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Metabolic processes are altered in cancer cells, which obtain advantages from 
this metabolic reprogramming in terms of energy production and synthesis of 
biomolecules that sustain their uncontrolled proliferation. Due to the conceptual 
progresses in the last decade, metabolic reprogramming was recently included as one 
of the new hallmarks of cancer. The advent of high-throughput technologies to amass 
an abundance of omic data, together with the development of new computational 
methods that allow the integration and analysis of omic data by using genome-scale 
reconstructions of human metabolism, have increased and accelerated the discovery 
and development of anticancer drugs and tumor-specific metabolic biomarkers. Here 
we review and discuss the latest advances in the context of metabolic reprogramming 
and the future in cancer research.‡Authors contributed equally

Cancer is still one of the major causes of 
death worldwide and the statistics are dev-
astating. According to the WHO the global 
burden of cancer has risen to 14.1 million 
new cases and 8.2 million cancer deaths in 
2012 and the estimates predict that it could 
increase in its global incidence [1].

It was proposed 15 years ago by Hanahan 
and Weinberg that cancer development relies 
on the following basic biological capabili-
ties, known as the ‘hallmarks of cancer’ that 
are acquired during the multistep process of 
tumor development: the capability to sus-
tain proliferative signaling, resistance to cell 
death, evasion of growth suppression, ability 
of replicative immortality, tumor-promoting 
inflammation, genome instability and muta-
tion, induction of angiogenesis and activation 
of invasion and metastasis. Owing to concep-
tual progress in the last decade, two new hall-
marks, metabolic reprogramming and 
evasion of immune destruction, have been 
identified (Figure 1) [2]. 

Nowadays, it is widely recognized that 
metabolic reprogramming is essential to sus-
tain tumor progression. Several metabolic 
adaptations described in cancer cells, such 
as the metabolization of glucose to lactate in 

the presence of oxygen (Warburg effect), are 
quite common among different cancer types. 
These changes are promoted by genetic and 
epigenetic alterations producing mutations 
or alterations in the expression of key meta-
bolic enzymes that modify flux distributions 
in metabolic networks, providing advantages 
to cancer cells in terms of energy production 
and synthesis of biomolecules [3,4].

Understanding the mechanisms that trig-
ger metabolic reprogramming in cancer cells 
and its role in tumoral progression is crucial, 
not only from a biological but also from a 
clinical stance, since this can be the basis 
towards improving existing cancer therapies 
or developing new ones.

In this review, we discuss the role of: 
the crosstalk between oncogenic signaling 
pathways and metabolism; the influence of 
nongenetic factors, such as tumor microen-
vironment, on metabolic reprogramming 
of cancer and stromal cells; the changes 
in isoenzymes patterns as potential thera-
peutic targets; and the new computational 
tools used by a systems biology approach in 
drug-target and biomarker discovery based 
on genome-scale metabolic models 
(GSMMs). Finally, we also discuss the future 
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challenges in developing new strategies and meth-
ods to drug and biomarker discovery, exploiting the 
reprogramming of metabolism that sustains cancer 
progression.

Crosstalk between oncogenic signaling 
events & cancer cell metabolism
Through a better understanding of the complex net-
works of oncogenic signaling pathways, altered cellular 
metabolism emerges as one of the major routes through 
which oncogenes promote tumor formation and pro-
gression. Many key oncogenic signaling pathways con-
verge to adapt tumor cell metabolism in order to support 

their growth and survival. The identification of new 
metabolic coordination mechanisms between altered 
metabolism and regulators of cell signaling networks, 
controlling both proliferation and survival, triggers the 
interest for new metabolism-based anticancer therapies. 
Several oncogenes, tumor suppressor genes and cell 
cycle regulators controlling cell proliferation and sur-
vival are intimately involved in modulating glycolysis, 
mitochondrial oxidative phosphorylation (OXPHOS), 
lipid metabolism, glutaminolysis and many other meta-
bolic pathways (Figure 2). The accumulation of genetic 
abnormalities required for oncogenesis leads to changes 
in energetic and biosynthetic requirements that in turn 
affects the metabolic signature of cancer cells through 
interactions between enzymes, metabolites, transport-
ers and regulators. High-throughput sequencing data 
reveals that the mutational events causing tumorigen-
esis are much more complex than previously thought 
and that the mutational range can vary even among 
tumors with identical histopathological features [5]. 
Some of the metabolic adaptations driven by onco-
genic signaling events have been described as com-
mon to different tumors, but metabolic profiles can 
be significantly tissue/cell specific [6]. Here, we will 
highlight some of the most prevalent examples of cross-
talks between oncogenic signaling events and pivotal 

Figure 1. Hallmarks of cancer. The hallmarks of cancer comprise ten capabilities required during a multistep tumor pathogenesis to 
enable cancer cells to become tumorigenic and ultimately malignant. Metabolic reprogramming has been identified as an emerging 
hallmark and as a promising target for the treatment of cancer as there is a deregulation of bioenergetic controls and an abnormal 
use of metabolic pathways to sustain their biosynthetic and energetic needs. 
Reproduced with permission from [2] © Elsevier.
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Key terms

Metabolic reprogramming: Process in which the 
cellular metabolism evolves in order to adapt to new 
environmental conditions and perturbations. In the case of 
tumor, the energy metabolism is reprogrammed in order to 
sustain the high proliferative rate of cancer cells.

Genome-scale metabolic models: Those models that 
summarize and codify the information known about 
the metabolism of an organism based on the literature 
and databases. These models represent the metabolic 
reaction encoded by an organism’s genome and can be 
transformed into a mathematical formulation in order to 
study the metabolic cell behavior.

Author P
ro

of 



www.future-science.com 3future science group

Cancer cell metabolism as new targets for novel designed therapies    Review

metabolic pathways. HIF-1 is a key regulator that initi-
ates a coordinated transcriptional program activated by 
hypoxic stress (in response to low-oxygen conditions), 
to promote the metabolic shift from mitochondrial 
OXPHOS to glycolysis (Figure 2) through the induc-
tion of several genes, including glucose transporters 

and glycolytic enzymes, leading to an increased flux 
of glucose to lactate [7]. Additionally, HIF-1 actively 
downregulates the OXPHOS flux by activation of 
PDK1, which inhibits the conversion of pyruvate to 
acetyl-CoA catalyzed by the tricarboxylic acid (TCA) 
cycle enzyme PDH.

Figure 2. Nongenetic and oncogenic influences on tumor metabolic reprogramming. The nongenetic component 
(the tumor microenvironment) influences metabolic changes in tumor cells as a result of gradients of oxygenation 
and pH, nutrient availability, oxidative stress and the intercellular communication with stromal cells by means of 
metabolites such as lactate, pyruvate, fatty acids and glutamine. Combined with tumor microenvironment, the 
genetic component (oncogenes and tumor suppressors) plays a key role in metabolic reprogramming to ensure 
metabolites are shunted into pathways that support the energetic requirements and the biosynthesis of structural 
components, achieved by maintaining high rates of glycolysis and/or glutaminolysis, promoting the pentose 
phosphate pathway, slowing mitochondrial metabolism (oxidative phosphorylation) and utilizing tricarboxylic acid 
intermediates for biosynthetic precursors (e.g., fatty acids and lipids).
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Similar to HIF-1, oncogenic activation of Myc also 
triggers a transcriptional program that enhances gly-
colysis by directly inducing glucose transporters and 
glycolytic enzymes. Indeed, there is a crosstalk between 
HIF-1 and Myc, whereby they cooperate to confer met-
abolic advantages to tumor cells by oxygen-dependent 
mechanisms, with a difference that, contrary to HIF-
1, Myc upregulation has more significant consequences 
for many cells as it alters not only glycolysis but also 
glutaminolysis (Figure 2) and many other biosynthetic 
pathways [8]. The Myc oncogene stimulates glutamine 
uptake and glutaminolysis by inducing glutamine 
transporters directly and GLS, the enzyme that con-
verts glutamine to glutamate, indirectly [9]. Besides gly-
colysis, glutaminolysis is another important metabolic 
pathway in cancer cells, which contributes not only as 
a source to replenish the TCA cycle, but also to control 
the redox potentials through generation of reductive 
equivalents, such as NADPH. In addition to glucose, 
a vast amount of glutamine is consumed by cancer 
cells. Glutamine is converted to glutamate and then to 
α-ketoglutarate (α-KG), which feeds the TCA cycle. 
Some tumors that show an upregulation of glutamine 
metabolism have been reported to exhibit ‘glutamine 
addiction’, that is, glutamine becomes essential during 
rapid growth. However, glutamine consumption and 
addiction are dependent on the metabolic profile of the 
cancer cells and in particular on the oncogene/tumor 
suppressor involved in tumor progression [10].

Activated PI3K/AKT/mTOR pathway is one of the 
most common signaling cascades altered in tumor 
cells and this pathway is one of the most heavily tar-
geted to develop anticancer therapies. Many cancers 
are driven by aberrations in the PI3K/AKT/mTOR 
pathway promoting metabolic transformation through 
multiple metabolic pathways, including an increase 
in glucose and amino acid uptake (Figure 2), upreg-
ulation of glycolysis and lipogenesis and enhanced 
protein translation through Akt-dependent mTOR 
activation [11].

In cancer cells, the increased rate of de novo lipid 
biosynthesis is an important aspect of the metabolic 
reprogramming during oncogenesis. Lipid metabo-
lism is regulated via activation of the sterol regulatory 
element binding proteins (SREBPs) (Figure 2), which 
are important regulators of the Akt/mTOR signaling 
pathway [12]. Indeed, various genes coding for enzymes 
involved in fatty acid and cholesterol biogenesis are 

targets of SREBPs, including ATP-citrate lyase, acetyl-
CoA carboxylase and fatty acid synthase [13]. Lipogen-
esis is also controlled by the RAS oncogene through 
the action of HIF-1, which has been reported to induce 
the expression of fatty acid synthase in human breast 
cancer cell lines [14]. However, the RAS oncogene also 
modulates mitochondrial metabolism roughly increas-
ing the activity of Myc and HIF-1 [4], glycolysis and 
the pentose phosphate pathway (PPP) [15]. Prolifer-
ating cells, such as tumors, require high amounts of 
pentose phosphates for biosynthesis of macromolecules 
and NADPH for redox homeostasis maintenance [16]. 
Therefore, PPP plays a fundamental role in defining 
the metabolic phenotype of tumor cells. Hence, there 
are also examples of coordinated crosstalk between the 
main enzymes that control the PPP during oncogen-
esis and oncogenic signaling pathways. K-RAS and 
PI3K signaling have been shown to positively regulate 
G6PD, whereas p53, which is a transcription factor 
and regulator of the cell cycle and apoptosis, physi-
cally interacts with G6PD to negatively modulate its 
activity [17], and thereby downregulates PPP. On the 
other hand, active HIF-1 signaling has been linked to 
both TKT and TKTL1, the enzymes catalyzing the 
rate-limiting step of the non-oxidative branch of the 
PPP [18].

In addition, alterations in p53 are frequent events in 
tumorigenesis. The loss or inactivation of p53 down-
regulates OXPHOS by inducing aerobic glycolysis 
through inhibiting glucose transporters and the gly-
colytic enzyme PGM and inducing TP53-induced 
glycolysis and apoptosis regulator, a negative regulator 
of glycolysis [19]. On the other hand PHF20 stabilizes 
and upregulates p53 resulting in a gain of functionality 
that drives the reprogramming of the metabolism of 
certain cancers cell lines, such as U87 (glioblastoma) 
or MCF7 (breast cancer) [20].

Other examples of oncogene-mediated metabolic 
reprogramming include mutations in genes encoding 
FH and succinate dehydrogenase, which are loss-of-
function mutations and behave as tumor suppressor 
genes [21]. On the other hand, mutations in IDH-1 and 
IDH-2, do not result in inactivation of normal IDH 
enzymatic function but generation of novel gain-of-
function mutation that enables the conversion of α-KG 
to D2-HG, which may act as an ‘oncometabolite’ by 
inhibiting multiple α-KG–dependent dioxygenases 
involved in epigenetic regulation [22].

Tumorigenesis occurs as a consequence, not only of 
the dysregulation of numerous oncogenic pathways, 
but also due to many nongenetic factors, including 
tumor microenvironment stresses, such as hypoxia, 
lactic acidosis and nutrient deprivation. The integra-
tion of these nongenetic factors within the genetic 

Key term

Tumor heterogeneity: Variability among different 
tumors in the same organ (intertumoral heterogeneity) 
or the variability among cells in a tumor (intratumoral 
heterogeneity).
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framework of cancer is the next logical step in under-
standing tumor heterogeneity. Research over the 
years has elucidated the cellular and molecular interac-
tions (including metabolic reprogramming) occurring 
in the tumor microenvironment and are closely linked 
to the processes of angiogenesis and metastasis.

Tumor microenvironment
Since the discovery of immune cells in tumor samples 
by Rudolf Virchow in 1863, various studies have shown 
the linkage of cancer to inflammation, vascularization 
and other conditions, which suggest that tumors do 
not act alone. Without its ‘neighborhood’ the survival 
of tumor cells could be a big question mark. The cellu-
lar heterogeneity in this microenvironment is complex 
and comprises of extracellular matrix, tumor cells and 
non-transformed normal cell types that co-evolve with 
the tumor cells (e.g., cancer-associated fibroblastic cells 
[CAFs], infiltrating immune cells and endothelial cells 
that constitute the tumor-associated vasculature) that 
are embedded within this matrix and nourished by the 
vascular network. In addition, there are many signaling 
molecules and chemicals, such as oxygen and protons, 
all of which can influence tumor cell proliferation, 
survival, invasion, metastasis and energy metabolism 
reprogramming. CAFs, one of the most abundant stro-
mal cell types in different carcinomas, are activated 
fibroblasts that share similarities with fibroblasts, stim-
ulated by inflammatory conditions or activated during 
wound healing. But, instead of suppressing tumor for-
mation, CAFs can significantly promote tumorigenesis, 
invasion and de novo cancer initiation by some unique 
growth factors and cytokines secretion (e.g., EFG, 
FGF, IL6, IL8, VEGF etc), extensive tissue remodel-
ing mediated by augmented expression of proteolytic 
enzymes (e.g., matrix metalloproteinases), deposition 
of extracellular matrix and pathogenic angiogenesis by 
liberating pro-angiogenic factors within the matrix [23]. 
Significant cell plasticity exists within this cell popula-
tion, as both mesenchymal-to-epithelial and epithelial-
to-mesenchymal transitions are known to occur, fur-
ther enhancing stromal heterogeneity. Moreover, CAFs 
can enhance proliferation and invasion by inducing 
the epithelial-to-mesenchymal transitions on tumor 
cells [24,25]. Immune cell recruitment and localization 
in the tumor milieu vary widely in the lesions. Het-
erogeneity of tumor immune contexture is influenced 
by various factors, including those secreted by CAFs, 
the extension and permeability of the vasculature, and 
the tumor cells themselves. Importantly, macrophages 
comprise the most abundant immune population in 
the tumor microenvironment and are responsible for 
the production of cytokines, chemokines, growth fac-
tors, proteases and toxic intermediates, such as nitric 

oxide and reactive oxygen species [26]. Their contribu-
tion to tumor initiation, progression and metastasis can 
be attenuated by antioxidant treatments, such as butyl-
ated hydroxyanisole, as reactive oxygen species levels 
have been reported to regulate the differentiation and 
polarization state of macrophages. Endothelial cells 
that are ‘hijacked’ by the tumors play an important 
part in forming a transport system, although ineffec-
tive, but essential for its survival and growth. In addi-
tion, blood vessel formation needs a protein matrix for 
the endothelial cells to be attached to and also it needs 
pericytic cells to strengthen these vessels. But, since the 
pericytes are not known to function very well in tumor 
vessel formation, the vessels are always malformed and 
leaky [27].

In the last few years the concept of cancer stem 
cells (CSC), a small minority of cells in the tumor, 
has evolved to be a possible cause and source of tumor 
heterogeneity. Currently there are two models that 
describe tumor cell heterogeneity: the hierarchical 
CSC model, where self-renewing CSCs sustain the 
stem cell population while giving rise to progenitor 
cells that are not capable of self-renewal and can give 
rise to differentiating clones that contribute to over-
all tumor heterogeneity, and the stochastic (tumor 
microenvironment-driven). model in which cancer 
cells are clonally evolved, and virtually every single cell 
can self-renew and propagate tumors. In this model, 
the self-renewal capability of each cell is determined 
by distinct signals from the tumor microenvironment. 
Recent studies have suggested that tumor heterogene-
ity may exist in a model coordinating with both the 
CSC and the stochastic concepts [28].

Metabolic reprogramming associated with 
cancer & stromal cell interaction
Recently, the relationship between tumor microenvi-
ronment and metabolic reprogramming has been high-
lighted and there has been extensive research about 
metabolic symbiosis between cancer and stromal cells. 
Among these interactions, it was shown that epithe-
lial tumor cells induce oxidative stress in the normal 
stroma, inducing aerobic glycolysis in CAFs, as well as 
changes in inflammation, autophagy and mitophagy 
(Figure 2). As a consequence of this rewiring in CAFs 
metabolism, energy-rich metabolites (such as lactate, 
pyruvate and ketones) are secreted, feeding adjacent 
cancer cells. This tumor–stroma metabolic relation-
ship is referred to as the ‘reverse Warburg effect’. CSCs 
that are present within the tumor also rely more heav-
ily on glycolysis, even in the presence of oxygen (War-
burg effect), and decrease their mitochondrial activity 
in order to limit reactive oxygen species production. 
As these glycolytic and mitochondrial signatures help 
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to maintain the CSC phenotype, recent studies have 
focused their attention to these metabolic weaknesses 
to be combined with traditional chemotherapy that, 
alone, usually fails to target CSCs [29,30]. In addition, 
other stromal cells, such as adipocytes, are able to act 
as energy sources, transferring fatty acids that come 
from lipolysis to ovarian tumor cells for β-oxidation 
[31]. Deregulated lipogenesis has been shown to play an 
important role in the interactions between cancer cells 
and the surrounding stromal cells. Studies suggest that 
it affects the epithelial cell polarity during the early 
stages of cancer development [32], inducing cancer cell 
migration [33] and activation of angiogenesis involv-
ing signaling lipids (e.g., diacyl glycerides, lysophos-
phatidic acid and prostaglandins), fatty acid synthesis 
enzymes and overof the monoglyceride-lipase [34–36].

Loss of stromal caveolin-1 in CAFs has been asso-
ciated with tumor progression and metastasis [37] and 
causes oxidative stress and induction of autophagy, 
which results in increased levels of glutamine and 
ammonia in the stromal microenvironment. This glu-
tamine could be consumed by cancer cells for energy 
and anaplerotic reactions and ammonia acts as a potent 
inducer of autophagy, creating a vicious cycle [37]. The 
migration stimulating factor, a truncated isoform of 
fibronectin identified to be overexpressed by CAFs 
and other ‘activated’ fibroblasts, has been shown to 
increase lactate production in the stromal environ-
ment and decrease mitochondrial activity, suggesting 
a shift towards glycolysis during hypoxia in addition 
to promoting tumor growth without affecting tumor 
angiogenesis [38].

Angiogenesis has been long known to play a major 
role in supporting cancer cell growth in the tumor 
microenvironment. But since the newly formed blood 
vessels are mostly defective there is always a nutrition 
deficiency and acidosis in these areas (Figure 2). A bio-
marker study in the gastric cancer environment where 
a quantitative analysis of the organic acids that are the 
end products of metabolism, using GC–MS, showed 
an increase in glycolytic end-products, such as pyruvic 
and lactic acids, with respect to normal tissues [39]. The 
pattern of high acidification in the tumor microenvi-
ronment due to the accumulation of glycolytic end-
products results in a nutrient-deficient environment. 
In addition, metabolic reprogramming of tumor-
associated endothelial cells has been showing up wide 
interests. Upon tumor angiogenic activation, endothe-
lial cells are pushed to a state of metabolic stress for 
increasing their proliferation rate to form new blood 
vessels, although the resulting network is abnormal and 
inefficient. These normal cells show higher glycolytic 
enzyme activities and lactate production, even in the 
presence of oxygen [40], and they continue proliferat-

ing even in the presence of hostile conditions and high 
nutrient deficiency [41]. Also it has been shown that 
endothelial cells, similar to tumor cells, have a high 
expression of monocarboxylate transporter 1 required 
for the lactate influx, revealing that these cells seek 
alternative metabolites in a nutrition-deficient environ-
ment [42]. Moreover, the inhibition of glycogenolysis in 
human umbilical vein endothelial cells has been shown 
to decrease cell viability and migration, elucidating the 
importance of glycogen for the survival of these cells 
[43]. The role of the PPP in cell viability has also been 
demonstrated, in that, the direct inhibition of G6PDH 
has been shown to decrease endothelial cell survival 
[43]. When tumor cells choose the less energy-efficient 
metabolic pathways, such as glycolysis and glutaminol-
ysis, both leading to the production of lactic acid, the 
pH of the tumor microenvironment decreases. It has 
been shown that endothelial cells behave in a similar 
fashion while forming new tumor blood vessels. While 
this phenomenon is known, it has also been found that 
the decrease in pH in the surrounding microenviron-
ment actually increases cancer survival by immune 
suppression. Loss of T-cell function has been reported 
under low pH environment, while restoring the pH 
to normal conditions has been found to restore T-cell 
function [44]. Similarly, the lactic acid generated has 
shown to increase the proliferation of endothelial cells 
by increased interleukin8/CXCL8 production [41,45]. 
From a therapeutic point of view, targeting the altered 
metabolic pathways leading to lactic acid accumula-
tion in tumor microenvironment could inhibit tumor 
growth as this mechanism would restore the impaired 
immune response and also a combinatorial therapy 
with antiangiogenesis drugs could reduce the prolifera-
tion of endothelial cells and formation of new blood 
vessels [46].

An important event that occurs during the changes 
in tumor microenvironment, as the cancer progresses, 
is the metastasis of some selected cancer cells to dis-
tant sites. A receptive microenvironment is required for 
tumor cells to engraft distant tissues and metastasize. 
Although several studies have indicated the formation 
of a premetastatic niche in the secondary sites before 
the primary tumor metastasizes [47], we have to con-
sider how metastatic cells are able to adapt to their new 
metabolic environment, which can differ to a greater 
or lesser extent with respect to its nutrient and oxygen 
availability. Metastatic cells should exhibit a remark-
able and dynamic flexibility that enables them to 
rapidly switch between metabolic states [48]. In addi-
tion, the homeostasis of the sites for metastasis can be 
disrupted as consequence of the metabolic activity of 
metastatic cells. This has been observed in bone, where 
metastatic prostate cancer cells secrete glutamate into 
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their extracellular environment as a side effect of cel-
lular oxidative stress protection, promoting the devel-
opment of pathological changes in bone turnover [49]. 
Further studies are required to analyze these metabolic 
interplays between metastatic cells and tumor microen-
vironment in order to obtain more specific treatments 
and therapies.

Isoenzymes: therapeutic targets in cancer
The technological advances that have occurred over 
the past decade and the increasing number of evidences 
that have emerged from previous studies show a wide 
array of metabolic rewiring in cancer cells. Many met-
abolic enzymes that are specific to important metabolic 
pathways and those altered in cancer cells have been 
identified. These enzymes have a key role in mediating 
the aberrant metabolism of cancer cells and could serve 
as a promising source of novel drug targets. Isoforms of 
many of these metabolic enzymes are found to be spe-
cifically expressed in tumor cells affecting important 
pathways of the energetic metabolism. The current 
research is being refocused on specifically targeting 
these isoforms that has shown to be a promising strat-
egy to develop new anticancer treatments. In this part, 
we will highlight some of the most important, altered 
pathways and the specific isoenzymes, that could be 
used for drug targeting, in cancer disease.

Glycolytic isoenzymes
Glycolytic pathway serves as the principal energetic 
source for a cell. The higher dependency of cancer 
cells upon glycolytic metabolism for the production 
of ATP provides a greater motive to target glycolytic 
enzymes (Figure 2). Many isoforms of these enzymes 
have been found to be specifically expressed in tumor 
cells and are being exploited as potential candidates to 
be used as drug targets. The transport of glucose across 
the plasma membrane is regulated by various isoforms 
of glucose transporters (GLUT1–14 or SLC2A1–14). 
GLUT1, -3 and -4 are found to be expressed at higher 
levels in cancer [50]. GLUT3 and other transporters 
could be targeted by the use of specific antibodies or 
drugs, such as phloretin or ritonavir, causing the cells 
to starve by blocking their nutrient uptake through 
these transporters.

Another important metabolic enzyme of the gly-
colytic pathway is HK, which regulates the first rate-
limiting step of glucose metabolism. Cancer cells are 
heavily dependent on HK isoforms, such as HK2 [51]. 
The specific expression of HK2 in adipose tissue and 
skeletal muscles provides an opportunity to target this 
enzyme without having the risk of affecting other tis-
sues. Compounds such as methyl jasmonate isolated 
from plants have been shown to disrupt the associa-

tion between mitochondria and HKs (HK1 and -2). 
involved in regulating apoptosis [52] and have shown to 
be lethal to cancer cells in vitro [53].

Recent publications suggest a key role of PK isoen-
zyme – PKM2 – in mediating the Warburg effect in 
cancer cells [54], proving its prospective as an enzymatic 
anticancer drug target. The enzyme activity of PKM2 
is inhibited downstream of cellular growth signals [55]. 
Cell proliferation and aerobic glycolysis in tumors are 
greatly dependent on this ability to inhibit the activ-
ity of the PKM2 enzyme. Many approaches using 
small-molecule inhibitors and small-hairpin RNA-
based inhibition of PKM2 have been shown to cause 
cell death and slow down cell proliferation in vitro 
[54,56]. The PFKFB3 isoform is shown to be important 
in RAS-mediated tumors and inhibition of PFKFB3 
by small-molecule inhibitors has been shown to have 
cytostatic effect on the growth of cancer [57]. Inhibition 
of LDHA using FX11 or oxamate has been shown to 
induce oxidative stress and cause cell death in cancer 
cells [58,59]. Targeting LDHA combined with NAMPT 
inhibitors has been shown to slow down tumor regres-
sion and thus making it a potential candidate for drug 
targets [59].

TCA isoenzymes/mitochondrial complex
PDK phosphorylates PDH and inhibits the conver-
sion of pyruvate to acetyl-CoA, a key metabolite in the 
TCA cycle (Figure 2). Isoenzyme PDK3 is induced by 
upregulation of HIF-1α under hypoxic conditions and 
results in cells undergoing glycolysis instead of TCA 
for energy production. Inhibition of PDK3 increases 
the susceptibility of tumor cells towards anticancer 
drugs and causes inhibition of hypoxia-induced glycol-
ysis [60]. Thus PDK3 could be used as a drug target to 
overcome drug resistance and improve chemotherapy.

Isoforms of IDH1 and -2 are found to be mutated in 
glioma and acute myeloid leukemia [61,62]. Mutations 
in IDH1 and -2 result in the overexpression of both 
of these enzymes and the production of 2-HG, which 
inhibits α-KG-dependent dioxygenase enzymes. Asso-
ciation between high levels of 2-HG and tumorigenic-
ity is yet to be established, but interestingly the levels 
of several TCA metabolites remain unaltered, sug-
gesting an alternate pathway that could be acting in 
normalizing the metabolite levels in cells with IDH1 
mutations.

Isoenzymes of the PPP
Cancer cells are in a constant demand for greater 
amounts of purines and pyrimidines to maintain their 
high proliferative nature (Figure 2). The key enzyme 
for the oxidative PPP, the G6PDH enzyme, is over-
expressed in certain types of cancers and it has been 
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shown to transform fibroblasts and help in tumor cell 
proliferation [63]. On the other hand, the overexpres-
sion of TKTL1 in many forms of cancer could increase 
the concentration of glyceraldehyde-3-phosphate and 
help in mediating the Warburg effect in cancer cells 
[64]. Combinatorial approach of targeting G6PDH and 
TKTL1 can help overcome drug resistance and may 
cause cell death [65].

Targeting isoenzymes of glutamine metabolism
Recent findings that point to the use of glutamine as 
a carbon source for the TCA cycle [66] in cancer cells 
encouraged researchers to consider enzymes of glu-
tamine metabolism as potential therapeutic targets. 
6-diazo-5-oxo-L-norleucine- or bis-2-(5-phenylacet-
amido-1,2,4-thiadiazol-2-yl)ethyl sulphide-mediated 
inhibition of GLS or siRNA-induced silencing of GLS 
and GDH have been shown to inhibit the activation 
of mTORC1 [67]. Thus, combinatorial targeting of 
GLS and GDH along with chemotherapy may prove 
to be more effective in cancer treatment. The differ-
ential expression of these cancer-associated isoenzymes 
can be used as potential biomarkers for early cancer 
prognosis or as enzymatic drug targets. However, 
the role and importance of these mutations in the 
reprogramming of the energetic metabolism observed 
in cancer cells is not always obvious. This makes it 
extremely difficult to evaluate the effects of these 
mutations in the cancer metabolism qualitatively or 
quantitatively. Additionally, the effects of these isoen-
zymes on metabolism can be attenuated or enhanced 
by compensatory and regulatory mechanisms. Taking 
into account these rationales, the need for a tool that 
permits a holistic analysis of the metabolic system is 
essential, in order to qualitatively evaluate the effects of 
a single or combination of different mutations within 
the whole metabolic network system. In the last few 
years, genome-scale metabolic network models have 
demonstrated their suitability for the integrated analy-
sis of large and complex metabolic networks providing 
new clues for identifying drug targets.

GSMMs as new tools emerging from 
systems biology approach to drug discovery
In the previous sections, we have presented evidences 
that support cancer onset and that the progression 
relies on metabolic abnormalities to balance energy 
demand and biomolecular synthesis (metabolic repro-
gramming) [68]. GSMMs are emerging as a potential 

solution to decipher the molecular mechanisms under-
lying cancer in the context of systems biology [69]. 
GSMMs represent the metabolic reaction complement 
encoded by an organism’s genome. These models are 
built based on the literature and databases and enable 
one to summarize and codify information known 
about the metabolism of an organism.

Over 100 GSMMs have been built for different spe-
cies, ranging from archea to mammals [70–84]. Recon-
structions of human metabolism, such as Recon1 [81], 
Edinburgh Human Metabolic Network [82] or the most 
recent reconstructions of human metabolism, Recon2 
[83], are widely used to study the mechanism of diseases 
with a strong metabolic component, such as cancer or 
diabetes [85–88].

This systems biology tool enables the mathematical 
representation of biotransformations and metabolic 
processes occurring within the organism and offers 
an appropriate framework to integrate the increas-
ing amount of ‘omic’ data generated by the different 
high-throughput technologies.

The transformation into a mathematical formula-
tion is mostly driven by constraint-based modeling 
(CBM) [89] and allows the systematic simulation of 
different phenotypes, environmental conditions, gene 
deletion and so on. This approach allows for model-
ing the complexity of cancer metabolism and tackling 
more problematic biological questions, such as the role 
of metabolism in cancer disease [90].

Genome-scale constraint-based metabolic models 
have been used for a variety of applications, involving 
studies on evolution [91], metabolic engineering [92–94], 
genome annotation [95] or drug discovery [96], with a 
high relevance in cancer research.

Indeed, GSMMs can efficiently capture the com-
plexity of cancer metabolism in a holistic manner and 
permit to improve existing therapies or develop new 
ones [97].

In this chapter we discuss methods for building 
GSMMs and computational approaches to analyze 
and integrate ‘omic’ data into these large-scale meta-
bolic network models. Finally, we introduce some of 
the most relevant softwares and algorithms developed 
for drug-target discovery that can be used in cancer 
research.

GSMM reconstruction
Genome-scale metabolic reconstructions are created in 
a bottom-up manner based on genomic and bibliomic 
data and, thus, represent a biochemical, genetic and 
genomic knowledge base for the target organism [81–
83]. However, to date we are still not able to completely 
and automatically reconstruct high-quality metabolic 
networks (Figure 3A) [98]. Genome-scale reconstruc-

Key term

Enzymatic drug target: A component in a metabolic 
pathway to which some other entity, such as a drug, is 
directed and/or binds.

Author P
ro

of 



www.future-science.com 9future science group

Cancer cell metabolism as new targets for novel designed therapies    Review

tion starts with the generation of a draft, automated 
reconstruction based on the genome annotation and 
biochemical databases of the target organism. This 
task can be achieved by using software tools, such as 
Pathways tool [99]. The genomic sequence of the tar-
geted organism is coupled with the most recent anno-
tations available from databases [100], such as GOLD 
or NCBI Entrez Gene databases [101,102].

Metabolic reactions can be associated with the 
annotated metabolic genes by using enzyme commis-
sion (E.C.), ID and biochemical reaction databases 
(e.g., KEGG [103] and BRENDA [104]). This process 
permits both linking metabolic genes with their cor-
responding encoded enzymes and determining the 
stoichiometric relationship of metabolic reactions with 
the metabolites and cofactors that they consume and/
or produce.

The gene–protein-reaction association (GPR). is 
represented as Boolean relationships in which isoen-
zymes that catalyze the same reaction have an “OR” 
relation (only one of the genes that encode the differ-
ent isoenzymes is required to have the reaction active) 
and the complexes that catalyze a reaction have an 
“AND” relation (all the genes that encode the different 
complex subunits are necessary to have the reaction 
active) [81]. GPR associations enable the mapping of 
transcriptomics or proteomics to the level of reactions.

Reactions can be located into different subcellular 
compartments based on protein location [81]. Reac-
tion directionality can be determined from thermo-
dynamic data. Additionally, artificial reactions, such 
as biomass reaction that define the ratio at which bio-
mass constituents are produced (nucleic acids, lipid, 
proteins, etc) or exchange reactions that define the 
overall rate of nutrients consumption or production, 
are also defined in the reconstruction. These artificial 
reactions are necessary to predict or impose certain 
phenotypic conditions on the mathematical model.

Next, it is necessary to manually curate and refine 
the draft, automated reconstruction. The main objec-
tive of curation is to identify and correct incomplete or 
erroneous annotation, add reactions that occur spon-
taneously and remove gaps and metabolites that can-
not be produced or consumed [81] through search on 
the literature and other databases.

Once the model is curated, it is evaluated and vali-
dated in an iterative fashion by using mathematical 
tools [105]. The aim of the validation process is to eval-
uate if the model is stoichiometrically balanced, find 
gaps in the network and search for candidate reactions 
for gap filling, quantitative evaluation of biomass pre-
cursor production and growth rate, compare predicted 
physiological properties with known properties and 
determine the metabolic capabilities of the model.

It is worth noting that once a GSMM has been con-
structed, it can be used in future reconstructions in 
order to expand and refine the model [81,83].

Constraint-based methods as tools for tumor 
metabolism characterization
As was previously mentioned, GSMMs include stoichio-
metric details for the set of known reactions in a given 
organism. These large scale metabolic models require 
computational methods to be qualitatively analyzed. 
Traditionally, approaches based on ordinary differential 
equation have been used for characterization of dynamic 
cell states. However, this full-scale dynamic modeling is 
frequently infeasible for large-scale networks because of 
a paucity of necessary parameter values.

Constraint-based methods (CBMs) permit the anal-
ysis of large-scale biochemical systems under conditions 
where kinetic parameters need not be defined (steady 
state). Genome-scale constraint-based metabolic mod-
els can be used to predict or describe cellular behaviors, 
such as growth rates, uptake/secretion rate or intracel-
lular fluxes [89]. Flux balance analysis (FBA) is one of 
the most widely used CBMs for the study of biochemi-
cal networks. The variables used in FBA include the 
fluxes through transport and metabolic reactions and 
model parameters include reaction stoichiometry, bio-
mass composition, ATP requirements and the upper 
and lower bounds for individual fluxes, which define 
the maximum and minimum allowable fluxes of the 
reactions.

The first step in FBA is the mathematical representa-
tion of the metabolic reactions in the form of a numeri-
cal matrix, with stoichiometric coefficients of each 
reaction (stoichiometric matrix), where the metabolites 
are represented in rows and reactions in columns. FBA 
employs mass actions formalism for the mathematical 
representation of the metabolic networks: dC/Dt = S.v., 
where v and C are vectors of reaction fluxes and metab-
olite concentration respectively, t is time and S is the 
stoichiometric matrix (Figure 3A).

The next step is to impose constraints to the metabolic 
network. Constraints are fundamentally represented in 
two ways:

Steady-state mass-balance imposes constraints on 
stoichiometry and network topology on the metabolic 
fluxes through the network. Additionally, steady state 
assumption also imposes constraints that narrow the 
space of solutions. By definition, the change in the con-
centration of a certain metabolite over time at steady 
state is 0: dC/Dt = 0, thus: S.v = 0. These constraints 
ensure that for each metabolite in the network the net 
production rate equals the net consumption rate;

Inequalities that impose bounds on the system: 
every reaction can also be given upper and lower 
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Figure 3. Genome-scale metabolic model building and analysis (facing page). (A) Genome-scale metabolic model (GSMM) reconstruction 
starts with a draft automated version based on literature and databases, finally this version is manually curated in order to refine the 
model. Typically, these models are analyzed by using flux balance analysis, assuming steady state. (B) GSMMs can be used as a platform 
to integrate and combine omic data from multiple layers. In these models, metabolomics data can be associated with metabolites, 
while genomics, transcriptomics and proteomics can be associated with metabolic reactions, these associations are established through 
gene–protein-reaction associations. The phenotypic assays can constrain properties of the network, such as growth rate under certain 
experimental conditions. (C) By integrating omic data into a GSMM we can determine either tumor-specific biomarkers or anticancer 
drug-targets and reconstruct cancer-specific GSMM. (D) Cancer-specific reconstructions can be used to determine synthetic lethals 
specific for each cancer type for which the non-tumor cells are insensitive (ROOM and MOMA methods), Additionally if we reconstruct 
an initial GSMM describing metastatic phenotype and a target GSMM describing non-metastatic phenotype we can determine the actors 
that would permit to revert the metastatic phenotype into a non-metastatic one (MTA method). 
ret.: Retention.
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bounds. These restrictions are based on measured rates 
(e.g., metabolite uptake/secretion rates) or reaction 
reversibility (e.g., irreversible fluxes have a zero lower 
bound) and are used to define the environmental con-
ditions in a given simulation, such as nutrient or O

2
 

availability, which can be related with a specific tumor 
microenvironment or stages in tumor progression.

Finally it is necessary to define a phenotype in the 
form of a biological objective that is relevant to the 
problem being studied (objective function). Typically, 
objective functions are related to growth rate predic-
tion. GSMMs define this phenotype by an artificial 
biomass production reaction, that is, the rate at which 
metabolic compounds are converted into biomass con-
stituents (nucleic acids, lipid, proteins, etc). The bio-
mass reaction is based on experimental measurements 
of biomass composition and is unique for each organ-
ism or cell type. Thus, an objective function could be 
the maximization of growth rate that can be accom-
plished by calculating the set of metabolic fluxes that 
result in the maximum flux through biomass produc-
tion reaction. Since uncontrolled cell growth is the 
basis of tumor progression, this approach is widely used 
in the simulation of cancer cell metabolism. The objec-
tive function can be adapted to the specific cell type 
or organism; however, the objective that better defines 
our case of study is not always obvious, especially in 
multicellular organisms [106].

Taken together, the mathematical representation 
of the metabolic reactions and of the objective func-
tion, is defined as a system of linear equations that are 
solved by a number of algorithms and software devel-
oped for this purpose [105]. Predictions of values for 
these fluxes are obtained by optimizing for an objective 
function, while simultaneously satisfying constraint 
specifications.

Omic data integration
The advent of high-throughput technologies have 
transformed molecular biology into a data-rich disci-
pline by providing quantitative data for thousands of 
cellular components across a wide variety of scales. 
However, extraction of ‘knowledge’ from this ocean 

of omic data has been challenging [107]. GSMMs have 
emerged as an advantageous platform for the integra-
tion of omic data (e.g., [108]; Figure 3B). In this frame-
work cellular and molecular phenotypes are simulated 
allowing the development of biological hypotheses 
and discoveries [109]. Metabolic reconstruction of the 
human metabolism has been successfully used for a 
variety of analyses of omic data, including applications 
in data visualization [110], deducing regulatory rules 
[111], network medicine [112], constructing tissue-spe-
cific models [113] or multicellular modeling [114]. Thus, 
omic data can be used to further constrain the non-
uniqueness of constraint-based solutions space and 
thereby enhance the precision and accuracy of model 
prediction (Figure 3A-C) [109]. To achieve this aim a 
number of FBA-driven algorithms that integrate omic 
data into GSMMs have been developed. Table 1 high-
lights some of the most relevant approaches recently 
developed to incorporate experimental omic data into 
GSMMs [86–87,113,115–117]

Drug-target & biomarker discovery
Cancer cells maintain their high proliferation rate by 
adapting their metabolism based on the environmen-
tal conditions, such as pH, O

2
 availability, vascular-

ization or nutrient availability [118]. The elucidation of 
diverse metabolic alterations for the identification of 
biomarkers and novel drug targets has, therefore, been 
increased in recent years. An increasing number of 
methods and algorithms have been recently developed 
to integrate tumor-specific omic data into GSMMs. It 
has enabled the gain of further biological and mecha-
nistic understanding of how cancer benefits from met-
abolic modifications [90]. This model-driven approach 
allows the discovery of potential biomarkers and drug 

Key term

Omic data integration: Computational process in 
which multi-omic data obtained from different high-
throughput technologies, considering different aspects of 
the molecular biology, are integrated into genome-scale 
metabolic models in order to unveil emergent properties of 
the biological systems.
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targets [87,97,119]. The identification of new biomarkers 
is of major importance to biomedical research for early 
diagnosis and monitoring treatments efficiently. The 
identification of cancer biomarkers is possible due to 
aberrant metabolism of tumors that alters the profile of 
absorption and nutrients secretion.

Omic data of clinical samples (mainly transcrip-
tomics data) can be used to infer the exchange rates 
of different metabolites for each individual sample via 
GSMM analysis (alterations in exchange reactions in 
the model). Thus, those metabolites that significantly 
differ between two clinical groups in their exchange 
rates are then considered as potential biomarkers. 
However, this task is especially challenging in the case 
of cancer owing to metabolic abnormalities resulting 
from complex and elaborate genetic and epigenetic 
alterations that modify the expression of a variety of 
cancer-associated isoenzymes. In order to determine 
potential biomarkers in cancer, several computational 
approaches has been developed. For example, the met-
abolic phenotypic analysis (MPA) method uses GPR 
association to integrate transcriptomic and proteomic 
data within a GSMM to infer metabolic phenotypes 
[88]. MPA was used to study breast cancer metabo-
lism and predict potential biomarkers. These predic-
tions, wich include amino acid and choline-containing 

metabolites, are supported by a number of experimen-
tal evidences [120]. Another recently developed algo-
rithm is mCADRE, which has been used to systemati-
cally simulate the metabolic function of 26 cancer cell 
types (among other cell types) [86]. This algorithm has 
been able to identify several pathways, such as folate 
metabolism, eicosanoid metabolism, fatty acid acti-
vation and nucleotide metabolism, that are enriched 
in tumor tissue compared with their corresponding 
normal tissue. Many enzymes involved in these path-
ways are already used as chemotherapy targets. Other 
approaches, such as flux variability analysis [121] or sam-
pling analysis [122], are also suitable to predict meta-
bolic biomarker candidates by integrating omic data 
into a GSMM. The novel drug discovery is based on 
the abnormalities existing in various reactions/path-
ways of cancer metabolism. These differences can be 
used as drug targets to attack specific weaknesses of 
the tumor and hence compromising its viability, but 
not that of non-cancerous cells [123]. For example, the 
INIT method [87] was used to identify characteris-
tic metabolic features of cancer cells by inferring the 
active metabolic network of 16 different cancer types 
and compare them with the healthy cell types where 
they come from. These metabolic differences may play 
an important role in proliferation of cancer cells and 

Table 1. Computation method for integrating omic data into global-scale metabolic models.

Name Input Description Ref.

iMAT Gene expression data Seeks to maximize the similarity between the gene 
expression and the metabolic profiles.

[115]

mCADRE Gene expression and 
metabolomic data

Uses tissue-specific data to identify a set of core 
reactions. Seeks to build a consistent network using 
all the core reactions and the minimum number of 
non-core reactions.

[86]

GIM3E Gene expression and 
metabolomic data

Builds a network that satisfies an objective function 
while penalizing the inclusion of reactions catalyzed 
by genes with expression below a certain threshold. 
It can be further constrained to produce certain 
metabolites based on experimental evidences.

[116]

INIT Gene expression and 
metabolomic data

Seeks to build a model prioritizing the addition of 
reactions with strong evidence of their presence 
based on gene expression data. Can be forced 
to produce metabolites that have been detected 
experimentally.

[87]

MBA Transcriptomic, 
proteomic, 
metabolomic, bibliomic 
data

Uses tissue-specific data to identify high and 
moderate probability core reactions. Seeks to build a 
network with all the high-probability core reactions, 
the maximum moderate probability core reactions 
and the non-core reaction required to prevent gaps.

[113]

Fastcore Transcriptomic, 
proteomic, 
metabolomic, bibliomic 
data

Identify a set of core reactions based on tissue-
specific data. Seeks to build a network that contains 
all reactions from the core set with the minimum set 
of additional reactions necessary.

[117]
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could be potential drug targets. This method found 
significant differences in polyamine metabolism, the 
isoprenoid biosynthesis and the prostaglandins and 
leukotrienes pathways in cancer cells compared with 
healthy cells. Some of the reactions that were found that 
have different activity in cancer cells, are already used 
in the clinical practice as therapeutic targets [124,125]. 
Based on the rationale that the differences between 
normal and tumoral cells can be potential therapeutic 
targets, several approaches have been developed that 
consider different aspects of cancer metabolism for the 
discovery of new drug targets:

Antimetabolite
One of the most common anticancer drugs are antime-
tabolites. An antimetabolite is structurally similar to 
a certain metabolite but it cannot be used to produce 
any physiologically important molecule. Antimetabo-
lite-based drugs act on key enzymes preventing the use 
of endogenous metabolites, resulting in the disruption 
of the robustness of cancer cells and reduction or sup-
pression of cell growth. For example, antimetabolites, 
such as antifolates or antipurines, mimic folic acid and 
purines [126]. The GSMM approach can be used to sys-
tematically simulate the effect of potential antimetabo-
lites in cancer research. To achieve this, methods such 
as the tINIT (Task-driven Integrative Network Infer-
ence for Tissues) algorithm have been developed [97]. 
This method has been used to reconstruct personal-
ized GSMMs for six hepatocellular carcinoma patients 
based on proteomics data and the Human Metabolic 
Reaction database [87] and identify anticancer drugs 
that are structural analogs to targeted metabolites 
(antimetabolites). The tINIT algorithm was able to 
identify 101 antimetabolites, 22 of which are already 
used in cancer therapies and the remaining can be 
considered as new potential anticancer drugs.

Synthetic lethal
The genetic lesions occurring in cancer not only pro-
mote the oncogenic state but are also associated with 
dependencies that are specific to these lesions and 
absent in non-cancer cells. Two genes are considered 
‘synthetic lethal’ if the isolated mutation on either of 
them is compatible with cell viability but the simulta-
neous mutation is lethal [127]. Analogously, two genes 
are considered to interact in a ‘synthetic sick’ fashion, 
if simultaneous mutation reduces cell fitness below a 
certain threshold without being lethal [127].

Enzymes encoded by genes that are in synthetic 
lethal or sick interactions with known, non-druggable 
cancer-driving mutations can be potential anticancer 
drug targets. This approach has two main advantages: 
first, we can indirectly target non-druggable cancer-

promoting lesions by inhibiting druggable synthetic 
lethal interactors and secondly we can achieve a high 
selectivity by exploiting true synthetic lethal interac-
tions for anticancer therapy. This is especially remark-
able in the case of cancer-specific isoenzymes, which 
are emerging as one of the most promising anticancer 
drug targets. GSMMs provide an excellent tool for the 
systematic simulation of specific pairs of gene knock-
out (KO) to unveil those combinations that compro-
mise the viability of cancer cells (synthetic lethal). 
By definition, gene KO is simulated by giving value 
zero to gene expression and the effect of gene dele-
tion is transferred to the metabolic reaction level by 
GPR association. Thus, for instance, the flux through 
a reaction that is associated only to one knocked-out 
gene would be zero. If the reaction is catalyzed by iso-
enzymes or complexes, the effect of a gene deletion is 
more complex.

However, predicting the metabolic state of a cell 
after a gene KO is a challenging task, because after the 
gene KO the system evolves into a new steady-state that 
tends to be as close as possible to the original steady-
state [128]. To overcome these difficulties several algo-
rithms have been developed. For example, the MOMA 
algorithm minimizes the euclidean norm of flux dif-
ferences between metabolic states of the KO com-
pared with the wild type [129]. The ROOM method 
minimizes the total number of significant flux changes 
from the wild type flux distribution [129].

In other words, MOMA minimizes the changes in 
the overall flux distribution while ROOM minimizes 
the number of fluxes to be modified after the gene KO 
(Figure 3D). As an example of employing the concept 
of synthetic lethality in cancer, a GSMM approach has 
been used to develop a genome scale network model 
of cancer metabolism [119]. The model predicted 52 
cytostatic drug targets (40% of which were known) 
and further predicted combinations of synthetic lethal 
drug targets, which were validated using NCI-60 can-
cer cell collection. In a remarkable example, synthetic 
lethality between heme oxygenase and fumarate hydra-
tase was predicted by the GSMM approach and was 
also experimentally validated [130]. The number and 
the quality of these predictions prove the capabilities of 
this approach to identify synthetic lethal pairs of genes 
as potential novel drug target in cancer.

Future perspective
Metabolism represents the essence of how cells inter-
act with their environment to provide themselves with 
energy and the essential building blocks for life. In this 
review, we highlighted the role of a wide range of fac-
tors that trigger the malignant transformation of can-
cer metabolism as well as experimental and computa-
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tional approaches to develop new therapies. Despite the 
encouraging achievements and improvements in can-
cer research, there still exist limitations that need to be 
overcome in order to enhance the effectiveness of drug 
therapies in cancer disease.

One of the major challenges in targeting key met-
abolic pathways is the lack of clear understanding of 
how the cancer cell metabolic profile varies from a 
non-tumor proliferating cell and the potential toxic-
ity risk associated with targeting metabolism. A better 
understanding of how the metabolism differs in a spe-
cific type of cancer or within the same type may help 
us predict and identify targets without affecting non-
tumor cells. In this context, combination of metabolic 
and signaling pathway inhibitors has been proposed 
as one of the rational approaches [131]. Using compu-
tational approaches permits the systematic simulation 
of gene perturbations, either metabolic and/or non-
metabolic, that could contribute to unveil novel key 
signaling nodes resulting in potential anticancer drug 
targets. Recently developed algorithms, such as PROM 
[111], allow the integration of transcriptomic data into 
GSMMs while considering the gene regulatory net-
work structure of a given organism. This approach has 
been developed for predicting metabolic changes that 
result from genetic or environmental perturbation in 
Escherichia coli. However, it is obvious that algorithms 
accounting for both gene regulatory and metabolic net-
works could be used to analyze more precisely the effect 
of perturbations on oncogenes in cancer metabolism.

Tumor heterogeneity represents a hurdle that must 
be overcome in order to develop new and more efficient 
anticancer therapies. One of the factors triggering intra-
tumoral heterogeneity is the tumor microenvironment, 
which interferes with the ability of drugs to penetrate 
tumor tissue and reach the entire tumor cells in a poten-
tially lethal concentration. In addition, heterogeneity 
within the tumor microenvironment leads to marked 
gradients in the rate of cell proliferation and to regions 
of hypoxia and acidity, all of which can influence the 
sensitivity of the tumor cells to drug treatment. Better 
understanding of how tumor microenvironment pro-
tects cancer cells, during and immediately after chemo- 
or radiotherapy is imperative to design new therapies 
aimed at targeting this tumor-protective niche [132,133]. 
The use of drug delivery systems can improve the 
pharmacological properties of traditional chemothera-
peutics by altering pharmacokinetics and biodistribu-
tion to overcome the harsh conditions of the tumor 
microenvironment. Moreover, the co-administration 
of chemotherapeutics and tumor-associated stromal-
depleting drugs helps to target the fibrous structure of 
the modified extracellular matrix, which can result in a 
less penetrable tumor microenvironment [134].

Another interesting approach considers therapies 
that interfere in the metabolic co-operation between 
cancer cells and stromal cells in their microenviron-
ment [135] or between intratumoral subpopulations. 
The study of the metabolic coupling between differ-
ent cellular populations as potential drug targets can be 
achieved by reconstructing an artificial tumor microen-
vironment by using GSMMs approach. To date several 
algorithms have been developed that integrate omic 
data into a GSMM reconstruction that permit to com-
pute the secretion and uptake rates of nutrients (Table 1) 
and hence study the complementary secretomes within 
a heterogeneous cellular community. However, test and 
validation of a metabolic model becomes more com-
plex if it considers a heterogeneous cellular population. 
Nevertheless, recent studies on artificial microbial eco-
systems have demonstrated the potential of this type 
of approach to study synergies in heterogeneous cellu-
lar communities [136] that could be extrapolated to the 
study of cancer to unveil the mechanisms underlying 
the cooperation between tumoral and stromal cells, as 
well as between intratumoral subpopulations.

The intratumoral microenvironment also confers an 
extreme flexibility and adaptation capability to cancer 
cells that enhances tumor progression and represents a 
challenge for target-directed therapies [137]. The intra-
tumoral heterogeneity is driven by two main processes: 
epithelial-to-mesenchymal transitions, by which epithe-
lial cells gain invasive properties and lose at least part of 
their epithelial phenotypes [138]; and mesenchymal-to-
epithelial transitions, by which mesenchymal cells can 
revert to an epithelial gene program displaying strong 
self-renewal and survival properties [138–140]. Drug tar-
gets that repress these processes have been proposed to 
significantly reduce tumoral progression.

Anti-angiogenic therapy has been proposed for a 
long time as an interesting approach to reduce tumor 
growth. Tumor blood vessels are surrounded by a very 
hostile environment, with a high amount of acidosis, 
low oxygen regions, weak pericyte–endothelial cell 
interaction, leading to its tortuous and leaky vessels 
with gaps that allow easy escape of invading tumor 
cells [141,142]. Additionally, restoring the blood vessels 
to a ‘normal’ state would get the tumor vessels back on 
track to its proper functional form, reducing hypoxia-
induced metastasis and improving the effects of che-
motherapy [143,144]. Also it is expected to reduce the 
spreading of cancer cells, because pericytes that are 
required to strengthen blood vessels would be acting 
more efficiently and hence prevent the intravasation of 
the cancer cells through the gaps found in the normally 
leaky tumor vessels.

Therapies based on both metastatic targets arresting 
cancer cells in a non-metastatic stage and angiogenic tar-
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gets normalizing tumor vessels are promising strategies 
to design new anticancer therapies. Coupling this strat-
egy with associated key metabolic pathways is a good 
approach in cancer treatment and requires computational 
tools to identify the putative targets. Recently developed 
methods, such as the ‘metabolic transformation algo-
rithm’ allows the identification of the actors involved in 
metabolic transformations [145]. This methodology iden-
tifies targets that alter the metabolism retrieving the cells 
back from a given metabolic state to another metabolic 
state (Figure 3D). This method has been successfully 
used to find drug targets that revert disrupted metabo-
lism focused on aging. However, this approach could be 
suitable to determine drug targets arresting tumor in a 
non-metastatic stage, normalize tumor vessels or prevent 
tumor intravasation, resulting in a reduction of tumor 
progression. Additionally, GSMM predictions could be 
refined by integrating information from dynamic 13C 
FBA [146].

Moreover, combinatorial therapies, targeting 
angiogenesis and metastatic targets, have been proposed 

as a way to enhance anticancer therapies [27]. Tradition-
ally, these approaches has been focused on targeting 
signaling pathways, such as the VEGF inhibition or 
VEGF receptors (R1/R2) blockade [147,148] and CXCR4 
protein, which is involved in tumor colonization, or the 
cytokine PIGF, which prepares the metastatic niche in 
bone marrow for the cells invading from breast cancer 
[149]. However, studies on the metabolic reprogramming 
in endothelial cells have opened new avenues to explore 
the combinatorial therapies of targeting both tumors 
and their angiogenesis, in the context of metabolism.

The approaches reviewed here provide a guideline to 
improve the anticancer drug-target therapies focused 
on metabolic reprogramming. However, the lack of 
a proper model depicting the complete map of meta-
bolic reactions, regulatory processes as well as tumor 

Key term

Combinatorial therapies: Strategy that takes profit 
of the synergistic effects of two therapeutic treatments 
targeting different processes of the cellular biology.

Executive summary

Background
•	 Nowadays, it is widely recognized that metabolic reprogramming is essential to sustain tumor progression. 

These changes are promoted by genetic and epigenetic alterations producing mutations in key metabolic 
enzymes that modify flux distributions in metabolic networks, providing advantages to cancer cells in terms of 
energy production and synthesis of biomolecules.

Crosstalk between oncogenic signaling events & cancer cell metabolism
•	 Many key oncogenic signaling pathways, such as HIF, Myc, PI3K/AKT/mTOR or SREBPs, converge to adapt 

tumor cell metabolism in order to support their growth and survival. They are intimately involved in 
modulating glycolysis, mitochondrial oxidative phosphorylation, lipid metabolism and glutaminolysis.

Tumor microenvironment
•	 The tumor microenvironment is complex and comprises the extracellular matrix, tumor and stromal cells (e.g., 

epithelial cells, fibroblasts and inflammatory cells) that are embedded within this matrix and nourished by 
vascular network. The tumor heterogeneity, signaling molecules and chemicals, such as oxygen and protons, 
can influence tumor cell proliferation, survival, invasion, metastasis and energy metabolism reprogramming.

Isoenzymes: therapeutic targets in cancer
•	 Isoforms of many of the enzymes specific to important metabolic pathways are found to be overexpressed 

in tumor cells affecting important pathways of the energetic metabolism. These isoforms have a key role 
in mediating the aberrant metabolism of cancer cells and could serve as a promising source of novel drug 
targets.

•	 These tumor-specific isoforms can be involved in important pathways, such as glycolysis, tricarboxylic acid 
cycle, pentose phosphate pathway and glutamine metabolism, among other important energetic pathways

Genome-scale metabolic models as new tools emerging from systems biology approach to drug 
discovery
•	 Genome-scale metabolic models are emerging as a potential solution to decipher the molecular mechanisms 

underlying cancer in the context of systems biology. These models represent the metabolic reactions encoded 
by an organism’s genome and summarize and codify information known about the metabolism of that 
organism.

•	 These models use constraint-based methods for the mathematical representation of biotransformations and 
metabolic processes occurring within the organism and offer an appropriate framework to integrate the 
increasing amount of ‘omic’ data generated by the different high-throughput technologies.

•	 Genome-scale metabolic models approaches have allowed to identify a number of tumor-specific biomarkers, 
anticancer drug-target and synthetic lethal genes opening a promising avenue in the development of new 
anticancer therapies.
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heterogeneity and synergistic cooperation between cel-
lular communities, makes selecting the best possible 
target combinations difficult. Thus, in order to develop 
more efficient anticancer therapies, more efforts need 
to be made in developing new methods to study tumor 
metabolism and obtain a better understanding of the 
molecular processes underlying tumor progression and 
invasion.
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