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An assortment of human behaviors is thought to be driven by rewards including reinforcement 
learning, novelty processing, learning, decision making, economic choice, incentive motivation, 
and addiction. In each case the ventral tegmental area/ventral striatum (nucleus accumbens) 
(VTA–VS) system has been implicated as a key structure by functional imaging studies, mostly 
on the basis of standard, univariate analyses. Here we propose that standard functional magnetic 
resonance imaging analysis needs to be complemented by methods that take into account 
the differential connectivity of the VTA–VS system in the different behavioral contexts in order 
to describe reward based processes more appropriately. We fi rst consider the wider network 
for reward processing as it emerged from animal experimentation. Subsequently, an example 
for a method to assess functional connectivity is given. Finally, we illustrate the usefulness 
of such analyses by examples regarding reward valuation, reward expectation and the role of 
reward in addiction.
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INTRODUCTION
The investigation of the behavioral and neural 
consequences of rewarding (reinforcing) and 
punishing events has a long standing history, 
dating back to the early investigations of operant 
conditioning. Recent neurobiological research 
has suggested that important aspects of reward 
processing are coded by dopaminergic neurons 
arising from the ventral tegmental area (VTA) 
and projecting to the ventral striatum (VS) 
via the mesolimbic pathway. Interestingly, the 
VTA–VS dopamine system has been found to 
be of eminent importance in a variety of moti-
vated behaviors and cognition. For example, it 
has been implicated in reinforcement learning 
(Schultz, 1998), action monitoring (Holroyd 
and Coles, 2002; Kramer et al., 2007), novelty 
processing and learning (Schott et al., 2004b), 

decision making and economic choice (McClure 
et al., 2004), incentive motivation (Berridge and 
Kringelbach, 2008), and addiction (Heinz et al., 
2004; Reuter et al., 2005). In turn, all of these 
processes have been linked to reward processing. 
This is surprising, because the VTA is a com-
paratively small assembly of cells (with about 
400000 cells in the adult human). The ques-
tion thus arises as to how the VTA–VS system 
can modulate the wide spectrum of behaviors 
mentioned above. One possibility which we will 
elaborate on in this article is that the VTA–VS 
system is part of a wider network of brain 
structures. Depending on the specifi c context, 
activity in the VTA–VS system may interact with 
different other subcortical and cortical brain 
areas which could be the basis of the fl exibility 
of this system.
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The identifi cation of a particular brain region 
with a specifi c cognitive function has been a cen-
tral topic in neuroscience. Indeed, the major goal 
of functional magnetic resonance imaging (fMRI) 
analyses is to capture the blood oxygenation level-
dependent (BOLD) signal associated with a par-
ticular task-related neural activity. In many fMRI 
experiments, multiple areas are found to be coac-
tivated during a given task. However, standard 
univariate MRI analysis is not able to capture the 
task-related dynamics within a network of brain 
areas. A more complete understanding of the 
brain processes associated to a specifi c process 
requires both regionally specifi c activations and 
regionally specifi c interactions.

In the following, we will fi rst review the key 
structures that are involved in reward-related 
behavior, including its relation to the learning 
and motivational circuits. We will then give an 
example for a method that can be used to assess 
interregional connectivity in conjunction with 
fMRI. The reward-related networks as evident 
for reward valuation, reward anticipation and 
addiction will be briefl y discussed.

KEY STRUCTURES MEDIATING REWARD-
RELATED BEHAVIOR
The desire to maximize rewards and to minimize 
negative possible outcomes is an  important drive 
of human behavior. Because of this, humans 
are motivated to identify and seek possible cues 
in the environment which might predict the 
possible appearance of rewards or negative out-
comes, as well as behaviors which could cause the 
appearance of these outcomes. The  association of 
an event with a reward or a punishment there-
fore constitutes a powerful learning signal. In 
addition, we use information from the feedback 
signals elicited by our actions to infl uence our 
future decisions. In ambiguous contexts and situ-
ations in which different outcomes are probable 
or when feedback information is not available, 
humans might need to make decisions which can 
be considered risky, erratic or impulsive, some-
times irrationally pursuing short-term pleasures 
without considering that these actions could lead 
to negative after-effects in the future. Recent 
work in experimental economics (Glimcher 
et al., 2005) and decision making science (Schall, 
2005) suggests that there are large interindividual 
differences with regard to the way we deal with 
rewards and punishments of different magnitude 
in certain situations. Interestingly, the cognitive 
processes required for successful adaptation in 
these situations might require the elicitation 
of affective responses (emotional valuation), 
the ability to associate neutral events to the 

 appearance of an emotional-charged outcome 
(learning) and the ability to store this informa-
tion in order to make predictions (memory). This 
intersection between affective processes, learning 
and memory is a core aspect of reward process-
ing, motivated behavior and decision making in 
humans.

A primary challenge in affective neuroscience 
is to understand to which degree these processes 
are subserved by specifi c brain regions or by com-
mon, partially overlapping networks. Indeed the 
ultimate aim would be to describe the specifi c role 
of each brain region and how the specifi c informa-
tion computed in each brain region is assembled 
by larger brain midbrain-limbic-(sub)cortical 
networks in a process-specifi c way. A main prob-
lem encountered by the standard functional imag-
ing approach to reward processing is that a large 
number of activations are usually seen. Reward 
processing thus consistently increases the BOLD 
response in a common set of regions comprising 
the VS (the nucleus accumbens, NAcc), the amy-
gdala, the prefrontal cortex (orbitofrontal cortex, 
OFC), and the insula (Delgado et al., 2000, 2003; 
Breiter et al., 2001; Knutson et al., 2001, 2003b; 
McClure et al., 2004; Yacubian et al., 2006; Tom 
et al., 2007). Several studies have also identifi ed 
activations in the midbrain regions (see for a 
review Duzel et al., 2009) as well as the ventro-
medial prefrontal cortex (vmPFC) or anterior 
cingulate cortex (ACC), although less consist-
ently (Knutson et al., 2003b; Sanfey et al., 2003; 
Ullsperger and von Cramon, 2003).

The NAcc and VTA are placed prominently 
within a network that is not only implicated in 
the immediate processing of rewards but also 
in learning and motivation (Figure 1, see also 
Figure 1 in Münte et al., 2008).

The learning hippocampal-VTA (HP-VTA) 
loop (Figure 1, green boxes) has been adapted 
from Lisman and Grace (2005) who have pro-
posed that hippocampal novelty signals might 
be conveyed to the midbrain (SN/VTA) through 
the NAcc and the ventral pallidum. The role 
of the ventral pallidum as an essential region 
involved in liking sensations has also been high-
lighted (Berridge and Kringelbach, 2008). This 
loop is important for encoding predictions 
based on stimulus-novelty. Novelty detected 
by the hippocampus might be sent through the 
subiculum, NAcc and ventral pallidum to the 
dopaminergic midbrain regions. Phasic activity 
in these midbrain neurons in primates have been 
observed to change according to the delivery of 
and expectation for salient and rewarding events 
(Schultz, 1998). Specifi cally, increases of DA cell 
fi ring have been associated to positive outcomes, 

Rewards
Rewards are events and objects that 
modulate behavior: a behavior leading 
to a reward is more likely to occur 
again, whereas negative consequences 
lead to the opposite effects. Rewards are 
therefore potent learning signals.
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whereas choices that did not lead to a reward 
evoked dips in the fi ring rate below baseline 
(Schultz, 2002). This phasic fi ring might result in 
release of dopamine in the hippocampus where 
it might enhance long-term potentiation, and as 
a consequence, memory storage and learning. 
Notice also, that midbrain dopaminergic system 
projects to and thus modulates other striatal-
orbitofrontal and prefrontal regions involved 
in reward processing through the mesocortical 
and mesolimbic pathways (Apicella et al., 1991; 
Hikosaka and Watanabe, 2000; Wise, 2002). The 
mesocortical pathway projects primarily to the 
vmPFC, ACC and entorhinal cortex. The mes-
olimbic pathway directly innervates the NAcc, 
septum, olfactory tubercle, amygdala and piri-
form cortex. As a confi rmation of the importance 
of this HP-VTA loop in learning and memory, the 
activation of the substantia nigra/VTA and the 
hippocampus has been recently associated with 
novelty processing and facilitation of memory 
formation (Schott et al., 2004a, 2006; Wittmann 
et al., 2008). Similarly, in a reward-motivated 
memory formation task (Adcock et al., 2006), 

high-reward cues preceding remembered but not 
forgotten scenes activated VTA, the NAcc and the 
hippocampus.

The second “motivational” circuit (Kelley 
et al., 2005) allows the organism to seek specifi c 
stimuli needed for survival by producing spon-
taneous locomotor behavior and exploration, 
ingestive, defensive and reproductive behaviors. 
These systems have been recently integrated in 
what is termed the “behavioral control columns” 
(Swanson, 2000), which are defi ned as a set of 
highly interconnected nuclei in the hypothala-
mus and its brainstem extensions devoted to the 
elicitation and control of specifi c behaviors nec-
essary for survival (see Figure 1, yellow boxes). 
These motivational systems might be activated 
by specifi c environmental (internal or external) 
stimuli and are amplifi ed and energized by affect 
or emotion. During evolution, these hard-wired 
hypothalamic-brainstem circuits have been pro-
gressively interconnected with phylogenetically 
more recent structures such as the PFC, striatum 
and limbic regions, allowing the implementation 
of cognitive control and more fl exible motivated 
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FIGURE 1 | Reward processing networks also involved in learning, memory and addition. Green boxes highlight the 
hippocampal-VTA learning-memory circuit described by Lisman and Grace (2005). The motivational system has been 
adapted from Kelley (2004) (yellow boxes). Notice that the direct and indirect projections from the hypothalamus to the 
neocortex–limbic structures through the dorsal thalamus is omitted from the fi gure. vmPFC, ventromedial prefrontal 
cortex; OFC, orbitofrontal cortex; PPTg, pedunculopontine tegmentum; LTP, long-term potentiation; v, ventral.
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behavior. Massive direct and indirect afferents 
from the hippocampus, amygdala, VS and PFC 
project to the behavioral control columns, allow-
ing the implementation of highly complex cogni-
tive processes. For example, the amygdala, which is 
considered a key structure in emotional valuation, 
projects to the lateral hypothalamus and removal 
of this amygdalo-hypothalamic pathway does not 
abolish food intake per se but it alters the assess-
ment of the comparative value of the food based 
on learning (Petrovich et al., 2005). Importantly 
these hypothalamic structures project to the mid-
brain dopaminergic neurons which in the case of 
expectation and consumption of primary and sec-
ondary rewards might elicit the activation of the 
NAcc and the PFC. Importantly, the hypothalamic 
behavioral control subsystems project massively 
back to the cerebral cortex via the dorsal thalamus 
(not shown in Figure 1). These feedforward pro-
jections provide higher order cortical centers with 
access to internal motivational states.

Notice, that in both circuits the NAcc is a key 
integrative region weighting the different inputs 
coming from cortical areas (OFC, vmPFC, DLPFC, 
insula), limbic regions (amygdala, hippocampus; 
Groenewegen et al., 1999) and midbrain (SN/
VTA) and therefore modulating the selection of 
appropriate responses and goal-directed behavior 
(Berridge and Robinson, 1998; Goto and Grace, 
2005; Kelley et al., 2005). Moreover, the interac-
tions of the medial prefrontal cortex (ACC) and 
the VS (both receiving DA input from the mid-
brain) in the adjustment of behavior have been 
highlighted (Holroyd and Coles, 2002).

FUNCTIONAL CONNECTIVITY MEASURES
Obviously, Figure 1 presents the basic network in 
which the VTA–VS reward system exerts its infl u-
ence on different behaviors. The key question is, 
how the different elements within this network 
work together in different behavioral contexts. 
This question might be answered by studying 
connectivity patterns and indeed cognitive neu-
roscience has increasingly acknowledged the need 
for a network approach (Rykhlevskaia et al., 2008). 
Accordingly, a growing number of neuroimaging 
studies have shifted the focus from standard uni-
variate to connectivity analyses. Functional con-
nectivity is defi ned as the statistical association 
or dependency among two or more neurophysi-
olgical time-series recorded in spatially remote 
areas (Friston, 1994; Horwitz, 2003). Initial func-
tional connectivity studies (PET and fMRI) used 
correlation analysis between a small number of 
pre-selected regions or between voxels of interest 
in order to study functional connectivity (Biswal 
et al., 1995). As fMRI uses an indirect measure of 

neurophysiological  functioning (BOLD signals), 
inter-regional dependencies can be investigated 
using correlation of BOLD signals between 
remote areas. Those regions showing large cor-
relations are considered functionally connected. 
Correlation between two regions might exist even 
in the absence of a direct connection, therefore 
mediated by a third region. Partial correlation 
measures could be used in this particular case 
for removing the contributions of pair-wise cor-
relations that might arise due to global or third-
party effects (Hampson et al., 2002; Sun et al., 
2004; Salvador et al., 2005).

When two regions are active roughly at the 
same time, then the two BOLD time-series might 
be highly correlated. In this particular case, imme-
diate instantaneous or zero-order correlation 
measures between the two time series will capture 
the relationship between these signals (Hampson 
et al., 2002). However, when one signal is delayed 
from the other but showing a similar fl uctuation, 
a time-shifted or lagged cross-correlation analysis 
is needed in order to capture the possible linear 
but delayed relationship between these regions. 
Notice that because the characteristics of the 
BOLD response, the correlations are based on 
low-frequency fl uctuations. In a functional con-
nectivity correlational study Cordes et al. (2001) 
showed that over 90% of their connectivity were 
due to low-frequency (below 0.1 Hz) fl uctua-
tions in a block-design paradigm. One important 
caveat of simple correlation analyses is that this 
measure is highly sensitive to the shape of the 
hemodynamic response function, such as onset-
delay, time-to-peak, and width, which are region-
specifi c due to differences in vascular properties 
across regions (Buckner et al., 1996; Bandettini 
and Cox, 2000). Because of that, this method is 
mostly appropriate to block-design analysis in 
which the shape of the hemodynamic response 
function shows less variability.

In contrast, coherence-related measures are 
less prone to the shape of the hemodynamic 
response function, as they are equivalent to the 
cross-correlation-related approaches, but using 
information from the frequency-domain. Cross-
coherence measures have been shown to be very 
useful in investigating functional connectivity 
across brain regions (Leopold et al., 2003; Sun 
et al., 2004; Salvador et al., 2005). Because the 
analysis is performed in the frequency domain, 
this measure is blind to the possible lags of one 
region when compared to another one. In this 
sense, if the frequency content of one series is 
similar to another one, then the spectral coher-
ence will be large indicating strong connectivity 
between two regions.

Functional Connectivity
Functional connectivity is defi ned as 
the statistical association or dependency 
among two or more neurophysiological 
time-series recorded in spatially remote 
areas. Correlational approaches are used 
and the direction of information fl ow 
can not be determined.
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Because the restriction of cross-correlation 
connectivity analyses to block designs, a new 
methodological approaches has been introduced 
to characterize functionally interacting regions 
using event-related fMRI designs (Rissman et al., 
2004). This approach is based on the parameter 
estimates obtained in the context of the general 
linear model. Within this approach, a series of 
parameter estimates is extracted from a seed region 
and correlated with voxels from the whole-brain. 
Using this method, it is possible to identify specifi c 
functionally related brain networks. Similar solu-
tions have been proposed by other authors (e.g., 
Siegle et al., 2007; Aizenstein et al., 2009).

In recent years, many improvements have been 
made also in the description and localization 
of functional patterns (for a review, see Rogers 
et al., 2007). Some concerned the reduction of 
the number of regions involved in the correla-
tion analysis. As the number of regions that are of 
interest increases, the covariance matrix becomes 
increasingly larger and thereby computations 
become more complex and more diffi cult to 
interpret. Indeed, different statistical multivari-
ate approaches have been used to simplify the 
model, such as multidimensional scaling, prin-
cipal component analysis, independent compo-
nent analysis, and principal least squares, among 
others. These methods are very attractive in the 
sense that they do not require any prior hypoth-
esis about the connectivity links of interest.

When studying functional connectivity it is 
also worth to consider the possible presence of 
spontaneous correlations between different brain 
regions. For example, Biswal et al. (1995) showed 
consistent correlations between different parts of 
the brain (bilateral primary motor and supple-
mentary motor regions) during resting states (i.e., 
when a participant is not performing any particu-
lar task; see similar results in Xiong et al., 1999; 
Cordes et al., 2000; Lowe et al., 2000). In a subse-
quent study, Hampson et al. (2002) investigated 
the changes in functional connectivity induced by 
a task (listening to continuous speech) when com-
pared to a resting condition. Interestingly, higher 
correlations were observed between Broca’s and 
Wernicke’s regions when participants were actively 
listening to speech. The description of a consistent 
“default-mode” network in the resting brain in 
the absence of any stimulus (Raichle and Snyder, 
2007) implies that such networks have to be taken 
into account when evaluating regional BOLD cor-
relations during task conditions (Hampson et al., 
2002). It is possible that these coherent spontane-
ous oscillations might account for a fraction of 
the trial-to-trial variability in BOLD event-related 
responses (Fox et al., 2006).

Finally, it is important to remind oneself that 
the presence of a structural connection makes a 
functional connection biologically meaningful and 
more likely to occur. Therefore, analyses of anatom-
ical connectivity open a useful tool for restricting 
the number of functional connections to be ana-
lyzed. Until recently, most connectivity approaches 
did not take into account the details of anatomi-
cal connectivity. However, if two regions are not 
anatomically connected, a functional connection is 
biologically implausible. Moreover, it is reasonable 
to expect that the strength of anatomical connec-
tions might modulate the corresponding functional 
connections. Traditionally, anatomical connectivity 
maps have been restricted to animal invasive his-
tological experimentation (Beaulieu, 2002) but the 
advent of diffusion tensor imaging combined with 
the development of new analysis tools opens up new 
opportunities. DTI based tractography provides 
detailed information of the structural connections 
(Hagmann et al., 2007). To use functionally defi ned 
seed points for fi ber tracking algorithms appears 
very promising to investigate the direct relation 
between brain function and structure (Staempfl i 
et al., 2008). Indeed, two recent studies that com-
bined structural (DTI) and functional connectivity 
measures have shown a high degree of similarity 
between both connectivity estimates (Skudlarski 
et al., 2008; Honey et al., 2009).

The functional connectivity measures dis-
cussed thus far are uninformative about the cau-
sality of directionality of the infl uence between 
the different brain regions, i.e., what it is known 
as “effective connectivity” (Friston, 1994). 
Causality is taken into account by another set of 
methods such as structural equation modeling, 
dynamic causal modeling and psychophysiologi-
cal interaction analyses Friston et al. (1997). These 
approaches constrain the connectivity analysis 
to a limited number of regions, based on prior 
knowledge (model based) about anatomical con-
nections or functional systems (for a review on 
these methods, see Horwitz et al., 2005).

In sum, connectivity measures may greatly 
enhance our ability to map brain activations to 
behavior. However, several important limitations 
have to be considered. First, the BOLD response is 
a rather indirect measure of the brain at work. In 
particular, the question arises as to which aspect 
of the neural activity of the reward area is refl ected 
in the BOLD response. With regard to the BOLD 
signal in the NAcc, a thoughtful review Knutson 
and Gibbs (2007) have convincingly suggested that 
it is modulated by dopamine signals arising from 
the VTA. Dopamine is released in the NAcc and 
shows a tendency to diffuse over wide areas (Garris 
et al., 1994) stimulating presynaptic D2-type 

Effective Connectivity
Effective connectivity approaches seek 
to describe causal infl uences of one 
brain area over another. Thus, the 
direction of information fl ow is 
determined. Such approaches need 
specifi ed models with only a limited 
number of nodes.

332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445



Camara et al. Brain networks processing reward

Frontiers in Neuroscience www.frontiersin.org September 2009 | Volume 3 | Issue 3 | 6

 autoreceptors D1/D2-type postsynaptic receptors. 
Animal experiments have shown that the onset of 
changes in the membrane potential of postsynap-
tic neurons is around 200 ms and lasts for about 
1000 ms after a single neural impulse. Knutson 
and Gibbs (2007) further argue that the average 
fi ring rate of fi ve impulses per second should 
lead to changes in extracellular dopamine levels 
on a second-to-second basis. That these changes 
in extracellular dopamine infl uence the BOLD 
signal has been further substantiated by animal 
experiments which showed that NAcc extracellular 
dopamine and the BOLD signal had a similar tem-
poral profi le and that lesioning of dopaminergic 
neurons also abolished the NAcc BOLD response 
(Chen et al., 1997). With regard to humans, it 
has been demonstrated by many studies that the 
BOLD signal to rewards or reward cues peaks at 
about 4–6 s (Knutson et al., 2003a; Camara et al., 
2008; Riba et al., 2008). Knutson and Gibbs (2007) 
suggest a time-line connecting dopamine release 
and fMRI BOLD response as follows: (a) dopamine 
is released and activates postsynaptic D1 and D2 
receptors 0–2 s after fi ring; (b) this changes the 
postsynaptic membrane potential (0–2 s after fi r-
ing) which (c) requires energy and oxygen from 
nearby capillaries, which (d) is followed by an 
increase of the BOLD signal 4–6 s after fi ring. 
Thus, we can be reasonably sure that the BOLD 
response in the NAcc tracks changes in dopamine 
level over time. Simultaneous recordings of elec-
trophysiological signals and the BOLD response 
in animals have suggested that in cortical areas the 
BOLD response is related to local fi eld potentials 
rather than multi-unit activity (Logothetis et al., 
2001; Logothetis and Wandell, 2004). This suggests 
that connectivity between the NAcc and cortical 
areas may refl ect the dopaminergically modulated 
infl uence of the NAcc on these areas.

A second problem is the slowness of the BOLD 
signal and the fact that data-points are obtained 
approximately every 1.5–2 s. Therefore, it might 
well be that fMRI-based connectivity measures 
underestimate the degree of interregional exchange 
in the brain. A promising complementary line of 
research to elucidate the mechanisms that sustain 
connectivity in the brain is the investigation of 
neurophysiological oscillations in different brain 
regions. Synchronous oscillatory activity in dis-
tant regions might be a mechanism that sustains 
functional connectivity. For example, synchronous 
oscillatory activity within subcortical and cortical 
networks have been related to learning and decision 
making (Paz et al., 2006; Pesaran et al., 2008). In a 
recent study, Popescu et al. (2009) showed learn-
ing-related increases in gamma coherence between 
the basolateral amygdala and the ventral putamen, 

using local fi eld potentials recorded in cats per-
forming an appetitive learning task. Analysis of 
electrophysiological activity has also demonstrated 
that communication between distant brain regions 
may also be established by phase-locking in differ-
ent frequency bands. Note, that such synchroniza-
tion processes might not necessarily be associated 
with an increase in metabolism and a change in the 
BOLD signal, and in this sense functional connec-
tivity fMRI methods might be limited to investigate 
these issues. Animal experimentation is therefore 
needed to explore the limits of connectivity assess-
ment using fMRI.

Human electrophysiological investigations may 
provide interesting insights on interregional com-
munication in particular with regard to reward. 
For example, several studies have already shown 
oscillatory activity in the theta, beta and gamma 
bands in humans related to reward processing 
using non-invasive measurements (Cohen et al., 
2007; Marco-Pallares et al., 2008). There is also a 
small but growing number of studies that have 
used simultaneous recordings from intra cerebral 
electrodes in the NAcc and surface electrodes 
(Münte et al., 2007; Cohen et al., 2009a,b,c; Heinze 
et al., 2009) which took advantage of possibility 
to assess correlations between depth and surface 
electrodes. Such investigations, while limited in 
the areas that can be reached with intracerebral 
electrodes by clinical considerations, may pro-
vide crucial timing information. For example, 
in a recent intracranial study in awake humans, 
Cohen et al. (2009c) showed increased theta activ-
ity in the NAcc in monetary loss feedbacks trials 
but not in gain trials in a reversal learning task. In 
these “loss” trials, participants had to adjust their 
behavioral strategy in order to gain more money. 
This study provided compelling evidence about 
the role of the VS in behavioral adjustment as it is 
clearly responsive to negative feedback that signals 
the need of such a readjustment.

EMPIRICAL DATA: THE BRAIN’S REWARD 
SYSTEM IN DIFFERENT CONTEXTS
A NETWORK SUPPORTING REWARD VALUATION
The valuation of monetary gains and losses 
activates a similar fronto-subcortical-limbic 
network, but to a different degree. Specifi cally, 
large activations have been reported in the VS, the 
cingulate cortex, the superior frontal cortex, the 
inferior parietal lobule, the insular cortex, hip-
pocampal regions, the thalamus, and the cau-
date nuclei (Delgado et al., 2000, 2003; Gottfried 
et al., 2003; May et al., 2004; Nieuwenhuis et al., 
2005; Dreher, 2007; Marco-Pallares et al., 2007; 
Tom et al., 2007; Camara et al., 2008). However, 
it is still  controversial to which degree the  neural 
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 mechanisms underlying reward and punishment 
valuation recruit different brain regions. For 
example, Frank et al. (2004) proposed a differen-
tial modulation of excitatory and inhibitory path-
ways in the VS by positive and negative outcomes. 
Similarly, Wrase et al. (2007) have reported differ-
ences in adjustment of motor responses after the 
delivery of rewards compared to punishments. In 
this sense, the examination of brain connectivity 
patterns might help to differentiate the networks 
engaged in the processing reward and losses.

We recently conducted as study to address 
this issue. Importantly, functional connectiv-
ity results showed a different mesolimbic net-
work than previous classical univariate analyses 
(Camara et al., 2008). In this study a gambling 
task required participants to bet on one of two 
sums of possible money which could be gained 
or lost (win or loss feedback appeared after the 
participant’s decision). Occasionally, unexpect-
edly large sums were won or lost, which where 
fi ve times larger in magnitude than the standard 
wins and losses but occurred in only 10% of the 
trials. Functional connectivity analyses showed an 
extensive network of regions supporting similar 
responses to reward and punishment valuation 
including the insular cortex and OFC, the amy-
gdala, the hippocampus and the SN/VTA mid-
brain regions. Notice, that this network clearly 
engaged the HP-VTA learning circuit proposed 
in Figure 1 (Lisman and Grace, 2005) (see also 
Figure 2A,B). These regions correlated with the 
activity observed in the VS seed region (NAcc), 
which was the region which was selected as a 
seed point in order to perform the functional 
connectivity analysis. For losses stronger corre-
lations were found between the VS and the medial 
OFC, indicating a  relatively stronger relationship 
between these structures in the valuation of pun-
ishments. Moreover, there was a tendency for a 
greater involvement of the amygdala in the net-
work elicited by losses (see Figure 2B).

These results complement a previous connec-
tivity study (Cohen et al., 2008) in which micro-
structural properties of white matter tracts were 
predictive of functional connectivity after reward 
delivery. Importantly, the projections connecting 
the amygdala with the hippocampus, the OFC, 
and the VS not only predicted connectivity derived 
from fMRI time series but also participants’ behav-
ior following both positive and negative feedback 
in a reversal learning task (Cohen et al., 2008). One 
important aspect is that these results highlight the 
involvement of the VS (NAcc) as a key region in 
the motivational network developed on the basis 
of animal research (Kelley et al., 2005) (Figure 2). 
The different  patterns obtained using the classical 

univariate analysis and connectivity analysis sug-
gest that different information is retrieved using 
these two methods and stresses the importance of 
using functional connectivity as a complementary 
tool (Gazzaley et al., 2004; Rissman et al., 2004; 
Buchsbaum et al., 2005; Ranganath et al., 2005; 
Fiebach and Schubotz, 2006). An important aspect 
which was not analyzed in our previous study is 
in which degree other networks could have been 
identifi ed if a different seed region would have 
been chosen. For example, the BOLD response in 
the vmPFC cortex did not correlate with the NAcc 
activation, which might suggest that a different 
network could be identifi ed and related to a dif-
ferent functional role.

A NETWORK SUPPORTING REWARD EXPECTATION
As well as the processing of reward outcomes, the 
expectation of primary (O’Doherty et al., 2002), 
monetary (Knutson et al., 2000, 2001), and social 
rewards (Izuma et al., 2008, 2009; Spreckelmeyer 
et al., 2009) is supported by similar fronto-
 subcortical-limbic networks, including the VS 
(NAcc) and the PFC, including the insular cortex 
(see Fehr and Camerer, 2007; Knutson and Greer, 
2008 for reviews). Among these regions, the NAcc 
plays a primary role and is more activated for 
cues signaling potential rewards than cues signal-
ing no reward. This anticipation effect has been 
linked to dopamine transmission in the NAcc 
(Knutson and Greer, 2008; Schott et al., 2008) and 
can be modulated by altering dopamine reuptake 
(Scheres et al., 2007; Strohle et al., 2008), changing 
dopamine breakdown (Yacubian et al., 2007), or 
using dopamine receptor agonists or antagonists 
(Abler et al., 2007). The PFC is assumed to control 
impulsive behaviors, being important for emotion 
regulation during decision making (McClure et al., 
2004). It has been reported that individuals who 
tend to continue previously rewarded behaviors 
(rather than impulsive behaviors) show stronger 
structural connectivity between the striatum and 
the prefrontal cortex (Cohen et al., 2008). The insu-
lar cortex, on the other hand, is mainly associated 
with emotional processes and interacts with the VS 
during reward delivery (Camara et al., 2008).

In a recent fMRI study using functional con-
nectivity (Ye et al., 2009) we further showed that 
these regions interact as a network during reward 
expectation. Moreover, this network can be dis-
torted by dopamine receptor agonists such as 
pramipexole1, which is widely prescribed to treat 

1Pramipexole is characterized mostly as a D2/D3 agonist. 
It also has some effects on other receptors, however (e.g., 
noradrenergic alpha-2 receptors, serotonergic 5HT1 
receptors) (Millan et al., 2002).

Motivational Network
This network of brain areas supports 
behaviors needed for survival. It 
produces spontaneous locomotor 
activity and explorative behavior in 
order to seek specifi c stimuli as well as 
ingestive, defensive and reproductive 
behaviors.

Structural Connectivity
Structural connectivity describes 
anatomical connections between 
remote brain areas. Recent advances in 
neuroimaging (DTI-based 
tractography) allow to image white 
matter connections between areas.
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Parkinson’s  disease but has been reported to cause 
pathological gambling as well as other impulse 
control disorders (Dodd et al., 2005; Weintraub 
et al., 2006). More specifi cally, intensive func-
tional connectivity was observed between the 
NAcc and the PFC during the anticipation of 
monetary rewards (see Figure 3, placebo con-
dition). This prefrontal–striatal connectivity, 
however, is reduced by the administration of 
pramipexole. Instead, the connection between 
the insular cortex and the VS is enhanced (see 
Figure 3, pramipexole condition). The weakened 
connectivity between the VS and the prefrontal 
cortex may lead to an impaired top-down execu-
tive control of impulsive behaviors, while the 
enhanced connectivity between the VS and the 
insular cortex may amplify the emotional infl u-
ences on decision making (see Figure 2, schemes). 
Indeed, the role of the vmPFC cortex in emotion 
regulation is well established, projecting directly 
to the amygdala and most probably providing 
some inhibitory input (Quirk and Beer, 2006). 
This shift in connectivity patterns may give rise 
to an overestimation of potential rewards but to 
an underestimation of possible risks. The imbal-
ance between the prefrontal– striatal circuitry 
and the insula–striatal circuitry may explain 
why pramipexole treated patients tend to develop 
pathological gambling and other impulse control 
disorders. The Ye et al. results are consistent with 

predictions that follow from the tonic-phasic 
dopamine hypothesis proposed by Grace and 
colleagues (Grace, 1991; Bilder et al., 2004). This 
hypothesis assumes that dopamine dynamics in 
the striatum are driven by the interactions of 
phasic and tonic dopamine release. Pramipexole 
may reduce phasic dopamine release by activating 
dopamine autoreceptors D2/D3 and at the same 
time change tonic dopamine release by affect-
ing prefrontal–striatum glutamatergic projec-
tions. It has been reported that the stimulation 
of cortical dopamine D2 receptors may directly 
inhibit the activity of glutamate neurons in the 
prefrontal cortex and subsequently the activity of 
dopamine neurons in the NAcc, eventually lead-
ing to a decrease in extracellular dopamine level 
(Beyer and Steketee, 2000; Del Arco and Mora, 
2005). To compensate the change in dopamine 
receptor stimulation, the amplitude of dopamine 
effl ux is increased. The effect of pramipexole on 
phasic processes may be overridden by the effect 
of pramipexole on tonic processes, resulting 
in the increased NAcc activity during reward 
anticipation. The increased NAcc activity may 
refl ect exaggerated incentive responses to possi-
ble rewards, and could be followed by impulsive 
behaviors and suboptimal choices (Kuhnen and 
Knutson, 2005).

It is interesting to note that an imbalanced 
network of reward expectation may also account 
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FIGURE 2 | Nucleus accumbens connectivity during reward valuation. (A) Scheme of the reward valuation network in light of Camara et al. (2008) results (yellow 
boxes, black arrows) embedded in a wider motivation/learning circuit (gray boxes and arrows). The wider network is slightly modifi ed (omitting unspecifi c 
hypothalamic/thalamic projections) from Kelley (2004). (B) Regions functionally connected with the nucleus accumbens (NAcc) after unexpectedly large sums were 
won or lost are superimposed on a group-averaged structural MRI image in standard stereotactic space (T-score overlays). Gains and losses connectivity patterns are 
simultaneously depicted: gain (green, P < 0.001), loss (red, P < 0.001) and conjunction gain ∩ loss (yellow, P < 0.001 and P < 0.001).
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for the tendency of adolescents to conduct 
risky  behaviors and to make suboptimal deci-
sions (Galvan et al., 2006; Casey et al., 2008; Van 
Leijenhorst et al., 2009). Adolescents are endowed 
with a functionally mature limbic system which is 
sensitive to incoming rewards, but it is well docu-
mented that the prefrontal cortex continues to 
develop into early adulthood. Consequently, as 
compared to young adults, adolescents demon-
strated more activations in the VS and the insular 
cortex (Van Leijenhorst et al., 2009), but less acti-
vation in the prefrontal cortex during the antici-
pation of monetary rewards (Galvan et al., 2006). 
In other words, reward evaluation in adolescents 
is biased by the limbic system rather than the pre-
frontal system. The engagement of two systems has 
also been proposed to underlie decisions involv-
ing tradeoffs among benefi ts according to their 
expected delays (intertemporal choice). Choices 
of immediately available rewards are mediated 
by the activity of limbic regions, while choices of 
long-term rewards are supported by the activity 
of prefrontal regions (McClure et al., 2004).

REWARD AND ADDICTIVE BEHAVIOR
As pointed out above, a key question with regard 
to the role of the core reward areas VTA and 
VS in different behavioral contexts is how they 
might interface with different parts of the wider 
system shown in Figure 1 in these contexts. In 

the case of addiction, besides the expectation 
and delivery of the drug, we can also distinguish 
craving states, which induce active drug seeking 
and that can be elicited by drug-related cues. 
The investigation of connectivity patterns in 
addiction might be especially promising as it has 
been proposed on the basis of animal studies that 
there is a profound change in the way the ven-
tral and dorsal striatum interact. Whereas drug-
seeking behavior in the early phases of addiction 
is a goal-directed behavior with the drug being 
ingested because of its rewarding effects (simi-
lar to reward expectation described in Section 
“A Network Supporting Reward Expectation”), 
its behavior is maintained by drug-associated 
cues in the sense of a stimulus-response habit 
(Everitt et al., 2001; Redish, 2004; Everitt and 
Robbins, 2005; Volkow et al., 2006). In the initial 
phases drug seeking is thought to be control-
led by the VS. Subsequently, control is gradu-
ally shifted to the dorsal striatum. This shift may 
be realized by serial “spiralling” connections 
between the NAcc and the dorsal striatum via 
midbrain dopamine neurons. In a recent lesion 
experiment Belin and Everitt (2008) used an 
intrastriatal disconnection procedure to disrupt 
this striato-midbrain-striatal connectivity bilat-
erally and found a greatly decreased drug-seek-
ing behavior in rats addicted to cocaine. The shift 
from ventral to dorsal striatum in drug  seeking 
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FIGURE 3 | Nucleus accumbens connectivity during reward expectation. Regions functionally connected with the 
NAcc during reward expectation under placebo and pramipexole. Arrows indicate the frontal cortex (blue) and the insular 
cortex (green). Left hemisphere is on the left side. Color scale refers to T values. Bottom: Scheme presents the 
connectivity patterns under placebo and pramipexole.
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behavior is consistent with evidence from MRI 
studies in addicted but drug-free humans in 
whom cue-elicited craving activates mainly 
the dorsal striatum as well as the amygdala and 
limbic prefrontal cortical areas (Grant et al., 
1996; Childress et al., 1999; Garavan et al., 2000; 
Volkow et al., 2002) but not the VS.

These animal studies provide an interesting 
hypothesis regarding the connectivity of ventral 
and dorsal striatal regions in different stages of 
addiction. Thus, far there are only few studies 
that have used connectivity measures in relation to 
addiction. Recently, Filbey et al. (2008) used alco-
holic tastes that were delivered to heavy drinking 
volunteers. A region of interest (ROI) approach 
was used and connectivity was studied by per-
forming correlations between the different ROIs. 
Unfortunately, the authors defi ned a large ROI 
encompassing both, ventral and dorsal striatum, 
in addition to ROIs encompassing the SN/VTA, the 
mPFC and the OFC. Signifi cant correlations were 
reported between these regions when comparing 
alcohol-related cues vs. rest. Obviously, to test the 
question of a shift in connectivity from early to late 
phases of addiction would require the investiga-
tion of carefully selected participants and moreover 
the application of connectivity methods that are 
sensitive to the direction of information fl ow (see 
Section “Functional Connectivity Measures”).

There have been suggestions that obesity and 
the associated food intake behavior has strong 
parallels with drug addiction (Volkow and Wise, 
2005; Volkow et al., 2008). For example, damage 
to the VTA–VS dopamine system suppresses free 
feeding and the willingness to press a lever for 
food rewards in rats. The same procedure also 
attenuates the reward effects of drugs (Wise and 
Rompre, 1989). Against this background, Stoeckel 
et al. (2009) recently investigated effective con-
nectivity within a “reward-network” in obese and 
normal weight women who were exposed to pic-
tures depicting high and low calorie food. Based 
on prior hypotheses they selected the NAcc, the 
amygdala, and the OFC and performed structural 
equation modeling. Compared to the normal 
weight women, the obese group showed less amy-
gdala-modulated activation of the OFC and the 
NAcc. On the other hand overweight participants 
showed an increased infl uence of the OFC on the 
activation of the NAcc. These fi ndings suggest that 
obese women not only show an overall greater 
activation of the reward system to food stimuli 
(as demonstrated in Stoeckel et al., 2008, using 
univariate analyses) but also showed differences 
in the interregional interaction in the studied net-
work. While the analysis provided  information 
regarding the direction of  information fl ow 

between the brain areas, it has to be  acknowledged 
that the model used in Stoeckel et al. (2009) was 
very simple due to the inherent limitations of 
the statistical analysis. For example, key areas 
involved in the motivational circuit outlined in 
Figure 1 and involved in the homeostatic regula-
tion of food intake (e.g., the hypothalamus) were 
not included in the model. Another recent study 
used psychophysiological interaction analysis to 
investigate the differences in connectivity between 
appetizing and bland food stimuli (pictures) 
(Passamonti et al., 2009). Moreover, in a second 
step, the authors investigated to what extent these 
interactions were modulated by the external food 
sensitivity of the participants, i.e., their prone-
ness to react to appetizing food. High external 
food sensitivity was  associated with reduced dif-
ferential connectivity in the network comprising 
the NAcc, amygdala, mPFC, and premotor corti-
cal areas. This network has been suggested to be 
involved when controlling feeding behavior in 
animals (Kelley et al., 2005).

CONCLUDING REMARKS
The human brain roughly features 1011 neurons 
and 1014 synapses. The very architecture of the 
brain readily suggests that neurons act in coordi-
nated concert on a microscopic level, e.g., within 
nuclei and cortical columns, and on a macroscopic 
regions, i.e., between distant brain regions. This 
fact has been largely neglected during the fi rst two 
decades of brain imaging mostly for the lack of 
appropriate techniques. In the present paper we 
illustrated the advantages of connectivity analyses 
for the investigation of reward processing. What 
emerges at this point is still a very sketchy pic-
ture, however. What is needed is a more system-
atic assessment of the connectivity of the VTA–VS 
reward system in different contexts using the same 
methods. As illustrated by several examples in this 
review, altered connectivity of the VTA–VS system 
with other brain area may underlie behavioral and 
brain imaging changes observed during develop-
ment and in pathological conditions. Such analy-
ses will therefore contribute to our understanding 
of the pathophysiology of such states.
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