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Barcelona, 13 November 2014
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is linked to the Doctorate in Medicine Program (Quality Mention MCD2008-

00023; Mention to Excellence MEE2011-0316) at the University of Barcelona.
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state and subsequent working memory task predicts behavioural performance. Cor-
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and relationship with working memory performance in healthy aging. Frontiers in
human neuroscience, 6(June):152
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Changes in whole-brain functional networks and memory performance in aging.
Neurobiology of aging, 35(10):2193–202

5. Sala-Llonch et al. Whole-brain network interactions and aging. Relationship with
cognition. in preparation

6. Sala-Llonch, R., Fortea, J., Bartrés-Faz, D., Bosch, B., Lladó, A., Peña Gómez, C.,
Antonell, A., Castellanos-Pinedo, F., Bargalló, N., Molinuevo, J. L., and Sánchez-
Valle, R. (2013). Evolving brain functional abnormalities in PSEN1 mutation carri-
ers: a resting and visual encoding fMRI study. Journal of Alzheimer’s disease : JAD,
36(1):165–75
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2014 Vidal-Piñeiro, D., Martin-Trias, P., Arenaza-Urquijo, E. M., Sala-Llonch, R., Clemente,
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CHAPTER1

Introduction

1.1 MRI and brain connectivity

For many years, studies of human brain function typically associated specific cognitive ca-

pabilities to discrete brain anatomical structures. These evidences were obtained from stud-

ies of focal lesions (usually identified postmortem) and with the first in-vivo recordings.

More recently, and mostly thanks to Magnetic Resonance Imaging (MRI), the neuroscien-

tific community has moved to the idea that the majority of functions are supported by

coordinated activity between distinct, separated brain regions, so that the brain works in

networks. These ideas have lead to the definition of Brain Connectivity (Catani et al., 2013;

Sporns, 2013b) and have motivated the nascent field of Connectomics (Smith et al., 2013).

Brain connectivity refers to patterns of links connecting distinct units within the nervous

system. It can be studied at different scales, and therefore, units or nodes can be defined as

individual neurons, neural populations, or segregated brain regions described by anatom-

ical or functional landmarks. Recent advances on both neuroscience and computational

sciences have motivated new approaches for studying brain structure and function from
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a complex systems perspective (Sporns, 2013a). These current trends have suggested that

connectivity-based methods may provide good tools in order to understand brain function-

ing in healthy subjects, as well as to study changes during lifespan, or during the timecourse

of neurodegenerative diseases.

Although invasive techniques, such as the use of tracers in postmortem samples, have

been used to identify brain connections in an accurate and precise way, recent advances

in ‘in vivo‘ neuroimaging techniques allow the measurement of connectomics in a non-

invasive way. However, it is worth mentioning that all neuroimaging techniques are based

on inferences, and therefore, they provide an indirect estimation of connectivity, which has

to be taken in account when interpreting the results obtained with such approaches (Behrens

and Sporns, 2012).

In general terms, in neuroimaging, human brain connectivity can be studied at the struc-

tural and functional levels. Brain structural connectivity refers to the presence of fiber tracts

directly connecting different brain regions (Basser et al., 1994). The use of Diffusion MRI

allows investigating structural connections in the brain’s white matter by estimating the di-

rectionallity of white matter fibers. Functional connectivity can be studied as the temporal

correlation between spatially remote neurophysiological events that may or not may have

direct physical connection. In this regard, functional MRI (fMRI) can be used to measure

functional connectivity as the statistical dependence between BOLD fluctuations measured

within different brain regions (Behrens and Sporns, 2012; Matthews et al., 2013). FMRI can

be obtained during the performance of a cognitive task, or even when subjects are scanned

under resting-state condition (Biswal et al., 1995).

It would appear that functional and structural connectivity are two strongly inter-related

processes. In this sense, the pattern of structural connections would have a predictive role

over functional connectivity and structural connections could be inferred from functional

connectivity. Part of these hypotheses have been empirically demonstrated in several multi-

modal studies (Honey et al., 2009; van den Heuvel et al., 2009). However, there is also some

evidence suggesting that these relationships are more complex and that functionally con-

nectivity can be only partially explained by structural connectivity. For example, using

animal models, Adachi et al. (2012) studied structural and functional connections in the
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macaque and found that some brain regions that were anatomically disconnected showed

high levels of functional connectivity. Moreover, it has been demonstrated that the rela-

tionship between functional and structural connectivity is not stable across lifespan, and

that it exhibits changes during the aging process (Betzel et al., 2014). Also in this line, Park

and Friston (2013) proposed that the same structural architecture might support a variety

of functional networks. One conclusion from these studies is that, although both modalities

are highly informative, functional and structural connections should be studied separately,

and the transferability of results from structure to function (and viceversa) needs to be taken

with caution.

� STRUCTURAL CONNECTIVITY

Refers to the presence of white matter fiber tracts connecting separated brain areas.

It can be studied using Diffusion-weighted MRI.

� FUNCTIONAL CONNECTIVITY

Refers to temporal synchrony between regions that do not need to be structurally

connected. It can be measured as the coherence or correlation between BOLD sig-

nals, derived from fMRI data.

1.1.1 Diffusion MRI

Diffusion-weighted MRI allows the study of the diffusion process of water molecules in the

brain (Basser et al., 1994). It provides a unique capability to delineate axonal tracts within

the white matter, which was not possible with previous MRI non-invasive techniques (Mori

and Zhang, 2006).

One of the key-measures obtained from diffusion MRI is anisotropy, which reflects the

preference of each brain voxel for having high directionality. Inside white matter fiber tracts,

diffusion is highly anisotropic, due to the presence of myelin sheaths and microstructural

components of axons, which help water molecules to follow a trajectory that is parallel to

the fiber direction. On the contrary, in brain regions with less organized brain tissues (i.e.,

gray matter and CSF), the anisotropy is much lower, and water molecules move freely in all

directions forming a sphere (Le Bihan, 1991).
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One of the most common applications of Diffusion MRI is the so-called Diffusion Tensor

Imaging (DTI) approach. With DTI, it is possible to measure the differences in anisotropy

between brain tissues, based on the calculation of Fractional Anisotropy (FA), which is a

metric obtained mathematically (for further details, see Methods in Chapter 3). The FA

measure was formalized by Basser and Pierpaoli (1996) and it has values close to 1 in very

anisotropic regions, and values around 0 in isotropic tissues. Therefore, it can be further

used to generate diffusion maps, which are believed to reflect the degree of myelination

and axonal density or fiber integrity (Jones et al., 2013).

Beyond DTI, Diffusion tractography is a more complex but more precise technique that

can also be performed with Diffusion MRI data. It aims to determine the trajectories of axon

bundles traversing the brain’s white matter. In order to perform tractography, it is necessary

to first estimate the orientation of fibers at every point in the brain. Then, by joining up the

estimated directions, it is possible to reconstruct entire pathways or connections between

separated brain areas (Behrens et al., 2003a).

1.1.2 Functional MRI

FMRI measures changes in blood-oxygen-dependent (BOLD) signal in the brain across time.

In its more traditional application, it has been used to identify areas of increased or de-

creased neuronal activity during the performance of a task (Logothetis et al., 2001; Logo-

thetis, 2003; Raichle and Mintun, 2006). That is, when fMRI is acquired during the time-

course of a goal-directed task, the differences in the BOLD signal level between states can

be used to infer the spatial patterns of brain-activated regions under the different task condi-

tions. Task-fMRI requires exposing the subject to different conditions or different cognitive

demanding levels. Then, maps of brain activity can be obtained by subtracting the BOLD

signal between states or conditions, being one of them usually the baseline condition.

Another popular type of fMRI is the so-called resting-state fMRI (rs-fMRI), which refers

to the sequential acquisition of fMRI scans, of duration typically between 5 and 10 min-

utes, while subjects are asked to lie down, not to fall asleep and not to think in anything

particular. The potential of rs-fMRI has been used to identify temporal coherences between

spontaneous fluctuations that occur during rest, measured as low-frequency oscillations of
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the BOLD signal. In an early study Biswal et al. (1995) used rs-fMRI and described consis-

tent correlations within the regions of the motor network, even in the absence of a task.

Since then, the use of rs-fMRI to study functional connectivity has increased massively

and has revealed meaningful low frequency BOLD fluctuations that are correlated across

distant brain regions, allowing the study of what has been called Resting-State Functional

Connectivity (RSFC). Although, the origin and interpretation of these spontaneous fluctu-

ations are still under debate (Schölvinck et al., 2010). RSFC seems to be highly informative

about both brain architecture and brain organization, and it has a high variability in hu-

mans, probably reflecting behavioral interindividual differences (Fox et al., 2007). A com-

plete study of human RSFC patterns in the human will be deeply developed in section 1.2

of this introduction.

The analysis of fMRI connectivity covers an elevated number of methodological ap-

proaches, and this number increases day-to-day thanks to technical advances and ongo-

ing inter-disciplinary research. Basically, it is possible to differentiate between three main

methodologies: seed-based correlation analysis, independent component analysis, and

whole-brain approaches using graph theory.

Seed-based correlation

This method consists on identifying whole-brain, voxel-wise connectivity maps of areas

showing correlated activity with a seed, which is a delimitated brain region (that can be

a voxel or a group of voxels) defined a priori with data from previous analyses, from the

literature or from an atlas. Although seed-based correlation methods usually have an ele-

vated number of confounds and they are highly dependent on the seed definition and the

preprocessing applied to the data, they still represent the best approach to answer directly

some questions related to connectivity. These methods are the best option to find, for exam-

ple, correlation patterns from a certain region when there is a strong hypothesis previously

formulated, providing a straightforward interpretability (Cole et al., 2010).
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Independent Component Analysis (ICA)

ICA is used to find spatio-temporal patterns of synchronized brain activity. It decomposes

de data into a set of components, such that all the regions within the same component show

synchrony of their temporal oscillations and are independent from the other components

(Beckmann and Smith, 2004). In comparison with seed-based correlation, one of its advan-

tages is that it does not require the specification of a priori seeds. In addition, ICA appears as

a good approach to identify signals of no-interest, such as artifacts, head motion, physiolog-

ical noise or CSF-related signals, which can be then easily removed from the data (Griffanti

et al., 2014).

Whole-brain connectivity approaches using graph-theory

These kind of studies aim to investigate the overall brain connectivity by describing the

brain as a single interconnected network (Bullmore and Sporns, 2009). They belong to the

set of higher-level models used to evaluate functional connectivity in a more integrative

way than the two methods described above. Graph-theory studies require, in general a

first stage in order to parcellate the brain into a set of regions or nodes, and a second stage

that finds the relationships between all possible node pairs, defining a ’big’ whole-brain

network. Once the whole-brain network is defined, it can be studied at different levels of

complexity or specificity. For example, it is possible to obtain connectivity characteristics

at regional level, and, at the same time, it is possible to obtain parameters reflecting whole-

brain organization, including measures such as network efficiency, integration or segrega-

tion (Rubinov and Sporns, 2010). Furthermore, using measures of nodal connectivity or

centrality it has been possible to define cortical hubs as a key-connected brain regions, that

have an special role in controlling connectivity paths across the whole brain (Buckner et al.,

2009; Cole et al., 2010; Power et al., 2013).

1.2 Network-based organization of healthy brains

Understanding functional brain organization in normal or healthy brains has become of

outstanding interest in neuroscience. It appears as an essential need in order to further de-
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fine neuropsychological correlates and potential clinical biomarkers for neurodegenerative

diseases or brain damage. In addition, it brings new insight to the design of interventional

studies and to track brain changes longitudinally.

The use of resting-state fMRI to study functional connectivity has allowed the identifi-

cation of a reduced set of networks or connectivity patterns (typically 10-20) named Resting

State Networks (RSNs). These networks are commonly identified across subjects (Damoi-

seaux et al., 2006), and have shown high reproducibility rates (Guo et al., 2012). In addition,

RSNs have been associated with networks of brain function (Sadaghiani and Kleinschmidt,

2013).

The most-studied of these RSNs is the Default Mode Network (DMN), which has the

specific property of being deactivated during the performance of goal-directed tasks but

activated at rest. In a first pioneering study by Shulman et al. (1997) using Positron Emis-

sion Tomography (PET), the authors observed a consistent set of regions that were more

active during passive than during active conditions, or equivalently, these regions were de-

activated during the task performance. Later on, Raichle et al. (2001) performed similar ex-

periments and they proposed empirical and theoretical implications for this baseline brain

activity. The existence of these task-related activity decreases, which was first evidenced

using PET, was also replicated with task-fMRI studies (Gusnard and Raichle, 2001).

The DMN was further identified in a series of resting-state functional connectivity stud-

ies (Greicius et al., 2003; Fox et al., 2005; Fransson, 2005; Damoiseaux et al., 2006; Vincent

et al., 2006), and few years after the first Raichle’s experiments, Buckner et al. published

a review article with the aim to define the anatomy and function of the DMN (Buckner

et al., 2008). In this article, they described the DMN as a brain system composed by a set

of interacting brain areas functionally connected and distinct from other systems within the

brain (such as the visual or motor systems), which participates in internal modes of cogni-

tion. By gathering together studies of task-induced deactivations and functional connectiv-

ity analyses, they defined the core regions associated with the brain’s default network: the

ventral/dorsal medial prefrontal cortex, the posterior cingulate and retrosplenial cortex,

the inferior parietal lobule and the hippocampal formation (including enthorhinal cortex

and parahippocampal cortex). Although the number of DMN-related studies with clini-
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cal conclusions at that time was still very poor, they already pointed to the idea that the

understanding of the DMN would have important implications for brain disease.

From that time onwards, the DMN has been used to characterize brain functioning in

healthy young subjects, but also to study brain changes during healthy aging (Andrews-

Hanna et al., 2007; Damoiseaux et al., 2008) and changes related to brain disease (Barkhof

et al., 2014). The relationship between DMN connectivity and aging as well as its relevance

for disease will be discussed in another part of this section.

� DEFAULT MODE NETWORK

Brain network supporting internal mental states, such as self-referencing and rea-

soning. It is active during resting-state periods and it deactivates during the per-

formance of the majority of goal-directed tasks. It involves the prefrontal cortex,

the posterior cingulate and precuneus, the inferior parietal lobules bilaterally and

the hippocampal formation.

Besides the DMN, other networks of intrinsic brain connectivity have been consistently

described in healthy populations. The majority of studies agree in a set of 10 RSNs that have

also shown a great correspondence with the main task-related networks, covering the full

repertory of task-related brain activation patterns. These findings indicate that the human

brain has a network-based organization even at rest. In this regard, Smith et al. (2009) used

ICA on rs-fMRI data and compared the components with task-patterns averaged from the

BrainMap Database (Laird et al., 2005), which assembled results from more than 7000 task-

fMRI experiments. They found that the patterns of RSFC could be easily associated with

patterns of task-related coactivations from a wide range of cognitive domains.

The high correspondence between rs-fMRI and task-fMRI networks opens new doors

to the research community in the sense that rs-fMRI paradigms could be cautiously used

instead of task-fMRI to study the status of functional networks. In comparison with task-

fMRI, rs-fMRI is easy to acquire and with less confounds, such as task modulations, adap-

tive changes, or behavioral differences across populations.
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The spatial maps of the 10 most commonly defined networks are shown on Figure 1.1.

In Table 1.1, a brief description of the areas involved in each network and their associated

cognitive functions is provided.

Table 1.1: Summary of main RSNs
Network Regions Functions

A Visual Medial Medial visual Areas Motion perception.

B Visual Occipital Visual occipital areas Cognition-language.

C Visual Lateral Lateral visual areas Cognition-space.

D Default Mode Precuneus and posterior cingulate, Introspection and episodic memory,
bilateral inferior-lateral-parietal, self-referenciing, and
and ventromedial frontal cortex deactivaed in goal-directed tasks.

E Cerebellum Cerebellum Action-execution and
perception-somesthesis-pain.

F Sensorimotor SMA, Bimanual motor tasks,
sensorimotor cortex, and processing of sensory input, and
secondary somatosensory cortex execution of motor functions.

G Salience or Dorsal anterior cingulate, executive control, salient events,
executive control or paracingulate and insula set maintenance
cingulo-opercular action-inhibition.

H Auditory Superior temporal gyrus, action-execution-speech,
Heschl’s gyrus, cognition-language-speech,
and posterior insular and perception-audition

I,J Frontoparietal or Superior parietal and Voluntary (top-down) orienting,
dorsal attention superior frontal areas, selective atention, and

intraparietal sulcus and FEF cognition-language

SMA: Supplementary Motor Area; FEF: Frontal Eye Fields.

Apart from the studies that have used ICA to describe the main RSNs, other researchers

have focused on higher-level, whole-brain approaches to investigate patterns of RSFC in

healthy brains. For example, Crossley et al. (2013) used graph-theory to define a network

from rs-fMRI, and they compared this network with a network of task-coactivation patterns

obtained from the BrainMap Database. They described a brain structure based on functional

connectivity patterns that showed modular organization and which was very similar be-

tween task and rest. Concretely, they defined 4 modules that were associated with different

functions: the occipital module (perception), the central and sensorimotor module (action),
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Figure 1.1: Spatial maps of main RSNs. Adapted from (Palacios* et al., 2013a).
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the frontoparietal module (executive functions) and the default mode network (emotion).

The authors concluded that there is a well-defined network organization in the brain that is

equally evidenced at rest and during task performance. In a more recent study, Cole et al.

(2014) studied connectivity patterns by creating whole-brain networks from data obtained

at rest and while subjects performed a variety of cognitive tasks. They defined an intrinsic

network structure obtained from rs-fMRI, which was highly dominant in the resting brain

and even during the performance of a task. Interestingly, they also found that this net-

work structure is slightly modulated by task-evoked connectivity changes that were both

task-general and task-specific.

� THE BRAIN AS A GROUP OF NETWORKS

The Human brain has an intrinsic organization based on patterns of functional

connectivity that can be observed while subjects are at rest. These patterns can

be defined as large-scale networks of isolated brain areas and also by means of

interactions between finer brain parcellations.

During the performance of a goal-directed task, the networks involved in the task

would shift to active state, without introducing big changes at the organization of

the rest of the brain.

1.3 FMRI during cognitive states

Task-related networks can be studied with fMRI by identifying patterns of brain regions

that activate and deactivate in synchrony during the performance of a cognitive demanding

task. These activation changes are usually evaluated using functional paradigms that can

be block-designed or event-related tasks. There has been an increasing effort in order to

define and classify networks of task-activity associated with specific cognitive domains.

These works have been gathered together, resulting in several meta-analytic publications

and leading to the set up of some public databases, such as the BrainMap (Laird et al., 2005,

2013).

One of the most studied domains in fMRI is human memory. In this regard, two of the

most differentiable kinds of memory are the working memory and the episodic memory.
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1.3.1 Working memory networks

In cognitive neuroscience, Working Memory (WM) refers to the capacity to maintain, ma-

nipulate and store information temporarily and involves a set of brain structures and pro-

cesses to organize and integrate sensory and other information (Baddeley, 1986). WM can

be decomposed into processes of memory and attentional control and is one of the func-

tions with clear age-related decline (Park and Reuter-Lorenz, 2009). The use of fMRI during

working memory tasks evidenced consistent activation of prefrontal, temporal and parietal

cortical regions regardless of the task used and the stimulus modality (D’Esposito et al.,

1998; Wager and Smith, 2003; Owen et al., 2005).

The N-back task is one of the most commonly used paradigms to study working mem-

ory networks with fMRI (see Owen et al. (2005) for a meta-analysis). It consists on present-

ing a sequence of stimuli from which the subject is asked to indicate, by means of a response

button, when the stimuli presented on the screen is the same that the one presented n items

before. The n-back algorithm has the advantage that the cognitive load can be easily con-

trolled by the researcher by changing the number of items (n) to be remembered, allowing

for parametrical modeling of working memory. This number usually goes from n = 1 to

n = 3 items. A control condition, 0-back, is often used, in which subjects are asked to in-

dicate each time a specific stimuli appears in the screen. The brain regions that have been

reported to consistently reported to be involved in the N-Back task are shown in Figure 1.2.

In N-back tasks, a broad variety of stimuli have been used (for example, verbal vs non-

verbal, or identity vs location). In these cases, despite the fact that the main areas of the

WM network are commonly activated in all of them, domain-specific activations within

brain structures have also been documented (Fuster, 1997; Rottschy et al., 2012).

1.3.2 Episodic memory networks

Episodic memory is defined as the conscious process of remembering experienced events

with a particular spatio-temporal context (Tulving, 1987). Brain networks involved in

episodic memory function have been studied by identifying areas that show activity in-

creases during successful encoding or successful retrieval trials. FMRI studies have demon-
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Figure 1.2: Brain regions associated with the N-back paradigm. Adapted from the meta-analysis
published by Owen et al. (2005).

strated that there is a memory network highly consistent across different experimental con-

ditions, including a variety of stimuli, or differences in the paradigm. In general, both

encoding and retrieval processes are associated with a brain network involving the medial

temporal lobe (MTL) and prefrontal and parietal regions (Spaniol et al., 2009).

In a more specific sense, it has been described that the network associated with success-

ful memory encoding includes mainly 5 regions: (1) the left inferior temporal cortex, (2) the

bilateral fusiform cortex, (3) the bilateral hippocampal formation (being part of the MTL),

(4) the bilateral premotor cortex, and (5) the bilateral posterior parietal cortex (Kim, 2011).

These patterns are shown in Figure 1.3.

In addition, the same kind of studies has revealed a set of areas that show consistent de-

activations during successful encoding. This pattern of deactivations coincides with the de-

fault mode network (DMN), concretely involving the Posteromedial Cortex (PMC), which

is also deactivated during the performance of a wide range of cognitive demanding tasks

(Raichle et al., 2001). Several studies have indicated that the degree to which the DMN

deactivates is directly related to memory performance (Daselaar et al., 2004; Vannini et al.,

2011). In the same line, unsuccessful encoding, measured with the forgotten effects (i.e.

forgotten>remembered fMRI contrast), has been shown to be held by the activity in the

PMC (Kim, 2011).

Intriguingly, it has been observed that there is a region in the PMC that becomes active

during successful retrieval process. This region has high overlap with the part of the
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Figure 1.3: Brain regions associated with successful and unsuccessful encoding effects.
Adapted from Kim (2011).
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PMC that deactivates during encoding. Therefore, memory retrieval is one of the few

goal-directed tasks that activate the DMN, which has been interpreted as a result of the

implication of self-referential and reflective activity (Gusnard and Raichle, 2001; Buckner

et al., 2008). This phenomenon is known as the Encoding/Retrieval (E/R) flip, and it

states that successful memory depends on the correct deactivation of the PMC during

the codification of items followed by its activation during retrieval (Huijbers et al., 2012;

Vannini et al., 2013). The E/R flip has attracted the attention of many researchers because

its relevance to neurofunctional changes in aging and neurodegenerative diseases (Miller

et al., 2008; Vannini et al., 2008).

� WORKING MEMORY

Memory capability used to maintain, manipulate and store information during

short periods of time. Involves fronto-parietal and temporal networks.

� EPISODIC MEMORY

Memory capability used to consciously store and retrieve events in a particular

context. Its main network involves MTL and prefrontal brain regions.

1.4 FMRI in healthy aging

Some elders are able to maintain their cognitive capabilities at high levels in contrast with

other adults who show clear cognitive declines. It has been hypothesized that this vari-

ability depends on neurofunctional resources. However, the exact mechanisms that lead to

such wide differences are still unclear (Park and Reuter-Lorenz, 2009).

The use of task-fMRI in aging has revealed a complex pattern of brain activity changes

characterized by decreases, increases, or no differences between old and young subjects.

The diversity of findings depends on many variables, such as the cognitive test used and

the level of difficulty (Grady et al., 2006). Nonetheless, there is a relative consensus that

there is an age-related increase of brain activity in the prefrontal cortex (PFC) (Turner and

Spreng, 2012), while findings as regards reduced activation are localized more heteroge-

neously in the brain. Regional hyperactivation has been interpreted as compensation, or
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attempred compensation; whereas failure to activate has been typically interpreted in rela-

tion to cognitive deficits associated to aging.

There are several theories that have been proposed in order to explain the changes ob-

served during the aging process using fMRI (Grady, 2012). In the first place, two main hy-

potheses have been proposed to explain the nature of the age-related activity increases: the

compensation and the dedifferentiation hypotheses. Furthermore, some theories have emerged

in order to understand the spatial localization of these changes and their relation to changes

in cognitive abilities. These concepts are summarized in the following two sections.

1.4.1 Compensation vs Dedifferentiation

Compensation

The compensation hypothesis in aging states that older adults are able to recruit higher

levels of activity in comparison to young subjects in some brain areas to compensate for

functional deficits located somewhere else in the brain. This increased activity is often seen

in frontal regions (Turner and Spreng, 2012; Park and Reuter-Lorenz, 2009).

The first studies suggesting compensatory mechanisms appeared early in the literature

and used PET during the performance of visuospatial (Grady et al., 1994) or episodic mem-

ory (Cabeza et al., 1997; Madden et al., 1999) tasks. Later on, these findings were replicated

with fMRI (Cabeza et al., 2002).

However, the term compensation is conditioned by the fact that activity increases would

be directly associated with improvements in task performance, and this is not always ac-

complished. In this regard, some considerations have appeared in order explain these

hyperactivations. For example, Cabeza and Dennis (2013) recently suggested that the in-

creased brain activity, which appears when task demands are greater than the cognitive

resources, can be classified as: ’attempted compensation’, when there are no changes in

performance; ’successful compensation’, when subjects perform better than those which do

not activate; and ’unsuccessful compensation’, when subjects perform worse.

Other authors have referred to the ’Partial compensation’ hypothesis (de Chastelaine

et al., 2011). According to this hypothesis, the effects of additionally activated areas might be
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inversely correlated with the functional integrity of the original task-related areas, leading

to worse performance.

Dedifferentiation

The term dedifferentiation is described as the loss of functional specificity in the brain re-

gions that are engaged during the performance of a task (Rajah and D’Esposito, 2005). Us-

ing fMRI, Park et al. (2004) studied brain activity in the visual cortex during visualization

of different stimuli, and they found that, while young subjects exhibited category-specific

activation in the ventral visual cortex, old subjects showed less neural-differentiation.

According to this hypothesis, the age-related decreases in brain activity are due to re-

duced regional process-specificity, whereas activity-increases reflect generalized spreading

of activity. In neurobiological terms, it has been suggested that this pattern of changes is

caused by a chain of processes which starts from a decline in dopaminergic neuromodula-

tion that produces increases in neural noise, leading to less distinctive cortical representa-

tions. At the cortical level, the dedifferentiation phenomenon causes increased variability

of intra-network random activity (Li et al., 2001).

1.4.2 Cognitive Models in aging

Besides the two hypotheses presented above, there are different models that have tried to

explain the functional and cognitive implications of brain activity changes in aging. Al-

though not exclusively, the main theories are understood under the assumption that activity

increases are compensatory.

The HAROLD model

The Hemispheric Asymmetry Reduction in Old Adults (HAROLD) model was introduced

by Cabeza (2002). It states that during the performance of a task, the activity pattern ob-

served in older adults is less lateralized than the one observed in young subjects under

similar conditions. In their first study, Cabeza et al. used an episodic memory task to

demonstrate that low-performing older adults showed an activation pattern very similar to
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the activity seen in younger adults, mainly including regions in the right PFC. On the other

hand, they found that high-performing older adults also activated the same area in the left

PFC. Similar patterns of bilateral activation associated with successful task performance

have been described in other studies (Cabeza, 2004).

The CRUNCH model

The compensation-related utilization of neural circuits hypothesis (CRUNCH) defends that,

in older adults, higher neural recruitment occurs in cognitive levels that typically imply

lower brain activity in younger subjects. This effect has been observed in the PFC and

also in the parietal cortex, concretely in the precuneus and posterior cingulate and both in

episodic memory tasks (Spaniol and Grady, 2012) and in working memory tasks (Reuter-

Lorenz and Cappell, 2008; Mattay et al., 2006). Importantly, as regards working memory,

the n-back task represents an ideal experimental condition to test this model because the

cognitive load can be easily controlled by changing the number of items to be kept (Nagel

et al., 2011).

The PASA model

The posterior-anterior shift with ageing (PASA) was experimentally proved by Davis et al.,

who used two different tasks, visuoperceptive and episodic retrieval and found that older

subjects had deficits to activate regions in the posterior midline cortex accompanied with

increased activity in medial frontal cortex (Davis et al., 2008).

1.4.3 Connectivity-related changes in Aging

Results from task-activation fMRI studies in aging are sometimes controversial and difficult

to interpret. Therefore, more recently, studies on healthy aging have also focused in brain

connectivity (Dennis and Thompson, 2014). Brain connectivity changes related to aging

are thought to be also useful in order to interpret functional reorganizations in the context

of the models of functional brain compensation and dedifferentiation. Whereas some of

the connectivity-related findings refer to task-fMRI experiments, the majority of them have

been obtained by means of resting-state fMRI.
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Some evidences of task-related connectivity changes in aging are found in the working

memory literature. For example, Nagel et al. (2011) found load-related increases in PFC

activity (interpreted in the context of the CRUNCH model) that was accompanied with de-

creases in the functional coupling between PFC and premotor cortex. Also, Madden et al.

(2010) used task-fMRI to study brain activity and connectivity during task switching in a

group of young and a group of old subjects. They found that, besides the level of task-

related brain activity was very similar between groups, older subjects showed lower func-

tional connectivity between brain areas of the switch-related network.

Other evidences are found in episodic memory tasks, where reduced connectivity within

the memory network coexists with increased connectivity in other brain regions (Daselaar

et al., 2006; Dennis et al., 2008; Addis et al., 2010). Concretely, these studies reported reduced

connectivity from the hippocampus and MTL to posterior and occipital regions together

with increased connectivity from the same regions to frontal areas, such as the PFC. These

results support the PASA model and indicate that functional connectivity changes follow

similar patterns than those described with task-related activity.

Functional MRI at rest is the most widely used method for studying human brain func-

tional connectivity. Alterations of RSFC in aging include disconnection or dysfunction

within some of the large-scale networks as well as alterations in whole-brain connectiv-

ity patterns. A summary of the most important studies in aging and functional connectivity

using rs-fMRI, including those that reported correlations with cognitive changes, is given

in Table 1.2.

It is noteworthy that a great majority of articles have focused on the DMN. This fact

can be explained because the DMN has been closely related to the functional and neurobi-

ological changes underlying Alzheimer’s Disease (AD), specially at its first stages (Buckner

et al., 2009). In addition, the spatial extend of the DMN overlaps the network of intrinsic

hippocampal connectivity, and therefore, all together, the DMN and the hippocampal net-

work are believed to support episodic memory processing (Miller et al., 2008). Besides this,

there are also studies reporting changes in other brain networks, as well as others using

whole-brain connectivity approaches that do not specifically attempt to study any specific

system.
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A common finding of the studies reviewed in Table 1.2 is the decreased connectivity

within the nodes of some of the main RSNs, including the DMN and the Salience and exec-

utive/attention networks. This result has been obtained with ICA (Damoiseaux et al., 2008;

Jones et al., 2011; Onoda et al., 2012), and also using seed-based correlations (Andrews-

Hanna et al., 2007; Wang et al., 2010) and graph-theory or whole-brain approaches (Tomasi

and Volkow, 2012; Betzel et al., 2014; Geerligs et al., 2014; Song et al., 2014). Disrupted

connectivity in aging persists even controlling for brain atrophy or age-related structural

changes (Ferreira and Busatto, 2013). Connectivity decreases directly imply reductions in

the way how information in transferred between different brain regions. In this regard, a

well-reported result is the disconnection between the anterior and the posterior nodes of

the DMN, which correlates with age-related cognitive decline (Andrews-Hanna et al., 2007;

Damoiseaux et al., 2008), and with white-matter deficits (Andrews-Hanna et al., 2007). In

addition, using task-fMRI in combination with rs-fMRI, Campbell et al. (2012) demonstrated

that the disruption of antero-posterior connectivity at rest was related to deficits in the acti-

vation of task-related areas during a cognitive-control task.

The results as regards somatosensory, motor and subcortical networks are not that con-

sistent, with some studies reporting connectivity increases (Tomasi and Volkow, 2012; Song

et al., 2014), no changes (Geerligs et al., 2014) or non-linear changes (Betzel et al., 2014)

within these systems.

The increased connectivity has been further explored using higher-level analysis meth-

ods. Tomasi and Volkow (2012) found that long-range FC in decreased with age whereas

short-range FC is increased. These results have been interpreted under the hypothesis that

some brain regions, with key roles in whole-brain connectivity, named hubs (Buckner et al.,

2009), could experiment strengthening of functional connectivity with their closest regions,

leading to an increase of local connectivity increases (Ferreira and Busatto, 2013). Further-

more, a recent study reported non-linear changes in the FC within some networks (Betzel

et al., 2014).

In addition, some of the studies have explored connectivity between different networks

at rest, mainly reporting increases between different systems (Onoda et al., 2012; Betzel

et al., 2014). It should be noted that the majority of the results examining large-scale
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networks are also in concordance with earlier graph-theory studies Achard and Bullmore

(2007); Meunier et al. (2009), that were not focused in specific networks. These studies found

reduced global efficiency by means of increased segregation and reduced integration of the

whole-brain network.

Finally, few papers have reported relationships between connectivity and cognition. In

some cases, connectivity changes have been related to executive and memory functions

(Andrews-Hanna et al., 2007; Damoiseaux et al., 2008; Wang et al., 2010; Onoda et al., 2012),

and one study reported correlations between the DMN and a mental state test (Wang et al.,

2010). And, interestingly, the only study that correlated FC measures with structural con-

nectivity found that these two measures were correlated in aging (Andrews-Hanna et al.,

2007).

� AGING & NETWORKS

√
Decreased connectivity within default, salience and executive networks.

√
Increased connectivity within somatosensory and subcortical networks.

√
Increased connectivity between regions from different networks.

√
Decreased efficiency of the whole-brain network, with higher segregation and

lower integration.

In summary, connectivity changes within the common RSNs are well described in aging.

However, more recent lines of research tend to focus on more complex aspects of brain con-

nectivity. One of these aspects is the inclusion of hubness information. This idea has been

motivated by studies showing that the main brain hubs are characterized by a high con-

nection density, but also the high vulnerability (Crossley et al., 2014). In addition, another

line of research refers to the study of functional connectivities within and between the main

large-scale networks. In this regard, it has been described that the age-related decreases

in connectivity between regions of a network can be accompanied by increases in the con-

nectivity of these network towards regions of other RSNs, affecting the overall functional

connectivity architecture (Betzel et al., 2014; Geerligs et al., 2014).
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Table 1.2: Studies on Aging & Functional Connectivity
Study Sample Method RSN changes Other results Relation to Cognition

Achard and Bullmore (2007) 17 young Graph theory – ↓ Global efficiency None
(18-33y) Effects on frontal &
13 old temporal regions
(62-76y)

Andrews-Hanna et al. (2007) 93 Seed-based DMN ↓ FC relates to Executive functions,
(18-93y) DAN ↓ white matter memory

integrity & processing speed.

Damoiseaux et al. (2008) 10 young ICA DMN ↓ Executive function
(22.8± 2.3y) & processing speed
22 old
(70.73± 6y)

Meunier et al. (2009) 17 young Graph theory – equal modularity
(18-33y) ↑ num. of modules
13 old ↑ segregation
(62-76y)

Wang et al. (2010) 17 Seed based DMN ↓ FC Hipp-PPC Prediction of
(62-83y) memory performance

Jones et al. (2011) 341 ICA DMN ↓↑ ↑ Anterior DMN FC correlation with
(64-91y) Seed-based ↓ Posterior DMN FC mental state test.

Campbell et al. (2012) 12 young Seed-based FPN ↓ FC relates to None
(18-28y) CtrN ↓ task-activity.
12 old
(60-78y)

Onoda et al. (2012) 73 ICA & SAL ↓ ↓ SAL-visual SAL correlated with
(36-86y) Seed-based DMN ↓ ↑ SAL-auditory frontal & visuospatial

↑DMN-visual functions.

Tomasi and Volkow (2012) 913 FC density DMN ↓ ↓ long-range FC. None
(13-85y) mapping. DAN ↓ ↑ short-range FC

(Whole-brain) SomMotor ↑
Subcortical ↑

Betzel et al. (2014) 126 Whole-brain FC CtrN ↓ ↑ FC between-RSN None
(7-85y) Graph-theory DMN ↓

VisPeri ↓
SAL_
SomMotor_
VisCen_

Geerligs et al. (2014) 40 young Graph-theory DMN ↓ ↓Modularity None
(18-26y) CingOper ↓ ↓ Local Efficiency
40 old FPN ↓ ↑ FC DMN - CtrN
(59-74y) SomMotor = ↑ FC Visual - CtrN

Visual =
Song et al. (2014) 26 young Graph-theory DMN ↓ ↓Modularity None

(24.6± 3y) SomMotor↑ ↓ Local efficiency
24 old Change in hubness
(58± 6.1y)

Zhang et al. (2014) 18 young Seed-based DMN ↓ Selective vulnerability None
(22-33y) SAL ↓ of networks
22 old CtrN ↓↓
(60-80y) DAN ↓↓

Visual =

FC: Functional Connectivity; RSN: Resting-State Network; CtrN: Control Network; DMN: Default
Mode Network; SAL: Salience Network; VisPeri: visual pericalcarine; VisCen: visual central

network; DAN: Dorsal Attention network; CingOper: cingulo-opercular network; SomMotor:
somatosensory/motor network; PPC: Precuneus/Posterior Cingulate.
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1.5 Alzheimer’s Disease

Alzheimer’s Disease (AD) is one of the most common neurodegenerative diseases affecting

elder population. Therefore, an extensive effort has been made in order to characterize brain

changes that occur during the disease timecourse, especially those that appear early in the

disease time course or even before the appearance of clinical symptoms. The research in

fMRI and AD include studies with subjects diagnosed with AD and also subjects with Mild

Cognitive Impairment (MCI), which is considered a preceding stage of AD (Petersen et al.,

2009), and subjects at high-risk for AD, including those with genetic risk, carrying APOE

ε4 gene, and those with high amyloid burden, measured by Pittsburgh Compound B (PET)

imaging.

With fMRI, it has been demonstrated that AD patients have clear difficulties in the acti-

vation of some task-related areas, as well as notable disruptions in brain connectivity (Den-

nis and Thompson, 2014). Therefore, the utilization of task-fMRI and rs-fMRI has appeared

as a good and reliable non-invasive biomarker for AD (Sperling, 2011). Its usefulness relies

on its ability to find differences between healthy and diseased populations, to study brain

changes in subjects with high-risk of developing AD, and also to track the evolution of

changes during the disease timecourse or during treatment administration(Chhatwal and

Sperling, 2012).

In this sense, the two most replicated findings in AD are the activity deficits observed

in MTL during memory tasks, as well as the dysfunction of the DMN, observed both as

task-related deactivations and in rs-fMRI studies.

1.5.1 Alzheimer’s disease and task-fMRI

There is a general consensus that brain activity changes follow a non-linear trajectory dur-

ing the timecourse of AD. Several studies have reported activity increases in MTL during

memory tasks in subjects at very early phases of MCI, which has been interpreted as a

compensatory mechanism to maintain memory function. However, subjects with more ad-

vanced MCI and subjects already suffering from AD have shown task-related deficits in

MTL activity in comparison to healthy elders (Dickerson et al., 2005; Schwindt and Black,

CHAPTER 1. INTRODUCTION 23



ROSER SALA LLONCH

2009). This specific pattern of increases followed by decreases in hippocampal and parahip-

pocampal regions differs from healthy elders, who showed a relative stability as regards

hippocampal activity (Chhatwal and Sperling, 2012).

In addition to the activity decreases in MTL, AD patients have also shown increased

activity regions of the prefrontal cortex during the performance of memory tasks, which has

been interpreted as representing an unsuccessful effort made by AD patients to compensate

for impaired memory (Chhatwal and Sperling, 2012; Schwindt and Black, 2009).

Finally, other studies have demonstrated that subjects suffering from MCI and AD have

deficits in DMN deactivation (Lustig et al., 2003), suggesting an alteration in the interplay

between task-positive and task-negative networks. In some cases, alterations of the DMN

have been described in disease stages at which task-positive networks are still preserved

(Sala-Llonch et al., 2010), or even in asymptomatic subjects with high amyloid-burden, be-

ing at high-risk for AD (Vannini et al., 2012; Pihlajamäki and Sperling, 2009; Sperling et al.,

2009).

1.5.2 Alzheimer’s disease and large-scale networks

The results of task-fMRI have drawn the attention towards the study of brain connectiv-

ity, suggesting that neurofunctional changes in AD might be a result of alterations within

the dynamics of large-scale functional systems, and that these alterations can appear even

before task-activation deficits (Matthews et al., 2013). The increasing interest in studying

brain networks in the context of AD has been also supported by the ’network degeneration’

hypothesis, according to which the main neurodegenerative diseases show distinguishable

patterns of brain atrophy that are in concordance with patterns of intrinsic functional con-

nectivity found in healthy subjects (Seeley et al., 2009) and with the hubs of whole-brain

networks (Crossley et al., 2014). In the case of AD, the pattern of cortical atrophy matches

the DMN. In addition, in an early investigation, Buckner et al. (2005) studied the conver-

gence of cortical atrophy, metabolic changes, and functional findings (although with differ-

ent samples). They found that areas within the DMN showed amyloid deposition, higher

atrophy rates and metabolic abnormalities, and suggested the potential of the DMN as a

biomarker for AD.
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More recently, evidences of DMN disruption in AD and its preclinical stages are found

in the resting-state fMRI literature (Sheline and Raichle, 2013). In this regard, some stud-

ies reported altered connectivity between DMN regions, or between regions of the DMN

and task-related regions, such the MTL. These results have been reported in AD and MCI

patients, and in healthy subjects at-risk for AD (Greicius et al., 2004; Hedden et al., 2009;

Sheline et al., 2010; Sorg et al., 2007). Other networks, especially those involved in attention,

have also found to be disrupted in these subjects (Sorg et al., 2007; Agosta et al., 2012).

In summary, the study of task-activation and resting-state studies, together with evi-

dences from structural imaging (DTI and atrophy patterns), has lead to the idea that func-

tional changes in AD are a result of localized activity deficits in task-related areas together

with deficits in the interplaying role between the different brain networks that, in normal

brain functioning, should activate and deactivate with accurate synchrony (Chhatwal and

Sperling, 2012).

� FUNCTIONAL MRI & ALZHEIMER’S DISEASE

√
Altered patterns of activity during memory tasks.

√
Disrupted functional connectivity measured with resting-state fMRI.

√
High rates of Aβ deposition in regions of the default-mode network.

√
Failure to deactivate DMN regions during goal-directed tasks.

√
Detection of brain functional changes at early stages of the disease time-course.
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CHAPTER2

Hypotheses and Objectives

Hypotheses

1. The human brain is functionally organized as a set of networks, which could be iden-

tified during task performance and during resting-state fMRI acquisitions and that

would have direct implications for cognition.

2. Connectivity signals, measured during resting-state can predict the performance of a

subsequent task.

3. Healthy elders would show alterations in the functionality of the working memory

system that would be related to cognitive deficits in this domain.

4. Given that aging is characterized by brain activity changes, we expected to find brain

connectivity alterations in healthy elders.

5. In the genetic forms of Alzheimers disease, functional MRI can be useful to identify

brain changes that occur previous to the clinical manifestations.
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Objectives

MAIN OBJECTIVE:

To explore the capabilities of fMRI to identify brain networks that are present at rest and

also during the performance of different goal-directed tasks in different sets of populations.

SPECIFIC OBJECTIVES:

1. To test the usefulness of resting-state connectivity to predict performance in a subse-

quent task.

2. To explore function-structure relationships in brain networks and how do they relate

to cognitive performance.

3. To study patterns of activity and connectivity of large-scale brain networks and their

relationship with successful cognitive performance in aging.

4. To characterize changes in the whole-brain connectivity in aging process and to study

how these changes relate to the cognitive status.

5. To explore the power of fMRI to identify brain changes that appear in early stages of

neurodegenerative processes, even before the onset of clinical symptoms.
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Methods

3.1 Study Sample

3.1.1 Subjects included in each study

The results presented in this thesis have been obtained from 6 different studies. A summary

of the settings and analyses for each of the studies is given in Table 3.1.

The group of subjects included in Study 1 was composed by 16 Young Adults (YA). They

were university students with no history of psychiatric or neurological alterations.

Subjects in Study 2 were 23 YA, with no history of psychiatric or neurological disorders.

Study 3 included a group of 16 YA and a group of 29 Healthy Elders (HE). The YA group

was the same than the group included in Study 1, and HEs were recruited from the Institut

Calalà de l’envelliment and from medical centers located in Barcelona. Subjects had no history

of neuropsychological or neuropsychiatric disorders and they underwent neuropsycholog-

ical screening to exclude mild cognitive impairment.

The sample used in Study 4 and Study 5 were an extension of the HE sample from Study

3, and therefore the inclusion criteria was the same as above. Differences between the num-
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Table 3.1: Sample of subjects included in each study.

Study Sample MRI Data Analysis technique Cognitive domain

1 16 YA RS fMRI ICA & dual regression Working Memory
(21.31 ± 2.41 y) N-Back fMRI Network correlation

2 23 YA Facial N-Back fMRI ICA Visuospatial and
(28.26 ± 6.76 y) Spatial N-Back fMRI visuoperceptive

Diffusion MRI DTI-Tractography Working Memory

3 29 HE RS fMRI ICA & dual regression Working Memory
(62.55 ± 9.43 y) N-Back fMRI Task-related activation
16 YA
(21.31 ± 2.41 y)

4 98 HE RS fMRI Whole-brain FC Memory
(64.87 ± 11.8 y) Graph-theory (verbal & visual)

5 73 HE RS fMRI ICA Memory,
(65.88 ± 10.11 y) Network interactions Executive functions

6 13 CTR RS fMRI ICA & dual regression Episodic memory
11 PSEN1-AMC Encoding fMRI Seed-based
8 PSEN1-SMC Task-related activation

YA: Young Adults; HE: Healthy Elders; RS: resting-state; ICA: Independent Component Analysis;
DTI: Diffusion Tensor Imaging; FC: Functional Connectivity; CTR: controls; PSEN1: Presenilin1;

AMC: Asymptomatic Mutation Carriers; SMC: Symptomatic Mutation Carriers.

ber of subjects included in Study 4 (N=98) and in Study 5 (N=73) are due to the fact that the

results of some neuropsychological tests were not available for all subjects.

Subjects from Study 6 included nineteen mutation carriers from 8 families with 6 dif-

ferent Presenilin-1 (PSEN1) mutations, and 13 matched controls or non-carriers. PSEN1

mutations 1 cause familial Alzheimer’s Disease. They affect the amyloid-β protein precur-

sor with almost 100% penetrance and an early age of onset. Subjects were recruited from

the genetic counseling program for familial dementias (PICOGEN) at the Hospital Clinic,

Barcelona, Spain (Fortea et al., 2011a).

1http://www.molgen.ua.ac.be
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3.2 Acquisition and paradigms

3.2.1 MRI sequences

MRI data were acquired on a SIEMENS Magnetom TrioTim syngo 3-Tesla at the Diagnostic

Imaging Centre of the Hospital Clinic (CDIC) in Barcelona. Images were acquired with a

32-channel coil for all the studies except from study 6 where we used a 8-channel coil. All

images were obtained using the following imaging protocols:

Structural T1

High-resolution T1-weighted structural scans were obtained using an MPRAGE 3D proto-

col. The acquisition parameters were: repetition time (TR) = 2300 ms, echo time (TE) = 2.98

ms, 240 slices, field of view = 256 mm, matrix size = 256 x 256, slice thickness = 1mm, voxel

size = 1mm x 1mm x 1mm.

Diffusion MRI

Diffusion weighted images, acquired in Study 2, were sensitized in 30 non-collinear direc-

tions with a b-value=1000 s/mm2, using an echo-planar (EPI) sequence with the following

parameters: TR = 9300 ms, TE = 94 ms, slice thickness = 2.0 mm, field of view = 240 mm, no

gap, voxel size = 2 x 2 x 2 mm.

Functional MRI

Functional MRI scans were obtained using T2*-weighted MRI with the following acquisi-

tion parameters: TR = 2000 ms, TE = 16 ms, 40 slices per volume, slice thickness = 3mm,

gap = 25% ; field of view = 240 mm, matrix size = 128 x 128, voxel size = 1.7 x 1.7 x 3.0 mm.

3.2.2 Functional Paradigms

Working memory task

The task used in Studies 1 and 3 to evaluate working memory was a verbal n-back paradigm

using letters as stimuli and with different levels of cognitive load (n = 0, 1, 2, and 3 letters to
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Figure 3.1: N-Back paradigm used in Study 1. Highlighted stimuli indicate the targets for each
condition

be retained) (Braver et al., 1997; Owen et al., 2005). Task blocks consisted on the continuous

presentation of stimuli. Stimuli were white capital letters (A-J) appearing in the middle of

a black screen during 500 ms with and interstimulus interval of 1500 ms between letters.

Task blocks were combined with fixation periods consisting on a white cross on a black

screen. During the time course of the task, blocks of 0-, 1-, 2-, and 3-back conditions lasting

26 seconds were presented four times each in a pseudo-randomised order with inter-block

fixation periods of 13 s. Before any n-back block, an instruction screen appeared for 1 s to

inform the subject about the task. Within each block, a sequence of 12 letters was presented

and the subject was asked to press a button when the letter on the screen was the same as

the letter showed n items before. For the 0-back condition, subjects were asked to press

the button when the letter ’X’ appeared on the screen. The full paradigm lasted 11 min 12s

(Figure 3.1).

For Study 2, we used two other versions of the n-back paradigm, one with spatial

(spatial-WM) and one with facial (facial-WM) stimuli. There were two experimental con-

ditions in each task: the 0- and the 2-back conditions. For facial-WM stimuli were faces
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Figure 3.2: N-Back paradigm used in Study 2. (A) Spatial working memory, (B) Facial working
memory

extracted from a public available database (Minear and Park, 2004) and for spatial-WM

stimuli were color squares located in different parts of the screen. Subjects were asked to

indicate whether the current stimulus was the same than the one presented 2 items before

(2-back task) or if it matched a control stimulus (0-back task). Stimuli used for the control

condition were a square in the middle of the screen for spatial-WM and any face wearing

sunglasses for facial-WM (Figure 3.2). Each stimulus appeared in the screen for 1 s, with an

interstimulus interval of 1 s. Each task consisted in 16 blocks of 14 stimuli, with alternating

0-back and 2-back blocks, with total task duration of 8 minutes.

In all the three studies with n-back paradigms the presentation of stimuli and the task

implementation were performed using the Presentation R© software2 implemented on a

computer that was syncrhnonized with the MRI scanner. In addition, subjects’ responses

were collected and the performance of each condition was obtained using the d′ measure,

calculated as the Z(hit rate) - Z(false alarm rate), with higher d′ scores indicating higher

performance. Mean reaction time (RT) was also collected, as the time between the stimulus

onset and the subject’s response for each subject in each condition.

In all cases, subjects underwent a training session before entering the scanner in order

to ensure that they understood the task instructions. All achieved a task accuracy of at least

80%.

2Neurobehavioral Sistems, http://www.neurobs.com/
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Episodic memory task

Episodic memory was evaluated under fMRI using a visual encoding task. The task con-

sisted of a 15-block design that alternated ’fixation‘, ’repeated‘ and ’encoding‘ blocks, where

each block lasted 30 s. During ’fixation‘ condition, a white cross was presented in the mid-

dle of a black screen. During ’encoding‘ and ’repeated‘ conditions a set of 10 images were

presented as a sequence in the screen for 2 s with an interstimulus interval of 1 s. In the ’re-

peated‘ condition, the same image was shown repeatedly, whereas ’encoding‘ blocks con-

sisted on the presentation of 10 novel pictures, with a total of 50 new images.

After the scanning session, subjects were tested for their memory in a two-alternative

forced-choice task in which they had to decide which picture from a pair of scenes had

appeared in the encoding session. A total of 50 pairs of images, matched for content, were

presented. The side of presentation on the screen of the correct pictures was randomized

so that the scenes appeared the same number of times on each side. In addition, the order

of presentation of the pictures was randomized with respect to the encoding phase. The

encoding task was also implemented with the Presentation R© software.

3.2.3 Subjects’ selection and clinical/neuropsychological assessment

To evaluate the neurocognitive status of the subjects, trained neuropsychologists adminis-

tered a set of tests in order to assess a wide range of cognitive domains, including executive

function, verbal and visual memory, visuoperception and processing speed.

3.3 Analysis of structural MRI

Structural MRI is commonly used to measure gray matter volume, which can be quantified

using automated or manual techniques.

In order to estimate tissue volume, high-resolution MPRAGE scans are first segmented

into gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) using automated

tools. This can be achieved using FAST from FSL (Zhang et al., 2001), which gives an in-

dividual segmentation based on the probability of each voxel to belong to a certain brain
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tissue. Whole-brain gray matter volume can be then estimated by calculating the overall

density within the gray matter mask.

Furthermore, more accurate methods, such as voxel based morphometry (Ashburner

and Friston, 2000) and cortical thickness (Fischl and Dale, 2000) allow examining regional

differences in gray matter at the voxel-by-voxel level or by mapping the cortical gray matter

on a surface-based representation of the brain.

In the studies included in this thesis, 3D structural images were used for registration

purposes in functional studies, as well as to obtain measures of whole-brain gray matter.

No regional or voxel-wise analyses were performed.

3.4 Analysis of Diffusion MRI

Diffusion MRI data consists on sets of 4D images containing diffusion information across

several directions in the 3D space.

Prior to analysis, a preprocessing is applied to the images. It includes removal of non-

brain voxels using BET (Smith, 2002), and correction for motion and for the distortion intro-

duced by the eddy currents in the gradient coils.

3.4.1 The DTI approach

A DTI approach was used to obtain individual maps of Fractional Anisotropy (FA), Radial

Diffusivity (RD) and Axial Diffusivity (AD) (Le Bihan, 2003). In DTI, the diffusion at each

voxel is simplified as a 3x3 symmetric matrix. Therefore, the first eigenvector of this matrix,

v1 corresponds to the main diffusion direction, and its corresponding eigenvalue, λ1, is

the magnitude of the diffusion in this main direction. This main direction is parallel to

the direction of the fiber bundle passing by the voxel. Similarly, the other two pairs of

eigenvalues and eigenvectors, v2, λ2 and v3, λ3, correspond to the second and third diffusion

directions, and they are perpendicular to the main diffusion direction (Figure 3.3).

Using the three eigenvalues, the degree of Fractional Anisotropy (FA) at each voxel can

be calculated as:
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Figure 3.3: Representation of the diffusion vector in the DTI approach and examples of individual
fractional anisotropy maps, directionallity maps and fiber tractography.

FA =

√
1

2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2√

λ21 + λ22 + λ23

Other DTI-related indices are the Axial Diffusivity (AxD), which is equivalent to λ1, the

Radial Diffusivity (RD), calculated as (λ2+λ3)
2 , and the Mean Diffusivity (MD), calculated as

(λ1+λ2+λ3)
3 .

3.4.2 Tract Based Spatial Statistics

The Tract Based Spatial Statistics (TBSS) approach is a tool developed in FSL to carry out

voxel-wise statistics on FA maps obtained with the DTI approach. In TBSS, all subjects’ FA

data are aligned to a common space using nonlinear registration (Andersson et al., 2007).

Next, the mean FA image is created and thinned to create a mean FA skeleton that represents

the centres of all tracts common to the group. Then, the FA map of each subject is projected

onto the skeleton and the resulting maps are fed into voxelwise cross-subject statistics with

non-parametrical permutation methods (Nichols and Holmes, 2002).

Once the skeleton has been created with FA data, the maps of RD, AxD and MD can also
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be projected to the seketon and used for voxel-wise statistics.

After the skeleton is created with FA data, the maps of RD, AxD and MD can also be

projected to the skeleton and used for voxel-wise statistics.

3.4.3 Tractography

Preprocessed diffusion MRI data is first fit into the BEDPOSTX algorithm (Behrens et al.,

2003b) to perform probabilistic tractography. This method estimates the fiber directions in

each voxel using probability density functions that assumes a local 3D Gaussian profile in

the diffusion tensor.

Thereafter, probabilistic tractography can be estimated from a seed ROI to a target ROI.

The outputs of the tractography are brain images representing the path distribution, where

each voxel value is proportional to the probability of having a path passing through it.

3.5 Analysis of fMRI

3.5.1 Data preprocessing for fMRI data

The tools used for preprocessing of fMRI data were part of the FSL3 and AFNI4 packages.

The typical preprocessing included: (1) Removal of the first scans (usually ∼5 volumes) to

allow for signal stabilization; (2) Motion correction using MCFLIRT from FSL, which uses

a fully automated, robust and accurate tool based on linear or affine image registration

(Jenkinson et al., 2002); (3) Skull stripping using BET, which deletes non-brain tissue from

an image of the whole head (Smith, 2002); (4) Spatial smoothing using a Gaussian kernel,

usually of FWHM between 5 and 8 mm; and (5) Temporal filtering, where the filter cut-off

frequencies depend on the temporal design of the data. In task-fMRI, the high-pass filter

is set at the Nyquist frequency of the task, and in resting-fMRI it is based on the literature,

typically to remove frequencies above 0.1 Hz (Cordes et al., 2001).

3Oxford Centre for Functional Magnetic Resonance Imaging of the Brain,
http://fsl.fmrib.ox.ac.uk/fsl

4http://afni.nimh.nih.gov/afni/
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3.5.2 Image Registration

After preprocessing, fMRI data need to be registered to a common space to allow for group

analyses. In general, registration is performed between functional and anatomical spaces of

the same subject, as well as from individual spaces to a common standard space, where the

most used standard template is the Montreal Neurological Institute (MNI)-standard space.

Registration can be archieved by using automated tools, such as FLIRT from FSL (Jenk-

inson et al., 2002), which performs linear affine transformations of brain images with some

degrees of freedom (DOF). In FLIRT, the number of DOF is usually set to 6 when regis-

tering images from different modalities, especially where there are differences in the qual-

ity/resolution of the images, and to 12 when both images are in the same modality and of

similar resolution. Then, registration parameters are computed using a cost function, which

by default is based on the correlation ratio, although other more complex options can be

used, such as mutual information and partial least squares.

In practice, the output of FLIRT is a 4x4 affine matrix containing the transformation-

parameters needed to align the input volume to the reference image. Furthermore, there

are several transformations that can be applied to the transformation matrices, without the

need to calculate the registration parameters again. These transformations mainly include

inversion and concatenation of multiple registration matrices. Once the registration calcu-

lations are performed, there is a subsequent image transformation, based on interpolation

and a final resampling to create the output image.

In a general fMRI analysis setting, the registration algorithm includes: (1) Registration

of each functional dataset to the corresponding structural MPRAGE (same subject, different

modalities); (2) Registration of each individual structural MPRAGE to the standard MNI

(different subjects, same modality); (3) Concatenation of the matrices obtained in previous

steps in order to obtain a matrix to register individual fMRI datasets to standard MNI; and

(4) inversion of all the matrices obtained before.

These steps provide a set of matrices that can be further used within FLIRT, using the

-applyxfm option, to move any brain volume or ROI between the three different spaces.

It should be noted that recent registration algorithms are based on non-linear tools. One

example is the FNIRT tool also developed within FSL (Andersson et al., 2007). However,
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these methods are not used in any of the studies of the present thesis.

3.5.3 Model-driven analysis

FEAT for task-fmri

Model-driven approaches are based on fitting the fMRI data to a time-series model that

depends on the experimental design. The FEAT tool from FSL is based on random-effects

General Lineal Model (GLM), or multiple regressions (Woolrich et al., 2001). There are two

different analyses that can be performed with FEAT. One at the subject-level, called first-level

analyisis and one at the group-level, called higher-level analysis.

In the first-level analysis, it is necessary to introduce the experimental design of the task

timeseries. Then, contrast images can be obtained, as spatial maps of the brain areas with

higher activity at specific conditions. This part of the analysis is carried out with FILM

(FMRIB’s Improved Linear Model), which uses pre-whitening of the timeseries. First-level

analyses are usually performed in each individual functional space and the results can be

easily registered to either the individual anatomical or standard spaces. In addition with the

results of first-level analysis it is possible to estimate the percentage of BOLD signal change

between task conditions in specific brain regions.

Higher-level analyses are used to compare activation maps obtained with first-level

analysis across sessions or across subjects. In this case, the resulting contrast maps indicate

areas where task-related BOLD activity is similar/different between groups, or whether if

activity correlates with an external variable.

In FEAT, a thresholding is performed on the Z images, or contrast maps, that result from

the initial statistical test. It can be performed at the voxel or at the cluster level and it os

based on Gaussian random field theory.

Seed-based correlation for resting fmri

In seed-based correlation analyses, functional datasets are regressed against the timeseries

of a region that is selected ’a priori’.

The main steps are the following:
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1. Define a brain area of interest to be used as a seed. This can be a single voxel or a

group of voxels, and it can be defined using results from other fMRI analysis (i.e., peak

areas from ICA, results from task-activations, ...) or even results from other modalities

(as structural MRI or DTI). The seed needs to be registered to the same space of the

preprocessed fMRI data.

2. Obtain the timeseries associated with the seed for each subject (i.e., mean temporal

variation within the seed voxels across time).

3. Regression of the preprocessed fMRI data against the timeseries obtained previously.

This step produces a spatial map for each subject where each voxel represents the

strength of temporal correlation of that voxel’s timeseries with the seed.

4. Individual maps can be used for group-level statistics using voxel-wise statistics.

3.5.4 Data-driven analysis

Unlike model-driven approaches, data-driven or exploratory approaches are used in order

to obtain functional patterns that exist in the data during the time of the fMRI acquisition.

Therefore, these methods can be used in task-related fMRI data but also in resting-state

fMRI studies. In task-fMRI, the model can be fitted a posteriori, so it is possible to associate

the identified patterns with the different task conditions.

Independent Component Analysis (ICA) is the most commonly used model-driven

method for fMRI. In FSL, it is performed with MELODIC tool (Beckmann and Smith, 2004).

ICA finds processes in the data that are statistically independent of each other. It provides a

linear decomposition of the data into a set of Independent Components (ICs) consisting on

spatial maps and associated time-courses.

Although the resulting components are commonly called components of spatiotempo-

ral independence, there are several constraints about the temporal/spatial independence

between components that need to be considered. First, as regards the temporal domain,

complete independence between components is unrealistic, because all brain processes are

somehow dependent of each other. Further, as regards the spatial domain, resulting maps

40 CHAPTER 3. METHODS



ROSER SALA LLONCH

have high levels of sparsity, but can overlap between them. Between the two options,

Melodic-ICA tends to impose spatial independence between components.

At the practical level, ICA pulls together all the input data to find a set of independent

sources and an unmixing matrix that minimizes the dependency between them. In order to

do that, it is necessary to define a cost function and an optimization technique. MELODIC

uses the FastICA technique, which uses negative entropy and fixed-point interaction. One

of the advantages of this technique, compared with others sush as Jade or Infomax (used in

SPM), is that it works with non-gaussian data.

One of the risks of ICA is related to the overfitting or the underfitting of the data. An

unconstrained decomposition, could give an elevated number of small components that are

sometimes difficult to interpret, on the contrary, too few components may not be optimal to

fit the signal-to-noise ratio (SNR) of the data. For that, Probabilistic ICA (as implemented in

melodic) performs an initial estimation using a Bayesian approach to determine the optimal

number of components. However, it is noteworthy that in some studies, the number of

components can be defined ’a priori’.

Finally, melodic performs a thresholding of the obtained spatial maps using a mixture

model approach to differentiate between signal and background noise. This thresholding

strategy is different from the one used in FEAT and it does not depend on the model or the

contrasts.

Melodic can be used to perform ICA with single subject fMRI data, or with data from

a group of subjects. Single-subject ICA is commonly used as an exploratory analysis to

detect activity patterns and identify possible confounds or artifacts. For group-ICA decom-

positions, two approaches can be considered: The Tensor ICA and the temporal concatenation

ICA.

Tensor-ICA for task-fMRI

The Tensor ICA (T-ICA) approach performs a 3D ICA of the data. In this case, the algorithm

finds patterns of synchronized activity across subjects and time, and the resulting compo-

nents are triplets composed of time courses, spatial maps and a subjects’ mode vector. The

subjects’ mode vector represents the strength of the component for each subject, and it can
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be used to perform post-hoc between-subject analyses.

Temporal Concatenation ICA and dual-regression for resting-fMRI

The temporal concatenation ICA (concat-ICA) approach performs a single ICA run on con-

catenated data of all the subjects. In this case, the ICs obtained represent connectivity pat-

terns that commonly found in all the subjects but that do not need to have temporal coinci-

dence across subjects. In general, it is used with rs-fMRI data.

A common limitation of concat-ICA, is that it does not give a subject modes vector, so it

does not allow for post-hoc between-subject analyses. For that reason, it is necessary to per-

form a dual regression analysis to allow for between-subjects statistics (Filippini et al., 2009).

The dual regression uses the group-ICA maps derived from concat-ICA and it estimates

individual versions of each IC.

At the practical level, the dual regression approach includes the following steps:

1. Concat-ICA: This step includes the fMRI preprocessing and a concat-ICA decomposi-

tion of all the data to obtain a set of group-ICs.

2. Spatial regression: The set of group-spatial maps is regressed (in a multi-GLM ap-

proach) into the individual preprocessed fMRI datasets, to obtain a set of individual

timecourses for each IC.

3. Temporal regression: The timecourses obtained previously are regressed again into

the same fMRI datasets to obtain subject-specific IC maps.

4. Between-subject analyses: The spatial maps can be then compared across-subjects

to find group differences or correlations with an external variable. This stage is

performed using non-parametric testing with permutation-methods to control for

multiple-comparisons, as implemented in randomise from FSL (Nichols and Holmes,

2002).

This steps are summarized in Figure 3.4.
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Figure 3.4: Summary of the steps performed within a dual regression and a network modelling
analysis using FSLNets

3.6 Advanced fMRI analysis: whole-brain connectivity

The methods presented in this section are used with rs-fMRI and allow modeling brain

functional connections at a more complex level than ICA or seed-based correlation methods

that aimed to study large-scale spatial maps independently from each other.

They belong to the nascent field of connectomics and they attempt to study whole-brain

connectivity by first identifying a number of network nodes (regions or groups of regions)

and then estimating functional connections, or edges between nodes (Smith et al., 2013;

Bullmore and Bassett, 2011).

3.6.1 Graph Theory

In graph theory, the brain can be represented as a big network, which is a complex system

defined by a collection of nodes (or vertices) and links (or edges) between pairs of nodes.

Once this network has been built, its topological 5 and geometrical 6 properties can be stud-

ied using tools that come from the fields of physics and mathematics (Albert and Barabási,

5Graph characteristics regardless of their physical or anatomical localization
6Graph characteristics that depend on the spatial localization of nodes
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Figure 3.5: Main steps involved in the creation of whole-brain functional connectivity graphs.

2002).

Brain graphs can be constructed using data from Diffussion MRI (Hagmann et al., 2008;

Gong et al., 2009), Structural MRI (He et al., 2007), and fMRI (Achard et al., 2006). In the

current thesis, we only used graphs derived from fMRI.

A graph can be weighted or unweighted (also called a binary graph) depending on how

the edges are defined. In weighted graphs, values of the edges depend on their connection

strength. In unweighted graphs, edges are set to 0, when there is no connection between

nodes, or to 1, when there is a connection between nodes. Furthermore, a graph can be

directed or undirected depending on whether if the edges include directionality information

or not. The results presented in this thesis are obtained using binary undirected graphs.

The main steps involved in the creation of binary undirected graphs from rs-fMRI data

are the following (See Figure 3.5):

1. Defining the Nodes: brain parcellation. Several strategies have been used for par-

cellating the brain. The most widely used method is based on anatomical atlases or

landmarks obtained from standard templates. In this context, individual fMRI images

need to be coregistered with the template and the mean signal across time in each

parcel is taken as the nodal timeseries at that location. Some examples of the atlases
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used for parcellation are the Automated Anatomical Label (AAL) template (Tzourio-

Mazoyer et al., 2002) and the atlases available in FreeSurfer 7 (Desikan et al., 2006;

Destrieux et al., 2010).

The main advantages of using atlas-based parcellations are that they allow for di-

rect comparison of results with other studies and that they provide meaningful in-

terpretability of the results in relationship with more classical studies of anatomically

based localization of brain functions (Bullmore and Bassett, 2011).

The two main limitations related to these methods are that the size of the parcellations

is highly variable and that the anatomical subdivisions do not always coincide with

regions of different functionality. In this regard, other parcellation strategies have

been proposed, as the use of functionally defined regions (Smith et al., 2011) or the

use of brain parcellations with equal number of voxels within each node (Zalesky

et al., 2010).

It should be noted that in Study 4 we used a parcellation based on the AAL atlas

to perform all the analyses, but that we also tested brain networks obtained from

a parcellation that was derived from an ICA analysis. In addition, with the same

data, we also tested networks obtained with two atlases derived from FreeSurfer. The

results of these latter analyses were not included in the article but they are reported in

the Appendix A of the thesis.

2. Defining the Edges: functional connectivity. In functional MRI, the most direct mea-

sure of functional connectivity between pairs of nodes is the correlation coefficient

between the nodes’ timeseries (Friston, 1994). The result of this step is a symmetric

matrix, called Adjacency matrix, and their elements, aij , denote the correlation between

nodes i and j.

3. Network thresholding: This step allows creating a binary graph from the adjacency

matrix. The threshold can be an absolute value, τ , so that matrix entries are set to 0

when aij < τ and to 1 otherwise. However, one of the main problems of using an

absolute threshold is that the number of remaining edges after thresholding is highly

7Martinos Center for Biomedical Imaging; http://freesurfer.net/
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variable across subjects, because some subjects can present higher overall correlations,

and then, the resulting graphs may not be comparable.

An alternative strategy is the use of a relative threshold. In this case, the threshold

is selected in order to ensure that all the individual graphs have the same connection

density, or sparsity level, which is calculated as the ratio between the number of exist-

ing nodes and the number of all possible connections in the network. When a relative

threshold is used, all the edges are ordered in terms of their connectivity strength.

Then, the desired percentage of higher connected edges are set to 1, whereas the rest

of edges are set to 0.

The choice of the threshold value (even using an absolute or a relative threshold) will

have a clear effect on the topology of the resulting networks. For very low absolute

thresholds (or high relative thresholds), the resulting networks will be very densely

connected, and they may have the risk of including spurious correlations or noise.

At the other end of the scale, high absolute thresholds (or low relative thresholds)

will generate very sparse networks, with a small number of connections (Achard and

Bullmore, 2007). These differences in network topology will have an effect on the

resulting network metrics. Therefore, it is very common in graph theory studies to

report the results obtained over a range of thresholds.

4. Measures of graphs Several measures can be obtained from the network matrix, at the

regional and global levels (Rubinov and Sporns, 2010). Some of the most commonly

used metrics are defined below:

The Clustering coefficient (Ci) of a node i is defined as the ratio of the number of ex-

isting edges to all the possible edges in the node’s direct network. It corresponds to

the fraction of triangles around a node and is equivalent to the fraction of a node’s

neighbors that are neighbors of each other:

Ci =
2ti

k(ki − 1)

Where ti measures the number of triangles around the node i. Clustering coefficients

can be averaged across all the regions to obtain the Global clustering coefficient.
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The Characteristic path length (L) is the average of the shortest path lengths (i.e., num-

ber of edges) between all pairs of nodes in the network. The shortest path length

between two nodes is the lowest number of edges that must be included in the net-

work to connect the two nodes. Lower characteristic path lengths indicate higher

routing efficiency, because the information exchange involves fewer steps. This mea-

sure is representative of the brain’s functional integration, that is, the ability to rapidly

combine specialized information from different brain regions.

Lw =
1

n

∑
i∈N

Li =
1

n

∑
i∈N

∑
i∈N,j 6=i dij

(n− 1)

The Small-world coefficient (S-W) measures the balance between functional segregation

(i.e., the presence of functionally specialized modules) and integration (i.e., the large

number of intermodular links). At the practical level, small-world networks are char-

acterized by high clustering coefficients and relatively low path lengths (compared to

random networks).

S −W =
C/Crand

L/Lrand

Where Crand and Lrand are, respectively, the clustering coefficient and the average

minimum path length calculated for a random network with the same number of

edges (same sparsity).

5. Group-statistics The resulting metric values obtained with graph-theory can be fit-

ted into any group-statistics approach. In Study 4, we evaluated correlations with

age cognition. Additionally, we also performed a mediation analysis (Hayes, 2009;

Preacher and Hayes, 2008; Salthouse, 2011) in order to determine the effect of age on

the relationship between memory and network metrics.

3.6.2 Other approaches: FSLNets

The FSLNets approach was used in Study 5. This method was used in combination with

ICA and dual-regression on rs-fMRI data.
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Basically it consists on obtaining the timeseries in a set of nodes, typically estimated as

ICA maps, and calculating interactions between them (Figure 3.4). These network relation-

ships can be calculated using distinct mathematical approaches, including simple measures

as correlation and covariance as well as partial correlation and regularized versions of the

partial correlation (Smith et al., 2011).

Concretely, the steps carried out within Study 6 were the following:

1. Group-ICA Estimate group maps using concat-ICA with all the subjects. Each ICA

spatial map is a node of the whole-brain network.

2. Spatial regression Obtain subject- and component- specific timeseries by doing the

first stage of dual regression.

3. Connectivity matrix A connectivity matrix for each subject was calculated using par-

tial correlation between the timeseries. In this matrix, each entry, bij represents the

functional connectivity between nodes i and j after removing the effect of all the other

nodes, where the nodes are the spatial maps of the different ICs.

4. Statistics The entries of the matrix can be used to perform statistics at the population

level. In our case, the network edges were correlated with age and with the results of

the cognitive tests.
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a b s t r a c t

Brain regions simultaneously activated during any cognitive process are functionally

connected, forming large-scale networks. These functional networks can be examined

during active conditions [i.e., task-functional magnetic resonance imaging (fMRI)] and also

in passive states (resting-fMRI), where the default mode network (DMN) is the most widely

investigated system. The role of the DMN remains unclear, although it is known to be

responsible for the shift between resting and focused attention processing. There is also

some evidence for its malleability in relation to previous experience. Here we investigated

brain connectivity patterns in 16 healthy young subjects by using an n-back task with

increasing levels of memory load within the fMRI context. Prior to this working memory

(WM) task, participants were trained outside fMRI with a shortened test version. Imme-

diately after, they underwent a resting-state fMRI acquisition followed by the full fMRI

n-back test. We observed that the degree of intrinsic correlation within DMN and WM

networks was maximal during the most demanding n-back condition (3-back). Further-

more, individuals showing a stronger negative correlation between the two networks

under both conditions exhibited better behavioural performance. Interestingly, and despite

the fact that we considered eight different resting-state fMRI networks previously identi-

fied in humans, only the connectivity within the posteromedial parts of the DMN

(precuneus) prior to the fMRI n-back task predictedWM execution. Our results using a data-

driven probabilistic approach for fMRI analysis provide the first evidence of a direct rela-

tionship between behavioural performance and the degree of negative correlation between

the DMN and WM networks. They further suggest that in the context of expectancy for an

imminent cognitive challenge, higher resting-state activity in the posteromedial parietal

cortex may be related to increased attentional preparatory resources.
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1. Introduction

The human brain can be functionally defined as a set of
networks or systems that transiently interact to perform
a particular neural function. The study of the functionality and
structure of such networks has become one of themost popular
topics within the cognitive neuroscience community
(Rykhlevskaia et al., 2008; Bassett and Bullmore, 2009; He and
Evans, 2010; Van den Heuvel and Hulshoff Pol, 2010), especially
since abnormalities in the interactions of network components
play a critical role in common and devastating neurological and
psychiatric disorders, and also because damage to specific
functional connectivity networks can lead to distinct neurolog-

ical syndromes (Bassett and Bullmore, 2009; Seeley et al., 2009).
During the execution of a complex cognitive process the

brain networks involved can be divided into task-positive and
task-negative networks (Fox et al., 2005). Task-positive
networks include regions that are simultaneously activated
during active cognitive processing, whereas task-negative
networks (also known as resting-related networks) are those
which are active during passive or stimulus-independent
thought, and are subsequently deactivated during active pro-
cessing. Thus, the analysis of task-functional magnetic reso-
nance imaging (fMRI) data allows the identification of specific

task-positive networks which are associated with the defined
task, as well as the characterization of the task-negative
networks or deactivations, which are known to be common
across tasks (Shulman et al., 1997). The default mode network
(DMN) is the most widely studied and characterized brain
system in this passive-state context. This network comprises
a set of highly functionally connected regions including the
medial prefrontal cortex (MPFC), posterior cingulate cortex
(PCC), lateral and medial temporal lobes and posterior inferior
parietal lobule (Shulmanetal., 1997; Raichle et al., 2001;Greicius
et al., 2003). TheDMNplays a competitive rolewith themajority
of task-related networks. Thus, the activation of a cognitive

task-related network is normally accompanied by deactivation
of the DMN, whereas during rest periods the DMN presents
higher levels of activity than do other networks (Fox et al., 2005;
Buckner et al., 2008). Resting-fMRI studies in the healthy pop-
ulation have reported direct relationships between the DMN
and brain functionality (Fox et al., 2005). Moreover, distinct
patterns of DMN dysfunction have been related to major
psychiatric and neurodegenerative diseases (Greicius, 2008;
Broyd et al., 2008; Seeley et al., 2009). Regarding task-fMRI
studies, it has been shown that the connectivity within DMN
regions contributes to the facilitation ormonitoring of cognitive

performance, and that the differences in functional coupling
within DMN regions can predict differences in cognitive
performance (Hampson et al., 2006, 2010; Esposito et al., 2009).

The working memory (WM) system has been defined as
a system for the temporary holding and manipulation of
information during the performance of a range of cognitive
tasks such as comprehension, learning and reasoning
(Baddeley, 1986, 2010). One of the most widely used WM para-
digms in the context of functional imaging studies is the n-back
paradigm (see Owen et al., 2005 for a meta-analysis). Its appli-
cation has enabled researchers to clearly identify the anatom-

ical substrates of the WM system, including the following six

cortical regions: (1) the bilateral posterior parietal cortex (BA7,
40), (2) the bilateral premotor cortex (BA6, 8), (3) the dorsal

cingulate/medial premotor cortex, including the supplemen-
tarymotor area (SMA; BA32, 6), (4) the bilateral rostral prefrontal
cortex or frontal pole (BA10), (5) the bilateral dorsolateral
prefrontal cortex (BA9, 46) and (6) thebilateralmid-ventrolateral
prefrontal cortex (BA45, 47). Moreover, the nature of the n-back
paradigm is such that studies can be designed to examine the
effects ofWM load variations (Braver et al., 1997; Callicott et al.,
1999).

To date, most WM studies using the n-back paradigm have
focused on task-related changes in the brain activity of areas
within theWM system, and their relationship to memory load,

through the univariate analysis of fMRI data (Braver et al., 1997;
Callicott et al., 1999; Volle et al., 2008). Other research has
studied DMN activity during the performance of WM para-
digms that include short rest periods between blocks. For
example, DMN activity (BOLD signal strength) in the resting
periods after an n-back task was found to be correlated with
task performance (Hampson et al., 2006; Esposito et al., 2009),
and was also increased in the context of high levels ofWM load
(Pyka et al., 2009). Finally, a few studies have shown how
variations in WM load modulate functional connectivity
between regions of theWMsystem, the results always showing

load-dependent increases in connectivity (Honey et al., 2002;
Narayanan et al., 2005; Axmacher et al., 2008).

Regarding network interactions in a WM context, Bluhm
et al. (2010) found increased correlations between DMN
regions and WM-related regions during 2-back performance
with respect to rest scans. Newton et al. (2011) investigated
functional connectivity within both the working memory
network (WMN) and the DMN in the context of WM load vari-
ations, and found that functional connectivity within both
networks increased as a function of load. They also studied
interactions between the two networks, and found that nega-
tive correlations emerged in posterior cingulate regions at high

levels of WM load.
In summary, all these studies highlight the importance of

conducting functional connectivity analyses rather than
a univariate analysis of functional activations when studying
complex cognitive domains. In addition, results regarding
both task-related networks and the DMN suggest the need for
studies in which the same subjects undergo both resting-fMRI
and task-fMRI acquisitions, thereby enabling brain connec-
tivity to be investigated not only during task performance but
also during a previous resting state.

Therefore, in the present study we used a load-variable

WM fMRI task and a resting-fMRI acquisition to study inter-
actions between functional networks at different levels of
cognitive demands and their direct relationship with indi-
vidual performance. We also aimed to investigate whether
resting-state connectivity status, prior to n-back task execu-
tion, has any relationship with subsequent WM performance.

2. Methods

Sixteen, healthy, young university students (9 females, mean
age 21.31! 2.41)with normal or corrected-to-normal vision and
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no history of psychiatric or neurological conditions were

included in the study.The cognitiveparadigmwasavariationof
the classical letter n-back taskwith increasing levels ofmemory
load (Braver et al., 1997), including 0-back, 1-back, 2-back and
3-back blocks, andwith resting blocks between each task block.
During n-back blocks a sequence of 12 letters (AeH) was pre-
sented on the screen. In the 0-back condition, subjects were
asked to respond when the target letter ‘X’ appeared on the
screen, whereas in the other n-back conditions a letter was
a target if it was identical to the letter presented n trials before.
Prior to the scan, subjects underwent a training session of
sufficient length in each case to ensure that they clearly

understood all the conditions of the paradigm and could
perform to at least 80% accuracy in the 3-back condition. They
were all informed that they would be requested to perform
a longer version of the same paradigm later when inside the
scanner. Immediately after the training session and before the
performance of the task inside the scanner, a 5-min resting-
fMRI acquisition was conducted. During this time, subjects
were asked to close their eyes and not to think of any specific
topic.

During the MRI n-back scanning session the task was pre-
sented using a block-design paradigm, implemented with

Presentation Software!. Each n-back condition lasted 26 sec
and was presented four times in a pseudo-randomized order,
such that the sequence of stimuli was different between the
four repetitions of the task. The number of target stimuli in
each task block was between two and four (mean: 3.06, SD:
.68). In addition, each n-back block was followed by an inter-
block fixation period of 13 sec, during which time subjects
looked at a white fixation cross in the centre of the screen.
Before any n-back block was presented an instruction screen
appeared to inform the subject about the task. The sequence
of letters was presented in white in the centre of the screen;

each letter remained visible for 500 msec, with an inter-
stimulus interval of 1500 msec. Fig. 1 shows a schematic
representation of the block-design task.

Task performance inside the scanner was recorded and
individual scores were calculated using the d0 measure, which
accounts for correct responses and false alarms and is
computed as: Z(hit rate) ! Z( false alarm rate). Mean response
times (RTs) in each condition were also recorded.

A one-way analysis of variance (ANOVA), followed by
a post-hoc analysis, was performed in Statistical Package for

Social Sciences (SPSS, v.16, Chicago, IL, USA) to determine

whether the performance scores and RT were different across
distinct memory-load conditions, as well as between the four
repetitions of the task, the aim being to test for fatigue or
training effects.

fMRI images were acquired on a 3TMRI scanner (Magnetom
Trio Tim, Siemens Medical Systems, Germany), using
a 32-channel coil. During both the resting-fMRI and task-fMRI
conditions a set of T2*-weighted volumes (150 and 336
volumes for resting and task-fMRI, respectively) were acquired
(TR ¼ 2000 msec, TE ¼ 29 msec, 36 slices per volume, slice
thickness¼ 3mm,distance factor¼ 25%, FOV¼ 240mm,matrix

size ¼ 128 # 128). A high-resolution 3D structural dataset using
a T1-weighted magnetization prepared rapid gradient echo
(MPRAGE) sequence, TR¼ 2300msec, TE¼ 2.98msec, 240 slices,
FOV¼ 256mm,matrix size¼ 256# 256, slice thickness¼ 1mm)
was also acquired in the same scanning session for registration
purposes.

Image processing and analyses were performed using both
FSL (http://www.fmrib.ox.ac.uk/fsl/) and AFNI (http://afni.
nimh.nih.gov/) tools. Pre-processing steps for the anatomical
MPRAGE scan included removal of non-brain voxels and
segmentation in white matter, grey matter and cerebro spinal

fluid (CSF). For the functional data the pre-processing included
motion correction, skull stripping, spatial smoothing [fullwidth
at half maximum (FWHM) ¼ 6 mm], grand mean scaling, and
filtering. Task-activation functional data were filtered using
a high pass filter of 80 sec, while the resting-fMRI data were
filtered in order to remove all frequencies outside the range of
[.005, .1] Hz.

All the functional images were first registered to the indi-
vidual anatomical scans using linear registration, with six
degrees of freedom, and further registered to the standard
Montreal Neurological Institute (MNI) brain using concatena-

tion of both registration matrices.
Nuisance regression was also applied to the fMRI datasets

in order to remove the contribution of the six motion param-
eters, white matter, CSF and whole brain oscillations
(Foxet al., 2009).Nuisance regresseddatawereused in the time
series correlation analyses, but not in the independent
components analysis (ICA) decomposition.

2.1. Analysis of the resting-fMRI data

A temporal concatenation ICA approach (Beckmann et al.,
2005) followed by a dual-regression algorithm (as in Filippini
et al., 2009) was used to analyse the resting-fMRI data. First,
the pre-processed 4D datasets of all subjects were concate-
nated and decomposed using the multivariate exploratory
linear optimized decomposition into independent compo-
nents (MELODIC) tool from FSL. MELODIC estimated the
number of independent components (ICs) using the Laplace
approximation to the Bayesian evidence for a probabilistic
principal components model. All the components were visu-

ally examined and compared with those reported in the
resting-fMRI literature (Damoiseaux et al., 2006; Van den
Heuvel and Hulshoff Pol, 2010). Resting-state networks
(RSNs) of interest were then selected and introduced into
a dual-regression analysis. This analysis involves two
regression analysis and a voxel-wise group analysis usingFig. 1 e Design of the fMRI n-back task.
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a permutation-based algorithm. In the first regression, group

spatial maps were used as independent variables and the full
pre-processed fMRI datasets were used as dependent vari-
ables in order to extract individual time series associated with
each subject and each IC. Next, in a second regression, the
individual time series were used as independent variables
separately for each subject again with the fMRI datasets in
order to obtain subject-specific maps, that were further
transformed into Z-scores. These maps were then introduced
into a group analysis to test their correlation with individual
3-back performance scores; this was done using general linear
modelling (GLM), as implemented in the randomise tool from

FSL, which corrects for family-wise error (FWE) using
a permutation-based algorithm (N ¼ 5000 permutations).
Significance level was set at a corrected p value of p < .05.

Using the resting-state fMRI data we also performed an
analysis based on the amplitude of low frequency fluctuations
(ALFF). In the ALFF analysis (Zang et al., 2007) the pre-processed
datasets are transformed to frequency domain with a fast
Fourier transform (FFT) in order to calculate the power spec-
trum. The amplitude of the low frequency fluctuations is then
computed as the square root of the power spectrum, and the
ALFF is the mean amplitude within the frequencies of interest

for each voxel. The standardized ALFFwas obtained by dividing
the ALFF map by the global mean ALFF value. As above, we
obtained individual maps of ALFF and standardized ALFF that
were introduced into a permutation-based group analysis using
randomise from FSL (N ¼ 5000 permutations, significance
threshold: p < .05, FWE corrected), where we tested for corre-
lations with 3-back performance scores.

2.2. Analysis of the task-activation fMRI data

A tensor-ICA decomposition of the pre-processed images
was performed as implemented in MELODIC (Beckmann and
Smith, 2004) version 3.10, part of the FSL software. This
method extracts signal patterns that exist synchronously in
all the subjects, as well as patterns associated with head
motion, physiological noise, or artefacts. Thus, task time
series and contrasts were also introduced into MELODIC,
which performed a post-hoc regression analysis between
estimated component time series and task time series in
order to further identify the ICs related to WM blocks and

fixation blocks. After identifying the spatial pattern corre-

sponding to the main networks involved in the task, two
kinds of connectivity measures were calculated:

(a) Between-network connectivity analyses: After identifying the
main ICs their thresholded spatialmapswere used to create
binary masks. Individual time series for each component
were obtained by computing the mean signal within each
mask for the pre-processed fMRI series. Relationships
between each pair of individual time series for each condi-
tion were investigated by computing Pearson’s correlation
coefficients. The values obtained for the between-network

connectivity at each condition were introduced into SPSS
and compared between conditions using two-tailed paired-
samples t-tests. In order to account for Type I errors, results
were corrected using Bonferroni correction for multiple
comparisons. We also performed a correlation analysis to
investigate the relationship between connectivity and
individual performance scores on the task.

(b) Within-network connectivity analysis: In order to explore the
within-network connectivity the IC spatial map of each
selected network was sub-divided into sets of regions of
interest (ROIs) representing themain foci of activation. Time

series for each of these ROIs were obtained as the mean
signal within the ROI during the pre-processed fMRI series.
As above, temporal correlations between pairs of time series
were explored using Pearson’s correlation coefficients. The
intrinsic network correlationwas defined as themeanof the
correlation coefficients betweenall the possible pairs of ROIs
within the network. Also as above, several paired-samples t-
tests (followed by Bonferroni correction for multiple
comparisons) were performed using SPSS to determine
whether the intrinsic network correlation changed between
conditions. A correlation analysis was also carried out to

investigate relationships with performance.

3. Results

3.1. Behavioural results

Performance scores and reaction times (RTs) for all the task
conditions are summarized in Fig. 2. All the subjects performed

Fig. 2 e Outcomes of task performance for all the subjects. (A) Mean performance scores and (B) mean RTs. Note that for both
performance (d0) and RTs the condition with the highest memory load (3-back) differed from the other conditions, there
being no differences between the latter (see main text for statistical differences between conditions).
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well (over 80%) inall the conditionsduring the scanningsession,

but showed lower performance scores and longer RTs with
increasing WM load. An ANOVA followed by a Bonferroni
post-hoc analysis was then applied to the performance scores
(d0) and mean RT, revealing significant differences in perfor-
mance scores between the 3-back condition and all the other
conditions (see Fig. 2; global ANOVA results: F¼ 19.625, p< .001;
post-hoc analysis: p< .001 in the 0-B vs 3-B, p< .001 in the 1-B vs
3-B, and p< .001 in the 2-B vs3-B). However, these valuesdidnot
differ between the 0-back, 1-back and 2-back conditions.
Regarding mean RT the global ANOVA showed a significant
effect of condition (F ¼ 4.08, p ¼ .011), while the post-hoc anal-

ysis revealed significant differences between the 0-B and 3-B
conditions ( p ¼ .005) and between the 1-B and 3-B conditions
( p ¼ .024).

Putative practice or fatigue effects were analysed by
applying a paired-samples t-test to the performance scores
obtained in the first and last runs of the task. No differences
were found (t ¼ .37, p ¼ .72).

3.2. Resting-fMRI

The ICA decomposition of the pre-task resting-fMRI data gave
a set of 17 ICs, from which we selected the eight ICs that have
been most commonly investigated in the resting-fMRI litera-
ture (for a review, see Van den Heuvel and Hulshoff Pol, 2010).
Spatial maps and anatomical descriptions of the eight

selected components can be found in Supplementary Fig. 1.
All these components were introduced into the dual-
regression analysis to explore whether any of them showed
a relationship with subsequent individual performance
during the n-back task.

These analyses revealed that among all the selected ICs,
only the IC identified as the DMN (See Fig. 3A for the spatial
map of theDMN) showed a relationshipwithWMperformance,
and that thiswas specific for the 3-back condition. In particular,
subjects who performed better showed greater connectivity in
the precuneus/posterior cingulate node with respect to all the

other DMN nodes (MNI coordinates of the maximum value
x ¼ "2, y ¼ "54, z ¼ 16, Brodmann area 23, see Fig. 3B). Indi-
vidual DMN Z-scores within this ROI were extracted and

introduced into SPSS to obtain a graphical representation and

the statistical parameters of the correlation with 3-back
performance (r ¼ .74, p ¼ .001, see Fig. 3C).

The voxel-wise analysis performed using the ALFF and
standardized ALFF maps showed that there was no relation-
ship between brain activity of low fluctuations and subse-
quent 3-back performance.

3.3. fMRI during n-back blocks

ICA decomposed the fMRI data of all the subjects into 77 ICs.
After the selection process, two main brain components were
retained (see Fig. 4). First, and as is commonly done in the ICA
literature (Beckmann et al., 2005; Pyka et al., 2009), any
components that were clearly related to motion artefacts or
which had a mean power above .1 Hz were discarded (24 ICs).

Furthermore, components that were driven by a single outlier
subject were also discarded (9 ICs). The remaining ICs were
then sorted according to their mean response amplitude. The
selection criteria were based on the post-hoc analysis per-
formed by MELODIC on the time series. IC1 was selected as
a WM-associated component, representing the specific task-
positive network for the defined task, because its time course
fitted the task time series with F ¼ 25.02 and p < .000001 and it
was significant for the 1-back > 0-back contrast (z ¼ 3.45,
p < .00028), the 2-back > 0-back contrast (z ¼ 4.78, p < .000001)
and the 3-back> 0-back contrast (z¼ 5.57, p< .000001). IC2 was

selected as aDMN-associated component since it fitted the task
time serieswith F¼ 43.22 ( p< .000001) and itwas significant for
the fixation condition (z ¼ 8.34, p < .000001). The spatial local-
ization of the main foci of their activations and deactivations
was also used as a selection criterion, and maps were
compared with those reported in the WM literature (Owen
et al., 2005) and the DMN literature (Damoiseaux et al., 2006;
Van den Heuvel and Hulshoff Pol, 2010). Components with no
temporal association with the task, or components related to
non-cognitive networks commonly found in resting analysis
were not considered. Finally, components that had a temporal

association with the task but which were ranked at the end of
the list were also not considered because of the low percentage
of variance they explained (around 1%). The supplementary

Fig. 3 e (A) Spatial pattern of the DMN for all subjects during the resting acquisition. (B) Area within the DMN whose activity
correlates with subsequent 3-back performance ( p < .05, FWE corrected). (C) Scatter plot depicting a positive correlation
between the DMN Z-values of the precuneus and WM performance.
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material (supplementary Fig. 2) includes some examples of the
components that were discarded, as well as the criteria used.

There was a strong overlap between positive areas of the first
component and negative areas of the second one, and vice-
versa (see Fig. 4). Thus, only positive areas of each of them
were used to define the foci of activation. Five principal foci
were identified within the WM system: the anterior cingulate
gyrus and supplementary motor cortex (BA32, 6, 24), the right
middle frontal gyrus and frontal pole (BA9, 10), the left pre-
central gyrus and middle frontal area (BA6), and the lateral
occipital cortex, the precuneus/parietal lobe and supra-
marginal gyrus (BA7, 19, 23, 40) bilaterally. Regarding the DMN,
the regions identified were the precuneus cortex and posterior

cingulate (BA29, 30), the frontal pole, paracingulate and medial
frontal gyrus (BA9, 10) and the left lateral occipital cortex and
temporal lobe (BA19). Table 1 summarizes the main areas
involved in each network, as well as their peak coordinates.

3.3.1. Between-network correlations
Initial evidence of the strong anti-correlation between these
twonetworkswasobserveddirectly fromtheir ICAspatialmaps
and corresponding time courses: areas that appeared activated
in one componentwere deactivated in the other, and vice-versa
(see red and blue regions for activations and deactivations,
respectively, in Fig. 4A, and related time courses in Fig. 4B).

These between-network temporal correlations were further
studied at an individual level and considering all the conditions
of the task (fixation, 0-B, 1-B, 2-B and 3-B). In the 3-back scans
the anti-correlation between the WMN and the DMN was

predictive of the subject’s performance (r ¼ ".65, p ¼ .012, see
Fig. 4C). This relationship was not found in any of the less-
demanding n-back levels, although the anti-correlation during
fixation periods also predicted behavioural performance during
the 3-back condition (r ¼ ".54, p ¼ .047, see Fig. 4C). These two
relationships are shown graphically in Fig. 4C.

Fig. 4 e (A) Spatial maps of the two selected components: IC1 corresponds to the WMN and IC2 to the DMN. Hot colours
represent brain activations and cold colours represent deactivations. (B) Time series of the two components: red lines are
the component-related mean responses, while green lines show the fit with the task. (C) Scatter plots showing the
relationship between the between-network correlations in the 3-back and fixation blocks and individual performance
scores for the 3-back WM task.

Table 1 e Anatomical localization and ROI definition of the WMN and the DMN.

ROI id Volume
(mm3)

Z max MNI coordinates Anatomical area

WMN_1 23,728 8.6 (39, 30, 30) Right middle frontal gyrus and frontal pole, BA9
WMN_2 12,931 7.59 (24, "72, 57) Right lateral occipital cortex and precuneus/parietal lobe (BA7, 19, 39)
WMN_3 5,241 6.75 ("27, "72, 45) Left lateral occipital cortex and precuneus/parietal lobe (BA7, 19, 39)
WMN_4 2,577 5.41 (0, 6, 45) Supplementary motor cortex, anterior cingulate (BA32, 6, 24)
WMN_5 406 4.81 ("51, "6, 39) Left precentral gyrus and middle frontal area (BA6)
DMN_1 1,777 5.57 ("6, "57, 15) Precuneus and PCC (BA29, 30)
DMN_2 1,000 5.44 ("9, 57, 21) Frontal pole and medial frontal gyrus (BA9, 10)
DMN_3 258 4.97 ("45, "81, 24) Lateral occipital cortex, temporal pole (BA19)
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The paired-samples t-test also showed that the between-

network correlation had higher negative values in the fixa-
tion blocks when compared to the 0-back blocks (t ¼ 2.25,
p ¼ .04).

3.3.2. Within-network correlation
On the basis of the spatial maps of the two selected ICs we
created a set of ROIs for the subsequent analysis of temporal
dynamics. This set included five ROIs within the WMN and
three ROIs within the DMN (see Table 1). Correlations between
all these ROIs can be represented in connectivity matrices, as
shown in Fig. 5. In these matrices, intrinsic connectivity of the

WMN is represented in the left-upper part, while the same
measure of the DMN is represented in the right-lower corner.
Right-upper and left-lower corners represent the between-
network connectivity (studied in the previous point). As can
be seen from visual inspection of these matrices the degree of
intrinsic correlation within the networks increases with task
demand, as does the extent of the inverse relationship between
the two competitive systems. During fixation blocks these
systems also show high levels of intrinsic correlation and high
levels of negative correlation between one another.

These relationships were further studied statistically. The

0-back conditionwas taken as the reference against which the
other conditions (fixation, 1-B, 2-B and 3-B) were compared
using paired t-tests. For the WMN we observed an increase of
intrinsic connectivity both in the fixation blocks (t ¼ 2.14;
p ¼ .049, uncorrected) and in the 3-back blocks (t ¼ 5.23;
p < .001, uncorrected), while for the DMN this increase was

only observed for the 3-back scans (t ¼ 4.14; p ¼ .001, uncor-

rected). When these values were corrected for Type I error
using Bonferroni correction for multiple comparisons,
intrinsic connectivity was only statistically greater during the
3-back blocks for both networks ( p < .004 for both the WMN
and the DMN). However, the measured intrinsic network
connectivity had no relationship with the subject’s subse-
quent performance (data not shown).

4. Discussion

The present report describes an investigation into brain
connectivity and its relationship withWM performance in a set
of healthy subjects. In addition to task-related regions we also
studied brain regions that are active in a resting-state period
prior to the full-task performance test. For the pre-task resting

state, we investigated the spatio-temporal patterns of a set of
well-known RSNs and found that among these the DMN pre-
dicted inter-individual behavioural differences in subsequent
3-back performance. During the n-back blocks there was an
inverse temporal relationship between theWMN and the DMN,
which was maximal during the highest levels of task
cognitive demand (3-back blocks). Moreover, these negative
correlationscoresmeasuredduring 3-backblockspredicted task
performance.

The resting-state analysis of a 5-min period just before task
execution revealed a region within the posteromedial cortex

(Brodmann area 23) whose activation correlated with the

Fig. 5 e Connectivity matrices for all the conditions within the n-back task. Vertical and horizontal partitions represent the
five ROIs defined within the WMN and the three ROIs defined within the DMN. Colours of the grid represent the time series
correlation between each pair of ROIs; note from the legend bar that hot and cold colours represent positive and negative
correlations, respectively.
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subject’s subsequent performance. This finding, which is the

first such observation using aWMparadigm, is consistent with
the report by Wang et al. (2010), who demonstrated that
connectivity within the DMN measured just before the execu-
tion of an associativememory task can predict inter-individual
differences in task performance. Moreover, several studies
suggest that spontaneous resting-fMRI activity is dynamically
associatedwith preceding experience (Waites et al., 2005; Lewis
et al., 2009; Hasson et al., 2009).

More specifically, the connectivityebehaviour relationship
found in the PCC node of the DMN may be mediated by
cognitive factors such as the recruitment of attentional or

motivational resources linked to the expectancy for an immi-
nent cognitive challenge. A similar idea was suggested by
Waites et al. (2005) in order to explain inter-individual differ-
ences in resting-state connectivity after a language task.
Linked to this idea, one possibility is that the identified area is
related to thedefinedattentional networks (Posner et al., 2006),
whose primary purpose is to influence the operation of other
brain networks. Attentional networks have been further
divided into alerting, executive and orientating networks
(Fan et al., 2005; Raz and Buhle, 2006), and the latter, which is
involved in orienting the brain to sensory events, includes

posteromedial regions. We therefore hypothesize that the
probe or training phase before the resting-fMRI resulted in
some sort of facilitation or priming effect expressed by
increased connectivity in this area, which in turn led to an
increased capacity for further perception and processing of
complex stimuli. This interpretation linked to subject expec-
tancies would be restricted to our specific design, where all
subjectswere told that after the practice and resting trials they
would be required to perform the full n-back task. Hence,
different results at the brain connectivity and behavioural
level could have been obtained had this information not been

provided, although this aspect was not investigated here.
Our interpretation is also in line with previous studies

regarding the connectivity and functionality of the pre-
cuneus and posterior cingulate cortices (Cavanna and
Trimble, 2006; Fransson and Marrelec, 2008; Cauda et al.,
2010), which have described an attentional role for the
same area in which we found a positive correlation with task
performance (BA23). First, structural connectivity showed
connections from this area with other parietal areas such as
the parietal operculum and the inferior and superior parietal
lobules, known to be involved in visuo-spatial information
processing (Astafiev et al., 2003; Cavanna and Trimble, 2006),

as well as extensive connections with the anterior cingulate,
which is the core of the attentional network (Posner et al.,
2006). It has therefore been concluded (Cavanna and
Trimble, 2006) that the precuneus is involved in elaborating
and integrating information rather than directly processing
stimuli. In addition, a recent study provided a functional
parcellation of the posteromedial cortex regarding its func-
tional relationships with other brain systems (Cauda et al.,
2010), concluding that the anterior portions of the poster-
omedial cortex, including BA23, are highly interlinked with
areas involving attentional control.

In the task-activation fMRI study we obtained spatial maps
that are highly consistent first with the generic task-positive
network (Fox et al., 2005), and more specifically with previous

results regarding the WM system (Braver et al., 1997; Callicott

et al., 1999; Owen et al., 2005; Nyberg et al., 2009; Newton
et al., 2011) and the DMN (Shulman et al., 1997; Buckner et al.,
2008). Furthermore, we found that the level of negative corre-
lation between the two antagonist networks correlates with
task performance at high levels of WM load. During these
periods the functional connectivity within both the WMN and
the DMN also revealed the highest levels, although this
measure was not related to behavioural execution. These
results strongly support the findings of some previous studies
and extend their conclusions (Hampson et al., 2006, 2010;
Newton et al., 2011). Hampson et al. (2006) found that within

certain predefined nodes of the DMN, functional connectivity
increased with task demand, and they also observed some
positive behavioural-connectivity relationships in these
regions. Newton et al. (2011) found that network connectivity
within both the DMN and the WMN is modulated by WM load,
although as they did not collect behavioural data they were
unable to establish direct relationships between fMRI findings
and behavioural outcomes. Therefore, our approach, despite
being complementary, also differs from these studies in two
key aspects. First, whereas these studies used either predefined
ROIs or a parametrical mapping approach to fMRI data in order

to obtain functional ROIs, we used a data-driven probabilistic
ICA approach, which is more suitable in the context of brain
network connectivity and network interactions. Secondly, the
introduction of a resting-state fMRI condition between the
training session and task performance was unique to our
report.

In this latter regard it is also important to note thatwe found
not only that the measure of inverse relationship between the
DMNandWMNduring the actual 3-back periodswas correlated
with behavioural performance, but also that this correlation
was present during inter-block fixation scans (although this

latter result did not survive correction for multiple compari-
sons). This observation highlights the relevance of fixation
periods between cognitive tasks, which have been interpreted
previously as recovery periods during which cerebral brain
resources are relocated (Pyka et al., 2009). Our results not only
support these previous conclusions but extend them by
demonstrating a relationship between these fixation periods
and individual task performance.

Although some of our results did not survive multiple
comparison correction the pattern of connectivity observed
during themostdemandingscenario (i.e., during3-backblocks),
which was characterized by high connectivity between regions

within a network and high negative correlations between the
two antagonist networks (see, also, the connectivitymatrices in
Fig. 5), was very similar to the pattern observed during fixation
scans. Hence, our results provide further evidence that the
resting brain is as interconnected as the brain in a high state of
cognitive functioning (Buckner et al., 2008).

Notwithstanding, it is important to note that the term
functional connectivity has been used in this report both in
resting-fMRI data and in task-related fMRI, and that the inter-
pretation of the results is somehowdriven by themethodology.
While in the resting-fMRI analysis we could easily separate the

measure of connectivity (as measured with ICA and
dual-regression) and the measure of brain activity (measured
with the ALFFmethod), in task-fMRI the measure of functional
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connectivity will be somehow driven by the changes in brain

activity during the performance of the task.
In summary, we have studied the functional implementa-

tion of two antagonist networks at various levels of cognitive
effort, as well as during a resting-state fMRI condition between
task trainingand its execution. Resting-state connectivity of the
precuneus/posterior cingulate predicted individual perfor-
mance on the task. During task execution we found a pattern
characterizedbyhighconnectivitywithin the twonetworksand
a high negative correlation between them, which itself was
correlated with inter-individual differences in performance.
Taken together the two main results of this study support

the idea that the DMN plays a role in focussing attention
during d and prior to d the execution of a highly demanding
executive task (Greicius et al., 2003; Fox et al., 2005).

Supplementary material

Supplementary material associated with this article can be
found in the online version, at doi:10.1016/j.cortex.2011.07.006.
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3Centre de Diagnòstic per la Imatge. Hospital Clı́nic de Barcelona (CDIC),
Barcelona, Spain.
Correspondence*:
Carme Junqué
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ABSTRACT
Neural correlates of working memory (WM) in healthy subjects have been extensively

investigated using functional MRI (fMRI). However it still remains unclear how cortical areas
forming part of functional WM networks are also connected by white matter fiber bundles, and
whether DTI measures, used as indices of microstructural properties and bundles directionality
of these connections can predict individual differences in task performance. FMRI data were
obtained from 23 healthy young subjects while performing one visuospatial (square location)
and one visuoperceptual (face identification) 2-back task. Diffusion tensor imaging (DTI) data
were also acquired. Independent component analysis (ICA) of fMRI data was used to identify the
main functional networks involved in WM tasks. Voxel-wise DTI analyses were performed to find
correlations between structural white matter and task performance measures, and probabilistic
tracking of DTI data was used to identify the white matter bundles connecting the nodes of
the functional networks. We found that functional recruitment of the fusiform and the inferior
frontal cortex was specific for the facial working memory task, while there was a high overlap
in activation of the parietal and middle frontal areas for visuospatial and visuoperceptual tasks.
Axial diffusivity, of the tracts connecting the fusiform with the inferior frontal areas showed a
significant correlation with processing speed in the facial working memory task. We conclude
that different functional networks, partially overlapping with the fronto-parietal attention network,
differentially support perceptual and working memory tasks. Moreover, the DTI measures are
predictive of the processing speed
Keywords: fmri; dti; tractography; fusiform; facial working memory.

1 INTRODUCTION

Working Memory (WM) refers to the capacity to maintain, manipulate and store information temporarily
and involves a set of brain structures and processes to organize and integrate sensory and other information
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(Baddeley, 1996). Magnetic Resonance Imaging (MRI) has been used to investigate brain networks
involved in WM both at the functional and structural levels, using functional MRI (fMRI) and Diffusion
Tensor Imaging (DTI).

The use of fMRI to measure blood-oxygen-level-dependent (BOLD) signal during working memory
tasks evidenced consistent activation of frontal and parietal cortical regions regardless of the stimulus
modality (D’Esposito et al., 1998; Wager and Smith, 2003; Owen et al., 2005). These include the
bilateral posterior parietal cortex, the bilateral premotor cortex, the dorsal cingulate/medial premotor
cortex, the frontal pole, and the bilateral dorsolateral-midventrolateral prefrontal cortex. However,
domain-specific activation within brain structures has also been documented (Fuster, 1997; Rottschy
et al., 2012). Working memory tasks activate the lateral prefrontal region and, concomitantly, a region
of the posterior cortex that varies according to the sensory modality: for visual stimuli, the activation
is seen in the inferior temporal and parastriate cortex, for auditory stimuli in the superior temporal
cortex, and for spatial stimuli in the posterior parietal cortex (Fuster and Bressler, 2012). As regards
the involvement of visual regions, it is possible to differentiate between the dorsal and ventral processing
streams, both originating in the striate cortex. The ventral stream passes through the occipitotemporal
cortex to its anterior temporal target and to the ventrolateral prefrontal cortex. And the dorsal stream goes
from the occipitoparietal cortex to the posterior half of the inferior parietal lobule and the dorsolateral
prefrontal cortex. Recently, it has been concluded that the dorsal stream gives rise to three distinct major
pathways namely the parieto-prefrontal, parieto-premotor and parieto-medial temporal pathways which
support spatial working memory, visually guided action, and spatial navigation respectively (Kravitz
et al., 2011). In addition, studies on WM for spatial locations have reported incerased activity in the right
inferior parietal lobule and left insula (Passaro et al., 2013). Therefore, the simultaneous investigation of
different working memory paradigms of different stimuli is necessary to identify stimulus-specific regions
of activity.

Diffusion-weighted MRI allows the measurement of microstructural properties of brain white matter
by means of several DTI approaches. DTI indices, such as Fractional Anisotropy (FA), Radial Diffusivity
(RD) and Axial Diffusivity (AD) relate to white matter integrity, since they are thought to reflect the degree
of myelination, axonal membrane thickness and axon diameter (Beaulieu, 2002; Song et al., 2002).
Moreover, DTI probabilistic tractography is an effective tool that reconstructs in vivo the trajectories of
white matter fasciculi connecting different cortical areas (Behrens et al., 2003; Catani and Thiebaut
de Schotten, 2008). FA values have been positively correlated with working memory performance
(Klingberg, 2006; Olesen et al., 2003) as well as with task-related BOLD responsivity (Burzynska
et al., 2011), and the superior longitudinal fasciculus (SLF) has been identified as the main tract involved
in the working memory network. The relationship between SLF integrity and working memory has also
been studied in pathologies such as multiple sclerosis, schizophrenia, and traumatic brain injury (Audoin
et al., 2007; Karlsgodt et al., 2008; Palacios et al., 2011). It has been reported that the integrity of
major white matter tracts, including the callosal genu and splenium, the cingulum, optic radiations and
the superior longitudinal fasciculus, correlates with the performance intelligence quotient, and that this
relationship is mediated by genetics (Chiang et al., 2012). In children, high FA values have been linked to
improved response inhibition, enhanced working memory, and faster reaction times (Madsen et al., 2011;
Vestergaard et al., 2011). In adults, high FA values in parietal and frontal white matter were associated
with faster performance on a lexical decision task (Gold et al., 2007) and faster reaction times for tasks
involving visuospatial attention (Tuch et al., 2005).

Although many studies have aimed to describe the functional and structural properties of working
memory networks, in the current study we add a novel approach to the field by using advanced
neuroimaging techniques to study both functional and structural connectivity of two different tasks
involving different brain networks guided by the stimuli. We aimed to: 1) identify the differences in the
task-activated networks for spatial and facial working memory, and 2) describe the structural connectivity
of these networks.

Whereas brain functional connectivity can be studied as the temporal correlation between spatially
remote neuropsychological events during the performance of a cognitive task (Biswal et al., 1995),
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structural connectivity refers to the presence of fiber tracts directly connecting regions (Rykhlevskaia
et al., 2008). Our aim was to combine data-driven fMRI analysis with probabilistic tractography and DTI
maps to determine the functionality and connectivity between brain regions involved in visual working
memory tasks and their relationship with cognitive performance. For this purpose, we independent
component analysis of fMRI data and a whole-brain analysis of DTI-derived maps. In the WM tasks,
different stimuli were used to determine the possible domain-specificity of the neural basis of working
memory: one n-back task involving visuospatial processing (squares), and a second n-back task using
visuoperceptual stimuli (faces). We hypothesized that the functional networks extracted from either task
would have some overlapping areas, as well as some specific areas that would be stimuli-dependent.
Moreover, we expected that these functional networks would have their structural circuitry substrate in
the fiber bundles that connect the different cortical regions involved simultaneously in the task.

2 MATERIAL & METHODS

2.1 SUBJECTS AND ACQUISITION

Twenty-three healthy young subjects (mean age: 28.26, SD: 6.76, 12 males, 11 females) with no history
of psychiatric or neurological pathologies were included in the study. The study was approved by the
research ethics committees of the University of Barcelona. All participants gave written informed consent.
Subjects were scanned on a 3T MRI scanner (Magnetom Trio Tim, Siemens Medical Systems, Germany)
during the performance of the working memory tasks, using a single shot gradient-echo EPI sequence
(TR=2000 ms; TE=16 ms; FOV = 220 x 220 mm2; voxel size = 1.7 x 1.7 x 3.0 mm). High resolution T1-
weighted images were acquired with the MPRAGE 3D protocol (TR=2300 ms; TE= 3 ms; TI=900 ms;
FOV=244 mm2; 1mm isotropic voxel) and diffusion-weighted images were sensitized in 30 non-collinear
directions with a b-value=1000 s/mm2, using an echo-planar (EPI) sequence (TR=9300 ms, TE= 94 ms,
slice thickness=2 mm, voxel size=2 x 2 x 2 mm, FOV=240 mm2, no gap).

The cognitive tasks presented during the MRI scanning consisted of a 2-back paradigm, in which
a sequence of stimuli was presented on the screen and the subject was asked to indicate whether the
stimulus was identical to the one shown 2 trials before. For the assessment of visuoperceptual working
memory, facial images from an available database were used as stimuli (Minear and Park, 2004). For
the visuospatial working memory task, the stimuli were color squares located in different positions on a
black screen. In both tasks, a 0-back task was used as a control condition, and subjects were asked to
indicate whether the current trial matched a specific stimuli. For the facial control task, subjects were
asked to press the button when the person that appeared in the screen was wearing glasses, and for the
spatial control task, subjects were asked to indicate if the color square shown was placed in the middle of
the screen. Stimuli sizes were 55% and 74% of the screen width for the squares and faces respectively.
Tasks were presented and synchronized with functional acquisition using the Presentation R� software
(NeuroBehavioral Systems, NBS). During fMRI acquisition, the task was projected in a big screen outside
the scanner, and shown to the subject using a mirror system placed in front of subject’s eyes. The subject
was provided with a response button, also synchronized with the stimuli presentation, and responses were
recorded in a computer outside the scanner.

During the scanning session, 12 subjects underwent first the facial 2-back task and then the spatial
2-back task, while the remaining subjects performed the tasks in the opposite order.

For each task, the sequence of stimuli was presented using a block-design paradigm, where 2-back
blocks were alternated with 0-back blocks. Within each block, a total number of 14 stimuli were presented.
Each image appeared on the screen for 1 second, with an interstimulus interval (black screen) of 1 second.
An instruction screen was presented at the beginning of each block for 2 sec. The total number of blocks
presented for each task was 16 alternating between conditions, presented in the course of the 8-minute
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experiment. Individual responses were collected, and performance scores were computed using the d-
prime measure [Z(hits rate) � Z(false alarm rate)](Macmillan and Creelman, 1991). In addition, mean
reaction times (RT) separately for each task and condition were collected, where RT was measured as the
time between the stimulus onset and the subject’s response.

2.2 ANALYSIS OF FMRI DATA

Functional MRI data were analyzed using Multivariate Exploratory Linear Optimized Decomposition
into Independent Components (MELODIC) (Beckmann and Smith, 2004), as implemented in FSL
(http://www.fmrib.ox.ac.uk/fsl). Before the ICA decomposition, the preprocessing of fMRI data included
motion correction using MCFLIRT (Jenkinson and Smith, 2001), removal of non-brain regions with
BET (Smith, 2002), spatial smoothing using a Gaussian kernel of FWHM 5 mm, grand-mean intensity
normalization and high-pass temporal filtering (of FWHM=160s).

Then, three different ICA decompositions were carried out. First, facial and spatial tasks were analyzed
separately, and a third analysis was performed with data from the two tasks. In each case, ICA decomposed
functional data into a set of spatio-temporal Independent Components (ICs). Each IC was composed
by a spatial map, an associated time-course and a subjects mode vector, indicating the strength of the
component for each subject.

For each task-separated analysis, we identified the components releted with the 2-back>0-back contrast
and we selected the IC with the best fit to the task time-series. This procedure allowed the identification
of the main functional network associated with spatial WM processing (spatial IC), and facial WM
processing (facial IC). In addition, with the ICA analysis performed with data from the two tasks, we
could identify components of higher activity in one on the two tasks with respect to the other.

2.3 PREPROCESSING OF DIFFUSION MRI DATA

Diffusion MRI Images were analyzed using FDT (FMRIB’s Diffusion Toolbox), from FSL (Behrens
et al., 2007). Firstly, data were corrected for distortions caused by the eddy currents in the gradient coils
and for simple head motion, using the B0 non-diffusion data as a reference volume. Then, Fractional
Anisotropy (FA) maps from each subject were obtained using a diffusion tensor image (DTI) model fit.
With DTI, we also obtained individual maps for axial diffusivity (AD) and radial diffusivity (RD). Maps
were registered and projected to a common skeleton map using the TBSS algorithm (Smith et al., 2006).
Further, we performed voxel-wise statistics between subjects using these maps.

In addition, a probabilistic tractography algorithm was applied to the diffusion images (Behrens et al.,
2007). This analysis is decribed in supplementary material.

2.4 STATISTICAL ANALYSES

Statistical comparison between activation maps were performed using the subjects’ vector from the whole-
group (facial and spatial) ICA decomposition. These vectors had an score for each subject and task that
indicates the activation of a given component. They were introduced into PASW (Statistical Package
for Social Sciences, Chicago, II, USA) and we evaluated differences between tasks using paired t-test
analysis. As regards the measures derived from the DTI analysis. First, spatial maps of FA, AD and RD
were introduced in voxel-wise statistics to find regions that correlate with the results of the tasks. These
maps were corrected for multiple comparisons using a permutation testing (Nichols and Holmes, 2002).

In addition, scores of mean FA, AD, and RD were obtained within the tracts of interest derived from the
DTI-tractography analysis. We used Pearson’s correlation in PASW to investigate correlations between the
measures of FA, AD, and RD within the tracts and cognitive performance (see Supplementary material).
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Table 1. Behavioral results of the two working memory tasks for both conditions.

FMRI Task d prime Response Time
mean(SD) mean(SD)

Spatial 0-Back 4.03 (0.31) 0.416(0.08) s
Spatial 2-Back 3.49 (0.40) 0.47(0.09) s
Facial 0-Back 4.08 (0.28) 0.495(0.07) s
Facial 2-Back 3.33 (0.65) 0.546 (0.09) s

3 RESULTS

3.1 TASK PERFORMANCE

All subjects showed high task performance measured by d prime. A summary of behavioral measures
for each task and condition is shown in Table 1. We found significant differences between 0-back and
2-back tasks for both RT and d prime measures and for both spatial and facial tasks. Subjects were slower
in respond and performed worse in the 2-back conditions compared with 0-back conditions (p<0.001 in
paired T-Tests).

3.2 IDENTIFICATION OF FUNCTIONAL NETWORKS INVOLVED IN SPATIAL AND FACIAL
WORKING MEMORY

Using T-ICA for the whole group of 23 subjects and separately for each task, we identified the functional
pattern for spatial and facial working memory processes (spatial IC and facial IC, Figure 1). Spatial IC
covered regions of the frontal and parietal cortices, with the main foci of activation in Middle Frontal and
Parietal regions. The Facial IC, shared the middle frontal and parietal regions of activity, but showed
additional activity in areas of the Fusiform and in a region of the Inferior Frontal. Additionally, we
identified foci of activation in the Insula and in a region of the temporal cortex. The coordinates of all
the foci are reported in Table 1.

With the ICA analysis of the facial and the spatial task together, we identified a component, associated
with the 2-Back>0-Back contrast, with higher activity during facial WM than during spatial WM (p=0.01)
in a paired-samples t-test analysis). Its spatial map included the left inferior frontal frontal gyrus, a small
region in the right middle frontal gyrus, part of the paracingulate gyrus, and a cluster located in the
occipital pole, occipital fusiform, the lingual and fusiform gyrii and the inferior division of the lateral
occipital cortex.

3.3 WHOLE-BRAIN DTI ANALYSIS

In the voxel-wise analysis of maps derived from DTI analysis, we identified a cluster where AD correlated
negatively with RT of the facial WM task (p<0.05, corrected). This cluster was located in the left inferior
fronto-occipital fasciculus and left uncinate fasciculus.

3.4 DTI TRACTOGRAPHY

We used the spatial pattern of the structural connection between the fusiform and the inferior frontal
to demonstrate that it overlapped the region where AD correlated with response time of the facial WM
task (Figure 2). This connection included the inferior fronto-occipital fasciculus, inferior longitudinal
fasciculus, part of the uncinate fasciculus and part of the anterior thalamic radiation. Spatial maps of the
rest of connections and their descriptions are given in Supplementary Material.
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In addition, DTI measures of some of the showed correlations at the uncorrected level with results of the
task (see Supplementary Material). In summary, FA and AD of the tracts from the fusiform to the inferior
frontal regions correlated with reaction time of the facial task, and RD of the tracts from the insula to the
middle frontal correlated with d prime of the spatial task.

4 DISCUSSION

By using Independent Component Analysis of fMRI data, we found two different patterns of brain
activity in two working memory tasks: one involving working memory for spatial locations (visuospatial)
and another involving working memory for facial stimuli (visuoperceptual). Both tasks recruited areas
of the frontal and parietal lobes, while the fusiform gyrus was only recruited in working-memory for
facial stimuli. We found statistical differences in brain activation between tasks, consisting on higher
involvement of ocipital pole, fusiform gyrus and inferior frontal gyrus during the performance of the facial
WM task. We used DTI data to investigate whether the stimuli-specificity found in functional data was
also present in the properties measured in the structural connections. By doing a whole-brain analysis, we
identified a region in the left inferior fronto-occipital fasciculus and the left uncinate where AD correlated
with the response time in the facial WM task. We then used tractography to identify structural connections
related to the functional patterns observed with fMRI and we identified the main tracts connecting the main
areas involved in each task.

Results from fMRI data showed that both visuoperceptual and visuospatial tasks activated regions
described as forming part of the core working memory network. We observed bilateral activation of
the superior parietal lobule, frontal pole, dorsolateral-midventrolateral prefrontal cortex, and the anterior
insula. These activated regions coincide with those described in several meta-analyses of the n-back
task (Fuster, 1997; Owen et al., 2005; Rottschy et al., 2012). We also found brain activity involving
the ventral and lateral intraparietal region and the mid-temporal area, which receives strong input from
visual processing regions. For the facial working memory task, in addition to the fronto-parietal and
mid-temporal pattern of activity, we observed increased activity in the fusiform region and in the inferior
parietal gyrus. This is in agreement with previous works showing the involvement of the fusiform area
in face processing, including the detection and discrimination of faces (McCarthy et al., 1997; Haxby
et al., 2001; Kanwisher, 2010). It should be noted that the design of the task could not differentiate the
specific processes of face identification and facial memory, because the control task did not specifically
require face identification, and therefore, the involvement of the fusiform could also be explained by
differences in perceptual processing In the spatial task, the shape processing, which could be considered
a visuoperceptive process, was controlled by the task design, as the control task involved the same shape
and color figure as the target task; therefore, we did not identify the participation of any region of the
ventral stream. As expected due to the nature of the task, the superior parietal region of the dorsal stream
was involved (Rottschy et al., 2012).

The rest of the ROI pairs resulted in tractography maps that included several tracts, and that were in
accordance with reported structural brain connections (Catani et al., 2002).

In the whole-brain DTI analysis, we found a cluster in the left inferior fronto-occipital fasciculus and
the uncinate where AD correlated with RT for the facial WM task. In addition, by doing probabilistic
tractography, we identified the main tracts involved in the functional networks and we found that mean
FA and mean AD scores within the pathway connecting the fusiform and the inferior frontal ROIs
also correlated with facial RT. In all cases, subjects with higher AD or FA scores had faster reaction
times. Although these last results were not corrected for multiple comparisons and they are reported in
supplementary material, we believe that they support and extend the results obtained with the whole-
brain DTI analysis. Previous studies have reported positive correlations between reaction time and DTI
indices. In adult subjects,Gold et al. (2007) found that the speed of visual word recognition correlated
with tract integrity, measured with FA in parietal regions; and Tuch et al. (2005) found that reaction
time of visuospatial learning also correlated with FA values in the parietal region. In our results, the
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whole-brain analysis showed a negative correlation between AD and response time in the left hemisphere,
which differs from other studies showing right hemispheric preference in the correlation between DTI and
performance in facial recognition (Tavor et al., 2014). It has been suggested that AD is a more putative
measure of axonal integrity, providing information about the status of the axons (Di Paola et al., 2010) and
that it could be more directly related with the capacity of the brain white matter to conduct information
between different brain regions (Lazar et al., 2014). Furthermore, studies using animal models with
inflammatory and demyelinating lesions have concluded that AD reflects axonal transport properties
(Budde et al., 2009; DeBoy et al., 2007). Although we could not find a specific explanation for the fact
that the correlations with AD were found mainly in the left hemisphere, we suggest that, considering that
AD is more directly associated with processing speed, its correlations would be found more generally in
areas reflecting bilateral antero-posterior communication. In conclusion, our results suggest that AD could
be measuring axonal properties that are directly related to the capacity to conduct information between
brain regions (Lazar et al., 2014), whereas RD is related to myelination and measures properties of brain
maturation with a more direct impact on task performance.

As regards the rest of results of tractography analyses, which are reported in Supplementary material
because they did not survive correction for multiple comparisons, we found a correlation in the tract
connecting the insula and the middle frontal ROIs in the left hemisphere. That is, the RD of this tract
correlated with the d prime score in the spatial 2-Back task. Regions in the left hemisphere, ans specially
the left insula have been previously associated with the maintenance of information for object location
in fMRI studies (Passaro et al., 2013). In this case, as opposite to the facial task, the correlation was
found only with RD index. It has been suggested that RD is a measure of the degree of myelination and
reflects processes of brain maturation or degeneration (Song et al., 2002), and it has been related to task
performance in several studies (Tamnes et al., 2010; Ø stby et al., 2011; Tavor et al., 2014).

It should be noted that apart from this correlation, we did not find strong evidence of a structure-
performance relationship in the spatial WM task. We suggest several explanations for this lack of
correlation. One possibility is that task-performance may be the result of more complex network
interactions between structure and function in both positive and negative task-networks, as suggested
in other reports (Burzynska et al., 2013). In addition, this lack of relatiosnhips may also be attributable to
divergences between structure and function, and the fact that the tracts identified in the structural network
are shared by different functional networks (Park and Friston, 2013). In this case, some of the fasciculi,
like the SLF, would not be specific for the spatial WM task.

In summary, simultaneous use of two MRI techniques enabled us to characterize the function and
structure of working memory networks for spatial and facial stimuli. We studied the relationship between
brain structure and cognitive function and we conclude that networks underlying the working memory
function with spatial and visual stimuli share the fronto-parietal connections, and that facial working
memory involves additional recruitment of the fusiform gyri. Furthermore, the DTI results highlighted the
involvement of the inferior fronto-occipital fasciculus, as part of the fusiform-frontal connection during
working memory for faces. The study of brain networks, beyond the study of isolated brain regions,
is of increasing interest in the neuroscience community. The present study underlines the importance
of studying both the function and the structure of brain networks. Our results corroborate the idea that
functional networks are supported by structural connections of white matter pathways, but also partially
support the concept of divergence, introduced by Park and Friston (Park and Friston, 2013) according
to which the same structural connectivity can support many functions.

This study has several limitations. The first is the small sample size, especially for the DTI analysis.
Other limitations are related to the design of the study itself. In this regard, the first one is that we could
not control for eye movements, because we did not include a fixation condition in the task design. In
addition, the control conditions used for spatial and facial WM were not exactly equivalent, so part of the
observed activity in the fusiform cortex could be related to facial-processing rather than to face-memory
processes.
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We have studied the main tracts derived from the different ROI-related activations of the task; however,
the use of the fMRI analysis as the basis for describing the working memory networks may have missed
certain brain regions. Finally, another limitation is the fact that the results from tractography analyses did
not survive correction for multiple comparisons and they should be interpreted with caution.
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Figure 1.Spatial maps obtained from ICA decomposition of functional data. (A) Main component for the
spatial WM task; (B) main component for the facial WM task.

Figure 2. Overlapping map of the ICA, the whole-brain DTI and the tractography analyses.
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structural connectivity of visuospatial and visuoperceptual working memory. 
 
SUPPLEMENTARY MATERIAL 
Supplementary Methods: 

 

Definition of ROIs from functional data 

We used the maps obtained in the two task-specific separate ICA analyses to create a set of ROIs for the facial 

and the spatial task. For each task, we selected the component having the best fit with the task timeseries and we 

thresholded its spatial map (Z>2.3) to obtain the clusters of higher activity. Each cluster was assigned to a 

region using the Harvard-Oxford atlas available in FSL. Overall, 5 ROIs were created in each hemisphere 

(Table S.1): the Fusiform ROI (Fus ROI), the Inferior Frontal ROI (IF ROI), the Insular ROI (Ins ROI), the 

Middle Frontal ROI (MF ROI) and the Parietal ROI (Par ROI). The Fus ROI was specific for the facial task, 

whereas the other ROIs were common for spatial and facial tasks. 

 
 

ROI id Hemisphere IC Atlas region MNI coordinates 

Fus ROI L/R facial Fusiform (-33, -70, -12) 

IF ROI L/R spatial/facial Inferior frontal (-34 58, 8) 

Ins ROI L/R spatial/facial Insular cortex (-30, 22, 4) 

MF ROI L/R spatial/facial Middle frontal (-42, 26, 28) 

Par ROI L/R spatial/facial Parietal cortex (-29, -58, 52) 

Temp ROI R spatial/facial Temporal cortex (55, -37, 1) 

 
Table S.1. Definition and localization of ROIs from functional data. 

!
 
Tractography analysis 
Tractography was used to estimate the connectivity between pairs of ROIs (seed ROI and end ROI) individually 

for each subject, resulting in maps indicating the probability of each voxel to have a tract connecting both ROIs.  

The entire probabilistic tracking procedure was carried out in each subject’s anatomical space. Using the 

probabilistic tractography algorithm, we obtained individual maps for each pair of ROIs, where each voxel 

value indicated the probability of having fibers connecting the two regions.  

These maps were thresholded (at 2% of their maximum) in order to remove very-low probability fiber paths. 

Individual FA scores inside each pathway were calculated as the mean FA of all voxels in the tract and they 

were then used to quantify and compare the integrity of the identified paths. Tract-averaged scores for axial 

diffusivity (AD) and radial diffusivity (RD) were also obtained for the main tracts of interest. 
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Supplementary Results: 
 

Seed-to-seed fiber tracking 

Using probabilistic tractography, we obtained the main tracts involved in the functional tasks. In total, 15 ROI-

to-ROI pathways were identified in each hemisphere (Figure S.1). Although all possible pairs of ROIs were 

explored, we aimed to characterize stimulus-dependent tracts. For this purpose, we focused on the pathways 

from the fusiform ROI to the parietal and inferior frontal regions (facial/visuoperceptive WM), and the pathway 

from the mid-frontal to parietal regions (spatial/visuospatial WM).  

 

 

Correlation between DTI measures and task performance 

We evaluated correlations between task measures and DTI parameters of the tracts identified previously (i.e, all 

the ROI-to-ROI paths shown in Figure S.1). 

The mean FA values of the tracts connecting the Fus ROI and the IF ROI correlated with RT scores during the 

facial-WM 2-Back task (r=-0.639, p=0.001 for the right hemisphere, r=-0.464, p=0.030 for the left hemisphere).  

Axial Diffusivity (AD) of the same pathway (Fus to IF ROIs) also correlated with RT scores of the facial WM 

2-back task (r=-0.449, p=0.036 in the right hemisphere and r=-0.603, p=0.003 in the left hemisphere).  

In addition, we observed a significant correlation between d prime measures and RD indices in the tracts 

connecting the Ins ROI and the MF ROI of the left hemisphere (r=-0.447, p=0.037). 

 

 

 
 

Figure S.1. Results of the ROI-to-ROI tractography. Functional ROIs are shown in green (left column and 
upper row) and their corresponding white matter connections are displayed in red. All tracts are thresholded at 

their 2% and averaged across all subjects. 
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In recent years, several theories have been proposed in attempts to identify the neural
mechanisms underlying successful cognitive aging. Old subjects show increased neural
activity during the performance of tasks, mainly in prefrontal areas, which is interpreted as
a compensatory mechanism linked to functional brain efficiency. Moreover, resting-state
studies have concluded that elders show disconnection or disruption of large-scale func-
tional networks. We used functional MRI during resting-state and a verbal n-back task with
different levels of memory load in a cohort of young and old healthy adults to identify pat-
terns of networks associated with working memory and brain default mode. We found that
the disruption of resting-state networks in the elderly coexists with task-related overacti-
vations of certain brain areas and with reorganizations within these functional networks.
Moreover, elders who were able to activate additional areas and to recruit a more bilateral
frontal pattern within the task-related network achieved successful performance on the
task. We concluded that the balanced and plastic reorganization of brain networks under-
lies successful cognitive aging. This observation allows the integration of several theories
that have been proposed to date regarding the aging brain.

Keywords: fMRI, aging, working memory, compensation, plasticity, frontal cortex, default-mode network

INTRODUCTION
Cognitive aging affects a wide range of functions including work-
ing memory, processing speed, and inhibitory function (Park et al.,
2002; Reuter-Lorenz and Park, 2010). Despite the gradual decline
described in aging, some seniors are able to keep their cogni-
tive functions with minimal differences in performance compared
to healthy young subjects. Several theories have been proposed
in attempts to identify the neural correlates of what is known
as “successful cognitive aging” (Cabeza et al., 2002a; Park and
Reuter-Lorenz, 2009).

Functional imaging is well suited to the study of changes in
brain functionality in advanced age (for a review, see Eyler et al.,
2011). Across various cognitive domains, age-related functional
reorganizations have been described as changes in brain respon-
sivity in several brain regions when subjects are scanned during
the performance of cognitively demanding tasks (see Spreng et al.,
2010; Turner and Spreng, 2012 for recent meta-analyses). Hence,
both reductions and increases in activity have been described
in different brain regions. Reductions in activity are commonly
located in the left prefrontal cortex (PFC) and temporo-occipital
areas and are normally associated with less efficient processing
in aging (Cabeza et al., 1997), but the interpretation of increases
is less straightforward. However, when associated with better or
preserved performance they have been commonly interpreted as
evidence of functional compensatory mechanisms (Grady, 2000;
Cabeza et al., 2002b; Grady et al., 2006; Mattay et al., 2006;
Berlingeri et al., 2010).

Moreover, recent advances in neuroimaging techniques have
made possible the study of functional brain networks that can be
observed even during resting-state periods, revealing an intrin-
sic network-based organization of the brain (Smith et al., 2009).
In this context, cognitive aging has been associated with disrup-
tions/reorganizations within certain brain functional networks
(Grady et al., 2010; Littow et al., 2010; Tomasi and Volkow,
2012). Particularly, areas forming part of the default-mode net-
work (DMN), including the posterior cingulate cortex and middle
frontal gyrus, are characterized by patterns of age-related decreases
in functional connectivity (Damoiseaux et al., 2008; Hafkemei-
jer et al., 2012). These functional correlation reductions have
been associated with cognitive decline across multiple domains
in healthy old individuals (Andrews-Hanna et al., 2007).

Despite this evidence of changes in both brain activity and brain
connectivity, very few studies have simultaneously investigated the
DMN and a task-related brain network in aging in terms of their
BOLD responsivity and functional connectivity, and during both
resting and cognitive performance. Hence, the objective of our
study was to investigate the brain connectivity/activity character-
istics of the DMN and a working memory network in a sample of
healthy elders (HE) and young adults (YA). In the present report,
we placed special emphasis on investigating how these patterns
differ between elders who are able to keep their working mem-
ory abilities at a level comparable to young subjects during the
most demanding conditions, and those who show a decline in this
function.

Frontiers in Human Neuroscience www.frontiersin.org June 2012 | Volume 6 | Article 152 | 1

75



Sala-Llonch et al. Network reorganizations in successful aging

MATERIAL AND METHODS
SUBJECTS AND SCANNING
Twenty-nine HE (mean age: 62.55, SD: 9.43, 20 women) and 16
YA (mean age: 21.31, SD: 2.41, 9 women) were included in the
study. Old subjects underwent neuropsychological testing, includ-
ing memory, language, attention, and visuoperceptive/visuospatial
functions. The neuropsychological battery was similar to the one
used recently in other reports by our group (e.g., Arenaza-Urquijo
et al., 2011). All reported scores were within normal range on the
domains tested, and all subjects had scores on the mini-mental
state examination ≥ 24 (mean: 28.83, SD: 1.64). All participants
in the study were scanned using functional MRI (fMRI) in the
resting-state and during the performance of a working memory
task, an n-back task including different levels of working memory
load (n = 0, 1, 2, and 3 letters to be retained: see Braver et al., 1997;
Sala-Llonch et al., 2011). Basically, during the task, blocks of 0-, 1-,
2-, 3-back conditions lasting 26 s were presented four times each
in a pseudo-randomized order with inter-block fixation periods
(white cross on a black screen) of 13 s. Before any n-back block
was presented, an instruction screen appeared to inform the sub-
ject about the task. Within each block, a sequence of 12 letters was
presented in white in the center of the screen; each letter remained
visible for 500 ms, with an inter-stimulus interval of 1500 ms. The
subject was asked to press a button when the stimulus on the
screen was the same as the one showed n items before. For the
0-back task, subjects were asked to press the button when the let-
ter “X” appeared. All subjects underwent a training session before
entering the scanner in order to ensure that they understood the
task instructions. All achieved a task accuracy of at least 80%.

Subjects’ responses were collected and the performance of each
n-back condition was calculated using the d ′ measure (Z hit
rate − Z false alarm rate), with higher d ′ scores indicating higher
performance. Mean reaction time (RT) was also collected for each
subject within each load condition.

The HE group was further subdivided into low performers
(low-HE) and high-performers (high-HE) according to the score
obtained during the performance of the 3-back task (percentile 50
of the distribution). Between-group differences in d ′ measures and
RT measures were assessed with one-way ANOVA implemented in
PASW vs. 17 (Statistical Package for Social Sciences, Chicago, IL,
USA).

Functional MRI images were acquired on a 3T MRI scan-
ner (Magnetom Trio Tim, Siemens Medical Systems, Germany),
using a 32-channel coil. During both the resting-fMRI and
task-fMRI conditions, a set of T2∗-weighted volumes (150
and 336 volumes for resting and task fMRI, respectively) were
acquired (TR = 2000 ms, TE = 29 ms, 36 slices per volume, slice
thickness = 3 mm, distance factor = 25%, FOV = 240 mm, matrix
size = 128 × 128). A high-resolution 3D structural dataset (T1-
weighted MPRAGE, TR = 2300 ms, TE = 2.98 ms, 240 slices,
FOV = 256 mm; matrix size = 256 × 256; slice thickness = 1 mm)
was also acquired in the same scanning session for registration
purposes.

ANALYSIS OF RESTING-fMRI DATA
Resting-state fMRI images were analyzed with independent com-
ponent analysis (ICA) and a dual-regression approach. Image

preprocessing was carried out in FSL1 and AFNI2 softwares. This
step included the removal of the first five scans, motion correc-
tion, skull stripping, spatial smoothing using a Gaussian kernel
of FWHM = 6 mm, grand mean scaling, temporal filtering (low-
pass and high-pass filters). Functional scans were then registered
to their corresponding individual MPRAGE structural scans using
linear registration with 6 df (Jenkinson and Smith, 2001) and fur-
ther registered to the standard MNI template by concatenation of
both registration matrices. Resampling resolution was set to 3 mm.

We used ICA, as implemented in MELODIC (Beckmann et al.,
2005) from FSL, in order to decompose resting-state data into 25
independent components (ICs) which described common spatio-
temporal independent patterns of correlated brain activity across
the whole group of subjects in the study. Within the 25 ICs
obtained, we identified the common resting-state functional net-
works (Damoiseaux et al., 2008; Smith et al., 2009; van den Heuvel
and Hulshoff Pol, 2010), and selected the DMN, and two compo-
nents corresponding to the right-lateralized and the left-lateralized
fronto-parietal networks (right-FPN, and left-FPN). The selection
procedure was performed by visual inspection together with tem-
plate matching with online available data (Smith et al., 2009; Biswal
et al., 2010) and with average task-related activation maps obtained
from the data-driven analysis (see Figure 1 for a summary of the
methods used in the study).

Then, we used the spatial patterns of the three selected net-
works in a dual-regression approach (as described in Filippini
et al., 2009; Leech et al., 2011) in order to explore between-group
differences. In the dual-regression analysis, we first regressed each
subject’s resting-state functional data against the spatial IC maps
and obtained individual time-series associated to each network
(DMN, right-FPN, and left-FPN). These time-courses were then
used to regress again the individual preprocessed fMRI data and
to obtain individual spatial maps that were also specific for net-
works. Spatial maps were finally tested for voxel-wise differences
between groups using non-parametric testing with 5000 random
permutations.

ANALYSIS OF TASK-fMRI DATA
Task-fMRI images were analyzed with a model-driven pro-
tocol to explore ROI-based BOLD signal change across task
conditions. We also used a dual-regression analysis of task-
fMRI data to investigate differences in network integra-
tion.

First, data preprocessing was performed in FSL and AFNI. It
included motion correction, skull stripping, spatial smoothing
using a Gaussian kernel of FWHM = 6 mm, grand mean scaling,
temporal filtering (high-pass filter of sigma = 80 s), and registra-
tion to individual anatomical scans and to MNI standard space
(Jenkinson and Smith, 2001). As in resting-fMRI, resampling
resolution was set to 3 mm.

Task-fMRI data were analyzed using standard random-effects
general linear model. We used the procedure as implemented in
FMRI Analysis Tool (FEAT, Woolrich et al., 2001) from FSL. Five

1http://www.fmrib.ox.ac.uk/fsl/
2http://afni.nimh.nih.gov/afni
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FIGURE 1 | Summary of the methods used for preprocessing and analysis of fMRI data.

regressors were used to model the different blocks (0, 1-, 2-, 3-
back, and fixation), and five additional regressors, modeling their
first derivatives were introduced as nuisance variables. Contrast
images were computed from the preprocessed functional data as
follows: for the different levels of cognitive load, each condition
was evaluated against the 0-back (1-, 2-, and 3-back >0-back),
and for the fixation blocks, the signal was compared against the
average of the other blocks. Average maps were created including
all the subjects in the study. To investigate the load-dependent dif-
ferences in brain activity especially within the networks of interest,
we used peak coordinates of the selected IC spatial maps in order
to create a set of spherical ROIs of 6 mm radius and extracted the
percentage signal change for each contrast.

Between-group differences on all the quantitative measures of
percentage signal change were assessed using one-way ANOVA
implemented in PASW. The significance level was set at p < 0.05
(two-tailed).

As with resting-fMRI data, a dual-regression approach was
applied to the preprocessed task-fMRI data. The spatial maps of
the DMN and the right- and left-frontoparietal networks were
used to regress task-fMRI data and to obtain individual pat-
terns of these networks during task-performance. These maps
were introduced in a voxel-wise group comparison with 5000
permutations.

RESULTS
Low-HE and high-HE groups differed in task-performance, but
there were no significant differences in the performance of the 3-
back task between YA and high-HE subjects. Mean RT was higher
in elders than in young subjects for all the conditions, but there
were no differences between high-HE and low-HE. Across the

two groups of elders, age, gender, and MMSE were comparable,
but high-HE had significantly higher education levels (Table 1;
Figure 2).

The main findings, which are reported in the following sections,
are summarized in Table 2.

RESTING-STATE fMRI ANALYSIS
Spatial maps derived from the whole-sample ICA decomposition
of resting-state fMRI data corresponding to the DMN, the right-
FPN, and the left-FPN are shown in Figure 3. The component
identified as the DMN (Figure 3A) comprised areas in the frontal
pole, middle frontal gyrus, and paracingulate gyrus (BA9, 10), the
precuneus and posterior cingulate gyrus (BA7, 18, 23, 30, 31), and
bilaterally in the superior occipital and posterior parietal cortices
(BA19, 39). The right- and left-lateralized FPN (Figures 3B,C)
involved areas in the middle and inferior frontal cortices (BA8, 9,
10, and 46), the paracingulate and anterior cingulate (BA6, BA8,
BA32) and right and left parietal lobes, including the supramar-
ginal and angular gyri. Although the lateralized pattern differed
between right- and left-FPN, there was a broad overlap between
these two networks.

With the dual-regression approach, we found differences in
these three networks during the resting-state. As regards the DMN,
low-HE exhibited decreased connectivity during the resting-
state in frontal areas compared with YA and high-HE groups
(Figure 4A). In the right-FPN (Figure 4B), the high-HE group
had lower resting-state connectivity than both YA and low-HE
groups. Finally, in the left-FPN (Figure 4C), low-HE, and high-
HE had decreased resting-state connectivity in frontal areas. In
the low-HE group, this decreased connectivity was observed in the
left inferior and middle frontal gyri, left pars opercularis and left
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frontal pole (BA10, 44, 45, and 46). High-HE subjects showed the
same pattern of decreased connectivity, but it was bilateral and
extended to the anterior part of the superior temporal gyri, also
including the anterior cingulate (BA6) and the insular cortex.

ANALYSIS OF TASK-RELATED BRAIN ACTIVITY
We focused the analysis of task-fMRI data on a set of spherical ROIs
that were selected from the networks identified in the resting-fMRI
analysis (Figure 5). Three ROIs were created from the right-FPN:
one in the right inferior frontal gyrus: right-IFG ROI (MNI coor-
dinates: x = 42, y = 54, z = −4), one in the right middle frontal
gyrus: right-MFG ROI (MNI coordinates: x = 46, y = 34, z = 32)
and one in the right superior parietal gyrus: right-PAR ROI (MNI
coordinates: x = 42, y = −58, z = 52). Three were created from
the left-FPN: one in the left inferior frontal gyrus: left-IFG ROI
(MNI coordinates: x = −46, y = 50, z = 0), one in the left middle
frontal gyrus: left-MFG ROI (MNI coordinates: x = −46, y = 34,
z = 20), and one in the left superior parietal gyrus: left-PAR ROI
(x = −46, y = −50, z = 31). We also selected a region in the ante-
rior cingulate cortex that was common for the right-FPN and the
left-FPN: ACC ROI (MNI coordinates: x = −2, y = 26, z = 44).
As regards the DMN, we defined four ROIs, one in the precuneus
and posterior cingulate cortex: PCC ROI (MNI coordinates: x = 2,
y = −66, z = 40), two in the left and right lateral occipital cortices:
LLO ROI (MNI coordinates: x = −38, y = −82, z = 32), and RLO
ROI (MNI coordinates: x = 42, y = −74, z = 36) and one in the
middle frontal cortex: MFC ROI (MNI coordinates: x = 2, y = 58,
z = −8).

As shown in Figure 5, ROIs inside the task-positive networks
showed, in general, a positive percentage of signal change during
cognitively demanding blocks and negative values during fixation
blocks, and ROIs within the DMN had the opposite behavior.

BOLD responsivity scores for the high-HE group were sig-
nificantly higher (p < 0.05) than those for the YA group in the
ACC, left-IFG, and right-IFG ROIs, for the 1-back and the 2-
back conditions, and only in the right-IFG for the 3-back con-
dition. No differences were observed in these regions between
the low-HE and the YA groups. Moreover, in the right-IFG ROI,
responsivity was also greater in the high-HE group than in
the low-HE during 2-back blocks. During fixation, the high-HE
group also showed greater deactivation of the right-IFG compared
to YA.

No significant group-effects were found in task-related BOLD
response in left-MFG, right-MFG, left-PAR, and right-PAR ROIs,
during any of the cognitive blocks. During fixation, both high-
HE and low-HE groups showed increased deactivation of the
right-PAR ROI compared to YA.

Within the MFC ROI, only the YA group showed a clear pat-
tern of deactivation (negative percentage signal change) during
cognitive blocks that was not observable in the other two groups.
High-HE had significant differences in BOLD response of this
region with respect to YA in 2-back condition. Overall, in the
MFC ROI we observed positive percentage signal changes asso-
ciated with cognitive demands in high-HE whereas these values
were always negative for the YA group.

In the PCC ROI, high-HE also showed increased task-related
activation during cognitive blocks thanYA. Although the described
effect could be seen at all the load levels of the task, this dif-
ference was statistically significant only in 1-back blocks. In
Figure 4, we see that the PCC was moderately activated in the
YA group when performing the levels of the task with the highest
demand.

Finally, no group differences were found regarding BOLD
response in left and right lateral occipital ROIs within the DMN.

Table 1 | Group demographics and behavioral results on the n-back task.

YA High-HE Low-HE High-HE vs. low-HE comparison

Age (years) 21.31 (2.41) 60.67 (10.35) 64.5 (8.23) t = 1.12, p = 0.27
Gender (men/women) 9/7 10/5 10/4
MMSE 28.83 (1.64) 28.82 (1.72) t = 0.02, p = 0.98
Education 3.42 (0.67) 2.67 (0.68) t = 2.53, p = 0.02

ANOVA

F Sig. YA vs. high-HE YA vs. low-HE High-HE vs. low-HE

0-Back – d ′ 3.52 (0.12) 3.30 (0.44) 3.30 (0.33) 2.37 0.106 0.064 0.070 0.992
0-Back – RT (sec.) 0.42 (0.08) 0.44 (0.08) 0.47 (0.09) 1.13 0.334 0.658 0.150 0.310
1-Back – d ′ 3.47 (0.23) 2.96 (0.71) 3.03 (0.68) 3.53 0.038 0.018 0.045 0.722
1-Back – RT (sec.) 0.44 (0.09) 0.52 (0.07) 0.54 (0.11) 4.61 0.016 0.025 0.007 0.585
2-Back – d ′ 3.16 (0.39) 2.69 (0.54) 2.37 (0.92) 5.47 0.008 0.054 0.002 0.190
2-Back – RT (sec.) 0.47 (0.10) 0.59 (0.10) 0.65 (0.16) 8.15 0.001 0.009 <0.001 0.222
3-Back – d ′ 2.60 (0.55) 2.30 (0.47) 1.60 (0.35) 17.42 < 0.001 0.09 <0.001 <0.001
3-Back – RT (sec.) 0.55 (0.11) 0.67 (0.12) 0.65 (0.17) 3.25 0.05 0.022 0.057 0.704

MMSE, mini-mental state examination; d ′, sensitivity index for task-performance; F, result of the analysis of variance (ANOVA) between the three groups; Sig.,
significance; RT, reaction time; YA, young adults; High-HE, high-performing healthy elders; Low-HE, low-performing healthy elders. Education levels were quantified
in a scale from 1 to 4, with: 1, no education; 2, primary school; 3, secondary school, and 4, university studies. All scores are given as mean(SD). Significance levels
are given in p values and considered significant when p < 0.05.
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NETWORK ANALYSIS ON TASK-fMRI DATA
We used the dual-regression approach to explore differences in the
selected networks during task-fMRI. High-HE showed decreased
connectivity of the DMN with respect to YA (Figure 6A). How-
ever, in the right-FPN the same subjects had increased connectivity
with respect to YA in several regions (Figure 6B), including the
frontal pole, precentral gyrus, supplementary motor areas, ante-
rior cingulate and paracingulate, insular cortex, and frontal orbital
areas (BA6, 9, and 10). Finally, we found no differences in the
connectivity of the left-FPN during task-fMRI.

FIGURE 2 | Results of the task-performance during the different
working memory loads. (A) Mean and SD values of d prime index, and (B)
Mean and SD values of average response time (RT), in seconds. *Indicates
p < 0.05 in the ANOVA post hoc analysis of between-group differences. 0B,
0-back; 1B, 1-back, 2B, 2-back, 3B, 3-back, YA, young adults; high-HE,
high-performing healthy elders; low-HE, low-performing healthy elders.

DISCUSSION
Using ICA we identified intrinsic functional connectivity net-
works that are in operation during resting-state fMRI and
during task fMRI, supporting the idea that brain connectiv-
ity has a network-based functional substrate that is not lim-
ited to the fact that the brain is functionally active (Smith
et al., 2009). Although the ICA decomposition allowed the iden-
tification of other common resting-state brain networks, we
only studied the DMN and the networks in the frontopari-
etal system due to their involvement in the working mem-
ory task that we used (similar to the approach considered in
Leech et al., 2011). The three networks were identified in both
resting- and task-fMRI, and functional reorganizations were
found in both conditions, but in different directions. During
the resting-state, elders with lower task-performance showed the
largest differences with respect to YA within DMN connectiv-
ity, and those with higher task-performance showed reduced
connectivity of the frontoparietal system. However, during task-
fMRI, high-HE showed decreased connectivity of the DMN and
increased connectivity of the FPN, but no differences were found
between low-HE and young individuals. The analysis of task-
related brain activity helped the interpretation of the results
obtained by the ICA and the dual-regression approach, reveal-
ing task-related overactivations in frontal areas of the FPN, and
the involvement of some DMN areas during task-performance
in high-HE. Overall, our data show an age-by-performance
modulation of brain networks that depends on external task
demands.

COMPENSATORY ROLE OF DMN AREAS
Our data suggest evidence of reorganizations in the DMN con-
nectivity in elders when compared to the group of YA. The pattern
of functional reorganizations varied according to whether sub-
jects are performing a cognitively demanding task. We found
decreases in DMN connectivity that are in agreement with pre-
viously published work reporting age-related reduced DMN con-
nectivity at rest (Damoiseaux et al., 2008; Littow et al., 2010;
Wu et al., 2011; Tomasi and Volkow, 2012), and during task-
fMRI (Sambataro et al., 2010, see Hafkemeijer et al., 2012 for
a review of DMN and aging). Interestingly, we observed that
disruptions in DMN connectivity, when studied at rest, were
related with poor cognitive performance in the working mem-
ory domain. Studying the DMN connectivity in a group of aged
subjects, Andrews-Hanna et al. (2007) also found a relationship

Table 2 | Summary of findings.

Resting-state fMRI Task-fMRI

Dual-regression analysis ROI analysis Dual-regression analysis

DMN Low-HE: decreased connectivity in frontal
areas

High-HE: activation of MFC during task. Increased
activation of PCC with task

High-HE: decreased connectivity

Right-FPN High-HE: overall decreased connectivity High-HE: increased activation in ACC, right-IFG High-HE: increased connectivity
of frontal and prefrontal areasHigh-HE and Low-HE: increased deactivation of

PAR during fixation
Left-FPN High-HE and Low-HE: decreased connectivity High-HE: increased activation in ACC and left-IFG n.d.
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between anterior-posterior connectivity and cognitive perfor-
mance in several cognitive domains. Moreover, during task-fMRI,
only the high-HE group showed a reduction in DMN connectivity
compared to YA. This latter result suggests dynamic modula-
tions/interactions within networks during the performance of a
task: old adults who performed the task successfully needed to
recruit/engage additional brain resources which are typically not
related to the WM task. Other studies using task-fMRI (Grady
et al., 2006, 2010; Filippini et al., 2012) reported age-related
increases in activity within DMN regions, such as the mPFC,
which are not traditionally implicated in task-performance. They
also found that these activity increases were accompanied with
decreases in task-related functional connectivity in the same areas
(Grady et al., 2010).

The results we obtained with ICA and dual-regression were
supported and extended by those of brain responsivity in DMN
regions. We found differences in brain activity (measured as per-
cent signal change) in two core regions of the DMN, the PCC,
and the MFC. High-HE subjects recruited these areas during task-
performance, but YA and low-HE groups did not. The recruitment
of the anterior/frontal node of the DMN was specific for the high-
HE group (Figure 5), a finding that supports the utilization of
non-task-related resources as a compensation mechanism in the
aged brain (Cabeza et al., 1997; Mattay et al., 2006). The fact that
this area is located in the frontal node may support the notion of
the Posterior-anterior shift in aging (PASA model, see Davis et al.,
2008). As regards the recruitment of the PCC node, this effect was
also observable in the YA cohort at high levels of working mem-
ory load, in agreement with other studies showing involvement
of the precuneus in cognitive control (Leech et al., 2011). High-
performing elders recruited this area at the lowest memory load.
This result can be interpreted in the light of the compensation-
related utilization of neural circuits hypothesis (CRUNCH) which
posits that older adults need to recruit additional neural resources
at lower loads than younger adults (Reuter-Lorenz and Cappell,
2008; Schneider-Garces et al., 2009).

In summary, age-related DMN disruptions have been discussed
either as a compensatory mechanism (Grady et al., 2010; Filippini
et al., 2012) or as a functional marker of deficits in cognitive con-
trol that lead to poorer performance in elder subjects (Persson
et al., 2007; Sambataro et al., 2010; Hedden et al., 2012). Our
results clearly support the first idea. However it is also plausible
that both mechanisms of compensation and dysfunction associ-
ated with cognition coexist in the aging brain. Finally, as our elder
groups differed in educational attainment, the present results may
also be interpreted within the context of neural compensation, as
posited by Stern (2009).

CHANGES IN FRONTOPARIETAL NETWORKS
Focusing on the brain networks responsible for the working mem-
ory system, we found functional reorganizations in terms of altered
connectivity and greater BOLD response in the high-performing
elders. During the resting-state, high-HE showed decreased con-
nectivity of the frontoparietal system. To date, few studies have
reported age-related changes in resting-state networks other than
the DMN. Filippini et al. (2012) found age-related increases in the
executive network at rest but they did not consider the cognitive

FIGURE 3 | Identification of the functional networks of interest from
the ICA analysis of resting-state fMRI. Spatial maps of the three selected
networks. (A) DMN network, (B) right-FPN, and (C) left-FPN.

FIGURE 4 | Results of the dual-regression analysis of resting-state
fMRI. Maps show voxel-wise group-comparisons thresholded at a FWE
corrected significance level of p < 0.05. (A) Group differences in the DMN,
(B) Group differences in the right-FPN, and (C) group differences in the
left-FPN.

performance of the subjects. However, Littow et al. (2010) found
age-related decreases in some resting-state networks related to
executive control.

During task-fMRI, the ROI-based analysis of responsivity
showed increased activity in frontal regions, mainly in the infe-
rior frontal gyrus bilaterally and in the anterior cingulate cortex.
The same behavior was observed in the left middle frontal gyrus,
but did not reach the level of significance established. Although
the greater effects were observed in areas of the right-FPN, we
interpreted this result as a reduction of asymmetry in task-related
networks. The results of the dual-regression on task-fMRI also
showed that the spatial pattern of the right-FPN becomes almost
bilateral in high-HE subjects when compared to YA. Grady et al.
(2010) also found that a greater expression of a network com-
prising right dorsolateral prefrontal areas predicted better per-
formance in old adults. In some studies, the contralateral PFC
activation was interpreted as a result of the difficulty of recruiting
specialized neural mechanisms (the dedifferentiation hypothesis,
see Persson et al., 2006; Eyler et al., 2011); however, our results
add evidence for the compensation hypothesis, and more specif-
ically for the hemispheric asymmetry reduction in older adults
(HAROLD, Cabeza et al., 2002a) pattern, since this effect was spe-
cific to the elders who performed well on the task. In addition,
studies with other techniques such as TMS have also supported
the HAROLD model and its relationship with successful aging in
episodic memory performance (Solé-Padullés et al., 2006; Manenti
et al., 2011).
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FIGURE 5 | Results of the ROI-based analysis of brain activity during the performance of the n-back task. Within each defined ROI, percent signal change
are plotted for each group and condition. *Indicates that differences have a significance value of p < 0.05.

FIGURE 6 | Results of the dual-regression analysis of task-related fMRI.
Maps show voxel-wise group-comparisons thresholded at a FWE corrected
significance level of p < 0.05. (A) Group differences in the DMN, and (B)
Group differences in the right-FPN.

Compensation mechanisms in terms of increased task-related
BOLD activity have also been described in the pathologic brain in
Alzheimer’s disease and mild cognitive impairment (Bokde et al.,
2010). However, these patterns usually reflect activation of addi-
tional brain areas due to inefficient functioning of a network that
might be compromised by disease; what is more, they have been
studied in the context of keeping the same performance level as
their age-matched controls, rather than in the context of increased
performance as we found in healthy adults.

The interpretation of our results as the specialization of a
task-related network also provides an insight into the study of

intervention methods that include cognitive training in healthy
aging. Although the neural mechanisms of training effects are still
unknown, it has been commonly reported that higher BOLD activ-
ity is associated with better performance or higher improvement
in task-performance (for a review see Klingberg, 2010). Thus, the
study of inter-individual differences in the relationship between
brain activity and behavioral outcome may be a key point in
the design of effective training programs for patients whose lim-
ited cognitive capacities are restricting their daily lives. Moreover,
further studies should determine whether these brain-behavior
associations are limited to the cognitive task that is being per-
formed in the scanner or whether they can be extrapolated to other
cognitive domains. The latter question can be partially answered
by examining our results of the resting-state analysis, since we
already found brain reorganizations in the resting-state networks
in high-performing old subjects.

CONCLUSION
Using analysis of functional data during resting-state and dur-
ing the performance of an n-back task, we provide evidence that
the precepts of the principal neurocognitive theories of aging can
be accommodated. First, functional compensation mechanisms
were found: older people with successful working memory per-
formance utilize different brain regions during cognitive activity
than young people, and some of these regions are recruited from
the DMN, a brain network that is typically deactivated during
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working memory performance. The recruitment of the frontal
DMN regions was specific to elders with high-performance levels;
however, recruitment of the precuneus was also observed in young
subjects at high levels of working memory load (supporting the
CRUNCH hypothesis, Reuter-Lorenz and Cappell, 2008). More-
over, within task-related networks, high-performing elders showed
both increased connectivity and increased BOLD response bilat-
erally in frontal regions, supporting the HAROLD model (Cabeza
et al., 2002a) as well as the PASA model (Davis et al., 2008). More-
over, these dynamic network reorganizations were different at rest,
when high-performing elders had less disruption of the DMN

but greater disruption within the frontoparietal system than low-
performing elders. We therefore suggest that successful aging is
characterized by a level of brain plasticity that may mediate the
efficient recruitment of functional resources in task-relevant areas
when the subject is exposed to a task with a high cognitive demand
even though this recruitment is not observable at rest. It has been
proposed that there is an optimal level of brain plasticity during
the age span that varies across subjects and allows this adaptation
to a changing environment. Thus, both hypo- and hyperplastic
mechanisms may set the stage for dementia or age-related declines
in cognitive abilities (Pascual-Leone et al., 2011).

REFERENCES
Andrews-Hanna, J. R., Snyder, A.

Z., Vincent, J. L., Lustig, C.,
Head, D., Raichle, M. E., and
Buckner, R. L. (2007). Disrup-
tion of large-scale brain systems
in advanced aging. Neuron 56,
924–935.

Arenaza-Urquijo, E. M., Bosch, B., Sala-
Llonch, R., Solé-Padullés, C., Jun-
qué, C., Fernández-Espejo, D., Bar-
galló, N., Rami, L., Molinuevo, J.
L., and Bartrés-Faz, D. (2011). Spe-
cific anatomic associations between
White matter integrity and cogni-
tive reserve in normal and cogni-
tively impaired elders. Am. J. Geriatr.
Psychiatry 19, 33–42.

Beckmann, C. F., De Luca, M., Devlin,
J. T., and Smith, S. M. (2005). Inves-
tigations into resting-state connec-
tivity using independent component
analysis. Philos. Trans. R. Soc. Lond.
B Biol. Sci. 360, 1001–1013.

Berlingeri, M., Bottini, G., Danelli, L.,
Ferri, F., Traficante,. D, Sacheli, L.,
Colombo, N., Sberna, M., Sterzi,
R., Scialfa, G., and Paulesu, E.
(2010). With time on our side? Task-
dependent compensatory processes
in graceful aging. Exp. Brain Res. 205,
307–324.

Biswal, B. B., Mennes, M., Zuo, X.
N., Gohel, S., Kelly, C., Smith, S.
M., Beckmann, C. F., Adelstein, J.
S., Buckner, R. L., Colcombe, S.,
Dogonowski, A. M., Ernst, M., Fair,
D., Hampson, M., Hoptman, M. J.,
Hyde, J. S., Kiviniemi, V. J., Kötter,
R., Li, S. J., Lin, C. P., Lowe, M.
J., Mackay, C., Madden, D. J., Mad-
sen, K. H., Margulies, D. S., May-
berg, H. S., McMahon, K., Monk,
C. S., Mostofsky, S. H., Nagel, B. J.,
Pekar, J. J., Peltier, S. J., Petersen, S.
E., Riedl,V., Rombouts, S. A., Rypma,
B., Schlaggar, B. L., Schmidt, S., Sei-
dler, R. D., Siegle, G. J., Sorg, C., Teng,
G. J., Veijola, J., Villringer, A., Walter,
M., Wang, L., Weng, X. C., Whitfield-
Gabrieli, S., Williamson, P., Windis-
chberger, C., Zang, Y. F., Zhang, H.
Y., Castellanos, F. X., and Milham, M.
P. (2010). Toward discovery science

of human brain function. Proc. Natl.
Acad. Sci. U.S.A. 107, 4734–4739.

Bokde, A. L. W., Karmann, M., Born,
C., Teipel, S. J., Omerovic, M., Ewers,
M., Frodl, T., Meisenzahl, E., Reiser,
M., Möller, H. J., and Hampel, H.
(2010). Altered brain activation dur-
ing a verbal working memory task in
subjects with amnestic mild cogni-
tive impairment. J. Alzheimers Dis.
21, 103–118.

Braver, T. S., Cohen, J. D., Nystrom, L. E.,
Jonides, J., Smith, E. E., and Noll, D.
C. (1997). A parametric study of pre-
frontal cortex involvement in human
working memory. Neuroimage 5,
49–62.

Cabeza, R., Anderson, N. D., Locan-
tore, J. K., and McIntosh, R.
(2002a). Aging gracefully: com-
pensatory brain activity in high-
performing older adults. Neuroim-
age 17, 1394–1402.

Cabeza, R., Dolcos, F., Graham, R., and
Nyberg, L. (2002b), Similarities and
differences in the neural correlates
of episodic memory retrieval and
working memory. Neuroimage 16,
317–330.

Cabeza, R., Grady, C. L., Nyberg,
L., McIntosh, A. R., Tulving, E.,
Kapur, S., Jennings, J. M., Houle,
S., and Craik, F. I. M. (1997).
Age-related differences in neural
activity during memory and
retrieval: a positron emission
tomography study. J. Neurosci. 17,
391–400.

Damoiseaux, S., Beckmann, C. F.,
Arigita, E. J., Barkhof, F., Schel-
tens, P., Stam, C. J., Smith, S.
M., and Rombouts, S. A. (2008).
Reduced resting-state brain activ-
ity in the “default network” in
normal aging. Cereb. Cortex 18,
1856–1864.

Davis, S. W., Dennis, N. A., Daselaar,
S. M., Fleck, M. S., and Cabeza, R.
(2008). Que PASA? The posterior-
anterior shift in aging. Cereb. Cortex
18, 1201–1209.

Eyler, L. T., Sherzai, A., Kaup, A. R.,
and Jeste, D. V. (2011). A review of
functional brain imaging correlates

of successful cognitive aging. Biol.
Psychiatry 70, 115–122.

Filippini, N., MacIntosh, B. J., Hough,
M. G., Goodwin, G. M., Frisoni,
G. B., Smith, S. M., Matthews, P.
M., Beckmann, C. F., and Mackay,
C. E. (2009). Distinct patterns
of brain activity in young carri-
ers of the APOE-epsilon4 allele.
Proc. Natl. Acad. Sci. U.S.A. 29,
1021–1026.

Filippini, N., Nickerson, L. D., Beck-
mann, C. F., Ebmeier, K. P., Frisoni,
G. B., Mathews, P. M., Smith, S.
M., and Mackay, C. E. (2012). Age-
related adaptations of brain func-
tion during a memory task are
also present at rest. Neuroimage 59,
565–572.

Grady, C. L. (2000). Functional brain
imaging and age-related changes
in cognition. Biol. Psychol. 54,
259–281.

Grady, C. L., Protzner, A. B., Kovace-
vic, N., Strother, S. C., Afshin-Pour,
B., Wojtowicz, M., Anderson, J. A.
E., Churchill, N., and McIntosh, A.
R. (2010). A multivariate analysis
of age-related differences in default
mode and task-positive networks
across multiple cognitive domains.
Cereb. Cortex 20, 1432–1447.

Grady, C. L., Springer, M. V., Hong-
wanishkul, D., McIntosh, A. R.,
and Winocur, G. (2006). Age-related
changes in brain activity across the
adult lifespan. J. Cogn. Neurosci. 18,
227–241.

Hafkemeijer, A., Van der Grond, J., and
Rombouts, S. A. (2012). Imaging the
default mode network in aging and
dementia. Biochim. Biophys. Acta.
1822, 431–441.

Hedden, T., Van Dijk, K. R., Shire, E.
R., Sperling, R. A., Johnosn, K. A.,
and Buckner, R. L. (2012). Failure
to modulate attentional control in
white matter pathology. Cereb. Cor-
tex. 22, 1038–1051.

Jenkinson, M., and Smith, S. M. (2001).
A global optimization method
for robust affine registration of
brain images. Med. Image Anal. 5,
143–156.

Klingberg, T. (2010). Training and plas-
ticity of working memory. Trends
Cogn. Sci. (Regul. Ed.) 14, 317–324.

Leech, R., Kamouriech, S., Beckmann,
C. F., and Sharp, D. J. (2011). Frac-
tionating the default mode network:
distinct contributions of the ventral
and dorsal posterior cingulate cortex
to cognitive control. J. Neurosci. 31,
3217–3224.

Littow, H., Elseoud, A. A., Haapea,
M., Isohanni, M., Moilanen, I.,
Mankinen, K., Nikkinen, J., Rahko,
J., Rantala, H., Remes, J., Starck,
T., Tervonen, O., Veijola, J., Beck-
mann, C., and Kiviniemi, V. J.
(2010). Age-related differences in
functional nodes of the brain cor-
tex – a high model order group
ICA study. Front. Syst. Neurosci. 4:32.
doi:10.3389/fnsys.2010.00032

Manenti, R., Cotelli, M., and Miniussi,
C. (2011). Successful physiological
aging and episodic memory: a brain
stimulation study. Behav. Brain Res.
216, 153–158.

Mattay, V. S., Fera, F., Tessitore, A.,
Hariri, A. R., Berman, K. F., Das, S.,
Meyer-Lindenberg, A., Goldberg, T.
E.,Callicott, J. H.,and Weinberger,D.
R. (2006). Neurophysiological corre-
lates of age-related changes in work-
ing memory capacity. Neurosci. Lett.
392, 32–37.

Park, D. C., Lautenschlager, G., Hedden,
T., Davidson, N. S., Smith, A. D., and
Smith, P. K. (2002). Models of visu-
ospatial and verbal memory across
the adult life span. Psychol. Aging 17,
229–320.

Park, D. C., and Reuter-Lorenz, P.
(2009). The adaptive brain: aging
and neurocognitive scaffolding.
Annu. Rev. Psychol. 60, 173–196.

Pascual-Leone, A., Freitas, C., Ober-
man, L., Horvath, J. C., Halko, M.,
Eldaief, M., Bashir, S., Vernet, M.,
Shafi, M., Westover, B., Vahabzadeh-
Hagh, A. M., and Rotenberg, A.
(2011). Characterizing brain corti-
cal plasticity and network dynamics
across the age-span in health and dis-
ease with TMS-EEG and TMS-fMRI.
Brain Topogr. 24, 302–315.

Frontiers in Human Neuroscience www.frontiersin.org June 2012 | Volume 6 | Article 152 | 8

82



Sala-Llonch et al. Network reorganizations in successful aging

Persson, J., Lustig, C., Nelson, J. K., and
Reuter-Lorenz, P. A. (2007). Age dif-
ferences in deactivation: a link to
cognitive control? J. Cogn. Neurosci.
19, 1021–1032.

Persson, J., Nyberg, L., Lind, J., Lars-
son, A., Nilsson, L. G., Ingvar,
M., and Buckner, R. L. (2006).
Structure-function correlates of cog-
nitive decline in aging. Cereb. Cortex
16, 907–915.

Reuter-Lorenz, P. A., and Cappell, K.
A. (2008). Neurocognitive aging and
the compensation hypothesis. Curr.
Dir. Psychol. Sci. 17, 177–182.

Reuter-Lorenz, P. A., and Park, D. C.
(2010). Human neuroscience and
the aging mind: a new look at old
problems. J. Gerontol. B Psychol. Sci.
Soc. Sci. 65B, 405–415.

Sala-Llonch, R., Peña-Gómez, C.,
Arenaza-Urquijo, E. M., Vidal-
Piñeiro, D., Bargalló, N., Junqué, C.,
and Bartrés-Faz, D. (2011). Brain
connectivity during resting state and
subsequent working memory task
predicts behavioural performance.
Cortex. (in press).

Sambataro, F., Murty, V. P., Callicott, J.
H., Tan, H. Y., Das, S., Weinberger,
D. R., and Mattay, V. S. (2010).

Age-related alterations in default
mode network: impact on work-
ing memory performance. Neuro-
biol. Aging 31, 839–852.

Schneider-Garces, N. J., Gordon, B. A.,
Brumback-Peltz, C. R., Shin, E., Lee,
Y., Sutton, B. P., Maclin, E. L., Grat-
ton, G., and Fabiani, M. (2009).
Span, CRUNCH, and beyond: work-
ing memory capacity and the aging
brain. J. Cogn. Neurosci. 22, 655–669.

Smith, S. M., Fox, P. T., Miller, K. L.,
Glahn, D. C., Fox, P. M., Mackay,
C. E., Filippini, N., Watkins, K. E.,
Toro, R., Laird, A. R., and Beckmann,
C. F. (2009). Correspondence of the
brain’s functional architecture dur-
ing activation and rest. Proc. Natl.
Acad. Sci. U.S.A. 106, 13040–13045.

Solé-Padullés, C., Bartrés-Faz, D., Jun-
qué, C., Clemente, I. C., Molinuevo,
J. L., Bargalló, N., Sánchez-Aldeguer,
J., Bosch, B., Falcón, C., and Valls-
Solé, J. (2006). Repetitive transcra-
nial magnetic stimulation effects on
brain function and cognition among
elders with memory dysfunction. A
randomized sham-controlled study.
Cereb. Cortex 16, 1487–1493.

Spreng, R. N., Wojtowiicz, M., and
Grady, C. L. (2010). Reliable

differences in brain activity between
young and old adults: a quantita-
tive meta-analysis across multiple
domains. Neurosci. Biobehav. Rev.
34, 1178–1194.

Stern, Y. (2009). Cognitive reserve. Neu-
ropsychologia 47, 2015–2028.

Tomasi, D., and Volkow, N. D. (2012).
Aging and functional brain net-
works. Mol. Psychiatry. 17, 549–558.

Turner, G. R., and Spreng, R. N. (2012).
Executive functions and neurocog-
nitive aging: dissociable patterns of
brain activity. Neurobiol. Aging 33,
826.e1–826.e13.

van den Heuvel, M. P., and Hulshoff
Pol, H. E. (2010). Exploring the
brain network: a review on resting-
state fMRI functional connectiv-
ity. Eur. Neuropsychopharmacol. 20,
519–534.

Woolrich, M. W., Riple, B. D., Brady, J.
M., and Smith, S. M. (2001). Tem-
poral autocorrelation in univariate
linear modelling of FMRI data. Neu-
roimage 14, 1370–1386.

Wu, J. T., Wu, H. Z., Yan, C. G., Chen,
W. X., Zhang, H. Y., He, Y., and
Yang, H. S. (2011). Aging-related
changes in the default mode network
and its anti-correlated networks: a

resting-state fMRI study. Neurosci.
Lett. 504, 62–67.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 15 January 2012; accepted: 15
May 2012; published online: 07 June
2012.
Citation: Sala-Llonch R, Arenaza-
Urquijo EM, Valls-Pedret C,
Vidal-Piñeiro D, Bargalló N, Junqué
C and Bartrés-Faz D (2012) Dynamic
functional reorganizations and relation-
ship with working memory performance
in healthy aging. Front. Hum. Neurosci.
6:152. doi: 10.3389/fnhum.2012.00152
Copyright © 2012 Sala-Llonch, Arenaza-
Urquijo, Valls-Pedret , Vidal-Piñeiro,
Bargalló, Junqué and Bartrés-Faz. This
is an open-access article distributed under
the terms of the Creative Commons Attri-
bution Non Commercial License, which
permits non-commercial use, distribu-
tion, and reproduction in other forums,
provided the original authors and source
are credited.

Frontiers in Human Neuroscience www.frontiersin.org June 2012 | Volume 6 | Article 152 | 9

83



84



Changes in whole-brain functional networks and memory
performance in aging

Roser Sala-Llonch a,b, Carme Junqué a,b, Eider M. Arenaza-Urquijo a, Dídac Vidal-Piñeiro a,
Cinta Valls-Pedret c, Eva M. Palacios a, Sara Domènech d, Antoni Salvà d, Nuria Bargalló e,
David Bartrés-Faz a,b,*

aDepartament de Psiquiatria i Psicobiologia Clínica, Universitat de Barcelona, Barcelona, Catalonia, Spain
b Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
cUnitat de Lípids, Servei Endicronologia i Nutrició, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
d Institut Català de l’Envelliment, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
eRadiology Service, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain

a r t i c l e i n f o

Article history:
Received 30 May 2013
Received in revised form 27 March 2014
Accepted 11 April 2014
Available online 19 April 2014

Keywords:
Graph theory
Resting-state fMRI
Aging
Frontal lobe
Memory

a b s t r a c t

We used resting-functional magnetic resonance imaging data from 98 healthy older adults to analyze
how local and global measures of functional brain connectivity are affected by age, and whether they
are related to differences in memory performance. Whole-brain networks were created individually by
parcellating the brain into 90 cerebral regions and obtaining pairwise connectivity. First, we studied
age-associations in interregional connectivity and their relationship with the length of the connections.
Aging was associated with less connectivity in the long-range connections of fronto-parietal and
fronto-occipital systems and with higher connectivity of the short-range connections within frontal,
parietal, and occipital lobes. We also used the graph theory to measure functional integration and
segregation. The pattern of the overall age-related correlations presented positive correlations of
average minimum path length (r ¼ 0.380, p ¼ 0.008) and of global clustering coefficients (r ¼ 0.454, p <

0.001), leading to less integrated and more segregated global networks. Main correlations in clustering
coefficients were located in the frontal and parietal lobes. Higher clustering coefficients of some areas
were related to lower performance in verbal and visual memory functions. In conclusion, we found that
older participants showed lower connectivity of long-range connections together with higher func-
tional segregation of these same connections, which appeared to indicate a more local clustering of
information processing. Higher local clustering in older participants was negatively related to memory
performance.

! 2014 Elsevier Inc. All rights reserved.

1. Introduction

Cognitive aging is characterized by notable interindividual
variability. Some persons show few changes with advancing age,
whereas others present a typical “age-associated cognitive decline”.
A subpopulation of older adults exhibit marked cognitive deficits,
which may be indicative of incipient neurodegenerative processes
(Yaffe et al., 2009). Despite this heterogeneity, most studies
comparing old and young populations highlight a cognitive profile
commonly characterized by decreased performance in tests of ex-
ecutive functions, processing speed, and memory (Hedden and

Gabrieli, 2004). Of these cognitive domains, age-related memory
changes are particularly relevant because memory dysfunctions are
the first cognitive symptoms in Alzheimer’s disease (AD) (McKhann
et al., 2011) and in its prodromal stage, mild cognitive impairment
(MCI) (Albert et al., 2011). Furthermore, longitudinal population-
based studies have shown that, even in normal older adults, low
scores on memory tests are reliable predictors of future dementia
(Rabin et al., 2012). Classically, memory impairment in the aged and
in dementia has been attributed to hippocampal dysfunctions, but
newer methodologies allowing analyses of the whole-brain dy-
namics from neuroimaging data indicate that memory dysfunctions
may result from a disruption of complex large-scale brain networks
(Seeley et al., 2009). The characterization of changes in brain con-
nectivity related to normal aging and their relationship with dif-
ferences in memory function may help to identify preclinical stages
of degenerative illness.
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Functional magnetic resonance imaging (fMRI) has been widely
used to study the brain functional changes associated with aging and
their relation to cognitive decline (Grady, 2012). When acquired dur-
ing task performance, fMRI has revealed a complex pattern charac-
terized by decreases, increases, or no differences in brain activity
between old and young participants, depending on variables such as
the type of the cognitive test and the level of difficulty (Grady, 2005).
Nonetheless, there is a relative consensus that the increase in the ac-
tivity of the prefrontal cortex is a common characteristic of cognitive
studies of aging (Turner and Spreng, 2012). It has been hypothesized
that this increased demand on frontal lobe processing reflects the
progressive inefficiency of neural circuits that occurs during the aging
process (Park and Reuter-Lorenz, 2009). Other common (but not
contrasting) hypotheses support less lateralized functional processing
(Cabeza et al., 2002), or anterior-posterior (i.e., more frontal than oc-
cipital activity) shifts in brain activity (Davis et al., 2008) associated
with more optimal cognitive processing in older adults. Besides task
activation studies, fMRI acquired during resting-state allows investi-
gationof the functional connectivityof spontaneousbrainfluctuations
when individuals arenotengaged ina specific task (Biswal et al.,1995).
One advantage of resting-state data over task-based data is that they
aremucheasier to recordand theyarenot influencedby taskdifficulty.
In resting-state fMRI, the findings regarding age-related changes
include both increased and decreased connectivity between brain
regions (Ferreira and Busatto, 2013). It has been suggested that these
increases and decreases in brain activation and connectivity are pro-
moted by a differential effect which depends on the nature of the
connections, and that long-range connections are more affected than
short-range connections (Alexander-Bloch et al., 2012; Tomasi and
Volkow, 2012). Graph theory has emerged as an effective tool for
investigating the effects of localized connectivity changes on whole-
brain functioning (Bullmore and Bassett, 2011; Rubinov and Sporns,
2010; Stam and van Straaten, 2012). Graph theory measures allow
quantification of topological changes in whole-brain connectivity
(Filippi et al., 2013). Measures of segregation and integrity of brain
networksprovide insight into thechangesoccurringat theglobal level.
These measures relate to the dynamic interactions of the networks
elementsandhowtheyareembedded in thewhole-brainconnectivity
structure, providing information that cannot be obtained from prop-
erties of the elements. In graph theory, whole brain networks are
drawnas a set of nodes defined byanatomic or functional regions, and
a set of edges that are calculated as the connectivity betweeneachpair
of nodes. Paths can then be described as sequences of edges linking
pairs of nodes, and they are considered to be the basis for inter-neural
communication and information flow (Sporns, 2011). Thus, for any
network, the minimum path length measures its integrity, whereas
the clustering coefficient measures the functional segregation. Small-
world networks have the specific characteristic of showing a balance
between integration and segregation, with some densely inter-
connected groups of nodes and some long-range connections that
allow fast information transferability (Watts and Strogatz, 1998).
Graph theory approaches have been used to explore the organization
of the healthy brain as well as functional alterations in neurologic or
psychiatric pathologies (Guye et al., 2010; Wang et al., 2010a). Some
studies have reported disrupted small-world properties from resting-
fMRI inAD(Sanz-Arigitaet al., 2010;Supekaret al., 2008), inpreclinical
AD(Brieret al., 2014), and innormalold individuals carryingtheAPOE-
4 allele, a genetic risk for AD (Brown et al., 2011).

Only a few studies have used graph theory methodologies to
examine whole-brain resting-state networks in healthy aging.
Comparing groups of young and old participants, Achard and
Bullmore (2007) found healthy aging to be associated with a less
efficient global network, whereas Meunier et al. (2009) reported
the restructuring of the overall modular organization of the aged
brain. At the regional level, the 2 studies found that the main age

effects were located in the frontal and temporal regions. Moreover,
the effects of these local changes on whole-brain functioning and
their relationship with differences in memory function as age
progresses have not yet been investigated in large samples. In the
present study we used resting-state fMRI and graph theory mea-
sures to: (1) depict and characterize subtle age-related brain
functional changes in region-to-region connectivity; and (2)
determine the effect of these functional connectivity changes on
whole-brain complex network measures and memory functions.

We hypothesized that older participants would show alterations
in the functional connectivity between several brain regions and
that altered region-to-region connectivity would impact the mea-
sures of functional segregation and integrity. We also hypothesized
that network measures would explain individual differences in
memory performance in the context of healthy aging.

2. Methods

2.1. Participants, neuropsychological assessment, and scanning

One hundred and four healthy older adults (mean age: 64.87
years, standard deviation [SD]: 11.8; 56 females, 48 males) were
included in the study. Six individuals were excluded a posteriori
because of vascular subcortical lesions or abnormal cognitive per-
formance, leaving a final sample of n ¼ 98. Participants were
recruited from the Institut Català de l’Envelliment (Catalan Institute
for the Study of Aging) and from medical centers in Barcelona. The
study was approved by the University of Barcelona ethics com-
mittee and all participants gave written consent. They underwent
neuropsychological screening to rule out MCI, and all those
included in the analysis presented scores within the normal range
on all tests (attention, memory, language, and visuo-perceptual and
executive functions).

Auditory memory learning and visual memory scores were ob-
tained by the Rey Auditory Verbal Learning Test (RAVLT) and the
Rey-Osterrieth Complex Figure (ROCF), respectively. In the RAVLT,
participants were asked to recall as many words as possible from an
initial oral 15-word list, in any order. This procedurewas repeated 5
times consecutively (acquisition trials 1e5); the score for each trial
was the number of words correctly recalled, and the memory score
was obtained as the sum of the words recalled in each trial. In this
study, the mean (SD) of this test was 44.15 (10.7). The measure that
we selected from the ROCF was the 30-minute delayed recall of the
complex figure. The mean (SD) of our sample was 18.72 (5.06).

All participants were scannedwith a 3TMRI scanner (Magnetom
Trio Tim, Siemens Medical Systems, Germany), using a 32-channel
coil. The scanning protocol included functional MRI acquisition
during a 5-minute resting-state (150 T2*-weighted volumes,
repetition time¼ 2000ms, echo time¼ 16ms, 40 slices per volume,
slice thickness ¼ 3 mm, distance factor ¼ 25%, field of view ¼
240 mm, matrix size ¼ 128 " 128) and a high-resolution 3D
structural dataset (T1-weighted MP-RAGE, repetition time ¼
2300 ms, echo time ¼ 2.98 ms, 240 slices, field of view ¼ 256 mm;
matrix size ¼ 256 " 256; slice thickness ¼ 1 mm). For the resting-
state fMRI, participants were asked to close their eyes, not to fall
asleep, and not to think about anything special.

2.2. Gray matter volume

Gray matter (GM) volume of each participant was measured
using the high-resolution MPRAGE acquisition. We used FMRIB’s
Automated Segmentation Tool (FAST), (Zhang et al., 2001) from FSL
to obtain whole-brain tissue masks corresponding to gray matter,
white matter, and cerebrospinal fluid (CSF). Whole-brain GM vol-
umes were calculated as the number of voxels in the GM mask
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multiplied by the GM density (average voxel intensity within the
GM mask).

2.3. Processing of resting-state fMRI data

Functional data sets from resting fMRI were preprocessed indi-
vidually. Preprocessing was carried out using tools available in FSL
(version5,http://www.fmrib.ox.ac.uk/fsl) andAFNI (http://afni.nimh.
nih.gov/afni) software. Briefly, it included the removal of the first 5
scans, motion correction, skull stripping, grand mean scaling, and
temporal filtering (bandpass filtering of 0.01e0.1 Hz). Then, nuisance
variables were regressed out from data; these included the 6 motion
parameters, aswell as CSFandwhitematter oscillations. To define the
CSF and white matter regressors, we used the CSF and WM masks
obtained from the segmentation ofMPRAGE imagewith the FAST tool
and we obtained mean fMRI signal oscillations within the 2 masks.

Finally, registration matrices from each individual functional
space to MNI spaces were calculated using a 2-step procedure that
included: (1) registration from functional space to each individual
MPRAGE anatomic scan, and (2) registration from the anatomic
scan to the standard MNI template. Both steps were performed
using linear registration algorithms (Jenkinson and Smith, 2001).
The number of degrees of freedom was set at 6 for the functional
scans and 12 for the anatomic images.

2.4. Atlas-based definition of nodes

Weused the automated anatomical labeling (AAL) atlas (Tzourio-
Mazoyer et al., 2002) to parcellate the whole brain into a set of re-
gions of interest (ROIs). The AAL atlas includes 45 ROIs in each
hemisphere and is based on anatomic landmarks on the standard
MNI surface (Table 1). AAL regionswere registered to each individual
functional space using previously obtained transformationmatrices
(Jenkinson and Smith, 2001) to extract ROI-associated time series
and to construct networks of functional connectivity.

2.5. Network computation and parameters

Connectivity matrices were created using all the AAL-ROIs as
network nodes andusing Pearson correlation of pairs of time series to
calculate the edges. These matrices were then converted into binary
undirected networks by thresholding and binarizing the connections.
We used a relative threshold for the correlations to keep the 15%
strongest connections of all the possible connections for each indi-
vidual (called the sparsity threshold). However, since it has been
demonstrated that the choice of the threshold may have a strong ef-
fect on the estimation of the network parameters (Bullmore and
Bassett, 2011), we performed additional analyses using a range of
thresholds (see description of additional analysis in the following and
Supplementary Material). The networks obtained were analyzed in
terms of their node-to-node connectivity and their local and global
network characteristics. We used the MATLAB toolbox provided by
Rubinov and Sporns (2010) to obtain graph theory measures.

2.5.1. Inter-regional connectivity
The measures of connectivity between each pair of nodes were

obtained from the individual correlation matrices. To classify the
nature of the connections we calculated the length of each
connection as the physical distance between their 2 nodes
(Euclidean distance between the centroid’s coordinates of the
nodes in the standard MNI space).

2.5.2. Clustering coefficient (C)
The clustering coefficient (Ci) of a node i is the ratio of the

number of existing edges to all the possible edges in the node’s

direct network. It corresponds to the fraction of triangles around a
node and is equivalent to the fraction of a node’s neighbors that are
neighbors of each other:

Ci ¼
2ti

kðki # 1Þ
(1)

where ti measures the number of triangles around the node i.
Clustering coefficients can be averaged across all the regions to
obtain the global clustering coefficient.

2.5.3. Characteristic path length (L)
The characteristic path length is the average of the shortest path

lengths (i.e., number of edges) between all pairs of nodes in the
network. The shortest path length between 2 nodes is the lowest
number of edges that must be included in the network to connect
the 2 nodes. Lower characteristic path lengths indicate higher

Table 1
AAL regions

ROI Lobe Name

Central region
1 Precentral gyrus PRE
2 Postcentral gyrus POST
3 Rolandric operculum RO

Frontal lobe
4 Superior frontal gyrus, dorsolateral F1
5 Middle frontal gyrus F2
6 Inferior frontal gyrus, opercular part F3OP
7 Inferior frontal gyrus, triangular part F3T
8 Superior frontal gyrus, medial F1M
9 Supplementary motor area SMA
10 Paracentral lobule PCL
11 Superior frontal gyrus, orbital part F1O
12 Superior frontal gyrus, medial orbital F1MO
13 Middle frontal gyrus, orbital part F2O
14 Inferior frontal gyrus, orbital part F3O
15 Gyrus rectus GR
16 Olfactory cortex OC

Temporal lobe
17 Superior temporal gyrus T1
18 Heschl gyrus HES
19 Middle temporal gyrus T2
20 Inferior temporal gyrus T3

Parietal lobe
21 Superior parietal gyrus P1
22 Inferior parietal P2
23 Angular gyrus AG
24 Supramarginal gyrus SMG
25 Precuneus PQ

Occipital lobe
26 Superior occipital gyrus O1
27 Middle occipital gyrus O2
28 Inferior occipital gyrus O3
29 Cuneus Q
30 Calcarine fissure V1
31 Lingual gyrus LING
32 Fusiform gyrus FUSI

Limbic lobe
33 Temporal pole: superior temporal gyrus T1P
34 Temporal pole: middle temporal gyrus T2P
35 Anterior cingulate and paracingulate gyri ACIN
36 Median cingulate and paracingulate gyri MCIN
37 Posterior cingulate gyrus PCIN
38 Hippocampus HIP
39 Parahippocampal gyrus PHIP
40 Insula INS

Subcortical
41 Amygdala AMYG
42 Caudate nuclei CAU
43 Lenticular nucleus, putamen PUT
44 Lenticular nucleus, pallidum PAL
45 Thalamus THAL

Key: AAL, automated anatomical labeling; ROI, region of interest.
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routing efficiency, because the information exchange involves
fewer steps. This measure is representative of the brain’s functional
integration, that is, the ability to rapidly combine specialized in-
formation from different brain regions.

Lw ¼ 1
n

X

i˛N
Li ¼ 1

n

X

i˛N

P
i˛N;j s idij
ðn # 1Þ

(2)

2.5.4. Small-world coefficient
Finally, the small-world coefficient measures the balance be-

tween functional segregation (i.e., the presence of functionally
specialized modules) and integration (i.e., the large number of
intermodular links). At the practical level, small-world networks
are characterized by high clustering coefficients and relatively low
path lengths (compared with random networks).

S # W ¼
C=Crand
L=Lrand

(3)

Where Crand and Lrand are, respectively, the clustering coefficient
and the average minimum path length calculated for a random
network with the same number of edges (same sparsity).

2.6. Statistical analyses

Age-related changes in the global and local measures described
previouslywere tested using SPSS software (v21 SPSS Inc, Chicago, IL,
USA). We first performed linear regressions with age for the region-
to-region connectivity and considered them to be significant at p <

0.001. This value accounts for only 4 false positives within all the
possible pairs of regions. All the parameters from graph theory
(regional and global clustering coefficient, characteristic path length,
global efficiency, and small-world coefficient) were also regressed
against age using linear correlation. Further, all the global parameters
were included in a multiple-regression analysis to predict age.

GM volumes were also correlated with age and with global
graph theory metrics.

Finally, regional clustering coefficients were correlated with
individual scores of memory tests. We explored simple correlations
as well as age-corrected partial correlations to identify brain re-
gions involved in verbal and visual memory. Further, to determine
whether age has a causal role between clustering and memory or if,
on the contrary, clustering coefficients mediate the relationship
between age and memory, we performed a mediation analysis us-
ing the methods described in Preacher and Hayes 2008. In the
mediation models, we included age, the average clustering within
areas that correlated with memory, and the individual memory
scores for verbal and visual memory, separately. Two different
models were tested in each case: in the first model, clustering co-
efficients were considered as a mediator in the correlation between
age and memory; and in the second model, age was considered as a
mediator between clustering coefficients and memory. These 2
mediation models were tested using bootstrapping with 5000 it-
erations and a confidence interval (CI) level of 95% (Hayes, 2009).

2.7. Methodological issues

We evaluated certain methodological issues related to the
definition of networks that may have influenced the results:

2.7.1. Effect of the connectivity threshold
Although the main results are extracted from the matrices using

a relative threshold of 15%, we also created networks using a range

of thresholds from 5% to 40%, and repeated the age-correlation
analyses with them.

2.7.2. Effect of negative correlations
To account for pairs of nodes showing negative functional con-

nectivity, we converted negative connections into positive con-
nections by using the squared value of connectivity r2 and repeated
all the analyses.

2.7.3. Effect of the brain parcellation strategy
For the main analysis, we used the AAL template to define

the brain regions, a widely used approach in graph theory in-
vestigations. However, we wanted to evaluate the consistency of
the results over different parcellations. We also evaluated graph
theory measures on a parcellation derived from a high-order in-
dependent component analysis (ICA) using MELODIC tool from FSL
(Beckmann et al., 2005; Ray et al., 2013).

2.7.4. Differences in ROI size
Because AAL ROIs can vary significantly in size, we sought to

determine whether there was a correlation between the size of the
ROIs and the age of the participants.

3. Results

3.1. Inter-regional functional connectivity

Connectivity matrices of 90x90 regions were used to study the
effects of age on inter-regional connectivity. We also evaluated
the relationship between these differences in connectivity and the
physical length of the edges. The edges with significant correlations
(p < 0.001) with age are represented in Fig. 1. Significant edges are
presented in a node-to-node matrix (Fig. 1A), in a scatter plot as a
function of edge length (Fig. 1B), and in a brain-graph representa-
tion (Fig.1C). We foundwithin-lobe age-related increases in frontal,
parietal, and occipital regions, and decreases in the connections
mainly from frontal to parietal and occipital regions. As can be
observed in Fig. 1C and in Supplementary Tables 1.1 to 1.3, inter-
hemispheric connections exhibiting increases with advancing age
were in general of shorter range (i.e., frontal-frontal, or occipital-
occipital, parietal-parietal), whereas those showing age-related
decreases involved edges of greater length, mostly affecting
fronto-parietal connectivity. Table 2 shows the number of nodes
and connections that correlated significantly with age (see
Supplementary Material for complete information).

3.2. Global network metrics

Age was positively correlated with average clustering co-
efficients (r ¼ 0.454, p < 0.001) and minimum path length (r ¼
0.380, p ¼ 0.008), and negatively correlated with global efficiency
(r ¼ #0.395, p ¼ 0.001). However, the small-world coefficient was
not correlated with age at the threshold of 15% (r ¼ 0.03, p ¼ 0.76).
The plots of these correlations are represented in Fig. 2. The results
of the multiple regression analysis show that the clustering coef-
ficient was the best predictor of age among the 3 variables. Mini-
mum path length and small-world coefficient showed collinearity
with clustering coefficients (with tolerances of 0.42 and 0.98,
respectively).

3.3. Regional clustering coefficients and age

Several regions showed positive correlations of the clustering
coefficient with age (p < 0.05). The affected regions are mainly
located in frontal and parietal lobes (Fig. 3).
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3.4. Regional clustering coefficients and memory performance

We found a negative correlation between age of the participants
and performance in verbal and visual memory tests (r ¼ "0.56, p <
0.001 for verbal learning and r¼"0.255, p¼ 0.016 for visual recall).
Several nodes showed a negative correlation between their regional
clustering coefficients and scores on verbal and visual memory
tests. Correlations with verbal memory were found in: angular
gyrus (right/left), posterior cingulate (left), cuneus (left), precuneus
(right/left), hippocampus (right) occipital superior (left/right),
postcentral (left), and superior temporal (left) (Fig. 4A). Correlations
with visual memory were found in: angular gyrus (left/right),
caudate (left), frontal middle orbital (left), frontal superior medial
(right), hippocampus (right), superior parietal (left), and precuneus
(left) (Fig. 4C). To assess whether these changes were mediated by

age, we performed partial correlations between the average clus-
tering coefficients of all the brain regions. For verbal memory, we
found positive correlations in areas of the frontal lobe and a
negative correlation in the precuneus (Fig. 4B) For visual memory,
we also observed a trend (though not significant) toward positive
correlations in frontal areas. The negative correlations in precuneus
and angular gyrus remained significant after removing the age ef-
fects, and the correlation in the right parietal lobe was not main-
tained (Fig. 4B and D).

In the mediation analysis we found different results for the 2
domains tested. For verbal memory, the correlation between
regional clustering coefficients and verbal learning scores was
strongly mediated by age, with a 95% CI of the effect of ("39.95 to
"12.54), whereas the other model tested (clustering coefficients
mediating the correlation between age and memory) had a much

Table 2
Summary of the number of nodes and edges affected by age

Right hemisphere Left hemisphere Inter-hemispheric Total

Nodes with connectivity increases 22 27 49
Nodes with connectivity decreases 23 24 47
Connections with increases (positive/negative) 16 (16/0) 27 (27/0) 25 (25/0) 68 (68/0)
Connections with decreases (positive/negative) 13 (12/1) 9 (5/4) 23 (11/12) 45 (28/17)

Fig. 1. Analysis of ROI-to-ROI connectivity. Node pairs showing positive (red) and negative (blue) correlations with age (p < 0.001). (A) Matrix representation of the edges, ordered
by lobes and hemispheres. (B) Scatter plot showing the connections as a function of their normalized length (i.e., distance between their 2 nodes), and (C) graph representation of
the connections. Spheres represent the nodes (see Table 1 for codification of the areas). Only connections with a significant age effect are shown. Abbreviation: ROI, region of
interest. (For color reproduction, please refer to online article at neurobiologyofaging.org.)
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lower effect. On the contrary, for the visual memory recall, we
found that clustering coefficients mediated the correlation between
age and memory scores, with a 95% CI of (!0.14 to !0.03), and that
the other model tested was no statistically significant.

3.5. GM volume

Whole-brain GM volumes correlated negatively with partici-
pants’ age (r ¼ !0.44, p < 0.001), but there was no relationship
between GM volume and graph theory metrics (r ¼ !0.079, p ¼
0.44 for average clustering coefficient, r ¼ !0.125, p ¼ 0.219 for
average minimum path length, and r ¼ 0.020, p ¼ 0.84 for small-
world coefficient).

3.6. Methodological issues

As regards the choice of the threshold, the correlations with age
and global measures were observed at almost the whole range of

sparsity thresholds evaluated (i.e., from 5% to 40%). That is, the
clustering coefficient (in thresholds from 10%) and average path
length (in all thresholds) correlated positively with age and global
efficiency correlated negatively with age (p < 0.001, in all cases).
The small-world coefficient was positively correlated with age in
dense network configurations (in thresholds greater than 20%). See
Supplementary Material for a full description of these results.

The analysis of r2 network matrices to account for the negative
correlations also confirmed the correlations between age and the
global clustering coefficient (r ¼ 0.37, p < 0.001) and the average
minimum path length (r ¼ 0.23 p ¼ 0.026). The small-world coef-
ficient did not correlate with age (r ¼ !0.01, p ¼ 0.93).

Networks derived from the ICA data-driven approach showed a
positive correlation between age and the average clustering coef-
ficient (r ¼ 0.202, p ¼ 0.04) but no correlation with the average
minimum path length or the small-word coefficient.

Finally, there were no significant correlations between partici-
pants age and the size of any AAL ROIs (data not shown).

Fig. 2. Scatter-plots of the correlations between global network measures and age for healthy older adults. (A) Average network clustering coefficients, (B) average network
minimum path length, (C) global efficiency, and (D) small-world coefficient.

Fig. 3. Age effects on regional clustering coefficients. AAL regions that have a significant correlation with age are represented on the standard MNI brain. In all the ROIs, correlations
are positive and p < 0.05. Abbreviations: AAL, automated anatomical labeling; ROIs, regions of interest.
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4. Discussion

This study analyzed whole-brain functional networks and their
reorganization during healthy aging measured with resting-state
fMRI. In summary, by doing a cross-sectional analysis, we found
that increased age is related to less functional connectivity of long-
range brain connections and higher connectivity of short-range
connections. Furthermore, age of the participants correlated with
global clustering coefficients (higher segregation) and with aver-
aged minimum path length (lower integration), being global clus-
tering coefficients the best predictor of age among all the network
variables evaluated. We also explored network properties at the
local level and we found that correlations between age and clus-
tering coefficients were located mainly in frontal and parietal re-
gions. Finally, we studied how network measures were related to

the performance of verbal learning and visual recall tests, which
showed significant age-related decline. Higher local clustering
correlated negatively with interindividual differences in both tests.
For verbal memory, age had a mediating role in the correlation
between local clustering coefficients and learning scores, but for
visual memory, clustering coefficients mediated the correlation
between age and memory.

With the analysis of inter-regional connectivity, we found that
older participants had higher functional connectivity in connections
within the frontal, parietal, and temporal regions and weaker func-
tional connectivity between the frontal and parietal lobes. Further-
more, regarding the physical length of the connections, we found
that shorter connections showed positive correlations with age, and
that longer connections showed negative age-connectivity correla-
tions. Differential effects between long-range and short-range

Fig. 4. Correlation between regional clustering coefficients and memory (p < 0.05). (A) Regions that correlate with verbal learning scores (data available for n ¼ 94 participants), (B)
scatter plot of the average clustering coefficient in all the regions highlighted in (A) and the scores on verbal memory. (C) Regions that correlate with verbal learning scores, after
removing the effect of age, (D) regions that correlate with visual memory (data available for n ¼ 89 participants), (E) scatter plot of the previous correlation, and (F) regions that
correlate with visual memory after removing the effect of age.
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connections with aging have previously been reported using
fMRI (Alexander-Bloch et al., 2012; Tomasi and Volkow, 2012), and
also with other modalities such as electroencephalography and
magnetoencephalography (McIntosh et al., 2013). It has also been
demonstrated that long-distance connectionsplayan important role
in large-scale communication and integration of information
(Markov et al., 2013). In our study, around half of the connections
showing age-related reduced connectivity were inter-hemispheric
connections and a considerable number of these reduced connec-
tionswere theones affecting long-range interlobular (mainly fronto-
parietal) communication. In contrast, higher connectivity in older
adultswas found in connectionswith shorter lengths,mainly located
within the occipital, parietal, and frontal lobes. These results lend
support to the theory of a disruption in the communication between
hemispheres and between the anterior and the posterior parts of the
brain proposed by Cabeza 2002 and expressed in the hemispheric
asymmetry reduction in old adults (HAROLD) and posterior-anterior
shift in aging (PASA), (Davis et al., 2008) models. Both models are
based on observations derived from task-fMRI studies reflecting
interhemispheric and anterior-posterior reorganizations of brain
activity. Our study was performed during resting-state and we
cannot determine whether a less lateralized or a more frontalized
task-related processing is taking place. However, intrinsic brain
activity measured with resting-fMRI has been shown to provide
reliable information on the network structure underlying brain
functioning (Fox and Raichle, 2007; Smith et al., 2009; van den
Heuvel et al., 2009).

As regards global measures derived from graph theory, the
average minimum path length correlated positively with age, and
global efficiency correlated negatively with age. A general inter-
pretation of this result is that there is an overall age-related
decrease in the ease of communication between brain areas.
Achard and Bullmore (2007) also found increased path length and
reduced global efficiency of the functional network in old compared
with young participants, which they interpreted as evidence of the
topological marginalization of some brain areas because of the
aging process. In the present study we found a strong effect of
larger global clustering coefficients, indicating a greater propensity
for connections to occur in clusters surrounding each node rather
than in the form of long-distance connections (Watts and Strogatz,
1998). As evidenced here, graph theory-based approaches provide
integrative measures reflecting global efficiency (such as path
length) and segregated processing (such as clustering coefficients)
which may represent useful complementary information to the
“more classical” resting-state measures. Interestingly, in a multiple-
regression analysis one of these integrative measures, the increase
in clustering, was the best predictor of age.

The small-world coefficient did not correlate with age at the
threshold of 15%, indicating a balance between mean clustering
coefficient and average minimum path length. However, when
exploring higher thresholds (including a higher number of con-
nections), we found the small-world coefficient to be positively
correlated with age, also supporting the idea that the age-
differences in clustering coefficients are greater than those in
average minimum path length. From this result, we conclude that
the stronger coupling in short-distance functional connectivity
contribute to noneffective increases in local processing.

Studying the localization of changes in local clustering, we found
a pattern of age-related correlations mainly in the frontal and
parietal regions, including the precuneus, posterior cingulate, and
angular gyrus. We hypothesize that this clustered connectivity is a
consequence of a progressive disconnection of these regions from
the whole network and a hyperconnection with their spatially
closest regions (i.e., increased segregation), leading to more local
information processing. Although our results for regional metrics

are reported at the uncorrected level of p < 0.05, the pattern of
changes corresponds to areas typically affected by age (Turner and
Spreng, 2012).

We also found that local clustering coefficients correlated
negatively with the scores on verbal and visual memory tests.
Importantly, both verbal and visual memory scores showed an age-
related decline. Significant correlations with local clustering were
found mainly in associative areas, as well as in areas of the default-
mode network such as angular gyri, which are regions typically
involved in memory functions (Buckner et al., 2008). Participants
with greater age-related alterations in these areas also present
worse performance. Furthermore, poorer scores in visual memory
recall were associated with higher clustering in frontal and tem-
poral regions, including the hippocampus and the precuneus. These
regions have previously been identified as part of the memory
network, which is altered in aging and may indicate the involve-
ment of these areas in age-related differences in performance
(Vannini et al., 2013; Wang et al., 2010b).

The pattern of correlations between clustering and memory
differed significantly when the effect of age was removed. In
particular, areas in the frontal lobes and the interconnected stria-
tum (caudate) showed significant positive correlations for the
verbal memory task (a trend for the visual memory scores in the
same direction was also observed). These findings suggest that,
taking older adults as a group (i.e., without taking age variability
into account), higher local clustering in these areas is related to
more effective memory processing. However, as local clustering
increases with age, this association is attenuated and negative
correlations appear in other brain areas. A possible interpretation of
these observations is that the neural circuits exhibit a progressive
inefficiency during the aging process (Park and Reuter-Lorenz,
2009), which is not equally distributed in the brain with the fron-
tostriatal systems being the most affected (Hedden and Gabrieli,
2004). Furthermore, we found that age strongly mediated the
relationship between clustering coefficients and verbal memory,
indicating that clustering and scores in the verbal learning test are
diferentially influenced by age. Similar results have been consis-
tently found in studies examining the role of aging in the rela-
tionship between brain structure and cognition (Salthouse, 2011).
On the contrary, for visual memory, we found that local clustering
coefficients mediated the relationship between age and memory.
Previous findings indicate that this latter model is less commonly
found (Salthouse, 2011). We suggest that the differences in the
mediation models can be attributed to the different functions
involved in each test. The RAVLT test, in addition to verbal learning
that is age-dependent, involves vocabulary abilities, which are
known to be preserved until the last decades of life (Park and
Reuter-Lorenz, 2009). Then, the correlation between clustering
coefficients and the performance of the verbal memory test seems
to be strongly driven by the direct effect of age in learning and
memory. However, visual memory, measured with the ROCF-recall
test, involves a broader range of cognitive abilities, such as visuo-
spatial, visuoperceptive, and visuoconstructive functions, depend-
ing on the integrity of posterior parietal, medial temporal, and
prefrontal regions, which have an earlier age-related disruption
(Park and Reuter-Lorenz, 2009). Thus, it is expectable that perfor-
mance of the visual recall test is highly influenced bymore complex
measures of integration and/or segregation of brain networks.

It is also possible that effective memory performance in aging is
not simply maintained through an intensification of functional
measures but is instead mediated by other variables, such as
structural integrity (Daselaar et al., 2013). In our study, global
clustering did not correlate with whole-brain gray matter volumes,
but further studies are required to determine whether more
localized measures of gray matter atrophy or even white matter
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integrity can explain the associations between memory perfor-
mance and the more segregated processing observed (increased
clustering).

Another interesting observation is that, in contrast to frontal
regions, posterior midline structures, particularly the precuneus,
exhibited a negative correlation between their clustering coeffi-
cient and memory scores even when adjusting for the effect of age.
These findings may reveal a more direct association between the
functional integrity of this region and memory performance, which
remains independent of age variability in old healthy adults. This
result is also evidenced in the mediation analysis, where we found
that local clustering of these regions was mediating the relation-
ship between age and decline in visual memory. This posterior
midline structure is a core area of the DMN, critically related to
memory processing and one of the main functional hubs identified
in previous connectivity studies (Cole et al., 2010). The impact of its
dysfunction on cognitive processing is thought to be related to
neurodegenerative processes, particularly AD (Buckner et al.,
2009). In this regard a recent study conducted in participants in
the prodromal stage of AD (MCI) reported that the metabolism of
the precuneus (measured with FDG-PET) was associated with
scores on the same verbal learning test (RAVLT) in the memory-
impaired group, irrespective of age and education (Brugnolo
et al., 2014).

In conclusion, we present evidence that graph theory, together
with an understanding of the age-related differences in inter-
regional functional connectivity, can provide additional bio-
markers for identifying functional variability occurring in the aging
brain. We used graph theory to quantify large-scale network cross-
sectional differences in a group of healthy older adults in whomwe
first described alterations in the long-range connections and found
that the measures of integrity were also altered. Moreover, we
found that the mean clustering coefficient was predictive of par-
ticipants’ age. This result is important considering that it would be
difficult to define an “overall connectivity” measure of all the
possible pairs of nodes in the brain, due to the fact that some
connections show positive associations and others show negative
associations with age (and the global results might be canceled
out). We believe that measures extracted from graph theory have a
special interest in the study of brain dynamics in scenarios with
functional differences that can include regions of both higher and
lower connectivity. We have shown that these measures can pro-
vide a better understanding of the functional architecture under-
lying cognitive functions, characterized by an age-related decline,
such as memory.

Our study has some limitations. First, we only explored corre-
lations with the memory domain. Further studies are needed to
determine whether similar correlations exist in other domains such
as perception or attention. Furthermore, our study design is cross-
sectional, and the main conclusions are made from correlational
analyses, that show patterns of shared variance rather than repre-
senting a causal effect between variables. Longitudinal studies
would be useful to determine the causal (direct) effects between
the variables. Another limitation is that the parcellation used (AAL
atlas) is based on anatomic landmarks and it may not fully repre-
sent the functional diversity of the cortical architecture (Sporns,
2011). Although we acknowledge this limitation, the use of this
specific parcellationmethod in our study allowed us to calculate the
length of all the pairwise connections as the physical distance be-
tween nodes and this would not have been possible without the
anatomic support of the atlas. Interestingly, we obtained graph
theory metrics using a different parcellation strategy, an ICA-based
segmentation which is derived from the variance of our functional
data, and found that clustering coefficients correlated with age in
all these network configurations.
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Abstract

Healthy aging is characterized by changes in brain functional connectivity that have an impact in the
organization of resting state networks (RSN). Advanced neuroimaging methods allow characterizing these
large scale networks at di↵erent levels, including their spatial patterns, their amplitudes and the interactions
between networks. We used resting-state fMRI data from a cohort of 73 healthy elders to investigate whole-
brain connectivity patterns and their relationship with the cognitive state of the subjects. We found that
subjects’ age correlated with increased connectivity of areas surrounding the main nodes of the RSNs.
Further, RSN interactions revealed whole-brain reorganizations characterized by decreased connectivity
between the di↵erent components of the same system, such as the anterior and the posterior parts of the
default mode network and increased connectivity between di↵erent networks. This pattern of alterations in
the between-RSN connectivity correlated with the results of memory and executive tests.

Keywords: independent component analysis, resting-state fMRI, aging, memory, executive functions.

1. Introduction

Functional MRI (fMRI) has emerged as a pow-
erful tool to study brain functional changes dur-
ing the aging process. Task-activation fMRI stud-
ies have given controversial results, reporting de-
creases, increases, or no changes in brain activ-
ity (Grady, 2012). The age-related increases in
brain activity have been often interpreted as com-
pensatory mechanisms (Cabeza et al., 2002).

When acquired during resting-state, rs-fMRI can
be used to identify a set of Resting State Networks
(RSNs) that provide a strong characterization of
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the brain architecture and that have high corre-
spondence with task-related networks (Smith et al.,
2009). In healthy aging, connectivity disruptions
within some of the RSNs have been consistently
described. The most common and well-reported
finding is the disruption of the Default Mode Net-
work (DMN) (Damoiseaux et al., 2008). However,
other systems have shown age-related alterations,
including the salience network and networks sup-
porting executive functions (Onoda et al., 2012).
In some cases, these disruptions have been related
to reductions in cognitive functioning (Andrews-
Hanna et al., 2007). In addition, other studies,
mainly those that focused on whole-brain connec-
tivity approaches found evidences of age-related
connectivity increase involving short-range con-
nections (Tomasi and Volkow, 2012).

Our objective was to characterize the whole-
brain functional connectivity structure during
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healthy aging and its relationship with cogni-
tive performance by looking first at the main
RSNs taken individually, identified with Indepen-
dent Component Analysis (ICA) of rs-fMRI data,
and then looking at the interactions between these
RSNs. We used a novel methodology to calculate
interactions between RSNs that is based on the use
of partial correlation to identify key connectivity
features (Smith et al., 2011; Tian et al., 2011). We
correlated our results with the scores obtained in
visual and verbal memory tests, as well as scores
of executive functions.

Despite age-related changes in brain function
have been widely described in the literature and
they have shown correlations with cognition, the
novelty of the present work relies on the use of
complex network modeling to study interactions
between networks. We believe that this approach
could help understanding the functional changes
usually found in aging, that are often characterized
by the coexistence of increases and decreases of
functional activity/connectivity, and therefore dif-
ficult to interpret.

2. Materials and Methods

2.1. Subjects and scanning

Seventy-three healthy elders were included in
the study (mean age: 65.88, SD: 9.95 years). Par-
ticipants were recruited from the Institut Català
de l’ Envelliment (Catalan Institute for the Study
of Aging) and from medical centers in Barcelona.
The study was approved by the University of
Barcelona ethics committee and all participants
gave written consent. They underwent neuropsy-
chological testing including memory, language, at-
tention, visuo-perceptual and executive functions.
All reported scores were within normal range on
the domains tested and all subjects had scores on
the mini-mental state examination (MMSE) >=24.
The tests used to evaluate correlations with imag-
ing findings were:

1. Visual memory skills, evaluated with the 30
minute recall ReysOsterrich Complex Figure
(ROCF-30min).

2. Verbal memory capability, measured with the
Rey Auditory Verbal Learning Tests recall at
30 minutes (RAVLT-30min).

3. Cognitive flexibility was evaluated with the
Trail Making Test (TMT), using the TMTB-
TMTA.

4. Cognitive control/inhibition was measured
with the Stroop test (interference).

5. Working Memory function was evaluated
with the Digit test from WAISIII.

Subjects were scanned in a Siemens 3T MRI scan-
ner (Magnetom Trio Tim, Siemens Medical Sys-
tems, Germany), using a 32-channel coil, during
a 5-minute resting-state fMRI session (repetition
time=2s, echo time=16ms, 40 slices per volume,
voxel size=1.7x1.7x3.75 mm, field of view=240
mm). During resting-state, participants were asked
to close their eyes, not to fall asleep and not to think
about anything in particular.

2.2. fMRI Analysis

Resting-state fMRI data were analyzed us-
ing Independent Component Analysis (ICA)
followed by a dual regression approach and
a network modeling analysis. All proce-
dures were performed with tools from FSL
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL). Data
timeseries were first preprocessed using FSL’s
FEAT. Basically, preprocessing included: motion
correction, brain extraction, spatial smoothing
with a gaussian kernel of 5mm, temporal filtering
using a high-pass filter of 150s and registration to
the MNI standard space using linear (a�ne) trans-
formations (Jenkinson et al., 2002). Thereafter,
group-ICA was performed with MELODIC from
FSL using data concatenated from all the subjects
(Beckmann et al., 2005), in order to define a set
of Independent Components (ICs), representing
common spatiotemporal patterns of brain activity.
The number of ICs was set to 20 from those
we selected the 10 maps of the main RSNs.
The dual regression approach was then used to
obtain subject-specific maps of the ICs (Filippini
et al., 2009). This approach included a spatial
regression of the IC maps into each individual
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preprocessed data to obtain subject specific IC
timeseries followed by a temporal regression of
the timeseries to the same individual data to obtain
the subject-specific IC maps.

Network spatial maps

The subject-specific maps from dual-regression
were introduced in a voxel-wise analysis, using
both age and cognitive scores as a regressors (in
separate analyses) to depict areas where the spa-
tial extend of the networks correlate with age or
cognition. These results were evaluated with a
permutation-based method that corrects for mul-
tiple comparisons (Nichols and Holmes, 2002).
It should be noted that the fact that we did not
performed partial (or covariated) analysis between
maps and cognition is because we were interested
in finding correlations that are associated with the
age-related decline in cognition and this e↵ect is
removed when introducing age as covariate.

Network amplitudes

A measure of network amplitude was obtained
by calculating the standard deviation of each sub-
jects specific IC timeseries.

Network interactions

Whole-brain connectivity matrices were created
using the FSLNets tool (Smith et al., 2011). First,
subject specific timeseries were obtained by pro-
jecting each IC map to the preprocessed fMRI data,
and then, matrices were created for each subject
using partial correlation between all the ICs time-
series (Du↵ et al., n.d.). In these matrices, each
edge represents the connectivity between pairs of
ICs by regressing out the e↵ect of all the other in-
teractions.

We explored correlations between network am-
plitudes and interactions with age and with the re-
sults of the cognitive tests.

Measure Mean (SD)

Age 65.88 (10.11)

RAVLT-30 min 18.75 (4.86)

Stroop (Interference) 25 (16.81)

TMT (B-A) 66.86 (46.85)

Digits 8.97 (2.03)

3. Results

3.1. Subjects demographics and behavioral results

3.2. Resting-state networks

We identified the common 10 RSNs from the
group-ICA decomposition. Maps were selected us-
ing template matching with available data from the
resting-state literature (Smith et al., 2009).

3.3. Correlations with network spatial maps

We found positive correlations in the spatial ex-
tend of the networks (corrected p<0.05) with age
in the spatial maps of all the networks except the
posterior DMN (Figure 1). In that cases, increased
connectivity was found in areas surrounding the
main peaks of the group-IC maps. Furthermore,
we found negative correlations with age in the spa-
tial maps of the left frontoparietal network (L-FPN,
IC7) and the right dorsolateral-prefrontal network
(R-DLPFC, IC8). In these two networks, decreased
connectivity was found in areas that are spatially
distant from the main foci of the network, indi-
cating a decrease of inter-hemispheric connectivity
(in the case of the L-FPN) and anterior-posterior
connectivity (in the case of the R-DLPFC). As re-
gards the cognitive scores, only few components
showed correlation with these measures and (Fig-
ure 1). Visual memory scores were negatively cor-
related with increased regional connectivity in the
L-FPN. Verbal memory was negatively correlated
with connectivity from the anterior DMN to the
visual cortex (i.e., increased connectivity, worse
memory performance), as well as with connectivity
from the bilateral-FPN to similar visual areas. Fi-
nally, the performance of the TMT was positively
correlated (i.e., increased connectivity associated
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with reduced time) with the connectivity from the
R-DLPFC to areas in the left temporal lobe. We did
not find any correlations for the digits or the stroop
tests.

3.4. Correlations with amplitude of the networks
Some of the networks showed correlation be-

tween their amplitudes and age. The posterior
node of the DMN (IC5) and the salience network
(IC8) correlated negatively with age (r=-0.2345,
p=0.045). Furthermore, we observed a trend to-
wards significance in the anterior DMN (IC1) be-
ing positively correlated with age (r=0.21, p=0.07).
As regards the correlations with cognition, we
found that the amplitudes of bilateral-FPN (IC2)
and posterior DMN (IC5) were positively corre-
lated with the results of the Stroop test (r=0.22,
p=0.05 and r=0.23, p=0.05 respectively). How-
ever, these results did not survive correction for
multiple comparisons. There were no any other
correlations between network amplitudes and cog-
nition.

3.5. Network interactions
Age was significantly correlated with the inter-

actions between some pairs of RSNs. These re-
sults are shown in Figure 2. Interestingly, there
were both positive and negative correlations be-
tween age and connectivity. Only three edges sur-
vived bonferroni correction for multiple compar-
isons: the positive correlations with the IC1-IC2
edge (DMN-FPN) and the IC2-IC3 edge (FPN-
visual), and the negative correlation with the IC1-
IC5 (anterior-DMN - posterior-DMN) edge.

We also found some correlations between net-
work interactions and cognition (Figure 3). These
correlations were also both positive and negative.
When correcting for the number of tests evaluated
(N=5), only the three negative correlations with
the digits test, and one of the correlations with the
TMT remained significant.

4. Discussion

By using network analysis and network model-
ing we described changes in the main RSNs dur-

ing the aging process and their relation to cogni-
tion. We explored the characteristics of the RSN
from three perspectives, including their spatial ex-
tend, network amplitudes, and network interac-
tions. Overall, we found that age was associated
with increased connectivity in areas surrounding
the main foci of the RSNs and decreased connec-
tivity in widespread connections, suggesting in-
creased local connectivity of short-range connec-
tions and disruption of antero-posterior and inter-
hemispheric connectivities. Age was also corre-
lated with decreased overall amplitudes of the de-
fault and salience networks and with a more com-
plex pattern of changes as regards whole-brain net-
work interactions, which consisted in decreased
connectivity between pairs of networks within the
same or similar system and increased connec-
tivity between pairs of networks from di↵erent
systems. The observed age-related connectivity
changes also correlated with the performance of the
subjects on memory and executive functioning do-
mains.

As regards the results obtained with dual-
regression spatial maps, we described age-related
increases in connectivity that can be interpreted as
a result of increased short-range FC, in accordance
with what we already reported in a previous study
using whole-brain connectivity (Sala-Llonch et al.,
2014), and also in accordance with results reported
by other groups (Tomasi and Volkow, 2012). This
pattern of increased FC was found in all the RSNs
studied except the cerebellum and the posterior-
DMN, which di↵ers from our previous findings,
where we described increased clustered connectiv-
ity in the precuneus, as one of the main cores of the
posterior-DMN (Sala-Llonch et al., 2014). These
di↵erences might be caused by the fact that in the
present work we studied functional connectivity
using a network-based parcellation of the brain, in-
stead of a parcellation based on an anatomical atlas.

In addition, we found connectivity decreases in
two networks within the fronto-parietal system.
First, the left-lateralized FPN showed reductions in
connectivity with regions in the right hemisphere,
which is in accordance with other studies that
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Figure 1: results of the dual-regression analysis on ICA maps. ICA group-maps (red-yellow). Positive (green) and negative (blue)
correlations with age. And correlations with cognitive tests (blue).5
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Figure 2: Network interactions and their correlation with age (uncorrected p<0.05). * Indicates significant after Bonferroni correc-
tion (p<0.05)

Figure 3: Correlations between network interactions and cognition. Each pair of networks is represented in a red/blue box (for
positive/negative correlations with cognition). The values given as r and p represent the correlation of the connectivity between
networks and the results of the tests. * indicates significant after correction for multiple comparisons.
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demonstrated reduced connectivity in the FPN in
aging (Campbell et al., 2012; Geerligs et al., 2014).
Similarly, we found decreases in the connectivity
from the R-DLPFC towards parietal/dorsal areas,
which could be interpreted as a result of disrupted
connectivity between anterior and posterior brain
areas, also in accordance with the more classical
models in aging describing posteriot-to-anterior al-
terations in brain function (Davis et al., 2008).

ICA-spatial maps showed only few correlations
with cognitive scores. Verbal and visual memory
scores correlated negatively with the increased lo-
cal connectivity of some RSNs, including the mo-
tor system, the FPN and the DMN, indicating that
this increased local connectivity is not compen-
satory, and on the contrary, it is disadvantageous.
On the other hand, the connectivity from the R-
DLPFC network with distant contralateral regions
correlated positively with the results of the Train
Making Test , indicating that the described age-
related connectivity disruption between these areas
is directly a↵ecting executive functioning, as other
authors already suggested (Andrews-Hanna et al.,
2007).

As regards the amplitude of the networks, both
the DMN and the salience network showed de-
creases with age. Importantly, this is a measure of
the overall amplitude of the oscillations, and thus,
it provides additional information to the measure
of the spatial extension of ICA maps. The fact that
only these two networks showed age-related de-
creases coincides with other studies reporting alter-
ations of these systems (Damoiseaux et al., 2008).

When considering the cognitive status of the
subjects, only the results of the Stroop test corre-
lated with network amplitudes, and these correla-
tions were found in bilateral-FPN and posterior-
DMN. The Stroop test was used as a measure of
the cognitive control and inhibition. The FPN
has been associated with action-inhibition and with
general executive functioning using evidences ob-
tained from both resting-state fMRI and task-fMRI
analyses (Smith et al., 2009) and in the context
of healthy aging. Furthermore, the correlation be-
tween Stroop performance and the posterior-DMN

could be interpreted considering that (1) this same
network was also strongly a↵ected by age , and (2)
the DMN is known to modulate focused attention,
cognitive control, and action inhibition (Buckner
et al., 2008).

Finally, the most interesting findings from our
study were those regarding network interactions:
some of the edges correlated positively with age
and they mainly represented connections between
pairs of RSNs from di↵erent brain systems, for ex-
ample, the connection between the anterior-DMN
and the visual network or the FPN, or the con-
nection of the FPN with the motor or the salience
networks. Increased between-network connectivity
with age has been described using ICA and seed-
based connectivity (Onoda et al., 2012) and also
using other approaches using graph-theory (Betzel
et al., 2014; ?; Song et al., 2014). On the contrary,
other RSN pairs showed age-related decreases in
connectivity, and these were mainly those repre-
senting the connectivity of sub-networks of the
same well-known large-scale systems. These
negative correlations included, for example, the
anterior-posterior connectivity of the DMN (IC1
and IC5), the connection between di↵erent RSNs
of the FPN (IC2, IC6 and IC7). Disconnection
within large-scale networks, and especially within
the DMN and the FPN, is also a common finding
in aging.

We found that network interactions correlated
with the cognitive status of the subjects. Impor-
tantly, the relationship between network interac-
tions and the results of the cognitive tests were
stronger and more meaningful than those reported
when the networks were evaluated individually, in-
dicating that successful cognitive performance in
aging may be rather a result of a more complex
pattern of network interactions than the status of
individual brain networks.

Despite the fact that not all of the abovemen-
tioned results survived correction for multiple com-
parisons, we believe that they are of meaningful
interest. For example, visual and verbal mem-
ory correlated positively with connections from the
right dorsolateral prefrontal cortex, supporting the
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role of this region as regards age-related decline
in memory (Rossi et al., 2004). The results of
the Stroop test correlated negatively with connec-
tions from the salience to visual and fromtopari-
etal networks, meaning that old subjects having the
salience network more disconnected/isolated from
the others are able to perform better. This network
includes areas of the anterior cingulate, paracingu-
late and the insula, and has been associated with
cognitive-control and inhibition (Smith et al., 2009;
Seeley et al., 2007). In addition, this network has a
monitoring role in the sense that it gives signals to
the other brain networks, to indicate whether they
need to be active or unactive depending on cog-
nitive demands (Jilka et al., 2014). Furthermore,
the TMT scores correlated with the connectivity of
executive networks (FPN and R-DLPFC) with vi-
sual and motor networks, which are two systems
directly involved in the task. And finally, the corre-
lations with the digits test also indicated that in-
creased connectivity within similar networks, as
the two parts of the DMN and salience-executive
was beneficial for cognition, whereas increased
connectivity between di↵erent networks was dis-
advantageous.
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O., 2014. Changes in structural and functional connectivity
among resting-state networks across the human lifespan.
NeuroImage .

Buckner, R.L., Andrews-Hanna, J.R., Schacter, D.L., 2008.
The brain’s default network: anatomy, function, and rel-
evance to disease. Annals of the New York Academy of
Sciences 1124, 1–38.

Cabeza, R., Anderson, N.D., Locantore, J.K., McIntosh, A.R.,
2002. Aging gracefully: compensatory brain activity in
high-performing older adults. NeuroImage 17, 1394–402.

Campbell, K.L., Grady, C.L., Ng, C., Hasher, L., 2012.
Age di↵erences in the frontoparietal cognitive control net-
work: implications for distractibility. Neuropsychologia
50, 2212–23.

Damoiseaux, J.S., Beckmann, C.F., Arigita, E.J.S., Barkhof,
F., Scheltens, P., Stam, C.J., Smith, S.M., Rombouts,
S.a.R.B., 2008. Reduced resting-state brain activity in the
”default network” in normal aging. Cerebral cortex 18,
1856–64.

Davis, S.W., Dennis, N.a., Daselaar, S.M., Fleck, M.S.,
Cabeza, R., 2008. Que PASA? The posterior-anterior shift
in aging. Cerebral Cortex 18, 1201–9.

Filippini, N., MacIntosh, B.J., Hough, M.G., Goodwin, G.M.,
Frisoni, G.B., Smith, S.M., Matthews, P.M., Beckmann,
C.F., Mackay, C.E., 2009. Distinct patterns of brain activity
in young carriers of the APOE-epsilon4 allele. Proceedings
of the National Academy of Sciences of the United States
of America 106, 7209–14.

Geerligs, L., Renken, R.J., Saliasi, E., Maurits, N.M., Lorist,
M.M., 2014. A Brain-Wide Study of Age-Related Changes
in Functional Connectivity. Cerebral cortex 2, 1–13.

Grady, C., 2012. The cognitive neuroscience of ageing. Nature
reviews. Neuroscience 13, 491–505.

Jenkinson, M., Bannister, P., Brady, M., Smith, S., 2002. Im-
proved optimization for the robust and accurate linear reg-
istration and motion correction of brain images. NeuroIm-
age 17, 825–41.

Jilka, S.R., Scott, G., Ham, T., Pickering, A., Bonnelle, V.,
Braga, R.M., Leech, R., Sharp, D.J., 2014. Damage to the
Salience Network and Interactions with the Default Mode
Network. The Journal of neuroscience 34, 10798–10807.

Nichols, T.E., Holmes, A.P., 2002. Nonparametric permuta-
tion tests for functional neuroimaging: a primer with ex-
amples. Human brain mapping 15, 1–25.

Onoda, K., Ishihara, M., Yamaguchi, S., 2012. Decreased
functional connectivity by aging is associated with cogni-
tive decline. Journal of cognitive neuroscience 24, 2186–
98.

Rossi, S., Miniussi, C., Pasqualetti, P., Babiloni, C., Rossini,
P.M., Cappa, S.F., 2004. Age-related functional changes of
prefrontal cortex in long-term memory: a repetitive tran-
scranial magnetic stimulation study. The Journal of neuro-
science 24, 7939–44.
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Abstract. PSEN1 mutations are the most frequent cause of familial Alzheimer’s disease and show nearly full penetrance. Here
we studied alterations in brain function in a cohort of 19 PSEN1 mutation carriers: 8 symptomatic (SMC) and 11 asymptomatic
(AMC). Asymptomatic carriers were, on average, 12 years younger than the predicted age of disease onset. Thirteen healthy
subjects were used as a control group (CTR). Subjects underwent a 10-min resting-state functional magnetic resonance imaging
(fMRI) scan and also performed a visual encoding task. The analysis of resting-state fMRI data revealed alterations in the
default mode network, with increased frontal connectivity and reduced posterior connectivity in AMC and decreased frontal and
increased posterior connectivity in SMC. During task-related fMRI, SMC showed reduced activity in regions of the left occipital
and left prefrontal cortices, while both AMC and SMC showed increased activity in a region within the precuneus/posterior
cingulate, all as compared to CTR. Our findings suggest that fMRI can detect evolving changes in brain mechanisms in PSEN1
mutation carriers and support the use of this technique as a biomarker in Alzheimer’s disease, even before the appearance of
clinical symptoms.

Keywords: Alzheimer’s disease, default mode network, functional magnetic resonance imaging, presenilin1, visual memory

INTRODUCTION

A minority of Alzheimer’s disease (AD) cases
is inherited with an autosomal dominant pattern of
inheritance [1] and is caused by a genetic mutation.
The mutations identified so far (http://www.molgen.
ua.ac.be) affect the amyloid-! protein precursor,
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presenilin-1 (PSEN1), and presenilin-2. These forms,
also called familial AD, show almost 100% penetrance
and have an early age of onset, which is also rela-
tively predictable in a given family [2]. They are a good
model that allows us to look into the early pathogenic
mechanisms of the disease [3].

Altered synaptic function is characteristic of AD
and there is consistent evidence that it is present very
early in the disease process, possibly long before
the development of clinical symptoms or even of
significant neuropathology [4]. Functional magnetic
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resonance imaging (fMRI) is based on the strength
of the blood-oxygen-level-dependent (BOLD) signal
and it is thought to provide an in vivo correlate
of neural activity. Thus, it is particularly useful for
detecting alterations in brain function that may be
present very early in the course of AD [5]. When
examined at rest, fMRI can be used to study pat-
terns of intrinsic brain connectivity or functional
networks [6]. The most widely studied of these pat-
terns is the default mode network (DMN), which
involves the precuneus and posterior cingulate cor-
tex, parietal and temporal cortices bilaterally, and the
medial prefrontal cortex, as well as some regions
within the hippocampal memory system [7, 8]. DMN
regions are typically co-activated during rest and deac-
tivated during the processing of external stimuli, and
they are among the earliest and most consistently
affected regions in AD [9]. DMN functioning and con-
nectivity have been widely assessed along the AD
continuum, with functional connectivity abnormali-
ties being reported in both AD [10–14] and mild
cognitive impairment [15–17]. Furthermore, studies
with cognitively-preserved populations at risk for AD
have shown abnormal connectivity in elderly subjects
with evidence of amyloid deposition [18–21], as well
as in in apolipoprotein (APOE) !4 carriers [22–26].
However, to the best of our knowledge, there are no
published studies assessing the effect of the presence
of a pathogenic PSEN1 mutation on the DMN.

Another fMRI strategy, known as task-related fMRI,
can be used to study brain activity when the sub-
ject is engaged in a given task. By using memory
encoding paradigms, fMRI studies have revealed task-
associated brain activity during encoding in a specific
set of brain regions that include the medial tempo-
ral lobe, prefrontal cortex, and ventral temporal cortex
[5]. During the encoding of new information, patients
with AD have shown decreased fMRI activation in the
hippocampus and related structures within the medial
temporal lobe when compared to their matched control
subjects [27]. However, it has been suggested that there
may be a phase of paradoxically increased activation
earlier in the course of the disease, that is, in prodromal
AD or in individuals at genetic risk for AD [28, 29].

Few encoding-based fMRI studies have been con-
ducted in PSEN1 mutation carriers. Encoding-related
activity was found to be altered in one asymptomatic
mutation carrier (AMC) subject 30 years prior to the
mean familial age of onset [30]. In other studies,
PSEN1 AMC exhibited increased activation in the
right hippocampus and parahippocampus during mem-
ory encoding [31]. Increased fMRI activity was also

reported in the fusiform and middle temporal gyri as
mutation carriers approached the mean familial age of
disease diagnosis [32].

Based on previous work, we hypothesized that
PSEN1 mutation carriers would demonstrate func-
tional connectivity changes in the DMN along disease
progression. We further hypothesized that during
visual memory fMRI, symptomatic mutation carriers
(SMC) would present a pattern of reduced brain activ-
ity similar to what is reported in sporadic AD, and
also that task-related activity within memory networks
would already be altered in AMC compared to nor-
mal controls. In order to test these hypotheses, we
examined brain functioning in a sample of PSEN1
mutation carriers, including both asymptomatic and
symptomatic subjects. Specifically, this was done by
analyzing the DMN during resting fMRI and memory
networks during encoding-based task fMRI.

MATERIALS AND METHODS

Subjects

Nineteen mutation carriers from 8 families with 6
different PSEN1 mutations (M139T, K239N, L235R,
L282R, L286P, I439S) and 13 normal controls, asymp-
tomatic non-carriers, were recruited from the genetic
counseling program for familial dementias (PICO-
GEN) at the Hospital Clinic, Barcelona, Spain [33].
Subjects were made aware of their at-risk status for
genetic AD in a session of genetic counseling and
were given the option of knowing their genetic sta-
tus through the genetic counseling protocol. The study
was approved by the Hospital Clinic ethics committee
and all subjects gave written informed consent.

Genetic analysis

Genomic DNA was extracted from peripheral blood
using the QIAamp DNA Blood Mini Kit (Qiagen).
Mutation screening was performed as previously des-
cribed [34].

Clinical and neuropsychological characterization

Subjects underwent clinical and cognitive assess-
ments, and a comprehensive neuropsychological
battery was also administered, as described previously
[35]. Subjects were classified clinically as asymp-
tomatic (AMC) if they had no memory complaints,
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a normal cognitive assessment, and a score of 0 on
the Clinical Dementia Rating (CDR) scale. They were
classified as symptomatic (SMC) if their cognitive per-
formance was more than 1.5 SD below the mean with
respect to their age and educational level on any cog-
nitive test and/or if their CDR score was >0.

The current sample included 8 families with 6 differ-
ent mutations and different median ages of onset (range
40–54 years). In order to compare subjects from dif-
ferent families, we therefore defined and calculated for
each mutation carrier the adjusted age as the subject’s
age relative to the median familial age of onset.

MRI scanning

All subjects were scanned in a 3T machine (Siemens
Trio Tim, Siemens, Germany) during both a 10-
min resting fMRI protocol and while performing a
visual encoding task. During scanning, a set of T2*-
weighted volumes were acquired (voxel size = 1.7 ×
1.7 × 3.0 mm, TR = 2000 ms, TE = 29 ms, 36 slices
per volume, slice thickness = 3 mm, distance factor
= 25%, FOV = 240 mm, matrix size = 128 × 128).
A high-resolution 3D structural dataset (T1-weighted
MP-RAGE, voxel size = 1.0 × 1.0 × 1.0 mm, TR =
2300 ms, TE = 2.98 ms, 240 slices, FOV = 256 mm,
matrix size = 256 × 256, slice thickness = 1 mm) was
acquired in the same session.

During resting-state, subjects were asked to lie down
in the machine, to not think of anything in particu-
lar, and to avoid falling asleep. For encoding-fMRI,
we employed a visual encoding task used previously
by our group [36]. Briefly, this consisted of a 15-
block design paradigm with alternating “fixation”,
“repeated”, and “encoding” conditions. During “fixa-
tion”, a white cross on a black screen was presented to
the subject; during the “repeated” condition, a sample
image was presented repeatedly to the subject; while
during “encoding”, a set of new colored images was
shown to the subject for each block. The whole ses-
sion lasted 7 minutes and 30 seconds and subjects were
tested for their memory performance outside the scan-
ner in a two-alternative forced-choice task (maximum
score of 50).

Preprocessing and analysis of resting-state fMRI
data

Resting-fMRI data were preprocessed using tools
implemented in both FSL (http://www.fmrib.ox.
ac.uk/fsl/) and AFNI (http://afni.nimh.nih.gov/afni)

softwares. The procedures for data preprocessing
included: removing the first 5 scans, motion correc-
tion [37], skull stripping/removal of non-brain voxels
[38], spatial smoothing (using a Gaussian kernel of
FWHM = 6.0 mm), grand mean scaling of the whole
4D series, temporal filtering (with a bandpass filter,
0.01–0.1 Hz), and removal of linear and quadratic
trends. Nuisance variables were regressed out from
preprocessed resting-fMRI data. These included the 6
motion parameters, global whole-brain BOLD signal,
and white matter and cerebrospinal fluid oscillations.
In order to perform group analyses, we registered each
individual functional acquisition to Montreal Neu-
rological Institute (MNI) standard space by using a
two-step registration with FMRIB’s Linear Image Reg-
istration Tool (FLIRT; [39]), involving the registration
of each individual fMRI set to its anatomical high-
resolution scan and the registration from anatomical
space to the standard MNI template.

Resting-fMRI data were further analyzed using
seed-based connectivity. A region of interest (ROI)
placed in the precuneus/posterior cingulate (spherical
ROI of 6 mm radius centered at MNI coordinates x = 2,
y = −54, z = 24; [40]) was used to assess whole-brain
resting-state functional connectivity. The procedure
for seed-based connectivity was performed on prepro-
cessed resting data as follows: 1) average time-series
were extracted for each subject within the ROI; 2)
these time-series were then used to calculate the tem-
poral correlation against all the voxels in the brain;
and 3) individual correlation maps were transformed
into Z-scores using Fisher’s r to Z transformation, and
then moved to MNI standard space. All Z maps were
concatenated and introduced into a voxel-wise group
statistical analysis using General Linear Modeling.
Group analysis included average connectivity maps for
each group (one-sample t-test) and group differences
(two-sample t-test). Results were corrected for mul-
tiple comparisons using a permutation-based method
with 5000 iterations [41].

Preprocessing and analysis of encoding-fMRI data

Task-fMRI data were analyzed using a model-
driven approach, as implemented in the FMRI Analysis
Tool (FEAT) from FSL. Data preprocessing included
motion correction [37], non-brain removal [38], spa-
tial smoothing with a Gaussian kernel of FWHM
6 mm, grand-mean intensity normalization, and high-
pass temporal filtering (sigma = 50.0 s). Time-series
statistical analysis was carried out for each piece of
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individual functional data using FMRIB’s Improved
Linear Model (FILM) with local autocorrelation cor-
rection [42]. Three regressors were used to model the
different task blocks (encoding, repeated, and fixa-
tion), and three additional regressors, modeling their
first derivatives, were introduced as nuisance variables.
Individual activation maps were computed from the
preprocessed functional data using the “encoding” >
“repeated” images contrast.

In order to assess group-activation maps and group
differences, we performed higher-level analyses using
the General Linear Model and FLAME (FMRIB’s
Local Analysis of Mixed Effects) stage 1 and stage
2 [43–45]. This included averaged maps for the three
groups (CTR, AMC, and SMC) and group comparisons
(CTR versus AMC and CTR versus SMC). Perfor-
mance scores, measured as the number of correctly
recognized images, were introduced as covariates for
the group comparisons.

Two additional correlation analyses were performed
using encoding-fMRI data. First, and in order to assess
brain activity associated with correct coding of new
images, we created a General Linear Model design
in which whole-brain activity maps were regressed
against individual performance scores for the three
groups separately. Then, and based on the results
reported by Braskie et al. [32], who found increased
functional activity as their subjects approached the
age of onset, we evaluated the relationship between
brain activation maps and adjusted age in the AMC
subgroup.

Statistical analysis

Group analyses were conducted using PASW
(Predictive Analytics SoftWare, IBM Corp.) v.18.
Comparisons between groups were performed using
the two-tailed Student’s t test or ANOVA for contin-
uous variables, and a chi square test for categorical
variables.

RESULTS

Demographics, cognitive testing and genetic status

Demographic and clinical data of the participants
are summarized in Table 1. Eight mutation carriers
were SMC, with a mean age of 48.91 years (SD = 7.53).
The remaining 11 mutation carriers were AMC, with
a mean age of 39.09 years (SD = 10.74) and a mean
adjusted age of −11.92 years (SD = 8.96). There were
13 controls (36.27 years ± 7.45). Age and Mini-Mental
State Examination (MMSE) scores did not differ
between controls and AMC (Table 1). As expected,
SMC were older than both controls and AMC, and
they presented significantly different MMSE scores.

Resting-state connectivity

Average default mode network maps
The seed-based connectivity analysis of resting-

state fMRI data from the precuneus/posterior cingulate
ROI (ROI placement is shown in Fig. 1A) identified a
pattern of connectivity that corresponded to the DMN
in each group separately (Fig. 1B–D). The DMN maps
included areas in bilateral parietal regions and both
angular gyri (for the three groups), as well as areas in
the medial prefrontal cortex (only in the control and
AMC groups).

Group differences
Figures 1E–H show the results of voxel-wise group

comparisons of the precuneus/posterior cingulate con-
nectivity maps. When compared to the control group,
AMC showed reduced resting-state connectivity in
areas of the hippocampus, parahippocampal, lingual
and fusiform gyri, the middle temporal cortex and parts
of the precuneus/posterior cingulate, and the lateral
occipital cortex. Conversely, AMC presented increased
connectivity in the paracingulate and anterior cingu-
late, parts of the superior, middle and inferior frontal
cortices, and in the frontal pole.

Table 1
Demographic and clinical data in the different groups.*p < 0.05 compared to controls

Healthy controls (non-carriers) Asymptomatic mutation carriers Symptomatic mutation carriers
(n = 13) (n = 11) (n = 8)

Age (years) 36.27 (7.45) 39.09 (10.74) 48.91 (7.53)*
Relative age (years) NA −11.92 (8.96) 3.35 (2.94)
Education (years) 14 (3.91) 12.45 (2.54) 10.88 (3.09)
Gender (%Female) 53.84 % 63.63 % 62.50%
MMSE 29.54 (0.50) 29.09 (1.04) 19.63 (6.21)*
CDR-total 0 0 1.25 (0.65)*

MMSE, Mini-Mental State Examination; CDR, Clinical Dementia Rating.
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Fig. 1. Seed-based connectivity analysis of resting-state fMRI data. A) Location of the posterior cingulate cortex (PCC) seed in MNI standard
space (spherical ROI of 6 mm radius; MNI coordinates x = 2, y = −54, z = 24). B) Average connectivity maps for healthy controls (CTR). C)
Average connectivity map for asymptomatic mutation carriers (AMC). D) Average connectivity map for symptomatic mutation carriers (SMC).
E-H) Group difference maps corrected for multiple comparisons. All difference maps are thresholded at a corrected family-wise p < 0.05 level.
Maps (G) and (H) include age as a covariate.

The SMC group showed reduced connectivity with
respect to controls in the anterior cingulate and paracin-
gulate, the frontal pole, the medial frontal cortex,
and the superior frontal gyrus. However, SMC had
increased connectivity in supramarginal areas, the
angular gyrus, parietal cortex, precuneus cortex, supra-
calcarine cortex, and lingual/fusiform areas. These
results remain significant when age was included as
covariate.

Encoding-fMRI activity

fMRI data during encoding were available for a sub-
sample of 23 subjects (12 controls, 6 AMC, and 5
SMC subjects). This sample size difference was due
to timing limitations during the scanning session, to
excessive movement and MRI-related artifacts, and to
extremely poor task performance.

Task performance outside the scanner
Memory performance outside the scanner did not

differ significantly between AMC and control sub-
jects. However, there was a trend for AMC subjects to
perform worse than controls [mean (SD) values were
47.54 (2.21) for controls versus 40.84 (7.94) for AMC;

t = 2.14, p = 0.08]. SMC had a poorer performance
outside the scanner (mean: 23.0, SD: 16.32) than
both controls (t = 3.35, p = 0.028) and AMC (t = 2.4,
p = 0.039).

Average maps
All group-average maps revealed the main pattern

of brain regions involved in encoding for novel images
(“encoding” > “repeated” condition). For the control
and AMC groups (Fig. 2A and B, respectively), activ-
ity patterns included the lateral occipital cortex (left
and right), the temporal occipital fusiform cortex, the
middle and inferior temporal gyrus, the lingual gyrus,
and the parahippocampal gyrus. Moreover, in the con-
trol group we also observed activity in the middle and
inferior frontal gyrus bilaterally (although more pro-
nounced in the left hemisphere), as well as in the frontal
medial cortex and paracingulate gyrus (Fig. 2A). The
group-average maps for the SMC group revealed areas
of activity in the lateral occipital cortex, middle tem-
poral gyrus, lingual gyrus, angular gyrus, and fusiform
(Fig. 2C), although to a lesser extent than in controls
and AMC. There was no activity in frontal areas in
SMC.
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Fig. 2. Results of the analysis of task-related fMRI activity in the “encoding > repeated” images condition. A) Average map for the healthy
control (CTR) group. B) Average map for the asymptomatic mutation carrier (AMC) group. C) Average map for the symptomatic mutation
carrier (SMC) group. D) Areas where AMC had greater task-associated BOLD response than did CTR. E) Areas where SMC showed less
task-associated BOLD response than did CTR. F) Areas where SMC had greater task-associated BOLD response with respect to CTR. Maps
(E) and (F) include age as a covariate.

Table 2
Group differences in brain activity during memory encoding. Summary of significant clusters in the “encoding >

repeated” images contrast

Cluster Size (mm2) Cluster p Z max Peak coordinates (MNI)

x y z

Asymptomatic Mutation Carriers > Controls
1 1952 0.000253 4.96 2 −68 24
Symptomatic Mutation Carriers > Controls
1 1276 0.0171 4.05 0 −84 28
Controls > Symptomatic Mutation Carriers
1 1160 0.015 4.33 −38 16 12
2 1220 0.0109 4.89 −54 −74 8

Group comparisons
In the “encoding > repeated” images contrast, AMC

showed increased BOLD activity in comparison with
the control group in regions of the precuneus/posterior
cingulate cortex (Fig. 2D). There were no regions of
increased BOLD activity in the control group with
respect to AMC. SMC showed decreased BOLD activ-
ity with respect to controls in a region within the left
middle and inferior frontal gyri and left frontal oper-
culum, as well as in the left lateral occipital cortex
(Fig. 2E). Conversely, SMC showed areas of increased
BOLD activity in comparison with controls in the pre-
cuneus cortex, the intracalcarine cortex, and in part
of the lingual gyrus (Fig. 2F). The results of all these
comparisons are also summarized in Table 2.

Correlations with task performance
Brain activity was positively correlated with per-

formance outside the scanner in the AMC group.
This positive association involved areas of the right

parahippocampal gyrus, right hippocampus, and right
temporal fusiform and lingual gyrus (Fig. 3A). We
extracted average signal change between repeated and
encoding conditions for each individual within these
regions (Fig. 3A, right panel). Task performance corre-
lated with activity scores in AMC (r = 0.98, p < 0.001)
but not in the control group (r = 0.27, p = 0.42).

Correlations with adjusted age
In AMC, BOLD activity during encoding was pos-

itively correlated with the adjusted age of subjects in
regions within the angular gyrus (r = 0.94, p = 0.005;
Fig. 3B). In other words, subjects who were closer to
their familial age of onset showed greater activation in
these areas.

DISCUSSION

We performed an fMRI study to assess resting-state
and encoding-task activity in a cohort of symptomatic
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Fig. 3. Correlations found with encoding-related brain activity in the asymptomatic mutation carrier (AMC) group. A) Correlations with task
performance. Spatial map of brain regions with significant correlation (left panel) and scatter plot of performance scores and mean BOLD
signal change within significant areas in AMC subjects and healthy controls (CTR) (right panel). B) Correlations with adjusted age within AMC
subjects. Spatial map of brain regions showing significant correlation (left panel) and scatter plot of adjusted age and mean BOLD signal change
in these regions (right panel). All maps are thresholded at a corrected level of p < 0.05.

and asymptomatic PSEN1 mutation carriers and a
group of matched healthy controls. To the best of
our knowledge, this is the first study to examine
intrinsic functional connectivity by means of resting-
state fMRI in PSEN1 subjects. The asymptomatic and
symptomatic subjects showed divergent changes in
connectivity between the anterior and posterior compo-
nents of the DMN, with connectivity being increased in
AMC and reduced in SMC. Conversely, short distance
connections in posterior regions of the DMN were
increased in SMC and decreased in AMC. The anal-
ysis of task fMRI revealed common encoding-related
BOLD activity in areas within the memory network.
Compared to controls, SMC showed reduced activity
in left prefrontal and left occipital cortices. However,
both SMC and AMC presented increased activity dur-
ing encoding compared to controls in areas of the
precuneus/posterior cingulate.

The reduced connectivity from the precuneus/
posterior cingulate to frontal areas in SMC is consis-

tent with previous studies that have assessed the DMN
in sporadic AD and mild cognitive impairment [10,
12, 15]. Moreover, the increased within-lobe functional
connectivity in the same subjects is also in line with
previously published research on sporadic AD [11, 46]
and mild cognitive impairment [15]. However, other
studies on AD have also showed opposite changes
with decreases in functional connectivity of posterior
regions and increases in frontal regions (reviewed in
[47]). These discrepancies may rely on differences in
the methodology used to isolate the DMN together with
differences in subjects’ atrophy between studies.

More interesting, we also found altered connec-
tivity in mutation carriers prior to the appearance
of clinical symptoms. Specifically, AMC subjects
showed reduced resting-state connectivity from the
precuneus/posterior cingulate to other posterior brain
regions, including part of the hippocampus, the
fusiform and parahippocampal gyri, and the lingual
gyrus. These regions are known to be structurally
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affected very early in AD and this reduction in con-
nectivity is in accordance with seed-based studies
that have demonstrated decreased connectivity in AD
between the hippocampus and DMN regions [48]. We
also found an increase in precuneus/posterior cingu-
late functional connectivity within frontal regions. We
suggest two explanations for the increased connectiv-
ity between the posterior and anterior core components
of the DMN in AMC. First, the increased functional
connectivity in the frontal cortex might reflect reor-
ganization mechanisms within the network that serve
to maintain function despite the reduced connectiv-
ity with medial temporal and hippocampal regions of
the DMN found in AMC. These increases in frontal
areas agree with studies identifying the frontal lobe as
a key region for functional compensation mechanisms
in AD [49]. On the other hand, the increased functional
connectivity might also reflect aberrant excitatory
responses to early amyloid-! deposition that could trig-
ger a variety of inhibitory compensatory responses in
memory circuits and would, thus, explain the divergent
network connectivity changes in the medial temporal
lobe and prefrontal regions [4, 29, 50]. Our results are
congruent with the findings in APOE "4 carriers [51,
52] with increased connectivity in frontal regions of
the DMN.

During visual encoding, SMC showed reduced
activity in encoding-associated areas such as the left
occipital and left prefrontal cortex. The results in
SMC confirm the decreased brain activity engaged
by the visual memory task that has been widely
reported in the literature on sporadic AD [27]. AMC
showed increased encoding-related BOLD activity in
precuneus/posterior cingulate with respect to controls.
These results are in agreement with studies of preclin-
ical AD by our group [36] and others [19, 29] and
have been interpreted as a compensatory mechanism,
as the precuneus/posterior cingulate plays an important
role in memory functions. In healthy young con-
trols, precuneus/posterior cingulate deactivates during
encoding and is activated in retrieval, a phenomenon
known as the encoding/retrieval flip. Impaired ability
to modulate activity in the precuneus/posterior cingu-
late has been associated with increasing age, greater
amyloid burden, and worse memory performance [53]
and has also been described in healthy APOE "4 carri-
ers [54–57], and in a previous study in another sample
of PSEN1 asymptomatic carriers [58]. The hyperactiv-
ity (or lack of deactivation) in the precuneus/posterior
cingulate could be a consequence of amyloid depo-
sition, that would produce a decrease in synaptic
inhibition and modify the functional properties of the

neurons themselves, rendering them hyperactive [59]
or a compensatory mechanism, in the sense that addi-
tional cognitive resources are required to achieve and
maintain a performance level similar to that of non-
carriers. In the same sense, a previous study of PSEN1
mutation carriers showed that fMRI activity in the
fusiform and middle temporal gyri increased as sub-
jects approached the age of symptom onset, suggesting
that during novelty encoding, increased fMRI activity
may relate to incipient AD processes [32, 60].

Of note, we also found a significant correlation both
between brain activity and performance outside the
scanner and between brain activity and adjusted age in
the AMC group. First, activity in areas in the right mid-
dle temporal and right hippocampus correlated with
task performance, indicating that the system might be
already compromised prior to the appearance of symp-
toms. In the same sense, positive correlations between
hippocampus activity and encoding performance have
previously been reported in PSEN1 mutation carriers
[30, 31]. The positive correlation between adjusted age
and brain activity in a region within the left angular
gyrus is in agreement with the study published by the
group of Braskie et al. also based on a visual encoding
task [61]. These results, together with the previously
discussed hyperactivity in the precuneus/posterior cin-
gulate, suggest that the activity of other regions such as
the hippocampus or the angular gyrus would compen-
sate in PSEN1 mutation carriers a precocious alteration
in the encoding/retrieval flip.

Thus, taken together, our results would support the
possibility of a phase of paradoxically increased acti-
vation early in the course of the disease that evolves
over the course of the AD disease process [5, 28].
The present study therefore provides evidence to sup-
port that fMRI may be a suitable biomarker in familial
AD to track longitudinally disease progression. In con-
trast, the distinct and evolving changes in the DMN in
PSEN1, with increases followed by decreases in func-
tional connectivity in some areas, might complicate the
interpretation of cross-sectional results.

The main limitation of our study is the relatively
small sample size. However, previous investigations
in familial AD neuroimaging all have similar sample
sizes and the main results survived a correction for
multiple comparisons.

In summary, PSEN1 mutation carriers present dis-
ruption of normal connections in large-scale networks
over a decade before symptoms onset. However, the
trajectory of changes during the AD disease process
may be complex, with increases and decreases in func-
tional connectivity in different areas of the memory
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systems and the DMN. These changes might reflect
aberrant excitatory responses to amyloid-! and sub-
sequent inhibitory responses or functional network
reorganization mechanisms that evolve with disease
progression.
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CHAPTER5

General Discussion

In the present thesis, which includes 6 research articles, we have used advanced neuroimag-

ing approaches and techniques to investigate brain structure, brain activity, and brain con-

nectivity. From different MRI modalities, we have described changes in large-scale func-

tional brain networks and changes in whole-brain connectomics by identifying functionally

associated brain regions. We also have used DTI-tractography to characterize the brain

structural connectivity and its relationship with the functional connectivity findings. In

addition, we have found that functional and structural properties of brain networks are re-

lated memory functions in healthy young subjects and in the context of healthy aging and

Alzheimer’s disease.

Advantages of Resting-state fMRI

In 5 of the 6 studies presented in this thesis, resting-state fMRI has been used to investigate

the functional brain organization of cognitive functions in samples of young and old sub-

jects, as well as in subjects with familiar Alzheimer’s disease. One of the main advantages

of rs-fMRI is that it is easy to acquire and that it can be equally obtained from different
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sets of populations without being affected by task difficulty (Barkhof et al., 2014). Overall,

our research adds evidence to the utility of this technique to describe a common functional

brain architecture (Smith et al., 2013).

The utility of rs-fMRI in health and disease has raised several questions. One of these

questions refers to its ability to perform predictions about subjects cognitive performance.

In this regard, in our first study, we aimed to explore the relationship between connectivity

at rest and he execution of a subsequent working memory task in a sample of healthy young

subjects. We found that the connectivity of the precuneus, the posterior node of the default

mode network, measured prior to the task, explained the better execution of the task. This

finding was interpreted as a preparatory mechanism of the attentional brain system to re-

spond to a high-demanding cognitive task. Our results are in accordance with other studies

regarding the involvement of the precuneus in attentional systems, suggesting a pivotal role

of the DMN to predict the efficacy of cognitive functioning (Wang et al., 2010; Cauda et al.,

2010; Cavanna and Trimble, 2006; Lee et al., 2013).

Continuing with the study of functional connectivity at rest, in our third study we ex-

plored rs-fMRI measures and its relation with task performance in healthy aging. We found

that disruptions in some specific rs-fMRI networks were related to worse working memory

performance in healthy elders. This result was further supported and extended with the

findings of our fourth and fifth studies. In these two studies, we found correlations be-

tween rs-fRMI networks and other cognitive functions in aging, including visual memory,

verbal memory, and executive functions.

Finally, in the last study of this thesis (study 6) we reported an altered functional con-

nectivity at rest in subjects that were in early stages of familial Alzheimer’s disease, even

before the emergence of clinical symptoms. All these findings, support the applicability of

this technique in the clinical context of neurodegenerative diseases (Matthews et al., 2013;

Sheline and Raichle, 2013; Dennis and Thompson, 2014).

Convergences of rs-fMRI findings across studies

Along this thesis, we have explored different methodologies related to the analysis of

resting-state fMRI data. We have used Independent Component Analysis (ICA), which is
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currently the most widely used method in rs-fMRI studies (Damoiseaux et al., 2006). ICA

is a fully exploratory method that can be used to define large-scale networks from a set of

resting-state data (Beckmann et al., 2005) and it presents several advantages such as the fact

of being data-driven, with no hypotheses or design required a priori. In our studies, ICA

was always followed by a dual-regression analysis, which allowed performing voxel-wise

group statistics on network spatial maps (Filippini et al., 2009). Besides ICA, we also used

the seed-based connectivity approach. This method was used to define the DMN pattern as

the set of regions that correlate temporally with a given region defined a priori, which was

the precuneus. Although it is strongly dependent on the definition of the seed, seed-based

connectivity is the best method to answer specific questions when there is a strong hypoth-

esis as regards some specific connection (Cole et al., 2010). In addition, we have also used

more complex methods to analyze rs-fMRI from a whole-brain perspective, such as graph-

theory (Rubinov and Sporns, 2010) in study 4, and the FSLNets approach (Smith et al., 2011)

in study 5.

In the rs-fMRI literature it is common to find different methodologies that sometimes

give similar results but that can also produce discrepancies between studies. In our case,

we believe that the different analyses performed are complementary, and that some of the

questions that could not be answered by one of the methods, were further solved using

other approaches. As an example, in study 2 we used ICA and dual-regression of rs-fMRI

data and we found reduced connectivity in aging within the fronto-parietal and the default

mode systems. However, a clear relationship with cognition could not be established using

these approaches. Therefore, in the next study, we analyzed patterns of whole-brain con-

nectivity. In agreement with other studies (Tomasi and Volkow, 2012), we found age-related

reductions in long-range functional connections. Considering our previous results, we hy-

pothesized that this long-range functional disruption, would be directly affecting the brain

networks that involve fronto-parietal or antero-posterior connectivity. In addition, in the

same study, we used global measures derived from graph-theory and we found that these

measures captured the trajectory of connectivity changes in aging, defined as increased seg-

regation and decreased integration of brain systems. We found that graph theory measures

such as regional clustering correlated with memory alterations in aging.
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Another methodological approach to analyze whole-brain connectivity patterns focuses

on the interactions between sets of networks, and it was used in study number 5. We be-

lieve that this approach solves some of the issues raised by graph theory, concretely be-

cause the nodes are patterns of functionally independent areas defined by ICA, as opposite

to anatomical-based parcellations, and also because interactions are modeled using partial

correlations and thus, the effect of the other networks is removed (Smith et al., 2011). Us-

ing this methodology, we found that rs-fMRI data can be successfully used to find increases

and decreases in the functional coupling between networks that are strongly affected by age.

This is in agreement with the theoretical concepts of functional segregation and functional

integration used in graph analysis approaches. In this study, we also found that network in-

teractions correlated with cognitive performance, even when the individual networks were

not related to performance per se.

Working memory networks

Three of the studies presented in this thesis include fMRI acquisitions during n-back

paradigms in order to assess working memory functions. In study 1 and study 3 we used

a version of the paradigm with letters as stimuli and with different levels of cognitive load

(n=0,1,2,3 items to be retained). This version of the task was acquired in young and healthy

elders. In study 2, we studied only young subjects and we used two different versions of

the paradigm with visual stimuli, which were spatial locations and faces. Therefore, we

studied the working memory system from different points of view.

First, as regards the task activity-patterns, in the three studies we found consistent pat-

terns of brain activation in accordance with what has been described in the previous work-

ing memory fMRI research, more specifically, with n-back paradigms (Fuster, 1997; Braver

et al., 1997; Owen et al., 2005; Rottschy et al., 2012). These patterns of activation include:

the superior parietal lobule, the frontal pole, the dorsal cingulate and the dorsolateral-

midventrolateral prefrontal cortex. Furthermore, in study 2, we found additional activation

of the fusiform region and the inferior frontal area during working memory for faces, which

is in accordance with previous studies showing the specificity of the fusiform area in face

processing tasks (Haxby et al., 2001; Kanwisher, 2010).
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When looking at the connectivity networks, in the first study we used ICA to define

two main brain networks: one that was related to the task itself and the other related to

rest periods or task-deactivations. These networks were identified as the fronto-parietal

network and the DMN respectively. In the same study, we also found that the functional

coupling of within-network regions, and the functional decoupling between the two net-

works were modeled by the task difficulty. In a situation that requires a high cognitive

demand, the nodes within each network became positively correlated whereas the corre-

lation between the two networks was strongly negative. At the same time, this pattern of

functional switching between networks correlated with the task performance. This result

highlights the importance of a correct synchrony between the activation and deactivation

of brain networks during the timecourse of a task (Fox et al., 2005). Interestingly, when we

studied the same task in a group of healthy elders, we found functional alterations during

task performance that were related with lack of deactivation of the DMN regions.

Function-structure relationships in brain networks

In the present thesis we have also aimed to assess the structural characteristics underly-

ing the working memory networks. The results of such research are included in study 2.

Whereas the functional specificity of different networks depending on the stimulus used

has been widely explored in the neuroimaging literature (Kanwisher, 2010), there are only

few studies focusing on the specificity of the structural networks in brain function and cog-

nitive performance (Tavor et al., 2014).

In study 2, we first described the functional networks implicated in working memory

for faces and for locations. Afterwards, we studied DTI parameters of the anatomical con-

nections derived from these functional networks. The whole-brain analyses of the measures

derived from DTI analyses, revealed that the axial diffusivity of the inferior fronto-occipital

fasciculus correlated with reaction time in the facial working memory task. Moreover, we

also carried out a DTI-tractography analysis where we identified the fronto-occipital fasci-

culus as the main tract connecting the fusiform and the inferior frontal gyrus, which were

two of the main regions involved in facial working memory. These findings are in agree-

ment with previous DTI studies demonstrating that function specificity might affect the
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microstructural composition of white matter (Tavor et al., 2014).

In this thesis, we did not include DTI data in any of the other studies, but some of the

results obtained could be interpreted on the basis of known structural connectivity find-

ings. For example, in study 4 we showed changes in the functional correlation between

nodes and how these changes were related to the physical distance. Although results were

obtained from functional data, measures related to physical distances pointed that long-

range connectivity might be affected due to alteration of white matter pathways, which is a

commonly reported finding in aging (Madden et al., 2012).

Aging & fMRI

Along this thesis, we have used different techniques to describe functional changes that

occur in the aging brain, which were studied in the context of functional activity and func-

tional connectivity. Although some of the results as regards these findings have been al-

ready mentioned in this discussion, we will now give a more comprehensive interpretation

in the context of different aging functional models.

In the third study, we focused in brain activity patterns during working memory per-

formance. We associated the successful task performance in aging to a higher level of brain

activity in some parts of the fronto-parietal network in comparison with young subjects:

the inferior frontal gyrus bilaterally, left middle frontal gyrus, and in the anterior cingulate.

On the contrary, elder subjects with worse task performance, showed those task-activity

patterns more similar to the young subjects. These results support the HAROLD model,

which states that older adults activate regions more bilaterally as a compensation mecha-

nism during a cognitive task (Cabeza et al., 2002). Moreover, our results also agree with the

PASA model, which relates to reductions in activity of posterior areas and higher activation

in frontal areas (Davis et al., 2008).

In addition, in the same study, high performance levels were associated with abnormal

activity in the DMN. We found positive task-related activity in the precuneus/posterior

cingulate, and in the medial frontal cortex, which are two core regions of the DMN and

therefore should deactivate during task. This result also falls into the functional compensa-

tion hypothesis and it can be interpreted within the CRUNCH model (Reuter-Lorenz and
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Cappell, 2008). As it can be seen in Figure 5 of study 3, these two regions also show posi-

tive levels of activity in young subjects when they are exposed to high cognitive demands

(i.e., during the 3-back blocks). We hypothesized that old subjects with reduced brain re-

sources need to activate these additional resources at lower cognitive demands than young

subjects in order to achieve good performance. In the same study, the results from task-

related activity were supported by the results of the connectivity patterns of the default and

fronto-parietal networks, supporting the idea that functional connectivity changes can be

accompanied by functional activity changes in aging.

Thereafter, in the fourth study, we extended the sample of healthy elders and we fo-

cused on the analysis of rs-fMRI data. We found that older subjects had higher clustering

(increased segregation) and increased average minimum path length (decreased integrity)

of the global functional network, also in accordance with the literature on rs-fMRI and ag-

ing (Achard and Bullmore, 2007; Meunier et al., 2009). Furthermore, the localization of such

changes indicated that frontal and parietal regions become more clustered with age, but that

the connectivity between these two regions is highly reduced. This finding is in agreement

with the disruptions of the fronto-parietal network reported in the previous study.

Finally, we also studied changes in the status and interactions of large-scale networks,

which are reported in study 5. We found that the majority of networks showed local in-

creases in connectivity of areas surrounding the main network nodes. However, when we

looked at the effect of age in the interactions between networks we observed both increases

and decreases in its connectivity. Connectivity decreases were found between networks

that belong to the same brain system, such as the posterior and anterior parts of the DMN

or different parts of the FPN, whereas connectivity increases were found between compo-

nents representing distinct RSNs. The results of this study also indicate a loss of functional

specialization and integration of networks, specially the DMN and FPN systems. Further,

they are in agreement with the findings of study 3, where we found that the interplaying

roles of the DMN and FPN systems were affected by age and with study 4, where we de-

scribed that the whole brain network was more segregated and less integrated with aging.

Alterations in the connectivity between networks have been also recently reported in the

literature (Betzel et al., 2014; Geerligs et al., 2014).
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fMRI & Alzheimers disease

In one of the studies presented in this thesis, we studied functional changes in carriers of

the PSEN1 mutation, which causes familiar Alzheimers disease with 100% of penetrance

(Fortea et al., 2011a). Some of the subjects included were at the dementia stages of the dis-

ease, but other were asymptomatic, scanned in average 12 years prior to the predicted age

of onset. We described functional alterations in areas within the episodic memory network

during the encoding of novel images, as well as alterations in the connectivity of the default

mode network measured during resting-fMRI. With our results, we first evidenced that the

pattern of functional alterations in the clinical stages of familial AD is in accordance with

what has been described in sporadic AD (Schwindt and Black, 2009; Greicius et al., 2004),

adding evidence to the potential use of fMRI as a biomarker for AD. Furthermore, the re-

sults obtained with the asymptomatic cohort support previous studies suggesting that func-

tional alterations may appear in the preclinical stages of the disease (Sheline and Raichle,

2013; Dennis and Thompson, 2014). Finally, it should be noted that in this study we reported

a non-linear trajectory of the changes in the connectivity of the default mode network, be-

ing that symptomatic subjects showed decreased connectivity between the anterior and the

posterior nodes of this network, but asymptomatic subjects showed increased connectivity.

Similar results have been reported with APOE e4 carriers (Filippini et al., 2009; Damoi-

seaux et al., 2012) and they have been interpreted as aberrant excitatory responses to early

amyloid-b deposition triggering compensatory mechanism.

The default mode network

The default mode network has appeared in several parts of the thesis, therefore in the fol-

lowing section we aimed to put together all our findings as regards this system and their

relationship with what has been described in the literature.

In the first study, the DMN appeared as a system that deactivates during the perfor-

mance of a task, showing negative temporal correlation with task-positive networks, sup-

porting previous findings (Fox et al., 2005). We found that this continuous switching be-

tween networks was more clearly marked in higher cognitive loads and that it correlated

with task performance. Later on, in study 3, we found that the DMN functioning was al-
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tered in healthy aging, in the sense that some of its parts remained active during task and

were not completely separated from task-positive networks. In this case, the engagement

of DMN regions during task was associated with better task performance, indicating com-

pensation.

A common finding as regards DMN changes in aging is the disconnection between its

anterior and posterior nodes (Andrews-Hanna et al., 2007; Damoiseaux et al., 2008; Vidal-

Piñeiro et al., 2014b). We replicated this finding in several parts of this thesis. For example,

in study 4, we explored correlations between all regions in the parcellated brain, and we

found that the connectivity between frontal nodes and precuneus/posterior cingulate re-

gions correlated negatively with age. In addition, in the same study, increased clustering in

regions coinciding with anterior and posterior DMN nodes correlated with the age of the

subjects and negatively with the results of memory tests. This disconnection of the DMN

sub-modules with age was also observed in study 5, where it also correlated with results

of the executive functions. Our findings add evidence to the implication of the DMN in

memory processes (Buckner et al., 2008) and in general cognitive functioning.
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Conclusions

1. Functional networks can be estimated from functional MRI during task and at rest

and they provide information about cognitive states and task performance.

2. The connectivity of the default mode network, measured during a resting-state acqui-

sition before the performance of a task, indicates preparatory, attentional mechanisms

that predict task performance.

3. Large-scale networks involved in working memory have functional specificity de-

pending on the kind of stimuli used, which can be observed in their functional ac-

tivity patterns as well as in the DTI measures reflecting microstructural white matter

properties.

4. Healthy aging is associated with reorganizations of functional networks that we ob-

served using functional MRI at rest and during the performance of a working memory

task, that have a compensatory role and contribute to successful performance in the

task.

5. Analysis of whole-brain functional connectivity revealed a loss of long-range func-
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tional connectivity and an increase in short-range connectivity, resulting in topolog-

ical changes of the whole network, which can be summarized as decreased network

integration and increased segregation.

6. In addition to patterns of age-related changes affecting isolated networks, we also

evidenced changes in the interactions between large-scale networks.

7. Resting-state functional connectivity and task-related brain activity are altered in

Alzheimers disease, even many years before the emergence of clinical symptomatol-

ogy.

8. The Default Mode Network appears as a highly compromised system in both healthy

aging and in Alzheimer disease, in the sense that its connectivity is disrupted and its

normal activation-deactivation behavior is altered with some of its nodes being abnor-

mally recruited during working memory or episodic memory tasks as compensatory

mechanisms.
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Methodological issues in Graph Theory

A.1 Introduction and motivation of the study

In this appendix, we evaluate some of the issues that raised during the graph-theory anal-

yses presented in Study 4. Therefore, the study sample, the preprocessing of rs-fMRI data

and the main analysis settings are the same as reported there (and described in the Methods

section of the present thesis).

The main motivation for these additional analyses was to study and to quantify the

impact of some methodological choices that needed to be taken during the process of data

analysis. In addition, some of the points presented here were derived from the comments

made by the experts during the revision and publication processes of the study.
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Table A.1: Regions in FS-82 atlas

Frontal lobe Occipital lobe
1 Superior frontal 26 Lateral occipital
2 Rostral middle frontal 27 Lingual
3 Caudal middle frontal 28 Cuneus
4 Pars opercularis 29 Pericalcarine
5 Pars triangularis Cingulate
6 Pars orbitalis 30 Rostral anterior
7 Lateral Orbitofrontal 31 Caudal anterior
8 Medial orbitofrontal 32 Posterior
9 Precentral 33 Isthmus
10 Paracentral Other
11 Frontal Pole 34 Insula

Parietal Lobe 35 Cerebellum
12 Superior parietal Subcortical
13 Inferior Parietal 36 Thalamus
14 Supramarginal 37 Caudate
15 Postcentral 38 Putamen
16 Precuneus 39 Pallidum

Temporal lobe 40 Hippocampus
17 Superior temporal 41 Amygdala
18 Middle temporal
19 Inferior temporal
20 Banks of the superior

temporal sulcus (bankssts)
21 Fusiform
22 Transverse temporal
23 Entorhinal
24 Temporal pole
25 Parahippocampal

A.2 Methods

A.2.1 Evaluation of different brain parcellations strategies

Brain parcellation in one of the first stages performed in graph theory studies. However,

its implications can not be observed until the whole study has been done. Therefore, we

repeated the network creation and the evaluation of network metrics. We evaluated par-

cellations derived from the AAL atlas (Tzourio-Mazoyer et al., 2002) and from two atlases

available in Freesurfer (Desikan et al., 2006; Destrieux et al., 2010) (Figure A.1 and Tables

A.1 and A.2). Subsequently, we repeated the main analyses of Study 4 in the three atlases.
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Table A.2: Regions in FS-164 atlas
1 Fronto-marginal gyrus (Wernike) and sulcus 42 Medial wall
2 Inferior occipital gyrus (O3) and sulcus 43 Occipital pole
3 Paracentral lobule and sulcus 44 Temporal pole
4 Subcentral gyrus (operculum) and sulci 45 Calcarine sulcus
5 Transverse frontopolar gyri and sulci 46 Central sulcus
6 Anterior cingulate gyrus and sulcus 47 Marginal branch of cingulate gyrus
7 Middle-anterior cingulate gyrus and sulcus 48 Anterior circular sulcus of the insula
8 Middle-posterior cingulate gyrus and sulcus 49 Inferior circular sulcus of the insula
9 Posterior-dorsal cingulate 50 Superior of the circular sulcus of the insula

10 Posterior-ventral cingulate 51 Anterior transverse collateral sulcus
11 Cuneus (O6) 52 Posterior transverse collateral sulcus
12 Opercular Inferior frontal gyrus 53 Inferior frontal sulcus
13 Orbital Inferior frontal gyrus 54 Midle frontal sulcus
14 Triangular inferior frontal gyrus 55 Superior frontal sulcus
15 Middle frontal gyrus (F2) 56 Sulcus intermedius primus (of Jensen)
16 Superior frontal gyrus (F1) 57 Intraparietal sulcus and transverse parietal
17 Long insular gyrus and central insula 58 Middle occipital sulcus and lunatus sulcus
18 Short insular gyri 59 Superior occipital sulcus and preoccipital notch
19 Middle occipital gyrus (O2) 60 Anterior occipital sulcus and preoccipital notch
20 Superior occipital gyrus (O1) 61 Lateral occipito-temporal sulcus
21 Lateral occipito-temporal gyrus (fusiform, O4-T4) 62 Medial occipito-temporal sulcus and lingual
22 Lingual gyrus (O5) 63 Lateral orbital sulcus
23 Parahippocampal gyrus (T5) 64 Medial orbital sulcus (olfactory sulcus)
24 Orbital gyri 65 Orbital sulci (H-shaped sulci)
25 Angular gyrus 66 Parieto-occipital sulcus (or fissure)
26 Supramarginal gyrus 67 Pericallosal sulcus (S of corpus callosum)
27 Superior parietal lobule (lateral P1) 68 Postcentral sulcus
28 Postcentral gyrus 69 Inferior part of the precentral sulcus
29 Precentral gyrus 70 Superior part of the precentral sulcus
30 Precuneus (medial P1) 71 Suborbital sulcus (sulcus rostrales, supraorbital sulcus)
31 Straight gyrus, gyrus rectus 72 Subparietal sulcus
32 Subcallosal area, subcallosal gyrus 73 Inferior temporal sulcus
33 Anterior transverse temporal gyrus (Heschl) 74 Superior temporal sulcus (parallel sulcus)
34 Lateral aspect of the superior temporal gyrus 75 Transverse temporal sulcus
35 Planum polare of the superior temporal gyrus 76 Cerebellum
36 Planum temporale of the superior temporal gyrus 77 Thalamus
37 Inferior temporal gyrus (T3) 78 Caudate
38 Middle temporal gyrus 79 Putamen
39 Horizontal ramus of the anterior lateral sulcus 80 Pallidum
40 Verticall ramus of the anterior lateral sulcus 81 Hippocampus
41 Posterior ramus of the lateral sulcus 82 Amygdala
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Figure A.1: Three different atlas-based parcellation strategies evaluated. Parcellations are
shown on the standard brain template

A.2.2 Evaluation of networks at different threshold levels

For each of the different parcellations, we evaluated the resulting networks across a set of

thresholds. We used a relative threshold and we evaluated network sparsities from 5% to

40%.

A.3 Results

We first examined the topological structure of the obtained networks, in the three atlases,

that is, in three parcellation dimensionalities, and covering a wide range of sparsity levels.

These analyses were done in order to evaluate at the same time the effect of increasing the

number of nodes and the number of edges and connections. Examples of network obtained

at each configuration are shown in Figure A.2.
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Figure A.2: Examples of networks obtained with different atlases and at different levels of
sparsity.
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A.3.1 Network metrics

We evaluated the correlation between measures obtained at the different network configu-

rations.

A.3.2 Correlations with age

Table A.3: Age-correlations of graph theory metrics using different atlases and threshold
levels

Threshold Atlas Correlation with age Correlation with age Correlation with age
Clustering Coefficient Minimum Path Length Small-World
r (p) r (p) r (p)

5%
AAL .122 (.235) .242 (.017) -.183 (.073)
FS-82 -.041 (.680) .17 (.095) -.098 (.339)
FS-162 .173 (.092) .283 (.005) -.200 (.05)

10%
AAL .428 ( <.001) .321 (.001) -.027 (.79)
FS-82 .226 (.026) .313 (.002) -.111 (.28)
FS-162 .354 (<.001) .344 (.001) -.071 (.491)

15%
AAL .454 (<.001) .380 (<.001) .030 (.768)
FS-82 .373 (<.001) .294 (<.001) -.011 (.91)
FS-162 .424 (<.001) .357 (<.001) .088 (.392)

20%
AAL .480 (<.001) .409 (<.001) .223 (.028)
FS-82 .352 (<.001) .306 (.002) .247 (.015)
FS-162 .404 (<.001) .359 (<.001) .287 (.005)

25%
AAL .469 (<.001) .389 (<.001) .276 (<.001)
FS-82 .352 (<.001) .306 (.002) .247 (.015)
FS-162 .404 (<.001) .359 (<.001) .287 (.005)

30%
AAL .443 (<.001) .358 (<.001) .413 (<.001)
FS-82 .355 (<.001) .303 (.003) .245 (.016)
FS-162 .398 (<.001) .323 (.001) .335 (.001)

35%
AAL .425 (<.001) .326 (.001) .424 (<.001)
FS-82 .352 (<.001) .288 (.004) .293 (.004)
FS-162 .392 (<.001) .292 (.004) .362 (<.001)

40%
AAL .401 (<.001) .263 (.009) .442 (<.001)
FS-82 .347 (<.001) .251 (.013) .302 (.003)
FS-162 .374 (<.001) .247 (.015) .361 (<.001)
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Resum en català

Antecedents i plantejament de la investigació

Aquesta tesi s’ha elaborat en el format de compendi de sis estudis en els quals s’han utilitzat

diversos mètodes de ressonància magnètica amb la finalitat de caracteritzar la connectivi-

tat cerebral i la seva relació amb l’estat cognitiu en diverses etapes de la vida: joves sans,

persones amb alt risc de demència i pacients amb malaltia d’Alzheimer.

El concepte de connectivitat cerebral engloba l’estudi de les interaccions entre diferents

regions cerebrals. Aquestes interaccions es poden observar tant a nivell estructural com

funcional. Les tècniques avançades d’Imatge per Ressonància Magnètica (IRM) ens perme-

ten estudiar ambdós aspectes de la connectivitat (Behrens and Sporns, 2012). Per l’estudi de

la connectivitat estructural s’usa bàsicament la IRM de difusió que es basa en l’adquisició

d’una sèrie de volums de IRM en diferents direccions i s’analitza a partir de les imatges de

Tensor de Difusió, o Diffusion Tensor Imaging (DTI), amb les quals es poden calcular mapes

de direccionalitat a nivell de vòxel, i que també permeten realitzar tractografia entre dues

regions d’interès (Basser et al., 1994). La connectivitat funcional es pot estudiar mitjançant
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la IRM funcional (IRMf). Aquesta tècnica consisteix en l’adquisició seqencial d’imatges du-

rant un perı́ode de temps i està basada en la mesura del senyal depenent del nivell d’oxigen

a la sang (Blood-Oxigen Level Dependent, BOLD). La IRMf ens permet veure canvis regionals

en el nivell d’activitat cerebral, quan s’adquireix durant l’execució d’una tasca, i també ens

permet mesurar la connectivitat funcional a partir de les correlacions entre les oscil.lacions

temporals de diferents regions cerebrals. La connectivitat funcional es pot mesurar durant

l’execució d’una tasca, però també durant l’estat de repòs, o resting-state. En el darrer cas, es

mesuren les correlacions entre les oscil.lacions derivades de l’activitat espontània de baixa

freqència (Biswal et al., 1995).

Les tècniques derivades de la IRMf han permès caracteritzar un conjunt de xarxes o pa-

trons que són comuns a tots els subjectes i que defineixen una arquitectura funcional del

cervell (Smith et al., 2009). Dintre d’aquest grup de xarxes, trobem xarxes associades a

aspectes simples sensorials o motors, com per exemple les xarxes visuals o somatosensori-

als/motores, i altres associades a funcions cognitives complexes com per exemple la xarxa

fronto-parietal que es relaciona amb les funcions executives i amb la memòria de treball.

Aquestes xarxes es poden identificar amb adquisicions de IRMf concomitants a una tasca

en les que s’observa un increment d’activitat BOLD durant la seva execució i també durant

l’estat de repòs. En l’activitat de repòs els nodes de les xarxes correlacionen en les seves

oscil.lacions espontànies de baixa freqència.

Dintre del grup de les principals xarxes funcionals, destaca la xarxa neuronal per de-

fecte, o Default Mode Network (DMN). La DMN té un comportament diferent a les altres

xarxes perquè es mostra activa durant el repòs i es desactiva durant l’execució d’una tasca

que impliqui una alta demanda cognitiva. La DMN comprèn regions frontals, regions del

cingulat posterior i precuneus i regions parietals. Es considera que participa en modes in-

terns de cognició tals com la memòria autobiogràfica o la introspecció (Buckner et al., 2008).

La DMN també s’ha relacionat amb els processos de la memòria declarativa degut a la seva

connexió amb l’hipocamp. Ha demostrat ser una xarxa de gran interès en el curs de la

malaltia d’Alzheimer, incloent les fases inicials o pre-clı́niques, ja que es troba alterada tant

en pacients amb simptomatologia clı́nica com en subjectes en risc de desenvolupar-la.

El concepte d’envelliment sà fa referència a persones d’edat avançada que són capaces
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de mantenir les seves funcions cognitives dintre de la normalitat malgrat els processos de-

generatius associats al propi envelliment. Cal destacar que, tot i mantenir-se dintre de la

normalitat, els subjectes d’edat avançada poden mostrar declivis cognitius, en especial en

la memòria episòdica i la memòria de treball. Aixı́ doncs, un dels principals objectius dintre

del camp de la neurociència cognitiva en l’envelliment és poder entendre quins són els can-

vis cerebrals que són l’origen de les diferències individuals en el grau de declivi cognitiu

associat a l’edat (Park and Reuter-Lorenz, 2009).

Els estudis previs han demostrat que mitjançant la IRMf es poden detectar canvis en

l’activitat cerebral en subjectes que no tenen cap diagnòstic clı́nic de demència o de dete-

riorament cognitiu lleu (Grady, 2012). Una de les troballes més comunes és que els sub-

jectes d’edat avançada mostren nivells més alts d’activació cerebral en comparació amb els

subjectes joves durant l’execució de tasques cognitives. Aquesta activació addicional es

localitza principalment a regions frontals i sembla reflectir processos de compensació fun-

cional ja que una major activació s’ha vist relacionada amb un millor rendiment (Cabeza

et al., 2002). A més dels canvis en l’activació cerebral, durant l’envelliment també s’han

trobat canvis en la connectivitat cerebral, que afecten a l’estructura i funció de les principals

xarxes (Dennis and Thompson, 2014). Aixı́, s’ha vist que hi ha una reducció de la connec-

tivitat entre regions dins de la DMN i en la xarxa fronto-parietal.

La malaltia d’Alzheimer és la forma de demència més comuna en la societat actual. En

pacients en estats avançats de la malaltia, s’han descrit alteracions cerebrals tant a nivell es-

tructural com funcional que inclouen pèrdues de volum, alteracions en la substància blanca

i alteracions en l’activitat i la connectivitat funcional (Chhatwal and Sperling, 2012). Actual-

ment, un dels principals objectius de la investigació en neuroimatge és definir marcadors

per detectar aquells canvis que apareixen en els estats previs a l’aparició de la simptoma-

tologia clı́nica dels subjectes. Amb aquesta finalitat, s’han estudiat subjectes sans que tenen

un risc elevat de desenvolupar la malaltia, que inclouen portadors del gen APOE-ε4 o sub-

jectes d’edat avançada amb valors positius en els biomarcadors de β-Amiloide.
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Hipòtesis i Objectius

Hipòtesis

1. El cervell humà està organitzat funcionalment com a un grup de xarxes que es poden

identificar amb ressonància magnètica funcional durant l’execució d’una tasca o en

estat de repòs i que tindran una implicació directe en la cognició.

2. La connectivitat cerebral, mesurada durant el repòs, pot predir l’execució d’una tasca

realitzada immediatament desprès.

3. El sistema de la memòria de treball es trobarà alterat en els subjectes sans d’edat

avançada, i aquesta alteració tindrà una implicació en els dèficits cognitius en aquest

domini.

4. Donat que l’envelliment sà està relacionat amb canvis en els patrons d’activitat cere-

bral, esperem trobar també alteracions en les mesures de connectivitat funcional cere-

bral en l’envelliment.

5. En les formes genètiques de la malaltia d’Alzheimer, la Ressonància Magnètica fun-

cional pot ser d’utilitat per identificar canvis cerebrals que apareixen en estats previs

a la manifestació dels sı́mptomes clı́nics.

Objectius

OBJECTIU PRINCIPAL:

Estudiar el potencial de la Ressonància Magnètica per identificar i estudiar les xarxes cere-

brals que es troben presents en l’estat de repòs i durant l’execució d’una tasca en diferents

grups de subjectes.

OBJECTIUS ESPECÍFICS:

1. Estudiar la utilitat de les mesures de connectivitat funcional en repòs per predir els

resultats en l’execució d’una tasca.
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2. Investigar les relacions entre la funcionalitat i l’estructura de les xarxes cerebrals, i

com aquestes es relacionen amb el rendiment cognitiu.

3. Estudiar els patrons d’activitat i connectivitat de les xarxes funcionals de gran escala

en el context de l’envelliment sà, i com aquests poden donar lloc a diferències en

l’execució.

4. Caracteritzar els patrons de connectivitat funcional cerebral a nivell global en

l’envelliment i estudiar correlacions amb l’estat cognitiu dels subjectes.

5. Investigar el potencial de la IRMf per identificar els canvis cerebrals que apareixen en

les etapes inicials de les malalties neurodegeneratives, fins i tot abans de l’aparició de

sı́mptomes clı́nics.

Resultats

En el primer dels treballs de la tesi, es va estudiar un grup de 16 subjectes joves sans

mitjançant IRM funcional, durant l’estat de repòs i durant una tasca de memòria de tre-

ball. La tasca que es va utilitzar va ser un paradigma n-back amb diversos nivells de di-

ficultat. Durant la tasca, els subjectes veien una seqüència d’estı́muls, dels quals n’havien

de memoritzar n ı́tems successivament (amb n = 0,1,2 o 3, segons el nivell de dificultat).

Primerament, a partir de l’estudi de la IRMf en repòs, es va trobar que el grau de connec-

tivitat de la xarxa neuronal per defecte correlacionava amb la bona execució de la tasca, la

qual cosa indicava el paper dels mecanismes de preparació dels sistemes atencionals cere-

brals per a resoldre exitosament la tasca. Després, a partir de la IRMf durant la tasca, es

varen identificar les dues xarxes principals implicades en l’execució d’aquesta. La primera,

la xarxa fronto-parietal, es mostrà activa durant els blocs de demanda cognitiva, mentre que

una segona xarxa, la xarxa neuronal per defecte, o default mode network es mostrà activa

durant els blocs de repòs i es desactivà durant la tasca. Vàrem observar que ambdues xarxes

presentaven una forta correlació negativa, això és que quan una es mostrava activa l’altra

es desactivava i viceversa. Aquesta sincronia negativa, s’observà de forma més evident en

els blocs de més dificultat, i alhora correlacionà amb la bona execució.
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En el segent estudi, vàrem voler aprofundir en la identificació dels patrons cerebrals de

les xarxes implicades en la memòria de treball en joves sans. En aquest cas també vàrem

estudiar l’especialització funcional d’aquestes en funció del tipus d’estı́mul. Aixı́, es van

utilitzar dues tasques de memòria de treball en un grup de 23 subjectes joves sans, una

amb estı́muls visuo-perceptius (cares) i l’altra amb estı́muls visuo-espacials (localització de

quadrats). Els resultats d’aquest estudi indicaren que les xarxes de la memòria de treball

tenen un patró comú que és independent del tipus d’estı́mul i que inclou regions parietals

i frontals, però que hi ha algunes regions addicionals que s’activen en funció de l’estı́mul.

En el nostre cas, vàrem trobar activitat en el gir fusiforme i en una regió del còrtex inferior

frontal associada a la tasca amb estı́muls facials. En aquest treball també es va fer un estudi

de IRM de Difusió mitjançant DTI i es va veure que les propietats microestructurals de la

substància blanca dels tractes que unien el gir fusiforme i el còrtex inferior frontal facilitaven

la velocitat de processament en retenció temporal de cares.

En el tercer treball es van incloure 29 subjectes sans d’edat avançada, juntament amb un

grup de 16 subjectes joves, que varen ser estudiats amb la IRMf en repòs i durant una tasca

de memòria de treball, amb l’objectiu d’estudiar els canvis en la connectivitat i activitat cere-

brals relacionats amb la memòria de treball en l’envelliment. Es va utilitzar la mateixa tasca

que en el primer estudi, que permetia controlar el nivell de càrrega cognitiva. Primerament,

es varen identificar els patrons d’activitat associats a la tasca a nivell de grup, que corres-

pongueren a les xarxes fronto-parietals i a la xarxa neuronal per defecte, i que coincidiren

amb les xarxes identificades al primer estudi, aixı́ com amb altres estudis de la literatura.

El grup de subjectes d’edat avançada es va dividir en dos subgrups en funció dels resultats

obtinguts en la tasca. El subgrup amb alta execució mostrà un patró d’activitat cerebral

significativament diferent al patró dels subjectes amb baixa execució i al patró del grup de

joves. Es va observar una activació addicional que principalment implicava regions frontals

bilaterals. A més, també s’observà una activació cerebral associada a la tasca en algunes de

les regions que pertanyen a la xarxa neuronal per defecte. Els resultats d’aquest estudi indi-

caren mecanismes compensatoris dintre de les xarxes fronto-parietals, aixı́ com l’activació

de regions d’altres xarxes, en aquest cas de la xarxa neuronal per defecte, en situacions d’alta
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demanda cognitiva. Els subjectes d’edat avançada que no van activar aquests mecanismes,

i que per tant tenien un patró similar al dels joves, tenien una execució més baixa en la tasca.

En el quart i cinquè treballs es va ampliar la mostra de subjectes amb envelliment sà i

es van estudiar els patrons de connectivitat a nivell global i la seva relació amb l’estat cog-

nitiu dels subjectes. En el primer d’aquests estudis, en el qual es van incloure 98 subjectes,

es va utilitzar la teoria de grafs, o Graph Theory, per analitzar les connexions entre regions

obtingudes d’una parcel.lació del cervell derivada de l’atles AAL (Automated Anatomi-

cal Labeling, (Tzourio-Mazoyer et al., 2002)). Es va trobar que els subjectes de més edat

mostraven menys connectivitat funcional en les connexions de llarga distància, sobretot en

les connexions entre regions frontals i parietals, però que pel contrari, hi havia un increment

relacionat amb l’edat en la connectivitat funcional en les connexions curtes. També es van

obtenir mesures de connectivitat derivades de la teoria de grafs, que van permetre estudiar

la integració i la segregació de les xarxes cerebrals, tant a nivell global com a nivell regional.

A nivell global, els subjectes de més edat presentaren un increment de la segregació i un in-

crement de la integració, que donà com a resultat xarxes menys eficients. A nivell regional,

es va estudiar el coeficient de Clustering, que mesura l’agrupament funcional de regions

properes i que es relaciona amb la segregació regional. Es va trobar que l’agrupament fun-

cional d’algunes regions, sobretot de regions frontals i parietals, augmentava amb l’edat i

correlacionava negativament amb l’execució en els tests de memòria visual i verbal.

En el segent estudi, el cinquè de la tesi, es van voler ampliar els resultats pel que fa al

comportament global de la connectivitat funcional en l’envelliment, per això es van utilitzar

també les imatges de IRMf en repòs en un grup de 76 subjectes d’edat avançada. En aquest

estudi, s’identificaren les principals xarxes funcionals i s’estudiaren les seves interaccions

funcionals. En consonància amb l’estudi anterior, es va observar que algunes de les xarxes

estaven més interconnectades en els subjectes de més edat mentre que d’altres disminuen

la seva connectivitat. Aquests patrons de connectivitat entre xarxes també es van relacionar

amb el rendiment cognitiu en memòria i funcions executives. Es va concloure que la cor-

recta sincronia entre les parts de la mateixa xarxa funcional té una implicació positiva en
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l’estatus cognitiu en l’envelliment, mentre que el fet de que els elements d’una xarxa con-

creta incrementin la correlació amb regions d’un altre sistema pot tenir efectes negatius.

Finalment, en el sisè treball de la tesi, es van investigar els patrons d’activitat i connec-

tivitat funcional en un grup de subjectes amb una mutació en el gen Presenilin-1 (PSEN-1).

Aquesta mutació és causant de la malaltia d’Alzheimer familiar. En l’estudi es van incloure

portadors de la mutació que es trobaven ja en fases simptomàtiques de la malaltia, però

també es van poder estudiar subjectes portadors de la mutació que es trobaven lluny de

l’edat estimada d’inici de la malaltia i que per tant, no mostraven cap sı́mptoma clı́nic. A

tots els subjectes se’ls va realitzar una IRMf durant el repòs i durant una tasca de memòria

episòdica. Es van trobar alteracions de la connectivitat funcional dintre de la xarxa neu-

ronal per defecte durant el repòs, aixı́ com alteracions de l’activitat funcional en la xarxa de

la memòria episòdica durant la tasca. Aquestes alteracions es varen poder identificar tant

en subjectes simptomàtics com en aquells que estaven lluny de l’edat estimada d’inici de la

malaltia, el que indica que la IRMf pot ser un bon biomarcador per detectar canvis cerebrals

funcionals abans de que aquests es facin clı́nicament evidents. En el cas especı́fic de la xarxa

neuronal per defecte, es va veure que els subjectes pre-simptomàtics tenien increments de

la connectivitat mentre que els simptomàtics en tenien decrements, troballes que indicaven

que els canvis neurodegeneratius en la malaltia d’Alzheimer no segueixen un recorregut

lineal.

Conclusions

1. Els patrons de les xarxes cerebrals funcionals es poden obtenir a partir de la Res-

sonància Magnètica Funcional tant durant l’execució d’una tasca com en l’estat de

repòs. L’estat d’aquestes xarxes aporta informació sobre l’estat cognitiu dels subjectes.

2. La connectivitat de la xarxa neuronal per defecte, mesurada durant l’estat de repòs

previ a l’execució d’una tasca, indica que hi ha mecanismes d’atenció que preparen

per la resposta i que faciliten l’execució correcta de la tasca.
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3. Les xarxes neuronals implicades en la memòria de treball tenen especificitat funcional

que depèn dels tipus d’estı́muls utilitzats. Aquesta especificitat es pot observar en els

patrons d’activació funcional i també en els ı́ndexs de DTI que mesuren les propietats

micro-estructurals de la substància blanca.

4. L’envelliment sà està associat a les reorganitzacions en les xarxes funcionals, que hem

pogut observar utilitzant IRMf en repòs i durant l’execució d’una tasca de memòria

de treball. Aquestes reorganitzacions donen lloc a processos compensatoris ja que es

relacionen amb la correcta execució de les tasques cognitives.

5. L’anàlisi de la connectivitat funcional a nivell global de tot el cervell en l’envelliment

indicà una pèrdua de connectivitat funcional en les connexions de llarga distància i

un increment de connectivitat en les de curta distància. Aquests canvis associats a

l’envelliment es van veure reflectits en un decrement de la integració funcional i un

increment de la segregació.

6. A part dels canvis allats observats en les diferents xarxes durant l’envelliment, també

es van observar canvis en la seva interacció funcional.

7. En subjectes amb malaltia d’Alzheimer, trobarem alteracions en la connectivitat fun-

cional mesurada durant l’estat de repòs, aixı́ com en l’activitat funcional mesurada

durant l’execució d’una tasca de memòria. Aquestes alteracions es detectaren

prèviament a l’aparició dels sı́mptomes clı́nics.

8. La xarxa neuronal per defecte es mostrà com un sistema altament compromès tant en

l’envelliment normal com el la malaltia d’Alzheimer. Trobarem alteracions en la seva

connectivitat funcional, i també alteracions en el seu comportament normal dactivació

i desactivació en els estats de repòs i de tasca, respectivament. Algunes de les seves

regions mostraren evidencies de formar part dels mecanismes compensatoris per la

pèrdua de memòria episòdica i de treball.
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els pacients i familiars, i als voluntaris que han participat en els estudis i en les

proves pilot que he hagut de fer durant la tesi.
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ABSTRACT

INTRODUCTION: This thesis has been elaborated as a compendium of 6 research

studies. We have used a variety of methods related with Magnetic Resonance

Imaging (MRI) with the objective to characterize brain connectivity and its re-

lationship with cognition in young and aged healthy subjects and in preclinical

Alzheimers Disease (AD).

Brain Connectivity refers to any pattern of links connecting different brain areas.

It can be studied at its functional level, by using functional MRI (fMRI), which

measures the statistical dependence between brain activity at different regions,

or at its structural level, with Diffusion Tensor Imaging (DTI), which estimates

the directionality of white matter fiber tracts.

FMRI can be acquired during a task (task-fMRI) or during resting state (rs-fMRI).

With task-fMRI, it is possible to obtain patterns of brain co-activations, measured

by the Blood-Oxigen Level Dependent (BOLD) signal. On the other hand, rs-

fMRI allows measuring patterns of brain connectivity, known as Resting State

Networks (RSNs), as correlations between spontaneous oscillations. Functional

connectivity has been used to describe a set of networks in the brain, including

the Default Mode Network (DMN), which is deactivated during task and shows

high activity levels at rest.

RESULTS: In the first study, we included 16 healthy young subjects, under rs-

fMRI and during a Working Memory (WM) task-fMRI. The connectivity of the

DMN at rest correlated with the performance in the subsequent task. During

task-fMRI, we described the DMN and the WM network. The connectivity be-

tween these networks was highly negative in the most demanding blocks and

during fixation, which also correlated with performance. In addition, within-

network connectivity increased with cognitive demands.

In the second study, we analyzed the networks involved in two different WM
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tasks, with visuoperceptive (faces) and visuospatial (squares) stimuli. We used

task-fMRI and DTI. We found that the fusiform and the inferior frontal gyrus

were selectively activated for faces, and that the DTI measures of the tracts con-

necting these regions correlated with task performance for the facial-WM.

In the third study, we analyzed a sample of young and old subjects during a WM

task. We found patterns of increased activity in the WM networks in aging that

were related to successful performance, indicating compensatory mechanisms.

The results of this study supported and extended previous research on fMRI and

aging.

In study 4, we included a sample of 98 healthy elders, during rs-fMRI. We used

graph-theory to analyze whole-brain patterns of connectivity. Age correlated

with a loss of functional connectivity in long-range connections and an increase

in functional connectivity in short-range connections. These changes resulted

in increases in clustering coefficient and larger average minimum path-length

of the global network, indicating higher functional segregation and less integra-

tion. Increases in clustering were located in frontal and parietal regions and they

correlated negatively with visual and verbal memory functions.

In study 5, we used a sample of 76 healthy elders during rs-fMRI and we ana-

lyzed functional interactions between the components of the main RSNs. The

anterior and posterior components of the DMN were less connected in older

subjects, and the connectivity between different networks increased with age,

indicating alterations in the global architecture of functional networks. RSN-

interactions correlated with the results in memory and executive functions.

Finally, in the last study, we included a sample of asymptomatic and symp-

tomatic carriers of the PSEN1 mutation, which causes Familial AD. We found

altered functional connectivity and brain activity at rest and during memory en-

coding that appear even before the onset of AD.

CONCLUSIONS: Overall, we proved the usefulness of fMRI to study brain con-
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nectivity networks and we concluded that connectivity signals correlate with

cognitive status and with task performance. In addition, we described alter-

ations in connectivity during the healthy aging process and in AD, even before

the disease onset. Finally, we identified the DMN as the system showing the

highest correlations in healthy subjects but also as a core target for aging and

AD.
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Molinuevo, J. L., and Sánchez-Valle, R. (2011a).
PICOGEN: five years experience with a genetic
counselling program for dementia. Neurologı́a,
26(3):143–9.

Fortea, J., Sala-Llonch, R., Bartrés-Faz, D., Bosch,
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