2011) proved the weak convergence under Hr
0 of Dr

n(u1, u2) towards

the same process defined in Proposition 3.2.1. We have proved that the weak conver-

gence of the difference Dr
n(u1, u2)− Dr(u1, u2) is true under Hr

0 and Hr
1 .
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Proof. In order to prove the result in Proposition 3.2.1 we consider the function:

Γ : C(u1, u2) −→ Γ
(
C(u1, u2)

)
= Cr

(
u

1/r
1 , u

1/r
2

)
, r > 0.

To find the Hadamard derivative (see, Van der Vaart and Wellner 2000; p. 372) of Γ that

is denoted by Γ′, we consider the function:

h(t) = Γ
(

(C + t∆)(u1, u2)
)
− Γ

(
C(u1, u2)

)
= (C + t∆)r(u

1/r
1 , u

1/r
2 )− Cr(u

1/r
1 , u

1/r
2 ),

where t∆ is a function representing a difference, namely, t is a real value and ∆ is a

fixed perturbation. Then we calculate Γ′ as the derivative of function h at t = 0. Namely,

Γ′(∆) if the first derivative of function Γ(C(u1, u2)) = Cr(u
1/r
1 , u

1/r
2 ) with respect to t

evaluated at t = 0.

Using the expression of the Pascal triangle:

(a+ b)n =
n∑
k=0

(
n

k
)an−kbk,

we obtain that:

h(t) =
r∑

k=0

(
r

k
)Cr−k(u

1/r
1 , u

1/r
2 )tk∆k(u

1/r
1 , u

1/r
2 )− Cr(u

1/r
1 , u

1/r
2 )

= (
r

0
)Cr(u

1/r
1 , u

1/r
2 ) + (

r

1
)Cr−1(u

1/r
1 , u

1/r
2 )t∆(u

1/r
1 , u

1/r
2 )

+
r∑

k=2

(
r

k
)Cr−k(u

1/r
1 , u

1/r
2 )tk∆k(u

1/r
1 , u

1/r
2 )− Cr(u

1/r
1 , u

1/r
2 ).
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If we differentiate at t = 0, we obtain:

∂h(t)

∂t
|t=0 = Γ′(∆) = rCr−1(u

1/r
1 , u

1/r
2 )∆(u

1/r
1 , u

1/r
2 ).

The result in Proposition 3.2.1 is obtained by observing that:

Drn(u, v)−Dr(u, v) =
√
n
((
Cn(u1, u2)− C(u1, u2)

)
−
(
Crn(u

1/r
1 , u

1/r
2 )− Cr(u1/r

1 , u
1/r
2 )
))
.

Using the convergence of the empirical copula given by Fermanian et al. (2004) and

the continuous mapping theorem (see, Van der Vaart and Wellner 2000; Theorem 1.3.6)

we obtain:
√
n
(
Cn(u1, u2)− C(u1, u2)

)
 G(u1, u2),

and, finally, applying the delta functional method (see, for example, Van der Vaart and

Wellner 2000; Chapter 3.9) we obtain:

√
n
(
Cr
n(u

1/r
1 , u

1/r
2 )− Cr(u

1/r
1 , u

1/r
2 )
)
 Γ′

(
G(u1, u2)

)
.

Under the hypothesisH0 we have that Dr(u1, u2) = 0 and in this case Dr
n(u1, u2) weakly

converges to process (3.4). For hypothesis testing given a fixed r, we use a Cramér-von

Mises statistic:

Srn =

∫ 1

0

∫ 1

0

(
Dr
n(u1, u2)

)2
du1du2. (3.5)

As proposed by Kojadinovic et al. (2011) for a range of values of r, r1, ..., rp, the fol-

lowing statistic can be considered:

Sr1,...,rpn =

p∑
i=1

Srin . (3.6)

To calculate the critical values we use the method proposed by Van der Vaart and Well-

ner (2000), consisting on generating independent copies of Srn. The procedure is as

follows:
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1. If ∂jC(u1, u2), j = 1, 2 are continuous on [0, 1]2 then N independent copies of

Dr
n, Dr,(1)

n , . . . ,Dr,(N)
n can be generated, such that

(
Dr
n,Dr,(1)

n , . . .Dr,(N)
n

)
 
(
Dr,Dr,(1), . . .Dr,(N)

)
,

where Dr,(1), . . . ,Dr,(N) are independent copies of Dr.

2. If ∂jC(u1, u2), j = 1, 2 are continuous on [0, 1]2 then, (S
r,(1)
n , S

r,(2)
n . . . , S

r,(N)
n )

can be calculated by using a numerical approximation of formula (4.3) (see, Ko-

jadinovic et al. 2011), then:

(
Srn, S

r,(1)
n , Sr,(2)

n . . . , Sr,(N)
n

)
 
(
Sr, Sr,(1), Sr,(2) . . . , Sr,(N)

)
,

where
(
Sr,(1), Sr,(2) . . . , Sr,(N)

)
are independent copies of Sr.

3. Obtain the p-value as:
1

N

N∑
k=1

I
(
Sr,(k)
n ≥ Srn

)
.

The Van der Vaart method is implemented in the software R with the function

evTestC() included in the package copula (see, Hofert et al. 2013).

3.2.1 Three examples of extreme value copulae

In the application presented in next section, we compare three examples of extreme

value copulae: Gumbel, Galambos and Hüsler-Reiss, which are described in this sec-

tion. The functional form of Gumbel copula (see, Gumbel 1960b) is given by:

Cθ(u1, u2) = exp
(
−
[
(− ln(u1))θ + (− ln(u2))θ

]1/θ)
,

where θ ∈ [1,+∞) is the parameter controlling the dependency structure. Note that,

the dependence is perfect when θ → ∞, while independence corresponds to the case

when θ = 1. For the Gumbel copula, it is well known that lower tail dependence is

λL = 0 and upper tail dependence is λU = 2 − 2
1
θ , i.e. the Gumbel copula has upper

tail dependence.
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The Galambos copula was proposed by Galambos (1975) and has the following form:

C(u1, u2) = u1u2 exp
([

(− ln(u1))−θ + (− ln(u2))−θ
]−1/θ

)
,

where the range of θ is [0,∞) and the upper tail dependence is λU = 2− 2
1
θ .

Another example of extreme value copulae is the Hüsler-Reiss copula that was devel-

oped by Hüsler and Reiss (1989). Its functional form is given by:

C(u1, u2) = exp

(
−û1Φ

[
1

θ
+

1

2
θ ln

(
û1

û2

)]
− û2Φ

[
1

θ
+

1

2
θ ln

(
û2

û1

)])
,

where the range of θ is [0,∞) and Φ is cdf of the standard Gaussian, u1 = − ln(û1) and

u2 = − ln(û2).

3.3 The data

Our example is motivated by a problem in the context of insurance. We assume that

when there is an accident, the total cost to be paid to a policyholder is the sum of two

components: (1) the material damage and (2) the bodily injury compensation. The in-

surance company is interested in evaluating the risk of a given claim exceeding a certain

amount. So the right-tail quantiles are important to understand the risk that an accident

claim is very costly. We work with a random sample of 518 observations containing two

types of costs: Cost1, representing property damages and compensation of the loss, and

Cost2, which corresponds to the expenses related to medical care and hospitalization.

In general, the cost of bodily injuries is covered by the National Institute of Health,

however the insured has to bear the cost of some medical expenses and rehabilitation,

technical assistance, drugs, etc., including compensation for pain, suffering and loss

of income. Bodily injury claims typically take years to be settled. Nevertheless, all the

claims in our sample were already settled in 2002, according to the company, (see,

Bolancé et al. 2008b). Finally, we should mention that the compensation may include

payments to third parties that have been damaged in one way or another.
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In Table 3.1 we summarize the descriptive statistics of the sample for Cost1, Cost2 and

the Total Cost. The variables Cost1 and Cost2 are always positive, and there is a big

difference between the corresponding maximum and minimum values. Furthermore,

we observe that the variables described in Table 3.1 have right skewness. In Figure 3.1

we show the histograms representing the shape of the distributions associated with the

variables Cost1 and Cost2.

Cost Average Std.Dev. Skewness Min Max Median
Cost1 182.80 686.80 15.65 13.00 137900.00 677.00
Cost2 283.92 863.17 8.04 1.00 11855.00 88.00

Total Cost 211.20 752.00 15.27 32.00 149800.00 789.00

TABLE 3.1: Descriptive statistics.
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FIGURE 3.1: Histograms.

The K-Plot (related to Kendall Plot, see, Genest and Boies 2003) is a visual method

that allows us to analyze in a descriptive way if our bivariate data have been generated

by an extreme value copula. In Figure 3.2 we show the K-Plot, that compare the order

in real data (H , pseudo-observations generated by the bivariate empirical distribution)

with the order supposing that the data have been generated by the independence copula

(W , expected pseudo-observations). We note that costs have a positive association (as

shown in the values of the K-plot above the diagonal, which indicates independence).

Almost all points are between the straight line and the boundary curve indicating perfect

positive dependence. It seems that for larger values of W , the data are closed to the case

of a perfect positive dependence. This means that the higher the severity of the claim,

the higher is the correlation between the medical costs and compensation.
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FIGURE 3.2: K-Plot associated to copula of (Cost1, Cost2).

3.4 Results

In this section we report the results that we have obtained in an empirical application

of the methodology that we have presented. In order to estimate the total risk of loss,

our goal is to determine the dependency structure between the data corresponding to

a sample of claims provided by a major insurance company which operates in Spain.

To test if our data are generated by an extreme value copula we calculate the value of

the Cramér-Von Mises statistic in (3.6), firstly with r = 3, 4, 5. We have estimated the

significance level of the test statistic using the method proposed by Van der Vaart and

Wellner (2000). In total, we generated 1000 independent copies of S3,4,5
n . The results are

shown in Table 3.2 and allow us to conclude that the analyzed bivariate data are gener-

ated by an extreme value copula. We estimate the parameters of the three extreme value

Statistic Estimation p-value
S3,4,5
n 0.2680 0.1773

TABLE 3.2: Cramér-Von Mises statistic.

copulae described in section 3.2.1: Gumbel, Galambos and Hüsler-Reiss. In Table 3.3
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we show the estimated parameters for these three copulae together with those obtained

for the Gaussian and the t-Student copulae. To estimate the dependence parameter of

Gaussian, Gumbel, Galambos and Hüsler-Reiss copulae we have used the inversion of

Kendall’s tau method (Itau). To estimate the dependence parameter and the degree of

freedom of the t-Student copula we have used maximum likelihood estimation (MLE).

For selecting the copula we have used two known statistical information criterion, the

Akaike Information Criterion AIC = −2 logL(θ) + 2k and the Bayesian Information

Criterion BIC = −2 lnL(θ) + k ln(n)k, where k is the number of parameters to be

estimated and L the value of the likelihood function. Also, we have used the copula in-

formation criterion CIC propose by Grønnrberg and Hjort (2014). The corresponding

results are presented in Table 3.3. We observe that BIC and CIC values are very similar

and we conclude that the Gumbel copula is the one that best reflects the dependence

structure of our data.

Gaussian t-Student∗ Gumbel Galambos Husler-Reiss
Parameters 0.5905 0.5981 1.7397 1.0208 1.4946
Standard Errors 0.02485 0.02718 0.07538 0.07689 0.09059
AIC -212.369 -217.000 -246.383 -243.3305 -237.854
BIC -208.119 -208.500 -242.133 -239.0805 -233.604
CIC 105.804 108.040 123.1476 121.827 119.829

Kendall Tau=0.4252. ∗d.f.= 9.6442

TABLE 3.3: Copula estimation results.

Once the dependency structure is estimated, the next step is to estimate the marginal

distribution functions. Considering the histograms in Figure 3.1, we chosed to use two

EVD. Namely, we compare the log-normal distribution, that is a EVD Type I (Gumbel),

with the modified Champernowne distribution1, which converges to a Pareto in the tail

and therefore it is an EVD Type II (Frechet); besides the Champernowe distribution

looks more like a log-normal near 0. Furthermore, the Champernowne distribution have

been analyzed in the context of semiparametric estimation of EVD (see, for example,

1The cdf of the modified Champernowne distribution is:

F (x) =
(x+ c)δ − cδ

(x+ c)δ + (H + c)δ − 2cδ
, x ≥ 0,

with parameters δ > 0, H > 0 and c ≥ 0. The estimation of transformation parameters is performed
using the maximum likelihood method described in Buch-Larsen et al. (2005).
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Alemany et al. 2013, Bolancé 2010, Bolancé et al. 2008a). In Table 3.4 we show the

results for the maximum likelihood estimation of the marginal distributions. We can see

that for Cost1, Log-normal and Champernowne have similar AIC and BIC, however for

Cost2 Champernowne provides lower values of AIC and BIC. For evaluating the risk of

Log-normal Champernowne

CDFs
∫ log x
−∞

1√
2πσ2

e−
(t−µ)2

2σ2 dt, x ≥ 0 (x+c)δ−cδ
(x+c)δ+(H+c)δ−2cδ

, x ≥ 0

X1=Cost1 µ = 6.4437, σ = 1.3349, δ = 1.3271, H = 677, c = 0
AIC = 8448.90 and BIC = 8452.72 AIC = 8448.16 and BIC = 8453.90

X2=Cost2 µ = 4.3755, σ = 1.5189, δ = 1.1622, H = 88, c = 0
AIC = 9425.13 and BIC = 9428.96 AIC = 6443.72 and BIC = 6449.45

TABLE 3.4: Maximum likelihood estimation of marginal distributions.

total loss we estimate the quantile of S at confidence level α (qα(S)). We use the Monte

Carlo simulation method and the procedure is as follows:

1. We generate the pseudo-random sample
(
Û1i, Û2i

)
, ∀i = 1, ..., r, from the bivari-

ate copulae whose estimated parameters are shown in Table 3.3.

2. Using the inverse of the marginal CDFs we calculate(
X̂1i = F−1

1 (Û1i), X̂2i = F−1
2 (Û2i)

)
, ∀i = 1, ..., l, where the sample vol-

ume l is large.

3. We calculate Ŝi = X̂1i + X̂2i, ∀i = 1, ..., l and we estimate qα(S) empirically

from the generated pseudo-sample. We generate l = 10, 000 samples.

In Table 3.5 we show the results of the estimations of qα for α =

0.95, 0.99, 0.995, 0.999. On the first row of Table 3.5 we provide the empirical values

of the qα(S) calculated with the 518 observations in the sample of the aggregate loss

S = X1 + X2 for different confidence levels α; below we show the same qα(S) that

have been estimated by the Monte Carlo simulation method for the five copulae consid-

ered here. We note the importance of using an extreme value copula and extreme value

marginal distributions when the data indicate this behavior.

In Table 3.5 we show that by using log-normal marginal distributions, the estimated

quantile is below the empirical quantile for the five copulae considered here. Therefore,
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α 0.95 0.99 0.995 0.999
Empirical 7905.60 24821.14 28420.87 92112.93

Log-normal
Normal 6635.43 15628.80 20762.77 39733.89
t-Student 6547.52 16638.18 22521.18 39547.10
Gumbel 6432.02 15464.97 22011.38 40001.21
Galambos 6429.16 15471.40 22066.00 39925.67
Husler-Reiss 6421.03 15465.13 22122.11 39841.56

Champernowne
Normal 7237.59 25504.18 38682.44 110082.26
t-Student 7302.17 25740.93 42223.50 117447.02
Gumbel 7264.83 23944.80 41461.74 119401.41
Galambos 7253.17 24056.95 41409.72 118982.01
Husler-Reiss 7241.50 24103.04 41107.54 118539.74

TABLE 3.5: Quantiles of total loss.

the risk is underestimated. We also note that the selected copula does not have much

influence on the risk estimation. However, if we use Champernowne marginal distribu-

tions, which has a heavier right tail than log-normal distribution, the influence of the

selected copula is not significant at lower confidence levels (0.95 and 0.99) but it is sig-

nificant for extreme confidence levels (0.995 and 0.999). As indicated by the goodness

of fit measures for our data, the best selection is the Gumbel copula with Champernowne

marginal distributions.
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Chapter 4

Extreme value copulae and marginal effects: the bounds
of the Value-at-Risk

We have analyzed two fundamental issues when we use copulae with extreme value

marginal distributions for estimating the total risk of loss, that has been generated

by a multivariate random vector of dependent losses (or risk factors). Firstly, we

describe a statistic that allows us to test if the data belongs of a family of extreme value

copulae. Secondly, we have studied the effect of using different extreme value marginal

distribution for estimating the risk. As risk measure we use the Value-at-Risk (VaR).

Finally, in order to control the risk, we estimate the bounds of the VaR for the aggregate

loss using two methods. Results have been obtained by using a bivariate sample of

losses from a real database of auto insurance claims.

4.1 Introduction

In finance and insurance the total loss is usually generated by a multivariate random

vector of k dependent losses (or risk factors) (X1, ..., Xk)
′, i.e. S = X1 + ... + Xk is

the total risk of loss which depends on the relationship between these risk factors. In

this regard, there are studies that have analyzed the stochastic behavior of the sum of

dependent risks and the way in which the dependency between these marginal risks may

affect the total risk of loss (see, Bolancé et al. 2008b, Cossette et al. 2002, Denuit et al.

2001; 1999, Kaas et al. 2000). The aim of this paper is to estimate the Value at Risk

(VaR) of a loss generated by a bivariate random vector with marginal extreme value
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distributions. We compare the results obtained when using different copulae and we

analyze how, given the marginal distributions, the selected copula may affect the risk

estimate. Copulae allow us to model a wide range of dependency structures. As noted

by Fisher (1997), copulae are interesting to statisticians for two basic reasons: firstly,

because of their application in the study of nonparametric measures of dependence and,

secondly, as a starting point for constructing multivariate distributions representing de-

pendency structures, even when the marginals follow extreme value distributions (see,

Guillén et al. 2007) for nonparametric methods with application in insurance). The aim

of this paper is to test if our data have been generated by an extreme value copula. We

know that the choice of the marginal may be crucial to model the dependency behavior

of variables. According to Nelsen (2006), in the coupling of the joint distribution with

marginals, the copula captures the link between them. In recent years, copulae have been

widely used by analysts for risk quantification and have many practical applications in

the financial and actuarial area. Note that the total cost in insurance results from the sum

of dependent costs with marginal extreme value distributions, and modeling the depen-

dency structure is crucial for risk estimation. After adjusting the dependency structure,

the relationship between the joint distribution and the marginals is clear. Therein lies the

importance of adjustment. This relationship is established in the fundamental theorem

proposed by Sklar (1959). This theorem shows that a bivariate distribution function H

of a random vector of variables (X1, X2) with marginal distribution functions F1 and

F2 includes a copula C according to the following expression:

H(x1, x2) = C
(
F1(x1), F2(x2)

)
∀x, y ∈ R. (4.1)

Due to the fact that the joint distribution (and therefore the dependency structure) is

unknown, specific tests for choosing the best copula are necessary. This was the moti-

vation for developing tests for the adequacy of copulae. It is worth mentioning the paper

by Fermanian et al. (2004) on the weak convergence of the empirical copula, the con-

trast of Scaillet (2005) for the positive quadrant dependence hypothesis, and finally, the

test of symmetry in bivariate copulae introduced by Genest et al. (2012). Regarding the

contrast for extreme value copulae is worth mentioning the test introduced by Ghoudi

et al. (1998) derived from the transformation of the bivariate distribution of extreme
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values, and the one proposed by Kojadinovic et al. (2011), which uses the definition

of max − stable as null hypothesis. We use the same statistic of Kojadinovic et al.

(2011) to test if our bivariate data come from an extreme value copula. In section 4.2

we describe a test that allows us to know if the data belongs of a family of extreme value

copulae and, later, we describe three copulae which are extreme value copulae: Gumbel,

Galambos and Hüstler Reiss. In section 4.3 we describe the Champernowne distribution

for marginals which converges to a Pareto distribution in the tail, while looking more

like a log-normal distribution near 0. Later, in section 4.4, we analyze the bounds of the

estimated VaR, and in section 4.5 we report an application.

4.2 Test for extreme value copulae

One way to know if our data has an extreme value copula behavior or not, is to test the

max − stable property. A copula is called a max − stable copula if for every positive

real number r and all u1, u2 in [0, 1] , C(u1, u2) = Cr(u
1/r
1 , u

1/r
2 ). Then we formulate

the null hypothesis and its alternative as:

 Hr
0 : C(u1, u2) = Cr(u

1/r
1 , u

1/r
2 ), ∀u1, u2 ∈ [0, 1], ∀r > 0

Hr
1 : C(u1, u2) 6= Cr(u

1/r
1 , u

1/r
2 ), ∃u1.u2 ∈ [0, 1],∃r > 0.

Let (X1i, X2i), ∀i = 1, ...n be a bivariate sample of n independent and identically

distributed observations. We consider the functions:

Dr
n(u1, u2) =

√
n
(
Cn(u1, u2)− Cr

n(u
1/r
1 , u

1/r
2 )
)

Dr(u1, u2) =
√
n
(
C(u1, u2)− Cr(u

1/r
1 , u

1/r
2 )
)
,

where Cn(u1, u2) is the empirical copula defined as:

Cn(u1, u2) =
1

n

n∑
i=1

I
(
F1n(X1i) ≤ u, F2n(X2i) ≤ u2

)
, u1, u2 ∈ [0, 1]2. (4.2)
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Kojadinovic et al. (2011) prove the weak convergence of Dr
n(u1, u2) to a Gaussian pro-

cess in2 l∞([0, 1]2) under null hypothesis. Nevertheless Bahraoui et al. (2014c) prove

that weak convergence is true under null and alternative hypothesis. To calculate the

critical values we use the Multipier method proposed by Van der Vaart and Wellner

(2000), consisting on generating independent copies of a distribution with the same be-

havior. The Van der Vaart method is implemented in the software R with the function

evTestC() included in the package copula (see, Hofert et al. 2013). In particular,

we use the Cramer-von Mises statistic:

Srn =

∫ 1

0

∫ 1

1

(
Dr
n(u1, u2)

)2
dudv. (4.3)

We compare thee examples of extreme value copulae: Gumbel, Galambos and Hustler

Reiss. The Gumbel copula is an extreme value copula (see, Genest et al. 2011, Juri and

Wüthrich 2002)), and its functional form is given by:

Cθ(u1, u2) = exp
(
−
[
(− ln(u1))θ + (− ln(u2))θ

]1/θ)
,

where θ ∈ [1,+∞) is the parameter controlling the dependency structure. Finally, the

dependence is perfect when θ → ∞ and we have independence when θ = 1. For

the Gumbel copula, it is well known that lower tail dependence is λL = 0 and upper

tail dependence is λU = 2 − 2
1
θ , i.e. the Gumbel copula has upper tail dependence.

Galambos copula was proposed by Galambos (1975) and has the following form:

C(u1, u2) = u1u2 exp
([

(− log u1)−θ + (− log u2)−θ
]−1/θ

)
,

where the range of θ is [0,∞) and the upper tail dependence is λU = 2 − 2
1
θ . The

Hüstler-Reiss copula was developed by Hüsler and Reiss (1989) and its functional form

is given by:

C(u1, u2) = exp
(
− û1Φ

[1
θ

+
1

2
θ log(

û1

û2

)
]
− û2Φ

[1
θ

+
1

2
θ log(

û2

û1

)
])
,

2The space of all bounded real-valued functions on [0, 1]2.
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where the range of θ is [0,∞) and Φ is cdf of the standard Gaussian, û1 = − log(u1),

û2 = − log(u2).

4.3 Marginals

First of all, we consider the Gumbel and Weibull marginal distribution functions re-

sulting from the generalized theory of extreme values. We also considered the log-

normal distribution, which has interesting theoretical properties, and, finally, the modi-

fied Champernowne distribution, which has been studied by Buch-Larsen et al. (2005)

and Bolancé et al. (2012b) in the context of the transformed kernel density estimation for

extremes values distribution. Also, (see, Bolancé et al. 2012a, Nielsen et al. 2012) pro-

posed to use Champernowne distribution to estimate operational risk, where the shape

of the distributions of the data are similar to those analyzed in this work.

Definition 4.3.1. The modified Champernowne distribution is defined for x ≥ 0 and its

density function is given by:

fδ,M,c(x) =
δ(x+ c)δ−1

(
(M + c)δ − cδ

)
(x+ c)δ + (M + c)δ − 2cδ

with parameters δ > 0, M > 0, y c ≥ 0 and distribution function:

Fδ,M,c(x) =
(x+ c)δ − cδ

(x+ c)δ + (M + c)δ − 2cδ
.

The asymptotic behavior of the modified Champernowne distribution is the same as

the original, and it is similar to a log-normal distribution for values near 0 and also

converges to a Pareto distribution when x −→∞.

4.4 Bounds of the VaR

One of the risk measures most commonly used in the financial and actuarial field is the

VaR. (Value-at-Risk). The VaR represents the quantile of a distribution in a given level.
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Definition 4.4.1. Let X a random variable with cumulative distribution function F ,

then:

V aRα(X) = inf
{
x ∈ R|FX(x) ≥ α

}
.

Next, we find the bounds of the VaR for two reasons. On the one hand, because this risk

measure violates the subadditivity condition. On the second hand, because in the general

case we will not know the joint distribution function or the copula. We use two methods

to find the bounds of the VaR. The Bootstrap method and the technique proposed by

Mesfioui and Quessy (2005) for the case of unknown marginals (see, Appendix ). Fi-

nally, when the dependency structure is unknown and the marginals are known we can

use the limits resulting from the Fréchet bounds.

W = max
(
u1 + u2 − 1, 0

)
≤ C(u1, u2) ≤M = min(u1, u2) ∀u1, u2 ∈ [0, 1].

The upper bound M is always a copula in any dimension, however, this is not the case

for the lower bound in the multivariate dimension. For the bivariate case, where F1

and F2 are two marginal cumulative distribution functions of X1 and X2, we have the

following result by (Embrechts et al. 2003, Embrechts and Puccetti 2006) :

V aRα ≤ V aRα(S) ≤ V aRα,

where

V aRα = sup
u1+u2=α

(
F−1

1 (u) + F−1
2 (u2)

)
V aRα = inf

u1+u2=α+1

(
F−1

1 (u1) + F−1
2 (u2)

)
.

In the case of a Champernowne marginal distribution function with parameters δ >

0,M > 0 y c ≥ 0 we have:

F−1(u) =

(
u[(M + c)δ − 2cδ] + cδ

1− u

) 1
δ

− c ∀u ∈ [0, 1[.

By using the fact that the Champernowne density is non increasing after a certain point

(it has the same behavior as a Pareto in the tail of the distribution), i.e. there is a point
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x∗ such that the density is decreasing, ∀x ≥ x∗ f
′
(x) ≤ 0 and

(F−1)
′′
(u) =

−f ′oF−1(u)

(foF−1(u))3
≥ 0 ∀u ≥ F (x∗).

This implies that F−1 is convex on α ≤ F (x∗) ≤ u ≤ 1. You can find the minimum for

the upper bound of VaR seeking u∗ such that h′(u∗) = 0, and solve it numerically. We

get the following result given the convexity of F−1:

V aRα = max
(
F−1

1 (α) + F−1
2 (0), F−1

2 (α) + F−1
1 (0)

)
(4.4)

= max
(
F−1

1 (α), F−1
2 (α)

)
, (4.5)

being the upper bound equal to:

V aRα = inf
α≤u≤1

h(u), (4.6)

such that h(u) = F−1
1 (u) + F−1

2 (α + 1 − u). If F1 = F2 and u = α+1
2

we obtain

the same results for V aRα and V aRα as those obtained by Embrechts et al. (2013),

who proposed an algorithm for calculating bounds of the V aRα for high-dimensional

portfolios.

4.5 Results

In this section we report the results that we have obtained in an empirical application

of the methodology that we have presented. Our goal is to determine the dependency

structure between the data corresponding to a sample of claims provided by a major

insurance company which operates in Spain. We work with a random sample of 518

observations containing two types of costs: Cost1, representing property damages and

compensation of the loss, and Cost2, which corresponds to the expenses related to medi-

cal care and hospitalization. In general, cost of bodily injuries is covered by the National

Institute of Health, however the insured has to bear the cost of some medical expenses

and rehabilitation, technical assistance, drugs, etc . . . , including compensation for pain,

suffering and loss of income. Bodily injury claims typically take years to be settled.
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Nevertheless, all the claims in our sample were already settled in 2002, according to

the company, Bolancé et al. (2008b). Finally, we should mention that the compensation

may include payments to third parties that have been damaged in one way or another.

Cost Average Std.Dev. Kurtosis Skewness Min Max Median J-B
Cost1 182.80 686.80 297.10 15.65 13.00 137900.00 677.00 1941868.27
Cost2 283.92 863.17 82.02 8.04 1.00 11855.00 88.00 151969.73
Total Cost 211.20 752.00 286.40 15.27 32.00 149800.00 789.00 1804742.80

TABLE 4.1: Descriptive statistics and normality test.
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FIGURE 4.1: Log-normal QQ-Plot.

In Table 4.1 we summarize the descriptive statistics of the sample for Cost1, Cost2 and

the Total Cost. The variables Cost1 and Cost2 are always positive, and there is a big

difference between the corresponding maximum and minimum values. The kurtosis and

skewness are very high if we compare them with the corresponding values for the nor-

mal distribution. We test normality by using a Jarque-Bera test, and the corresponding

p-values are < 2, 21.10−16 for the three costs, therefore, we reject normality. QQ-plots

help us to look at the behavior of the empirical distribution in the tail. Namely, the theo-

retical quantiles of a given distribution are compared with the quantiles of the empirical
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FIGURE 4.2: Champernowne QQ-Plot.

distribution. When there is a good fit the empirical quantiles coincide with the theoret-

ical ones. By using a log-normal distribution (Figure 4.1), we note that the empirical

quantiles coincide with the theoretical ones for low values of the costs, and then deviate

upwards indicating the existence of extreme values. Therefore, in this case heavy tailed

distributions may provide a good fit, as shown in Figure 4.2 where the QQ-Plots for a

theoretical Champernowne distribution are represented.

4.5.1 K-Plot and test of extreme value copula

The K-Plot is a visual method that allows us to analyze if our bivariate data have been

generated by an extreme value copula. In Figure 4.3 we show the K-Plot, that compare

the order in real data (H pseudo-observations generated by the modified bivariate em-

pirical distribution) with the order supposing that the data have been generated by the

independence copula (W , expected pseudo-observations, see Genest and Boies (2003)).

We note that costs have a positive association (as shown in the values of the K-plot
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above the diagonal, which indicates independence). Almost all points are between the

straight line and the boundary curve indicating perfect positive dependence. It seems

that according to the increasing values of W , the data is closed to the case of a perfect

positive dependence. This means that the higher the severity of the claim, the higher is

the correlation between the medical costs and compensation.
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FIGURE 4.3: K-Plot associated to copula of (Cost1,Cost2).

The value of the Cramer-Von Mises statistic in (4.3), that is used to test if our data have

been generated by an extreme value copula, is equal to 0.26795 with p-value equal to

0.1773227. We do not reject the null hypothesis that the copula associated with this type

of data is an extreme value copula at 10% level. For selecting the copula, we can use

two known statistical information criteria: the Akaike information criterion that is:

AIC = −2 logL(θ, u, v) + 2k

and the value of the Bayesian information criterion, given by:

BIC = −2 logL(θ, u, v) + log(n)k,

where k is the number of parameters to be estimated and L the maximum likelihood

function. Also, we can use the copula information criteria CIC propose by Grønnrberg

and Hjort (2014), the corresponding results are presented in Table 4.2, in practice we
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observe that AIC and CIC are very similar. Therefore, we conclude that the Gumbel

copula reflects the best the dependency structure in our data.

Copula AIC BIC CIC
Gumbel -246.3839 -242.1339 123.1476

Galambos -243.9354 -238.9922 121.827
Hustler-Reiss -239.6841 -234.7410 119.829

TABLE 4.2: Information Criteria.

4.5.2 Bounding the empirical VaR

In the first row of Table 4.3 we provide the empirical values of the VaR of the aggregate

loss S = XCost1 + YCost2 for different confidence levels α. The second and third rows

provide the confidence intervals at 95% level of the VaR S(α) by using Bootstrap. In

the last two rows we provide the bounds of the VaR by using the upper and lower limits

from the Mesfioui and Quessy (2005), method (MQ).

α 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 0.995 0.999
V aRα(S) 3715.90 4088.72 4519.36 5059.16 5928.22 7905.60 8796.40 11133.75 14975.62 24821.14 28420.87 92112.93

V aRα(Cost1) + V aRα(Cost2) 3597.50 3995.83 4344.64 4672.67 6147.62 7355.30 9351.24 11726.40 15614.90 24329.78 30970.58 95217.51
Boostrap.V aR.Infα(S)(95%) 3062.90 3316.60 3633.04 3961.91 4261.94 5397.50 6121.84 7597.36 9590.88 13204.74 15857.45 24248.93
Boostrap.V aR.Supα(S)(95%) 4745.60 5510.67 6383.60 7492.32 8316.74 9805.10 12634.32 14865.21 20270.08 25394.25 78981.72 138863.50
MQ.V aR.Infα(S)(95%) 2111.92 2111.92 2111.92 2111.92 158.67 338.27 533.80 752.29 1007.47 1334.91 1563.87 1867.32
MQ.V aR.Supα(S)(95%) 21119.20 23465.78 26399.00 30170.29 32712.77 35811.31 39986.76 46073.21 56230.11 79036.09 111173.50 246470.71

TABLE 4.3: Bounding the empirical VaR.

Figure 4.4 displays the confidence bounds of the empirical VaR. We note that the

method by Mesfioui and Quessy provides large values, especially for the upper bound.

The Bootstrap technique provides narrower intervals of the empirical VaR. If we plot

the VaR of Cost1 plus the VaR of Cost2 (thin solid line) we firstly note that their values

are within the confidence interval of the aggregate loss at the 95% level and, secondly,

we clearly see that the condition of sub-additivity is violated.

4.5.3 Simulation of the VaR

In Table 4.4 we calculate the VaR of the total costs by simulation. We use 10, 000 repli-

cations and compare the Gumbel copula with other classical implicit copulae: Gaussian
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FIGURE 4.4: Bounds of the empirical VaR.

and t-Student. Thus, we can analyze the importance of using an extreme value copula

when the data indicate this behavior.

The simulation was performed by using the Itau method of R (based on the inversion

of the Kendall’s τ ) to estimate the parameters of alternative copulae and by using the

maximum likelihood estimation for parameters of marginal distributions.

We note that by using the Normal copula with Champernowne marginal distribution

we obtain a highest value of the VaR at the 95% level. However, if we increase the level

of the VaR to 99.5% or to 99.9%, as required by Basel III and Solvency II, the highest

VaR is obtained for the Gumbel copula with Champernowne marginal distribution, i.e.

with the extreme value copula and the heavier tail distribution, the corresponding VaR

is near the upper limit from the Mesfioui and Quessy (2005) in Table 4.3 and Figure

4.4. Namely, the only extreme value copula appearing in Table 4.4 is the Gumbel

copula, which is also the one previously chosen for the dependency structure of the
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data. If we consider the VaR as a risk measure for solvency requirements, we can say

that the Champernowne distribution ensures a greater capital requirement at the level

recommended by Solvency II. Also, QQ plots in Figures 4.1 and 4.2 show that the best

fit for both marginals is obtained with the Champernowne distribution.

Marginals Log-normal Weibull Gumbell Champernowne
Copula Normal

VaR (95) 6635.43 11751.43 5189.15 7237.59
VaR (99.5) 20762.77 26762.99 8377.31 38682.44
VaR (99.9) 39733.89 23613.46 11223.19 110082.26

Copula t-Student
VaR(95) 6547.52 11889.94 5167.74 7302.17

VaR(99.5) 22521.18 29476.47 8507.31 42223.50
VaR (99.9) 39547.10 23269.82 11133.09 117447.02

Copula Gumbel
VaR (95) 6432.12 12065.31 5301.55 7264.83

VaR (99.5) 22011.39 32434.25 7398.00 41461.74
VaR (99.9) 40001.21 26504.37 12041.83 119401.41

TABLE 4.4: Estimated values of the VaR.

In Figure 4.5 we plot the lower and upper bounds when the associated copula is un-

known by calculating the limits numerically by using (4.5) and (4.6). We add in the

same graph the VaR resulting from the simulation with a Gumbel copula and Champer-

nowne marginals. We observe that the simulated VaR is identical to the lower bound up

to some point, and from this point on it is located within the limits corresponding to the

unknown copula. This result shows that the Gumbel copula is suitable for modeling the

bivariate behavior of our data.
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estimated with Gumbel copula and Champernowne marginals (solid line).



Chapter 5

Quantifying the risk using copulae with nonparametric
marginals

We show that copulae and kernel estimation can be mixed to estimate the risk of an

economic loss. We analyze the properties of the Sarmanov copula. We find that the

maximum pseudo-likelihood estimation of the dependence parameter associated with

the copula with double transformed kernel estimation to estimate marginal cumulative

distribution functions is a useful method for approximating the risk of extreme depen-

dent losses when we have large data sets. We use a bivariate sample of losses from a

real database of auto insurance claims.

5.1 Introduction

A major challenge in finance and in insurance is estimating the risk of loss. Contri-

butions by McNeil et al. (2005), Jorion (2007) and Bolancé et al. (2012b) as well as

articles of Dhaene et al. (2006), Dowd and Blake (2006) and Alemany et al. (2013),

among many others, have focused on just this question. It is known that when the total

loss S is generated by a multivariate random vector of dependent losses (or risk factors),

i.e. S = X1 + ...+Xk, the total risk of loss depends on the relationship between these

risk factors. In this regard, there are studies that have analyzed the stochastic behav-

ior of the sum of dependent risks and the way in which the dependency between these

marginal risks may affect the total risk of loss (see, Bolancé et al. 2008b, Cossette et al.

2002, Denuit et al. 2001; 1999, Kaas et al. 2000). The copulae allow us to model a wide

range of dependency structures. As noted by Fisher (1997), copulae are interesting
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to statisticians for two basic reasons: firstly, because of their application in the study

of nonparametric measures of dependence and, secondly, as a starting point for con-

structing multivariate distributions representing dependency structures, even when the

marginals follow extreme value distributions. The aim of this paper is to show how the

combination of copulae for modeling dependency structures and nonparametric meth-

ods to fit marginals is a good tool to estimate the total risk of loss. We know that the

choice of the marginal may be crucial to model the dependence behavior of variables.

According to Nelsen (2006), in the coupling of the joint distribution with marginals,

the copula captures the aspect that links them. A natural nonparametric method for

estimating the cumulative distribution function (cdf) is the empirical distribution and

its use has been previously analyzed for fitting copulae. Genest et al. (1995) analyzed

the consistency of maximum pseudo-likelihood estimation (MPLE) of the parameters

of the copula, given empirical marginals. Later, Kim et al. (2007) showed the greater

robustness of the MPLE compared to that of the parametric methods: maximum like-

lihood estimation (MLE) and the so-called inference function for margins (IFM) (see

also, Kojadinovic and Yan 2010). However, although obtaining an empirical distribu-

tion is very simple, it does not have any smoothing behavior, which can be a problem

if the sample is not very large, since we can not represent all values of the distribution

if we use the Monte Carlo method to estimate the total risk of loss. Moreover, the fact

that the empirical distribution takes the value one in the maximum of the sample does

not allow us to calculate the pseudo-likelihood function; therefore a correction needs to

be used to avoid this problem. The proposed correction (see, Genest et al. 1995, Kim

et al. 2007) increases the efficiency of the estimation of the marginal distributions but

incorporates some bias. This is the same as the situation when we compare the kernel

smoothing estimation of the cdf with the empirical cdf (without correction)-the kernel

smoothing estimation has some bias but, instead, it has lower variance than the empir-

ical. Therefore, we propose using a smoothed estimate of the marginal distributions in

the maximum pseudo-likelihood based method to estimate the parameters of the cop-

ula. We show that estimating marginals using double transformed kernel estimation

(DTKE), as proposed by Alemany et al. (2013), is the method that best fits our pur-

pose especially when we have large data sets. In this study, we use well-known copulae
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belonging to different families (implicit and explicit copulae, Archimedean and non

Archimedean copulae and copulae with and without tail dependence) that represent a

wide range of dependence structures. Moreover, we propose using the Sarmanov copula

(see, Sarmanov 1966), where the dependence structure is not strictly separated from the

marginal distributions, i.e. the marginals are incorporated into the dependence structure.

We show how this fact affects the value of the dependence parameter and we analyze

tail dependence when the marginal distributions are extreme values. Hernández-Bastida

et al. (2009) and Hernández-Bastida and Fernández-Sánchez (2012) used the Sarmanov

distribution to obtain a Bayes premium in a collective risk model, in both works para-

metric marginal distributions were assumed. Yang and Hashorva (2013) analyzed the

Sarmanov distribution and proved asymptotic independence when the marginals are

extreme value distributions; here we prove that the tail dependence only exists if ex-

treme value marginal distributions are type I (Gumbel). To estimate the total risk of

loss, which is obtained as the aggregation of the dependent losses, we use Monte Carlo

simulation; Value-at-Risk (VaR) is the selected risk measure. Artzner et al. (1999) dis-

cussed other risk measures. They stated that, in practice, the Tail Value-at-Risk (TVaR)

is preferred due to its better properties. However, the VaR is used both as an internal

risk management tool and as a regulatory measure of risk exposure to calculate capital

adequacy requirements in financial and insurance institutions. Moreover, the TVaR can

not be calculated if the marginal distributions do not have finite first moment, as occurs

with a class of distributions with heavy tail. We apply our proposed method to a real

insurance database corresponding to a random bivariate sample of the cost of claims

in automobile insurance, which are right skewed and have extreme values. Throughout

this study we analyze the bivariate case. The method proposed by Aas et al. (2009) to

generalize to multivariate copula is applicable to our case but it is not straightforward. In

section 5.2 we define our notation and we describe the VaR estimation using the Monte

Carlo simulation method. In section 5.3 we describe the nonparametric estimation of

the marginals. Later, in section 5.4, we present the copulae used in our analysis and

we describe how we simulate bivariate random samples from each copula. For evaluat-

ing the finite sample properties of our proposed Monte Carlo simulation method using

nonparametric marginal distributions, in section 5.5 we show the results of a simulation
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study and in section 5.6 we report an application.

5.2 Estimating VaR from bivariate copulae using Monte

Carlo simulation

Let (X1, X2) be a bivariate vector of random variables representing losses, with

marginal cdfs F1 and F2 and bivariate cdf F . We are interested in estimating the VaR

of the total loss, i.e. S = X1 + X2, with confidence level α. This can be defined as

follows,

V aRα (S) = inf {s, FS (s) ≥ α} = F−1
S (α) , (5.1)

where S is a random variable with probability distribution function (pdf) fS and cdf FS .

Following Sklar’s theorem (see, Sklar 1959), if F1 and F2 are continuous distributions,

there exists a single copula Cθ : [0, 1]2 −→ [0, 1], with dependence parameter θ, such

that:

F (x1, x2) = Cθ(u1, u2),∀x1, x2 ∈ <, (5.2)

where u1 = F1(x1) and u2 = F2(x2) are, respectively, two values of two random

variables U1 and U2 with uniform(0, 1) distribution. Let us assume that (X1i, X2i), i =

1, ..., n, denotes a bivariate sample from the bivariate loss random vector (X1, X2), then

the Monte Carlo procedure to estimate the V aRα (S) is described below:

• Estimating with non-parametric method cdfs F̂1 and F̂2.

• Replacing U1i = F̂1(X1i) and U2i = F̂2(X2i), i = 1, . . . , n, in (5.2) in order to

estimate the parameter of the copula θ̂ by maximizing the likelihood function as-

sociated with copula (pseudo-maximal-likelihood), as we describe later in section

5.3.

• Simulating from the copula the pairs (Ũ1j, Ũ2j), j = 1, . . . , r, where r is the

number of simulated pairs, as we describe later in section 5.4.

• Calculating simulated losses X̃1j = F̂−1
1 (Ũ1j) and X̃2j = F̂−1

2 (Ũ2j), ∀ j =

1, . . . , r.
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• Calculating simulated total losses S̃j = X̃1j + X̃2j , j = 1, . . . , r, and estimating

V aRα(S) empirically once a large number of simulated data r are available.

The empirical estimation of the VaR is:

V̂ aRα (S)n = inf
{
s, F̂Sn (s) ≥ α

}
, (5.3)

where F̂Sn is the empirical estimation of FS .

5.3 Fitting copulae with nonparametric approximation

of marginal cdfs

To fit the copula to a bivariate sample (X1i, X2i), i = 1, ..., n, we use a maximum

pseudo-likelihood estimation (MPLE) of the dependence parameter, i.e. first we gen-

erate the named pseudo-data (U1i, U2i) (see, Genest et al. 1995; 2011) from a non-

parametric estimator of the cdf and, second, we estimate the dependence parameter θ̂,

maximizing the logarithm of the pseudo-likelihood function given (U1i, U2i):

ln(L)θ =
n∑
i=1

ln{cθ(U1i, U2i)}, (5.4)

where cθ is the density associated with the cdf of the copula Cθ. We denote as θ̂∗ the

parameter that maximizes the pseudo log-likelihood function. A natural nonparametric

method for estimating the cdf is the empirical distribution,

F̂ln(x) =
1

n

n∑
i=1

I(Xli ≤ x), l = 1, 2. (5.5)

The empirical distribution is very simple, but it cannot extrapolate beyond the maximum

observed data point, where the value of the empirical distribution is 1, causing numer-

ical problems in calculating the values of cθ(1, U2i) or cθ(U1i, 1). A way of addressing

these difficulties (see, Genest et al. 1995) is to correct the empirical distribution in the
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following way:

F̃ln(x) =
n

n+ 1
F̂ln(x), l = 1, 2 (5.6)

and generate pseudo-data as (U1i, U2i) = (F̃1n(X1i), F̃2n(X2i)), i = 1, . . . , n. The inef-

ficiency of F̂ln is known (see, Azzalini 1981); however, after including the correction,

the properties of the empirical distribution change, reducing the variance and adding

some bias to the estimation in finite samples. It is easy to deduce that the mean square

error (MSE) of F̃ln (that we denote as Emp) is:

E
{
F̃ln (x)− Fl (x)

}2

∼ Fl(x)[1−Fl(x)]
n

− 2n+1
(n+1)2

Fl(x)[1−Fl(x)]
n

+
(

1
(n+1)2

[Fl (x)]2
)
, l = 1, 2.

(5.7)

In expression (5.7) the first term is the MSE of the unbiased estimator F̂ln , the second

term is the reduction in variance after correction and the third term is the square bias.

The result of the sum of the second and third terms in (5.7) is negative; therefore, in

finite samples the MSE of F̃ln is lower than the MSE of F̂ln and this difference is o(n−2).

An alternative to F̃ln is the classical kernel estimation (CKE) of cdf. This estimation

does not cause numerical problems in calculating the likelihood in expression (5.4)

because does not take value 1. The CKE of cdf Fl is:

F̂l(x) = 1
n

∑n
i=1K

(
x−Xli
b

)
, l = 1, 2, (5.8)

where K(t) =
∫ t
−∞ k(u)du and k(·) is a pdf, which is known as the kernel function.

Some examples of kernel functions are the Epanechnikov and the Gaussian kernels (see,

Silverman 1986). Parameter b is the bandwidth or the smoothing parameter, it controls

the smoothness of the cdf estimate. The larger b is, the smoother the resulting cdf.

The properties of the kernel estimator of the cdf were analyzed by Azzalini (1981).

Asymptotically, the MSE of CKE is:

E
{
F̂l (x)− Fl (x)

}2

∼ Fl(x)[1−Fl(x)]
n

− fl (x) b
n

(
1−

∫ 1

−1
K2 (t) dt

)

+b4
(

1
2
f ′l (x)

∫
t2k (t) dt

)2
, l = 1, 2.

(5.9)
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As with the corrected empirical distribution, the kernel estimation of the cdf also incor-

porates some bias in the finite sample, the last term in expression (5.9), and it improves

the efficiency of the empirical distribution. Azzalini (1981) shows that the optimal band-

width is o(n−
1
3 ) and the sum of the second and third terms of MSE is negative. Then,

in finite samples, MSE of F̂l is lower than MSE of F̂ln , the difference is o(n−
4
3 ) and

this is larger, in absolute value, than the difference between F̃ln and F̂ln . The difficulty

of CKE is that the optimal bandwidth depends on the true distribution, which is un-

known. Therefore, we propose to estimate this smoothing parameter using the rule-of-

thumb (see, Silverman 1986), based on the minimization of a weighted mean integrated

squared error, so that more weight is given to the accuracy of the estimate in the part

of the domain near the quantile in the right tail. The value of this bandwidth using the

Epanechnikov kernel is (see, Alemany et al. 2013):

b̂ = σ
5
3

(
8

3

) 1
3

n−
5
3 , (5.10)

where σ can be replaced by a consistent estimation of the standard deviation. Alemany

et al. (2013) showed that the transformed kernel estimation of the cdf is more efficient

than the classical kernel estimation, although it incorporates a larger bias that can be

minimized by selecting an appropriate transformation. These authors proposed double

transformed kernel estimation, a method that requires an initial transformation of the

data T (Xi) = Zi, where we obtain a transformed variable distribution that is close

to uniform(0, 1). Afterwards, the data are transformed again using the inverse of the

distribution function of a Beta (3, 3), M−1 (Zi) = Yi. The resulting variable, once the

double transformation has been made, has a distribution that is close to a Beta (3, 3)

(see, Bolancé 2010, Bolancé et al. 2008a). The double transformation kernel estimator

(DTKE) is:

F̃l (x) =
1

n

n∑
i=1

K

(
M−1 (T (x))−M−1 (T (Xil))

b

)
=

1

n

n∑
i=1

K

(
y − Yil
b

)
, l = 1, 2, (5.11)
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where the first transformation T (·) is the cdf of the modified Champernowne distribu-

tion:

T (x) =
(x+ c)δ − cδ

(x+ c)δ + (H + c)δ − 2cδ
, x ≥ 0, (5.12)

with parameters δ > 0, H > 0 and c ≥ 0. If we analyze the properties of this distri-

bution, we can conclude that it has a very flexible shape. It is similar to a Lognormal

distribution in the low values and tends to a Generalized Pareto in the extreme val-

ues. The estimation of transformation parameters is performed using the maximum

likelihood method described in Buch-Larsen et al. (2005). The second transformation

M−1(·) is the inverse of the following Beta (3, 3) cdf:

M (x) =
3

16
x5 − 5

8
x3 +

15

16
x+

1

2
,−1 ≤ x ≤ 1, (5.13)

that, as Terrell (1990) showed, minimizes the asymptotic mean integrated squared error

of the CKE of cdf, i.e. this distribution is the best fit using CKE. The distribution

associated with the double transformed variables has been established, with the cdf

defined in (5.13). It is crucial here, that this method provides an accurate way to obtain

the smoothing parameter based on the minimization of the MSE at F̃l (x), l = 1, 2 (see,

Alemany et al. 2013):

bx =

(
m (x)

∫
K (t) [1−K (t)] dt(

m′ (x)
∫
t2k (t) dt

)2

) 1
3

n−
1
3 , (5.14)

where m is the pdf of the Beta (3, 3). We propose DTKE to generate pseudo-data.

Remark 5.3.1. Let Fl(t), l = 1, 2, be a continuous distribution function, to compare the

fit of the nonparametric estimation of marginal cdfs we estimate the Integrated Squared

Error (ISE) (see, Scott 2001, Shirahata and Chu 1992):

ISEl =

∫ +∞

−∞

(
F ∗l (t)− Fl(t)

)2
dt, l = 1, 2,

as

ÎSEl =

∫ +∞

−∞

(
F ∗l (t)

)2
dt− 2

n

n∑
i=1

F ∗li(Xli), l = 1, 2,
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where F ∗l is a nonparametric estimation of marginal cdf l (Emp, CKE or DTKE) and F ∗li
denotes the nonparametric estimation obtained from the data without observation Xli,

i.e. the leave-one-out estimation.

5.4 Copulae under analysis

The copulae analyzed here belong to different families (implicit and explicit copulae,

Archimedean and non Archimedean copulae and copulae with and without tail depen-

dence) and represent a wide range of dependence structures. Below, we define the copu-

lae that are compared in our analysis and we describe how we generate bivariate uniform

samples from each Cθ(u1, u2). First, we focus on the Sarmanov copula that was defined

above in Bairamov et al. (2011). This copula has special characteristics and in this case

we detect that the dependence parameter ω is not scale independent, i.e. it depends on

the values of the variables analyzed. Furthermore, we test the upper and lower tail de-

pendence coefficients. Second, we describe the other well-known copulae that we use in

our analysis. Finally, we describe the methods that we use to generate pairs of uniforms

random variables from the different copulae analyzed.

5.4.1 Sarmanov copula

The Sarmanov copula belongs to the family of implicit copulae. Let (X1, X2) be a

bivariate vector of random variables representing losses with marginal pdfs f1 and f2.

Also, let φ1 and φ2 be two bounded non-constant functions such that:

∫ +∞

−∞
f1(t)φ1(t)dt = 0,

∫ +∞

−∞
f2(t)φ2(t)dt = 0,

then the bivariate pdf introduced by Sarmanov (1966) is defined as:

h(x1, x2) = f1(x1)f2(x2)
(
1 + ωφ1(x1)φ2(x2)

)
.
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From Sklar’s theorem, it can be shown that the associated copula can be expressed as

(see, Bairamov et al. 2011):

Cω(u1, u2) = u1u2 + ω

∫ u1

0

∫ u2

0

φ1(F−1
1 (t))φ2(F−1

2 (s))dtds (5.15)

and its density is:

cω(u1, u2) = 1 + ωφ1(F−1
1 (u1))φ2(F−1

2 (u2)), (5.16)

where dependence parameter θ = ω satisfies the condition 1 + ωφ1(x1)φ2(x2) ≥ 0

for all x1 and x2. This parameter is related to the correlation between X1 and X2 (if it

exists). As Lee (1996) shows, the correlation between X1 and X2 is:

ρ(X1, X2) = ω
ν1ν2

σ1σ2

,

where ν1 = E(X1φ1(X1)) and ν2 = E(X2φ2(X2)) and σ1, σ2 are standard deviation

of X1 and X2, respectively. When we take φ1(x1) = 1 − 2F1(x1) and φ2(x1) = 1 −

2F2(x2), we have the classical Farlie-Gumbel-Morgenstern (FGM) copula described

below, where the dependence parameter is in the range −1/3 ≤ ω ≤ 1/3 and, in this

case, it is scale independent. Another special case is when we consider functions of the

type:

φ1(x1) = x1 − µ1 and φ2(x2) = x2 − µ2, (5.17)

where µ1 = E(X1) and µ2 = E(X2). Lee (1996) shows that, if the support of f1 and f2

is contained in [0, 1], then the range of the dependence parameter is:

max
( −1

µ1µ2

,
−1

(1− µ1)(1− µ2)

)
≤ ω ≤ min

( 1

µ1(1− µ2)
,

1

(1− µ1)µ2

)
. (5.18)

We extend the result in (5.18) in Proposition 5.4.1.

Proposition 5.4.1. Let X1 and X2 be two random variables with pdfs f1 and f2, re-

spectively. If the support of f1 is contained in [a, b] and that of f2 is contained in [c, d],
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where a,b,c and d are finite real numbers, then:

max

(
−(b− a)(d− c)
(µ1 − a)(µ2 − c)

,
−(b− a)(d− c)
(b− µ1)(d− µ2)

)
≤ (b− a)(d− c)ω ≤ min

(
(b− a)(d− c)

(µ1 − a)(d− µ2)
,

(b− a)(d− c)
(b− µ1)(µ2 − c)

)
.

(5.19)

Proof. If we consider the variables Y1 = X1−a
b−a , and Y2 = X2−c

d−c , we observe that Yl ∈

[0, 1] for l = 1, 2 and ρ(Y1, Y2) = ρ(X1, X2). The results in (5.19) can be deduced

immediately if we replace µY1 = µX−a
b−a , µY2 = µY −c

d−c in (5.18), and finally substituting

ωY1,Y2 by (b− a)(d− c)ω.

Remark 5.4.1. Using Emp and CKE we have a, c = 0 and b ≈ max(Xi1), d ≈

max(Xi2), i = 1, ..., n. Also, when b, d→∞ the dependence parameter is ω ≈ 0.

Tail dependence is important when the marginals are extreme value distributions. We

discuss the dependence in both tails of the Sarmanov copula and, in particular, we an-

alyze the dependence in the right (upper) tail when the marginals are extreme value

distributions.

The lower tail dependence coefficient λL is:

λL = lim
u→0+

Cθ(u, u)

u
,

where u = u1 = u2. If λL is in (0, 1] Cθ has lower tail dependence.

The upper tail dependence coefficient is:

λU = lim
u→1−

1− 2u+ Cθ(u, u)

u
.

If λU is in (0, 1] Cθ has upper tail dependence.

Proposition 5.4.2. If Cω is a bivariate Sarmanov copula then λL = 0.

Proof.
Cω(u, u)

u
= u+ ωu−1

∫ u

0

∫ u

0

φ1(F−1
1 (t))φ2(F−1

2 (s))dtds,



88

where φl, l = 1, 2, are bounded, then |φl| ≤ Ml, for some finite positive number Ml,

l = 1, 2. The result is deduced taking the limit u→ 0+ in the inequality:∣∣∣∣C(u, u)

u

∣∣∣∣ ≤ u+ |ω|u−1u2M1M2.

Theorem 5.4.1. If the marginals Fl, l = 1, 2, follow a generalized extreme value (GEV)

distribution type II or type III then upper tail dependence of the Sarmanov copula does

not exist. If the marginals Fl, l = 1, 2, have a GEV distribution type I then λU = 0.

Proof. Proof of Theorem 5.4.1: The general expression of the cdf of a GEV distribution

is:

F (x, µ, σ, ξ) = exp

(
−1 + ξ

(
x− µ
σ

)−1/ξ
)

(5.20)

and its mean is:

E(X) =


µ+ σ Γ(1−ξ)−1

ξ
if ξ 6= 0, ξ < 1

µ+ σγ if ξ = 0

∞ if ξ ≥ 1

, (5.21)

where Γ(∆) is Euler’s gamma function and γ is Euler’s constant. The inverse of cdf F

in (5.20) is expressed as:

F−1(t) =

 µ+ σ
−ξ

(
1− (− log(t))−ξ

)
if ξ 6= 0

µ− σ
(

log(− log(t)
)

if ξ = 0
.

If we assume that E(X) in (5.21) is finite, i.e. ξ ≤ 1, then for Fl, l = 1, 2 with ξl = 0:

1− 2u+ C(u, u)

u
=

(1− u)2 + ω
∫ u
0

∫ u
0
(F−11 (t)− µ1)(F

−1
2 (s)− µ2)dtds

u

=
(1− u)2 + ωσ1σ2

∫ u
0

∫ u
0

(
log(−(log(t))− γ

)(
log(−(log(s)− γ

)
dtds

u

=
(1− u)2 + ωσ1σ2

(
µ log(− log(µ))− l(u) + γµ

)2
u

,

where l(x) =
∫ x

0
1

log(t)
dt.
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For 0 < ξl < 1, l = 1, 2 we obtain:

1− 2u+ C(u, u)

u
=

(1− u)2 + ω
∫ u

0

∫ u
0

(F−1
1 (t)− µ1)(F−1

2 (s)− µ2)dtds

u

= I1 + I2,

where I1 = (1−u)2

u
and

I2 =
ω σ1
ξ1

σ2
ξ2

∫ u
0

∫ u
0

(
(− log(t))−ξ1 − Γ(1− ξ1)

)(
(− log(s))−ξ2 − Γ(1− ξ2)

)
dtds

u

=
ω

µ

σ1

ξ1

σ2

ξ2

(
Γ(−ξ1 + 1,− log(u))− µΓ(1− ξ1)

)(
(Γ(−ξ2 + 1,− log(u))− µΓ(1− ξ2)

)
,

where Γ(a, x) =
∫∞
x
ta−1e−tdt the is incomplete Gamma function. Calculating the limit

when u→ 1− the upper tail dependence coefficient is:

λU =

 0 if ξl = 0

∞ if 0 < ξl < 1
.

When ξl ≥ 1 tail dependence can not be calculated.

5.4.2 Other copulae

The most popular implicit copulae are the Gaussian and the Student t copulae, where Cθ

is, respectively, the standard normal bivariate cumulative distribution function and stan-

dard Student t (with υ degree of freedom) bivariate cumulative distribution function,

with correlation coefficient ρ, i.e. θ = ρ. These copulae represent symmetric depen-

dence structures. The main difference between them is that the Student t copula has

heavier tails than those of the Gaussian copula. Additionally, the Gaussian copula does

not present tail dependence while the Student t copula has both, lower and upper tail

dependence. From the explicit and the Archimedean family of copulae we use the most

popular: Gumbel (Gumbel 1960b), Clayton (Clayton 1978) and Frank (Frank 1979)

copulae. This class of copulae has a simple closed form and its structure depends only

on the dependence parameter. Moreover, they are not derived from a bivariate distribu-

tion function. Among these copulae, Gumbel is an extreme value copula (see, Genest
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et al. 2011, Juri and Wüthrich 2002), and its functional form is given by:

Cθ(u1, u2) = exp
(
−
[
(− ln(u1))θ + (− ln(u2))θ

]1/θ)
, (5.22)

where θ ∈ [1,+∞) is the parameter controlling the dependence structure. Finally, the

dependence is perfect when θ → ∞ and we have independence when θ = 1. For the

Gumbel copula, it is well known that λL = 0 and λU = 2− 2
1
θ , i.e. the Gumbel copula

has upper tail dependence. The Clayton copula, unlike the Gumbel, it is not an extreme

value copula. Its functional form is given by:

Cθ(u, v) =
(
u−θ + v−θ − 1

)−1/θ
, (5.23)

where θ > 0. In this case the perfect dependence structure is achieved when θ →∞, and

independence is achieved when θ → 0. In contrast to the Gumbel copula, the Clayton

copula has lower tail dependence, in this case λL = 2−
1
θ and λU = 0. The Frank copula

is defined by the parameter θ ∈ (−∞, 0[∪]0,+∞), and is given by:

Cθ(u1, u2) = −1

θ
ln
(

1− (1− eθu1)(1− eθu2)
1− e−θ

)
.

The upper and lower tail dependence coefficients of the Frank copula are 0. An implicit,

non-Archimedean copula without tail dependence is the Farlie-Gumbel-Morgenstern

(FGM) copula (see, Farlie 1960, Gumbel 1960a, Morgenstern 1956). As noted above,

this copula is a particular case of the Sarmanov copula and takes the form:

Cθ(u1, u2) = u1u2

(
1− θ(1− u1)(1− u2)

)
θ ∈ [−1, 1]. (5.24)

As Nelsen (2006) describes, this is the only copula with a quadratic functional form

in u1 and u2. When θ = 0, we have a special case of independence. Schucany et al.

(1978) analyze the dependence structure of the FGM copula and prove that its correla-

tion parameter obeys the condition |θ| ≤ 1/3. In their paper, this authors claim that the

upper bound for the correlation coefficient is so small as to restrict the usefulness of the

model. Generally, to generate a bivariate random variable from copulae we use a pro-

cedure based on the conditional distribution of the random vector (U1, U2) (see, Nelsen
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2006). However, the conditional distribution for the Gumbel copula is not invertible.

So, to generate random variables from this copula we follow the algorithm proposed

by Chambers et al. (1976). Finally, for the Gaussian and Student t copulae we opted to

use a classical method of simulation for these distributions (see, Devroye 1986). This

method ensures that the simulated values for the Student t have heavier tails than those

of the Gaussian copula.

5.5 Simulation study

In this section we summarize the results of a simulation study. The study has been

divided in two parts. Firstly, we analyze the effect of the pseudo-data obtained using the

double transformed kernel estimation (DTKE), the empirical estimation (Emp) and the

classical kernel estimation (CKE) on the estimated parameter of the analyzed copulae.

Secondly, we compare the Mean Square Error (MSE) of estimated V aRα associated

with the random variable S = X1 + X2 using different copulae and nonparametric

marginals: Emp, CKE and DTKE. The principal advantage of CKE and DTKE is that,

unlike empirical distribution, they have a smooth shape and are defined at all points

of the domain of the variable. We generated 1, 000 bivariate samples of size n = 500

and 1, 000 bivariate samples of size n = 5, 000 from each copula in Table 5.1. The

theoretical parameters of the copulae were selected similar to those estimated in the

application that we show in section 5.6. We supposed three marginal distributions with

positive skewness and different tail shapes: Lognormal and two mixtures of Lognormal-

Pareto; we used the same parameters as in Bolancé et al. (2008a) and Alemany et al.

(2013).

For each generated sample we estimated the parameter of the copula as we described

in section 5.3, then we calculated the mean and the standard deviation of the estimated

parameters for each combination of copula, nonparametric marginal and sample size. In

Table 5.2 and Table 5.3 we show the means and the standard deviations of the estimated

parameters with the simulated 1, 000 bivariate samples. The results reflect that there are
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TABLE 5.1: Bivariate copulae and theoretical marginal distributions.

Copula Gauss Student t∗ Gumbel Clayton Frank FGM Sarmanov
Parameter 0.60 0.60 1.70 0.75 4.50 0.33 9.53E-09

Marginal Distributions

Ln
∫ log x
−∞

1√
2πσ2

e−
(t−µ)2

2σ2 dt (µ, σ = (0,
√
0.25)

70Ln-30Pa p
∫ log x
−∞

1√
2πσ2

e−
(t−µ)2

2σ2 dt (p, µ, σ, λ, ρ) = (0.7, 0, 1, 1, 1,−1)

30Ln-70Pa +(1− p)
(
1−

(
x−c
λ

)−ρ)
(p, µ, σ, λ, ρ) = (0.3, 0, 1, 1, 1,−1)

∗Degrees of freedom: 8. 70Ln=70% Lognormal, 30Pa=30% Pareto.

no big differences between parameters estimated with the different pseudo-data. How-

ever, when we use pseudo-data generated with CKE or Emp there exist some cases, in

bold in Table 5.2, where the estimators are less efficient. We specially want to highlight

the value of the standard deviation equal to 3.35 in Table 5.2, obtained for the Gumbel

copula, with marginals 70Ln-30Pa, when pseudo-data was obtained using CKE. In this

case, for some of the the 1, 000 generated samples, the Gumbel parameter estimated

using the MPLE described in section 5.3 is very large, i.e. this method may tend to esti-

mate perfect dependence when the sample is smaller. To corroborate this result we have

repeated the analysis for the Gumbel with 1, 000 new simulated samples and sample

size 500, the results obtained were similar, and we observe that a similar extreme case

can occur when the marginals are 30Ln-70Pa.

To analyze the finite sample properties of the V aRα estimator with the different non-

parametric marginal, we estimated the V aRα with α = 0.95, α = 0.99 and α = 0.995

for each simulated sample. As we described in section 5.2, we used a Monte Carlo

method with 10, 000 simulated data. It is important to note that results are influenced

by the number of simulated pairs (U1, U2) in the Monte Carlo method, especially if we

work with extreme value distributions; a greater number of pairs would improve the

accuracy of the results, but the computational time would increase considerably. Using

the 1, 000 estimated V aRα for each confidence level α, each copula and both nonpara-

metric marginal distributions, we obtained the MSE. To calculate the MSE we used the

true values of V aRα that we show in Appendix in Table 5.10; these theoretical values

are also calculated with the Monte Carlo method using the values of the parameters
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TABLE 5.2: Means and standard deviations (in italic numbers) of the estimated copula
parameter for the 1, 000 simulated samples with n = 500.

Ln 70Ln-30Pa 30Ln-70Pa
Emp 0.60 0.03 0.60 0.03 0.60 0.03

Gauss CKE 0.60 0.03 0.60 0.03 0.60 0.04
DTK 0.61 0.03 0.61 0.03 0.61 0.03
Emp 0.60 0.03 0.60 0.03 0.60 0.03

Student t∗ CKE 0.60 0.03 0.60 0.04 0.60 0.04
DTK 0.61 0.03 0.61 0.03 0.61 0.03
Emp 1.71 0.07 1.71 0.07 1.71 0.07

Gumbel CKE 1.70 0.07 1.81 3.35 1.72 0.17
DTK 1.73 0.07 1.73 0.07 1.73 0.07
Emp 0.72 0.09 0.72 0.09 0.71 0.09

Clayton CKE 0.70 0.09 0.70 0.10 0.71 0.14
DTK 0.75 0.09 0.73 0.10 0.73 0.10
Emp 4.52 0.35 4.50 0.34 4.51 0.33

Frank CKE 4.51 0.35 4.48 0.40 4.49 0.37
DTK 4.58 0.35 4.58 0.34 4.59 0.33
Emp 0.28 0.13 0.28 0.08 0.28 0.08

FGM CKE 0.28 0.08 0.28 0.08 0.28 0.08
DTK 0.28 0.08 0.28 0.08 0.28 0.08
Emp 1.4E-04 2.7E-03 2.4E-07 1.6E-11 7.6E-08 2.4E-08

Sarmanov CKE 1.4E-04 2.7E-03 2.4E-07 1.6E-11 7.6E-08 2.4E-08
DTK 5.8E-05 2.2E-06 2.4E-07 1.6E-11 7.6E-08 2.4E-08

∗Degrees of freedom: 8. 70Ln=70% Lognormal, 30Pa=30% Pareto. Bold values indicate that the corresponding estimator is less efficient than the rest.

of copula and marginal distributions that was showed in Table 5.1. The results that we

present in Table 5.4 and Table 5.5 correspond to the ratio between the MSE when the

marginal distributions are estimated with CKE or DTKE and when the same marginal

distributions are estimated using Emp. In general, for the sample size n = 500, the es-

timated V aRα associated with a Lognormal marginal distribution results obtained with

CKE marginals are better than those obtained with DTKE marginals. When marginal

distributions have heavier tails, as in both analyzed mixtures, the results with CKE and

DTKE are more similar than before. A special case is the extreme value copulae, in our

analysis the Student t and the Gumbel copulae, in both cases, especially for the Gum-

bel copula, DTKE considerably overestimates the V aRα. When analyzing the bias, we

deduced that the larger MSE of DTKE are associated with its larger bias, so the V aRα

obtained using DTKE overestimate the risk (see, Alemany et al. 2013). Analyzing the
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TABLE 5.3: Means and standard deviations (in italic numbers) of the estimated copula
parameter for the 1, 000 simulated samples with n = 5, 000.

Ln 70Ln-30Pa 30Ln-70Pa
Emp 0.60 0.01 0.60 0.01 0.60 0.01

Gauss CKE 0.60 0.01 0.60 0.01 0.60 0.02
DTK 0.60 0.01 0.60 0.01 0.60 0.01
Emp 0.60 0.01 0.60 0.01 0.60 0.01

Student t∗ CKE 0.60 0.01 0.60 0.02 0.60 0.03
DTK 0.60 0.01 0.60 0.01 0.60 0.01
Emp 1.70 0.02 1.70 0.02 1.70 0.02

Gumbel CKE 1.70 0.02 1.70 0.05 1.71 0.20
DTK 1.71 0.02 1.71 0.02 1.71 0.02
Emp 0.70 0.03 0.70 0.03 0.70 0.03

Clayton CKE 0.70 0.03 0.70 0.04 0.70 0.04
DTK 0.71 0.03 0.71 0.03 0.71 0.03
Emp 4.50 0.11 4.50 0.11 4.50 0.10

Frank CKE 4.50 0.11 4.50 0.17 4.50 0.13
DTK 4.52 0.11 4.52 0.11 4.52 0.10
Emp 0.33 0.04 0.33 0.04 0.33 0.04

FGM CKE 0.33 0.04 0.33 0.04 0.34 0.05
DTK 0.33 0.04 0.33 0.04 0.33 0.04
Emp 4.7E-05 6.6E-07 7.2E-08 6.9E-09 7.4E-12 2.6E-12

Sarmanov CKE 4.7E-05 6.6E-07 7.2E-08 6.9E-09 7.4E-12 2.6E-12
DTK 4.7E-05 6.6E-07 7.2E-08 6.9E-09 7.4E-12 2.6E-12

∗Degrees of freedom: 8. 70Ln=70% Lognormal, 30Pa=30% Pareto. Bold values indicate that the corresponding estimator is less efficient than the rest.

results obtained with sample size n = 5, 000 in Table 5.5 we observe that MSE us-

ing DTKE marginals improve considerably compared to a smaller sample size, espe-

cially when we have an extreme value copula with upper tail dependence and heavier

tail marginal distributions. When the theoretical model is the Gumbel copula (extreme

value copula with upper tail dependence) with mixture marginal distributions the MSE

obtained using DTKE marginals are much lower than CKE and Emp.

5.6 Application

In this section we compare the risks estimated using different copulae with different

nonparametric marginals: Emp, CKE and DTKE. We use a data set corresponding to a

random sample of 518 claims obtained from motor insurance accidents. We were kindly
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TABLE 5.4: Ratio between the MSE when the marginal distributions are CKE or
DTKE and when the same marginal distributions are Emp, for sample of size n = 500.

CKE DTKE
V aR0.95 V aR0.99 V aR0.995 V aR0.95 V aR0.99 V aR0.995

Ln
Gauss 1.653 0.164 0.071 0.170 1.837 0.300
Student t∗ 0.626 0.921 0.306 0.865 1.650 2.210
Gumbel 0.855 1.000 1.000 1.138 7.682 69.074
Clayton 1.939 0.172 0.127 0.044 2.653 0.515
Frank 773.819 13747.714 34.978 0.036 30.408 0.392
FGM 0.057 0.157 0.080 2.784 4.225 0.613
Sarmanov 4.024 0.000 0.074 6.599 7.275 0.371

70Ln-30Pa
Gauss 1.649 0.158 0.003 0.396 0.016 0.007
Student t∗ 0.408 0.992 0.835 0.295 1.585 35.464
Gumbel 126.517 5362.956 6332.125 1.297 67.885 1588.541
Clayton 1.872 0.168 0.007 0.000 0.039 0.006
Frank 1.351 37.624 0.012 0.187 5.092 0.001
FGM 0.023 0.154 0.004 1.199 0.246 0.008
Sarmanov 1.091 4.111 0.004 0.972 2.754 0.001

30Ln-70Pa
Gauss 1.616 0.159 0.004 0.647 0.004 0.010
Student t∗ 0.410 0.992 0.834 0.357 3.414 56.445
Gumbel 0.807 1.000 1.000 1.374 35.017 402.053
Clayton 1.825 0.168 0.007 0.046 0.072 0.013
Frank 1.374 36.118 0.013 0.367 7.555 0.000
FGM 0.060 0.154 0.004 0.411 0.312 0.019
Sarmanov 3.184 3.169 0.009 1.112 1.157 0.001
∗Degrees of freedom: 8. 70Ln=70% Lognormal, 30Pa=30% Pareto

given access to these data by an insurance company. We have two costs: Cost1 corre-

sponds to the amount paid to the insured party to compensate for damage to their own

vehicle and all other losses attributable to third-party damages and Cost2 corresponds

to the expenses incurred in paying for medical treatment and hospitalization as a result

of the accident (see, Bolancé et al. 2008b;for more information on these data). This

data has also been analyzed by Bahraoui et al. (2014c), Bolancé et al. (2009), Guillén

et al. (2011; 2013). In Table 5.6, we show the descriptive statistics for Cost1, Cost2 and

S = Cost1 + Cost2. Clearly Cost1 represents higher values than those presented by

Cost2, but if we compare the dispersion measured by the coefficient of variation (CV), it

can be seen that both variables are similar. Likewise, both variables are strongly skewed

to the right.
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TABLE 5.5: Ratio between the MSE when the marginal distributions are CKE or
DTKE and when the same marginal distributions are Emp, for sample of size n =

5, 000.

CKE DTKE
V aR0.95 V aR0.99 V aR0.995 V aR0.95 V aR0.99 V aR0.995

Ln
Gauss 1.276 4.438 1210.553 4.526 9.385 1949.681
Student t∗ 0.981 0.660 0.915 1.039 1.089 1.488
Gumbel 0.969 0.637 1.000 0.980 0.487 1.901
Clayton 0.901 0.975 2.636 1.535 10.070 15.705
Frank 3234.643 81688.838 35158.148 3.704 47.577 35.386
FGM 0.759 0.182 0.011 2.648 27.939 61.817
Sarmanov 1.019 0.545 0.082 5.177 6.329 6.961

70Ln-30Pa
Gauss 302.648 2296.804 4843.762 0.003 0.003 0.652
Student t∗ 34.252 0.594 0.812 0.909 0.768 1.125
Gumbel 5.202 0.004 0.052 0.000 0.000 0.004
Clayton 438.987 1366.710 515.489 0.014 1.031 0.000
Frank 376.801 12004.490 108.824 0.007 2.409 0.000
FGM 728.268 1005.916 46.400 0.010 1.888 0.670
Sarmanov 31.694 0.010 0.648 1.159 0.922 1.175

30Ln-70Pa
Gauss 233.914 2319.751 9787.799 0.002 0.152 3.864
Student t∗ 32.388 0.594 0.812 0.901 0.802 1.487
Gumbel 100.716 0.024 1.000 0.001 0.000 0.343
Clayton 296.132 1503.367 734.355 0.009 1.728 4.525
Frank 270.825 9473.642 123.888 0.005 4.328 2.028
FGM 409.650 899.208 54.221 0.007 3.342 5.648
Sarmanov 1584.494 114.186 0.464 0.344 4.014 1.053
∗Degrees of freedom: 8. 70Ln=70% Lognormal, 30Pa=30% Pareto

TABLE 5.6: Descriptive statistics.

Mean Std.Dev. CV=Std.Dev.
Mean Skewness Kurtosis Min Max

Cost1 1827.6004 6867.8166 3.7578 15.7430 301.2149 13 137936
Cost2 283.9208 863.1695 3.0402 8.0836 83.1602 1 11855
S 2111.5212 7520.1681 3.5615 15.3554 290.3473 14 149791

Covariance between Cost1 and Cost2 is 4312140.2637.
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FIGURE 5.1: Cost1 vs Cost2 losses (left) and Cost1 vs Cost2 losses on logarithmic
scale (right).

In Figure 5.1, we plot Cost1 versus Cost2 (in the original and logarithmic scale) and

observe that both variables show high costs that are generated by an extreme value

distribution.

The aim is to calculate the V aRα of the total cost of claims S = Cost1+Cost2 so as to

quantify the risk of loss. To do so we employ different confidence levels: α = 0.95, α =

0.99, α = 0.995 and α = 0.999. In our application we decided to include confidence

level α = 0.999, although we want to note that the number of simulated pairs in the

Monte Carlo method is r = 10, 000. In Table 5.7, we show the estimated dependence

parameters for each copula and both nonparametric marginal distributions. Furthermore,

we show the values of the Copula Information Criteria (CIC) defined in Grønnrberg

and Hjort (2014). We observed that estimated dependence parameters are similar for

different estimated marginals. To compare the CKE and the DTKE of marginal cdfs,

the results for ÎSE are shown in Table 5.8. In both cases DTKE has a lower error than

that of the CKE.

A comparison of the results in tables 5.7 and 5.8 allows us to conclude that the best fit is

obtained when we use the Sarmanov copula with DTKE marginals. Moreover, with the
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TABLE 5.7: Results of the fit of the copulae with nonparametric marginals.

Copula Marginal Estimate Dependence CIC
Parameter

Emp 0.5940 105.8049
Gauss CKE 0.6007 110.4242

DTKE 0.6000 108.4305
Emp 0.6007 108.0404

Student t∗ CKE 0.6077 114.0509
DTKE 0.6072 110.6941
Emp 1.7007 123.1476

Gumbel CKE 1.7026 126.0915
DTKE 1.7199 126.0366
Emp 0.7252 50.9524

Clayton CKE 0.8055 60.1762
DTKE 0.7347 53.2462
Emp 4.5291 110.0292

Frank CKE 4.5308 112.7432
DTKE 4.6071 113.0297
Emp 0.3333 31.0007

FGM CKE 0.3333 31.3331
DTKE 0.3333 52.4245
Emp 9.5267E-09 89.41598

Sarmanov CKE 9.5267E-09 124.4873
DTKE 9.5267E-09 206.5283

*Estimated degree of freedom: 9.245659 for Emp, 7.53357 for CKE and 9.147745 for DTKE.

TABLE 5.8: ÎSE for marginal cdfs of Cost1 and Cost2.

Marginal Cost1 Cost2
CKE 134785.90 11349.66
DTKE 134651.10 11320.37

Gumbel copula we obtain a good fit. We know that, unlike the Sarmanov copulae, the

Gumbel copula is an extreme value copula with a positive upper coefficient of tail de-

pendence. Therefore, this copula is useful when we have a heavy-tailed marginal distri-

bution with dependence at the extreme value. Conversely, the Sarmanov copula is more

sensitive to the nonparametric estimated marginal distributions. The V aRα estimates

at different confidence levels are shown in Table 5.9; their standard errors obtained us-

ing simple random bootstrap are shown in Appendix, in Table 5.11. We observe that at

lower confidence level (α = 0.95) the results for the various copulae and marginals are

similar. However, at higher confidence levels differences are observed. In these cases,

the results are more sensitive to the choice of the marginal estimation method. Focusing
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TABLE 5.9: Estimated VaR.

Copula Marginal α = 0.95 α = 0.99 α = 0.995 α = 0.999
Emp 8556.35 25456.27 38112.18 141051.50

Gaussian CKE 8190.19 24676.76 29738.51 138402.91
DTKE 8347.97 39120.32 73352.69 344582.96
Emp 12060.96 36587.28 48719.14 149791.00

Student t CKE 10540.10 35970.67 36978.00 149763.44
DTKE 11111.43 64671.31 150355.35 867478.98
Emp 7476.46 25526.08 41453.65 149790.71

Gumbel CKE 6936.31 23057.30 31157.20 145315.16
DTKE 7574.88 31449.32 67146.02 454495.55
Emp 8349.68 24855.74 37034.52 138140.44

Clayton CKE 8030.18 24233.34 25454.24 137984.19
DTKE 8746.68 39589.80 71144.89 351897.54
Emp 8651.29 25143.55 37302.93 138401.16

Frank CKE 8308.93 24350.28 26437.82 138060.45
DTKE 8666.48 36061.87 71192.31 264672.15
Emp 8311.95 24784.13 36991.31 138078.43

FGM CKE 7957.13 24197.77 25351.70 137950.83
DTKE 8724.19 41415.90 75060.06 355777.73
Emp 8271.39 24796.76 36991.71 138319.93

Sarmanov CKE 7531.93 24175.01 25254.86 137962.39
DTKE 8414.11 33794.75 61556.21 248524.35

on the Gumbel copula, at a confidence level of α = 0.999, we observe that the V aRα

estimates with the Emp marginals is equal to the highest value in the sample, while with

the CKE marginals the estimation is somewhat lower, i.e. with these methods, quan-

tiles above the sample maximum cannot be extrapolated and, as is shown in Alemany

et al. (2013), this can underestimate the risk. However, when we use the DTKE to esti-

mate marginals in the Gumbel copula and calculate the V aRα at a confidence level of

α = 0.999 we obtain a result above the maximum of the sample, which we consider to

be a reasonable estimation.

To analyze the effect of the copula choice on the estimation of the V aRα, in Figure 5.2

we plot the results of the V aRα estimate with the four copulae providing the best fit and

the DTKE for marginals. We show that the results are similar in the lower quantiles but

as the quantile increases the differences also increase.
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FIGURE 5.2: Estimated VaR.
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TABLE 5.10: True VaR obtained with Monte Carlo method.

Copula
V aR0.95 Ln 70Ln-30Pa 30Ln-70Pa
Gauss 6.7272 15.3062 28.6315
Student t∗ 5.2183 27.0457 57.0428
Gumbel 6.7272 120.8673 281.9592
Clayton 4.0187 15.3549 29.8854
Frank 4.2678 15.9630 30.7474
FGM 3.9275 14.6989 29.3027
Sarmanov 3.8406 17.8347 29.0481
V aR0.99 Ln 70Ln-30Pa 30Ln-70Pa
Gauss 10.1906 55.2905 127.6969
Student t∗ 7.2732 157.7933 368.8149
Gumbel 10.1906 2035.8642 4753.0104
Clayton 5.1154 57.9201 133.0112
Frank 5.4090 60.4055 138.1455
FGM 5.0114 58.1196 135.0387
Sarmanov 4.9725 32.7578 87.1492
V aR0.995 Ln 70Ln-30Pa 30Ln-70Pa
Gauss 12.6464 125.4454 289.7663
Student t∗ 8.1329 321.5879 752.3678
Gumbel 12.6464 7396.6610 17261.5422
Clayton 5.6756 121.5614 281.1708
Frank 6.0975 115.3203 267.7573
FGM 5.5301 123.2085 286.0225
Sarmanov 5.4225 54.6194 126.4926
∗Degree of freedom: 8. 70Ln=70% Lognormal, 30Pa=30% Pareto.
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TABLE 5.11: Standard errors of estimated VaR obtained using simple random boot-
strap (based on 200 bootstrap samples).

Copula Marginal α = 0.95 α = 0.99 α = 0.995 α = 0.999
Emp 1320.78 9443.52 47001.20 51156.50

Gaussian CKE 1278.62 4626.62 30035.84 51179.84
DTKE 1107.33 7912.09 22356.39 244515.05
Emp 2033.31 13018.11 48721.26 52231.83

Student t CKE 1828.06 5327.33 30291.67 52226.77
DTKE 1533.01 16785.04 54688.48 1130082.21
Emp 1312.53 5101.30 48422.44 51617.14

Gumbel CKE 1244.78 4337.21 36281.64 51452.33
DTKE 1145.83 6853.63 23959.52 773653.04
Emp 1354.53 14907.98 47439.84 51201.76

Clayton CKE 1318.40 9686.14 29793.08 51230.97
DTKE 1308.24 9128.56 24403.25 353468.62
Emp 1509.56 14972.37 46926.43 51102.38

Frank CKE 1395.70 5836.76 28778.78 51163.14
DTKE 1291.68 9477.98 26344.77 251070.76
Emp 1416.57 16815.04 47525.89 50764.57

FGM CKE 1303.96 15062.98 30732.40 50783.16
DTKE 1307.85 10145.86 29242.97 449741.88
Emp 1455.21 18506.48 46682.40 51386.90

Sarmanov CKE 1443.45 12493.70 32363.81 51474.42
DTKE 1349.92 7944.01 19871.09 248317.46



Chapter 6

Estimating extreme value cumulative distribution
functions using bias corrected kernel approach

We propose a new kernel estimation of the cumulative distribution function based on

transformation and on bias reducing techniques. We derive the optimal bandwidth that

minimises the asymptotic integrated mean squared error. The simulation results show

that our proposed kernel estimation improves alternative approaches when the variable

has an extreme value distribution with heavy tail and the sample size is small.

6.1 Introduction

Estimating the cumulative distribution function (cdf) is a fundamental goal in many

fields in which analysts are interested in estimating the risk of occurrence of a partic-

ular event, for example, the probability of a catastrophic accident or the probability of

a major economic loss. Similarly, in risk quantification, risk measurements are usu-

ally expressed in terms of the cdf, a good example being the distortion risk measures

proposed in Wang (1995; 1996).

Specifically, risk quantification concentrates in the highest values of the domain of the

distribution, where sample information is scarce and it is, therefore, necessary to extrap-

olate the behaviour of the cdf, even above the maximum observed. To extrapolate the

distribution we can use parametric models or, alternatively, we can use a nonparametric

estimation. In this paper, we propose a nonparametric estimator of the cdf that allows

us to extrapolate the behaviour of the cdf with greater accuracy than is possible with

existing methods.
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A naive nonparametric estimator of the cdf is the empirical distribution. It is known that

the empirical distribution is an unbiased estimator of cdf. However, the empirical dis-

tribution is inefficient when data are scarce. A nonparametric alternative for estimating

the cdf is the kernel estimator. This is more efficient than the empirical distribution but

it is, nevertheless, a biased estimator. Furthermore, both the empirical distribution and

the kernel estimator of the cdf are inefficient when the shape of the distribution is right

skewed and it has a longer right tail, i.e., it belongs to a certain family of extreme value

distributions (EVD): the Gumbel or Fréchet types. In these cases, although we have a

large sample size, the number of observations in the highest values of the domain of the

distribution is small. This kind of distribution is very common in microeconomic, finan-

cial and actuarial data, where economic quantities are measured, e.g., costs, losses and

wages. Likewise, there are other fields such as demography, geology or meteorology,

where the observed phenomena are distributed following an EVD (see, for example,

Reiss and Thomas 1997). In this study, we develop a bias-corrected transformed ker-

nel estimator of the cdf that is more accurate than the bias-corrected classical kernel

estimator.

With the aim of reducing the bias of the classical kernel estimator (CKE) of the cdf,

Kim et al. (2006), based on Choi and Hall (1998), proposed a bias reducing technique,

henceforth the bias-corrected classical kernel estimator (BCCKE). Alternatively, Ale-

many et al. (2013) proved that using the transformed kernel estimator of the cdf, the bias

and variance of the CKE could be reduced and they proposed a new estimator based on

two transformations, the double transformed kernel estimator (DTKE). However, this

estimator has asymptotic properties and needs a large sample size to obtain better re-

sults than alternative approaches. In this study, we analyse the properties of the DTKE

of the cdf by incorporating the finite sample bias correction proposed by Kim et al.

(2006). We refer to this new estimator as the bias-corrected double transformed kernel

estimator (BCDTKE).

Estimating the smoothing parameter associated with kernel estimations is also a chal-

lenge when the data are generated by an extreme value distribution. When using the two

most popular automatic methods. i.e., plug-in and cross-validation, the optimal value

frequently degenerates to zero. An alternative for calculating the smoothing parameter
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is the rule-of-thumb value (Silverman 1986), which is based on a reference distribution.

Using the proposed BCDTKE we can estimate the exact rule-of-thumb value based on

a known distribution.

The use of nonparametric methods is based on the lack of information about the theo-

retical distribution associated with the random variable under analysis. This distribution

might match one of those belonging to a subfamily of EVDs: Type I (Gumbel) or Type

II (Fréchet). Moreover, the distribution might be a mixture of two or more EVDs. An

important goal of this study is to analyse the domain of attraction of different mixtures

of EVDs. In section 6.2 we carry out this analysis. In section 6.3 we describe the

BCCKE of cdf and we propose some new results related to the asymptotically optimal

smoothing parameter. These results are then used in section 4, where we describe a

new estimator based on transformations and bias correction. In section 5, we show the

results of a simulation study. We conclude in section 6.

6.2 Maximum domain of attraction of mixtures of ex-

treme value distributions

In this section we prove some results related to the maximum domain of attraction

(MDA) of some mixtures of EVDs. The expression of the cdf of a generalised EVD is

(see, Jenkinson 1955):

Gξ(x, µ, σ) = exp
{
−
(
1 + ξ

(
x−µ
σ

))−1/ξ
}

if ξ 6= 0

Gξ(x, µ, σ) = exp
{
− exp

(
−x−µ

σ

)}
if ξ = 0

(6.1)

and its mean is:

E(X) =


µ+ σ Γ(1−ξ)−1

ξ
if ξ 6= 0, ξ < 1

µ+ σγ if ξ = 0

∞ if ξ ≥ 1

, (6.2)
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where Γ(·) is Euler’s gamma function and γ is Euler’s constant. The MDA of Gξ

(MDA(Gξ)) depends on the shape parameter ξ. In the expression (6.1) when ξ = 0

a Gumbel type EVD is obtained and when ξ > 0 the result is a Fréchet type EVD.

We define the right end point of G as r(G) = sup(x|G(x) < 1). We know that if two

distributions F and G are such that r(G) = r(F ) then:

lim
x↑r(F )

F̄ (x)

Ḡ(x)
= c,

for some constant 0 < c <∞, where F̄ (x) = 1− F (x) and Ḡ(x) = 1−G(x). In this

case F and G have the same MDA, furthermore, F and G are tail equivalent if (see, for

example, Embrechts et al. 1997):

lim
x↑r(F )

F̄ (x)

Ḡ(x)
= 1.

Theorem 6.2.1. Let F be a cdf that is expressed as F (x) =
∑m

i=1 piFi(x), with∑m
i=1 pi = 1, ∀pi > 0, if every Fi ∈ MDA(Gξi), with ξi > 0 (Fréchet), then

F ∈MDA(GξM ), where ξM = max(ξ1, . . . , ξm).

Proof. We know that if Fi ∈ MDA(Gξi), ∀i = 1, ...,m, with ξi > 0 (Fréchet), then

F̄i(x) = x
− 1
ξiLi(x), where Li is a slowly varying function3 and

F̄ (x) = 1− F (x) =
m∑
i=1

piF̄i(x)

=
m∑
i=1

pix
− 1
ξiLi(x)

= x
− 1
ξM

m∑
i=1

pix
( 1
ξM
− 1
ξi

)
Li(x)

= x
− 1
ξM pMLM(x) + x

− 1
ξM

m∑
i 6=M

pix
( 1
ξM
− 1
ξi

)
Li(x)

∼ x
− 1
ξM pMLM(x).

3A positive Lebesgue measurable function L on (0,∞) is slowly varying if

lim
x→∞

L(tx)

L(x)
= 1, t > 0.
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The previous result is obtained observing that x( 1
ξM
− 1
ξi

)
Li(x) →x→∞ 0. We conclude

that F and FM are tail equivalents.

Theorem 6.2.2. (Sufficient condition) If j ∈ {1, . . . ,m} is such that limx→∞
F̄i(x)

F̄j(x)
=

A < ∞, with j 6= i, then if F (x) =
∑m

i=1 piFi(x) ∈ MDA(Gξ), with ξ > 0, then

Fj ∈MDA(Gξ).

Proof. To prove Theorem 6.2.2 we start with the definition of regular variation. A

positive Lebesgue measurable function L on (0,∞) is a regular variation at infinity

with index α ∈ R if:

lim
x→∞

L(tx)

L(x)
= tα, t > 0. (6.3)

Then, F ∈ MDA(Gξ) with ξ > 0 (Fréchet), if F̄ is a regular variation with index −1
ξ
,

namely:

lim
x→∞

F̄ (tx)

F̄ (x)
= t−

1
ξ , t > 0. (6.4)

We have:

lim
x→∞

F̄ (tx)

F̄ (x)
= t−ξ

lim
x→∞

∑m
i=1 piF̄i(tx)∑m
i=1 piF̄i(x)

= t−ξ

lim
x→∞

[∑m
i 6=j pi

F̄i(tx)

F̄j(tx)
+ pj

]
F̄j(tx)[∑m

i 6=j pi
F̄i(x)

F̄j(x)
+ pj

]
F̄j(x)

= t−ξ,

taking into account the limit in the interior of the brackets and considering the condition

limx→∞
F̄i(x)

F̄j(x)
= A <∞ we deduce:

lim
x→∞

F̄j(tx)

F̄j(x)
= t−ξ,

then Fj is a Fréchet type EVD.



108

Theorem 6.2.3. Let F be a cdf that is expressed as F (x) =
∑m

i=1 piFi(x), with∑m
i=1 pi = 1, ∀pi > 0, if j ∈ {1, . . . ,m} is such that Fj ∈ MDA(Gξj), with ξj > 0

(Fréchet), and Fi ∀i 6= j are Lognormal distributions then F ∈MDA(Gξj).

Proof. Firstly we note that:

sup(x|Fj(x) < 1) ⊂ sup(x|
m∑
i=1

piFi(x) < 1)

and the right end point of F is r(F ) = sup(x|F (x) < 1) =∞. Besides, we have:

F̄ (x) =
∑
i 6=j

piF̄i(x) + pjF̄j(x),

where:

F̄j(x) = x
−1
ξj L(x), where L(x) is slowly varying function,

F̄i(x) = Φ̄(
log(x)− µ

σ
), where Φ is Normal standard distribution, (6.5)

F̄i(x) ∼
ϕ( log(x)−µ

σ
)

( log(x)−µ
σ

)
, where ϕ is Normal standard density,

the last term in (6.5) is deduced applying l’Hôpital’s rule to xΦ̄(t)
ϕ(t)

, resulting in Φ̄(t) ∼
ϕ(t)
t

when t is high. If ξj > 0 we can find α > 0 such that 1
ξj

+ α > 0 and

F̄i(x)

F̄j(x)
=

exp
(
− 1

2
( log(x)−µ

σ
)2
)

√
2π( log(x)−µ

σ
)x
−1
ξj L(x)

=
exp

(−1
2

( log(x)−µ
σ

)2 + (α + 1
ξj

) log(x)
)

√
2π( log(x)−µ

σ
)xαL(x)

→x→∞ 0

and

F̄ (x)

F̄j(x)
=

m∑
i 6=j

pi
F̄i(x)

F̄j(x)
+ pj,
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then we can conclude that 0 < limx→∞
F̄ (x)

F̄j(x)
= pj < ∞, then r(F ) = r(Fj) and both

distributions have the same MDA.

Theorem 6.2.4. Let F be a cdf that is expressed as F (x) =
∑m

i=1 piFi(x), with∑m
i=1 pi = 1, ∀pi > 0, if j ∈ {1, . . . ,m} is such that Fj ∈ MDA(Gξj), with

ξj > 0 (Fréchet), and Fi ∀i 6= j have MDA(Gξi), with ξi = 0 (Gumbel), then

F ∈MDA(Gξj).

Proof. Case 1: If r(Fi) =∞, ∀i 6= j, and we can find α > 0 such that 1
ξj

+ α > 0, we

obtain:

F̄i(x)

F̄j(x)
=

F̄i(x)

x
−1
ξj L(x)

=
F̄i(x)

x
−(α+ 1

ξj
)

1

xαL(x)
.

from the properties of the von Mises functions , F̄i decreases to zero much faster than

x−α, then when r(Fi) =∞ we have (see, Embrechts et al. 1997;page 139):

lim
x→∞

F̄i(x)

x
−(α+ 1

ξj
)

= 0 and lim
x→∞

1

xαL(x)
= 0,

and we conclude that F and Fj are tail equivalents.

Case 2: If l 6= i 6= j is such that r(Fl) <∞

F̄ (x)

F̄j(x)
= pl

F̄l(x)

F̄j(x)
+

m∑
i 6=l 6=j

F̄i(x)

F̄j(x)
+ pj.

Let Xl be a random variable with probability distribution function (pdf) fl(·) with

E(Xk
l ) <∞ for every k > 0,

F̄l(x)

F̄j(x)
=

F̄l(x)

(x− r(Fl))fl(x)

(x− r(Fl))fl(x)

x
−1
ξj L(x)

,

the limits of the first term are (see, Embrechts et al. 1997, McNeil et al. 2005):

lim
x→∞

F̄l(x)

(x− r(Fl))fl(x)
= lim

r(F )→∞
lim

x→r(Fl)

F̄l(x)

(x− r(Fl))fl(x)
= 0.



110

We obtain:

(x− r(Fl))fl(x)

x
−1
ξj L(x)

=
x

1
ξj

+α
(x− r(Fl))fl(x)

xαL(x)
∼ xafl(x)

xαL(x)
→ 0, with a > 1 and α > 0

and we achieve the same results as in Case 1.

6.3 Classical kernel estimator with bias reducing tech-

nique

The BCCKE proposed by Kim et al. (2006) can be expressed as a linear combination of

the CKE of the pdf, fX , and the CKE of the cdf, FX . Let us assume thatXi, i = 1, ..., n,

denotes data observations from the random variable X; the usual expression for the

classical kernel estimator of the pdf is (see, Silverman 1986):

f̂X(x) =
1

nb

n∑
i=1

k

(
x−Xi

b

)

and for the cdf is (see, Azzalini 1981):

F̂X(x) =
∫ x
−∞ f̂X(u)du = 1

n

∑n
i=1K

(
x−Xi
b

)
,

whereK(·) is the cdf associated with k(·) which is known as the kernel function (usually

a bounded and symmetric pdf). Some examples of very common kernel functions are

the Epanechnikov and the Gaussian kernel. The parameter b is the bandwidth or the

smoothing parameter and it controls the smoothness of the resulting estimation. The

larger the value of b, the smoother the resulting estimated function. In practice, the

value of b depends on the sample size and satisfies the condition if n→∞, b→ 0 and

nb→∞.

The BCCKE is:

F̃X(x) =
λ1F̂1(x) + F̂X(x) + λ2F̂2(x)

λ1 + 1 + λ2

, (6.6)
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where λ1, λ2 > 0 are weights and

F̂j(x) = F̂X(x+ ljb)− ljbf̂X(x+ ljb), j = 1, 2.

Kim et al. (2006) proved that if λ1 = λ2 = λ then −l1 = l2 = l(λ), being:

l(λ) =

(
(1 + 2λ)µ2

2λ

)1/2

,

where µp =
∫
tpk(t)dt. Kim et al. (2006) also proved that the bias of F̃X(x) is O(b4),

while the bias of F̂X(x) is O(b2).

The mean integrated squared error (MISE) can be expressed as the sum of the integrated

variance and the integrated square bias:

MISE
(
F̃X

)
= E

(∫
(F̃X(x)− FX(x))2dx

)
=

∫
V ar

(
F̃X(x)

)
dx+

∫ [
Bias

(
F̃X(x)

)]2
dx.

Based on the asymptotic expression for bias and variance of BCCKE deduced by Kim

et al. (2006) we obtain that the asymptotic mean integrated squared error (A-MISE) is:

A−MISE
(
F̃X(x)

)
=

1

n

2λ2 + 1

(2λ+ 1)2

∫
FX(x)(1− FX(x))dx+

b

n
V (λ)

+
b8

576

(
µ4 −

3(1 + 6λ)µ2
2

2λ

)2 ∫ (
f
′′′

X (x)
)2

dx, (6.7)

where, if the kernel k has a compact support [−1, 1], it is obtained that:

V (λ) =
1

(2λ+ 1)2

[
(2λ2 + 1)

(∫ 1

−1

k2(t)dt+ l

∫ 1

−1

K2(t)dt− 1

)
+ 2λ

(∫ 1−l

−1

k(t− l)k(t)dt+

∫ 1

−1+l

k(t)k(t+ l)dt+

∫ 1

1−l
(k(t) + λk(t+ l))dt

−
∫ −1+2l

−1

K(t)dt+ λ

∫ 1−l

−1+l

(k(t− l)k(t+ l)− l2K(t− l)K(t+ l))dt

)]
.(6.8)

There exists a value of λ that minimises V (λ), and this depends on the selected kernel,

if the Epanchnikov kernel is used λ = 0.0799 and V (0.0799) = −0.1472244.
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Remark 6.3.1. Let FX be a cdf with four bounded and continuous derivatives, the

optimal bandwidth that minimises A-MISE is:

bMISE = n−1/7

 −V (λ)∫
(f
′′′
X (t))2dt

72

(
µ4 − 3(1+6λ)µ22

2λ

)2


1/7

. (6.9)

Kim et al. (2006) did not analyse a method to estimate the optimal bandwidth. Similarly

to the CKE, we can use iterative methods such as the plug-in methods or the methods

based on cross-validation (see, Jones et al. 1996;for a review). Alternatively, the rule-

of-thumb bandwidth is a direct way to estimate the smoothing parameter. Following

Silverman (1986), for the BCCKE the rule-of-thumb bandwidth is obtained by replacing

in expression (6.9) the functional
∫

(f
′′′
X (x))2dx with its value assuming that fX is the

density of a normal distribution with scale parameter σ, then:

b∗ = n−1/7σ

 −V (λ)

0.5289277
72

(
µ4 − 3(1+6λ)µ22

2λ

)2


1/7

. (6.10)

The smoothing parameter in (6.10) can be estimated by replacing σ with a consistent

estimation, such as the sample standard deviation s. However, Silverman (1986) noted

that for long-tailed and right-skewed distributions it is better to use a robust estimation

of σ based on the interquartile range R, that is R
1.34

. In general, we can use the better

estimator of σ for each case: σ̂ = Min
(
s, R

1.34

)
.

6.4 Transformed kernel estimator with bias reducing

technique

In this section we propose a new kernel estimator that combines the greater efficiency

of the transformed kernel estimator of the cdf with the bias reduction technique. In

general, the transformed kernel estimator involves selecting a transformation function

so that the cdf or the pdf associated with the transformed variable can be estimated
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optimally with the classical kernel estimator or a bias-corrected version. We denote

T (·) the transformation function, then the transformed random variable is Y = T (X),

and we know that fX(x) = fY (y)T ′(x) and FX(x) = FY (y).

Let T (·) be a concave transformation function with at least four continuous derivatives.

Assuming equal weights in (6.6), i.e. λ1 = λ2 = λ > 0, the bias corrected transformed

kernel estimator (BCTKE) is:

F̃T (X)(T (x)) =
λ
[
F̂1(T (x)) + F̂2(T (x))

]
+ F̂T (X)(T (x))

2λ+ 1
=
˜̃
FX(x). (6.11)

We denote y = T (x) and the transformed data are Yi = T (Xi), i = 1, ..., n, then:

F̂T (x)(T (x)) =
1

n

n∑
i=1

K

(
T (x)− T (Xi)

b

)
=

1

n

n∑
i=1

K

(
y − Yi
b

)
= F̂Y (y) =

̂̂
FX(x)

(6.12)

and

F̂1(T (x)) = F̂T (X)(T (x)− lb) + lb
ˆ̂
fX(x− lb) =

̂̂
F 1(x),

F̂2(T (x)) = F̂T (X)(T (x) + lb)− lb ˆ̂
fX(x+ lb) =

̂̂
F 1(x), (6.13)

where ̂̂fX is the transformed kernel density estimation (see, for example, Bolancé 2010,

Bolancé et al. 2008a, Buch-Larsen et al. 2005, Wand et al. 1991).

ˆ̂
fX(x) =

1

nb

n∑
i=1

k

(
T (x)− T (Xi))

b

)
T ′(x). (6.14)

Theorem 6.4.1. Let FX be a cdf with four bounded and continuous derivatives. Let

T (·) be a concave transformation function with at least four continuous derivatives..

If the kernel k has a compact support [−1, 1], we obtain that the bias and variance of

BCTKE are:

E

(˜̃
FX(x)− FX(x)

)
=
b4

24

(
µ4 −

3(1 + 6λ)µ2
2

2λ

)
f ′′′X (x)

T ′(x)
D
(
T (p)(x), F

(p)
X (x)

)
+o
(
b4
)
,

(6.15)

V ar

(˜̃
FX(x)

)
=

1

n

2λ2 + 1

(2λ+ 1)2
FX(x) (1− FX(x))+

fX(x)

T ′ (x)

b

n
V (λ)+o

(
b2

n

)
. (6.16)
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The function D
(
T (p)(x), F

(p)
X (x)

)
with p = 0, ..., 4, where the super-index between

parentheses refers to the derivative, depends on the transformation T , the cdf FX and

the first four derivatives of these functions, is such that:

D
(
T (p)(x), F

(p)
X (x)

)
= 0 if T (x) = F (x)

and

D
(
T (p)(x), F

(p)
X (x)

)
→ 0 if T (p)(x)→ F

(p)
X (x), ∀p = 0, ..., 4.

Proof. The bias and the variance of the BCTKE are obtained from the bias and vari-

ance of the BCCKE of F̃Y (y), knowing that FY (y) = FX(x) and fY (y) = fX(x)
T ′(x)

and

analysing the derivative
(
fX(x)
T ′(x)

)′′′
.

(
fX(x)

T ′(x)

)′′′
=

f ′′′X (x)

T ′(x)
− 3f ′′X(x)T ′′(x)

T ′(x)2
− 3T ′′′(x)f ′X(x)

T ′(x)2
+

6f ′X(x)T ′′(x)2

T ′(x)3

− fX(x)T (4)(x)

T ′(x)2
− 6fX(x)T ′′(x)3

T ′(x)4
+

6fX(x)T ′′′(x)T ′′(x)

T ′(x)3
,

if T (p)(x)→ F
(p)
X (x), ∀p = 0, ..., 4 we obtain that D

(
T (p)(x), F

(p)
X (x)

)
→ 0.

From the results of Theorem 6.4.1 we prove that if a suitable transformation is found,

we can reduce the bias and the variance of the BCCKE.

6.4.1 Double transformed kernel estimator with bias correction

The bias-corrected double transformed kernel estimator (BCDTKE) is obtained in a

similar manner to that used to obtain the DTKE estimator (see, Alemany et al. 2013).

Let F be a continuous cdf with four bounded and continuous derivatives in a neighbour-

hood of x, we assume that k is the kernel that is a symmetric pdf and with a compact

support [−1, 1] and b is the bandwidth. The smoothing parameter b holds that when

n → ∞, b → 0 and nb → ∞, then the A-MISE associated with the BCCKE of the

transformed random variable Y is:
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1

n

2λ2 + 1

(2λ+ 1)2

∫
FY (y)(1− FY (y))dx+

b

n
V (λ)

+
b8

576

(
µ4 −

3(1 + 6λ)µ2
2

2λ

)2 ∫
(f ′′′Y (y))2dx

where V (λ) < 0 is the function defined in (6.8).

Given b and the kernel k, the A-MISE is minimum when functional
∫

[f ′′′Y (y)]2 dy is

minimum. The proposed method is based on the transformation of the variable in order

to achieve a distribution that minimises the A-MISE, i.e. that minimises
∫

[f ′′′Y (y)]2 dy.

Terrell (1990) showed that the density of a Beta (5, 5) distribution defined on the do-

main [−1, 1] minimises
∫

[f ′′′Y (y)]2 dy, in the set of all densities with known variance.

The pdf h and cdf H of the Beta (5, 5) are:

h(x) =
315

256
(1− x2)4 − 1 ≤ x ≤ 1,

H(x) =
1

256
(35x4 − 175x3 + 345x2 − 325x+ 128)(x+ 1)5.

Then the BCDTKE is:

˜̃
FX(x) = F̃H−1(T (X))(H

−1 (T (x))) =

λ
[
F̂{H−1(T (X)),1}(H

−1 (T (x))) + F̂{H−1(T (x)),2}(H
−1 (T (x))))

]
+ F̂H−1(T (x))(H

−1 (T (x)))

2λ+ 1
,

where T (.) is a first transformation that matches a cdf, so that the transformed sample

T (Xi), i = 1, ..., n, takes values from a Uniform(0, 1) distribution and, therefore, the

double transformed sample H−1(T (Xi)), i = 1, ..., n, takes values from a Beta (5, 5)

distribution. Similarly to (6.13), we obtain that

F̂{H−1(T (x)),1}(x) = F̂H−1(T (x))H
−1 (T (x− lb)) + lbf̂H−1(T (x))H

−1 (T (x− lb)) ,

F̂{H−1(T (x)),2}(x) = F̂H−1(T (x))H
−1 (T (x+ lb))− lbf̂H−1(T (x))H

−1 (T (x+ lb)) ,
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where f̂H−1(T (x)) is the double transformed kernel density estimation (see, Bolancé

2010, Bolancé et al. 2008a):

f̂H−1(T (X))(H
−1 (T (x))) =

1

nb

n∑
i=1

k

(
H−1 (T (x))−H−1 (T (Xi))

b

)
H−1′ (T (x))T ′(x).

The smoothing parameter b in BCDTKE can be calculated from expressions (6.9) re-

placing f ′′′ by Beta(5, 5) pdf:

b∗ = n−1/7

 −V (λ)

1288.6
72

(
µ4 − 3(1+6λ)µ22

2λ

)2


1/7

. (6.17)

6.5 Simulation study

We compare four kernel estimation methods: CKE, BCCKE, DTKE and BCDTKE. The

first transformation T (·) that we use for obtaining DTKE and BCDTKE is the cdf of the

modified Champernowne distribution4 analysed by Buch-Larsen et al. (2005). These

authors also proposed a method based on maximising a pseudo-likelihood function to

estimate the parameters. We use the rule-of-thumb bandwidth based on minimising

A-MISE.

To compare estimated cdfs with theoretical cdfs we use two distances:

L1(F̌ ) =

∫ ∣∣F̌ (t)− F (t)
∣∣ dt

L2(F̌ ) =

∫ (
F̌ (t)− F (t)

)2
dt, (6.18)

where F̌ represents the different estimators. Distances L1 and L2 evaluate the fit of

the cdf differently. Distance L2 attaches greater importance to the major differences

4The cdf of the modified Champernowne distribution is:

T (x) =
(x+ c)α − cα

(x+ c)α + (M + c)α − 2cα
, for x ≥ 0, α,M, c > 0.
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between the theoretical cdf and the fitted cdf than is attached by distance L1. When the

aim is to fit an extreme value distribution, estimation errors tend to increase as the cdf

approaches 1, due to a lack of sample information on the extreme values of the variable.

Therefore, distance L2 will be more strongly influenced by the estimation errors at the

extreme values of the variable.

We generated 2000 samples for each sample size analysed: n = 100, n = 500,

n = 1000 and n = 5000 and for each distribution in Table 6.1. We selected four dis-

tributions5 that are positively skewed and which present different tail shapes: Lognor-

mal, Weibull (both Gumbel types) and two mixtures of Lognormal-Pareto (both Fréchet

types). The Lognormal and Weibull distributions both have an exponential tail. Specif-

ically, we define the Weibull distribution with a scale parameter equal to 1 and shape

parameter γ, so that the smaller the value of γ the slower is the exponential decay in the

tail, i.e. the lower the value of γ, the lighter the tail. For the Lognormal distribution,

the shape parameter is σ. In this case, the higher the value of σ, the lighter the tail.

Furthermore, we analyse two mixtures of Lognormal-Pareto, that is, distributions with

“fat” tails or heavy-tailed distributions. As we proved in section 6.2, these mixtures

are Fréchet type and have a Pareto tail; thus, in this case the smaller the value of shape

parameter ρ, the heavier is the tail.

For each simulated sample, we estimated the cdf using the four methods: CKE, BC-

CKE, DTKE and BCDTKE and we calculated the distances defined in (6.18). Finally,

for each sample size, we calculated the mean of the 2000 replicates. To calculate dis-

tances L1 and L2 with each simulated sample we used the grid proposed by Buch-

Larsen et al. (2005) based on the change of variable defined by Clements et al. (2003),

y = x−M
x+M

, where M is the sample median.

To obtain CKE and BCCKE we used two smoothing parameters: the rule-of-thumb,

estimating σ from the sample standard deviation s and from Min
(
s, R

1.34

)
, where R is

the sample interquartile range. The results obtained with s are shown in Tables A-1 and

A-2 in the Appendix. Specifically, from the results in Table A-2, we can conclude that

both estimators−CKE and BCCKE using rule-of-thumb, estimating σ from the sample

standard deviation s− are not consistent when the distribution is heavy tailed.
5We used the same parameters as in Alemany et al. (2012; 2013).
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TABLE 6.1: Distributions in the simulation study

Distribution FX(x) Parameters

γ = 0.75

Weibull 1− e−xγ γ = 1.5

γ = 3

(µ, σ = (0, 0.25)

Lognormal
∫ log x

−∞
1√

2πσ2
e−

(t−µ)2

2σ2 dt (µ, σ) = (0, 0.5)

(µ, σ) = (0, 1.0)

(p, µ, σ, λ, ρ, c) = (0.7, 0, 1, 1, 0.9,−1)

(p, µ, σ, λ, ρ, c) = (0.3, 0, 1, 1, 0.9,−1)

Mixture of Lognormal p
∫ log x

−∞
1√

2πσ2
e−

(t−µ)2

2σ2 dt (p, µ, σ, λ, ρ, c) = (0.7, 0, 1, 1, 1.0,−1)

-Pareto +(1− p)
(

1−
(
x−c
λ

)−ρ)
(p, µ, σ, λ, ρ, c) = (0.3, 0, 1, 1, 1.0,−1)

(p, µ, σ, λ, ρ, c) = (0.7, 0, 1, 1, 1.1,−1)

(p, µ, σ, λ, ρ, c) = (0.3, 0, 1, 1, 1.1,−1)

In Tables 6.2 and 6.3 we compare the BCCKE, the DTKE and the BCDTKE with the

CKE, i.e., we obtain the ratio between distances L1 and L2 that were obtained with

the BCCKE, the DTKE and the BCDTKE and those that were obtained with the CKE.

If the ratio is greater than 1, then the CKE is better; if it is lower, then the corrected

estimator improves the CKE. The absolute distances are shown in Tables A-3 and A-4

in the Appendix.

The results presented in Tables 6.2 and 6.3 point to differences between distances L1

and L2 and, furthermore, there exist important differences between the results obtained

for Gumbel-type and Fréchet-type distributions.

Focusing first on the DTKE, for distance L1 this estimator does not improve the CKE

in any case. Furthermore, when the sample is small the L1 obtained for the DTKE is

considerably worse than that obtained for the CKE. For distance L2 the DTKE improves

the CKE in small and large sample sizes. Focusing on L2, we observe that the largest

improvements of the DTKE occur when the distributions are Fréchet-type, although

these improvements are not as great as those obtained when bias correction is used.



6.ESTIMATING EXTREME VALUE CUMULATIVE DISTRIBUTION FUNCTIONS USING BIAS

CORRECTED KERNEL APPROACH 119

Focusing now on Gumbel-type distributions, the results in Table 6.2 show that, in gen-

eral, both boundary correction approaches, the BCCKE and the BCDTKE, make sim-

ilar improvements to the CKE in distance L2 for all sample sizes. Furthermore, the

improvement is greater as the sample size increases. For distance L1 the BCCKE and

the BCDTKE do not improve the CKE when the distribution has a lighter tail, i.e., the

Weibull distributions with larger shape parameter and the Lognormal distributions with

smaller shape parameter.

In Table 6.3 we show the results for the Fréchet-type distributions. We observe that,

when the distribution has a heavier tail, the improvement of the BCDTKE with respect

to the CKE is more marked than that obtained with BCCKE, for all sample sizes and

both distances, except for distance L1 in the case of 70Lognormal-30Pareto (ρ = 1.1)

and sample size 100. In general, for distance L2 the improvement of the BCDTKE with

respect to the BCCKE is around 5%. For distance L1 this improvement becomes greater

as the sample size increases, exceeding 10% in the case of 70Lognormal-30Pareto (ρ =

1).
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TABLE 6.2: Comparative ratios obtained with the simulation results for Weibull
and Lognormal (Gumbel-type distributions) using rule-of-thumb with scale parame-

ter Min
(
s, R

1.34

)
.

n 100 500 1000 5000
Lognormal (σ = 0.25)

L1 L2 L1 L2 L1 L2 L1 L2

CKE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
BCCKE 1.0312 0.2002 1.0275 0.1334 1.0238 0.1112 1.0136 0.0742
DTKE 297.5476 0.6184 37.9005 0.1506 13.2495 0.1127 1.7839 0.0734
BCDTKE 1.0361 0.2030 1.0307 0.1350 1.0264 0.1124 1.0153 0.0748

L1 L2 L1 L2 L1 L2 L1 L2

CKE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
BCCKE 0.9777 0.1882 0.9789 0.1235 0.9830 0.1051 0.9892 0.0703
DTKE 115.4618 0.4155 16.0135 0.1331 6.1701 0.1062 1.4138 0.0701
BCDTKE 0.9680 0.1885 0.9693 0.1236 0.9738 0.1052 0.9811 0.0704

Lognormal (σ = 1)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
BCCKE 0.9486 0.1625 0.9433 0.1069 0.9416 0.0883 0.9505 0.0588
DTKE 43.4451 0.3195 7.4330 0.1213 3.8088 0.0944 1.4983 0.0604
BCDTKE 0.9194 0.1598 0.9137 0.1054 0.9112 0.0871 0.9230 0.0582

Weibull (γ = 0.75)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
BCCKE 0.9626 0.1768 0.9444 0.1169 0.9454 0.0988 0.9383 0.0661
DTKE 15.5507 0.2372 2.1968 0.1254 1.4867 0.1024 1.1714 0.0657
BCDTKE 0.9338 0.1740 0.9139 0.1147 0.9140 0.0965 0.9015 0.0630

Weibull (γ = 1.5)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
BCCKE 1.0148 0.1996 0.9874 0.1321 0.9828 0.1114 0.9762 0.0731
DTKE 55.5021 0.2919 5.9624 0.1322 2.1170 0.1094 1.0632 0.0725
BCDTKE 1.0121 0.2006 0.9849 0.1327 0.9801 0.1119 0.9733 0.0733

Weibull (γ = 3)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
BCCKE 1.0644 0.2103 1.0396 0.1384 1.0328 0.1155 1.0168 0.0761
DTKE 53.9094 0.2656 2.4343 0.1357 1.3076 0.1134 1.0787 0.0755
BCDTKE 1.0699 0.2126 1.0440 0.1397 1.0365 0.1165 1.0200 0.0766
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TABLE 6.3: Comparative ratios obtained with the simulation results for Mixtures of
Lognormal-Pareto (Fréchet-type distributions) using rule-of-thumb with scale parame-

ter Min
(
s, R

1.34

)
.

n 100 500 1000 5000
70Lognormal-30Pareto (ρ = 0.9)

L1 L2 L1 L2 L1 L2 L1 L2

CKE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
BCCKE 0.9972 0.0767 0.9981 0.0434 0.9983 0.0342 0.9986 0.0260
DTKE 7.1804 0.2000 3.6744 0.0878 2.9466 0.0637 2.4752 0.0441
BCDTKE 0.9656 0.0724 0.9377 0.0411 0.9121 0.0322 0.9283 0.0247

70Lognormal-30Pareto (ρ = 1)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
BCCKE 0.9950 0.0851 0.9970 0.0463 0.9975 0.0360 0.9982 0.0209
DTKE 10.3436 0.2193 4.6247 0.0895 3.3365 0.0614 2.3266 0.0318
BCDTKE 0.9948 0.0814 0.9490 0.0441 0.9259 0.0342 0.8928 0.0199

70Lognormal-30Pareto (ρ = 1.1)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
BCCKE 0.9930 0.0943 0.9953 0.0519 0.9960 0.0401 0.9975 0.0222
DTKE 14.2912 0.2441 6.0630 0.0954 4.4212 0.0655 2.3962 0.0301
BCDTKE 1.0007 0.0908 0.9650 0.0499 0.9512 0.0386 0.9164 0.0214

30Lognormal-70Pareto (ρ = 0.9)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
BCCKE 0.9975 0.0804 0.9982 0.0464 0.9984 0.0373 0.9986 0.0264
DTKE 4.6250 0.1790 2.3205 0.0757 2.0276 0.0571 1.7288 0.0347
BCDTKE 0.9698 0.0759 0.9123 0.0435 0.9084 0.0351 0.9479 0.0252

30Lognormal-70Pareto(ρ = 1)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
BCCKE 0.9972 0.0842 0.9976 0.0476 0.9980 0.0373 0.9983 0.0249
DTKE 6.2399 0.1963 2.9780 0.0794 2.3838 0.0570 1.7963 0.0319
BCDTKE 0.9619 0.0794 0.9227 0.0448 0.9182 0.0353 0.9360 0.0237

30Lognormal-70Pareto (ρ = 1.1)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
BCCKE 0.9958 0.0911 0.9967 0.0508 0.9973 0.0391 0.9982 0.0233
DTKE 8.6851 0.2189 3.8710 0.0860 2.9610 0.0604 1.7962 0.0296
BCDTKE 0.9716 0.0867 0.9472 0.0483 0.9288 0.0372 0.9011 0.0223
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Conclusion

In this Thesis we addressed two very important themes related to quantitative risk man-

agement. On one hand, we provided relevant results about the analysis of extreme value

distributions; on the other hand, we also presented different results concerning the de-

pendence modelling between extreme value distributions. These results will be useful in

the calculation of the capital requirement in the context of Solvency II in terms of quan-

tifying the risk when the data contain extreme values. This can occur when we analyse

operational risk and subscription risk, where the company could have losses that have a

very low probability but can reach high values, i.e. "rare cases".

To obtain the results presented, the author programmed in R all the proposed estimators

(these programmes are available for readers).

Specifically, two lines of research were examined in this Thesis: the dependence be-

tween two random variables from the viewpoint of the copulae and the nonparametric

methods to estimate the cumulative distribution function and quantile. In addition some

questions related to the theory of extreme values were considered: extreme value copu-

lae and maximum domain of attraction of extreme value mixture distributions.

Inference on copulae was necessary for analysing the structure of dependence between

variables. For this, using the definition of max-stable, we generalised the test of extreme

value copula to cover a more extensive alternative hypothesis.

In the context of copulae, nonparametric estimation of the cdf was useful for obtaining

the pseudo-observations and for estimating the marginals. We proposed the use of new

nonparametric methods that improve the accuracy in the risk estimations.

To illustrate the usefulness of the methods analysed in this Thesis, we used data on the

costs of accidents in auto insurance. Specifically, we used two databases, the first con-

tains information from a sample of bivariate costs and the second contains information

related to a sample of univariate cost for different types of policyholders.

In chapter 3, we introduced a test for the adequacy of extreme value copulae that allows

us to determine the most suitable copula, especially when the data include extreme
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values. In this chapter, we presented an empirical application, which was extended in

chapter 4. Among others, the K-Plot identified a positive and increasing dependence

between variables related to automobile insurance claims and the test we presented

for extreme value copulae confirms that, in our case, we should use an extreme value

copula.

In the selection of the marginal distributions, we have considered a modified Champer-

nowne distribution. It provides interesting results, due to its similarity to the log-normal

distribution for low values of the variable and, additionally, due to its convergence

to a Pareto distribution in the right tail. In fact, in order to fulfill the capital require-

ments driven by Solvency II, we find that using a Gumbel copula with Champernowne

marginals yields the highest value of the VaR (Value-at-Risk) at the 99.5% and 99.9%

levels, followed by the case where Weibull marginals are considered.

Furthermore, in chapter 4 we analysed the bounds of the VaR. The non-coherency of

some risk measures is the motivation for some statisticians to try to estimate the bounds

of the VaR of the aggregate loss. The results of Embrechts and Puccetti Embrechts and

Puccetti (2006) using the Fréchet bounds when the marginal distributions are known

and the copula is unknown are noteworthy. We have used some of these results and we

have compared them with the confidence intervals provided by the Bootstrap method.

In our study we found that the empirical VaR violates the subadditivity condition at

some points, but it is always within the confidence interval of the VaR for the aggre-

gate loss (using Bootstrap) at the 95% level. Finally, we also considered the case of an

unknown associated copula with the Champernowne marginal distributions and we con-

cluded that the VaR simulated by using Gumbel copula and Champernowne marginal

distributions is within the limits resulting from the bounds developed by Embrecht and

Puccetti Embrechts and Puccetti (2006).

In chapter 5, we have shown how mixing copulae with the DTKE (double transformed

kernel estimation) for marginals cdfs is useful when estimating the total risk of corre-

lated losses from extreme value distributions. Among the copulae proposed, we anal-

ysed the Sarmanov copula, which has special characteristics. Additionally, we provided

proof of some results related to the properties of the Sarmanov copula. From our data,
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we found that the Gumbel copula with DTKE marginals provides a good fit. With this

copula we obtained a balanced risk estimation that guarantees that the risk is not under-

estimated and, where it is relevant, not overestimated in excess.

In general, in chapter 5 we proposed a method for estimating the total risk of loss when

we have a multivariate sample of losses with upper tail dependence and heavy-tailed

marginal distributions.

In a lot of analyses -in economics, finance, insurance, demography,...- the fit of cdf is

very important for evaluating the probability of extreme situations. In these cases, the

data are usually generated by a continuous random variable X whose distribution may

be the result of the mixture of different EVDs; then both the classical parametric models

and the classical nonparametric estimates do not work for the estimation of the cdf. All

those problems were addressed in chapter 6. There we presented a method to estimate

cdf that is suitable when the loss is a heavy tailed random variable. The proposed double

transformation kernel using the bias-corrected technique, in general, provides good fit

results for the Gumbel and Fréchet types of extreme value distributions, especially when

the sample size is small.

We show, when the sample size is small, that our proposed BCDTKE (bias-corrected

double transformed kernel estimator) improves the classical kernel estimator and bias-

corrected classical kernel estimator of the cumulative distribution function when the

distribution is a right extreme value distribution and the maximum domain of attraction

is the one associated with a Fréchet type distribution.

Furthermore, in chapter 6, we provided some theoretical results about the maximum do-

main of attraction of extreme value mixture distributions. We concluded that the heavier

tail (Fréchet type) prevails over the lighter tails (Gumbel type).

Our future lines of research will focus on further investigation on nonparametric meth-

ods for fitting the copula and the marginal cdfs (cumulative distribution functions), in

order to improve the accuracy of the nonparametric estimation of the risk. Specifically,

we have four principal objectives:
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1. To generalise the nonparametric fit of the univariate cdf to the bivariate focusing

on the copula. There are two basic works in this field. The first is the paper by

Chen and Huang (2007) where the authors analyse the theoretical properties of

kernel estimator of the copula and propose the t-Student copula for obtaining the

rule-of-thumb optimal bandwidth. The second paper is by Omelka et al. (2009)

who present a new kernel estimator based on transformations.

2. To study the theoretical properties of nonparametric estimator of the Kendal func-

tion, defined in (1.23), and to compare its asymptotic convergence with the esti-

mator from Genest and Rivest (1993). Our principal aim is to propose a new

estimator for Archimedian copulae.

3. To analyse the theoretical properties of the quantile function derived from the

bias-corrected double transformed kernel estimator and to compare with alterna-

tive estimators, such as those proposed by Charpentier and Ouilidi (2010), Chen

(1999), Cheng and Sun (2006), Harrell and Davis (1982), Parzen (1979), Sheather

and Marron (1990).

4. To adapt our nonparametric method to the estimation of the expected shortfall.
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Slowly and regularly varying

An L function Lebesgue-measurable on [0,∞] is said to be regularly varying at infinity

with index α ∈ R if:

lim
x→∞

L(tx)

L(x)
= tα, t > 0.

When α = 0, i.e.

lim
x→∞

L(tx)

L(x)
= 1, t > 0,

L is said to be slowly varying at infinity.

MDA conditions

If we note F−1(z) = inf{x : F (x) ≥ z} the generalized inverse function of F (also

called quantile when 0 < z < 1), the possible domains of attraction of a distribution F

are summarised, (see, Embrechts et al. 1997):

• F ∈ MDA(Gµ,σ,ξ) Fréchet type if, and only if, 1 − F is regularly varying with

index −1
ξ

, i.e.:

lim
x→∞

=
1− F (tx)

1− F (x)
= t

−1
ξ , t > 0.

In this case one can choose an = F−1(1− 1
n
) and bn = 0.



128

• F ∈MDA(Gµ,σ,ξ) Weibull type if, and only if, r(F ) <∞ and 1−F (r(F )− 1
x
)

is regularly varying with index −1
ξ

, i.e.:

lim
x→∞

1− F (r(F )− 1
tx

)

1− F (r(F )− 1
x
)

= t
−1
ξ , t > 0.

In this case an = F−1(r(F )− 1
n
) and bn = r(F ) can be chosen.

• F ∈MDA(Gµ,σ,ξ) Gumbel type if, and only if, a positive function f̃ exists, such

that

lim
x↑r(F )

1− F (x+ tf̃(x))

1− F (x)
= e−t.

Here we have
∫ r(F )

x
(1 − F (s))ds < ∞, and the condition is true if we choose

f̃(t) =
∫ r(F )
x (1−F (s))ds

1−F (x)
. A possible choice of parameters is: an = f̃(bn) and

bn = F−1(1− 1
n
).

Another equivalent tool is the following theorem that can be found in Castillo et al.

(2004), representing a practical alternative to calculate the limit.

Brownian bridge

A stochastic process {Bt, t ≥ 0} is a Brownian motion if the following conditions are

fulfilled:

• B0 = 0.

• Given n periods, 0 ≤ · · · ≤ tn, the increments Btn − Btn−1 , . . . Bt2 − Bt1 are

independent random variables.

• If s < t, the increment Bt −Bs has a Normal law N(0, t− s).

• The steeps are continuous process.
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Let Bt Brownian motion, it is said that the process Xt is Brownian bridge if:

Xt = Bt − tB1, t ∈ [0, 1].

It follows a Normal process center on with autocovariance function:

E(XtXs) = (s ∧ t)− st,

which verifies X0, X1 = 0 and s ∧ t = min(s, t).

Weak convergence

Let (D, d) be a metric space. A Borel probability measure on D is a function P :

B(D) −→ [0,∞), where B(D) is the Borel σ-algebra on D such that:

• P (∅) = 0, P (X) = 1.

• If B1, B2 · · · ∈ B are pairwise disjoint, then:

P (∪∞i=1Bi) =
∞∑
i=1

P (Bi)

Let (D, d) be a metric space and P, P1, P2 . . . Pn are Borel finite measures on D. We say

that Pn converges weakly to P if:

∫
D

fdPn →n→∞

∫
D

fdP

∀f ∈ CB(D) where CB(D) := {f : D → R f bounded and continuous}.

For random variables X,X1, X2 . . . Xn that take values in D, the weak convergence is

equivalent to:

E(f(Xn))→ E(f(X)) ∀f ∈ CB(D).
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This condition is only valid when f is in set of continuous function that are defined in

metric separable spaces as Rn or C[0, 1].

Bounds of VaR with unknown marginals

In their studies on univariate extreme value distributions, Kaas and Goovaerts (1986)

delimit a distribution knowing only its first moments. Specifically, if X is a variable

whose distribution F is unknown, µ = E(X) > 0 and V ar(X) = σ2 > 0, the authors

show that:

F µX ,σX
(x) ≤ F (x) ≤ F µX ,σX (x),

where

F µX ,σX
(x) =


σ2
X

σ2
X+(x−µX)2

if 0 ≤ x ≤ µX

1 if x > µX ,

and

F µX ,σx(x) =


0 if 0 ≤ x ≤ µX

µX−x
x

if µx < x ≤ σ2
X+µ2X
µX

(x−µX)2

(x−µX)2+σ2
X

if x > σ2
X+µ2X
µX

.

Exploiting this result, Mesfioui and Quessy (2005) deduce the lower and upper limits

of VaR. Let q(x) =
√
x/(1− x) be an increasing function, then:

ga,b(x) = (a− bq(1− x))I(x ≥ b2

a2 + b2
)

ha,b(x) = a+ aq2(x)I (x ≤ b2

a2 + b2
) + bq(x)I(x >

b2

a2 + b2
),

and I being the standard indicator, then the bounds proposed by Mesfioui and Quessy

(2005) are:

V aRµX ,σX
(α) ≤ V aRα(X) ≤ V aRµX ,σX (α),
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where

V aRµX ,σX
(α) = F−1

µX ,σx(α) = gµX ,σX (α) (B-1)

V aRµX ,σX (α) = F−1
µX ,σx

(α) = hµX ,σX (α). (B-2)

Tables

TABLE A-1: Simulation results for Weibull and Lognormal using rule-of-thumb with
scale parameter s.

n 100 500 1000 5000
Lognormal (σ = 0.25)

L1 L2 L1 L2 L1 L2 L1 L2

CKE 0.0161 0.1239 0.0073 0.0838 0.0051 0.0704 0.0023 0.0476
BCCKE 0.0163 0.0246 0.0075 0.0111 0.0052 0.0078 0.0024 0.0035

Lognormal (σ = 0.5)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 0.0410 0.1983 0.0180 0.1321 0.0131 0.1126 0.0058 0.0747
BCCKE 0.0378 0.0361 0.0169 0.0159 0.0124 0.0116 0.0055 0.0052

Lognormal (σ = 1)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 0.1735 0.4069 0.0848 0.2872 0.0611 0.2442 0.0273 0.1635
BCCKE 0.1338 0.0592 0.0644 0.0273 0.0462 0.0192 0.0214 0.0087

Weibull (γ = 0.75)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 0.1116 0.3265 0.0534 0.2276 0.0387 0.1940 0.0179 0.1321
BCCKE 0.0966 0.0545 0.0452 0.0253 0.0328 0.0185 0.0151 0.0088

Weibull (γ = 1.5)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 0.0360 0.1854 0.0170 0.1278 0.0122 0.1085 0.0054 0.0724
BCCKE 0.0362 0.0368 0.0167 0.0168 0.0120 0.0121 0.0053 0.0053

Weibull (γ = 3)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 0.0187 0.1330 0.0085 0.0902 0.0061 0.0766 0.0027 0.0515
BCCKE 0.0198 0.0280 0.0088 0.0125 0.0063 0.0088 0.0028 0.0039
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TABLE A-2: Simulation results for Mixtures of Lognormal-Pareto using rule-of-thumb
with scale parameter s.

n 100 500 1000 5000
70Lognormal-30Pareto (ρ = 0.9)

L1 L2 L1 L2 L1 L2 L1 L2

CKE 8.0598 1.9372 9.4548 2.0452 12.6591 2.1364 13.2365 2.3089
CKEbrt 5.0740 0.2238 5.0508 0.2990 6.8743 0.3847 7.4525 0.6335

70Lognormal-30Pareto (ρ = 1)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 2.9700 1.4059 3.4953 1.4343 5.0217 1.4872 5.6733 1.4808
CKEbrt 1.9101 0.1472 1.9262 0.1721 2.4518 0.2140 3.4110 0.3214

70Lognormal-30Pareto (ρ = 1.1)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 2.5304 1.0949 1.7559 1.0465 2.8612 1.0500 2.3528 1.0210
CKEbrt 1.2847 0.1156 1.0331 0.1066 1.9549 0.1304 1.3763 0.1758

30Lognormal-70Pareto (ρ = 0.9)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 18.5349 2.9764 23.3374 3.2261 25.2348 3.2729 30.4567 3.4660
CKEbrt 11.2088 0.3977 12.3226 0.5722 12.5870 0.6789 19.1204 1.0613

30Lognormal-70Pareto(ρ = 1)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 10.6396 2.1808 6.2217 2.0786 9.6786 2.1426 9.5012 2.0563
CKEbrt 5.6933 0.2687 3.5953 0.2862 5.0031 0.3613 5.6010 0.5123

30Lognormal-70Pareto (ρ = 1.1)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 4.9616 1.5990 4.8501 1.5662 4.5138 1.5305 4.0134 1.4511
CKEbrt 2.5866 0.1808 3.1662 0.2080 2.8573 0.2260 2.1638 0.2942
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TABLE A-3: Simulation results for Weibull and Lognormal using rule-of-thumb with
scale parameter Min

(
s, R

1.34

)
.

n 100 500 1000 5000
Lognormal (σ = 0.25)

L1 L2 L1 L2 L1 L2 L1 L2

CKE 0.0159 0.1232 0.0073 0.0837 0.0051 0.0703 0.0023 0.0475
BCCKE 0.0164 0.0247 0.0075 0.0112 0.0052 0.0078 0.0024 0.0035
DTKE 4.7257 0.0762 0.2756 0.0126 0.0678 0.0079 0.0042 0.0035
BCDTKE 0.0165 0.0250 0.0075 0.0113 0.0053 0.0079 0.0024 0.0036

Lognormal (σ = 0.5)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 0.0389 0.1931 0.0173 0.1294 0.0126 0.1107 0.0056 0.0739
BCCKE 0.0380 0.0363 0.0170 0.0160 0.0124 0.0116 0.0056 0.0052
DTKE 4.4878 0.0802 0.2776 0.0172 0.0780 0.0118 0.0079 0.0052
BCDTKE 0.0376 0.0364 0.0168 0.0160 0.0123 0.0116 0.0055 0.0052

Lognormal (σ = 1)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 0.1415 0.3695 0.0680 0.2575 0.0488 0.2182 0.0222 0.1472
BCCKE 0.1342 0.0600 0.0642 0.0275 0.0460 0.0193 0.0211 0.0087
DTKE 6.1486 0.1180 0.5058 0.0312 0.1859 0.0206 0.0333 0.0089
BCDTKE 0.1301 0.0591 0.0622 0.0272 0.0445 0.0190 0.0205 0.0086

Weibull (γ = 0.75)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 0.1008 0.3107 0.0476 0.2147 0.0344 0.1829 0.0157 0.1236
BCCKE 0.0970 0.0549 0.0450 0.0251 0.0326 0.0181 0.0147 0.0082
DTKE 1.5673 0.0737 0.1046 0.0269 0.0512 0.0187 0.0184 0.0081
BCDTKE 0.0941 0.0541 0.0435 0.0246 0.0315 0.0176 0.0142 0.0078

Weibull (γ = 1.5)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 0.0357 0.1848 0.0169 0.1276 0.0122 0.1083 0.0054 0.0723
BCCKE 0.0363 0.0369 0.0167 0.0169 0.0120 0.0121 0.0053 0.0053
DTKE 1.9834 0.0540 0.1009 0.0169 0.0258 0.0119 0.0057 0.0052
BCDTKE 0.0362 0.0371 0.0167 0.0169 0.0119 0.0121 0.0053 0.0053

Weibull (γ = 3)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 0.0187 0.1330 0.0085 0.0902 0.0061 0.0766 0.0027 0.0515
BCCKE 0.0199 0.0280 0.0088 0.0125 0.0063 0.0088 0.0028 0.0039
DTKE 1.0059 0.0353 0.0207 0.0122 0.0080 0.0087 0.0030 0.0039
BCDTKE 0.0200 0.0283 0.0089 0.0126 0.0063 0.0089 0.0028 0.0039



134

TABLE A-4: Simulation results for Mixtures of Lognormal-Pareto using rule-of-thumb
with scale parameter Min

(
s, R

1.34

)
.

n 100 500 1000 5000
70Lognormal-30Pareto (ρ = 0.9)

L1 L2 L1 L2 L1 L2 L1 L2

CKE 3.0542 1.5946 2.3282 1.4453 1.9522 1.3488 0.9512 0.9403
BCCKE 3.0457 0.1223 2.3239 0.0628 1.9490 0.0461 0.9498 0.0210
DTKE 21.9300 0.3189 8.5546 0.1269 5.7525 0.0860 2.3543 0.0356
BCDTKE 2.9490 0.1155 2.1832 0.0594 1.7806 0.0434 0.8830 0.0200

70Lognormal-30Pareto (ρ = 1)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 1.6856 1.1958 1.3384 1.0788 1.1827 1.0244 0.6770 0.8077
BCCKE 1.6771 0.1018 1.3343 0.0500 1.1797 0.0369 0.6758 0.0169
DTKE 17.4350 0.2622 6.1896 0.0965 3.9460 0.0629 1.5752 0.0257
BCDTKE 1.6768 0.0973 1.2701 0.0476 1.0950 0.0351 0.6045 0.0161

70Lognormal-30Pareto (ρ = 1.1)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 1.0170 0.9261 0.7713 0.8170 0.6550 0.7628 0.4306 0.6341
BCCKE 1.0099 0.0873 0.7677 0.0424 0.6524 0.0306 0.4295 0.0141
DTKE 14.5344 0.2261 4.6766 0.0779 2.8958 0.0500 1.0318 0.0191
BCDTKE 1.0177 0.0841 0.7443 0.0408 0.6230 0.0295 0.3946 0.0136

30Lognormal-70Pareto (ρ = 0.9)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 6.3599 2.3361 4.5735 2.0597 3.4532 1.8223 1.5239 1.1857
BCCKE 6.3439 0.1877 4.5654 0.0956 3.4477 0.0679 1.5218 0.0313
DTKE 29.4148 0.4181 10.6127 0.1558 7.0016 0.1041 2.6346 0.0411
BCDTKE 6.1676 0.1774 4.1721 0.0897 3.1368 0.0640 1.4445 0.0298

30Lognormal-70Pareto(ρ = 1)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 3.6494 1.7381 2.5657 1.5209 2.0622 1.3898 0.9779 0.9545
BCCKE 3.6391 0.1464 2.5596 0.0723 2.0582 0.0519 0.9763 0.0238
DTKE 22.7718 0.3411 7.6408 0.1208 4.9160 0.0792 1.7567 0.0305
BCDTKE 3.5104 0.1381 2.3675 0.0682 1.8936 0.0491 0.9153 0.0226

30Lognormal-70Pareto (ρ = 1.1)
L1 L2 L1 L2 L1 L2 L1 L2

CKE 2.0891 1.3123 1.5079 1.1466 1.2428 1.0595 0.7175 0.8321
BCCKE 2.0803 0.1196 1.5029 0.0582 1.2394 0.0415 0.7162 0.0194
DTKE 18.1441 0.2872 5.8372 0.0986 3.6800 0.0640 1.2888 0.0246
BCDTKE 2.0298 0.1138 1.4284 0.0554 1.1543 0.0395 0.6466 0.0185
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