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També vull agrair al Francesc Sagués i la M. Àngels Serrano la seva ajuda durant
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Chapter 1

Cellular metabolism at the

systems level

This chapter reviews basic concepts of cellular metabolism. First,

an overall view of the architecture of cellular metabolism is given,

from the large-scale of Catabolism and Anabolism to biochemical

pathways, reactions, and metabolites. Fundamental concepts of

chemical kinetics and thermodynamics are mentioned, followed by a

brief consideration of key ideas about regulation, control, and evolu-

tion of metabolism. Finally, the need for a systems-level approach

is discussed. Aims and objectives, together with an outline of this

thesis, are included at the end of the chapter.

Cellular metabolism is composed of enzyme-controlled biochemical reactions.

They form a densely-connected metabolic network which is responsible of main-

taining cells alive by generating chemical energy and by synthesizing important

metabolic intermediates from nutrients taken from the environment. Over the

1



2 Chapter 1. Cellular metabolism at the systems level

years, cellular metabolism has attracted the attention of many researchers. At

the end of the 19th century, the view of metabolism was dominated by studies

of specific biochemical reactions or processes. It is worth mentioning in this

respect the work of Eduard Buchner who, based on previous work by Louis

Pasteur, demonstrated that cell-free biochemical extracts of yeast -known to-

day as enzymes- could catalyze alcoholic fermentation. This put an end to

vitalism-based ideas and boosted the then emerging field of biochemistry [1].

Later on, with the help of experimental techniques such as NMR sprectroscopy

add X-ray diffraction, the idea of the organization of reactions into sequences

of consecutive transformations or pathways arose, creating the basis of modern

biochemistry [2]. In principle, pathways were treated as entities with a definite

function which operated independently of each other. Despite the enormous

success achieved by biochemistry, studies focusing on single reactions, enzymes,

or even single pathways are not sufficient to explain most experimental results on

metabolism at the functional level, which require a high knowledge of the entire

map of metabolic interactions and their interplay with other cellular components.

Examples of these results are the identification of redundant metabolic pathways

[3], or the observation of the effect known as synthetic lethality [4], which arises

when a combination of mutations leads to cell death, whereas the individual

mutations are not lethal.

Since metabolic phenotypes1 and behavior emerge from the interactions of many

metabolic reactions and other cell components, understanding them at the

systems level is crucial for our understanding of living cells. Metabolism is not

isolated from the rest of the cell machinery. Therefore, a key challenge in biology

is to integrate all the knowledge about the constituents of cells, from genes,

to proteins, to metabolites, and reactions, in order to understand how they

1A phenotype is the composite of the observable characteristics of an organism, such as its
morphology, development, biochemical or physiological properties.
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interact and how these interactions determine the behavior of cells [5]. This

implies a wide knowledge on how reactions are interconnected with metabolites

to integrate a whole metabolic network. One can use this metabolic map to

study, for example, how different pathways interact [6, 7]. A clear understanding

of all these metabolic interactions, and their linkages and interdependencies with

other biological scales like genetic networks, will allow us to decipher crucial

questions, such as how cells are able to adapt to their environment, or in which

way evolutionary processes led to the properties of metabolism as we currently

observe them.

The study of integrated metabolic maps is difficult due to the inherent complexity

of these intricate systems composed of thousands of interacting reactions. To

ease the understanding of cellular metabolism as a complex system, the classical

reductionist approach has given way to the so-called systems-level approach,

which studies metabolism as a whole, taking into account the largest number of

experimentally known constituents of the metabolic network, their interactions,

and the linkages to other cell constituents such as enzymes, proteins, and

genes. This emerging paradigm for the study of cell metabolism is at the

core of an emerging interdisciplinary field called Systems Biology [8–11], which

uses a holistic approach to understand the relationships between structure and

function in biological systems, an impossible endeavor for studies that focus on

specific reactions, enzymes, or metabolic processes. The use of this approach

has provided a large amount of new validated hypotheses, like the heterogeneity

of physiological metabolic fluxes in cells [12], or the phylogenetic analysis of

metabolic environments that determine which components must be exogenously

acquired [13]. Along with the development of Complex Network Science [14, 15],

the systems-level approach has led to a huge increase in our understanding of

how metabolic networks operate.
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1.1 A brief introduction to cellular metabolism

Cellular metabolism comprises the complete set of chemical reactions at the

cell level needed for life. While chemical syntheses in laboratory focus on

specific sequences of chemical reactions in order to optimize processes, thousands

of reactions, tightly interconnected through common metabolites, take place

simultaneously in cells, forming a network that is precisely controlled by the

combined action of enzymes, genes, etc., in order to secure functions. This

network takes part in the growth of cells, in the maintenance and construction

of their structures, and in the response and adaptation of the cell to different

environmental conditions or internal changes [16].

Cellular metabolism is divided in two big blocks. The first is called Catabolism,

whose processes are related with the degradation of nutrients and intermediate

substrates to provide energy and basic building blocks coming from the rupture

of chemical bonds of nutrients. The second is referred to as Anabolism, whose

processes are related fundamentally to the synthesis of complex organic molecules.

Notice that Catabolism supplies Anabolism with the necessary energy and basic

compounds or elements to synthesize new molecules. At a different scale,

biochemical reactions have been classically classified into different biochemical

pathways, which are sequences of consecutive reactions that transform certain

metabolites into specific products. Pathways are traditionally associated with

definite functions, like Glycolysis which breaks down glucose into other small

compounds to extract chemical energy and basic building blocks for anabolic

reactions in the synthesis of fatty acids or amino acids. Currently, we know that

pathways are not isolated entities and, instead, they constantly interact with

each other [6, 7].
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Focusing on individual reactions, one must notice that they require the action of

catalysts -called enzymes- to take place. Enzymes are a special class of proteins.

Proteins are macromolecules composed of amino acids, which perform a large

number of functions in living cells, participating for example in the responses to

stimuli, the replication of DNA, and transportation of molecules. It is worth

stressing that, even though biochemical reactions may be thermodynamically

spontaneous, they would not take place without enzymes because the activation

energy required inside cells is very large. To ensure that all reactions occur,

enzymes decrease the necessary activation energy by generating feasible chemical

mechanisms that allow these reactions to take place in a controlled way and in

reasonable amounts of time [17]. The action of enzymes helps also to control

reaction fluxes, i.e., the rates of biochemical reactions. Not all reactions in

metabolism proceed with the same speed or are always on. Biochemical fluxes

present a broad distribution of values [18] that reconfigure in response to internal

or external changes and signals.

1.1.1 Key compounds

Biochemical reactions are connected by their participating chemical species,

the products of one reaction are the substrates of subsequent reactions, and so

on. These compounds -metabolites- participate in many different cell functions,

including catalytic activity of their own. Five different general categories of

metabolites are described in the following paragraphs (see Figure 1.1).

• Amino acids [19, 20] are compounds composed by amines (-NR2), car-

boxylic groups (-COOH), and a different side chain for each amino acid.

The polymerization of different amino acids generates short chains called
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AminoIacid
(Alanine)

Lipid
(OleicIacid)

OH

O

Carbohydrate
(β-glucose)

K+

Na+

Fe3+

Cl-

Inorganic
elementsCoenzyme

(ATP)

Figure 1.1: Examples of classes of compounds that can be found in the
metabolism of cells.

peptides, or long chains called polypeptides that can be arranged in one

or more biological functional way to form proteins.

• Lipids are amphyphilic molecules, like fats or sterols, that contain both a

polar and an apolar part. This implies that they can be in contact with

water (polar part), whereas at the same time are soluble in substances

like oil through its hydrophobic part. The main uses of lipids are to store

energy [21], signaling [22], and being constituents of membranes [23].

• Carbohydrates are large biological molecules consisting of carbon (C),

hydrogen (H), and oxygen (O) arranged on a carbon backbone possibly

containing in addition aldehydes (-CHO), ketones (-CO-) and hydroxyl

(-OH) groups. They fulfill many roles like energy source [24], storage of

energy in the form of glycogen [25], or structural functions.
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• Nucleotides are organic molecules containing a nitrogenated base (an

aromatic compound containing a basic2 nitrogen), a ribose or deoxyribose

sugar, and a phosphate group (-PO3−
4 ). They are building blocks of the

two nucleic acids DNA and RNA [26]. Genes are fragments of DNA that

contain the hereditary information in order to code for polypeptides or

for RNA chains. At the same time, RNA performs multiple vital roles

in the coding, decoding, regulation, and expression of genes. Nucleotides

are obtained from the phosphorylation of nucleosides, and in the form of

nucleoside triphosphates, nucleotides play central roles in metabolism [27].

One of these roles is to act as coenzymes, which are important metabolic

intermediates that bond loosely to enzymes so as they can perform their

catalytic activity. For instance, coenzymes serve to carry energy within

the cell. An important coenzyme is adenosine triphosphate (ATP). It is

one of the energy currencies of the cell [28]. Many reactions depend on

ATP to become thermodynamically spontaneous, taking advantage of the

large content of free energy that is released when the high-energy oxygen-

phosphate bond of ATP is broken. Another example of the importance

of nucleotides as coenzymes is nicotine adenine dinucleotide NAD+, a

derivative of vitamine B3, along with its reduced form nicotine adenine

dinucleotide - hydrogen (NADH), which are in charge of balancing the

quantity of reduced / oxidized species inside the cell [29, 30].

• Inorganic compounds like water (H2O), or ionic species like potassium

(K+), sodium (K+), chlorine (Cl−), calcium (Ca2+), etc., are simple

but not less important components of metabolism. Some of them are

abundant, like sodium or potassium, whereas others are present at very

low concentrations (traces) [31]. They appear in the form of electrolytes,

2In this context, basic refers to acid-base behavior.
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and thus their concentrations play a key role for example in fixing the

osmotic pressure, pH, or the cell membrane potential [32, 33]. Some

transition heavy metals like iron (Fe2+/Fe3+) or zinc (Zn2+) are cofactors,

compounds which are essential for the activity of proteins like hemoglobin

[34].

1.1.2 Biochemical reactions

Metabolites are the substrates or products of biochemical reactions in the cell.

These can be classified in different categories. An important kind of metabolic

reactions is a redox process, which involve the transfer of electrons from reduced

species, like ammonia or hydrogen sulfide, to oxidized ones, like oxygen or

nitrates. Redox reactions play fundamental roles in respiration, where glucose

reacts with oxygen, the final products being carbon dioxide coming from the

oxidation of glucose, and water, obtained by reduction of oxygen, along with a

large quantity of free energy, which is mainly used for non-spontaneous anabolic

processes.

Another type of reactions in metabolism involves the transference of entire

chemical groups, like a phosphate group in a phosphorylation reaction. Other

reactions involve the direct breakage of chemical bonds, like the rupture of

carbon-carbon bonds in the decarboxylation of pyruvate. This is a principal

process in fermentation which, in order to obtain energy and avoid pyruvate

accumulation, transforms a carboxylic group in the form of carbon dioxide,

generating acetaldehyde that finally gets reduced into ethanol by a redox reaction

[35]. Decarboxylations are also important, for example, in the intermediate

step between Glycolysis and the Citric Acid Cycle3 to obtain acetyl-CoA, or in

3Also called Krebs Cycle or Tricarboxylic Acid Cycle (TCA Cycle).
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subsequent steps of this last pathway to generate new intermediates. Transport

reactions deserve special attention, since they are responsible for the entrance

of nutrients and the excretion of waste products.

An important feature of biochemical reactions is reversibility. Depending on

the value of ∆Go4, reactions can be considered as reversible or irreversible [36].

More precisely, for ∆Go≈ 0 reactions can be considered reversible, meaning that

both directions of the reaction are thermodynamically favored; generically one

would write aA+ bB 
 cC + dD. On the contrary, if ∆Go< 0 and significantly

negative, reactions are considered irreversible, and one direction is favored

aA + bB → cC + dD. For ∆Go> 0, the reaction takes place mostly in the

opposite direction aA+ bB ← cC + dD.

1.1.3 Biochemical pathways

Traditionally, sequences of consecutive biochemical reactions that transform

a principal chemical into specific products are called pathways. In cell meta-

bolism, there are several universal pathways that when interconnected form

a complex metabolic network. Next, the central pathways of metabolism are

briefly reviewed.

Glycolysis is the pathway that degrades carbohydrates. It takes place in the

cytosol, and its main fuel is glucose. Basically, Glycolysis contains enzyme-

catalyzed chemical reactions which transform glucose into pyruvate. In its more

common form, this process generates the necessary free energy in order to form

two molecules of ATP along with NADH. Glycolysis contains two phases, the

first one where energy must be invested, which costs two ATP molecules but

4Thermodinamically speaking one should refer to ∆G, the change in Gibbs free energy
(SI units J mol−1). An approximate but convenient way is however to refer to ∆Go, which
denotes the free energy change in standard conditions of a reaction.



10 Chapter 1. Cellular metabolism at the systems level

that generates important intermediate compounds. On the contrary, the second

phase produces energy, since four ATP molecules are generated, along with

two pyruvate molecules and two NADH molecules. Therefore, Glycolysis is

important not only to obtain energy but to generate important biosynthetic

precursors [16]. Notice that the inverse process, which generates glucose from

pyruvate is called Gluconeogenesis and corresponds to Anabolism.

Pyruvate obtained from Glycolysis can be metabolized in two different ways. The

first way corresponds to anaerobic processes, when no oxygen is available. This

is called fermentation, and consists in reducing pyruvate into several components

like ethanol, lactate or acetate by oxidizing NADH into NAD+. Fermentation

generates two ATP molecules [16].

In case that oxygen is present, the main fate of pyruvate is to become acetyl-

CoA, a chemically activated compound formed by a cofactor, called coenzyme

A, and an acetyl group. Acetyl-CoA enters the Citric Acid Cycle, a route

that takes simple carbon compounds and transforms them into CO2 in order

to obtain energy. The Citric Acid Cycle not only accepts acetyl-CoA from

Glycolysis, but also from other routes like lipid or protein metabolism, which

emphasizes the importance and centrality of this pathway (see Figure 1.2) [16].

In eukaryotic cells, the Citric Acid Cycle occurs in the matrix of mitochondria,

whereas in prokaryotic cells it takes place in the cytosol, like Glycolysis. The

Citric Acid Cycle generates CO2, guanosine-5’-triphosphate (GTP), NADH, and

flavin adenine dinucleotide in hydroquinone form (FADH2). GTP is transformed

directly into ATP. NADH and FADH2 are two reduced species that, by being

oxidized, generate also ATP. This oxidation takes place in the process called

Oxidative Phosphorylation.
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other processes are represented by squares, orange color denoting pathways

and green color denoting specific metabolites.
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Organisms take advantage of the processes in the electron respiratory chain

called Oxidative Phosphorylation in order to oxidize the reduced species coming

from the Citric Acid Cycle to generate energy. In eukaryotic cells, Oxidative

Phosphorylation takes place inside mitochondria. In prokaryotic organisms,

where no mitochondria are present, it takes place across the prokaryotic cell

membrane. To summarize, by coupling Glycolysis to the Citric Acid Cycle and

Oxidative Phosphorylation, organisms are be able to generate up to 38 ATP

molecules [16], which compared to two ATP molecules generated by fermentation,

represents a great advantage in order to obtain ATP, whenever oxygen is present.

Other important pathways in cell metabolism comprise the degradation of fatty

acids inside mitochondria, a process called β-oxidation, which is another source

of acetyl-CoA apart from Glycolysis. Another source of acetyl-CoA comes from

the degradation of amino acids, which can be synthesized by transamination

[16]. Basically, transamination transforms α-ketoacids coming from the Citric

Acid Cycle to generate amino acids, which emphasizes again the centrality of

the Citric Acid Cycle.

There are two main routes for the synthesis of purines and pyrimidines, the

building blocks of nucleic acids or coenzymes like NAD+: the de novo, which

refers to the synthesis from simple molecules, and the salvage pathways, where

purines and pyrimidines are recycled from intermediates coming from the routes

that degrade nucleotides. The de novo route of nucleotide synthesis has a high

energetic requirement as compared to the salvage pathway. The enzymes that

synthesize purines and pyrimidines perform basic, cellular activities and it is

thought that are present in low, constitutive levels in all cells [37].
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1.1.4 Classical studies of metabolism

Traditionally, metabolism has been studied using a biochemical reductionist

approach focused mainly on the study of the role of biomolecules and the

kinetics and on the thermodynamics of particular metabolic reactions. As an

example, processes like the non-spontaneous transport across the membrane

-which takes advantage of the free energy coming from a proton gradient [38]

or from ATP hydrolysis- have been studied using irreversible thermodynamics.

Classical questions in biochemistry that prompt new systems-level studies refer

to regulation and control of metabolism, the interplay and adaptation to the

environment, and the effects of evolutionary pressure.

1.1.4.1 Kinetics and thermodynamics

Classic metabolic studies have usually focused on the kinetics of reactions. The

traditional approach was to discover the chemical mechanism by which reactions

take place. In this way, kinetic constants were measured for specific reactions

using in vitro experimental techniques in order to obtain a velocity law.

As mentioned before, the action of enzymes decreases the necessary activation

energy of a reaction, so that the reaction rate increases (otherwise it would take

place more slowly or even it would take place so slowly that any progression

of the reaction would be unnoticeable). A scheme of this decrease in the

energy barrier is shown in Figure 1.3. The best-known kinetic enzymatic

mechanism in biochemistry is the famous Michaelis-Menten kinetics [39]. In fact,

biochemical reactions involving a single substrate are often assumed to follow

Michaelis–Menten kinetics. This model assumes that the minimal equation to

describe a simple reaction with one reactant S and one product P catalyzed by



14 Chapter 1. Cellular metabolism at the systems level

Reaction coordinate

E
ne

rg
y

without enzyme

with enzyme

reactants

products

activation
energy
without
enzyme

activation
energy

with
enzyme

Figure 1.3: Energy diagram showing the dependence of the energy required
for the reactants in order to be transformed into products as a function of
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progress of a reaction along the complete path.

one enzyme E is

S + E
k1


k−1

ES
k2→ P + E (1.1)

where k1, k−1, and k2 are rate constants. The model relates the overall reaction

rate v to the concentration of substrate [S] and the concentration of enzyme [E]

under assumptions like steady-state conditions and low enzyme concentration.

The rate v is given by the expression v = vmax
[S]

Km+[S] , where vmax = k2[E] and

Km is the substrate concentration at which the reaction rate is at half-maximum.

Michaelis–Menten kinetics reaches a saturation of the velocity as a function of

the substrate concentration due to the limited availability of enzyme that can

bind to the substrate.

Apart from Michaelis-Menten kinetics, other mechanisms were described for

reactions involving more than one substrate or even for reactions with one

substrate that do not follow the Michaelis-Menten mechanism. One of these

examples is cooperation, which happens when the binding of one substrate
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molecule to the enzyme affects the binding of subsequent substrate molecules.

This effect is modeled by the Hill equation [40], which has the form θ = [L]n

Kn
a+[L]n ,

where θ is the fraction of occupied sites and the Hill coefficient n measures how

much the binding of substrate to one active site affects the binding of substrate

to the other active sites. The case n < 1 indicates that once one substrate

molecule is bound to the enzyme, its affinity for other substrate molecules

decreases, whereas n > 1 indicates that once one substrate molecule is bound to

the enzyme, its affinity for other substrate molecules increases. The case n = 1

indicates that the binding of one substrate does not affect the binding of other

ligands. The other parameters [L] and Ka are, respectively, the free unbound

substrate concentration and the apparent dissociation constant derived from

the law of mass action.

Other kinetic mechanisms, involving multi-substrate reactions, are the so-called

ternary-complex mechanisms and ping–pong mechanisms [16]. These mecha-

nisms describe the kinetics of an enzyme that takes two substrates, namely A

and B, and turns them into two products, namely P and Q. Ternary-complex

mechanisms imply that the substrates bind to the enzyme forming a ternary

complex, where the reaction takes place. After this transformation, the com-

plex dissociates, giving products P and Q. Ping–pong mechanisms consist on

sequences of enzyme transformations due to interactions with the substrates.

First, the enzyme binds to one substrate and one product is formed. After this

process, the second substrate binds to the enzyme giving the second product.

Specific applications of thermodynamics to cell metabolism can be found for

example in the description of transport of molecules across the cell membrane.

On the one side, passive transport implies a movement of compounds which

involves no energy supply, happening spontaneously. On the other side, active

transport accounts for the movement of compounds across the cell membrane
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in the direction against a concentration gradient. Active transport is usually

associated to the accumulation of high concentrations of molecules that the

cell needs, such as ions, glucose and amino acids. If this process uses chemical

energy in the form of ATP, it is termed as primary active transport. Secondary

active transport involves the use of an electrochemical gradient. Examples of

active transport include uptake of glucose in the human intestines [41].

Kinetics describes the rates of reactions and how fast equilibrium is reached, but

it gives no information about conditions once the reaction reaches equilibrium.

At the systems level, several aspects must be taken into consideration in relation

to its second law. In simple terms, the second law of thermodynamics states

that in a closed system entropy tends to increase. An increase in the entropy

of a system implies an increase of the number of its possible reachable states.

However, organisms seem to contradict this law, since biological systems are

complex but ordered structures. To obey the second law and, at the same time, to

generate these structures, organisms must exchange matter and energy with their

surroundings (see Figure 1.4). In this way, organisms are not in thermodynamic

equilibrium, but they are dissipative systems which, to maintain their high

degree of complexity and order, increase the entropy of their surroundings

whereas their internal entropy is decreased. Thus, the necessary free energy

required by Anabolism to generate complex molecules is obtained by coupling it

to Catabolism. For example, nutrients are metabolized and small molecules like

CO2, whose entropy is much larger than that of nutrients [42, 43], are expelled

as waste.

Another thermodynamic discussion concerns energy balance. The intake of

energy is equal to the sum of the energy expended in the form of heat or

work, and the stored energy. Energy balance states that no energy can be

created or destroyed, but it can be transformed. This is indeed the first law of
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Figure 1.4: Schematic example of an open system, with exchange of matter
and energy, and a closed system, where there are no exchanges of any type.

thermodynamics. For example, when a cell consumes nutrients, a part of the

energy content of the nutrients will be diverted towards the storage as fat, or

transferred inside the cell as chemical energy in the form of ATP, or immediately

dissipated as heat.

1.1.4.2 Regulation and control

The environment of organisms is constantly changing. In fact, organisms

themselves modify their own surroundings by consuming nutrients and expelling

waste. Therefore, organisms must be regulated in order to avoid large imbalances

within themselves. Furthermore, possible internal perturbations can also lead

to imbalances inside an organism. Hence, organisms have developed different

regulation strategies to be able to maintain homeostatic states in which internal

conditions remain stable [44]. Regulation requires that a system operates

near steady-state conditions, which means that the temporal variation of the

properties through time is practically null, except for adjustments to internal or

external perturbations. This implies that concentrations of internal metabolites
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are maintained steady in front of variations in metabolic fluxes. This entails the

regulation of enzymes by increasing or decreasing their response to signals.

A real example of homeostatic readjustment is the regulation of glucose concen-

tration by insulin [45, 46]. When large levels of glucose are present in the blood,

insulin binds to its receptors, which generates a cascade of protein kinases5 that

cause the consumption of glucose into fatty acids or glycogen. Therefore, the

increase in the concentration of glucose is regulated by the control of fluxes of

catabolic biochemical reactions, so as to decrease the concentration of glucose

until a stable steady-state is reached.

Control has been differentiated from regulation. Metabolic control refers to the

ability to change a metabolic state as a response to an external signal [47]. In

this way, control can be assessed in terms of the intensity of the response to

the external factor without the need of knowing how the organism is able to

achieve internally this state. This implies that control is simpler than regulation,

because no judgment about the function of the system is needed. For example,

an enzyme may show large changes in activity due to some external signal,

but these changes may have little effect on the overall flux of a certain set of

reactions or pathway. Therefore, this enzyme is not involved in its control.

1.1.4.3 Evolution

Through the process of descend with modifications, organisms evolve and change

in time under the driving force of survival. In cell metabolism, there are central

pathways that have been conserved through evolution and that are present

5A protein kinase is a kind of enzyme which transfers phosphate groups from high-energy
phosphate donor molecules to specific substrates. This process is called phosphorylation, not
to be confused with the Oxidative Phosphorylation pathway described in Section 1.1.3.
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in practically all kinds of organisms. In fact, these pathways were in the so-

called last universal ancestor, which is the most recent organism from which all

organisms that now live on Earth descend [48]. Pathways like Glycolysis and

the Citric Acid Cycle have been retained probably due to their optimality when

producing their products and intermediates in a relatively small number of steps,

which then can act as precursors for other biochemical routes. Many studies

support the theory that organisms have evolved towards the maximization of

the growth rate, i.e., organisms tend to reproduce as much as possible [49, 50].

There have been proposals in recent years in order to understand how metabolism

might have evolved including the retention of ancestral pathways. Different

mechanisms have been proposed for the evolution of metabolic pathways, for

instance (1) sequential addition of old or new enzymes within short ancestral

pathways, (2) duplication and then divergence of pathways, and (3) recruitment

of enzymes that are already present to be assembled into a novel pathway

[51]. Horizontal gene transfer is another way that organisms use to evolve,

consisting on the transfer of genes between organisms. In fact, bacteria acquire

resistance to antibiotics due to horizontal gene transfer [52]. This process implies

modifications in the metabolic network, in the form of alterations of pathways,

to generate by-passes in order to avoid the effect of the antibiotic.

Heritable epigenetic effects have also impact on evolution. Epigenetics studies

the changes in gene expression that cannot be explained by changes in DNA

sequences. There are two ways in which epigenetic inheritance may be different

from traditional genetic inheritance. The first way corresponds to the situation

where the rates of epimutation are much faster than the rates of mutation [53].

Alternatively, epimutations are more easily reversible [54]. The existence of these

possibilities implies that epigenetics, and thus metabolic effects, can increase

the evolvability of species.
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Evolution can cause not only the gain of new metabolic functions but also the

loss of functions which are not useful anymore for cells. Mycoplasmas, a kind of

bacteria without cellular wall that act as parasites, have lost those processes

and pathways that are essential for survival as independent entities, since these

microorganisms obtain compounds from their hosts [55, 56].

1.2 Genome-scale models

A systems-level approach to the study of cell metabolism takes into account the

entire set of biochemical reactions and their interactions at different levels of

organization. At the core of this approach, genome-scale metabolic networks

[10] provide high quality representations of cell metabolism which integrate

biochemical information with genome annotations, physiological requirements,

and constraint-based modeling refinements. These genome-scale models, after

experimental validation, have predictive capacity and can be used for detailed

analysis of metabolic capabilities, with applications in a range of fields like

biomedicine or biotechnology [57, 58].

1.2.1 Reconstructing metabolism

Nowadays, genome-scale metabolic models have been reconstructed and experi-

mentally validated for different organisms like Escherichia coli, Saccharomyces

cerevisiae, Mycoplasma pneumoniae, and Homo sapiens, among others. These

reconstructions are called GENome-scale metabolic REconstructions (GENREs)

(see Figure 1.5) [10]. In GENREs, reactions are typically stoichiometrically
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Figure 1.5: Simplified representation of a genome-scale model. Reactions
are catalyzed by enzymes, whereas enzymes are codified by genes. Reactions
are represented by blue squares, metabolites by green circles, enzymes by red
rhombus and genes by yellow triangles. Note that enzymes 8 and 9 form a

complex and the latter is the catalyst of reaction j.

balanced and categorized into their corresponding pathway, for example, reac-

tions belonging to Glycolysis, Oxidative Phosphorylation, or Citric Acid Cycle.

Reactions are also associated to their corresponding enzyme and metabolic gene.

Generating these representations is a difficult task and several steps are needed

in the protocol [59]. First, an initial reconstruction is proposed from gene-

annotation data coupled with biochemical information from databases like

the Kyoto Encyclopedia of Genes and Genomes (KEGG) [60], or BioCyc [61],

among others. In these databases, reactions are linked with metabolic genes,

enzymes, and also to functional categories like pathways. Second, the obtained

reconstruction is curated by checking it against experimental evidence in the
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existing literature, including for instance physiological requirements. This revised

reconstruction is further translated into a computational mathematical model

using constraint-based approaches. Third, the reconstruction is validated by

comparing the results obtained by the model with experimental evidence. After

curation of inconsistencies, models are , see for instance the BiGG database [62].

Finally, one has to remember that GENREs are constantly improved in new

versions as new experimental results become available.

Among all metabolic network simulation techniques for model refinement, Flux

Balance Analysis (FBA) [63] is probably the most widespread. Very briefly,

FBA uses constraint-based analysis to compute a metabolic phenotype, in the

form of the set of fluxes of reactions, which maximizes biomass production given

a set of external bounds typically referring to nutrient amounts.

Since the first GENRE reconstructed a decade ago [64], there has been a huge

expansion on the construction and use of GENREs [65–69]. Their applications

can be divided into four categories [57, 70, 71].

• Many advances in Biology are the result of hypothesis-driven discoveries.

Metabolic GENREs enable the identification and confirmation of new

or existing hypotheses, representing an important framework for the

incorporation of cell biological data. The key to unlock the potential of

GENREs for the discovery of unknown metabolic mechanisms is to ask

feasible questions and to know the limitations of the used methodology,

since one must always have in mind that in real living cells, many biological

levels act together (metabolism, regulation, signaling, gene regulation, etc.)

creating a complex system, and GENREs are after all simplified models

[57].
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• Many characteristic phenotypes of several organisms arise when they

interact with other species [72, 73]. GENREs enable to analyze interactions

between organisms, like for example mutualism, comensalism, parasitism,

etc [73]. It is worth mentioning in this respect the work of Bordbar et

al. [74], where the authors developed a model of parasitism between a

human cell and the bacterium that causes tuberculosis, Mycobacterium

tuberculosis.

• Metabolic reconstructions serve as a framework for the contextualization

of data obtained using high-throughput techniques [75]. A functional way

to apply GENREs for contextualization of experimental data, like gene

expression or C13 flux data, is by imposing constraints on the fluxes of

GENRE based on experimental values. If experiments suggest for instance

that reactions of a particular pathway carry large fluxes, one can force

the GENRE to have a minimal bound for these fluxes so as to fit the

experimental observations. Then, changes in the global flux structure are

studied and evaluated.

• Metabolic engineering involves the use of recombinant DNA technology6

to selectively alter metabolism and improve a targeted cellular function

[57, 76]. The use of GENREs for metabolic engineering has led to what

has been termed as Systems Metabolic Engineering [77]. An example of

the new advances in metabolic engineering achieved using GENREs is the

modification of Saccharomyces cerevisiae to increase the production of

industrially important intermediates of the Citric Acid Cycle [78]. Another

possibility is to study gene knockouts. More precisely, in Reference [79],

6Recombinant DNA molecules are DNA molecules engineered to assemble genetic material
from multiple sources, creating sequences that would not otherwise be found in biological
organisms.
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the authors performed gene knockouts in Geobacter sulfurreducens to

maximally increase its respiration rate.

1.2.2 The systems-level approach

GENRE reconstructions and the systems-level approach have led to the devel-

opment of the field called Systems Biology. It is an emerging interdisciplinary

field applied to biological systems that focuses on complex interactions using

a holistic approach [80]. It is not easy to have a precise and unique definition

encompassing all the concepts underlying Systems Biology.

A possible definition was stated by Ideker et al. [81]:

“Systems biology studies biological systems by systematically

perturbing them (biologically, genetically, or chemically); monitoring

the gene, protein, and informational pathway responses; integrating

these data; and ultimately, formulating mathematical models that

describe the structure of the system and its response to individual

perturbations.”

An alternative was given by Kitano et al. [9]:

“To understand complex biological systems requires the integra-

tion of experimental and computational research — in other words

a systems biology approach.”

These definitions share common features. On the one side, a systems-level

approach considers all the components and linkages constituting the system.

On the other side, the properties of the components and interactions must be
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integrated in a computational mathematical model. It is worth stressing the

importance of the assembly of these components, i.e., how components interact

between them. This can be understood with the analogy of a road-map as given

in Reference [8]. In order to understand traffic patterns, it is necessary to know

not only the static road-map but also how cars interact to generate the observed

final traffic patterns. Thus, to fully understand a system in a systems-level

approach, one needs the diagram with all the connections of all components but

also the knowledge of why, how, and to which extent components interact.

Systems Biology can therefore be defined as an approach whose aim is to study

biological systems focusing on all the constituents and interactions. In this way,

emergent properties which are not present at the level of the single components

of the system can be discovered, and phenotype and behavior can be related to

the underlying systems architecture. Central to Systems Biology is the holistic

approach. Holism is based on the idea that natural systems and their properties

should be viewed as a whole instead on focusing on the parts that constitute

the system (see Figure 1.6). Contrarily, the focusing on single parts is called

reductionism. Examples of traditional reductionist approaches are the study

of a single protein or a single chemical mechanism, and they have dominated

Biochemistry [82] and Molecular Biology [83] for decades.

Systems Biology represents a paradigm shift that requires the interplay between

different disciplines, e.g., Biology, Physics, Mathematics, Chemistry, Computer

Science, etc. [84, 85]. Systems Biology foments interactions from traditional

computational scientists, modeling experts, and experimental researchers. Re-

search developed to date typically requires powerful computational tools, and

this particular emphasis in Systems Biology has given rise to the subfield known

as Computational Systems Biology or Computational Biology [84].
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Systems Biology has grown in parallel to the development of the omics fields.

Omics are different disciplines integrating and analyzing different kinds of

data. Systems Biology combines the datasets obtained in these disciplines

in order to achieve the maximum knowledge to model an organism (see 1.7).

Examples of omics related to genes are Genomics, which involves sequencing an

organism genome, and Transcriptomics, which evaluates gene transcription. In

relation with proteins, the field called Proteomics measures protein abundance.

Regarding metabolism, Metabolomics deals with the study of the concentration

of all the compounds present in a organism. There is another important omic

field, in line with this thesis, which studies the chemical fluxes in metabolism,

Fluxomics [86, 87]. Fluxomics provides a measure of a metabolic phenotype as

the set of fluxes going through all reactions in a metabolic network.
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The holistic view of metabolism including reactions, metabolites, enzymes,

genes, and fluxes, represents a new paradigm that requires new tools. Complex

Network Science [14, 15] has become a new promising domain for the study

of biological systems. Metabolism is formed by a large amount of components

and interactions and can be categorized as a complex network and, thus, many

applicable techniques that belong to the complex network field are appropriate

for the the study of metabolism.

In fact, some of the applications of Complex Network Science ideas to cell

metabolism have led to the discovery of many unenvisaged properties such

as the existence of loops [88], optimal pathway usage [89], and metabolite

connectivity [90]. Other possible discoveries are the exploration of evolutionary

relationships [91]. In addition, complex networks applied to metabolism serve

as a tool for the identification of how evolutionary pressure has shaped the
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topological features of metabolic networks, such as the degree distribution [7, 92–

94]. Therefore, the joint use of complex network methodologies and Systems

Biology provides an excellent arena to study metabolic capabilities and the

evolutionary forces that shape metabolic networks.

1.3 Aims and objectives

This thesis aims at studying cell metabolism from a systems-level perspective,

i.e., taking metabolism as a whole.

In particular, one of the questions is how metabolism responds as a whole when

some of its constituents fail, i.e., when reactions or genes are non-operative by

removal or mutation. It is important to mention that the aim is not to focus

on the study of how to perform biochemically the perturbation or the analysis

of biochemical failures at a molecular level. Instead, the investigation focus

on the impact on the whole system of harmful situations and how metabolism

is able to overcome them as a whole entity. In this way, one can study how

different pathways reorganize to adapt to perturbations, something impossible to

understand by typical molecular biology studies centered on single constituents.

Another question addressed in this thesis is focused on filtering metabolic

networks in order to extract metabolic backbones providing valuable biological

information. To do this, FBA and the disparity filter [95] are used. The disparity

filter allows to extract backbones of the metabolic network containing the

significant links. The analysis of metabolic backbones allows the identification

of pathways with important roles in survival. The first role corresponds to

pathways that have been present in organisms since the first stages of life,

i.e., pathways central in long-term evolution. The second role corresponds to
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pathways more sensitive to external stimuli, i.e., pathways displaying short-term

adaptation.

The last question addressed in this thesis is the assessment of FBA solutions in

relation to all the feasible flux space, so as to identify whether solutions obtained

with this technique describe reliably the set of possible metabolic states or, on

the contrary, the FBA solution is uninformative of the entire set of metabolic

phenotypes. The space of metabolic flux states can be exploited with different

strategies. It can be used as a benchmark to calibrate the distance of FBA fluxes

as compared to experimental measures, or to identify metabolic phenotypes

unreachable by constraint-based techniques.

The main objectives of this thesis are summarized in the following bullet list:

• To study whether the structure of metabolic networks has evolved towards

robustness resisting external perturbations, like gene or reaction removals

or mutations.

– To study the spreading of a cascade when a reaction or a pair of

reactions fail, unveiling the interplay between multiple cascades.

– To study the propagation of the damage to metabolism when genes

fail.

– To discuss the findings in terms of an evolutionary perspective.

• To study the effects on fluxes of individual and pairs of reactions knockouts

using FBA.

– To study the activity and essentiality of reactions.

– To understand the mechanisms of synthetic lethality, unveiling the

plasticity and the redundancy capabilities displayed by the metabolic

networks of bacteria.
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– To study the dependence of plasticity and redundancy on the envi-

ronment.

• To identify those pathways that perform important roles for the survival

of an organism.

– To check the efficiency of the disparity filter on metabolic networks.

– To analyze backbones in terms of the long-term evolution of organisms

– To extract information about the short-term adaptation of metabo-

lism to the external environment.

• To assess the FBA solution in the entire space of metabolic solutions.

– To demonstrate that solutions obtained using FBA as a constraint-

based technique may be uninformative of typical behaviors.

– To provide a benchmark to calibrate FBA.

– To recover phenotypes not attainable by constraint-based techniques

by using the full metabolic solution map.

1.4 Outline

After this introduction to cellular metabolism and its genome-scale models,

Chapter 2 presents the general tools, methodologies, and GENREs used in this

thesis.

Chapter 3 starts by considering a structural study of how metabolic networks

of the bacteria Mycoplasma pneumoniae, Escherichia coli, and Staphylococcus

aureus respond to internal perturbations, like removals of reactions or genes

individually or in pairs, i.e., how the structure of the metabolic network is

damaged following an internal failure which propagates as a cascade, by which
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the metabolic capabilities of an organism are weakened. Further, these results

are linked to evolutionary explanations, i.e., how evolution has shaped and

dictated the form of metabolic networks so as to respond to perturbations. This

discussion is related with the robustness of organisms, in order to unveil whether

the structure of the metabolic network is prepared to suffocate the advance of a

damage cascade.

Chapter 4 extends the structural study of perturbations to flux distributions

obtained using FBA. This study allows, on the one side, to know whether there

are important reactions that must be always active in order to guarantee the

survival of an organism and, on the other side, to check whether cell metabolism

has developed protection mechanisms when some of its parts are unable to work.

In this respect, synthetic lethal reaction pairs are analyzed. These are pairs of

reactions whose removal from is lethal, but metabolism is still able to survive

when each reaction forming the pair is removed individually. This allows to

identify two different mechanisms, plasticity and redundancy, which have helped

to protect metabolism against possible reaction failures.

Chapter 5 analyzes metabolic fluxes so as to extract more biological information

on how organisms adapt to external environments and evolve. To perform this

analysis, the disparity filter is used in order to obtain backbones as reduced

versions of metabolism without losing its properties as a complex network. The

structure of these backbones unveils pathways with a prominent role in the

long-term evolution of the organisms and in their short-term adaptation to the

environment.

Chapter 6 revises the FBA technique in relation to the whole set of feasible

flux states in a metabolic network. FBA uses a strong assumption -organisms

try to grow as much as possible- allowing to solve the mass action equations
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at steady state describing metabolism without the need of kinetic parameters.

This assumption is commonly applied due to the lack of availability of kinetic

constants of reactions. It is worth exploring the distribution of possible fluxes

without making use of the assumption of maximal growth. This allows to

perform a mapping of all the feasible flux solutions in metabolism and thus to

assess the relevance of the solution obtained by FBA compared to all the other

possible solutions.

General conclusions are given in Chapter 7. At the end of the thesis, there are

four appendixes reviewing the basics of some specific tools used in Chapters

3, 4, 5, and 6. Finally, the list of references is included. A CD containing

supplementary tables and data is also provided with the book. In addition to

the CD, the supplementary files corresponding to each chapter can be found in

the following links:

• Chapter 3 file (Supplementary Tables C3): http://tinyurl.com/nc2vmhf

• Chapter 4 file (Supplementary Tables C4): http://tinyurl.com/ktswl4k

• Chapter 5 file (Supplementary Tables C5): http://tinyurl.com/m7nh4b6

• Chapter 6 file (Supplementary Tables C6): http://tinyurl.com/k2bqtug

http://tinyurl.com/nc2vmhf
http://tinyurl.com/ktswl4k
http://tinyurl.com/m7nh4b6
http://tinyurl.com/k2bqtug


Chapter 2

Methods and data

This chapter describes the basics of the fundamental techniques

used in this thesis. It is divided in three parts: (1) complex network

tools applied to metabolism, (2) description of Flux Balance Analysis

(FBA) -used to compute metabolic fluxes at steady state- and of

Flux Variability Analysis -a variant of FBA to bound minimum and

maximum fluxes for each reaction- and (3) a description of all the

genome-scale metabolic reconstructions analyzed in this thesis.

Nowadays, the explosion in computational power has allowed us to deal with

systems of thousands or even millions of constituents and interactions, boosting

the degree of our understanding on how these systems are structured and

behave. Complex Network Science comprises a large amount of techniques

and models which help us to study these intricate systems as a whole [15, 96].

These methodologies can be applied to any system which can be modeled as

a network. Networks can be briefly defined as a set of items that interact,

like for example the World Wide Web and the Internet and, in a biological

33
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context, metabolic networks [97] or protein-protein interaction networks [98].

Complex Network Science has led to an important advance in the understanding

of metabolic networks [5, 97, 99–102] which is in line with the systems-level

view of metabolism in fields like Systems Biology [10, 11].

When dealing with metabolic networks, the complex network approach has to

be combined with other techniques coming from Systems Biology in order to

understand functional or behavioral features, for example why the inability

to operate of some reactions leads to cell death, or why some reactions carry

a determinate flux given a set of external nutrients. The most widespread

mathematical approach used for the systems-level analysis of metabolic networks

is Flux Balance Analysis (FBA) [63]. This technique is based on constraint-based

analysis and optimization of an objective function, usually the biomass formation

function of the cell. In this way, the fluxes through all the biochemical reactions

of cell metabolism that maximize the biomass formation rate or, equivalently,

the specific growth rate, can be computed. Apart from the mentioned reaction

fluxes and growth rate, this technique allows to compute, for instance, the

maximum yield of important compounds such as ATP or NADH [63, 103],

and the effects of knockouts of genes or reactions [104, 105]. Related to FBA,

other related techniques like Flux Variability Analysis (FVA) [106, 107] allow

to identify possible alternate solutions and, in conjunction with FBA, allow to

perform a deep study of the flux capabilities of metabolic networks.

Complex network methodologies and constraint-based techniques applied to

metabolic reconstructions represent a powerful tool for the analysis and develop-

ment of new insights into metabolic functions and mechanisms that cells have

developed from the earliest stages of life to the current days.
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2.1 Structural properties of metabolic networks as

complex networks

Networks are discrete systems of elements that interact. These systems are

represented by graphs of nodes (or vertices) -which represent elements- connected

by links (or edges) -which represent interactions. The presence of a large number

of nodes interacting in non-trivial connectivity patterns between order and

disorder is what gives to networks their intrinsic complexity.

It is important to distinguish between complex and complicated. The main

difference between these two words is better explained by a single example:

solving a whole metabolic network composed of thousands of reactions is a

complex problem in the sense that the large amount of interactions leads to

emerging unexpected behaviors, like the effect of the removal of a biochemical

reaction on other reactions, which can increase or decrease their fluxes depending

on their biological activity. On the contrary, the study of a typical chemical

engineering process to obtain a precise output may be a complicated problem,

since one needs to draw a flowchart of all the chemical reactions and involved

intermediate species that participate in the chemical synthesis. This may require

a wide knowledge of the system, implying a large degree of control on all the

processes, but the final behavior of the system will be what is expected in a

well-designed process.

2.1.1 Basic representation frameworks

Links in networks can have either a defined direction or may lack it. Therefore,

when links are directed, they are depicted by arrows, specifying a source and a

target. A directed link can represent, for example, a transformation between
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two metabolites, typically a reactant and a product with the link pointing to

the product. When no specification source / target is prescribed, the interaction

is mutual, like in a protein-protein interaction1, and links without direction

are used. Associated to this, networks are classified as directed, undirected, or

semidirected. It is worth mentioning that links can also be bidirectional, meaning

that the interaction allows either the forward or backward direction at the same

time and this interconnection is thus reciprocal. This is specially important

in the context of metabolic networks, where reactions can be either reversible

(bidirected links, meaning that both directions of the reaction are possible) or

irreversible (directed links, meaning that only one direction is thermodynamically

favored). Moreover, a link can carry a weight, representing the intensity of the

interaction. Therefore, networks can be weighted or unweighted. In the case

of metabolic networks, weights usually correspond to fluxes of the biochemical

reactions. Metabolic networks typically display a probability distribution of

fluxes (or weights) that follows a power law, meaning that fluxes spanning

different orders of magnitude coexist in the same metabolic state [12].

Mathematically, unweighted undirected networks are described by the adjacency

matrix, a square symmetric matrix {aij} of binary values with an entry of 1

whenever there is a link between nodes i an j and 0 otherwise. In directed

networks, the matrix is instead non-symmetric. Weighted networks are encoded

by the weighted adjacency matrix {ωij}, in which the values correspond to the

weight of the edge between nodes i and j.

Furthermore, networks can have different classes of nodes, leading to the so-called

multipartite graphs. In multipartite graphs, links happen only between nodes in

different categories. Networks with one kind of node are called unipartite, whereas

1Protein–protein interactions refer to physical contacts established between two or more
proteins as a result of biochemical events and/or electrostatic forces.
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Figure 2.1: Examples of different types of networks. a) Undirected unipartite.
b) Directed unipartite. c) Undirected bipartite. d) Semidirected bipartite
network. Notice that connections involving node e are bidirectional. e) Semidi-
rected weighted bipartite. The thickness of the links is proportional to their
weight. f) Example of the transformation into a one-mode projected network
of metabolites from a semidirected bipartite metabolic network containing
metabolites and reactions. Metabolites are represented by circles and reactions

by squares.

networks with two kinds of nodes are called bipartite [108]. An important thing

to notice is that bipartite networks can be projected into unipartite networks

by performing a one-mode projection. To do this, one chooses a particular type

of node and, in the projected reduction, places a link between two such nodes if

there is at least one node of the complementary type connected to both of them.

In the real world, one can find networks combining all the mentioned properties

(see Figure 2.1). Metabolic networks are usually represented as bipartite semidi-

rected networks, with metabolites and reactions belonging to different node
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categories with no direct connections between any two metabolites or any two

reactions [109, 110] (see Figure 2.1d). Although a bipartite representation is

more accurate, it is sometimes preferable and always simpler to work with

one-mode projections based on metabolites, which can be either directed or

undirected (see Figure 2.1a and b) depending on the reversibility of reactions,

and weighted or unweighted depending on whether fluxes are taken into account.

In such a projection, two metabolites get directly connected if there is at last

one reaction in which they both participate (see Figure 2.1f).

2.1.2 Degree distribution

Nodes in networks are locally characterized by the number of their surrounding

neighbors. This magnitude is called the degree of a node k (see Figure 2.2). The

probability of nodes having a certain degree k is written P (k) and named degree

distribution, and can be computed from the fraction of nodes in the network

that has degree k.

Usually, real world networks show degree distributions P (k) that are highly

skewed with long tails that reach values far above the mean [111]. In most

cases, degree distributions follow a power-law, P (k) ∝ k−γ , where γ is the

characteristic exponent and it has values in the range 2 < γ < 3. Networks with

a degree distribution described by a power-law are called scale-free2. Networks

with power-law degree distributions have attracted much attention and have

been studied intensively [112–114]. Notice that, usually, it is useful to work with

the complementary cumulative probability distribution function P (k′ ≥ k) in

order to avoid noise effects present for large values of k.

2This name is refers to the scale-invariance that power-laws display: if f(x) = a(x)γ , then
f(cx) = a(cx)γ = cγ f(x).
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Figure 2.2: Schematic example of a degree of a node (left) and a path
between two nodes (right). Left: example of the degrees in a undirected,
semidirected, and directed networks. Right: path between node a and b,
highlighted in green. In this case, the shortest path length between nodes a

and b is `ab = 5.

In semidirected networks, the degrees of nodes are defined in relation to incoming

(kin), outgoing (kout) and bidirectional (kb) links. Correspondingly, nodes have

a total degree expressed as a sum of contributions k = kin + kout + kb. These

degrees can present local correlations and so the degrees of nodes are described

by the joint probability P (kin, kout, kb). In addition, for bipartite networks,

nodes of each kind have also their own degree distribution.

Regarding specifically metabolic networks, the total degree of metabolites kM in

bipartite representations follows a power-law degree distribution P (kM ) ∝ k−γM
[5, 96]. In Reference [97] it is found that in the organism Escherichia coli, the

probability P (kin) that a metabolite participates as a product and the probability

P (kout) that a metabolite participates as a reactant have both a value of γ

of 2.2. Similarly, Reference [115] shows that for the organism Helicobacter

pylori, the exponent has a value of 2.32. The fact that metabolites display a

scale-free degree distribution means that there is a high diversity in the number

of reactions in which metabolites participate. The largest part of metabolites

have a few connections, whereas a few metabolites, generically called hubs, have

many of them. Examples of these highly-connected metabolites are ATP, H2O,
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lococcus aureus iSB619 (see Section 2.3.3). a) Complementary cumulative
probability distribution function of metabolites. b) Degree distribution of

reactions.

or H+, which can participate in up to 50% of the total number of reactions for

the case of H+ in the organism Escherichia coli [116]. On the contrary, reactions

show a peaked distribution of total degree, the peak being located at an average

degree < kR >∼4. The bounded form of the distribution arises from the fact

that reactions have a limited number of participants, typically from 2 to 12.

In Figure 2.3a, the bipartite cumulative probability distribution function P (k′M ≥

kM ) of metabolites and the bipartite probability distribution function P (kR)

for reactions of the three organisms analyzed in this thesis, Escherichia coli

[117–119], Mycoplasma pneumoniae [56, 120], and Staphylococcus aureus [66] are

shown. Clearly, metabolites show a power-law degree distribution and reactions

a peaked distribution, as mentioned above. In fact, all networks studied here

have similar tendencies for both distribution functions, showing that metabolic

networks, in spite of corresponding to quite different microorganisms, display

often universal properties [97].
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2.1.3 Average path length

Another common feature of complex networks, and in particular of metabolic

networks, is the fact that any two nodes are connected by paths of links that

are typically very short in the number of intermediate steps [5]. This is called

the small-world property. In technical terms, the distance ` between two nodes

is defined as the number of jumps or hops along the shortest path that connects

them (see Figure 2.2). Hence, it is possible to define the average shortest path

length < ` >, which is the average of all the shortest distances between pairs of

nodes. The small-world property is stated in the fact that < ` > increases as

the logarithm of the network size N (number of nodes) [111, 113].

Small average path lengths indicate that the network contains highly-connected

nodes that act as shortcuts, reducing the average number of steps needed to

go from one node to another. This is crucial in many real contexts, and in

particular for cell metabolism. In Reference [97], the authors measured the

average path length for 43 organisms and found a similar value for all of them,

< ` >∼ 3.2. This value was explained by the role of hubs, which decrease

dramatically the number of steps needed to travel from one node to another.

When hubs are not taken into account, longer and variable path lengths are

obtained [84, 121], depending on the biological domain where organisms belong

to. Typical values are 9.57, 8.50, and 7.22 for eukaryotes, archaea, and bacteria,

respectively, with the differences due to evolutionary processes. Nevertheless,

there remains some controversy about the small-world property in metabolic

networks. In Reference [122], it is stated that usually paths are computed by

directly linking metabolites through reactions and that this is not adequate,

since pathways computed in this way do not conserve their structural moieties3

3According to the IUPAC, a moiety is a part of a molecule that may include either whole
functional groups or parts of functional groups as substructures.



42 Chapter 2. Methods and data

and thus they do not correspond to pathways on a traditional metabolic map.

Therefore, in Reference [122] metabolites are linked depending on the conserved

structural moieties in the adjacent reactions and, as a result, it is stated that

the average path length of Escherichia coli metabolism is longer than it was

previously thought and, consequently, the Escherichia coli metabolic network

is not small in terms of biosynthesis and degradation of metabolites. However,

it is generally accepted that metabolic networks show indeed the small-world

property at the structural level. In this thesis, path lengths will be computed in

Chapter 4.

2.1.4 Communities at the mesoscale

It is thought that biological networks are composed by subsets of nodes that are

functionally separable called modules [113, 123]. In general, this idea corresponds

to the concept of communities in networks. The organization of a network into

communities does not imply fragmentation. Instead, communities are subsets of

a network which contain a dense interconnection pattern between nodes inside

the community and lower interconnection levels with nodes outside. This can

be related with the presence of a large clustering (see Section 2.1.6) between

nodes inside the community.

Community detection [124] represents an active field in Complex Network

Science motivated by the potential identification of communities with functional

or operational units. Several methods, based on different exploratory techniques,

have been proposed. Among the most successful community detection methods

one finds, for instance, algorithms that use random walkers to partition the

network into communities, like Infomap [125]. Other methods are based on

the optimization of modularity. Modularity is a measure of the quality of a
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community structure [126]. It measures the internal connectivity of identified

communities with reference to a randomized null model with the same degree

distribution. Algorithms based on modularity optimization try to find the best

community structure in terms of the modularity measure. Examples of successful

algorithms based on this measure are SpinGlass [127] or Louvain [128]. On what

follows, the three methods used in Chapter 3 of this thesis to detect communities

are explained.

• Distance hierarchical clustering: this method starts by defining a distance

between pairs of nodes in the network. Then, once the pairs of nodes have

a defined distance, one groups similar nodes into communities according

to this distance. There are different schemes based on distances to group

nodes intro communities. The two simplest methods are single-linkage

clustering, in which two sets of nodes are considered separate communities

if and only if all pairs of nodes in the different sets have distance larger than

a given threshold, and complete linkage clustering, in which all nodes of a

community have a distance smaller than a threshold [129] (see Figure 2.4).

• Infomap algorithm [125]: the main idea of this algorithm is that a random

walker will tend to flow at different paces within a network, spending more

time inside communities and less time to pass between them (see Figure 2.4).

The way in which the random walker moves around communities can be

compared to the flow of messages between individuals. In this way, there is

a strong current of messages between individuals inside a community, and

a weaker current of messages between individuals of different communities.

• Recursive percolation: this method has been developed in a work re-

lated to this thesis [94]. Recursive percolation identifies components in

which the network is fragmented just below the percolation threshold (see
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Figure 2.4: Examples of the clustering methods. a) Example of the distance
hierarchical clustering method. Modules are formed by nodes that are nearer.
Notice that with this method it is necessary to apply a threshold depending
on the distances. In this example, the threshold is represented by the green
rectangle. At this level, three communities are detected. b) Example of the
Infomap algorithm. Clusters are found with a random walker. Communities
are found depending on the frequency of times that each random walker visits a
set of nodes. c) Example of the application of Recursive percolation. The first
step leads to 10 clusters. Among these 10 clusters, the largest are fragmented,
leading to more clusters. This partition is iterated until the distribution of

sizes is similar to that in other methods.
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Section 2.1.5), where the connected network disaggregates into smaller

components. To find them, links are removed sequentially from lower to

higher weights until the percolation transition is detected. Then, clusters

are identified using a burning algorithm [130]. This procedure is applied to

each component until the distribution of sizes of the obtained communities

reaches some thresholds, for instance, to be similar to those given by

the distance hierarchical clustering technique and Infomap. A schematic

example of this process is shown in Figure 2.4.

2.1.5 Large-scale connected components

Global connectedness is one of the most fundamental properties of complex sys-

tems. The theory that describes the behavior of network connected components

is percolation theory. Briefly, percolation theory states that there exists a critical

point, called percolation threshold denoted as pc, where a transition in the global

connectedness of the network occurs, from a state where the network is formed

by small isolated components to the emergence of a giant connected component

(GCC) spanning a macroscopic fraction of the network. This means that it is

always possible to find a path connecting every pairs of nodes inside the GCC.

This concept can be extended to networks with directed links. The connectivity

of directed networks presents special features since the path between two nodes

i and j can be different when going from i to j or vice versa. This fact leads to

the existence of a bow-tie structure inside the GCC [110, 131, 132]. The main

feature of the bow-tie structure of a GCC in a directed network is that one can

detect the presence of a strongly connected component (SCC), which is a region

of the network where any node is reachable from any other by a directed path.

It can happen that directed networks contain more than one SCC.
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Apart from the SCC, one of the other significant regions that can be found in

the bow-tie structure of directed networks is called IN component, with nodes

that can reach the SCC but that cannot be reached from the SCC. Analogously,

the OUT component contains nodes that can be reached from the SCC but

that cannot return to it. Tubes are sequences of nodes that connect the IN

with the OUT component without going through the SCC. Finally, tendrils are

composed by nodes that have no access to the SCC and that are not reachable

from it, similarly to tubes. They go out from the IN component and come in

from the OUT component. A visual scheme of the bow-tie structure of directed

networks is shown in Figure 2.5a. The bow-tie structure of Escherichia coli and

Mycoplasma pneumoniae will be explicitly considered in Chapter 5.

Metabolic networks show a bow-tie structure typically with a large SCC con-

nected to non-structured IN and OUT components (see Figure 2.5b) [131, 133].

The SCC contains the largest part of metabolites and reactions composing the

network, representing thus the entire metabolic machinery of cells. IN and OUT

components are formed of, respectively, nutrients and waste products directly

connected to the SCC (see Figure 2.5b).

2.1.6 Other structural properties of complex networks

Real networks exhibit also the presence of non trivial correlations in their

connectivity. At the level of two nodes, it is convenient to characterize degree

correlations with the average nearest neighbor degree k̄nn(k) =
∑

k′ k
′P (k′|k),

where P (k′|k) is the probability of having a node with degree k′ given that it is

connected to a node with degree k. It basically considers the mean degree of the

neighbors of a node as a function of its degree k. If k̄nn(k) increases with k, it

is said that the network is assortative, with nodes that connect preferentially to



Chapter 2. Methods and data 47

TENDRIL
TENDRIL

DISCONNECTED
COMPONENTS

TUBE

OUTIN
SCC
Strongly
Connected
Component

a

b

Figure 2.5: Examples of connected components. (a) Schematic example
of a bow-tie structure. (b) Example of the bow-tie structure of Mycoplasma
pneumoniae [120], an organism studied in this thesis. Blue nodes compose the
SCC, red nodes compose the IN component, and green nodes compose the

OUT component.

other nodes of similar degree. If k̄nn(k) decreases with k, the network is named

disassortative, with high-degree nodes attached preferentially to nodes with low

degrees. Biological networks, and in particular metabolic networks, usually show

a disassortative pattern [5].

Correlations among three nodes can be measured by means of the concept of

clustering, which refers to the tendency to form triangles between the neighbors
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of a vertex. Watts and Strogatz [134] proposed a measure known as clustering

coefficient, ci = 2Ei
ki(ki−1) , where Ei is the number of edges that exist between

neighbors of the node i and ki denotes the degree of the node i. Although this

measure is helpful as a first indication for clustering, it is more informative

to work with quantities which depend explicitly on the degree k. Therefore,

a degree-dependent clustering coefficient c̄(k) is calculated as the clustering

coefficient of nodes averaged for each degree class k. Metabolic networks tend

to display high levels of clustering [99, 113] with c̄(k) having a decreasing

dependence on k [100].

A final mention is deserved to structures called motifs [11]. Motifs are small

subsets of connected nodes that are found in networks more often than expected

at random. They are considered as elementary functional units, and each real

network has its own set of distinct motifs. Their identification provides useful

insights into the typical local connectivity patterns in the network.

2.1.7 Null model networks and randomization methods

Null models in Complex Network Science serve to study fundamental properties

of complex networks and to asses the statistical significance of a property, first

measuring it in the real network and then comparing the original results to the

ones obtained in the randomized versions. These models can be used to prove

the existence of graphs satisfying various properties, or to provide a rigorous

definition of what it means for a property to hold for almost all graphs or, finally,

to act as a benchmark for specific features of real networks.

One of the most known models was the graph structure proposed by Paul Erdös

and Alfréd Rényi. The Erdös-Rényi model [135, 136] consists on generating

realizations of random networks given the total number of nodes N and a total
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number of links L, and connecting every pair of them with probability p. This

leads to a binomial degree distribution, that can be approximated by a Poisson

distribution for realizations with a large number of nodes.

Another important method to construct random networks is the Configuration

model, an algorithm to construct random networks with a degree sequence or

degree distribution P (k) settled a priori [137, 138]. The total number of nodes

N remains constant. For each node, a random number k is drawn from the

probability distribution P (k) and it is assigned to the node in the form of half-

edges. The network is then constructed by connecting pairs of these link ends

chosen uniformly at random. These realizations, like the Erdös-Rényi networks

described above, are uncorrelated and have no clusters in the thermodynamic

limit N →∞.

Instead of comparing real networks with null models as those described above,

it is sometimes preferable to randomize a network obtained from real data by

rewiring, i.e., by picking two links at random and swapping their end [139].

While randomizing, one can preserve different properties, for instance the degrees

of all nodes. Two rewiring randomization methods have been used in this thesis,

one that preserves the degrees of all nodes -similar to comparing with the

Configuration model- called degree-preserving randomization, and another that

generates randomized versions taking into account that new reactions must be

stoichiometrically balanced, called mass-balanced randomization.

2.1.7.1 Degree-preserving randomization

In metabolic networks, the degree-preserving randomization method is similar to

the Configuration model in bipartite networks. Degree-preserving randomization

works by choosing two pairs of connected nodes (metabolites and reactions) of
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the bipartite network at random and swapping their ends, unless this would

lead to a repeated metabolite in a reaction (see Figure 2.6 left). The steps of

the algorithm are:

1. Pick two links at random: m1 → r1 and m2 → r2 or r1 → m1 and

r2 → m2, where m are metabolites and r reactions.

2. Swap the end of the links avoiding repeated links and self-production:

(m1 → r2 and m2 → r1 or r1 → m2 and r2 → m1).

3. Repeat until L2 swappings are performed, where L is the total number of

links in the network.

4. Make several realizations of the randomized metabolic network following

the three previous steps.

Reversible reactions are rewired independently of the irreversible ones in order to

preserve the degrees of metabolites which correspond to reversible and irreversible

reactions. This method gives networks which preserve the degrees of metabolites

and reactions and it is useful, for instance, to determine the role of the degree

distribution in large failure cascades in bacterial organisms, which may have

evolved towards reducing the probability of having large cascades that produce

metabolic damage, increasing thus robustness [140]. This method will be used

in Chapter 3.

2.1.7.2 Mass-balanced randomization

Mass-balanced randomization generates randomized networks by rewiring the

links corresponding to substrate-reaction or product-reaction relationships, while

preserving atomic mass balance of the reactions [141]. Given a reaction r, its
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Glucose
C6H12O6

Fructose
C6H12O6

Dihydroxyacetone
C3H6O3

Pyruvate
C3H3O3

Phosphoenolpyruvate
C3H2O6P

Dihydroxyacetone-
phosphate
C3H5O6P

Degree preserving 
randomization

Dihydroxyacetone
C3H6O3

Pyruvate
C3H3O3

Phosphoenolpyruvate
C3H2O6P

Dihydroxyacetone-
phosphate
C3H5O6P

Mass-balanced 
randomization

1. An edge pair is chosen uniformly at random 

from the network

1. A reaction is chosen uniformly at random 

from the network

Glucose
C6H12O6

Fructose
C6H12O6

Dihydroxyacetone
C3H6O3

Pyruvate
C3H3O3

Phosphoenolpyruvate
C3H2O6P

Dihydroxyacetone-
phosphate
C3H5O6P 3 Glycolaldehyde

C2H4O2

2 Pyruvate
C3H3O3

2 Phosphoenolpyruvate
C3H2O6P

2 Dihydroxyacetone-
phosphate
C3H5O6P

2. The targets of the edges are switched.

The reactions and compounds have the same in-
and out-degrees.

2. A compound is replaced and the stoichiometric

coefficients recalculated.
The resulting reaction has the same in- and out-
degree and is mass balanced:

3C2H4O2 + 2C3H2O6P → 2C3H3O3 + 2C3H5O6P

Figure 2.6: Left: Scheme of the degree-preserving randomization algorithm.
IN and OUT degrees are conserved, but mass balance is not satisfied. Right:
Scheme of the mass-balanced randomization. In this case metabolites are
switched only if the new reaction is mass balanced; while reaction degrees are

kept constant, the degrees of metabolites are not preserved.
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atomic mass balance is given by:

∑
e∈Er

se,r ·me =
∑
p∈Pr

sp,r ·mp (2.1)

where Er denotes the set of substrates and Pr the set of products in r, and

me,mp are the mass vectors (mH2O = (0, 2, 0, 1, 0, 0) · (C,H,N,O, P, S)T as an

example) of e and p, respectively. Finally, se,r, sp,r are their stoichiometric

coefficients. For instance, consider the reaction A → B, with mA = mB =

C6H12O6. Then, A may be substituted by a compound C with mC = C3H6O3

from within the network, resulting in the randomized reaction 2 C → B, which

satisfies Equation 2.1 since 2 C3H6O3 = C6H12O6 (see Figure 2.6 right). In

addition to substituting individual substrates or products, the method also

allows more complex substitutions involving pairs of substrates or products,

yielding a large number of possible substitutions.

The motivation for preserving atomic mass balance of reactions, a fundamental

physico-chemical constraint, is that the resulting null model allows estimating

the importance of network properties with respect to evolutionary pressure. As

biological systems and their properties evolve under physical constraints and

evolutionary pressure, a null model which satisfies physical principles but does

not account for evolutionary pressure differs from a metabolic network only in

the properties which are affected by evolutionary pressure. Thus, a property

deemed statistically significant following mass-balanced randomization is beyond

basic physical constraints and likely to be a result of evolutionary pressure [142].

The method preserves mass balance and reaction degrees but not the degrees

of metabolites, since the stoichiometric coefficients and metabolite degrees are

changed. This method will be used in Chapter 3.
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2.2 Flux Balance Analysis

A general aim of the study of a metabolic network is to characterize and

understand the configuration of fluxes of the reactions constituting the network

in connection to phenotype and behavior. The study of fluxes in metabolic

networks deserves a special treatment more biochemically focused than in usual

chemical kinetics schemes. With the knowledge of the kinetic constants of the

reactions, it would be possible to solve the equations associated to the fluxes of

reaction and the concentrations of metabolites in the metabolic network using

proper mathematical methods. However, there is a lack in the availability of

kinetic parameters [143] due to the difficulty in measuring them experimentally.

As an alternative, computational techniques have been proposed in order to

estimate fluxes through reactions of metabolic networks at steady-state.

Flux Balance Analysis is maybe the most successful and widely used approach

to compute the fluxes through metabolic reactions of an organism. In addition,

FBA also estimates its growth rate by maximizing the flux through the biomass

reaction of the network. This technique will be used in Chapters 4, 5, and 6.

To be more specific, metabolic reactions can be represented in terms of a

stoichiometric matrix, this being the fundamental basis in FBA and other

modeling approaches [63, 107, 144, 145]. To construct a stoichiometric matrix

[57, 71, 146], one must first write the typical kinetic equations which describe

the temporal variation of the concentration of metabolites, which are derived

from the mass conservation principle,

dci
dt

=

NR∑
j=1

Si,jνj (2.2)
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Figure 2.7: Equations derived from mass-balance associated to a simple
metabolic network. Matrix S is the so-called stoichiometric matrix, ~ν is a
vector containing all the fluxes of the metabolic network, and ~c denotes the

vector with concentrations of metabolites.

The concentration of metabolite i is denoted by ci, NR is the total number

of reactions, Si,j is the stoichiometric coefficient of metabolite i in reaction j,

and νj stands for the flux of reaction j. Note that, typically, reaction fluxes

have units of mmol gDW−1h−1, where gDW means grams Dry Weight. Notice

that the values of the S matrix correspond to the stoichiometric coefficients

of each metabolite in each reaction. Thus, each row represents a metabolite,

whereas each column represents a reaction. Therefore, if a metabolite i does

not participate in a reaction j, its stoichiometric coefficient will be 0, Sij = 0.

Otherwise, if the metabolite is a reactant, the stoichiometric coefficient will

be negative, Sij < 0, and if it is a product, it will be positive, Sij > 0 (see

Figure 2.7).
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Metabolic networks are open-systems, which implies that some metabolites can

leave or enter the organism. Therefore, it is not possible to arrive to a thermo-

dynamic equilibrium state. However, it is possible to attain a non-equilibrium

steady state, where the concentrations of metabolites do not change with time,

forcing the system to exchange metabolites with the environment. This steady-

state condition simplifies the system of coupled differential Equations 2.2 derived

from mass balance into an ordinary linear system of equations, which can be

written as a product of the stoichiometric matrix S by the vector of fluxes ~ν,

S · ~ν = ~0 (2.3)

This is the typical form of the equation to be solved by the FBA technique. As

mentioned before, it is important to notice that no kinetic parameters [147, 148]

appear explicitly in Equation 2.3 and, thus, they are not needed in relation to

FBA applications.

It is important to precise that, apart from the intrinsic constraints imposed

by the steady-state condition, other bounds of the form αi ≤ νi ≤ βi may be

imposed on the values of the fluxes to render the whole scheme both chemically

and biologically realistic. These upper and lower bounds may depend on the

thermodynamics of reactions, more precisely on their reversibility. If reactions

are reversible, fluxes can have positive or negative fluxes, whereas for the case

of irreversible reactions, reactions must have only positive fluxes. Further, since

the steady-state condition forces the system to exchange metabolites with the

environment, constraints on exchange fluxes are imposed for metabolites that

can either enter or leave the organism. These exchange fluxes are taken positive

from the system to the environment. Notice that fluxes obtained using FBA

will depend on the particular chosen external medium.
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Figure 2.8: Example of the optimization of an objective function on a system
of two variables.

In metabolic networks, there are usually more reactions than metabolites. The

system of Equations 2.3 is thus underdetermined, i.e., there are multiple solutions

even after imposing the mentioned constraints. Therefore, a biological objective

function is introduced to restrict the solution space to a single biologically

meaningful solution. Technically, this means that FBA selects the state in the

solution space that maximizes the value of the objective function (see Figure 2.8).

This objective function depends on the biological information that one wants

to extract, but usually one chooses to optimize biomass formation adjusted

to be equivalent to maximize the specific growth rate of the organism. To do

this, a biomass reaction is added to the network which simulates the biomass

production. Other possible objective functions are ATP or NADH production

or yield.

Often, other auxiliary reactions are needed apart from exchange and the biomass

formation reactions. The first category includes physiological requirements, like

the ATP maintenance reaction, which is a reaction which consumes ATP in order

to simulate biological energetic costs for the organism which are not associated to
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Figure 2.9: Example of a FBA calculation in a metabolic network. Reactions
are denoted by squares and metabolites by circles. The biomass production
reaction (red square) is labeled as νg. Exchanges fluxes for interactions with
the environment (orange arrows) are denoted with b labels. A sink reaction
(cyan square) is shown with a s label. The ATP maintenance reaction (green

square) is also shown denoted with a M label.

growth. A second category are the so-called sink reactions, which are reactions

that have not been identified yet and that consume some metabolites to avoid

accumulation. A generic sink reaction has the simple form A→ ∅.

In this way, a consistent system of equations representing the whole cell

metabolism is obtained and one tries to find a solution that optimizes the

value of an objective function (see Figure 2.9 for a schematic picture of a FBA

computation). If no solution exists for optimization of biomass production in

a particular medium condition, one can assume that the system is not able to

grow and therefore one can conclude that the organism is not able to survive in

this medium.

The mathematical notation to denote a standard FBA problem choosing to

optimize the specific growth rate is

maximize νg
subject to S · ~ν = ~0

and ~α ≤ ~ν ≤ ~β

where ~α and ~β represent the vectors determining the lower and upper bounds

of the reactions, and νg denotes the specific growth rate.
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The software used to perform these calculations in this thesis is GNU Linear

Programming Kit (GLPK) [149–152], through its associated solver GLPSol. This

solver uses a dual simplex algorithm to compute the solutions. It is a variant of

the normal simplex algorithm [153]. The latter is an iterative algorithm which

is based on finding first feasible solutions and then finding the most optimal

solution based on these feasible solutions. On the contrary, dual simplex works

by first finding optimal solutions and then finding a feasible solution, again, if it

exists.

2.2.1 Formulation of the biomass reaction

FBA problems are usually solved by maximizing the flux through the biomass

reaction [56, 117, 119]. This typically gives a particular flux state of the metabolic

network compatible with the constraints. However, the solution obtained by

FBA is often not unique. In some cases, the metabolic network is able to

achieve the same specific growth rate by using alternate reactions and pathways.

Therefore, phenotypically different solutions that optimize the specific growth

rate are possible, implying that FBA solutions can be degenerate [63].

Technically, the biomass reactions is modeled as a reaction, aA + bB + cC +

dD... −→ xX+yY +zZ, which produces and consumes some specific metabolites

(see Figure 2.9). These metabolites are known biosynthetic precursors present

in the metabolic network under consideration. The key point is given by their

stoichiometric coefficients in the biomass reaction, which are experimentally

measured proportions in the biomass of the organism measured in dry weight

conditions. The stoichiometric coefficients of the metabolites participating in

the biomass reaction have units of mmol gDW−1, and the biomass reaction has

units of h−1. It is worth stressing that this reaction simulates the growth of an
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organism given a set of external nutrients and that its coefficients are adjusted

so that its flux is equivalent to the specific growth rate of the organism.

FBA can also maximize the biomass yield, which is the equivalent to maximize

the specific growth rate but taking into account that the maximum uptake of

the carbon source, for example glucose, must be set to 1 mmol gDW−1h−1 to set

the maximum amount of biomass that can be produced per 1 mole of nutrient.

2.2.2 Simulation of different environments

It is important to make explicit the way to simulate changes in the environment

using FBA. To do this, one must tune the upper and lower bounds of the values

of the exchange reactions of the metabolites that are present in the environment.

As an example, suppose that one wants to model that glucose is present in the

environment and that, therefore, the organism consumes it in order to obtain

energy. The explicit form of the constraint of the exchange flux of glucose will

be −10 ≤ νexchangeglucose ≤ ∞, which means that the organism can expel as much as

glucose as it wants but that it can eat glucose with a maximum uptake of 10

mmol gDW−1h−1.

Notice that nutrients have a negative lower bound and an unlimited upper bound,

whereas waste products have a value of the lower bound of 0 and unlimited upper

bound, which means that the organism cannot uptake it but, if the compound

is generated inside the organism, it can be expelled to the exterior as waste. As

an example, this would be the case for CO2 in Escherichia coli, which is not

eaten by the organism but that is expelled due to respiration.

To summarize, an environment is simulated by choosing a set of nutrients and

assigning a lower bound −αi to each nutrient, which is the maximum uptake
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of each nutrient, and assigning a lower bound of 0 to components not present

in the environment. For all external metabolites, the upper bound is set to

∞. Therefore, for nutrients one has −α ≤ νexchangenutrient ≤ ∞, whereas for waste

products one has 0 ≤ νexchangewaste ≤ ∞. The rest of reactions are modeled as told

in the previous section.

2.2.2.1 Construction of minimal media

A minimal medium is the minimal set of metabolites which ensure the viability

of an organism. The modelization of these media can be made as in Reference

[119]. Minimal media consist of a set of mineral salts, and one source of carbon,

of nitrogen, of sulfur and of phosphorus, from four families representing carbon,

nitrogen, phosphorus, and sulfur compounds, respectively. To construct different

minimal media, the set of mineral salts is always the same -which contains,

for example, magnesium sulfate, iron chloride, and calcium chloride-, but each

source family is browsed while the other three sources are fixed to the standard

metabolites of each kind (C*: glucose, N*: ammonia, P*: phosphate, S*: sulfate)

(see Figure 2.10).

2.2.2.2 Construction of rich media

Sometimes it can be useful to perform FBA computations in a medium with more

components that the ones present in a minimal medium. These media containing

more nutrients than a minimal medium are called rich media. One of this rich

media is an amino acid-enriched medium. This medium can be constructed from

a minimal medium with the standard metabolites explained in Section 2.2.2.1

(glucose, ammonia, phosphate, and sulfate), by adding the following set of

amino acids: D-Alanine, L-Alanine, L-Arginine, L-Asparagine, L-Aspartate,
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Variation of carbon sources
Medium 1             C1   N*  P*  S*
Medium 2             C2   N*  P*  S*
Medium 3             C3   N*  P*  S*

Variation of nitrogen sources
Medium 1             C*   N1  P*  S*
Medium 2             C*   N2  P*  S*
Medium 3             C*   N3  P*  S*

Variation of phosphorus sources
Medium 1             C*   N*  P1  S*
Medium 2             C*   N*  P2  S*
Medium 3             C*   N*  P3  S*

Variation of sulfur sources
Medium 1             C*   N*  P*  S1
Medium 2             C*   N*  P*  S2
Medium 3             C*   N*  P*  S3

Figure 2.10: Examples of the construction of minimal media. Asterisks
denote the standard metabolite of each kind. To construct carbon media, the
sources of nitrogen, phosphorus and sulfur are set to the standard components
of each kind whereas the carbon sources are varied. The same procedure

applies to construct nitrogen, phosphorus and sulfur media.

D-Cysteine, L-Cysteine, L-Glutamine, L-Glutamate, Glycine, L-Histidine, L-

Homoserine, L-Isoleucine, L-Leucine, L-Lysine, L-Methionine, L-Phenylalanine,

L-Proline, D-Serine, L-Serine, L-Threonine, L-Tryptophan, L-Tyrosine, L-Valine.

This set of amino acids enriches the minimal medium allowing the organism

to take them as nutrients. Otherwise the organism would have to synthesize

them, resulting in a more stringent environment for the organism. To simulate

the presence of this set of amino acids in the medium, the exchange constraints

bounds of these amino acids are set to -10 mmol/(gDW·h).

Another famous rich medium is called Luria-Bertani Broth [154]. The Luria-

Bertani Broth used in this thesis contains all the nutrients present in the amino

acid-enriched medium, but it contains as additional compounds purines and

pyrimidines, vitamins (namely biotin, pyridoxine, and thiamin), and also the

nucleotide nicotinamide monocleotide [155]. The exchange constraints bounds

of these compounds are usually set to -10 mmol/(gDW·h) (νexchangecompound ≥ −10) for

Escherichia coli.
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2.2.3 Activity and essentialify of genes and reactions

An important application of FBA is to compute the activity and essentiality

of reactions in a network. These concepts can be applied either to genes or

reactions, since a reaction is catalyzed by an enzyme which at the same time is

codified by a gene or a set of genes. Both concepts will be analyzed in Chapter 4.

The concept of activity is quite simple. A reaction is said to be active when,

given an external environment, the chosen reaction carries a non-zero flux. The

concept of essentiality is more subtle. It refers to how a network, and thus the

growth rate, is affected when one reaction is forced to be non-operative through

the knockout of a reaction or of the corresponding gene.

To calculate the effect of the knockout of a reaction, the selected reaction is

removed from the network, which is equivalent to force the chosen reaction to

have a null flux. The new system is usually called a mutant. In terms of the

notation used before, this is modeled as νi = 0 with i the removed reaction

and νi = 0 its flux. Thus, a FBA problem with a reaction i constrained to be

non-active is

maximize ν ′g
subject to S · ~ν = ~0

and ~α ≤ ~ν ≤ ~β
νi = 0

where ν ′g denotes the growth rate of the mutant. As a consequence, the system

can respond in three different ways as compared to the non-perturbed case νg:

1. The growth rate is unaltered ν ′g = νg.

2. The growth rate is decreased 0 < ν ′g < νg, which means that the biomass

formation of the organism is reduced but the organism is still alive at the
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expense of losing some performance.

3. The growth rate takes a null value ν ′g = 0, meaning that the performed

knockout is lethal for the organism. This is the signature of essentiality.

It has been shown that FBA predicts gene essentiality with an accuracy of 90%

[117] in Escherichia coli under glucose aerobic conditions, which means that

FBA is a reliable tool to predict whether a knockout will be lethal or not in this

particular condition.

2.2.4 Flux Variability Analysis

Sometimes it is useful to identify which are the minimum and maximum bounds

that each reaction can take independently of the growth optimality condition.

In this way, one can have an idea of the flux space for a particular environmental

condition, and in particular which reactions can have a non-zero flux in a given

environment, since some reactions may be active for low values of the growth

rate but the same reactions must have a zero flux in order to ensure growth

optimality. This may happen due to the fact that some reactions can compete

with the growth reaction by consuming metabolites needed to grow and therefore

this would reduce the flux through the biomass reaction. As a consequence,

when one optimizes the flux through the biomass reaction, all reactions whose

activation competes with the flux of the biomass reaction will have a null value

in order to assure maximum growth conditions.

In addition to identifying those reactions that can compete with the growth rate,

reactions whose minimum and maximum values are close indicate that they may

be important for the organism since those reactions are allowed only to have a

low variability in their fluxes. To know the minimum and maximum flux values
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of a reaction, one applies the technique called Flux Variability Analysis (FVA)

[106, 107, 156].

In most applications of FVA, the biomass reaction is imposed to have a minimum

value νg ≥ νming to ensure viability. Hence, one can consider that the limiting

fluxes correspond to states where the organism is alive, even if the growth rate is

not the maximum value that the organism can achieve. Using the mathematical

notation used in Linear Programming computations, FVA for each flux of a

metabolic reaction can be written as follows

minimize νi
subject to S · ~ν = 0

~α ≤ ~ν ≤ ~β
νg ≥ νming

maximize νi
subject to S · ~ν = 0

~α ≤ ~ν ≤ ~β
νg ≥ νming

However, it may happen that one is interested in capturing all the possible

scenarios independently of the value of the flux of the biomass reaction, since

in this way non-optimal/low-growth scenarios can be taken also into account.

Therefore, FVA can be modified to compute the minimum and maximum

possible values of the flux of each reaction regardless of the value of the biomass

formation rate. To this end, the value of the flux of the biomass reaction is not

constrained and any positive value is allowed, νg ≥ 0. Under this condition, one

will obtain the maximal set of reactions that can be active in the considered

medium independently of the rate of biomass formation. This variation of FVA

[157, 158] will be used in Chapter 4 and 5. Using the previous notation, this

version of FVA, which we call Biomass unconstrained Flux Variability Analysis,

can be written as

minimize νi
subject to S · ~ν = 0

~α ≤ ~ν ≤ ~β
νg ≥ 0

maximize νi
subject to S · ~ν = 0

~α ≤ ~ν ≤ ~β
νg ≥ 0
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2.3 Model organisms

Information about metabolism of specific organisms [56, 65, 66, 68, 69, 119, 159–

163] -most single cell- are gathered in databases, like the BiGG database [62],

Kyoto Encyclopedia of Genes and Genomes (KEGG) [60], BioCyc/EcoCyc/Meta-

Cyc [61], BRENDA [164], etc. The BiGG database deserves special attention in

this thesis, since it has been extensively used as it contains full reconstructions of

metabolic networks for specific organisms including all the biochemical reactions

and the biomass formation function in order to compute FBA solutions for

different organisms.

The BiGG database provides high-quality curated information. Network re-

constructions coming from this database are structured in compartments like

cytosol inside cells or periplasm -the space bordered by the inner and the outer

membranes in Gram-negative bacteria. Therefore, metabolites present in dif-

ferent compartments of the organisms are treated as different nodes. Using

different compartments allows the inclusion of transport systems in both the

inner and outer membrane and thus the metabolic machinery of organisms

is more accurately represented. As an example, water in the periplasm will

be a different metabolite than water in the cytosol. In addition, a directed

bipartite representation of the metabolic network can be constructed since in

the databases reactants, products, reversible, and irreversible reactions are

distinguished. Further, the BiGG database specifies which enzyme catalyzes

each reaction and also which gene or set of genes codifies each enzyme. However,

reactions are also listed which have neither associated enzymes nor genes. It

may be that, for these particular reactions, enzymes have not been identified

yet or that some reactions are spontaneous and they can take place without the

need of an enzyme.
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It is important to notice that there exist different versions for each metabolic

network of each organism. This happens due to the fact that the reconstructions

of metabolic networks are constantly improved and, therefore, versions are

constantly updated. As an example, the first version of Escherichia coli [165]

contained 660 genes, 627 reactions, and 438 metabolites, while the last version of

Escherichia coli [119] contains 1366 genes, 2250 reactions, and 1805 metabolites.

2.3.1 Escherichia coli

Escherichia coli, abbreviated as E. coli, is the most studied prokaryotic organism

and it is the bacterial model that is most frequently used in experiments due to

the ease of its manipulation. More precisely, the strain studied in this thesis is

K-12 MG1655. This strain colonizes the lower gut of animals. Moreover, it has

been maintained as a laboratory strain with minimal genetic manipulation.

Three versions of this strain have been used in this thesis. The first one is

iAF1260, which can be obtained either from Reference [117] or directly from

the BiGG database. This version is based on an earlier reconstruction called

iJR904 [166], on the annotation of the genome of E. coli from Reference [167], on

contents from the EcoCyc (an E. coli version of BioCyc) database [168] and on

specific biochemical characterization studies from Reference [117]. The iAF1260

version contains 2077 reactions, 1669 metabolites, and 1260 genes [117] (see

Table 2.1). Metabolites are located in three compartments: exterior, periplasm

and cytosol. Notice that although the exterior is not a real compartment, it is

treated in this way in order to be able to use the exchange reactions explained

before.

The most recent version of E. coli is iJO1366 [119]. It is an update of the

iAF1260 version. EcoCyc [169] and the KEGG database [170] were used in order
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to improve the iAF1260 version, in addition to experimental techniques [119].

It contains 2250 biochemical reactions, 1805 metabolites, and 1366 genes [119]

(see Table 2.1). Like in iAF1260, metabolites are located in cytosol, periplasm

and exterior.

A simplified version called core E. coli metabolic model is also used, which can

be obtained either from References [63, 118] or the BiGG database. It is a

condensed version of the genome-scale metabolic reconstruction iAF1260 that

contains 73 metabolic reactions in central metabolism, 72 metabolites, and 136

genes (see Table 2.1). This network is complemented with a biomass formation

reaction and an ATP maintenance reaction.

2.3.2 Mycoplasma pneumoniae

Mycoplasma pneumoniae, abbreviated as M. pneumoniae, is a human pathogen

of primary atypical pneumonia that has recently been proposed as a genome-

reduced model organism for bacterial and archaeal systems biology [56, 120, 171,

172]. Interest in this organism has grown recently since it lacks many anabolic

processes and rescue pathways compared to more complex organisms. This in

turn translates into a highly linear metabolism singularly suited to study basic

metabolic functions [56]. This property will be again mentioned in Chapters 3

and 4.

The first version of the metabolic network of M. pneumoniae used in this thesis

was published in Reference [120], where the authors integrated biochemical

and computational studies, complementing the information using the KeGG

database. Its metabolic reconstruction contains 187 reactions taking place in

cytosol and in exterior, the number of metabolites is 228, and the number of

genes is 140 (see Table 2.1).
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Organism NR NM NG Source

E. coli iAF1260 2077 1669 1260 Ref. [117], BiGG
E. coli iJO1366 2250 1805 1366 Ref. [119]
E. coli core model 73 72 136 Refs. [63, 118], BiGG
M. pneumoniae 187 228 140 Ref. [120]
M. pneumoniae iJW145 240 266 145 Ref. [56]
S. aureus iSB619 642 644 619 Ref. [66], BiGG

Table 2.1: Summary of the properties of all metabolic reconstructions used in
this thesis. NR, NM , and NG stand for the number of reactions, metabolites,
and metabolic genes respectively. Metabolites in different compartments are

treated as different metabolites.

The iJW145 version of M. pneumoniae is the last update [56]. This network was

constructed by determining the behavior of the organism under different nutrition

conditions, using literature information and experimental data. It contains

240 biochemical reactions, 266 metabolites, and 145 genes (see Table 2.1).

Metabolites can be located in cytosol and exterior.

2.3.3 Staphylococcus aureus

Staphylococcus aureus, abbreviated as S. aureus, is found in the human respi-

ratory tract and on the skin. It is an anaerobic bacterium which is present

world-wide, and it is a common cause of skin infections, respiratory disease, and

food poisoning. The strain used in this thesis is N315, a major pathogen which

is able to acquire antibiotic-resistance [173].

The iSB619 version of S. aureus can be obtained either from the BiGG database

or from Reference [66]. To construct this model, the authors used the KeGG

database and the Comprehensive Microbial Resource (CMR) at The Institute

for Genomic Research (TIGR) website [174]. Missing functions were annotated

based on reported evidence from this organism, as well as for Bacillus subtilis

and E. coli. The number of reactions is 642 and the number of metabolites is
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644 (see Table 2.1). Like in M. pneumoniae, there are only cytosol and exterior

compartments.





Chapter 3

Structural knockout cascades

in metabolic networks

This chapter presents the analysis of the response of metabolic

networks of model organisms to different forms of structural stress,

including removals of individual and pairs of reactions and knock-

outs of single or co-expressed genes. Local metabolite motifs can

be used as predictors of failure cascade sizes caused by individual

failures, and for amplification effects in cascades caused by mul-

tiple failures. Correlation between gene essentiality and damages

produced by single gene knockouts is detected, which points out

that genes controlling high-damage reactions tend to be expressed

independently of each other. This study is carried out for three

characteristic organisms: Mycoplasma pneumoniae, Escherichia coli,

and Staphylococcus aureus.

71
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The architecture of complex networks is imprinted with universal features that

affect their resilience and condition their behavior [14, 96, 175]. Most relevant,

the scale-free connectivity (see Chapter 2, Section 2.1.2) of many natural and

man-made networks explains their fragility in front of attacks to the most

connected nodes, while they are able to deal with accidental failures of single

components [176, 177]. A manifestation of this fragile yet robust nature of

complex networks is that the failure cascade triggered by a local shock rarely

propagates to the whole system [178–181]. At the same time, it is worth to

remember that network studies have mainly focused on single node failures, and

that systemic responses to more globalized forms of structural and functional

stress still remain to be explored.

In a more biological context, metabolic networks are among the best probed in

terms of robustness in front of a variety of in silico perturbation experiments.

They have been found to comply with the design principles of error-tolerant

scale-free networks [5], and recent progress in network dynamics is also starting

to portray the concept of stress-induced network rearrangements [102, 182].

The exploration of single biochemical reaction inactivations has shown that

when a reaction is forced to be non-operative, a cascade of consequent failures

propagates to a variable extent trough the whole network, and that the structural

organization of metabolic networks reduce the likelihood of large damaging

cascades [140]. At the same time, many individual mutations affecting enzyme-

coding genes seem to have very little effect on cell growth [183, 184]. By

contrast, the impact of multiple failures could go beyond the mere accumulation

of individual effects, producing amplified damage due to peculiar biochemical

interweaving or gene epistatic interactions [185].

The analysis presented in this chapter considers the removal of single and pairs
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of biochemical reactions and the knockout of individual genes and clusters of co-

expressed genes in three bacteria, Mycoplasma pneumoniae, Escherichia coli, and

Staphylococcus aureus. To simulate the effect of reaction knockouts, a cascading

failure algorithm [140] is used and the significance of the obtained results is

assessed using two different null models called degree-preserving randomization

(DP) (see Chapter 2, Section 2.1.7.1) and mass-balanced randomization (MB)

(see Chapter 2, Section 2.1.7.2). One finds that, for the three organisms,

the sizes of cascade distributions span a broad range of values, with many

short propagations but a few that spread at the systems level. M. pneumoniae

exhibits similar network responses to E. coli and S. aureus, although its increased

linearity and reduced redundancy [120] threaten its robustness against individual

reaction removals. For all three organisms, the impact of failure cascades can

be predicted in terms of local network motifs. In this way, targets prone to

introduce structural vulnerability can be readily detected prior to experimental

testing without expensive computations, even for large and complex organisms.

This chapter also reports the effects of single and multiple gene knockouts in

M. pneumoniae by coupling, through enzyme activity, its metabolic network to

the experimentally measured gene co-expression network. One observes that

genes related to high-damage reactions are essential for the organism and that

their expression tends to be isolated from that of other genes. This hints at

the interplay between metabolism and genome, apparently evolved to favor the

robustness of this organism by avoiding the potentially catastrophic effect of

coupling the co-expression of structurally vulnerable metabolic genes. At the

same time, one finds that this enables the organisms the ability to perform more

efficient metabolic regulation at the expense of losing some of the maximum

attainable robustness determined by physico-chemical constraints.

The contents of this chapter correspond to References [94, 186].
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3.1 Cascading failure algorithm

It is important to start by explaining how the cascading failure algorithm works

after a reaction or a set of them are inactivated. First of all, the metabolic

networks of M. pneumoniae, E. coli (iAF1260), and S. aureus (iSB619) (see

Chapter 2, Section 2.3, their networks can be seen in Supplementary Tables

C3-1, C3-2, and C3-3) are modeled as a bipartite semidirected network (see

Chapter 2, Section 2.1.1), with two specific criteria:

1. All biochemical reactions in the genome-scale metabolic reconstructions

(GENREs) are considered except exchange, sink, biomass formation, and

ATP maintenance reactions.

2. All metabolites involved in the reactions included in the network represen-

tation are considered. In particular, hubs participating in a huge number

of reactions are not excluded. Hubs stay neutral with respect to structural

cascades and do not contribute to propagate them. Due to their large

number of connections, they are highly unlikely to become nonviable as a

consequence of single or double cascades reaching them.

The cascading failure algorithm [140] is based on the states of the nodes on

the network, i.e., nodes can be viable or non-viable. Non-viable nodes spread

the perturbation, whereas viable do not. To define viability, two aspects are

considered since a bipartite representation of the metabolic network is used.

The first one refers to metabolites, and consists on the fact that each viable

metabolite must have at least one outgoing and one incoming connections so

as to prevent accumulation or depletion of the metabolite. For reactions, the

criterion is that all metabolites participating in a reaction must be viable.

http://tinyurl.com/nc2vmhf
http://tinyurl.com/nc2vmhf
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Figure 3.1: Example of how the cascading failure algorithm is applied to
a metabolic network. 1) For clarity, metabolites 4 and 5 are labeled with R
and 7 and 8 with P depending on whether they are reactants or products of
the reversible reaction denoted d (for simplicity, only a reversible reaction is
considered in this illustration, the rest being assumed to be irreversible). The
cascade starts when reaction c fails. 2) Therefore, metabolites 3 and 6 become
non-viable. Because metabolite 6 is connected to reaction g, the later becomes
non-viable, turning also metabolite 12 non-viable. Notice that metabolite
11 loses one IN connection, but it is still viable, meaning that one of the
waves of the cascade stops here. However the other wave keeps spreading. 3)
Metabolite 4 causes the reversible reaction d to remain viable only towards
the production of metabolites 7 and 8. 4) Consequently, metabolite 4 becomes
non-viable, and so its associated reactions also become non-viable. 5) The
cascade spreads until all metabolites and reactions affected by the cascade
remain viable. Finally, note that metabolites 1, 2, 3, 13, and 14, which initially
have no incoming or outgoing connections, are not considered nonviable by

the algorithm.
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The algorithm works by removing one or more reactions, and then checking

the viability of its surrounding metabolites. If they are viable, the cascade

stops, otherwise the cascade is spread into other reactions and metabolites until

all remaining nodes satisfy the mentioned criteria (see Figure 3.1). When the

cascade stops, the corresponding damage is quantified as the number of reactions

turned non-operational.

Reversible reactions (see Chapter 2, Section 1.1.2) deserve a special treatment

in this algorithm. They are decoupled in two half-nodes, the forward and the

reverse direction. A cascade propagating to a metabolite of a reversible reaction

fixes it in the forward or reverse direction depending on whether the single

incoming or outgoing link left to the affected metabolite is connected to the

forward or reverse half of the reaction (see Figure 3.1, step 3). In all cases,

when any metabolite of a reversible reaction has this reaction as the single

one producing and consuming it, the reaction must be removed to satisfy the

viability criterion.

3.2 Impact of reaction failures

This first result is the distribution of damages for cascades triggered by individual

and by pairs of reactions in the metabolic networks of M. pneumoniae, E. coli,

and S. aureus. Later, local network motifs responsible for the propagation of

cascades are identified, and a local predictor for damage is proposed.

3.2.1 Impact of individual reactions failures

Although close to 50% of all individual reaction failures in the three organisms

considered do propagate cascades, most cascades are indeed small (59% of the
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cascades in M. pneumoniae, 38% in S. aureus, and 55% in E. coli propagate to

only one or two reactions). However, the removal of some particular reactions

may trigger relatively far reaching damages. This is shown in Figures 3.2a-c,

that display the cumulative probability distributions P (d′r ≥ dr) that the failure

of a reaction r attains at least dr − 1 other reactions in each metabolic network.

All species show similar broad distributions, although the crossover in the tail

of the distribution from power-law-like to exponential-like is not evident in M.

pneumoniae probably due to its limited redundancy. In order to assess the

significance of cascades, the computed distributions are compared with those

corresponding to DP randomized variants of the metabolic networks taken as

null models (see Chapter 2, Section 2.1.7.1).

To check consistency, Kolmogorov-Smirnov (K-S) tests [187] (see Appendix A)

are performed measuring the maximum absolute difference between the null

model and the empirical distributions (see caption of Figure 3.2 for specific

values). This difference is transformed into a significance level directly compared

to a chosen threshold, typically α = 0.05. If the significance associated to the

K-S test statistic is equal or smaller than α, the compared distributions cannot

be considered consistent. Both E. coli and S. aureus display values much below

the threshold, meaning that the empirical distributions are not determined

just by the connectivity imposed by the degrees of metabolites. Comparing

both distributions, the metabolic organization of the organisms appears to have

evolved towards reducing the likelihood of large failure cascades (probably lethal

for the organisms) or, equivalently, towards increased structural robustness, as

previously seen for S. aureus and for an older version of the metabolic network

of E. coli in [140]. In contrast, the value of the associated significance level for

M. pneumoniae is very similar to the threshold. As a consequence, one cannot

say that the difference between cascade size distributions in the original network



78 Chapter 3. Structural knockout cascades in metabolic networks

10
0

10
1

10
-2

10
-1

10
0

P
(d
r’
≥d
r)

10
0

10
1

10
2

d
r

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

d
r

10
-4

10
-3

10
-2

10
-1

10
0

187 642 2077
R

ρ S

a b

c d

MP SA

EC

P
(d
r’
≥d
r)

-0.2 

0.2

0

1

0.4

0.6

0.8 

Figure 3.2: Damage in cascades triggered by individual reactions. a-c)
Cumulative probability distribution functions of damages in M. pneumoniae,
E. coli, and S. aureus. Results are compared with damages produced in DP
randomized versions of the metabolic networks in order to discount structural
effects. In each case, the solid black curve is the average over 100 realizations.
Results for S. aureus and an older version of E. coli were already presented
in Reference [140]. The results of the Kolmogorov-Smirnov tests are given in
terms of the K-S statistic and its associated significance level (K-S statistic/as-
sociated significance level) (see Appendix A): 0.095/0.07, 0.086/0.0002, and
0.079/1.4 ·10−11 for M. pneumoniae, S. aureus, and E. coli respectively. With
a significance value of α = 0.05, distributions of damages can be considered
not consistent with those for randomized variants, except for M. pneumoniae.
d) Spearman’s rank correlation coefficient ρS between predictors and damages,
plotted against metabolic network size (number of reactions R). Results are
compared to random reshuffling of the predictor value associated to reactions
(100 realizations for each organism). Average Spearman’s rank correlation
coefficients for the randomizations appear in black, and error bars delimit the

maximum and the minimum values obtained.
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and in the randomized counterparts is statistically significant, even though the

probability for large cascades is still smaller in the original metabolic network.

This can be explained by the increased linearity and limited redundancy of M.

pneumoniae metabolic network structure, according to available data [120].

Along with structure, biochemical insight contributes to explain why some

reactions trigger larger cascades. For M. pneumoniae, the most vulnerable

reactions can be classified into four groups related to vital functions. One group

is associated to metabolites phosphoenolpyruvate and protein L-histidine, each

solely produced by one generating reaction and both of them directly related to

phosphorylation processes, vital for instance in the synthesis of ATP. The second

group relates to formate, which has a prominent role in the energy metabolism

on many bacteria. The third group involves reactions where the important

metabolite is thioredoxin, an antioxidant protein essential to reduce oxidized

metabolites, along NADP+. Finally, the failure of reactions in the fourth group

trigger large cascades that affect the synthesis of fatty acids by turning acyl

carrier proteins inviable.

Prediction of the size of the cascades is possible by looking to the local informa-

tion corresponding to the triggering reaction. An expression for the predictor

Pr for the damage spreading from the triggering reaction r which is surrounded

by m metabolites is:

Pr =
∑
m∈r

[
(ki + kb)δ

0
ko(δ

1
kb

+ δ0
kb

)(δ1
k′o−ko + δ1

k′b−kb
) (3.1)

+(ko + kb)δ
0
ki

(δ1
kb

+ δ0
kb

)(δ1
k′i−ki

+ δ1
k′b−kb

)

− δ0
ki
δ0
koδ

1
kb
δ1
k′b−kb

]
.

Degrees ki, ko and kb refer respectively to the number of incoming, outgoing
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and bidirectional links of metabolite m (reactant or product) associated to

the triggering reaction r after discounting the links used to propagate the

cascade, and k′i, k
′
o and k′b denote the original values before the cascade is

triggered. δba are used for the Kronecker’s delta function. Basically, this predictor

identifies metabolites susceptible to propagate the cascade, which are those

having originally just one IN or just one OUT link, which is the one connecting

them to the triggering reaction, or those connected to the triggering reaction by

a bidirectional link and lacking in or out connections. The contribution to the

predictor of one of those metabolites counts the number of connections of this

metabolite with the rest of reactions, which can then be considered susceptible

to become non-viable and propagate the cascade (see Figure 3.3 for illustrations

showing how the measure works for some particular cases).

Propagator motifs are represented by branched metabolites with just one in

or out connection that happens to be attached to the triggering reaction. The

higher the branching ratio of these metabolites, the higher the likelihood that the

reaction propagates a large cascade, and thus to become a target for structural

vulnerability in the network. To give an example, the two most vulnerable

reactions in M. pneumoniae produce phosphoenolpyruvate, a compound involved

in Glycolysis and Gluconeogenesis that acts as a source of energy. It happens

to be a highly-branched cascade propagator motif connected to two reversible

reactions and, as a product, to eight irreversible reactions (see Figure 3.4 for a

categorization of cascade propagator motifs in bipartite networks).

To check the predictive power of our predictor Pr, Spearman’s rank correlation

coefficient ρS between predictors and damages are measured for each organism

(see Appendix B). Basically, Spearman’s correlation [188] is the Pearson correla-

tion coefficient between two ranks, here given by the positions in ordered lists

of reactions according to predictor values Pr and damages dr. A high ranking
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Figure 3.3: Examples of application of Equation 3.2 to several configura-
tions of metabolites and reactions. Triggering reactions are colored yellow,
whereas metabolites which spread the cascade are colored red. For clarity, the

contribution of each metabolite to the value of Pr is also given.

position by predictor value is expected to correlate with vulnerable reactions

at the top of the damage ranking. For all three organisms, very high values

of the correlation coefficient are found, which are statistically significant (see

Figure 3.2d). This evidences the ability of this predictor, calculated on the basis

of local information, to rank reactions by damage without directly computing

the effect of the failure.

3.2.2 Non-linear effects triggered by pairs of reactions cascades

As expected, the simultaneous failure of two reactions leads to higher damages

compared to single reaction failures as shown in Figure 3.5. The graphs display
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cascade.

the cumulative probability distributions P (d′rr′ ≥ drr′) calculated from all possi-

ble pairs of reactions initiating the cascades. It is worth stressing that the order

of initiation is irrelevant. Notice that the exponential cut-off is still present,

and becomes prominent even for M. pneumoniae. Again, metabolic robustness

is assessed by comparing cascades in the original networks with those in DP

randomized counterparts using K-S tests (see caption of Figure 3.5 for specific

values). One finds that, for all three organisms including M. pneumoniae, the

probability for large cascades triggered by pairs of reactions is significantly

smaller in the original metabolic networks as compared to those in the ran-

domized variants, suggesting that the organization of metabolic networks has

evolved towards protecting metabolism against multiple reaction failures.
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frequent double cascades output. Solid line: interference without amplification.
It is related with cases b and c in Figure 3.6. Dashed line: no interference,
which is related with case a in Figure 3.6. e) Non-linear effects in double
cascades. Solid line: overlap. It is related with cases c and e in Figure 3.6.
Dashed line: amplification. Amplification is related with cases d and e in

Figure 3.6.
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It can also be observed that cascades caused by individual reactions combine

in different ways when two reactions fail simultaneously (see Figure 3.6). The

crucial concept here is that of the pattern of interference of the respective areas

of influence of the two individually considered cascades. By that, one refers to

all metabolites and reactions altered1, removed or not, by each single cascade.

If there is no interference, the total damage drr′ is additive and equal to the

sum of the two single damages dr and dr′ . Otherwise, different situations are

possible leading to a combined damage that can be equal, larger or smaller

than the single added values. The latter case is a univocal signature of cascade

overlapping orr′ , pointing to the existence of a common subset of reactions that

fail in both cascades (the most extreme realization is when one cascade is totally

contained in the other). More interesting is the situation when, irrespectively of

the presence or absence of overlap, a non-linearly amplified damage is detected,

involving a number arr′ of new reactions that break down under simultaneous

black outs. For all cascades,

drr′ = dr + dr′ − orr′ + arr′ (3.2)

Interference without amplification is the most common situation, followed by the

absence of interference (see Figure 3.5d). In contrast, overlap and amplification

happen for a very small fraction of all double cascades, and their occurrence

decreases with the size of the organism (see Figure 3.5e). In particular, the

reduced incidence of amplification represents a new signature that organizational

principles at play ensure the robustness of the organisms, despite increasing

complexity and interweaving.

1Reactions altered but not removed are reversible reactions that become directed by effect
of the cascade.



Chapter 3. Structural knockout cascades in metabolic networks 85

Pat terns of interference

a b c d e

Interference metabolic network mot ifs

f g h

M M M

M M
M M

M M

R

R

R

R

R

R

R

RM RM

f g h

i j k

R

R

Figure 3.6: Cascade propagator network motifs and typology of double
cascades. a-e) Illustration of possible interference patterns between individual
cascades: additive, interference without overlap or amplification, interference
with overlap and without amplification, interference without overlap and with
amplification, interference with overlap and amplification, respectively. Blue
and yellow stand for single cascades, green for interference, and red for overlap
and amplification, depending on whether the red zone is in the interference
zone (green) or not. f-k) Metabolic network motifs in the interference of two
individual cascades that induce amplification. Cases f-g) Motif caused by a
metabolite which loses its only generating reaction and at the same time it
is the reactant of several reactions. These reactions are going to be become
non-viable. Case g is equivalent to f but inverting the sense of the links. Case
h) Metabolite which has been left with one connection to a reversible reaction.
This reversible reaction has zero net flux and becomes inviable. Cases i-j)
This motif appears when a modified metabolite is lead with only one incoming
connection coming from a reversible direction. This fixes the reversible reaction
towards the production of this metabolite. If this step turns a metabolite
of the reversible reaction inviable, the reversible reaction becomes inviable

(follows to next page).
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Figure 3.6: (Follows from previous page) Therefore, this motif is a potential
trigger of amplification. Case j is equivalent to case i when the senses of the
reactions are inverted. Case k) The individual cascades fix the sense of a
reversible reaction oppositely, one cascade forwards (k top) and the other
backwards (k bottom) (note that the pictures illustrate the effects of both
cascades individually). After superimposing the effects of the two cascades,
one can see that this reversible reaction becomes inviable. Thus, metabolites
surrounding the reaction may become inviable as well, depending on their

degrees. It is also a potential trigger, as in cases i-j.

However, amplification may have a very large impact when it occurs. For

instance, pyruvate (a product of glucose metabolism and a key intersection in

several metabolic pathways) provides energy by fermentation. This process

reduces pyruvate into lactate, a reaction that does not trigger any black out

cascade when it fails, so dr = 1. At the same time, pyruvate can also be

decarboxylated to produce acetyl groups, the building blocks of a large number

of molecules that are synthesized in cells. The failure of the first reaction in

such pathway triggers a cascade of length dr′ = 3. In contrast, the simultaneous

failure of both the fermentation and the reduction of pyruvate induces a large

cascade of size drr′ = 36, most likely lethal. As a biological explanation, one

could argue that both processes are strongly interdependent to maintain the

oxidation-reduction balance when fermentation is in action.

Collateral effects offer the clue to understand this amplification phenomenon.

In parallel to rendering non-operational some reactions and their corresponding

metabolites, a cascade can reduce the connectivity and increase the branching

ratio of other viable metabolites in its influence area. When stricken by the

propagation front of a second cascade, these metabolites are susceptible of

becoming inviable, further spreading the failure wave. In this way, interference

is a necessary but not a sufficient condition for amplification, and a large

amplification can be possible even when there is no overlap and the interference
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between the individual cascades is small. To predict which pairs will trigger

amplification, one must focus on metabolites in the interference of the influence

areas of the two individual cascades. Those metabolites that remain viable after

each individual cascade but become inviable when the two effects are superposed

will produce amplification, propagating the double cascade to new reactions. In

Figures 3.6f-k, the connectivity structure of all interference cascade propagator

motifs responsible for amplification is provided.

3.3 Impact of gene knockouts in metabolic structure

Reaction failures are usually associated to the disruption of an enzyme due to

knockout, inhibition, or deleterious mutation of the corresponding gene. iIn

M. pneumoniae, enzyme multi-functionality and gene essentiality are higher as

compared to other prokaryotic bacteria, so gene malfunctioning can potentially

produce an acuter stress response at the level of metabolism. To address this is-

sue, the metabolic network of M. pneumoniae is coupled to its gene co-expression

network through the activity of enzymes, and knockouts of individual genes and

clusters of co-expressed genes are performed. Inherent to this analysis is the

potential occurrence of individual, double, or multiple cascades simultaneously.

Multiple knockouts are algorithmically handled as an obvious extension of the

previously considered situation of pair cascades.

The genome of M. pneumoniae [172] comprises 688 genes, 140 of which have a

metabolic function. Except for one spontaneous reaction and 20 reactions with

unknown regulation, these metabolic genes codify 142 enzymes that catalyze

reactions in the metabolic network of this organism.
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3.3.1 Metabolic effects of individual mutations

Individual metabolic gene knockouts or mutations inhibit the production of

catalytic enzymes and induce black outs of reactions propagating in the metabolic

network as a failure cascade (see Figure 3.7). From existing data, 71% of the

140 metabolic genes in M. pneumoniae have a one-to-one relation with reactions,

and 21% of the genes regulate multiple reactions. Seldom the same reaction

may be individually regulated by different enzymes produced by different genes,

which happens for only four non-damaging reactions. More often, several

genes are necessary to regulate the activity of a single reaction through an

enzymatic complex. Twelve complexes codified by 26% of genes regulate the

activity of 10% of metabolic reactions in M. pneumoniae. The removal of any

of the genes involved in a complex is expected to cause the inactivation of the

reaction controlled by the complex, which in principle may increase vulnerability.

However, it can be observed that almost all complexes are associated to low

damage reactions, which indicates a certain degree of structural robustness.

To study the metabolic effects of individual gene mutations, the knockout of

all reactions associated to the gene under consideration are simulated. As

explained, most often this corresponds to one single reaction but sometimes

multiple reactions are removed simultaneously. The first observation is that

metabolic genes affecting vulnerable reactions trigger large failure cascades.

More interestingly, genes with large associated damages in metabolism turn out

to be essential or conditionally essential for M. pneumoniae (see Table 3.1), with

a unique exception discussed below. The classification given in Reference [120]

is used, where essentiality is defined according to the measured metabolic map

and the definition of a minimal medium which allows M. pneumoniae to grow.

Essential genes are those that are required for the survival of the organism,
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Figure 3.7: Left: Scheme of genes connected to reactions. Direct connections
between genes and reactions are shown, but notice that connections between
genes and reactions can be done only due to the existence of enzymes. Right:
effect of how performing a knockout of a gene, labeled as g8, spreads a
cascade in the metabolic network. Squares denote reactions, circles denote
metabolites and triangles genes. Black nodes denote nodes that have become
non-operational, whereas gray nodes are viable nodes that have reduced their

connectivity due to the effect of the cascade.

meaning that the products of the reactions that they control are essential for

life and cannot be produced by alternative pathways, while conditional means

that essentiality depends on the media composition available.

In fact, all conditionally essential genes with the potential of producing high

damage in the metabolism of M. pneumoniae have been found to have an

essential orthologue (essentiality determined by loss-of-function experiments) in

Mycoplasma genitalium [189], a comparable genome-reduced bacterium. The only

exception to essentiality in Table 3.1 is gene MPN062, considered as non-essential

in Reference [120], while in this study it triggers a large failure cascade and so

it can be classified as a vulnerable target for metabolic structure. Its damaging

potential can be explained by the fact that each of the four reactions controlled

by the gene has a contribution that, although not extremely high individually,

adds to the total damage and interferes to produce amplification. Therefore,

MPN062 can be proposed as an important gene for metabolic function in M.
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Gene Essentiality Damage Reactions

MPN429 yes 49 4 (1,1,1,1)
MPN606 yes 32 1 (32)
MPN628 yes 32 1 (32)
MPN017 yes 25 3 (14,1,9)
MPN303 yes 18 8 (1,1,1,1,8,1,2,3)
MPN062 no 17 4 (6,3,2,3)
MPN576 cond 16 2 (13,2)

MPN005 yes 13 1 (13)
MPN336 yes 13 3 (4,3,6)
MPN354 yes 13 1 (13)
MPN627 yes 11 1(11)
MPN066 yes 9 4 (1,1,2,5)

MPN240 cond 9 1 (9)
MPN299 cond 9 1 (9)
MPN322


cond 9 4(1,1,2,1)

MPN323 cond 9 4 (1,1,2,1)
MPN324 cond 9 4 (1,1,2,1)

MPN034
}

yes 7 4 (1,1,2,3)
MPN378 yes 7 4 (1,1,2,3)

Table 3.1: Largest structural damages produced in metabolism by gene
knockouts and correspondence with gene essentiality as given in Reference
[172]. Damage in metabolic structure caused by gene knockout (third column)
is measured in number of deleted reactions. In the fourth column, the number
of reactions regulated by the corresponding gene is given, and in parentheses
the damage associated to each of these reactions is also given. Genes in
monocomponent clusters are highlighted in boldface, and braces are used to
denote genes that form complexes. Note that the complex at the end of the
list is not detected by any of the three clustering procedures. Finally, gene
MPN062 is the only one in the table annotated as non-essential although it is

associated to a large failure cascade.

pneumoniae, a conjecture that is supported by the essentiality of its orthologue

in M. genitalium [189].

Another interesting case is essential gene MPN429, whose knockout triggers the

largest cascade in M. pneumoniae. Each of the four affected reactions in the

Glycolysis pathway is not able to propagate a cascade individually. However,

when they all are removed simultaneously, the strongest amplification effect
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is observed. The biochemical explanation is that the non-linear interaction of

the cascades stops the production of phosphoenolpyruvate, which disrupts the

synthesis of ATP, a circumstance particularly harming to the organism.

The obtained results of the study of structural cascades to predict gene essen-

tiality in M. pneumoniae is in agreement with the gene essentiality computed in

Reference [56].

3.3.2 Metabolic effects of knocking out gene co-expression clus-

ters

Groups of co-expressed genes in M. pneumoniae can be identified from gene

expression data under different conditions [190–192], which reveals a complex

gene regulatory machinery [172]. The functional deactivation of these clusters

might be produced by the failure of common regulatory elements and important

damage could be transmitted to metabolism.

In this subsection, results on the effects on the metabolic structure of M. pneu-

moniae by suppressing gene co-expression clusters are shown. Information about

gene expression is provided in Reference [172]. Correlations in the expression

of genes were measured from tilling arrays under 62 different environmental

conditions. This matrix of correlations between the expression levels of pairs of

genes gives a fully connected network where the link between two genes carries

a weight ranging from -1 to 1. This gene correlation matrix can be coupled to

the metabolic network of M. pneumoniae through the activity of enzymes to

produce a multilevel network representation.

To detect gene co-expression clusters, three different strategies -distance hierarchi-

cal clustering, Infomap, and recursive percolation (see Chapter 2, Section 2.1.4)-
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Figure 3.8: Pictures of co-expressed genes and distribution of sizes of gene
clusters. Left: Groups of co-expressed clusters regulating a metabolic network.
Right: Distribution of sizes of the clusters obtained using distance hierarchical

clustering (blue), Infomap (red) and recursive percolation (green).

are applied to the gene expression correlation matrix in order to discount bi-

ases introduced by the specifications of the community detection method (in

Supplementary Table C3-4 it is possible to see a table showing which cluster

each gene belongs to depending on the method used to detect the clusters). The

distributions of sizes of the obtained clusters with the three strategies are shown

in the right panel of Figure 3.8, where it is indeed possible to see a certain

degree of similarity between the distribution of sizes of the clusters obtained

using the three different methods.

The comparative analysis of the detected clusters of genes showed that, although

the partitions found by each algorithm may differ in their composition and in the

maximum size of the clusters, there are preserved commonalities independently

of the method. One of them is that all methods are able to detect seven of the

twelve complexes, since the related genes always appear classified in the same

cluster. Another remark is that, as explained in the previous paragraph, the

three detection methods result in qualitatively similar power-law-like cluster size

distributions (see Figure 3.8 right), with most clusters having small size while

http://tinyurl.com/nc2vmhf
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some are relatively big. Interestingly, genes related to high damage spreading

reactions are secluded into mono-component clusters. To be more precise, eight

of the nineteen genes in Table 3.1 are recognized by all three methods as having

an expression profile that is not correlated to other gene activity levels. This

is surprising since, in principle, high-damage genes might be expected to be

co-regulated with other genes, as influencing big parts of metabolism usually

requires coordinated gene activity. The fact that these genes appear isolated

pinpoints them as potentially important metabolic regulator targets, since the

alteration of only one gene may affect a large number of metabolic reactions. In

any case, the lack of co-regulation of genes related to high damage spreading

reactions is again an indication that the structural organization of the organism

has evolved towards protecting the system against multiple failures.

Taking averages for equally sized clusters, it can be found that knockouts of

co-expression clusters produce a damage on metabolic structure that increases

with the number of affected metabolic genes, except when most metabolic

genes in a cluster codify an enzymatic complex regulating one reaction (see

Figure 3.9, left panels). The damage produced by the failure of the cluster also

increases with the number of associated reactions (right panels in Figure 3.9).

In order to discount structural effects, these results are compared with those

measured on DP randomized versions of the metabolic network of the genome-

reduced bacterium. As evidenced in Figure 3.9, all cluster detection methods

identify clusters that produce lower damages in the real metabolic network of

M. pneumoniae as compared to the randomized network. This supports the

idea that the regulatory machinery that controls the coupled-to-metabolism

co-expression of genes has evolved towards robustness.

Finally, since the three cluster detection methods propose different forms of ag-

gregating metabolic genes, it is relevant to consider whether cluster composition
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Figure 3.9: Damages as a function of the number of metabolic genes and
reaction failures in gene co-expression cluster knockouts. Clusters are defined
according to three different methods: Hierarchical Clustering (HC), Infomap
(I), and Recursive Percolation (RP). Results are compared with damages
produced in randomized versions of the metabolic networks in order to discount
structural effects. In each case, the solid black curve is the average over 100

realizations.
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is relevant for failure propagation. As a null model, one can consider random-

ization restricted not to the network itself but to the specific gene metabolic

composition, while maintaining the total number of metabolic genes in each

cluster. It can be observed that such a reshuffling of metabolic genes in clusters

has no relevant effect on the damages measured on the metabolic network (see

Figure 3.10). This means that, surprisingly, the composition of the clusters is

not as statistically relevant for metabolic vulnerability as the distribution of

the cluster sizes itself. This feature, together with the large detected amount of

mono-component clusters, point out to the existence of multiple levels of regula-

tion, depending on experimental conditions and, at the same time, explains why

genes controlling high damage spreading reactions operate preferentially under

functional isolation as a metabolism protection mechanism.

3.4 Robustness vs regulation in metabolic networks

The null model used in the first part of this chapter, called degree-preserving

randomization, does not account for the most basic physico-chemical constraints

and may lead, in the case of metabolic networks, to consideration of reactions

which are not mass (i.e., stoichiometrically) balanced (which do not preserve the

same type and number of atoms on the substrate and product sides). As a result,

the randomized networks may not be chemically feasible. As an alternative, the

null model called mass-balanced randomization [141] accounts for this issue (see

Chapter 2, Section 2.1.7.2). It is worth stressing that this method preserves the

degrees of reactions but not the degrees of metabolites (see Figure 3.11).

In this section, cascades originated by single reaction and pair of reaction

failures in the original networks of the three bacteria are compared with those

obtained from two null models: DP, already used in the previous section, and
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Figure 3.11: Comparison of the degrees of reactions and metabolites obtained
by the two null models applied to E. coli network. In this representation,
each point is a reaction or a metabolite with coordinates (kreal,krandomized),
where kreal is the metabolite/reaction degree in the original network, and
krandomized the corresponding degree in a randomized network. Points fall in
the diagonal if degrees are preserved in the randomized networks. a) and b)
MB randomization. This method gives networks in which the degrees of the
reactions are preserved. However, degrees of metabolites are not conserved. c)
and d) DP randomization. This method gives networks with preserved degrees
of reactions. Degrees of metabolites are also preserved with DP randomization,

however at the expense of violating mass balances of reactions.

MB randomization. As in the first part, K-S tests are used to statistically

assess whether the null models are relevant to explain the resulting damage

distributions in the original networks. The analysis reinforces the importance of

choosing an appropriate null model according to the question at hand, since the

null model ultimately affects the interpretation of the findings [186].
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First, cascades triggered by individual removal of reactions are studied, each

cascade having its associated damage dr. When comparing the cumulative

distributions P (d′r ≥ dr) of the damage dr produced by individual removal

of reactions between the original and randomized networks (see Figure 3.12

left panels), it can be observed that the distributions of the original networks

lie in between the distributions of the two null models. To check whether or

not the cumulative probability distributions are significantly different in the

original networks and in their randomized variants, K-S tests are performed (see

Table 3.2), taking as the standard significance level α = 0.05. The compared

distributions are considered significantly different from the null models because

their associated significance is smaller than 0.05, except for M. pneumoniae,

whose distribution can be considered consistent with the DP model as seen

in Section 3.2, probably due to its linearity. Both for E. coli and S. aureus,

damages are smaller compared to their DP randomizations but larger when

compared to their MB randomizations. Thus, the robustness of the analyzed

networks cannot be explained by the distribution of degrees or by basic physical

constraints. For the DP null model, this finding indicates that robustness is

positively influenced by factors other than the degrees. The results from the

MB null model suggest that, for all three organisms, evolutionary pressure leads

to larger cascades of non-viable reactions as compared to those imposed by

physico-chemical constraints, and thus lower robustness.

After performing single reaction removals, the same analysis for the removal

of each possible pair of reactions is done. Similar to the single reaction case,

the cumulative probability distributions P (d′rr′ ≥ drr′) of the damage drr′

resulting from the knockout of two reactions is determined (see Figure 3.12).

K-S tests with a standard significance level α = 0.05 are again applied (see

Table 3.2), finding that the distributions of the original networks are significantly
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Figure 3.12: Distributions of damage caused by removal of reactions. a, c,
e) Cumulative probability distributions for M. pneumoniae (blue), S. aureus
(green), and E. coli (red). Averaged distributions over 100 randomizations of
the original networks are shown for DP (dashed line) and MB randomization
(continuous line). b, d, f) Damages caused by pairs of removal of reactions.
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Organism
SR PR

MB DP MB DP

M. pneumoniae 0.10/0.03 0.095/0.07 0.15/0 0.15/0
S. aureus 0.19/0 0.086/0.0002 0.27/0 0.14/0

E. coli 0.19/0 0.079/1.4 · 10−11 0.21/0 0.13/0

Table 3.2: Kolmogorov-Smirnov tests for comparing single reaction (SR) and
pairs of reactions (PR) failure cascades in the three metabolic networks with
both randomization methods, MB and DP. The values of the K-S statistic /

associated significance level are given.

different from those of both randomization methods. All organisms display

in this case similar results, the distributions of the original networks lie again

between the distributions of the two null models, and all of them can be

considered inconsistent with both null models. Consequently, the observations

for individual failures also hold for the failure of reaction pairs: robustness is

positively influenced by factors other than degrees, but negatively influenced by

evolutionary pressure.

The cascade algorithm produces larger damages in the original networks as com-

pared to those in MB randomized networks, but smaller cascades as compared

to those in DP randomized counterparts. A possible explanation is offered by

the difference in global properties of the networks obtained from the two ran-

domization methods [142]. DP randomization decreases the average path length

and increases the clustering coefficient of the randomized network, increasing

its small-world property. Consequently, such networks are more interconnected

and, thus, a cascade may in principle propagate further in the network. The

opposite holds for MB randomization, which increases the average path length

while decreasing the clustering coefficient of the randomized network so that the

spread of the damage is less likely. Although the average path length does not

resemble the length of metabolic inter-conversion, the small-world property may

still affect the impact of removal of reactions due to its functional importance.
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It can also be pointed out that the principle of cascade propagation relies

on violation of a structural precondition for a steady-state, namely that all

metabolites can be produced and consumed in order to avoid their depletion

or accumulation. However, the steady-state assumption is only meaningful for

networks which satisfy fundamental physical principles. Therefore, the use of

MB randomization, which guarantees preservation of mass balance, allows to

discern whether the measured property is a result of basic physical principles,

or, instead, whether it is affected by evolutionary pressure. Since the size of

cascades in MB randomized networks is significantly lower than those in real

networks, evolutionary pressure may indeed lead to larger cascades.

Consequently, this finding indicates that evolutionary pressure may favor lower

robustness of metabolic networks with respect to the failure of reactions, seem-

ingly contradicting the general requirement of robustness in biological systems.

On the one hand, this finding may be a result of the evolutionary versatility of

metabolic networks, which favors organisms that are able to evolve quickly, i.e.,

by few modifications to their metabolic networks. On the other hand, it is worth

stressing that a cascade may not only be interpreted as the harmful spreading

of failure, but also as the ability to regulate metabolism by activating/deacti-

vating reactions, e.g., by transcriptional regulation [193]. Thus, large cascades,

favored by evolutionary pressure, may point at the evolutionary requirement

of regulating large parts of metabolism through the regulation of small sets of

enzyme-coding genes. The ability to regulate the activity of metabolic reactions

by deactivating competing reactions is a well-known principle of metabolism.

These results thus indicate that evolutionary pressure may favor the ability

of efficient metabolic regulation at the expense of robustness to reaction or

gene knockouts, pointing at the necessary integration of trade-offs from various

cellular functions.
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3.5 Conclusions

Results obtained in this chapter demonstrate that when E. coli and S. aureus

are subjected to reaction failures, their metabolic networks have a structure that

minimizes the number of large cascades. In this way, the largest part of reaction

failures lead to small cascades, resulting in a small damage for the metabolic

network. Hence, one can conclude that these organisms have a robust metabolic

network against reaction failures. M. pneumoniae exhibits network responses

that are qualitatively comparable to E. coli or S. aureus, although it is found

that it less robust against individual reaction removals with reactions more

prone to trigger large metabolic failure cascades identified as key participants in

the regulation of energy and fatty acid synthesis.

The concept of cascade amplification has been for the first time formulated and

interpreted as a signature of the subtle non-linearities underlying the structure

of complex networks. Specific scenarios in M. pneumoniae have been discussed.

In addition, there is a motivation to assess the predicting power of the used

formalism. In this sense, a predictor of damage propagation for single cascades,

and structural motifs underlying amplified failure patterns in situations of

concurrent spreading have been proposed.

On what respects to the analysis of single gene knockouts, it reveals its poten-

tiality in capturing most of the scenarios of experimentally determined lethality

for M. pneumoniae. Moreover, when clustered and knocked together new trends

of the complex genomic regulation of the metabolism emerge. First, the distri-

bution of cluster sizes seems to matter more than the actual composition of the

clusters. This is connected to the fact that the regulation of high-damage genes

tends to appear isolated from that of other genes, a kind of functional switch in

metabolic networks that at the same time acts as a kind of genetic firewall.
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The introduction of a randomization model that generates new realizations of

the network which are mass balanced indicates that evolutionary pressure favors

the ability of efficient metabolic regulation at the expense of robustness to gene

knockouts. This is explained because it favors organisms to evolve quickly by

little modifying their metabolic networks, and because a failure cascade can

be interpreted as an ability to regulate metabolism by activating/deactivating

reactions, apart from being interpreted as a harmful spreading of a failure.

3.6 Summary

• The metabolic networks of three bacteria, M. pneumoniae, E. coli, and S.

aureus, have been found to be robust against reaction failures, although

M. pneumoniae is less robust against individual reaction removals due to

its simplicity [94].

• A predictor of damage propagation for cascades produced by single reaction

failures and the structural motifs underlying amplified failure patterns

have been proposed. It has been checked that the predictor successfully

predicts damage without the need of computing cascades [94].

• The concept of cascade amplification has been formulated and interpreted

as a signature of the subtle non-linearities underlying the structure of

complex networks [94].

• The study of structural stress at the level of metabolic genes reveals its po-

tentiality in capturing most of the scenarios of experimentally determined

lethality for M. pneumoniae [94].



104 Chapter 3. Structural knockout cascades in metabolic networks

• The distribution of gene cluster sizes seems to matter more than the

actual composition of the clusters in relation to failure propagation in the

metabolic network [94].

• The studied organisms show a trade-off between robustness and efficient

regulation of their metabolic networks [186].



Chapter 4

Effects of reaction knockouts

on steady states of metabolism

The activity and essentiality of metabolic reactions of two model

organisms, Escherichia coli and Mycoplasma pneumoniae, are studied

using Flux Balance Analysis in different environments. In particular,

synthetic lethal pairs correspond to combinations of active and active

or inactive non-essential reactions whose simultaneous deletion causes

cell death. Lethal knockouts of pairs of reactions separate in two

different groups depending on whether the pair of reactions works as

a backup or as a parallel use mechanism, the first corresponding to

essential plasticity and the second to essential redundancy. Within

this perspective, functional plasticity and redundancy are essential

mechanisms underlying the ability to survive of metabolic networks.

The previous chapter reported the study of structural perturbations modeled by

the removal of a reaction or a set of them and the application of ta viability

105
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criterion at the structural level. This chapter goes from structure to function

by using the technique called Flux Balance Analysis (FBA) (see Chapter 2,

Section 2.2) to implement reaction knockouts. A FBA analysis goes beyond

the structural characterization of a cascade triggered by a reaction knockout in

the sense that FBA intrinsically assigns zero fluxes to all the reactions in the

network that turn out to be non-viable, i.e., that are not able to maintain a

balanced steady state in a certain environmental condition. In addition, using

FBA one can compute how the environment affects the fluxes of reactions in

metabolic networks. In particular, FBA allows to compute the activities and

essentialities of reactions at steady state (see Chapter 2, Section 2.2.3), and to

study the concept of synthetic lethality and how it is related to concepts such

as plasticity and redundancy.

The computation of the activity of reactions using FBA has permitted a better

understanding of how metabolism adapts to environmental changes by means of

modifications in the biochemical fluxes [12, 194]. Beyond the concept of activity,

the study of essentiality can help to understand how metabolism adapts to an

internal failure, analyzing the adaptation of the fluxes when one reaction is

forced to be non-operative. In fact, the concept of essentiality has been studied

extensively, from single reaction failures [105, 195, 196] to multiple failures

[104, 197].

Plasticity and redundancy are large-scale strategies that offer the organism the

ability to exhibit no or only mild phenotypic variation in front of environmental

changes or upon malfunction of some of its parts. In particular, these mechanisms

protect metabolism against the effects of single enzyme-coding gene mutations

or reaction failures, the final outcome being that most metabolic genes result to

be not essential for cell viability. However, some mutants fail when an additional

gene is knocked out, so that specific pair combinations of non-essential metabolic
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genes or reactions become essential for biomass formation. As an example, double

mutants defective in the two different phosphoribosylglycinamide transformylases

present in Escherichia coli -with catalytic action in purine biosynthesis and thus

important as crucial components of DNA, RNA or ATP- require exogenously

added purine for growth, while single knockout mutants do not result in purine

auxotrophy [198].

These synthetic lethal (SL) combinations [4, 199–201] have recently attracted

attention because of their utility for identifying functional associations between

gene functions and, in the context of human genome, for the prospects of new

targets in drug development. However, inviable synthetic lethal mutants are

difficult to characterize experimentally despite the high-throughput techniques

developed recently [202]. We are still far from a comprehensive empirical identi-

fication of all SL metabolic gene or reaction pairs in a particular organism [104],

even more when considering different growth conditions. Metabolic screening

based on computational methods becomes then a powerful complementary tech-

nique particularly suited for an exhaustive in silico prediction of SL pairs in

high-quality genome-scale metabolic reconstructions.

This chapter unveils how functional plasticity and redundancy are essential

systems-level mechanisms underlying the viability of metabolic networks. In

previous works on cellular metabolism [194, 203], plasticity was some times

associated to changes in the fluxes of reactions when an organism is shifted from

one growth condition to another. Instead, here functional plasticity is discussed

as the ability of reorganizing metabolic fluxes to maintain viability in response

to reaction failures when the environment remains unchanged. On the other

hand, functional redundancy applies to the simultaneous use of alternative fluxes

in a given medium, even if some can completely or partially compensate for

the other [101]. An exhaustive computational screening of SL reaction pairs is
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performed in E. coli in glucose minimal medium and it is found that SL reaction

pairs divide in two different groups depending on whether the SL interaction

works as a backup or as a parallel use mechanism, the first corresponding to

essential plasticity and the second to essential redundancy. When comparing

the metabolisms of E. coli and Mycoplasma pneumoniae, one can find that the

two organisms exhibit a large difference in the relative importance of plasticity

and redundancy. In E. coli, the analysis of how pathways are entangled through

SL pairs supports the view that redundancy SL pairs preferentially affect a

single function or pathway [199]. In contrast -and in agreement with reported

SL genetic interactions in yeast [204]- essential plasticity, which is the dominant

class in E. coli, tends to be inter-pathway but concentrated and unveils Cell

Envelope Biosynthesis as an essential backup for Membrane Lipid Metabolism.

Finally, different environmental conditions are tested to explore the interplay

between these two mechanisms in coessential reaction pairs. Knockouts of genes

are not considered because approaching directly pairs of reactions without the

scaffold of enzymes and genes allows to determine in a clean and systematic

way the minimal combinations of reactions that turn out to be essential for an

organism.

The contents of this chapter correspond to References [158, 205].

4.1 Activity and essentiality of single reactions of E.

coli across media

This section summarizes the results of the study of how the activity and essen-

tiality of reactions in the iJO1366 version of E. coli (see Section 2.3.1, its network

can be seen in Supplementary Table C4-1) depend on the nutrient composition

http://tinyurl.com/ktswl4k
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of the environment [205]. To this end, the activity and essentiality of all active

reactions in a set of minimal media are computed, and then, depending on

their behavior on each environment, each reaction is classified according to

four general categories. This study also allows to identify reactions as eventual

candidates to form part of SL pairs.

A total number of 555 minimal media can be constructed as proposed in

Chapter 2, Section 2.2.2.1, with a final number of 333 which allow growth for

the iJO1366 version of E. coli. In addition to these minimal media, 10000

random media are also analyzed, of which 3707 give a non-zero growth. To

construct these random media, one considers all metabolites present in the

extracellular environment of E. coli. Then, one chooses the number of these

metabolites that can act as nutrients. In this case, 90% of the total number

of external metabolites are allowed to act as nutrients. Once the number of

nutrients is selected, one chooses at random metabolites until one reaches the

selected number of nutrients, and the lower bound of the exchange reactions of

each metabolite is changed to a value of -10 mmol gDW−1h−1.

4.1.1 Quantifying activity and essentiality

The activity and essentiality of each reaction are computed in every medium,

with the obvious constraint that essentiality is computed only if the reaction is

active. On what follows, an explanation to compute the accumulated values of

the activity and essentiality is given.

The activity ai,j of a reaction i in a medium j is defined as

ai,j ≡

 1 if νi,j > 0

0 if νi,j = 0
(4.1)
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where νi,j denotes the flux of reaction i in medium j. To obtain a representative

value of the activity, FBA calculations are performed in both minimal and

random media. In addition, the activity is normalized by the number of media

in which the calculations have been performed. Therefore, the activity of a

reaction i for a given set of media nmedia will be obtained according to

ai ≡
1

nmedia

nmedia∑
j=1

ai,j (4.2)

with 0 ≤ ai ≤ 1.

Essentiality is defined on the subset of active reactions. To compute the

essentiality of a particular reaction, the FBA growth rate is examined after

removing the corresponding reaction. An expression of the essentiality of a

reaction i in a medium j is given as

ei,j ≡

 0 if ν ′g,j > 0

1 if ν ′g,j = 0
(4.3)

where νg,j′ denotes the flux of the reaction of production of biomass in medium j

when reaction i is constrained to have zero flux. Again, the results are averaged

on several media and normalized by dividing by the number of media. In this

way, the bounds of essentiality of a reaction lay between 0 and the corresponding

activity of the reaction, 0 ≤ ei ≤ ai,

ei ≡
1

nmedia

nmedia∑
j=1

ei,j (4.4)

Another useful magnitude to be used later on is the ratio of media where reaction

i is essential with respect to the number of media where it is active. This measure

is trivially computed according to pi = ei
ai

.
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4.1.2 Characterization of the reactions

After computing FBA on all environments and for all mutants, essentiality vs

activity is plotted for all reactions. All points must fall on the diagonal or under

it. This plot is shown in Figure 4.1 for both minimal and random media.

Reactions can be classified into four categories:

1. Essential whenever active reactions: 0 < ai = ei. They are essential

in all media where they are active. These reactions lay on the diagonal of

the aforementioned plot.

2. Always active reactions: ai = 1, 0 < ei < ai. They are always active

and sometimes essential. These reactions are located in the opposite y

axis.

3. Never essential reactions: 0 < ai < 1, ei = 0. They are never essential

but sometimes active. These reaction are located in the x axis.

4. Partially essential reactions: 0 < ai < 1, 0 < ei < ai. They are

essential only a fraction of times when they are active. These reactions are

located inside the triangle formed by the diagonal, and the y and x axes.

To understand the obtained results, the study focuses on the different subnet-

works obtained by filtering the complete original network according to the four

basic explained categories. More precisely, these subnetworks are obtained by

maintaining in the network only those reactions within the respective mentioned

categories. Once these subnetworks are obtained, the number of connected

components in the subnetwork are computed in order to know whether the

selected subnetwork is fragmented or not. In particular, the giant connected

component (GCC) and the strongly connected component (SCC) (see Chapter 2,
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Figure 4.1: Representation of essentiality vs activity. a) Minimal media. b)
Random media. In both pictures the four different categories can be clearly
differentiated. Diagonal: essential whenever active reactions. Opposite y axis:
always active reactions. x axis: never essential reactions. Inside triangle:

partially essential reactions.

Section 2.1.5) of the subnetworks are computed. This study is done in order to

detect whether reactions within a specific type are responsible for the percolation

state of the network.

In Table 4.1, the statistics of active and essential reactions are summarized

together with values of the sizes of the connected components of the subnetworks.

Results correspond to the set of minimal media. A precise discussion of such

statistics is provided on what follows. Notice first that there are several reactions

which are strictly never active (902). This may be explained by the fact that

these computations have been done in minimal media, which may only activate

a few number of reactions needed to survive. In addition, it can be seen that

the complete network, which corresponds to values of activity 0 ≤ ai ≤ 1 and

essentiality 0 ≤ ei ≤ ai, is constituted by a single GCC and that, in addition, it

has a large SCC, a typical situation in metabolic networks.
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Category CC NR

Essential whenever active reactions Total 665
ai > 0 GCC 611(91.9)
ei = ai SCC 409(66.4)

Essential and active in some media Total 458
0 < ai < 1 GCC 409(89.3)
ei = ai SCC 200(48.8)

Essential and active in all media Total 207
ai = 1 GCC 198(95.7)
ei = ai SCC 174(86.1)

Always active reactions Total 37
ai = 1 GCC 34(91.9)

0 < ei < ai SCC 29(85.3)

Never essential reactions Total 494
0 < ai < 1 GCC 494
ei = 0 SCC 476(96.4)

Partially essential reactions Total 152
0 < ai < 1 GCC 145(95.4)
0 < ei < ai SCC 129(90.0)

All reactions Total 2250
0 ≤ ai ≤ 1 GCC 2250
0 ≤ ei ≤ ai SCC 2076(92.0)

Never active
ai = 0 Total 902
ei = 0

Table 4.1: Connected components and number of reactions NR in each sub-
network. Values in parentheses correspond to percentages. GCC percentages
are computed by dividing the number of reactions in GCC relative to the total
number of reactions in each category, whereas SCC percentages are computed
by dividing the number of reactions in SCC relative to the number of reactions
in the GCC subnetwork. Categories in bold correspond to the four basic

categories mentioned in the text.

4.1.2.1 Essential whenever active reactions

A histogram of the values of the essentiality of the set of reactions essential

whenever active reactions is shown in Figures 4.2a and b. A bimodal distribution

is clearly displayed, with peaks at extreme values, ai = ei ' 0 and the other
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at ai = ei ' 1. This means that there is a core of reactions that are always

active and essential, as pointed out in Reference [194], and there is another

set of reactions that are active very few times. This histogram coincides with

the classification of the dependence of essentiality on the environment given in

Reference [105]. The peak at values of activity ∼ 0 corresponds to environment-

specific essential reactions, whereas the peak at values of activity ∼ 1 corresponds

to environment-general essential reactions. The first region includes reactions

whose deletion abolishes growth in specific environments, whereas the second one

corresponds to reactions whose deletion suppresses growth in all environments.

A deeper characterization of this set of reactions is made in Table 4.1, which shows

that this subnetwork has a large GCC with nearly 90% of the subnetwork. If

reactions with activity-essentiality index of 1 are excluded from this subnetwork,

another subset is obtained which has also a large GCC (89.3% of the total 458

reactions). This means that reactions with ai = ei = 1 are not responsible for

the percolation state of the subnetwork of essential whenever active reactions,

which points out to a large degree of redundancy.

An illustrative example of a particular reaction in this subcategory is Potassium

transport (Ktex). This is a reaction which supplies the organism with potassium.

This mineral salt is an important metabolite which influences the osmotic

pressure through the cell membrane and also secures the propagation of electric

impulses. Since these are important processes for organisms, this reaction is

always active in order to secure that these processes are done properly and that

the organism has a non-zero growth.

For random media (see Figure 4.3a and b), a similar behavior is obtained, with

larger probabilities at the extrema, but an extra peak is obtained for low values

of activity and essentiality. This means that there are some reactions which
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are not as specific as environment-specific reactions because they are active and

essential in more than one medium, loosing in this way their specificity. This

makes sense for random media, since they contain many metabolites that may

activate many reactions and, in this way, they lose the specificity of a minimal

medium, which triggers only the reactions that allow an organism to grow on it.

4.1.2.2 Always active reactions

The set of reactions called always active reactions contains reactions with ai = 1

and 0 < ei < ai. In Figure 4.2c and d one can see that, in this case, there

is a large peak at values of ei = 0, meaning that the largest part of reactions

with ai = 1 have a value of ei = 0. This means that, although these reactions

are always active, they are not essential. One may be tempted to think that

reactions with very low values of essentiality are useless and hence they could

be removed from the network. Nevertheless, there are two reasons that justify

their consideration.

• The first one is that these reactions may improve the life conditions of

the organism. These reactions, in spite of being non-essential, might be

active in order to increase the growth of the organism. As a matter of

fact, to survive to hard conditions, an organism which is able to reproduce

fast and efficiently will, with large probability, survive to unfriendly life

conditions.

• The second one is more subtle. These reactions could form SL pairs. As an

example, two reactions regulated by the genes tktA and tktB, which are in

the peak at ei = 0 and ai = 1, form a synthetic lethal pair and the removal

of these reactions would abolish growth by impeding the synthesis of

nucleotides, nucleic acids, and aromatic amino acids. Briefly, the reactions
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distribution function of activity or essentiality (depending on the category) for
minimal media. a, b) Essential whenever active reactions. c, d) Always active
reactions. e, f) Never essential reactions. g, h) Partially essential reactions.



Chapter 4. Effects of reaction knockouts on steady states 117

0 0.2 0.4 0.6 0.8 1
a

i
=e

i

0

0.2

0.4

0.6

f i

0 0.2 0.4 0.6 0.8 1
a

i
=e

i

0.5

0.6

0.7

0.8

0.9

1

P
c
(a

i)

0 0.2 0.4 0.6 0.8 1
e

i
 (a

i
=1)

0

0.2

0.4

0.6

0.8

1

f i

0 0.05 0.1
e

i
 (a

i
=1)

0

0.2

0.4

0.6

0.8

1

P
c
(e

i)

0 0.2 0.4 0.6 0.8 1
a

i
 (e

i
=0)

0
0.1
0.2
0.3
0.4
0.5

f i

0 0.2 0.4 0.6 0.8 1
a

i
 (e

i
=0)

0

0.2

0.4

0.6

0.8

1

P
c
(a

i)

0 0.2 0.4 0.6 0.8 1
p

i

0

0.1

0.2

0.3

0.4

f i

0 0.2 0.4 0.6 0.8
p

i

0

0.2

0.4

0.6

0.8

1

P
c
(p

i)

a

c

e

g h

f

d

b

Figure 4.3: Histograms (fraction) and complementary cumulative probability
distribution function of activity / essentiality (depending on the category) for
random media. a, b) Essential whenever active reactions. c, d) Always active
reactions. e, f) Never essential reactions. g, h) Partially essential reactions.



118 Chapter 4. Effects of reaction knockouts on steady states

regulated by these mentioned genes, called TKT1 and TKT2 and both

with a complete name of Transketolase, are reactions which belong to

the Pentose Phosphate Pathway. This pathway generates NADPH and

pentoses phosphate, the latter being a precursor used in the synthesis of

nucleotides, nucleic acids and aromatic amino acids. Both reactions are

always active to ensure a sufficient production of these mentioned products,

and when one of these reactions is knocked out, the other reaction is in

charge to restore this function.

In Table 4.3 one can see that, as in essential whenever active reactions, this

category of always active reactions form a subnetwork with a GCC which is

almost the full subnetwork with also a large SCC.

Note that for random media (see Figure 4.3c and d), a similar trend to minimal

media is obtained.

4.1.2.3 Never essential reactions

Never essential reactions have values of activity and essentiality which satisfy

ei = 0 and 0 < ai < 1. The histogram of the values of the activities for

these reactions is shown in Figures 4.2e and f. A similar histogram to that

corresponding to always active reactions is recovered again. This means that,

not surprisingly, the largest part of never essential reactions are not much active.

The individual removal of these reactions will leave the growth rate unaltered

or only reduced. The existence of these reactions could be explained again in

terms of improving the growth of the organism and, again, for the possibility of

participating in SL pairs.
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An example of a reaction of this kind is Manganese transport in via permease

(no H+), MN2tpp, a reaction which pumps manganese into the organism. Its

non-essentiality comes from the fact that there exists an alternative reaction

called Manganese (Mn+2) transport in via proton symport (periplasm), MNt2pp,

which also pumps manganese into the organism, but the latter uses a proton

gradient to perform the transport.

In Table 4.1 one can see again the same trend as the other categories of reactions.

This subnetwork contains a GCC that is almost the full subnetwork with a large

SCC.

For random media, different results are obtained in this case (see Figure 4.3e and

f). The largest peak is located at large values of activity, which means that there

is a large set of reactions which are mainly active but never essential. The peak

located slightly above 0.8 could appear due to the fact that the random media

are in fact rich media. Hence, it is possible that a common set of metabolites

activate the same reactions in many media. These reactions are responsible for

the increase of the value of the flux of the biomass reaction.

4.1.2.4 Partially essential reactions

Partially essential reactions contain reactions with activity and essentiality

values of 0 < ai < 1 and 0 < ei < ai. Since these reactions have both values

of essentiality and activity different from zero, the histogram is represented

in terms of ei
ai

as shown in Figures 4.3g and h. The distribution is rather

homogeneous, meaning that these two quantities may be largely uncorrelated,

their ratio spanning the whole range of allowed values.
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Table 4.1 shows again a large GCC containing a large SCC. Notice that this

trend has been maintained for all categories of reactions.

Again, different results are obtained for random media (see Figure 4.3g and h).

In this case, homogeneously distributed values as for minimal media are not

obtained. Instead, the behavior resembles that of the essential whenever active

subset, they are concentrated at low values and at a value of ei
ai

= 0.8. This

means that reactions are essential in fewer environments as compared to those

in which they are active, showing again that activity does not imply essentiality.

4.2 SL pairs and plasticity and redundancy of meta-

bolism

In metabolism, synthetic lethality arises when the individual failures of two

reactions are not essential for cell growth but, contrarily, their simultaneous

removal causes cell death [4, 199–201, 206, 207].

Synthetic lethality has been originally proposed in relation to genes [4, 199–

202]. Its definition is that two genes are synthetic lethal when their individual

knockout does not lead to the death of the organism but when both genes are

removed simultaneously the organism is not able to overcome which leads to

the death of organism (see Figure 4.4). Genes code for enzymes, and enzymes

determine the kinetics of reactions and thus whether reactions take place in a

feasible amount of time. Therefore, as for essentiality of individual genes and

reactions, it is possible to extend the concept of synthetic lethality to reactions.

FBA is a powerful technique particularly suited for an exhaustive in silico

prediction of SL pairs [104, 208]. Using FBA, a reaction pair deletion is annotated
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as inviable, and so as a synthetic lethal, if the double mutant shows a no-growth

phenotype.

This section presents the study of plasticity and redundancy of metabolism by

directly computing the effects of double reaction knockouts, excluding those

reactions that are individually essential in order to identify SL pairs. On what

follows, a detailed analysis of the classification of identified SL reaction pairs

into plasticity and redundancy subtypes in the iJO1366 version of E. coli and

in the iJW145 version of M. pneumoniae (see Section 2.3.2, its network can be

seen in Supplementary Table C4-8) is presented.

http://tinyurl.com/ktswl4k
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4.2.1 Classification of SL pairs

Some considerations are needed in relation to the space of reactions to be

considered in forming potential SL pairs, the set of reactions that can be active

but not essential in glucose minimal medium (see Chapter 2, Section 2.2.2.1).

Different from the analysis in the previous section, in this section the study is

primarily focused in one medium, not in a set of environments. In addition, the

space of reactions to be considered is preliminary reduced using a method that we

call “Biomass unconstrained Flux Variability Analysis”, where Flux Variability

Analysis (FVA) is applied irrespective of the level of attainable growth (see

Chapter 2, Section 2.2.4). The final ensemble, formed of 1176 reactions in E. coli

(see Supplementary Table C4-2) and 66 in M. pneumoniae (see Supplementary

Table C4-9), is a subset of the original reconstruction that includes but that is

not limited to the set of FBA active reactions under maximum growth constraint

[106, 107].

An important remark is worth mentioning at this point. Some FBA computa-

tionally predicted SL pairs can be inconsistent with experimental data since they

may contain at least one gene reported as essential in vivo. For E. coli, results

are checked with essentiality information given in Reference [119]. Given the lack

of direct evidence, results for M. pneumoniae are compared to a genome-wide

transposon study in Mycoplasma genitalium given in Reference [189]. Since a

functional ortholog in M. genitalium can be assigned to 128 metabolic genes

in iJW145 (of a total of 145 genes), the essentiality of that ortholog can be

associated to the corresponding gene in M. pneumoniae. The other 17 genes are

assumed, similarly to Reference [56], to be not essential for growth due to their

absence in M. genitalium and the high similarity of the metabolic networks of

http://tinyurl.com/ktswl4k
http://tinyurl.com/ktswl4k
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both organisms [120]. Three cases may occur when FBA in silico results are

compared to experimental essentiality:

• Both reactions in the in silico SL pair involve non-essential genes. In

this case, the pair can be considered a potential synthetic lethal (see

Figure 4.5a).

• One reaction involves a non-essential gene whereas the other is regulated

by an essential one. In this case, if the essential gene regulates more

than one reaction, one can consider that the in silico prediction is not an

inconsistency (see Figure 4.5c), since the essentiality might refer to the rest

of regulated reactions. Otherwise, the pair is considered as inconsistent

with experimental data (see Figure 4.5b).

• Both reactions are regulated by essential genes. With the same argument as

before, for the case that both reactions have associated genes which regulate

more than one reaction, one can still consider the pair to be a potential

synthetic lethal (see Figure 4.5d). The other possible combinations are

considered inconsistent with empirical evidence (see Figure 4.5e).

Detected SL pairs associated to isoenzymes (see Figure 4.4b) and multifunctional

enzymes (see Figure 4.4b) are also classified as inconsistencies. Isoenzymes (also

known as isozymes) are enzymes that differ in amino acid sequence but that

catalyze the same chemical reaction. In this way, a reaction can be catalized

by two different enzymes in case that one of them becomes non-operative.

Multifunctional enzymes are those that can catalyze more than one reaction at

the same time. They are very important for organisms, since they are responsible

of the catalysis of more than one reaction and their failure may cause important

damage to organisms, since many reactions can become non-operative.
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Figure 4.5: Schematic representation of the identification synthetic lethal
inconsistencies.

4.2.2 Classification of SL reactions pairs into plasticity and re-

dundancy

Of all reaction pair deletions in E. coli, 0.04% are in silico synthetic lethals

and can be separated in two different subtypes. In the biggest group, having a

relative size of 91%, one of the paired reactions is active in the medium under

evaluation while the second reaction has no associated flux. The rest of SL

reaction pairs are formed by two active reactions. Moreover, in accordance with

results in Reference [104], it is found that inconsistencies correspond to 4% of

all identified in silico SL pairs in E. coli.

Active-inactive coessential reaction pairs are referred to as plasticity synthetic

lethal (PSL) pairs (see Figure 4.6a). 219 PSL reaction pairs are found in E. coli

(see Supplementary Table C4-3), 86% of all diagnosed SL pairs in the iJO1366

version of E. coli (see Figure 4.7). Coessential inactive and active reactions

in these pairs have zero and non-zero FBA flux respectively. When the active

http://tinyurl.com/ktswl4k


Chapter 4. Effects of reaction knockouts on steady states 125

B

2

3

Statekofkoptimalkgrowth

G

A 1

4

Plasticity

B

C E

2

3

D

Knockoutkofkreactionk2

G

A 1

4

B

2 G

A 1

4

Knockoutkofkreactionk3

3

B

C E

2

3

D

Statekofkoptimalkgrowth

G

A 1

4

Redundancy

D

E

BA 1

Knockoutkofkreactionsk2L3kFSLkpairb

3

2

C E

G

D

C

C

E

ν
g

ν
g

F

ν
g

ν
g

ν
g

F

a c

e

b d

F F

4D F

Figure 4.6: Schematic representation of plasticity and redundancy synthetic
lethality subtypes in metabolic networks. Metabolites are represented by circles
and reactions by squares. Colored reactions with black arrows represent active
reactions, whereas gray discontinuous lines are used for inactive reactions
and metabolites and black for knockouts. The biomass production reaction is
represented as a larger square with an associated flux νg. When it turns to
inactive, meaning that it has no associated flux, the organism is not able to
grow. For simplicity, SL reaction pairs are illustrated in this figure as having a
common metabolite, although this is not necessarily always the case. a) Initial
configuration of a plasticity synthetic lethality reaction pair (reaction 2 active
and reaction 3 inactive). b) Initial configuration of a redundancy synthetic
lethality reaction pair (both reactions 2 and 3 active). c) Final configuration
after knockout of reaction 2 in a) or b). d) Final configuration after knockout
of reaction 3 in a) or b). e) Final configuration after simultaneous knockout of

reactions 2 and 3 in a) or b).

reaction is removed from the metabolic network, fluxes reorganize such that the

zero-flux reaction in the pair turns on as a backup of the removed reaction to

ensure viability of the organism, even though the growth is generally lowered.

In contrast, the level of growth is unperturbed when the inactive reaction is

removed. As an example, the SL pair valine-pyruvate aminotransferase and

valine transaminase form a PSL pair, the second reaction being the backup of

the first, whose simultaneous knockout produces auxotrophic mutants requiring

isoleucine to grow [209].
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While the single activation of one of the reactions in a PSL pair is enough

to ensure viability in front of single reaction disruptions, the parallel use of

both coessential reactions may happen in other cases. Redundancy synthetic

lethal (RSL) pairs are those in which both reactions are active and used in

parallel (see Figure 4.6b). Of all SL reaction pairs in the iJO1366 version of

E. coli, one finds that 15 (6%) are RSL (see Figure 4.7) (see Supplementary

Table C4-3). Indeed, for 13 of the 15 RSL pairs the simultaneous use of both

reactions increases fitness as compared to the situation when only one of the

reactions is active (fitness is here understood as the maximal FBA biomass

production rate for the organism). For the remaining two pairs growth remains

unchanged. As an illustrative example of parallel use, oxygen transport combines

with reactions in the ATP forming phase of Glycolysis to form RSL reaction

pairs. If Oxydative Phosphorylation is blocked by the absence of oxygen and no

alternative anaerobic process like Glycolysis is used, the energy metabolism of

E. coli collapses and so the whole organism.

It is interesting to compute the shortest path length (see Chapter 2, Section 2.1.3)

between reactions in SL pairs. It is found that network distances between

reaction counterparts is slightly shorter in RSL pairs than in PSL pairs. Indeed,

not all reactions in RSL or PSL pairs are directly connected through common

metabolites. Direct connections happen for 60% and 38% of pairs respectively,

while the rest can be separated by up to four other intermediate reactions so

that the average shortest paths are 3.33 and 3.80, respectively (the average

shortest path of the whole metabolic network is 5.02). Both essential plasticity

and redundancy display overlap in reactions and associated genes. In the 15

RSL pairs, one can identify 17 different reactions controlled by 15 genes or gene

complexes. The 219 PSL pairs involve 108 different reactions controlled by 61

genes or gene complexes.

http://tinyurl.com/ktswl4k
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inconsistencies, PSL (orange): plasticity synthetic lethal pairs, PSL I (orange
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Although this analysis refers to reactions, specific signatures of enzyme activity

may be worth stressing in connection with the analysis of coessential reaction

pairs. For some of the identified SL pairs, direct experimental evidence is

reported in the literature [209, 210]. Other experimental results support the

buffering activity of reactions in some SL pairs, like in the aerobic/anaerobic

synthesis of Heme [211, 212] and in the oxidative/non-oxidative working phases of

the Pentose Phosphate Pathway [213]. Enzymatic degeneracy can be responsible

for explaining two of the in silico detected RSL reaction pairs in E. coli. One

RSL reaction pair, which produces isopentenyl diphosphate and its isomer

dimethylallyl diphosphate -biosynthetic precursors of terpenes in E. coli that have

the potential to serve as a basis for advanced biofuels [214]- is catalyzed by a single

enzyme encoded by an essential gene (one-to-many enzyme multifunctionality

(see Figure 4.6f)). Conversely, isoenzymes are encoded by different genes but

can catalyze the same biochemical reactions. This many-to-one relationship
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ensures that single deletion mutants lacking any of the genes encoding one of the

isoenzymes can still be viable (see Figure 4.6f). This case happens in one RSL

reaction pair catalyzed by isoenzymes encoded by nonessential genes associated

to transketolase activity in the Pentose Phosphate Pathway [207].

Finally, a comparative study shows that coessential reaction pairs are 50 times

more abundant in a much simpler genome-reduced organisms of increased

linearity and reduced complexity such as M. pneumoniae. To perform the

computations, the medium given in Table S5 of the Supplementary Information

of Reference [56] is used. Constraints corresponding to the category called defined

medium have been used, adding also D-ribose. 2% of all potential candidate

reaction pairs in M. pneumoniae are synthetic lethals, vs solely the 0.04% in E.

coli. Inconsistencies are also much more abundant relatively to E. coli and the

balance of RSL vs PSL reaction pairs is also different (see Figure 4.7). Parallel

use happens as frequently as the backup mechanism in coessential reactions,

with 42% of all synthetic lethals being RSL pairs and 58% being PSL pairs (see

Supplementary Table C4-10). As compared to results reported in Reference

[56] for the synthetic lethality of genes, the used methodology detects the same

29 SL gene pairs and 15 new SL gene pairs. Since the 8 different genes in

these pairs form two different complexes of four and three genes and one gene

remains isolated, the 15 SL gene pairs reduce to just 2 SL reaction pairs (in the

RSL and RSL I categories) sharing one of the reactions. The three reactions

involved in the pairs are uptake of G3P (glycerol 3-phosphate), G3P oxidation

to dihydroxyacetone phosphate, and uptake of orthophosphate. As reported in

Reference [56], two independent routes through third-party pathways connect

Glycolysis to Lipid Biosynthesis. The first two reactions above, R1 and R2,

are involved in one of the routes, while the last reaction R3 influences the flux

through the other route. When R1 and R3 or R2 and R3 are removed from

http://tinyurl.com/ktswl4k
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iJW145 model, the organism collapses due to the simultaneous failure of both

routes.

4.2.3 Pathways entanglement

To investigate further the role of essential plasticity and redundancy in the

global organization of metabolic networks, one can study the entanglement of

biochemical pathways [7] through synthetic lethality. To do this, it is necessary

to annotate all reactions in synthetic lethal pairs in terms of the standard

metabolic pathway classification and to count the frequencies of dual pathways

combinations both for plasticity and redundancy subtypes. In Figure 4.8, a visual

summary of pathways entanglement through essential plasticity and redundancy

is given. A graph representation is used, where pathways are linked whenever

they participate together in a SL interaction (discontinuous lines represent

redundancy SL interactions (see Figure 4.8c) and continuous arrows stand for

plasticity SL interactions (see Figure 4.8d)). The frequency of a given pathway

combination in RSL or PSL pairs defines the weight of the corresponding link.

In E. coli (see Figure 4.8a), one can observe that the synthetic lethality entangle-

ment of pathways is in general very low, with the exception of the entanglement

between Cell Envelope Biosysthesis and Membrane Lipid Metabolism. Redun-

dancy SL pairs are basically intra-pathway, with only 3 of 15 being inter-pathway.

Of all intra-pathway RSL pairs, 75% concentrate in the Pentose Phosphate

pathway. Interestingly, the distribution of PSL reaction pairs avoids that of

RSL pairs and, in contrast, tends to be inter-pathway. Of all PSL pairs, 67%

include zero-flux reactions in Cell Envelope Biosysthesis and active reactions in

the Membrane Lipid Metabolism, which unveils Cell Envelope Biosysthesis as

an essential backup for Membrane Lipid Metabolism. Intra-pathway plasticity
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Figure 4.8: Metabolic pathways entanglement through essential plasticity
and redundancy in E. coli and M. pneumoniae. Nodes represent pathways and
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one reaction in each pathway. Links corresponding to plasticity SL pairs
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entanglement in E. coli. b) The same for M. pneumoniae. c) Scheme of how
pathways entanglement is derived from RSL pairs. d) The same for PSL pairs.

coessentiality amounts to 29% of PSL pairs and is concentrated in Cofactor and

Prosthetic Group and Cell Envelope Biosynthesis.

In M. pneumoniae (see Figure 4.8b) pathways entanglement through coessen-

tiality of reactions is very low as in E. coli. Redundancy SL pairs can be

intra-pathway (4 of 10) or inter-pathway (6 of 10) and PSL pairs are basi-

cally intra-pathway (12 of 14). Redundancy SL pairs denote the parallel use

of reactions in Folate Metabolism and reactions in Nucleotide and Cofactor

Metabolism. These two pathways, Folate and Nucleotide Metabolism, are also

linked by 2 PSL pairs with non-essential reactions in Folate Metabolism and
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essential reaction backups in Nucleotide Metabolism. Nucleotide Metabolism

is also the pathway that concentrates most PSL pairs. Both RSL and PSL

reaction pairs unveil Nucleotide and Folate Metabolism as the most entangled

pathways. Taken together, these results indicate that Folate and Nucleotide

Metabolic pathways preserve most rescue routes for reaction deletion events,

in accordance with results in Reference [56]. The fact that the proportion of

plasticity SL pairs is considerably decreased in M. pneumoniae as compared to

E. coli could be indicative that, even if both plasticity and redundancy serve an

important function in achieving viability, essential plasticity is a more sophisti-

cated mechanism that requires a higher degree of functional organization, using

at the same time less resources for maximum growth. At the same time, this

can also be explained by the relative unchanging environmental conditions of M.

pneumoniae in the lung, that could have induced the elimination of pathways

not required in that medium [56]. This suggests that the adaptability of M.

pneumoniae is very much reduced and its behavior could not be resilient to

environmental changes.

4.2.4 Sensitivity to differences on environmental conditions

The last part of this section presents the analysis of plasticity and redundancy

depending on the growth condition under evaluation. Environmental specificity

of genes and reactions has been explored experimentally [119, 215, 216] and

in silico [105] for different organisms and for random viable metabolic network

samples, and it has also been extended to multiple knockouts in yeast [203, 208]

and E. coli [217].

To investigate the sensitivity of SL reaction pairs in E. coli to changes in minimal

medium composition, the study focuses on the 234 SL pairs detected in glucose



132 Chapter 4. Effects of reaction knockouts on steady states

minimal medium and checks their classification over the 333 minimal media

constructed as in the previous Section 4.1. Figure 4.9a shows the SL reaction

pairs ranked by the fraction of media in which the pairs are synthetically lethal.

For most pairs, coessentiality is not specific of an environment and only a

minimal number of pairs shows environmental specificity. In particular, 53%

coessential pairs are lethal in all media and 95% are lethal in more than 95%

of environments. For each SL pair, one can count the number of media in

which the SL pair is classified in the plasticity subtype as compared to the total

number of media in which the pair is predicted to be coessential. Results are

shown in Figure 4.9b. Nearly all SL pairs, 93%, are in the plasticity subclass

for more than 93% of the media, while 12 pairs display a switching behavior

between plasticity and redundancy. Noticeably, these pairs are intra-pathway

and share common metabolites. Of them, three pairs contribute to biosynthesis

of amino acids (Valine, Leucine, and Isoleucine Metabolism and Glycine and

Serine Metabolism) and five pairs belong to the Pentose Phosphate Pathway

and are related to the production of carbon backbones used in the synthesis of

aromatic amino acids. Finally, five reaction pairs maintain in the redundancy

subclass across all conditions in which are coessential.

The behavior of E. coli can be explored in an amino acid-enriched medium (see

Section 2.2.2.2). Comparing with glucose minimal medium, the first observation

is that 223 of the 234 SL pairs detected in glucose minimal medium are also

found to be lethal in amino acid-enriched medium, which means that 11 pairs

are rescued (see Supplementary Table C4-4). Of the 11 RSL pairs in amino

acid-enriched medium, eight are conserved and three switch from plasticity

in the minimal to redundancy in the amino acid-enriched medium. On the

other hand, 208 of the 212 PSL pairs are conserved and four change from

redundancy in the minimal to plasticity in the amino acid-enriched medium.

http://tinyurl.com/ktswl4k
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Figure 4.9: Synthetic lethal reaction pairs in minimal media. a) Synthetic
lethal reaction pairs ranked by the fraction of minimal media for which the pair
is synthetically lethal. b) Synthetic lethal reaction pairs ranked by the fraction
of minimal media in which the SL pairs are classified as essential plasticity
and, complementary, as essential redundancy, provided that the pairs remain

synthetically lethal.

Noticeably, only in one of the 208 conserved PSL pairs the pattern of activity

changes from the reductase reaction producing dimethylallyl diphosphate to

the isomerization of the less reactive isopentenyl pyrophosphate. In addition,

a new set of 12195 lethal reaction pairs occurs, all of them involving however

one essential reaction in glucose minimal medium that in amino acid-enriched

medium becomes nonessential and instead takes part in SL pairs. Apart from

those, no other new SL pairs are found.
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In addition, this study also considers a rich medium. To construct this rich

medium, a Luria-Bertani Broth (see Section 2.2.2.2) has been taken into con-

sideration. In this rich medium, 13 new rescues are found when compared to

the minimal medium (two new rescues as compared to the amino acid-enriched

medium) and only three SL pairs change their plasticity/redundancy category

(see Supplementary Table C4-5).

Plasticity and redundancy are still conserved when the growth maximization

requirement is loosen. To implement the relaxation of the growth maximization

requirement, again the glucose minimal medium is taken as a reference and the

biomass production or the basic nutrients uptake rates are limited. In the first

case, a FVA calculation is performed fixing the growth of the biomass to 30% of

the maximal growth in glucose minimal medium and the exchange bounds of all

nutrient uptakes are obtained. In comparison to the reference values, one can

observe that the only metabolites which lower their maximal uptakes are the

mineral salts (approximately reduced also to a 30%), while the uptake rates for

the rest of compounds remained with the same bounds. Then, it is possible to

perform FBA calculations in this overconstrained condition and compute SL

pairs and their classification in RSL and PSL. If growth is relaxed in E. coli to

30% of its maximum value in glucose minimal medium by doing this, in silico

essentiality of individual reactions does not change but activation of reactions

increases. It is found, however, that the effect of this reorganization is indeed

mild for plasticity and redundancy. All SL pairs are conserved and 82% of them

maintain their PSL or RSL classification (see Supplementary Table C4-6). The

absolute number of RSL pairs increases from 15 to 50 since four RSL pairs in

the reference condition given by glucose minimal medium change to plasticity

in the overconstrained medium, and at the same time 39 PSL pairs change to

RSL. On the other hand, 180 SL pairs of 219 in the reference medium remain as

http://tinyurl.com/ktswl4k
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PSL pairs in the overconstrained condition. However, the pattern of activity in

the pair has switched in 14% of the PSL pairs in this case, which indicates that

the specific selection of the active reaction in a PSL pair can have an impact in

the level of attainable growth.

If instead of limiting the uptake of mineral salts, the uptake rates of basic

nutrients providing sources of carbon, nitrogen, phosphorus and sulfur are

overconstrained, the effect is even softer and indeed negligible as compared to

the reference medium. To do this overcostraining, it is necessary to first apply

FVA setting the value of biomass growth to the maximum in glucose minimal

medium in order to determine an upper uptake limit. Then, the maximum

rate uptake of glucose and of the other three basic compounds is constrained

to 30% of the maximum possible values while keeping the reference values for

the mineral salts. FBA is then applied in the resulting overconstrained medium

and SL pairs and their classification in RSL and PSL are computed. The

number of active reactions only increases in three, the essentiality of individual

reactions and SL pairs is conserved, and 99% of them maintain their PSL or

RSL classification with only three SL pairs that switch class and only one PSL

pair that changes the active reaction (see Supplementary Table C4-7).

In both overconstrained modifications of the glucose minimal medium, the

number of active reactions changed from 412 to 490 in the mineral salts overcon-

strained medium and to 415 in the basic nutrients overconstrained medium. It

is important to stress that, in both cases, the essentiality of individual reactions

and all SL pairs were conserved (except for two new RSL inconsistencies in the

basic nutrients overconstrained medium).

http://tinyurl.com/ktswl4k
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4.3 Conclusions

The first part of this chapter presents the results of a study of the activity and

the essentiality of single reactions of E. coli in different environments. Reactions

can be divided in four categories depending on their values of essentiality and

activity. By doing this, one recovers environment-specific and environment-

general reactions as given in Reference [105]. These correspond to the bimodal

behavior in the category called essential whenever active reactions. Given

their importance, these reactions can be selected as drug targets since they

are fundamental constituents of the metabolism of E. coli. Another important

feature that can be observed is the fact that some reactions, in spite of being

never essential, are always active, which may favor an increase of the growth rate

of the organism and the robustness of metabolism through redundancy. The

categories of reactions which show this behavior are always active reactions and

never essential reactions. The last feature that one can extract from the category

partially essential reactions is that active reactions are not necessarily essential.

Therefore, in general extrapolating activity to essentiality is not correct.

Beyond the essentiality of single reactions, SL pairs are complex functional

combinations of reactions (or genes) that denote at the same time both vulnera-

bility in front of double deletions and robustness in front of the failures of any

of the two counterparts. Working at the level of reactions, synthetic lethality

is meditated by two different mechanisms, essential plasticity and essential

redundancy, depending on whether one reaction is active for maximum growth

in the medium under consideration and the second inactive, or in contrast

both reactions have non-zero flux. Plasticity sets up as a sophisticated backup

mechanism (mainly inter-pathway in E. coli) that is able to reorganize metabolic

fluxes turning on inactive reactions when coessential counterparts are removed
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in order to maintain viability in a specific medium. Redundancy corresponds to

a simultaneous use of different flux channels (mainly intra-pathway in E. coli)

that ensures viability and besides increases fitness. Apparently, it could seem

extremely improbable that the removal of an inactive reaction together with

a non-essential active one, like in PSL pairs, could have any lethal effect on

an organism. However, it is found that this situation is indeed overwhelmingly

dominant in E. coli as compared to redundancy synthetic lethality, and it is still

relatively frequent even in a less complex organism like M. pneumoniae.

Synthetic lethal mutations have been assumed to affect a single function or

pathway [199], which reinforces the idea that pathways act as autonomous self-

contained functional subsystems. In contrast, other investigations in yeast [204]

report that synthetic-lethal genetic interactions are approximately three and a

half times as likely to span pairs of pathways than to occur within pathways.

In this chapter, it is found that RSL pairs in E. coli are predominantly intra-

pathway while PSL pairs, more abundant, tend to be inter-pathway although

concentrated in the entanglement of just two pathways, Cell Envelope Biosyn-

thesis and Membrane Lipid Metabolism. The comparative study here shows

that although pathways entanglement through coessentiality of reactions is low

in both organisms, RSL pairs in M. pneumoniae can be intra-pathway or inter-

pathway, linking Folate Metabolism and Nucleotide and Cofactor Metabolism,

and PSL pairs are basically intra-pathway and located in Nucleotide Metabolism.

Taken together, these results indicate that Folate and Nucleotide Metabolic

pathways preserve most rescue routes for reaction deletion events, in accordance

with results in Reference [56]. The fact that the proportion of PSL pairs is con-

siderably decreased in M. pneumoniae as compared to E. coli could be indicative

that, even if both plasticity and redundancy serve an important function in

achieving viability, essential plasticity is a more sophisticated mechanism that
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requires a higher degree of functional organization, using at the same time less

resources for maximum growth. At the same time, this can also be explained

by the relative unchanging environmental conditions of M. pneumoniae in the

lung, that could have induced the elimination of pathways not required in that

medium [56]. This suggests that the adaptability of M. pneumoniae is very

much reduced and its behavior could not be resilient to environmental changes.

It has also been found that SL reaction pairs and their subdivision in plasticity

and redundancy are highly conserved independently of the composition of the

minimal medium that acts as environmental condition for growth, and even when

this environment is enriched with nonessential compounds or overconstrained to

decrease the maximum biomass production. These environment unspecific SL

pairs can thus be selected as potential drug targets operative regardless of the

chemical environment of the cell.

4.4 Summary

• There exists a set of reactions, and thus enzymes and genes, that must be

always active in order to ensure the viability of an organism [205].

• Non-essential reactions deserve special attention for two causes: their role

as growth enhancers and for their potential participation in synthetic

lethal pairs [205].

• Synthetic lethality is meditated by two different mechanisms, essential

plasticity and essential redundancy, depending on whether one reaction is

active for maximum growth in the medium under consideration and the

second inactive, or in contrast both reactions have non-zero flux [158].
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• Plasticity sets up as a sophisticated backup mechanism that is able to

reorganize metabolic fluxes turning on inactive reactions when coessential

counterparts fail in order to maintain viability in a specific medium [158].

• Redundancy corresponds to a simultaneous use of different flux channels

that ensures viability and besides increases fitness [158].

• Plasticity and redundancy are highly conserved independently of the com-

position of the minimal medium that acts as environmental condition for

growth, and even when this environment is enriched with nonessential com-

pounds or overconstrained to decrease the maximum biomass production

[158].





Chapter 5

Detection of evolution and

adaptation fingerprints in

metabolic networks

Metabolic fluxes present an heterogeneity that can be exploited

to construct metabolic backbones as reduced versions of metabolic

networks. These backbones can be analyzed to extract important

biological information. In this chapter, the disparity filter is applied

to two organisms, Escherichia coli and Mycoplasma pneumoniae.

Backbones offer information about long-term evolution since they

contain the core of ancestral pathways related with energy obtain-

ment optimized by evolution to maximize growth. At the same

time, backbones unveil short-term adaptation capabilities to variable

external stimuli.

141
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The analysis of metabolic networks is a difficult task which requires a mixed use

of tools that belong to Systems Biology, such as Flux Balance Analysis (FBA)

(see Chapter 2, Section 2.2), and tools that belong to complex network science,

such as modelization of metabolic networks as bipartite semidirected networks

(see Chapter 2, Section 2.1.1). The combination of these approaches has enabled

a huge step further towards the elucidation of important biological information

hidden in the complexity of genome-scale metabolic reconstructions.

A useful tool in the endeavor of extracting useful biological information is the

concept of backbone. Backbones maintain relevant biological information while

displaying a substantially decreased number of interconnections and, hence, can

provide accurate but reduced versions of the whole system. In particular, the

work by Almaas et al. [12] introduced a filtering technique that selects the

reaction that dominates the production or consumption of each metabolite such

that a high-flux backbone can be retrieved. Although this method recovers

pathways, the obtained backbones present a linear structure with very little

interconnectivity and lack many of the features of real metabolic networks

[5, 131].

Filtering approaches have also interested researchers working on networks in a

more general context. A filtering method for weighted networks based on the

disparity measure [218, 219] was developed in Reference [95]. This approach

exploits the heterogeneity present in the intensity of interactions in real networks

both at the global and local levels [220] to extract the dominant set of connections

for each element. Typically, the obtained disparity backbones preserve almost

all nodes in the initial network and a large fraction of the total weight, while

reducing considerably the number of links that pass the filter. At the same

time, disparity backbones preserve the heterogeneity and cutoff of the degree

distribution, the level of clustering, and the bow-tie structure (see Chapter 2,
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Section 2.1.5), and other characteristic features of the original networks [95].

Hence, the complex features of the original networks are preserved.

In this chapter, FBA is used to determine reaction fluxes and the disparity

filter (see Appendix D) [95] is applied to extract the metabolic backbones of

two organisms: Escherichia coli and Mycoplasma pneumoniae. These backbones

are investigated for fingerprints of evolution and adaptation. One finds that

the metabolic backbones of both organisms in minimal medium are mainly

composed of a core of reactions belonging to ancient pathways. This means

that the significant fluxes in these bacterial metabolic backbones are associated

to reactions which have been present from the earliest stages of their life and

still remain at present significant for biomass production. At the same time,

external conditions modify the structure of the backbones, which allows to

identify pathways that are more sensitive to changes in the environment and so

prone to short-term adaptation.

The contents of this chapter correspond to Reference [221].

5.1 Identification of the disparity backbones of me-

tabolic networks

FBA is used to compute the fluxes of the reactions composing the metabolic

networks. These fluxes are treated as weights by the disparity filter. In this

chapter, the iJO1366 version of E. coli K-12 MG1655 and the iJW145 version

of M. pneumoniae are used (see Chapter 2, Section 2.3, their networks can be

seen in Supplementary Tables C5-1 and C5-3). FBA calculations are performed

in glucose minimal medium with a maximum uptake of glucose limited to 10

mmol gDW−1 h−1 for E. coli and 7.37 mmol gDW−1 h−1 for M. pneumoniae

http://tinyurl.com/m7nh4b6
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(D-ribose is added to enrich the medium for M. pneumoniae). Once the fluxes are

computed, the disparity filter is applied to the incoming and outgoing connections

of each metabolite, such that only those links to reactions which concentrate a

significant amount of flux are selected for the backbone (see Appendix D). The

connectivity structure (see Chapter 2, Section 2.1.5) of the obtained backbones is

analyzed from an evolutionary perspective, and additional media are considered

to analyze environmental sensitivity (see Chapter 2, Section 2.2.2).

An important feature of flux solutions obtained using FBA is the heterogene-

ity of the flux distributions. In the same state, fluxes of reactions can span

several orders of magnitude [12, 222]. To check this statement, the probability

distribution functions of the obtained fluxes are shown (disregarding zero-flux

reactions) in the insets of Figure 5.1b and c, confirming that, indeed, fluxes

show an heterogeneous distribution at the global level. The set of metabolites in

non-zero flux reactions is considerably reduced from the original total number,

from 1805 to 445 metabolites in E. coli, and from 266 to 227 metabolites in M.

pneumoniae. To characterize the existence of such heterogeneity also at the

local level, the disparity measure [12, 95] is calculated for every metabolite i,

Υi(k) = k
∑
∀j∈Γ(i)(νj/

∑
j νj)

2 (see Appendix D), accounting for the k reactions

j in its neighboring set j ∈ Γ(i) with corresponding fluxes νj . Figures 5.1b

and 5.1c display the disparity values for all metabolites as a function of their

incoming and outgoing degree in E. coli and M. pneumoniae, respectively. The

shadowed areas correspond to values compatible with a random distribution

of fluxes among the reactions producing or consuming a metabolite and help

to discount local heterogeneities produced by random fluctuations (see caption

of Figure 5.1). As shown, most metabolites present flux disparity values that

cannot be explained by random fluctuations meaning that the local distribution
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of the fluxes of reactions associated to metabolites is significantly heteroge-

neous. One concludes then that the disparity filter will be able to efficiently

extract a backbone with the most relevant connections for both organisms, while

preserving the characteristic features of metabolism as a complex network.

Briefly, the disparity filter works by comparing weights of links with a random

assignment. The filter preserves a link in the backbone if the probability that

its normalized weight αij is compatible with the random assignment (p-value)

is smaller than a chosen threshold α which determines the filtering intensity

(see Appendix D). One proceeds to filter the metabolic networks with fluxes

of reactions as weights of the connections between metabolites and reactions.

For each metabolite i, the αij of each connection between metabolite i and

its neighboring reactions j is computed and the obtained p-value is compared

with the significance level α. The disparity filter can be adjusted by tuning

this threshold to observe how the metabolic networks of both E. coli and M.

pneumonaie are reduced as α is decreased from 1 to 0, both of them included,

α = 1 meaning the complete network. Notice that, after applying the filter,

one recovers a bipartite representation of the metabolic backbone. To avoid

working with stoichiometrically non-balanced reactions, the filtered bipartite

representation is transformed into a one-mode projection of metabolites placing

a directed link between two metabolites if there is a reaction whose flux is

simultaneously relevant for the consumption of one metabolite and for the

production of the other [12]. In this one-mode projected backbone, one computes

how many links E, nodes N and total weight W remain. These magnitudes

are normalized by dividing them by the corresponding values in the original

network, ET , NT , and WT .

Figures 5.1d and e show the dependencies N/NT vs E/ET , and W/WT vs E/ET

in the associated insets, for the one-mode metabolic projections of the backbones
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Figure 5.1: Scheme of the application of the disparity filter and measures
of the heterogeneity of reaction fluxes in E. coli and M. pneumoniae. a)
Scheme of the filtering method. Blue nodes are metabolites and green squares
denote reactions. Incoming connections to metabolites are represented by red
arrows, outgoing connections with blue arrows, and bidirectional connectiosns
with dark yellow arrows. OMP denotes one-mode projection. b) Disparity
measure as a function of incoming and outgoing degrees (k) in E. coli. The
shadowed area corresponds to the average plus 2 standard deviations given
by the null model, meaning that points which lie outside this are can be
considered heterogeneous [95]. Inset: global distribution of fluxes of E. coli. c)
Disparity measure as a function of IN and OUT degrees (k) for M. pneumoniae

(follows to next page).
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Figure 5.1: (Follows from previous page) Again, the shadowed area corre-
sponds to the average plus 2 standard deviations given by the null model.
Inset: global distribution of fluxes of M. pneumoniae. d) Fraction of nodes
as a function of the fraction of links in E. coli. Inset: remaining weight as
a function of the fraction of links in the network. e) Fraction of nodes as a
function of the fraction of links in M. pneumoniae. Inset: remaining weight as

a function of the fraction of links in the network.

of both E. coli and M. pneumoniae. While the filter can reduce considerably the

fraction of links, the corresponding fraction of nodes is maintained at almost

the original value. In addition, the total weight in the backbone only starts to

drop appreciably after more than 50% of the links are removed. One takes the

critical value αc as the point where the fraction of nodes starts to decay (see

Figures 5.1d and e). This critical value can be seen as an optimal point which

reduces greatly the number of links in the network preserving at the same time

most nodes and so as much biochemical and structural information as possible.

The values are αc = 0.21 for E. coli and αc = 0.37 for M. pneumoniae.

5.2 Evolutionary signatures in the backbones of me-

tabolites

The metabolic backbones of both E. coli and M. pneumoniae are constructed

using the identified critical values for the significance level. The backbones retain

all the 445 and 227 metabolites present in active reactions respectively. Next, one

analyzes their structure in terms of connectedness. Metabolic networks have been

found to display typical large-scale connectivity patterns of directed complex

networks, called the bow-tie structure, with most reactions in a interconnected

core, named the strongly connected component (SCC), together with in (IN)

and out (OUT) components formed mainly by nodes directly connected to the
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SCC component [131, 133] (see Chapter 2, Section 2.1.5). This is the case of the

original metabolic networks of both organisms, whose SCCs contain the largest

part of the metabolites and reactions of the network, and whose IN and OUT

components are formed, respectively, by nutrients and waste metabolites.

Metabolites in the backbone of E. coli (it can be seen in Supplementary Tables C5-

2) are arranged in a connected component of 178 nodes and several disconnected

small components (51). Three different SCCs can be identified in the connected

part of the backbone, each with 25%, 10%, and 6% of the nodes in the connected

component (see Figure 5.2a). The two smallest SCCs are in the OUT component

of the largest SCC. For the three of them, the IN and OUT components and

tendrils are recovered. Metabolites corresponding to central compounds of

metabolism are identified in these SCCs: protons, water, ATP, glutamate,

phosphate, NAD+, diphosphate, ADP and FAD+. These metabolites are highly-

connected metabolites even in the metabolic backbone, helping to preserve the

same structural features of the complete metabolic network.

Since links in the metabolic backbone denote reactions transforming metabolites,

it is interesting to annotate links with the pathway associated to the correspond-

ing reaction. In this way, it is possible to count the composition of the three

SCCs in terms of pathways. Starting with the largest SCC (see Figure 5.2a),

one finds that the major contributions are Oxidative Phosphorylation (26%),

Citric Acid Cycle (16%), Glycolysis/Gluconeogenesis (15%), Pentose Phosphate

Pathway (9%), and Glutamate Metabolism (9%) (see Figure 5.2c). It has been

demonstrated that these routes are ancient pathways that have been conserved

through evolution. More precisely, Glycolysis and Pentose Phosphate Pathway

take place without the need of enzymes in a mimetic Archean ocean [223].

Concerning the Citric Acid Cycle, it is also an ancient pathway that has evolved

in order to achieve maximum ATP efficiency [224] by being coupled to Oxidative

http://tinyurl.com/m7nh4b6
http://tinyurl.com/m7nh4b6
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Figure 5.2: SCCs of the backbone of metabolites and corresponding pathways.
a) Connected component in the metabolic backbone of E. coli. The colors
of the nodes depend on the component each node belongs to (yellow: SCC1,
green: IN component of SCC1, red: OUT component of SCC1, violet: tendrils

of SCC1, cyan: SCC2, blue: SCC3) (follows to next page).
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Figure 5.2: (Follows from previous page) The color of the links, and its
association given in the legend, depends on the functional categories given in
Reference [119], where each category contains pathways that realize similar
tasks. b) Connected component of the metabolic backbone of M. pneumoniae.
The color of the nodes denote again the component each node belongs to (red:
SCC1, turquoise: IN component of SCC1, green: OUT component of SCC1,
dark yellow: tendrils of SCC1, violet: SCC2). The color of the links, and its
association given in the legend, depends on the pathway each reaction belongs
to. c) Percentage of links in pathways for the largest SCC in the metabolic

backbone of E. coli. d) The same for M. pneumoniae.

Phosporylation and Glycolysis [225], in addition to help the organism to decrease

their quantity of reactive oxygen species by modulation of their participating

metabolites [226]. Another pathway significantly present in the largest SCC is

Glutamate Metabolism. Glutamate has been reported to be one of the oldest

amino acids used in the earliest stages of life [227].

Links in the other two SCCs correspond also to reactions belonging to ancestral

pathways. The second largest SCC contains links that belong mainly to Purine

and Pyrimidine Biosynthesis (91%). Purines and pyrimidines serve as activated

precursors of RNA and DNA, glycogen, etc. [228, 229], and it has been found

that the synthesis of purines and pyrimidines was the first pathway involving

enzyme-based metabolism [230]. Interestingly, the other contribution to this

SCC is Glycine and Serine Metabolism. Glycine is a precursor of purines and

pyrimidines. Pathways related to the third SCC are Membrane Lipid Metabolism

(97%) and Cofactor and Prosthetic Group Biosynthesis (3%). Membrane Lipid

Metabolism supplies the necessary lipids to generate the cell membrane needing

the participation of the cofactor FAD+/FADH2. It has been shown that the

pathways involved in lipid metabolism exhibit differences between different

lineages in organisms [231], whereas pathways related to central metabolism are

more conserved and are transversal [231].
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When considering α values smaller than the critical one, implying that the

filter is more restrictive and more heterogeneity is needed to overcome it, we

observe that the smallest SCCs discussed above disappears. More precisely,

it happens for a value of α = 0.19. Decreasing even more the significance

level to α = 0.15 the SCC containing reactions in the Purine and Pyrimidine

Biosynthesis pathway retains the 30% of the nodes for αc = 0.21, whereas the

largest SCC still contains a 86%, showing the large resistance of this large core

to lose nodes. At a value of α = 0.14, the second SCC finally disappears and

there only remains a single SCC, still preserving 82% of the nodes in it for

αc = 0.21. Hence, energy metabolism shows a large resistance to get fragmented

even though the filter becomes progressively more and more restrictive.

To contrast the obtained results in E. coli, the same analysis in M. pneumoniae is

performed (its backbone can be seen in Supplementary Tables C5-4). Its critical

value αc is 0.37 (see Figure 5.1). The connected component of its metabolic

backbone is shown in Figure 5.2b. It contains two SCCs, one of them being

irrelevant with only two nodes (see Figure 5.2b). The relevant SCC contains

21% of the nodes in the connected component, and the largest part of its links

are related also with energy metabolism as in E. coli. The dominant pathways

in this core are Glycolysis and Pyruvate Metabolism (see Figure 5.2d). Along

Glycolysis, Pyruvate Metabolism is also an ancestral pathway that was present

in the earliest stages of life [35], when no oxygen was present in the early

atmosphere.

http://tinyurl.com/m7nh4b6
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5.3 The metabolic backbones of E. coli encode its

short-term adaptation capabilities

The previous section analyzes the metabolic backbone of E. coli in glucose

minimal medium in terms of the long-term evolution of the organism. In this

section, the study is focused on how changes in the environment modify this

backbone, which exposes short-term adaptation capabilities. First, FBA fluxes

that maximize the growth rate of E. coli in the rich medium Luria-Bertani (LB)

Broth [154, 158] are calculated. Afterwards, the disparity filter is applied to

extract the metabolic backbone in this new environment, that is obtained for

a significance level threshold αc = 0.4. This value is noticeably larger than

αc = 0.21 identified for the glucose minimal medium. Interestingly, this rich

medium activates 400 reactions, 11 less than in glucose minimal medium. Of

them, 279 are active in both media, of which 247 have a larger flux in LB Broth.

An analysis of the connected components in the metabolic backbone of E. coli

in rich medium is also performed. One finds that it contains a large connected

component with 449 metabolites and 60 small disconnected components. The

connected component contains also three SCCs. However, two of them are

tiny with only two nodes, whereas the largest one encloses 34% of the nodes

in the connected component. Interestingly, the pathway contributing more

reactions to this large SCC is Membrane Lipid Metabolism (see Figure 5.3a).

This fact is in accordance with Reference [232], where the authors found that

the expression of the genes which synthesize fatty acids was generally elevated

in rich medium. Another important difference is the loss of prominence of

Oxidative Phosphorylation and the Pentose Phosphate Pathways.

Next, the set of minimal media given in Reference [119] (see Chapter 2, Sec-

tion 2.2.2.1) are considered, where different carbon, nitrogen, phosphorus and
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Figure 5.3: Dependence of the distribution of pathways in the metabolic
backbone of E. coli with the composition of environment. a) Histogram of the
fraction of links belonging to each pathway (x axis) for the 333 minimal media
(left) and in the rich medium (right). b) Probability distribution function of
αc for all minimal media. c) Probability distribution function of the fraction
of links in the metabolic backbones for all minimal media. d) Histogram of

weights of links in the metabolic superbackbone.

sulfur sources are alternated. For each minimal medium, αc is scanned as in

Figure 5.1b and c. In Figure 5.3b and c, one plots, respectively, the probabil-

ity distribution functions of the tuned αc values and of the fraction of links

remaining in the metabolic backbones for all media. One finds that there is a

characteristic value of these magnitudes with no outliers, meaning that the flux

structure is very similar across media in spite of the difference in the composition

of nutrients. The presence of these characteristic values of αc and the retained

fraction of links in the metabolic backbones motivates to merge all of them into a

single merged metabolic backbone. The links in this superbackbone correspond
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to reactions that passed the filter in any of the external media considered and

are annotated with a weight that corresponds to the number of media in which

the corresponding metabolic backbone contains the link. The histogram of the

distribution of these weights is shown in Figure 5.3d, characterized by a clear

bimodal behavior. One peak corresponds to links being common to all media,

and the other corresponds to the most common situation of links specific to a

few media.

An analysis of connectedness shows that this superbackbone contains a large con-

nected component and 11 disconnected components. The connected component

is composed by a large SCC with 43% of its nodes, in addition to three small

SCCs containing only two nodes each. A pathway composition analysis in the

large SCC indicates that, again, one obtains significantly different results from

the glucose minimal medium (see Figure 5.3a). The most prominent pathway is

Alternate Carbon Metabolism, in agreement with Reference [233], where the

authors found that Alternate Carbon Metabolism is related to genes whose

expression depends on external stimuli, particularly on alteration of carbon

sources. It is also in agreement with results in Reference [234], where the authors

hypothesize that Alternate Carbon Metabolism can adapt to different nutritional

environments, and also with results in Reference [7], where Alternate Carbon

Metabolism is found to be an important intermediate pathway in the network of

pathways. The second most abundant pathway corresponds to Transport, Inner

Membrane, which again is in agreement with Reference [233] and Reference [7].

It is a transversal pathway which is in charge of the transport of metabolites

between periplasm and cytosol. Finally, if one retains links present at least in

25% of the minimal media, the network fragments into 40 components with the

largest one containing five SCCs, which indicates that links with small weight,
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i.e. links specific for a few media, have an important role in providing global

connectivity to the superbackbone.

5.4 Conclusions

Identifying high-flux routes in metabolic networks has been useful in order to,

for example, identify principal chains of metabolic transformations [12, 235, 236].

In this chapter, one goes beyond the mere identification of high-flux routes with

metabolic pathways. Using a high-flux fluctuation analysis, it is possible to

identify ancestral pathways and, on the other hand, pathways with capabilities

to adapt to short-term external changes. At the core of the high-flux fluctuation

analysis, a filtering tool which needs no a priori assumptions for the connectivity

of the filtered subnetworks is used, but that produces reduced versions which

are globally connected and retain the characteristic complex features of the

original network. This procedure allows to extract a metabolic backbone which

contains all relevant connections given a set of external nutrients, recovering

both intra- and inter- pathway connections which can be understood as the

superhighways of metabolism. Further, an evolutionary explanation can also be

given for this identification of both intra- and inter- pathway connections since

the cooperation between reaction inside and outside pathways implies that the

overall performance of a cell will be improved due to a better and more efficient

utilization of the available resources. This fact reinforces the idea that pathways

are not isolated identities performing their tasks independently of others [7].

As stated in Reference [141], properties that originate from evolutionary pressure

should not be observed in random networks. Due to the fact that the disparity

filter identifies links that deviate from a random null model, it allows to identify

those reactions for which evolutionary pressure has had a large incidence. Since
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FBA flux solutions are used, in this chapter the effect of evolutionary pressure is

understood to favor the maximization of the growth of the organism [49, 237, 238].

The evolutionary analysis of the metabolic backbones of the two considered

organisms in minimal medium shows that their SCCs are composed by reactions

that belong to ancient pathways. In E. coli, each SCC has different and

definite metabolic functions. In both E. coli and M. pneumoniae, the largest

SCC contains pathways related to energy metabolism, meaning that these

organisms have evolved towards maximum efficiency in obtaining chemical

energy, something very important in case of nutrient scarcity. A smaller SCC is

responsible for the synthesis of purines and pyrimidines, vital for DNA / RNA

synthesis. The third SCC corresponds to the metabolism of lipids, the most

important constituents that compose the cell membrane. Two findings relating

the two small SCCs deserve also special attention. Firstly, the two small SCCs

are located in the OUT component of the large SCC. Secondly, as the filter

becomes more restrictive, the small SCCs fragment, while the large SCC still

maintains a large part of links and nodes. These features could be explained

in terms of the functional requirements of the small SCCs. On the one side,

they need chemical energy to perform their tasks and, on the other side, they

need also basic building blocks. These tasks are performed in the large SCC by,

for example, Glycolysis/Gluconeogenesis or the Citric Acid Cycle. Therefore,

it suggests that those SCCs were added to the OUT component of the large

SCC in later steps of evolution. A simpler organism, M. pneumoniae, has no

other relevant SCCs apart from energy metabolism, as a result of its parasitism,

which has led to the loss of many metabolic functions [56]. More precisely, in

M. pneumoniae the Citric Acid Cycle and Oxidative Phosphorylation do not

take place [56, 239], meaning that it must rely on organic acid fermentation to

obtain energy. Moreover, changes in the growth rate greatly affect the fluxes
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through Glycolysis and Pyruvate Metabolism [56].

The study of the dependence on the environment of the E. coli metabolic

backbone allows to identify short-time adaptation capabilities. Regarding rich

medium, one observes that the critical value of α is substantially different

than the one in glucose minimal medium, suggesting that this enriched medium

modifies significantly the flux structure compared to the glucose minimal medium.

The bacterium in rich medium displays less active reactions than in glucose

minimal medium since, in minimal medium, many reactions must be active

in order to synthesize biosynthetic precursors that in the rich medium can

be obtained from the environment, in agreement with Reference [232]. The

pathway called Membrane Lipid Metabolism achieves a high relevancy, being

the most abundant pathway in the largest SCC of the rich medium metabolic

backbone. This happens because the instantaneous response of E. coli to this rich

medium, which induces a large increase in the growth rate of the organism due

to nutrient abundance, is to synthesize as much as membrane lipids as possible,

since fast-growing cells must synthesize membrane components more rapidly to

satisfy the high lipid demand to generate new cells [232]. The analysis of the

adaptation of E. coli to 333 different minimal media shows that the distribution

of fluxes is practically independent on the composition of the nutrients present

in these environments, allowing to extract characteristic features that describe

the backbones of the metabolic network independently of the environment. This

permits the construction of a merged backbone that comprises all the links

composing the metabolic backbone in each media. This leads to the identification

of pathways whose associated reactions are more sensitive to changes in the

environment, unveiling Alternate Carbon Metabolism as the pathway with

more capabilities to respond to external stimuli, in accordance with previously

reported results [233, 234].
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The use of filtering methods usually imply a drastic reduction of the complexity

of metabolic maps, which weakens the validity of potentially inferred conclusions.

The application of the disparity filter based on a high-flux fluctuation analysis to

produce metabolic backbones enables to reduce the system while maintaining all

relevant interactions and so it becomes a useful tool to unveil sound biological

information. For instance, the investigation of E. coli and M. pneumoniae

revealed metabolic backbones in minimal medium mainly composed of a core of

reactions belonging to ancient pathways, for which the effects of evolutionary

pressure are higher, and unveiled pathways with high capacity to respond to

external stimuli.

5.5 Summary

• The disparity filter is very efficient in order to compute metabolic back-

bones as reduced versions of metabolism which retain its complexity [221].

• The study of the bow-tie structure of the backbones in a glucose minimal

medium reveals that pathways related with energy obtainment have an

important evolutionary role in E. coli and M. pneumoniae [221].

• The study of the backbone of E. coli in rich medium identifies the pathway

Membrane Lipid Metabolism as relevant for growth in the nutritionally

rich medium, due to the necessity of large amounts of lipids to generate

the cell membrane [221].

• The analysis of the superbackbone, constructed by merging all the back-

bones corresponding to different minimal media, recognizes the pathway

Alternate Carbon Metabolism as the most relevant pathway to respond to

external stimuli [221].



Chapter 6

Assessing FBA optimal states

in the feasible flux phenotypic

space

Optimal growth solutions can be confronted with the whole

set of feasible flux phenotypes (FFP), which provides a reference

map that helps to assess the likelihood of optimal and high-growth

states and their extent of conformity with experimental results. In

addition, FFP maps are able to uncover metabolic behaviors that

are unreachable using models based on optimality principles. The

information content of the full FFP space of metabolic states provides

with an entire map to explore and evaluate metabolic behavior and

capabilities, opening new avenues for biotechnological and biomedical

applications.

159
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The results presented in previous chapters required an extensive use of Flux

Balance Analysis (FBA) (see Section 2.2) in order to extract backbones or to

compute the effect of failures of reactions. If the removal of a reaction or a

pair of reactions is not lethal for the organism, i.e., the growth rate is not zero,

there can exist many flux solutions for the organism to be alive. As it has

been already explained, the FBA solution is a possible solution, the one which

maximizes the growth rate. One may be tempted to ask where the solutions

given by FBA lay in the whole space of possible flux solutions of a metabolic

network. In this way, it will be possible to know whether the state given by

FBA is indeed representative of the system or, on the contrary, it is not a

representative solution of the flux space, this eventually being interpreted for

example due to evolutionary effects.

FBA studies, like in the previous Chapter 4, reveal that metabolism is a

dynamically regulated system that reorganizes to safeguard survival [49, 237],

implying that metabolic phenotypes directly respond to environmental conditions.

For instance, unicellular organisms can be stimulated to proliferate by controlling

the abundance of nutrients available. In rich media, cells reproduce as quickly

as possible by fermenting glucose, a process which produces high specific growth

rates as well as large quantities of excess carbon in the form of ethanol and

organic acids [240]. To survive the scarcity of nutrients during starvation

periods, Glycolysis is hypothesized to switch to oxidative metabolism, which no

longer maximizes the specific growth rate, but instead the ATP yield needed

for cellular processes. Cells of multicellular organisms show similar metabolic

phenotypes, relying primarily on Oxidative Phosphorylation when not stimulated

to proliferate and changing to nonoxidative glycolytic metabolism during cell

proliferation, even if this process -known in cancer cells as the Warburg effect

[241, 242]- is much less efficient at the level of energy yield.
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These metabolic phenotypes are captured by FBA. However, the identified

solutions are frequently inconsistent with the biological reality since no single

objective function describes successfully the variability of flux states under all

environmental conditions [243, 244], and in fact the highest accuracy of FBA

predictions is achieved whenever the most relevant objective function is tailored

to particular environmental conditions according to the empirical evidence

for a very specific metabolic phenotype. For instance, FBA requires either a

rich medium or a manual limitation of the oxygen uptake to a physiological

enzymatic limit to mimic the observed fermentation of glucose to formate,

acetate, or ethanol typical of proliferative metabolism, while in minimal medium

optimization of growth rate relies primarily on Oxidative Phosphorilation, which

increases ATP production converting glucose to carbon dioxide, as in starvation

metabolism. However, along optimal metabolic phenotypes, there is a whole

space of possible states non-reachable by invoking optimality principles that

prevent non-optimal biological states. Optimization of a biological function

in the absence of a priori biological justification, which happens for instance

under conditions for proliferative or starvation metabolism, may weaken in silico

predictions.

In this chapter, optimal growth rate solutions are confronted to the whole

set of feasible flux phenotypes (FFP) of core Escherichia coli metabolism in

minimal medium, which provides a reference map that helps to assess the

likelihood of optimal and high-growth states [245]. The whole set of feasible flux

phenotypes is determined by mass-balance conditions and the bounds imposed

on metabolites. Mathematically, it constitutes a convex finite polytope, and it

is sampled using an algorithm called Hit-And-Run (HR) (see Appendix E) [246].

One can quantitatively and visually show that optimal growth flux phenotypes

are eccentric with respect to the bulk of states, statistically represented by
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the feasible flux phenotypic mean, which suggests that optimal phenotypes

are uninformative about the more probable states, most of them low-growth

rate. Feasible flux phenotypic space is proposed as a benchmark to calibrate

the deviation of optimal phenotypes from experimental observations. Finally,

the analysis of the entire high-biomass production region of the feasible flux

phenotypic space unveils metabolic behaviors observed experimentally but

unreachable by models based on optimality principles, like FBA, which forbid

aerobic fermentation -a typical pathway utilization of proliferative metabolism-

in minimal medium with unlimited oxygen uptake.

The contents of this chapter correspond to Reference [245].

6.1 Optimal growth is eccentric with respect to the

full FFP space

As in FBA, feasible flux states of a metabolic network are those that fulfill

stoichiometric mass balance constraints together with imposed upper and lower

bounds on the reaction fluxes. These constraints restrict the number of solutions

to a compact convex set which contains all possible flux steady states in a

particular environmental condition. In glucose minimal medium (see Chapter 2,

Section 2.2.2.1), the FFP space of the core E. coli model (its network can

be seen in Supplementary Table C6-1) is determined by 70 potentially active

reactions, including biomass formation and the ATP maintenance reaction, and

68 metabolites. Using the HR algorithm, a raw sample of 109 feasible states is

obtained, from which a final uniform representative set of 106 feasible states is

extracted.

http://tinyurl.com/k2bqtug
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Notice that the used approach is suitable for genome-scale network sizes beyond

the reduced size of the core E. coli model. There is not any fundamental

or technical bottleneck that prevents its application to complete metabolic

descriptions at the cell level. In this chapter, the core E. coli model is used due

to a matter of computational time and ease of visualization.

From the sampled set of core E. coli metabolic states in minimal medium of

glucose bounded to 10 mmol gDW−1h−1, the metabolic flux profiles of each

individual reaction is collected as the set of its feasible metabolic fluxes. From

such profile, one can compute the probability density function f(ν) which

describes the likelihood for a reaction to take on a particular flux value. In

Figure 6.1, the profiles of all reactions are shown. One can observe a variety of

shapes, all of them low-variance, most displaying a maximum probability for

a certain value of the flux inside the allowed range1, and many being clearly

asymmetric. The allowed range is computed using Biomass unconstrained Flux

Variability Analysis (see Chapter 2, Section 2.2.4).

To characterize the dispersion of the possible fluxes for each reaction, one can

measure its coefficient of variation CV (f(ν)) calculated as the ratio between the

standard deviation of possible fluxes and their average (see Supplementary Table

C6-2). For all but three reversible reactions (Malate dehydrogenase, Glucose-

6-Phosphate isomerase, and Glutamate dehydrogenase), the only reversible

reactions having a low associated flux mean and thus a higher CV (f(ν)), this

metric is below one and when ranked for all reactions it steadily decreases to

almost zero, Figure 6.2a. Interestingly, it can be found that this coefficient

is significantly anticorrelated with the essentiality of reactions as observed

experimentally [119] (point-biserial correlation coefficient -0.29 with p-value

1Notice that none of these histograms can have more than one peak due to the convexity of
the steady-state flux space.

http://tinyurl.com/k2bqtug
http://tinyurl.com/k2bqtug
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Figure 6.1: Probability density functions of metabolic fluxes values for all
reactions in core E. coli under glucose minimal conditions (follows to next

page).
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Figure 6.1: (Follows from previous page) Each graph shows the reaction
label, the flux variability range (values inside parentheses), and each associated
pathway (acronyms in italics). Notice that the range plotted in the axes does
not coincide with the flux variability range, since in the axes an optimal x
range for each reaction is chosen to distinguish the shape of each profile. In
addition, in each profile the position of the FBA point (blue marker) and the

position of the Mean (green marker) are also shown.

0.01, see Appendix C). This means that essential reactions tend to have a

highly concentrated profile of feasible fluxes. Besides, and only for the glucose

transferase reaction GLCpts, one finds a zero probability of having a zero

flux, which indicates that this reaction is essential in glucose minimal medium

as expected. The asymmetry of each profile is characterized by the distance

between the more probable flux in the FFP space and the lower flux bound of

the flux variability range rescaled by the flux variability range of the reaction

(see Chapter 2, Section 2.2.4). In Figure 6.2b, a scatterplot of values for all 68

core reactions is shown. Strikingly, the rescaled distances cluster in three regions

around 0, 0.5 and 1 forming groups of sizes 38, 15 and 17 respectively. This

indicates that the most probable flux is close to either the lower or upper bound

or, conversely, the probability distribution function tends to be quite symmetric.

Moreover, it can be also observed that an anticorrelation between the length of

the flux range and the position of the most probable flux is present, so that the

closer is this to its maximum value the shorter is the allowed range of fluxes.

In order to assess the likelihood of flux states corresponding to FBA maximization

of the flux through the biomass reaction (FBA-MBR) (or equivalently of the

growth rate) in relation to typical2 points within the whole FFP space, one can

calculate the average flux value for each reaction, the mean, and compare it

to the FBA optimal biomass production flux. The complementary cumulative

2In the mathematical/computational context, typical means statistically representative in
relation to the whole set of flux states contained in the FFP space.
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Figure 6.2: Analysis of reaction profiles and visualization of the FFP space.
a) Coefficient of variation for all core reactions ranked by value. b) Scatterplot
of distances between the more probable flux in the FFP space and the lower flux
bound rescaled by flux variability range for each reaction. c) Complementary
cumulative distribution function of distances between FBA maximal growth
flux and FFP space mean flux rescaled by flux variability range for each reaction,
in log-log scale. d) Matrix of Pearson correlation coefficients measuring the
degree of linear associations between feasible fluxes of reactions (acronyms of
the pathways are shown in Abbreviations). e) Projection of the FFP space
onto the two principal component vectors of the correlation matrix in e). All
sampled flux phenotypes are normalized and projected along the first (ρ1) and
second (ρ2) principal components. The plot is in polar coordinates, with the
negative logarithm of the radius. The majority of points lies in a circle close
to the origin (the darker area). The FBA solution (green circle) is, conversely,

rather eccentric.
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distribution function of the distances between these two characteristic fluxes

rescaled by the flux variability range of reactions is shown in Figure 6.2c (see

Supplementary Table C6-2). A broad distribution of values can be observed

over several orders of magnitude with no mean value actually very close to

the FBA maximal solution except for a few reactions, typically working at

maximum growth. At the other end of the spectrum, deviated reactions include

for instance excretion of acetate and phosphate exchange. As a summary, one

can conclude that the mean and the FBA biomass optimum are rather distant,

which suggests that FBA optimal states are uninformative about phenotypes in

the bulk of states in the FFP space.

To visualize neatly the eccentricity of the FBA maximum growth state with

respect to the bulk of metabolic flux solutions, Principal Component Analysis

[247, 248] is used in order to reduce the high-dimensionality of the full flux solu-

tion space projecting it onto a two-dimensional plane from the most informative

viewpoint (see Appendix F). Reaction profiles are taken in pairs to calculate

the matrix of Pearson correlation coefficients measuring their degree of linear

association (see Figure 6.2d, the matrix is provided in Supplementary Table C6-

3). Note that an ordering of reactions by pathways allows to have a clear visual

feedback of intra- and inter-pathway correlations taking place in the core E. coli

metabolic network, such that clusters of highly correlated reactions appear as

bigger darker squares. The two axes of our projection correspond to the two first

principal components of this profile correlation matrix ρ1 and ρ2, which account

for most of the variability in profile correlations. Each sampled metabolic flux

state has been rescaled as a z-score centered around the mean and projected

onto these axes, as shown in the scatterplot Figure 6.2e in polar coordinates,

where a negative logarithmic transformation to the radial coordinate for ease

of visualization has been applied. The majority of phenotypes have a radius

http://tinyurl.com/k2bqtug
http://tinyurl.com/k2bqtug
http://tinyurl.com/k2bqtug
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Figure 6.3: a) Probability distribution function of the radii of all solutions
before applying the negative logarithmic transformation. The red area denotes
the probability of having a smaller radius than the FBA solution. This
fraction of area is the 3% of the total area, which means that the 97% of
the solutions have a larger radius than the FBA solution. b) Cumulative
probability distribution function of the radius. The blue region denotes the
range of solutions with a radius smaller than FBA. The probability of having
a radius smaller than FBA is the y-value of the curve at the rightmost side of

the region.

close to zero. Since points closer to the origin are better described by the two

principal components (see Appendix F), this implies that ρ1 and ρ2 capture

the largest variability of the sampled FFP. Clearly, the FBA optimal growth

solution is rather eccentric with respect to typical solutions, with an associated

radius of 0.98 in this representation. In fact, 97% of states have a smaller radius

than the optimal growth solution (see Figure 6.3).

6.2 The FFP space gives a standard to calibrate

the deviation of optimal phenotypes from exper-

imental observations

This section focuses on the relationship between primary carbon source uptake

and oxygen need to illustrate the potential of the FFP space as a benchmark
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to calibrate the deviation of in silico predicted optimal phenotypes from exper-

imental observations. Sampled FFP states of core E. coli, in particular FFP

mean values, as a function of the upper bound uptake rate of the carbon source

are compared with reported experimental data for oxygen uptakes in minimal

medium with glucose, pyruvate, or succinate as a primary carbon source (see

Figure 6.4). The line of optimality representing FBA optimal growth solutions

is also considered. Glucose experimental data points were used from Reference

[49], experimental results for pyruvate are reported in Reference [50], and exper-

imental results in Reference [249] report the quantitative relationship between

oxygen uptake rate and acetate production rate as a function of succinate uptake

rate.

In all cases, FBA-MBR reproduces well experimental data points in the low

carbon source uptake region [249], where E. coli is indeed optimizing biomass

yield. However, oxygen uptake rate saturates after some critical threshold of

carbon source uptake rate (which depends on the carbon source) reaching a

plateau which, among other possibilities, could be explained by the existence of

a physiological enzymatic limit in oxygen uptake that lessens the capacity of the

respiratory system [250]. The plateau levels are 18.8± 0.7 mmol gDW−1 h−1 for

glucose [249], 16.8± 0.4 mmol gDW−1 h−1 for pyruvate [50], and 19.49± 0.78

mmol gDW−1 h−1 for succinate [249]. In this region of high carbon source

uptake, FBA-MBR predicts an oxygen uptake overestimated by around 25%

with respect to the values reported from experiments. While this amount is in

principle large, the FFP space gives a standard that helps to calibrate it.

The eccentricity of experimental observations is measured as their distance

to the FFP mean. For glucose, this value is 19.4 mmol gDW−1 h−1, which

makes the distance of 5.3 mmol gDW−1 h−1 between the FBA-MBR prediction

and experimental data relatively low (see Figure 6.4a). The distance of 8.2
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Figure 6.4: Comparison of predicted phenotypes and experimental data.
Sampled points in the FFP space with maximum carbon source upper bound
are plotted in shaded grey, darkness is proportional to the number of points.
Experimental data points are red circles. The in silico-defined line of optimality,
representing FBA optimal growth solutions as a function of the upper bound
uptake rate of the carbon source, is shown in orange. Blue squares correspond
to FFP mean values for different carbon source upper bound uptake rates.
a) Oxygen vs. glucose uptake rates, experimental data from [49]. The FFP
space is sampled with glucose bounded to 12 mmol gDW−1 h−1. b) Oxygen
vs. pyruvate uptake rates, experimental data from Reference [50]. The FFP
space is sampled with pyruvate bounded to 23 mmol gDW−1 h−1. c) Oxygen
vs. succinate uptake rates, experimental data from Reference [249]. The FFP
space is sampled with succinate bounded to 15 mmol gDW−1 h−1. Inset
Acetate production rate vs. succinate uptake rate, experimental data from

Reference [249].
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mmol gDW−1 h−1 between the FBA-MBR prediction and experimental data

is slightly worse for pyruvate (see Figure 6.4b), in which case the eccentricity

of experimental observations is of 18.4 mmol gDW−1 h−1. The disagreement

between optimality predictions and experimental data is much more significative

in the case of succinate (see Figure 6.4c), for which the eccentricity of experi-

mental observations is only of 4.3 mmol gDW−1 h−1, while the distance between

the FBA-MBR prediction and experimental data is of 5.4 mmol gDW−1 h−1,

meaning that the FFP mean is indeed more adjusted to observations. The

case of acetate production for this carbon source is even more conspicuous (see

Figure 6.4c Inset). While FBA-MBR is still reproducing well the experimental

results of no acetate production in the low succinate uptake region, it cannot

predict production of acetate at any succinate uptake rate due to the fact that

FBA-MBR in minimal medium with unlimited oxygen does not capture the

enzymatic oxygen limitation. The FBA-MBR solution diverts resources to the

production of ATP entirely through the Oxidative Phosphorylation pathway.

Thus, it fails to reproduce experimental observations of acetate production in the

region of high succinate uptake rates [249, 251–253]. In contrast, most metabolic

states in the FFP space are consistent with acetate production, so that in this

case the FFP mean turns out as a good predictor of the experimentally observed

metabolic behavior.

In summary, while FBA-MBR predictions seem accurate for low carbon source

uptake rate states in minimal medium as seen previously [249], the experimental

points diverge from the FBA-MBR prediction state when increased values of

carbon source uptake rates are considered. Note that, in general, it is not

straightforward to quantify the significance of the divergence. Here, the FFP

space is proposed as a benchmark. According to this calibration, one finds that

FBA optimal growth predictions of oxygen needs versus glucose, pyruvate, or
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succinate uptake are worse the more downstream the position of the carbon

source into catalytic metabolism. Using the core E. coli model, it has been

checked that the ratio of the maximum ATP production rate to the maximum

oxygen uptake (both calculated by FBA optimization of ATP production rate)

for the three carbon sources glucose, pyruvate, and succinate are respectively

2.9, 2.6, and 2.4, so this ratio decreases as more downstream in the catalytic

metabolism.

6.3 The high-biomass production region of the FFP

space displays aerobic fermentation in minimal

medium with unlimited oxygen uptake

The high-growth metabolic region of the core E. coli FFP space is resampled in

glucose minimal medium with a glucose upper bound of 10 mmol gDW−1 h−1.

This region is defined by setting a minimal threshold for the biomass production

of ≥ 0.4 mmol gDW−1 h−1 [254], and the new sample has a final size of 105

states. Note that phenotypes in this high-growth sample remain very close to

the biomass yield threshold due to the exponential decrease of the number of

feasible flux states with increased biomass production, as shown in the biomass

flux profile in Figure 6.1.

In this region, one can identify pathway utilization typical of proliferative mi-

crobial metabolism, even when considering a minimal medium and unlimited

oxygen uptake. This metabolic behavior is consistent with experimental data

[49, 249, 255] but it is unreachable by FBA models based on optimality principles

(unless optimization is accompanied by auxiliary constraints not assumed in

standard FBA implementations, like the solvent capacity constraint [254], or
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Figure 6.5: Schematic of pathway utilization in high-growth vs low-growth
conditions.

by modelization beyond stoichiometric mass balance, for instance, thermody-

namically feasible kinetics or enzyme synthesis [256, 257]). These by-products

cannot be explained by FBA-MBR in minimal medium with unlimited oxygen

supply since, in this optimization framework, metabolic fluxes are basically

forced to ATP production through Oxidative Phosphorylation with excretion of

CO2 as waste. However, increasing the oxygen limitation in FBA-MBR results

in secretion of formate, acetate, and ethanol -in that order-, with corresponding

shifts in metabolic behavior [250].

According to the FFP space of core E. coli, one can observe that the high-

biomass production FFP subsample is characterized by the secretion of small

organic molecules, even when the supply of oxygen is unlimited. This fact points

to the simultaneous utilization of Glycolysis and Oxidative Phosphorylation to

produce biomass and energy, as illustrated in the schematic shown in Figure 6.5.

Quantitative relationships between the production of small organic molecules

and glucose and oxygen uptake rates are shown in the remaining panels of

Figure 6.6. Three-dimensional scatterplots for the production rates of formate,

acetate, ethanol, and lactate are shown in Figures 6.6a, 6.6c, 6.6e, and 6.6g

respectively, with projections into the three possible two-dimensional planes
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Figure 6.6: High growth phenotypes of core E. coli on glucose minimal
medium. a) 3-dimensional scatterplot of formate production rate vs glucose
and oxygen uptake rates. b) Density projections of a) on each of the possible 2D
planes, formate-glucose, formate-oxygen, and glucose-oxygen. c) 3-dimensional
scatterplot of acetate production rate vs glucose and oxygen uptake rates. d)
Density projections of c) on each of the possible 2D planes, acetate-glucose,
acetate-oxygen, and glucose-oxygen. e) 3-dimensional scatterplot of ethanol
production rate vs glucose and oxygen uptake rates. f) Density projections
of e) on each of the possible 2D planes, ethanol-glucose, ethanol-oxygen, and
glucose-oxygen. f) 3-dimensional scatterplot of lactate production rate vs
glucose and oxygen uptake rates. g) Density projections of f) on each of the

possible 2D planes, lactate-glucose, lactate-oxygen, and glucose-oxygen.
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shown in Figures 6.6b, 6.6d, 6.6f, and 6.6h respectively. As the levels of glucose

and oxygen uptakes are raised, metabolic phenotypes can achieve an increased

production of formate, acetate, ethanol, and lactate even though the majority

of feasible phenotypes remain at low production values. Due to the high-growth

requirement, oxygen uptake is always high but its variability increases with

glucose uptake increase around a value of approximately 41.2 mmol gDW−1 h−1,

which clusters the majority of high-growth metabolic phenotypes. Interestingly,

this oxygen uptake rate value marks a region in the FFP space with maximum

potential production rates of formate, acetate, ethanol, and lactate. Above and

below that value most states are concentrated in the range [39.0,42.0] mmol

gDW−1 h−1.

Taken together, these results indicate that, contrarily to standard FBA predic-

tions, a high level of glucose uptake combined with enough oxygen can maintain

the requirements of proliferative metabolism for biomass formation through

aerobic fermentation even if the rest of nutrients are scarce and restricted to

the minimum. At the same time, additional oxygen uptake diverts glucose back

towards more efficient ATP production through Oxidative Phosphorylation.

Hence, oxygen has the potential of regulating the glucose metabolic switch in

which glucose uptake rates larger than a critical threshold around 5.0 mmol

gDW−1 h−1 [254] lead to a linearly increasing maximum organic by-products

production by a gradual activation of aerobic fermentation and a slight decrease

of Oxidative Phosphorylation.

6.4 Conclusions

The information content of the full FFP space of metabolic states in a certain

environment provides with an entire map to explore and evaluate metabolic
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behavior and capabilities. While optimality goals need to be tailored to con-

ditions and produce singular optimal solutions that may not be consistent

with experimental observations, we have nowadays sufficient computational and

methodological capacity to produce and analyze full FFP maps. The latter

offer a reference framework to put into perspective the likelihood of particular

phenotypic states that, as shown, enables to uncover metabolic behaviors that

are unreachable using standard models based on optimality principles. In fact,

the location of metabolic flux distributions into precise optimal states has been

challenged recently by the proposal that metabolic flux evolve under the trade-off

between two forces, optimality under one given condition and minimal adjust-

ment between conditions [244]. In this way, resilience to changing environments

necessarily forces flux states to near-optimal but suboptimal regions of feasible

flux states in order to maintain adaptability.

In the FFP map of core E. coli in aerobic minimal medium, optimal growth

states appear as eccentric and far from the bulk of more probable phenotypes

represented by the FFP mean, which offers an ergodic perspective of the FFP

space in which all states can be explored at random with equal probability. One

of the uses of the method is precisely to evidence the effects of evolutionary

pressure on organisms, which may actually result in eccentric flux states. On

the other hand, the FFP space gives a standard to calibrate the deviation of

optimal phenotypes from experimental observations. Oxygen consumption is

a particularly interesting target for analysis since it has been identified as a

trigger of metabolic shifts [250, 258]. Interestingly, according to the FFP map

as a reference standard, it is found that, in high-growth conditions, FBA-MBR

predictions of experimental observations for unlimited oxygen needs versus

glucose, pyruvate, or succinate uptakes are worse the more downstream the

uptake of the carbon source into the catalytic metabolic stream. This is consistent
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with the fact that the FBA-MBR solution diverts resources to the production

of ATP entirely through the Oxidative Phosphorylation pathway, so that the

more is the effective potential of the carbon source to recombine with oxygen

to produce energy the more convergent will be the in silico prediction and the

observed states.

In order to correct FBA in high-growth conditions, some investigations restricted

the solution space beyond mass balance and uptake bounds through additional

thermodynamic, kinetic or physiological constraints, like the solvent capacity

constraint quantifying the maximum amount of macromolecules that can occupy

the intracellular space [254]. Alternatively, the objective function implemented

in FBA has been modified to nonlinear maximization of the ATP or biomass

yield per flux unit [243], or modelization beyond stoichiometric mass balance, like

thermodynamically feasible kinetics or enzyme synthesis, has been considered

[256, 257]. While these FBA modifications enhance some predictions, their

effectiveness depends on the estimation of kinetic coefficients using empirical

or experimental data. In contrast, the FFP map naturally displays all high-

growth feasible states which show characteristic metabolic behaviors, like aerobic

fermentation with unlimited oxygen uptake even in minimal medium, without the

need to determine additional constants. This aerobic fermentation, apparently

inefficient in terms of energy yield as compared to Oxidative Phosphorylation, has

been demonstrated to be a favorable catabolic state for all rapidly proliferating

cells with high glucose uptake capacity [254], and from this analysis it turns out

as a probable metabolic phenotype even in minimal medium.

Beyond theoretical implications, FFP maps of microbial organisms can be of

particular interest as tools for biotechnological applications, for instance in the

engineering of E. coli fermentative metabolism as a fundamental cellular capacity

for valuable industrial biocatalysis [259]. In biomedicine, the investigation
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of FBA optimal phenotypes in the framework of the FFP map can help to

contextualize disease phenotypes in comparison to normal states. For instance,

FBA proved suitable for modeling complex diseases like cancer as it assumes

that cancer cells maximize growth searching for metabolic flux distributions

that produce essential biomass precursors at high rates [185, 260]. The analysis

of the entire region of high-growth phenotypes will allow to reach and study a

variety of suboptimal feasible flux states close to optimality but which cannot

be reproduced by optimality principles, and so it opens new avenues for the

understanding of general and fundamental mechanisms that characterize this

disease across subtypes.

6.5 Summary

• FFP maps offer a reference framework to put into perspective the likelihood

of particular phenotypic states. It enables to uncover metabolic behaviors

that are unreachable using standard models based on optimality principles

[245].

• Optimal FBA growth states are eccentric and appear far from the bulk of

more probable phenotypes represented by the FFP mean [245].

• The FFP space gives a standard to calibrate the deviation of extreme

phenotypes from experimental observations [245].

• The FFP map naturally displays all high-growth feasible states which

show characteristic metabolic behaviors like aerobic fermentation with

unlimited oxygen uptake even in minimal medium without the need to

force additional constants [245].



Chapter 7

Conclusions

This thesis presents a study of cell metabolism from a systems-level approach

trying to unveil new mechanisms and responses impossible to reach by traditional

reductionist procedures. Different methods and analysis techniques have been

used, and each one has allowed to extract new insights about the properties of

cell metabolism. Tools that belong to the complex network science and Systems

Biology have been used. On what follows, the conclusions of this thesis are

given, answering to the objectives stated in Chapter 1.

The thesis starts by considering the study of the topology, i.e., the connectivity

pattern, of metabolic networks. From this point of view, it is possible to check

whether the structure of metabolic networks has evolved towards increasing its

robustness against external perturbations. It is important to notice that, at this

stage, reaction fluxes are not considered.

From the obtained results of the first chapter of this thesis, one can conclude that

the structure of the metabolic networks of Escherichia coli, Staphylococcus aureus,

and Mycoplasma pneumoniae has evolved towards robustness against individual
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and multiple reaction failures, which produce a reduced damaged compared

to failures in degree-preserving randomized counterparts. M. pneumoniae is

an exception in relation to individual reaction failures. This feature can be

explained in terms of its simpler structure. Moreover, it is found that failures

provoked by pairs of reactions generate an amplification effect which arises due

to the non-linear interactions between the two damaging cascades propagating in

the networks. In addition, a predictor of damage propagation for single cascades

computed locally accounts for damage spreading. Also at the local level, a series

of structural motifs can explain amplified failure patterns in double reaction

cascades.

When the study is extended to gene failures, one finds that the method to

compute cascades captures most of the scenarios of experimentally determined

lethality in M. pneumoniae. Furthermore, when referring to multiple failures,

the proposed analysis allows to find that (1) for failure cascade spreading, the

distribution of cluster sizes is more important than the actual composition of the

clusters, and (2) the regulation of high-damage genes tends to appear isolated

from that of other genes, a kind of functional switch in metabolic networks that

at the same time acts as a kind of genetic firewall. In any case, it is important

to notice that a cascade may not only be interpreted as the harmful spreading

of failures, but also as the ability to efficiently regulate metabolism. Large

cascades may point at the evolutionary requirement of regulating large parts

of metabolism through the regulation of small sets of enzyme-coding genes.

Therefore, evolutionary pressure seems to favor the ability of efficient metabolic

regulation at the expense of robustness to reaction knockouts.

This study can be complemented taking into account the fluxes flowing through

the biochemical reactions with the aim to describe more appropriately real

features of metabolic operation. These investigations permit to know how
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reactions adapt to different situations, extending for instance the previous

study of gene knockouts, or additionally, looking at responses to changes of

the composition of the external environment. Flux Balance Analysis is used

to compute fluxes of biochemical reactions. This method is based on different

suppositions, principally that (1) metabolic networks work at steady state and

that (2) the biological target of organisms is to grow as much as possible. In

this way, FBA can be used to go beyond the mere analysis of the structure of

metabolic networks and to identify metabolic fluxes that cannot be resolved using

only a topological analysis. When FBA is applied to single reaction knockouts

in E. coli, the main conclusion is that there exists a set of reactions which must

be always active in order to ensure viability. However, non-essential reactions

deserve special attention, either considering their role as growth enhancers or

their potential participation in synthetic lethal pairs.

The study of synthetic lethal pairs allows to understand new protection mech-

anisms that metabolism has developed to survive. Synthetic lethal reaction

pairs can be classified into two classes, plastic and redundant, depending on

whether one reaction is active for maximum growth in the medium under con-

sideration and the second inactive (plasticity) or, conversely, both reactions

have simultaneously non-zero fluxes (redundancy). This particular study is

made in both E. coli and M. pneumoniae. On the one hand, plasticity is a

sophisticated mechanism that is able to reorganize metabolic fluxes turning on

inactive reactions when coessential counterparts are removed so as to maintain

viability, working as a backup mechanism. On the other hand, redundancy

corresponds to a simultaneous use of different flux channels, ensuring in this way

viability and increasing the growth rate of the organism. Furthermore, plasticity

requires a higher degree of functional organization, using at the same time less
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resources for maximum growth. It takes place more often in E. coli than in M.

pneumoniae.

The previous study is completed by analyzing how plasticity and redundancy

depend on the external environment for E. coli. One finds that plasticity and

redundancy are conserved independently of the composition of the medium

which acts as environmental condition for growth. Moreover, this conservation

takes place also when this environment is enriched with non-essential compounds

or overconstrained to decrease the maximum growth rate.

One can further exploit FBA, assuming conditions of growth optimality, in

order to assess evolution or adaptation characteristics of metabolic networks.

A filtering method called disparity filter allows to reduce the density of links

of metabolic networks while preserving their main features. The metabolic

networks of E. coli and M. pneumoniae are filtered to extract their backbones.

First of all, it is checked that the disparity filter is, indeed, very efficient in order

to decrease the link density of the studied metabolic networks using FBA fluxes

as the weights of the links.

The analysis of the connected components of the metabolic backbones of both

E. coli and M. pneumoniae in a glucose minimal medium allows to identify that

these components mainly contain reactions that belong to ancient pathways,

i.e., pathways showing long-term evolution. Moreover, for both organisms, the

presence of pathways related to energy metabolism -like Glycolysis, Citric Acid

Cycle, and Oxidative Phosphorylation for E. coli, or Glycolysis and Pyruvate

Metabolism for M. pneumoniae- could mean that these pathways have an

important role in maximizing the growth and have evolved towards maximum

efficiency to obtain chemical energy, something very important in case of nutrient

scarcity and hence energy deficiency.
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In addition, the study of the dependence of E. coli backbones on different

environments allows to identify environment specific pathways displaying short-

term adaptation. First, the analysis of the metabolic backbone obtained in a

rich medium allows to demonstrate that the nutritionally-rich medium induces

a large increase in the growth rate of E. coli due to nutrient abundance. The

instantaneous response of E. coli to environment is to synthesize as much as

membrane lipids as possible, since fast-growing cells must synthesize membrane

components more rapidly to satisfy the high lipid demand to generate new

cells. Second, with the study of the different backbones obtained from different

minimal media, one finds that the distribution of the fluxes is little dependent

on the nutrients present in the environment. In addition, it is also possible

to extract that the pathway Alternate Carbon Metabolism is, for E. coli, the

pathway with more capabilities to respond to external stimuli.

It is worth remarking that FBA makes the supposition that the biological target

of organisms is to grow as much as possible. This may be plausible in some

situations but there exist other in which the biological target of an organism

is not to maximize growth. Hence, a study of the entire space of possible

flux solutions can help to assess whether the FBA solution is representative

of the whole space or not. The whole space encompassing the entire set of

flux solutions, referred to as the full feasible flux phenotypes (FFP) space, is

computed for E. coli. The information contents of the FFP space of metabolic

states in a certain environment provides with an entire map to explore and

evaluate metabolic behavior and capabilities. In fact, FFP maps can answer the

question of whether FBA gives a representative solution of the flux space. The

main conclusion is that optimal growth states obtained via FBA computations

appear as eccentric and far from the bulk of more probable phenotypes.
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In addition to the eccentricity of the FBA solution, the FFP space also gives

a standard to calibrate the deviation of phenotypes obtained using FBA from

experimental observations. Thus, it serves to compare FBA predictions with

experimental results. For instance, the analysis of oxygen needs versus glucose,

pyruvate, or succinate uptakes show that FBA results are worse the more

downstream the uptake of the carbon source into the catalytic metabolic stream.

This is explained due to the fact that the FBA solution diverts resources to the

production of ATP entirely through Oxidative Phosphorylation. In this way,

the more the effective potential of the carbon source to recombine with oxygen

to produce energy using Oxidative Phosphorylation, the more convergent will

be the FBA prediction with respect to experimental results.

On the other hand, the FFP space naturally displays all high-growth feasible

states which show characteristic metabolic behaviors, like aerobic fermentation

with unlimited oxygen uptake even in minimal medium. This is an important fea-

ture, since these metabolic behaviors cannot be obtained under FBA maximum

growth computations without using additional constraints. This reinforces the

idea that the FFP map contains valuable information about metabolic states.

It is important to point out that the used methodology in this thesis is not

restricted to bacteria, and that it could also be applied to metabolic networks

of other species. In particular, the results of the study of structural stress

may have potential implications in areas like metabolic engineering or disease

treatment. The study of complex systems under structural stress poses a number

of formidable challenges critical to understand their behavior as well as towards

proposing successful strategies for prediction and control. In this framework,

the study of structural stress in human pathogens may help to develop more

sophisticated forms of identifying new and more efficient drug targets.
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Plasticity and redundancy are very important concepts for biological complex

systems in general. Whether they are adaptive in cell metabolism or, as it

has been argued for metabolism in changing environments [197, 203], they are

rather a byproduct of the evolution of biological networks toward survival,

these regulatory mechanisms are key to understand how complex biological

systems protect themselves against malfunction. Among the many different

applications of synthetic lethality, one of them is to determine the accuracy

of gene essentiality of new genome-scale reconstructions of metabolic networks

[261].

Since the application of the disparity filter in metabolic networks can be used to

recognize pathways and reactions which (1) are more sensitive to environmental

changes, and (2) which are involved in the maximization of the growth rate of

an organism due to evolutionary pressure, its use could be appropriate in the

field of biotechnology. For example, it could be useful for the targeting of the

most important pathways present in cancer cells which are in charge of their

high growth rate. Therefore, this could help to understand the biochemical

mechanisms that cancer cells use to proliferate. In this way, it will be possible

to find a way to decrease the high performance achieved by cancer cells in terms

of growth efficiency.

Finally, FFP maps of microbial organisms can be of particular interest as tools

for biotechnological applications, for instance in the engineering of E. coli fer-

mentative metabolism as a fundamental cellular capacity for valuable industrial

biocatalysis [259]. In biomedicine, the investigation of FBA phenotypes in

the framework of the FFP map can help to contextualize disease phenotypes

in comparison to normal states. For instance, FBA proved suitable for mod-

eling complex diseases like cancer as it assumes that cancer cells maximize

growth searching for metabolic flux distributions that produce essential biomass



186 Chapter 7. Conclusions

precursors at high rates [185, 260]. The analysis of the entire region of high-

growth phenotypes will allow to reach and study a variety of suboptimal feasible

flux states close to optimality but which cannot be reproduced by optimality

principles, and so it opens new avenues for the understanding of general and

fundamental mechanisms that characterize this disease across subtypes.



Appendix A

Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test [187] is a test used in statistics which compares

the probability distribution obtained from a sample with a reference probability

(one-sample K-S test), or which compares two samples (two sample K-S test). It

basically quantifies a distance between the cumulative distribution function of

the sample and the cumulative distribution function of the reference distribution,

or between the cumulative distribution functions of two samples. The null

hypothesis of this test assumes that the samples are obtained from the same

distribution (two sample K-S test) or that the sample is drawn from the reference

distribution (one sample K-S test). The two-sample KS test is one of the most

useful methods for comparing two samples, which is the variant that has been

used in this thesis.

To compare two samples, first of all one has to compute the maximum distance

K − S between the two cumulative distribution functions

K − S = max |F1,n(x)− F2,n′(x)| (A.1)
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Figure A.1: Visualization of the value K − S used in the K-S test computed
using two Log-normal distributions [262] with different means and the same
standard deviation. After computing the maximum difference, this value is

transformed into a p-value.

where F1,n(x) and F2,n′(x) are the cumulative distribution functions of the fist

and second sample, and n and n′ are the sizes of each sample respectively. To

compute the associated significance of the value of K − S, one has to calculate

the p-value applying the following expression:

p = 2
∞∑
j=1

(−1)j−1 exp(−2 j l2) (A.2)

where l = K − S · (
√
N + 0.12 + 0.11√

N
), and N = nn′

n+n′ . Then, one compares this

p-value with the chosen reference, usually α = 0.05. If p < α, one can consider

that both distributions are drawn from the same distribution, otherwise they

are considered significantly different.
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Spearman’s rank correlation

coefficient

The Spearman’s rank correlation coefficient [188], often denoted by the Greek

letter ρ, is a nonparametric measure used in statistics which measures statistical

dependence between two variables. It assesses how well the relationship between

two variables can be described using a monotonic function. Spearman’s coeffi-

cient can be used both for continuous and discrete variables, including ordinal

variables.

The Spearman’s coefficient is basically the Pearson correlation coefficient between

the ranked variables. The ranks of both samples are compared and the value of

ρS is computed with the following expression:

ρS =

∑
i(xi − x̄)(yi − ȳ)√∑
i(xi − x̄)2(yi − ȳ)2

(B.1)

where xi and yi are the ranks of the values of the sample Xi and Yi.
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To assess the significance of the measure, a permutation test is done in this

thesis, where the values of Xi and Yi are reshuffled and then, for each realization,

ρS is calculated. After doing this for all realizations, one keeps the maximum

and minimum value of the obtained ρS , which gives the interval that belongs

to the null model. Thus, if the value of ρS of the original sample lies within

this interval, it implies that there is no correlation between the ranks of both

samples. Otherwise, if the value of ρS of the original sample lies outside the

range of the null model, one can consider that there exists a correlation between

both samples.



Appendix C

Point-biserial correlation

coefficient

The point biserial correlation coefficient (rpb) is a correlation coefficient which

is used when one variable is continuous and the other is dichotomous. This

dichotomous variable can either be a truly dichotomous variable, like male /

female, or an artificially dichotomized variable, obtained by using a threshold

on a continuous variable. However, in most situations it is not advisable to

dichotomize variables artificially and thus it is more appropriate to use specific

statistical tests for continuous variables.

The point-biserial correlation is equivalent to the Pearson correlation. To calcu-

late the point-biserial correlation coefficient, one assumes that the dichotomous

variable can have the values 0 and 1. Therefore, one can divide the data between

two groups, the first group which corresponds to the value 1 on the dichotomous

variable, and the second group which corresponds the value 0 on the dichotomous
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variable. Thus, the point-biserial correlation coefficient is calculated as follows:

rpb =
M1 −M0

sn

√
n1n0

n2
(C.1)

where M1 is the mean value of the continuous variable for all data points in the

first group, and M0 is the mean value of the continuous variable for all data

points in the second group. Further, n1 is the number of data points in the first

group, n0 is the number of data points in the second group, and n is the total

sample size. sn is the standard deviation computed as follows:

sn =

√√√√ 1

n

n∑
i=1

(xi − ν)2 (C.2)

where xi is continuous variable and ν is its average value. It is possible to

compute a t-value (associated to a Student’s t-distribution) from this correlation

coefficient:

t = rpb

√
n1 + n0 − 2

1− r2
pb

(C.3)

where rpb is the the point-biserial correlation coefficient. From this value of

t, a p-value of the significance can be obtained by computing the area of the

Student’s t-test from −∞ to the computed value of t with (n1 + n0 − 2) degrees

of freedom. If the p-value is lower than a chosen critical value of the significance

(usually 0.05), one can consider that there is a significant correlation between

the continuous and the dichotomous variable. Otherwise, one must conclude

that there is not a significant correlation between both variables.



Appendix D

Disparity filter

The disparity filter [95] takes advantage of the local fluctuations present in the

weights of the links between nodes. It is useful to define the strength si of a node

i as the sum of the weights (νij) of the links associated to this node, si =
∑

j νij .

The filtering method starts by normalizing the weight of the nodes pij =
νij
si

,

where νij is the weight of a link j of the node i, since one needs a measure of the

fluctuations of the weights attached to a node at the local level. The key point

is that a few links have a large value of pij being thus more significant than

the others, as computed by the disparity measure defined as Υi(k) ≡ k
∑

j p
2
ij ,

where k is the degree of the node and pij is the normalized weight of the link

between node i and node j.

In the application of this method to metabolic networks, Υi(k) characterizes

the level of local heterogeneity of a metabolite i, and so pij stands for the

normalized weight of the link between metabolite i and reaction j, with νij the

flux of reaction j. Under perfect homogeneity, when all the links share the same

amount of the strength of the node, Υi(k) equals 1 independently of k, whereas
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for perfect heterogeneity, when one of the links carries the whole strength of

the node, Υi(k) equals k. Usually, an intermediate behavior is observed in real

systems.

To assess the deviations of the weights of the links, a null model is used which

provides the expectation of the disparity measure of a node in a random case. The

null hypothesis consists on the fact that the normalized weights that correspond

to a certain node are produced by a random assignment coming from a uniform

distribution. Notice that, since in this chapter directed metabolic networks

are used, one has three kinds of links. Bidirectional links are decoupled into

incoming and outgoing links, leading to a network where nodes have incoming

and outgoing links. Each kind of links are treated independently, each one having

its own probability density function. The filter then proceeds by identifying

which links must be preserved. To do this, one computes the probability αij that

a weight pij is non-compatible with the null model. This probability is compared

to a significance level α, and thus links that carry weights with a probability

αij < α can be considered non-consistent with the null model and they are

considered significant for the metabolite. The probability αij is computed with

the expression α
in/out
ij = (1 − pin/outij )k

in/out−1. Note that, for nodes with only

one incoming or outgoing connection, one uses the prescription to preserve those

links.
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Hit-And-Run algorithm

The feasible flux phenotypes (FFP) space of different metabolic models in

specific environments has been explored using different sampling techniques

[12, 263–265]. Here, the Hit-And-Run (HR) algorithm is used, tailoring it to

enhance its sampling rate and to minimize its mixing time [265]. On what

follows, the key points and ideas behind the HR algorithm are stated.

One must start by noticing that all points in the FFP space must simultaneously

satisfy mass balance conditions and uptake limits for internal and exchanged

metabolites. The former requirement defines a set of homogeneous linear

equalities, whose solution space is K, while the latter defines a set of linear

inequalities, whose solutions lie in a convex compact set V . From a geometrical

point of view, the FFP space is thus given by the intersection S = K ∩ V .

A key step of the HR approach used here consists on realizing that one can

directly work in S by sampling V in terms of a basis spanning K. This allows

to retrieve all FFPs that satisfy mass balance in the medium conditions under

consideration, without rejection. Additionally, sampling in S allows to perform
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a drastic dimensional reduction and to decrease considerably the computation

time. Indeed, assuming to have N reactions, I internal metabolites, and E

exchanged metabolites (N > I +E), one has that S ⊂ RN−I , which is typically

a space with greatly reduced dimensionality with respect to V ⊂ RN .

Once a basis for K is found, the main idea behind HR is fairly simple. Given

a feasible solution νo ∈ S, a new, different feasible solution νn ∈ S can be

obtained as follows:

1. Choose a random direction u in RI

2. Draw a line ` through νo along direction u:

` : νo + λu, λ ∈ R

3. Compute the two intersection points of ` with the boundary of S, parame-

trized by λ = λ−, λ+:

ν− = νo + (λ−)u

ν+ = νo + (λ+)u

4. Choose a new point νn from `, uniformly at random between ν− and

ν+. In practice, this implies choosing a value λn in the range (λ−, λ+)

uniformly at random, and then

νn ≡ νo + λnu

This procedure is repeated iteratively so that, given an initial condition, the

algorithm can produce an arbitrary number of feasible solutions (see Figure E.1

for an illustrative representation of the algorithm). The initial condition, which

must be a feasible metabolic flux state itself (i.e., it must belong to S), is
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νo

νn

u

ν+

ν−

Figure E.1: Illustrative representation of the HR fundamental step, which
generates a new feasible state νn νn from a given one νo.

obtained by other methods. In this work, the algorithm called MinOver is used,

see [265, 266], but any other technique is valid. In particular, in cases where

small samples of the FFP space have been already obtained by other sampling

techniques, such points can be used to feed the HR algorithm and produce a

new, larger sample.

It was proven [246] that, by iterating steps (1-4), the samples obtained are

asymptotically unbiased, in the sense that the whole FFP space is explored with

the same likelihood in the limit of very large samples. In practice, one must

always work with a finite sample, and hence the following additional measures

are taken so as to ensure that the used samples were truly representative of the

whole FFP space. In particular:

1. Only one every 103 points generated by HR is included in the final sample.

This effectively decreases the “mixing time” of the algorithm, since the

correlation among the points that are actually retained decays fast.

2. Different initial conditions are used. Results show no dependence on the

initial condition, as expected for large samples. Even so, the first 30% of
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points are discarded, in order to rule out any subtler effect of the initial

condition on the final results.

3. Results are recalculated using subsamples of size 10% of the original

sample. Qualitative differences between the two sets are not found.

Since the HR algorithm is very efficient itself and due to the dimensionality

reduction that this implementation adds, very large samples can be generated

in reasonable time. For each model, samples of size 109 are initially created,

giving rise to a final set of 106 feasible solutions uniformly distributed along the

whole FFP space.



Appendix F

Principal Component Analysis

The computation of reaction pairs correlations may be exploited to detect how

global flux variability emerges in the system through Principal Component

Analysis (PCA) [247, 248] and to quantify, in turn, the closeness of optimal

phenotypes to the bulk of the feasible flux phenotypes (FFP) space. On what

follows, PCA is briefly described, while an illustrative example is also provided

(see Figure F.1).

One starts by writing down the matrix Cij of correlations between all reaction

pairs i, j. In doing this, one measures how much the variability of a reaction

flux νi affects the flux νj (and viceversa). In mathematical terms, for each pair

of reactions i, j, one has:

Cij =
〈νiνj〉 − 〈νi〉〈νj〉√(

〈ν2
i 〉 − 〈νi〉2

) (
〈ν2
j 〉 − 〈νj〉2

) , (F.1)
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where 〈. . .〉 denotes an average over the sampled set and the denominator of

the fraction is simply the product of the standard deviations of νi and νj . This

matrix is shown in Figure 6.4e in Chapter 5.

Matrix C is real and symmetric by definition and, thus, diagonalizable. This

means that, for every eigenvector ρκ, one has Cρκ = λκρκ. Note that matrix

C describes paired flux fluctuations in a reference frame centered on the mean

flux vector. The eigenvectors ρκ of C express, in turn, the directions along

which such fluctuations are taking place. In particular, the eigenvectors ρ1, ρ2

associated with the first two largest (in modulo) eigenvalues dictate the two

directions in space where the sampled FFP displays the greatest variability

(see Figure F.1). This implies that sampled phenotypes lie closer to the plane

spanned by ρ1 and ρ2 than the ones produced by any other linear combination

of C eigenvectors. Projecting all sampled FFP onto this plane allows thus

to perform a drastic dimensional reduction yet retaining much of the original

variability and allows to have a direct graphical insight on where phenotypes lie,

on where the bulk of the FFP is located, and on how the Flux Balance Analysis

(FBA) solution compares to them. In such plot, each phenotype  is described by

two coordinates that may be parametrized via a radius r and an angle θ. Since

the projection is normalized, it follows that r ≤ 1. Furthermore, the closer r

to one, the better the phenotype  is described by only looking at variability

along ρ1, ρ2. As r is one at the most and since one has so many phenotypes

clustered together, it is possible to choose to plot the PCA projection by using

an effective radius r′ = − log r, as in Figure 6.4e. In this way one could better

discriminate among different phenotypes and got a ‘closest to the origin, closest

to the ρ1, ρ2–plane’ setup.



Appendix F. Principal Component Analysis 201

Figure F.1: An example to describe PCA analysis. a) FFP sampling produces
a cloud of points in a multidimensional space that, when projected along the
(x, z), (y, z) and (x, y) planes, is seen to span a wide range of values. Finding
the eigenvectors of the correlation matrix, one can see that such points are
actually clustered around a plane (plotted as a yellow grid). By diagonalizing
the (3× 3) correlation matrix, one finds the three vectors (plotted in blue, red
and green, respectively) identifying the direction in space where the points
show most variation, in a decreasing manner. A black square is also plotted as
a reference eccentric point. b) By projecting the sampled FFP along vectors
ρ1, ρ2, and ρ3, all points are squeezed in a thin region close to the (ρ1, ρ2)
plane. This shows that the greatest variability of the sampled points actually
occurs in the ρ1, ρ2 directions. In this representation, the eccentric black
square point is seen to lie far from the plane with a large ρ3 coordinate. c)
Normalizing the projection in b) over the modulus of the vector identifying the
point coordinate allows to quantify the closeness to the (ρ1, ρ2) plane. In such
way all points are projected over the unit radius sphere, with the majority of
points scattered near the equator, i.e., the (ρ1, ρ2) plane. Therefore, in this
representation, eccentric points like the black square are close to the pole. d)
Points on the unit sphere may in turn be projected on the (ρ1, ρ2) plane only.
In this way all points are constrained within the unitary radius circle, with
points close to the equator in plot c) now close to the circle and the ones close
to the pole in c) near the origin. In this representation, typical points, i.e.,
those originally closer to the yellow plane in a), have larger radius (close to
one, but smaller than that) and eccentric points have a smaller radius, like

the black square (follows to next page).
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Figure F.1: (Follows from previous page) e) Plotting the distribution of
the points radius, as in Figure 6.3, one sees that P (r) has indeed a peak
in one, with very low probability of finding a point with a radius close to
zero. Similarly to Figure 6.3 the radius of the eccentric point is indicated,
highlighting how low r, eccentric points are indeed unlikely. f) Similarly to
Figure 6.2e in Chapter 5, the points on the (ρ1, ρ2) plane are re-projected,
but with a negative log radius. Here all points plotted in panel d) appear with
the same angular coordinate they have in d) but with a radius r′ = − log(r).
In this way, typical points that in d) have almost unitary radius now coalesce
towards the origin and atypical points, that in d) lie close to zero, are now
pushed away from the origin, like the black square. A similar pattern is
observed in Figure 6.2e in Chapter 5, where the majority of points converge

towards the origin and FBA is seen to be a rather eccentric outlier.



Resum

El metabolisme cel·lular està format per un gran nombre de reaccions bioqúımi-

ques que formen una xarxa densament connectada. Les xarxes metabòliques

són les encarregades de que les cèl·lules puguin mantenir-se vives, generant

energia qúımica mitjançant diversos processos bioqúımics. Com que els fenotips

metabòlics apareixen degut a les interaccions entre els diferents components

del metabolisme, estudiar aquestes interaccions des d’una perspectiva global és

fonamental per entendre els organismes vius i com aquests han evolucionat al

llarg dels anys.

Tot i això, l’estudi de xarxes metabòliques completes és dif́ıcil degut a la complex-

itat que es genera quan milers de reaccions s’acoblen i actuen simultàniament.

Per facilitar l’estudi del metabolisme com a sistema complex, s’ha desenvolupat

l’anomenat systems-level approach, que intenta estudiar els sistemes biològics

tenint en compte el màxim nombre de constituents coneguts experimentalment.

Aquesta manera d’estudiar el metabolisme és la base d’una disciplina emer-

gent anomenada Biologia de Sistemes [10, 11], una branca de la Biologia que

últimament té molt de protagonisme per estudiar les causes dels fenòmens

fisicoqúımics que ocorren en les cèl·lules. Junt a la Biologia de Sistemes, el
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desenvolupament de la Ciència de les Xarxes Complexes [14, 15], un camp inter-

disciplinari que permet tractar sistemes de molts constituents que interaccionen

entre ells, ha ajudat a la comprensió de com funciona el metabolisme.

Aquest resum mostra com l’ús combinat tant d’eines provinents de la Biologia de

sistemes com de la ciència de xarxes complexes permet extreure i analitzar noves

propietats del metabolisme. El resum comença donant les idees bàsiques sobre el

metabolisme i les eines que s’usen per analitzar-lo, conceptes que corresponen als

dos primers caṕıtols d’aquesta tesi. Després, es resumeixen els quatre caṕıtols

de resultats, seguit de les conclusions generals que es poden extreure.

Què és el metabolisme?

El metabolisme és el conjunt de reaccions qúımiques que tenen lloc en un

organisme i que el mantenen viu. Aquests processos permeten als organismes

créixer i reproduir-se, mantenir estructures bioqúımiques i respondre al seu

medi exterior. El metabolisme es divideix en dues categories: el catabolisme i

l’anabolisme. El catabolisme s’encarrega de descompondre la matèria orgànica,

com per exemple per extreure energia en la respiració cel·lular. I l’anabolisme,

contràriament, utilitza aquesta energia per construir components de les cèl·lules,

com ara protëınes i àcids nucleics.

Les reaccions qúımiques que es donen en el metabolisme s’organitzen en rutes

metabòliques, on les substàncies qúımiques es transformen en altres mitjançant

una seqüència de reaccions catalitzades per enzims. Els enzims són molt im-

portants pel metabolisme, ja que són els responsables de que les reaccions

siguin cinèticament possibles, és a dir, actuen de catalitzadors, permetent que

les velocitats de les reaccions tinguin lloc en quantitats de temps raonables.
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Algunes de les rutes més importants del metabolisme són la Glucòlisi, el Cicle

de Krebs, i la Fosforilació Oxidativa. La primera degrada la glucosa mitjançant

una sèrie de reaccions a piruvat. Un dels destins més importants del piruvat és

generar acetil CoA, el qual és capaç de seguir altres vies metabòliques. Una de

les més importants és el Cicle de Krebs, que acaba de transformar, mitjançant

oxigen, els productes que provenen de la Glucòlisi a diòxid de carboni. Aquestes

rutes generen productes qúımicament redüıts. En la Fosforilació Oxidativa, els

electrons que han anat a parar a aquestes molècules redüıdes són transferits a

l’oxigen i l’energia alliberada és utilitzada per crear ATP.

En general, el metabolisme s’ha estudiat utilitzant un enfocament reduccionista,

centrat principalment en l’estudi del paper de les biomolècules, la cinètica i la

termodinàmica de les reaccions metabòliques. Com a exemple, la termodinàmica

de processos irreversibles estudia processos com el transport no espontani a

través de la membrana, que aprofita l’energia lliure procedent d’un gradient

de protons [38] o de la hidròlisi d’ATP per poder realitzar el transport de

components a través de la membrana. Tot i això, hi ha moltes preguntes fetes

en Biologia que no es poden respondre amb un enfoc reduccionista. Degut a

això, ara s’està desenvolupant el systems-level approach, que té en compte de

manera conjunta el màxim nombre de components possibles del metabolisme.

Un enfocament global del metabolisme té en compte tot el conjunt de reaccions

bioqúımiques i les seves interaccions. Les genome-scale metabolic networks

[10] proporcionen representacions d’alta qualitat del metabolisme que inte-

gren informació bioqúımica amb informació genòmica. Un cop s’han validat

experimentalment aquests genome-scale models, es poden utilitzar per real-

itzar prediccions i per a l’anàlisi detallat de les capacitats metabòliques, amb

aplicacions en una varietat de camps com la biomedicina o la biotecnologia

[57, 58]
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El metabolisme vist com un sistema complex

Les xarxes metabòliques s’han estudiat en el context de les xarxes complexes.

Bàsicament, una xarxa complexa [15, 96] és un sistema discret d’elements,

també anomenats nodes, que interaccionen entre ells. Les xarxes metabòliques es

modelitzen com a xarxes complexes que contenen dos tipus de nodes, anomenades

xarxes bipartites, i els nodes són els metabòlits i les reaccions. És important

tenir en compte que les connexions poden tenir direccionalitat, depenent de si les

reaccions són reversibles o irreversibles (veure Figura F.2). Amb la informació

sobre la reversibilitat de les reaccions, la xarxa obtinguda és més precisa i

descriu el sistema d’una manera més realista. A més, els fluxos de les reaccions

determinen els pesos de les connexions, cosa que implica que el pes és més gran

quan el flux és més gran.

No obstant això, es poden construir representacions més simples de les xarxes

metabòliques, anomenades projeccions one-mode. En aquestes versions, les

xarxes tenen un sol tipus de nodes. T́ıpicament, els metabòlits es trien com a

nodes, i es col·loca un enllaç entre dos metabòlits si hi ha almenys una reacció

que els connecta. Per contra, si les reaccions són elegides com a nodes, dues

reaccions estan connectades si hi ha almenys un metabòlit comú entre elles.

Les xarxes metabòliques estudiades com a xarxes complexes mostren propietats

caracteŕıstiques. Els nodes estan caracteritzats pel nombre de vëıns, una mag-

nitud anomenada grau, k, d’un node. Cal tenir en compte que per les xarxes

dirigides, és a dir, les que tenen connexions amb direccionalitat, el grau està

format per tres contribucions, entrada, sortida i bidireccional. Una mesura

important és la distribució de graus P (k), que dóna la probabilitat que un node

seleccionat a l’atzar tingui un grau k. En la majoria dels casos, els metabòlits

mostren un distribució de grau que segueix una llei de potències, P (kM ) ∝ k−γM ,
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Figura F.2: Exemple d’una xarxa metabòlica modelitzada com a xarxa
complexa. Les reaccions estan representades per quadrats blaus, mentre que
els metabòlits estan representats per cercles verds. Les fletxes direccionals són
connexions que provenen de reaccions termodinàmicament irreversibles, mentre
que fletxes bidireccionals impliquen reaccions termodinàmicament reversibles.

on γ és l’exponent caracteŕıstic de la llei de potències. Les xarxes amb una

distribució de grau descrit per una llei de potències s’anomenen scale-free. Per

a les xarxes metabòliques, γ és t́ıpicament ∼ 2.2 [97]. El fet que els metabòlits

mostrin una distribució que segueix una llei de potències vol dir que hi ha una

alta diversitat en els graus dels nodes de la xarxa. Com a conseqüència, la

majoria dels metabòlits tenen poques connexions, mentre que pocs metabòlits,

anomenats hubs, en tenen moltes. Un exemple d’aquests metabòlits altament

connectats és l’ATP, ja que participa en moltes reaccions amb la finalitat de

subministrar energia lliure quan es realitza el trencament dels seus enllaços.

En canvi, les reaccions tenen una distribució de grau punxeguda. El pic està

situat al valor mig del grau de totes les reaccions < kR >. Aquesta propietat

sorgeix del fet de que les reaccions tenen un nombre limitat de participants,

t́ıpicament d’entre dos a dotze. El cas més t́ıpic és quan les reaccions tenen

quatre metabòlits, el que porta a una distribució de grau amb el pic al voltant

de kR = 4.
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Una altra caracteŕıstica és la propietat anomenada small-world [227]. Aquesta

propietat significa que és possible anar d’un node a un altre de la xarxa mit-

jançant pocs salts entre nodes seguint les connexions de la xarxa. Per xarxes

metabòliques, a la Referència [97] es calcula la mitjana de les longituds en-

tre nodes a projeccions one-mode de metabòlits, i es troba un valor mig de

∼ 3.2. Això implica que a les xarxes metabòliques partint d’un metabòlit es pot

aconseguir un altre mitjançant un nombre petit de reaccions.

Una altra propietat és que les xarxes poden estar formades per diferents zones

(o components) que no estan connectades entre elles. Quan una d’aquestes

zones és tant gran que abasta una fracció macroscòpica de la xarxa, la zona en

qüestió s’anomena giant connected component (GCC). Cal remarcar també que

la connectivitat de les xarxes on les connexions tenen direccionalitat presenta

caracteŕıstiques especials, ja que el camı́ entre dos nodes i i j pot ser diferent en

passar de i a j o de j a i. Aquest fet dóna lloc a l’existència d’una estructura

anomenada bow-tie [131]. La caracteŕıstica principal d’aquesta estructura és

que es pot detectar la presència d’un component anomenat strongly connected

component (SCC), que és una regió de la xarxa, i en concret que forma part de

la GCC, on qualsevol node és accessible des de qualsevol altre, tenint en compte

un altre cop que les connexions de la xarxa tenen direccionalitat i que els camins

entre els nodes han de satisfer la direcció que imposen les connexions.

Per últim, es creu que les xarxes biològiques estan formades per subconjunts

de nodes anomenat mòduls [113]. En general, aquesta idea es correspon amb el

concepte de comunitats. L’organització d’una xarxa en comunitats no implica

que la xarxa estigui fragmentada en diferents components, ja que les comunitats

són subconjunts d’una xarxa que contenen un patró d’interconnexió molt dens

entre nodes dins de la comunitat, mentre que els nivells d’interconnexió amb els

nodes externs a la comunitat són més baixos.
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Flux Balance Analysis

Molts estudis requereixen un càlcul de les velocitats de les reaccions de la

xarxa metabòlica. Per calcular els fluxos a través de les reaccions d’una

xarxa metabòlica, s’utilitza una tècnica anomenada Flux Balance Analysis

(FBA). Aquesta tècnica no necessita constants cinètiques per calcular els fluxos

metabòlics. Per fer-ho, només usa constrained-optimization [63]. Per aplicar FBA

es comença per construir la matriu estequiomètrica S de la xarxa metabòlica, que

conté els coeficients estequiomètrics dels metabòlits a les reaccions de la xarxa.

Després, es multiplica aquesta matriu pel vector de fluxos ~ν. Aquest producte

és, degut al principi de conservació de massa, igual al vector de la variació en el

temps de les concentracions d~c
dt = S · ~ν. Suposant estat estacionari, S · ~ν = ~0.

Cal remarcar que la suposició d’estat estacionari implica que, a diferència de la

cinètica qúımica tradicional, no tractem amb un sistema d’equacions diferencials,

sinó amb un simple sistema d’equacions algebraiques.

Atès que en general, les xarxes metabòliques contenen més reaccions que

metabòlits, tenim un sistema d’equacions indeterminat. Per tant, es defineix

una funció objectiu amb la finalitat d’escollir, d’entre totes les solucions que

compleixen les equacions, una solució biològicament significativa. En general, la

funció objectiu escollida és la velocitat de creixement de l’organisme. Això sig-

nifica que tractem de trobar la solució que optimitza el creixement de l’organisme,

que és equivalent a maximitzar el flux de la reacció de formació de biomassa, una

reacció virtual que s’afegeix la xarxa per simular el creixement. Cal dir també

que cal imposar un valor mı́nim νmin i màxim νmax als fluxos de les reaccions,

νmin ≤ νi ≤ νmax, on νi és el flux d’una reacció qualsevol i. Tècnicament, com

que tenim un sistema lineal d’equacions amb restriccions lineals, es pot utilitzar

linear programming per tal de calcular una solució que optimitzi el creixement
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en una petita quantitat de temps (de l’ordre d’1 s), cosa que implica que és un

mètode computacionalment barat.

Objectius

Un cop feta una introducció sobre metabolisme i la metodologia emprada,

s’especifiquen els objectius de la tesi:

• Estudiar si l’estructura de les xarxes metabòliques ha evolucionat cap a la

robustes contra inactivacions de reaccions o gens.

– Estudi de la inactivació de reaccions individuals i parelles.

– Estudi de la propagació del dany quan s’inactiven gens.

– Discussió dels resultats en termes d’una perspectiva evolutiva.

• Analitzar els efectes dels fluxos de les reaccions individuals i de parelles

de reaccions individuals usant FBA.

– Estudi simultani de l’activitat i essencialitat de reaccions individuals.

– Caracterització dels mecanismes de plasticitat i redundància.

– Estudi de la dependència en els nutrients de la plasticitat i la re-

dundància.

• Identificar, usant FBA i un mètode de filtratge, les rutes metabòliques

amb un paper important per la supervivència dels organismes.

– Comprovació de l’eficiència del mètode de filtratge en xarxes metabò-

liques.

– Anàlisi de les versions filtrades de les xarxes en termes d’evolució a

llarg termini.
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– Obtenció de informació sobre l’adaptació a curt termini del metabo-

lisme als medis exteriors dels organismes.

• Avaluar la representativitat de la solució FBA en l’espai complet de

solucions metabòliques.

– Avaluació de l’excentricitat de la solució FBA respecte a la resta de

solucions.

– Obtenció d’un esquema de referència per tal de calibrar solucions

FBA.

– Recuperació de fenotips que no es poden obtenir amb tècniques

simples de constrained-optimization.

Cascades estructurals en xarxes metabòliques

El primer caṕıtol de resultats de la tesi, basat en les Referències [94, 186],

estudia com responen les xarxes metabòliques dels organismes Mycoplasma

pneumoniae [120], Escherichia coli [117] i Staphylococcus aureus [66] quan les

diferents reaccions que les composen són forçades a ser inactives. Es consideren

inactivacions de reaccions individuals i parelles de reaccions. A més, només per

M. pneumoniae, s’estudia l’efecte de les inactivacions de gens i grups de gens.

Una inactivació d’un gen causa que els enzims que són codificats per aquest

gen no es produeixin, donant com a resultat que les reaccions controlades per

aquests enzims esdevinguin no-operatives.
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Mètodes

L’algorisme per calcular cascades estructurals [140] considera que el fet que una

reacció s’inactivi desencadena una cascada que es propaga fins que totes les

reaccions i metabòlits de la xarxa són capaços de mantenir un estat estacionari.

Pels metabòlits, un estat estacionari s’aconsegueix quan aquests participen com

a mı́nim en una reacció que el consumeix i en una reacció que el produeix. Per

a les reaccions, es tradueix en que tots els metabòlits que participen en una

reacció han de ser capaços de mantenir un estat estacionari. El dany prodüıt

per una cascada es quantifica amb el nombre de reaccions que s’han tornat

no-operatives.

Els resultats de les cascades en els organismes es comparen amb dos models nuls.

Un model nul és una xarxa complexa que s’aconsegueix partint d’una xarxa

complexa inicial i aleatoritzant alguna de les seves propietats. Aix́ı, s’aconsegueix

una nova xarxa que conserva algunes de les propietats estructurals de la xarxa

inicial. Per realitzar l’estudi, primer s’obtenen les versions aleatoritzades de

les xarxes metabòliques i s’hi aplica l’algorisme de cascada, comparant després

els resultats entre les xarxes aleatoritzades i l’original. S’usen dos models nuls,

degree-preserving (DP) [94, 140, 186] i mass-balanced (MB) [141, 186]. El model

nul DP obté xarxes on les connexions s’han anat aleatoritzat preservant el grau

dels nodes de la xarxa. Aquest mètode serveix per saber si a la xarxa original,

el fet de que els nodes de la xarxa mantinguin els mateixos graus minimitza el

dany causat per les cascades. L’altre mètode, anomenat mass-balanced, és capaç

d’aleatoritzar les xarxes metabòliques complint l’estequiometria de les reaccions,

és a dir, s’alteren aleatòriament els reactius o productes només quan aquest canvi

dóna lloc a reaccions que compleixen l’estequiometria. Aquest mètode preserva

el nombre de metabòlits que participen en cada reacció, i pot discernir si una
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propietat prové de la pressió evolutiva, ja que al mantenir l’estequiometria, la

limitació fisicoqúımica més bàsica, la única font de variació restant provindrà de

l’evolució d’un organisme al medi exterior.

Impacte de la inactivació de reaccions

Primer de tot, s’aplica l’algorisme de cascada i el model nul DP per estudiar

com afecta a l’estructura de les xarxa metabòliques dels tres organismes el fet

de que una reacció sigui inactivada. És a dir, s’inactiven totes les reaccions de

les xarxes metabòliques, una per una, i es calcula el nombre de reaccions que

s’han inactivat a causa de que la primera hagi estat forçada a ser inactiva. Aix́ı,

per cada reacció tenim el dany dr que ha causat. Als panells esquerra de la

Figura F.3 es mostren les distribucions de probabilitat acumulada P (d′r ≥ dr)

que la inactivació d’una reacció r arribi com a mı́nim a dr− 1 altres reaccions de

la xarxa metabòlica de cada organisme. Es duen a terme tests de Kolmogorov-

Smirnov [187] per a la comparació amb els models nuls. Tant per E. coli com per

S. aureus es troba que les probabilitats de les cascades calculades a les xarxes

originals són incompatibles amb les cascades a les xarxes obtingudes usant el

mètode DP. Això significa que la seva organització metabòlica ha evolucionat

cap a una major robustesa estructural. D’altra banda, per M. pneumoniae no

es pot dir que la diferència entre les distribucions de la xarxa original i el model

DP sigui estad́ısticament significativa, tot i que la probabilitat de cascades grans

és menor en la xarxa metabòlica original. Això es pot explicar per l’augment de

la linealitat de l’estructura de la xarxa metabòlica de M. pneumoniae.

Un cop considerades les inactivacions de reaccions individuals, es considera la

inactivació de parelles de reaccions. Els panells dreta de la Figura F.3 mostren

les distribucions de probabilitat acumulada P (d′rr′ ≥ drr′) calculades a partir de
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Figura F.3: Dany en les cascades prodüıdes per reaccions individuals i parelles
de reaccions. a, c, e) Funcions de distribució de probabilitat acumulada dels
danys en els organismes M. pneumoniae, E. coli, i S. aureus. Els resultats es
comparen amb els danys prodüıts en les xarxes aleatoritzades amb el mètode
DP (100 realitzacions, ĺınia negra discont́ınua) i amb el mètode MB (100
realitzacions, ĺınia negra cont́ınua). En cada cas, la distribució de color negre
sòlid és la mitjana de 100 realitzacions. b, d, f) Comparacions entre les funcions
de distribució de probabilitat acumulada i els danys prodüıts en les xarxes

aleatoritzades per a la inactivació de parelles de reaccions.
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la inactivació de totes les parelles de reaccions que generen les cascades. Es troba

que pels tres organismes, incloent M. pneumoniae, la probabilitat de cascades

grans provocades per parelles de reaccions és significativament més petita en

les xarxes metabòliques originals que en les xarxes obtingudes amb el mètode

DP. Això suggereix que l’organització de les xarxes metabòliques ha evolucionat

protegint-se contra les inactivacions de més d’una reacció.

Robustesa vs regulació en les xarxes metabòliques

A la Figura F.3 també es pot veure la comparació dels resultats de cascades

amb el model nul MB. Es comprova que l’algorisme de cascada produeix danys

més grans a les xarxes originals que a les xarxes obtingudes amb el mètode

MB, però cascades més petites en comparació amb les xarxes obtingudes amb

el mètode DP. Atès que la mida de les cascades a les xarxes aleatòries fetes

amb MB és significativament menor que els de les xarxes reals, es pot dir que

la pressió evolutiva ha condüıt a cascades més grans. Per tant, cascades grans,

afavorides per la pressió evolutiva, poden apuntar al requisit evolutiu de regular

grans parts del metabolisme a través de la regulació de petits conjunts de gens.

Aquests resultats indiquen que la pressió evolutiva pot afavorir a la regulació

eficient del metabolisme a costa de perdre robustesa en front de inactivacions

de reaccions o gens.

Impacte de la inactivació de gens a M. pneumoniae

Per tal d’estudiar els efectes metabòlics de mutacions genètiques individuals

a M. pneumoniae, es simula la inactivació total de les reaccions associades

al gen en qüestió. S’obté que els gens amb danys més grans són essencials o

condicionalment essencials per a M. pneumoniae [120].
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Un cop s’ha estudiat l’essencialitat de gens individuals, s’analitza l’efecte quan

s’inhibeixen grups de gens co-expressats. Els grups de gens co-expressats a

M. pneumoniae poden ser identificats a partir de les dades d’expressió de gens

en diferents condicions [172] mitjançant tres estratègies: distance hierarchical

clustering [129], Infomap [125] i recursive percolation [94]. Es troba que els

gens relacionats amb reaccions que generen cascades grans estan äıllats en

grups mono-component. Això és sorprenent, ja que, en principi, caldria esperar

que els gens que generen cascades grans s’expressaran junt a altres gens, ja

que, en general, controlar parts grans del metabolisme requereix l’expressió

de varis gens. El fet que l’expressió d’aquests gens estigui äıllada fa que es

puguin identificar com a importants regulador metabòlics, ja que l’alteració

d’un sol gen pot afectar a un gran nombre de reaccions metabòliques. En

qualsevol cas, l’expressió individual d’aquests gens és de nou una indicació que

l’organització estructural de l’organisme ha evolucionat per protegir el sistema

contra inactivacions de múltiples reaccions.

Efecte de les inactivacions de reaccions en estats esta-

cionaris del metabolisme

El segon caṕıtol de resultats, basat en les Referències [158, 205], estén l’estudi

estructural de pertorbacions a càlculs dinàmics, més precisament al càlcul de

fluxos metabòlics obtinguts mitjançant la tècnica Flux Balance Analysis. Aquest

estudi permet, per una banda, predir si hi ha reaccions importants que han

de ser sempre actives per tal de garantir la supervivència d’un organisme i,

d’altra banda, per comprovar si el metabolisme ha desenvolupat mecanismes

de protecció quan algunes dels seus constituents són inactivats. Aquest últim

estudi es porta a terme amb un anàlisi de parelles de reaccions anomenades
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synthetic lethal (SL), que són parelles de reaccions que la seva inactivació és

letal, però de manera que la inactivació individual de les reaccions que formen

la parella no ho és. Això permet identificar dos mecanismes diferents que el

metabolisme ha desenvolupat per protegir-se contra possibles inactivacions de

reaccions, anomenats

it plasticitat i redundància. L’estudi es realitza en dos bacteris: E. coli [119]

i M. pneumoniae [56]. Per E. coli s’analitza en detall l’estudi de inactivacions

de reaccions individuals i parelles de reaccions, mentre que per M. pneumoniae

s’estudien bàsicament parelles de reaccions.

Mètodes

La tècnica FBA s’usa per saber si una reacció tindrà un flux nul o no nul en

funció dels nutrients presents en el medi, és a dir, per saber l’activitat d’una

reacció. Bàsicament, si una reacció té un flux no nul l’activitat serà no nul·la,

mentre que si el flux és nul l’activitat serà nul·la. FBA també serveix per

saber si un organisme podrà sobreviure a la inactivació d’una reacció, és a

dir, per determinar l’essencialitat d’una reacció. Per fer això, s’imposa que la

reacció a inactivar ha de tenir per força un flux nul, i es computa la velocitat de

creixement de l’organisme. Si aquesta és nul·la, l’organisme es considera mort i

la reacció és essencial. En canvi, si la velocitat de creixement no és nul·la, es pot

considerar que l’organisme ha sobreviscut a la inactivació i, per tant, la reacció

no és essencial.

Activitat i essencialitat de les reaccions de E. coli

L’estudi de l’anàlisi de l’activitat i essencialitat de les reaccions de E. coli permet

dividir les reaccions en quatre categories de reaccions, en funció dels valors
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d’activitat i essencialitat que s’obtenen. La primera són les reaccions sempre

essencials quan són actives. Donada la seva importància, aquestes reaccions es

poden seleccionar com a dianes de fàrmacs, ja que són components fonamentals

del metabolisme de l’organisme E. coli, degut a que algunes han de ser sempre

actives per assegurar la vida de l’organisme, i les altres, tot i no ser sempre

actives, sempre són essencials quan són actives. Una altra categoria són les

reaccions sempre actives. Aquestes reaccions són sempre actives a tots els

medis, però són essencials en una fracció dels medis. La categoria reaccions

mai essencials són reaccions que són actives en una fracció de medis, i mai són

essencials encara que siguin actives. Les reaccions de les categories reaccions

sempre actives i reaccions mai essencials són actives per tal d’augmentar la

velocitat de creixement de l’organisme i per prevenir la formació de parelles

SL. L’última categoria de reaccions que s’obté són les reaccions parcialment

essencials. Aquestes reaccions tenen la propietat de que el fet de que siguin

actives, no implica ser també essencials. Per tant, l’extrapolació de l’activitat a

l’essencialitat, un fet bastant comú, no és correcta en base a aquest anàlisi.

Classificació de les parelles SL en plàstiques i redundants

Un cop considerades les reaccions individuals, s’estudien parelles de reaccions

SL per tal d’analitzar els mecanismes de plasticitat i redundància. El primer

tipus són les parelles SL plàstiques, on una de les reaccions de la parella té un

flux FBA no nul mentre que la segona reacció té un flux FBA nul. El segon

tipus de parelles SL s’anomenen parelles SL redundants, on les dues reaccions

tenen fluxos FBA no nuls.

Per l’organisme E. coli es troba que la majoria de parelles SL són plàstiques. Per

aquestes parelles, quan s’inactiva la reacció activa de la xarxa metabòlica, els
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Figura F.4: Representació esquemàtica de les parelles SL plàstiques i re-
dundants. Els metabòlits estan representats per cercles i les reaccions per
quadrats. Les reaccions acolorides amb fletxes negres representen reaccions
actives, mentre que les ĺınies discont́ınues grises s’utilitzen per a les reaccions i
metabòlits que són inactius. Els negres denoten nodes que han sigut desacti-
vats. La reacció de producció de biomassa es representa com un quadrat més
gran amb un flux associat νg. Quan aquesta reacció està inactiva, l’organisme

es considera mort.

fluxos es reorganitzen per tal que la reacció amb flux nul de la parell s’activi. Això

implica que la reacció inicialment no activa actua com una còpia de seguretat de

la reacció activa, garantitzant la viabilitat de l’organisme (veure Figura F.4). Pel

que fa a les parelles SL redundants, per la gran majoria l’ús simultani d’ambdues

reaccions augmenta la velocitat de creixement en comparació amb la situació en

que només una de les reaccions és activa (veure Figura F.4). Per M. pneumoniae,

es troba que la freqüència de les parelles de reaccions SL redundants és més gran

que a E. coli, degut a l’augment de la linealitat i la reducció de la complexitat de

l’organisme, i la seva freqüència s’assembla a la de plasticitat. En conseqüència,

l’equilibri de parelles SL redundants vs parelles SL plàstiques és diferent respecte

E. coli.
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Sensitivitat a canvis en el medi exterior de les parelles SL

L’última part d’aquesta secció analitza si la plasticitat o la redundància d’una

parella SL canvia en funció dels nutrients del medi exterior. D’aquesta manera,

s’investiga la sensibilitat de les parelles SL de E. coli als canvis en la composició

dels nutrients del medi exterior. Es troba que per a la majoria de parelles,

l’essencialitat no és espećıfica d’un medi mı́nim, i només un nombre petit de

parelles mostra especificitat en el medi mı́nim. Per a cada parella de reaccions

SL, es troba que la gran majoria de parelles són quasi sempre plàstiques, un petit

nombre són sempre redundants, i un altre petit nombre mostra un comportament

que varia entre redundància i plasticitat. Per tant, les parelles de reaccions SL

i la seva divisió en plasticitat i redundància són aspectes altament conservats

independentment de la composició del medi exterior.

Detecció d’empremtes d’evolució i adaptació en xar-

xes metabòliques

L’últim caṕıtol de resultats, basat en la Referència [221], analitza la importància

dels fluxos metabòlics amb la finalitat d’extreure informació biològica relativa

a tendències adaptatives i evolutives. Per realitzar aquest anàlisi, s’utilitza un

mètode de filtratge anomenat disparity filter [95]. La seva aplicació permet

disminuir el nombre d’enllaços d’una xarxa metabòlica, mantenint només aquells

que són estad́ısticament importants, obtenint aix́ı els anomenats backbones

metabòlics. L’estudi d’aquestes backbones metabòlics és important per tal de

quantificar la quantitat de vegades que una ruta bioqúımica està present en

els backbones, i per tal de relacionar la seva presència amb el seu paper en
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l’adaptació de l’organisme al medi exterior. L’estudi es realitza pels organismes

E. coli [119] i M. pneumoniae [56].

Mètodes

El disparity filter funciona mitjançant la comparació dels pesos dels enllaços amb

un model nul aleatori [95]. Després, es preserven els enllaços si la probabilitat

que els pesos dels enllaços no siguin compatibles amb el model nul és menor que

un llindar triat α. D’aquesta manera, el valor del llindar α, que es pot moure

en l’interval [0,1], determina la intensitat de filtrat. Si α→ 1, la intensitat de

filtratge serà petita. D’altra banda, si α→ 0, la intensitat de filtratge serà molt

gran, és a dir, el pes de l’enllaç haurà de ser estad́ısticament molt rellevant per

poder passar el filtratge. Una condició imprescindible perquè el disparity filter

sigui capaç de filtrar amb eficiència és que la funció de distribució de probabilitat

dels pesos dels enllaços sigui heterogènia, és a dir, contingui valors de diversos

ordres de magnitud tant a nivell global, que es pot comprovar calculant la funció

de distribució de probabilitat, com a nivell local, que implica que els el conjunt

de pesos tant d’entrada com de sortida de cada node de la xarxa és heterogeni.

Identificació dels backbones de les xarxes metabòliques

Primer es comprova el rendiment del disparity filter en xarxes metabòliques. Per

fer-ho, es porta a terme una exploració del paràmetre α per tal d’obtenir com les

xarxes metabòliques d’ambdós E. coli i M. pneumonaie es redueixen en funció del

valor de α. Cal tenir en compte que, un cop filtrada, i per evitar treballar amb

reaccions estequiomètricament no equilibrades, la xarxa obtinguda es transforma

en una projecció one-mode. Per fer-ho, es connecten dos metabòlits amb un

enllaç dirigit si hi ha una reacció que el seu flux és al mateix temps rellevant per



222 Resum

Desacoblament Filtratge

M

R
2R

1

R
5R

4
R
6

R
2R

1

R
5

R
6,b

R
6,a

M

R
2

R
4

R
6,b

M

M''

R
3

M'
R
4

M'

M''

R
3

M'

M''

R
3

OMP

M

M'

M''M''' M'''
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al consum d’un metabòlit i també rellevant per la producció de l’altre (veure

Figura F.5). En aquesta projecció one-mode, es calcula el nombre d’enllaços E

i de nodes N que romanen després de filtrar. S’obté que, tot i que la fracció

d’enllaços es pot reduir en gran mesura, la fracció de nodes es manté bàsicament

inalterada en comparació amb el cas no filtrat. El punt on comença a decaure la

fracció de nodes es defineix com un valor cŕıtic, i es pot entendre com un punt

òptim que redueix les connexions presents a la xarxa però que conté el màxim

d’informació bioqúımica i estructural possible.

Signes d’evolució en els backbones de metabòlits

Els backbones metabòlics d’ambdós E. coli i M. pneumoniae s’analitzen en

relació a una perspectiva evolutiva a llarg termini. El backbone de E. coli

s’analitza en termes de l’estructura bow-tie, i conté una GCC formada per

tres SCC. És interessant identificar a quines rutes metabòliques pertanyen les

connexions entre metabòlits de les SCCs. A la SCC més gran es pot veure que

la major part dels enllaços corresponen al metabolisme energètic. D’aquesta

manera, es recuperen les rutes involucrades amb l’obtenció d’energia que han
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mostrat processos evolutius per maximitzar l’eficiència en la producció d’ATP

[224, 226], i que degut a la seva importància, han estat presents des dels primers

moments de la vida dels organismes. Les altres dues SCC també estan formades

per enllaços que pertanyen a rutes metabòliques que ja existien en els primers

moments de vida dels organismes. Les rutes presents a aquestes SCC són la

biośıntesi de purina i pirimidina, el metabolisme de ĺıpids i la biośıntesi de

cofactors i grups prostètics. De fet, s’ha trobat que la śıntesi de purines i

pirimidines va ser la primera ruta metabòlica que implicava l’ús d’enzims [230]

[230]. El metabolisme de ĺıpids subministra els ĺıpids necessaris per generar la

membrana cel·lular, i s’ha demostrat que presenten diferències entre els diferents

llinatges en els organismes [231].

Per M. pneumoniae, el seu backbone està format per una GCC que conté dues

SCC, tot i que una d’elles és irrellevant. En la SCC més rellevant, la major part

dels enllaços estan relacionats també amb el metabolisme de l’energia, igual que

E. coli. La diferència principal de M. pneumoniae és que en el metabolisme de

l’energia hi participen només processos de fermentació, presents des dels primers

moments de vida dels organismes [35], degut a l’absència del Cicle de Krebs en

aquest organisme.

Els backbones metabòlics de E. coli codifiquen la seva capacitat

d’adaptació a curt termini

La última part d’aquesta secció estudia com els canvis en la composició dels

nutrients modifiquen el backbone metabòlic de E. coli, amb la finalitat d’extreure

resultats relacionats amb l’adaptació a curt termini a diferents medis exteriors.

Es comença analitzant com el backbone metabòlic de E. coli es modifica quan

s’utilitza un medi nutricional ric anomenat Luria-Bertani Broth [154, 158]. La
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GCC del backbone conté tres SCC, tot i que dos d’elles són irrellevants. La

majoria de les connexions de la SCC rellevant corresponen a la ruta metabòlica

encarregada del metabolisme dels ĺıpids [232].

Finalment, s’estudia com es veu afectat el backbone metabòlic de E. coli a causa

dels canvis en la composició dels nutrients presents en el medi exterior. Amb

aquesta finalitat, es consideren els medis mı́nims donats a la Referència [119].

Per a cada medi mı́nim, s’analitza com es modifica el valor cŕıtic αc. S’obté

que els valors de αc són semblants, és a dir, s’obté un valor caracteŕıstic en tots

els medis, cosa que indica que les solucions de fluxos metabòlics de la major

part dels medis mı́nims és molt similar. Aquest fet suggereix la possibilitat de

fusionar tots els backbones metabòlics de cada medi obtenint un superbackbone

global. La GCC d’aquest superbackbone està composada per una SCC, a més

de tres petites SCC irrellevants. Un anàlisi de les rutes metabòliques presents

en la SCC indica que la ruta més abundant és en aquest cas el Metabolisme del

Carboni Alternatiu [234], una ruta transversal [7] que conté gens que la seva

expressió depèn dels est́ımuls externs, en particular en l’alteració de les fonts de

carboni [233].

Estudi dels estats òptims en l’espai FFP

Aquesta part, basada en la Referència [245], revisa la tècnica FBA en relació

amb el conjunt de tots els estats de fluxos possibles en una xarxa metabòlica

mı́nima de E. coli (E. coli core) [63, 118]. FBA utilitza la suposició que els

organismes tracten de créixer tant com sigui possible. Degut a que aquesta

suposició pot no ser sempre correcta, és important explorar la resta de possibles

solucions sense fer ús de la hipòtesi de creixement màxim. Això permet avaluar
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la rellevància de la solució obtinguda per FBA en comparació amb totes les

altres possibles solucion.

Mètodes

Per calcular totes les possibles solucions en una xarxa metabòlica, s’usa el mètode

Hit-and-Run (HR). Molt resumidament, aquesta tècnica és capaç d’obtenir totes

les solucions que compleixen les condicions FBA, sense optimitzar la velocitat

de creixement. Cal dir també que, tot i que el mètode HR dóna una mostra

de l’espai i no es calcula l’espai complet, s’ha demostrat que aquesta mostra és

representativa de l’espai complet de solucions [246].

La solució FBA és excèntrica respecte de l’espai FFP

L’espai de solucions que conté totes les solucions de fluxos metabòlics s’anomena

feasible flux phenotypes space (espai FFP). En aquest cas, el medi exterior és un

medi mı́nim on la font de carboni és glucosa.

Per tal d’avaluar la representativitat de la solució FBA en relació amb les

altres solucions de l’espai FFP, es calculen primer els valors mitjos dels fluxos

de cada reacció a l’espai FFP i es compara amb els valors que prediu FBA

optimitzant el creixement. Fent això, s’obté que la majoria dels valors mitjos de

les reaccions queden lluny del que prediu FBA. Per visualitzar l’excentricitat de

la solució FBA s’utilitza un anàlisi de components principals [247, 248], amb la

finalitat de reduir l’alta dimensionalitat de l’espai FFP (nreaccions = 70) i aix́ı

poder representar l’excentricitat en un gràfic de dues dimensions. Usant aquesta

tècnica, es computa la matriu de covariàncies dels fluxos de les reaccions de

l’espai FFP, i d’allà es calculen els dos primers vectors principals, que són els que
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Figura F.6: Projecció de l’espai FFP en els dos components principals de la
matriu de correlació. La majoria dels punts es troben en un cercle prop de

l’origen (l’àrea més fosca). El cercle verd representa la solució FBA.

contenen la major variabilitat de l’espai. Cada estat de flux metabòlic possible

es reescala com un z-value centrat al voltant del valor mig i es projecta sobre

els dos eixos. Les projeccions es representen en coordenades polars, amb una

transformació logaŕıtmica negativa a la coordenada radial original per facilitar

la visualització. A la Figura F.6 es pot veure que, clarament, la solució prevista

optimitzant el creixement amb FBA és excèntrica comparant-la a la resta de

solucions.

L’espai FFP es pot usar per calibrar la desviació de fenotips

òptims respecte resultats experimentals

Aquesta part es centra en la relació entre el flux d’entrada de diferents fonts de

carboni (glucosa, piruvat i succinat) i el flux d’entrada d’oxigen, per mostrar

que l’espai FFP es pot usar com a punt de referència per calibrar la desviació

de les prediccions fetes amb FBA optimitzant el creixement amb els resultats

experimentals. Per fer-ho, primer es calculen els fluxos d’entrada de cada font de

carboni i d’oxigen de dues maneres, mitjançant FBA optimitzant el creixement,
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i calculant els valors migs dels fluxos d’entrada dels metabòlits a l’espai FFP.

Un cop es tenen els valors, es comparen amb les dades experimentals reportades

pel consum d’oxigen en un medi mı́nim amb glucosa, piruvat o succinat com a

fonts de carboni primàries.

En tots els casos, les prediccions optimitzant el creixement amb FBA repro-

dueixen bé els punts de les dades experimentals en la regió de valors petits de

fluxos d’entrada de totes les fonts de carboni [249]. No obstant això, el flux

d’entrada d’oxigen es satura quan s’arriba a fluxos d’entrada grans de les fonts

de carboni. En aquesta regió de fluxos d’entrada grans de les fonts de carboni,

la solució FBA maximitzant el creixement prediu un consum d’oxigen excessiu,

al voltant d’un 25% respecte els valors reportats experimentalment.

Una regió de l’espai FFP mostra fermentació aeròbica

La regió metabòlica d’alt creixement de l’espai FFP de l’organisme E. coli es pot

calcular en medi mı́nim de glucosa posant un valor mı́nim pel flux de la reacció de

biomassa. En aquesta regió, es pot identificar la utilització de rutes metabòliques

t́ıpiques del metabolisme microbià proliferatiu1, tot i que es considera un flux

màxim del flux d’entrada d’oxigen il·limitat i, per tant, permet arribar a fluxos

d’entrada d’oxigen molts grans. Aquest comportament metabòlic és consistent

amb les dades experimentals [49, 249, 255] però és inabastable per càlculs FBA

basats en els t́ıpics principis de optimalitat.

D’acord amb l’espai FFP de E. coli, es pot observar que la regió d’alt creixement

de l’espai FFP es caracteritza per la secreció de molècules orgàniques t́ıpiques de

la fermentació fins i tot quan el subministrament d’oxigen és il·limitat. Aquest

1El metabolisme microbià proliferatiu produeix productes de fermentació com l’acetat o
l’etanol fins i tot en condicions aeròbiques.
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fet apunta a la utilització simultània de la Glucòlisi i la Fosforilació Oxidativa per

produir biomassa i energia. Algunes de les molècules orgàniques que s’expulsen

són el formiat, l’acetat, l’etanol i el lactat. Aquests resultats indiquen que,

contràriament a les prediccions FBA, que no dóna la producció d’aquestes

molècules si no hi ha limitacions extres [254], un alt flux d’entrada de glucosa

combinat amb prou oxigen pot mantenir els requisits del metabolisme proliferatiu

per formar biomassa a través de la fermentació aeròbica. Aquesta fermentació

aeròbica, que hom pot pensar que és ineficient en termes de rendiment energètic

en comparació amb la Fosforilació Oxidativa, s’ha demostrat que és un estat

catabòlic favorable per totes les cèl·lules que proliferen ràpidament amb un flux

alt d’entrada de glucosa [254]. Per això, es pot dir que és un fenotip metabòlic

probable.

Conclusions

Les conclusions que es poden extreure d’aquesta tesi són:

• L’estructura de les xarxes metabòliques dels organismes estudiats ha

evolucionat cap a la robustesa contra inactivacions de reaccions.

• L’essencialitat dels gens de M. pneumoniae amb l’algorisme de cascada

coincideix amb resultats experimentals. A més, la regulació de gens

associats a danys grans tendeix a donar-se de forma isolada. Això es pot

entendre com a mecanisme de protecció per evitar danys metabòlics grans.

• La pressió evolutiva afavoreix la regulació metabòlica eficient a canvi de

perdre un cert grau de robustesa.
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• L’estudi amb FBA permet descobrir que hi ha un conjunt de reaccions que

han de ser sempre actives per tal de garantir la viabilitat d’un organisme.

Les reaccions no-essencials poden formar part de combinacions SL.

• Les parelles SL es poden classificar en funció de dos mecanismes diferents,

la plasticitat, on una reacció és activa l’altra inactiva, i la redundància, on

les dues reaccions tenen fluxos diferents de zero. La relació entre plasticitat

i redundància es fortament organisme depenent.

• La plasticitat i la redundància són altament conservades encara que es

canvïın els nutrients del medi exterior.

• El disparity filter és eficient per filtrar xarxes metabòliques.

• L’estudi de les SCC dels backbones metabòlics en medi mı́nim permet

identificar quines rutes metabòliques han jugat un paper important en

l’evolució a llarg termini.

• L’estudi dels backbones en diferents medis exteriors permet identificar

rutes metabòliques que mostren adaptació a curt termini.

• Els estats de creixement òptims són excèntrics respecte els altres fenotips

que formen l’espai complet.

• L’espai FFP es pot usar per calibrar la desviació entre càlculs FBA i

observacions experimentals.

• Sense la necessitat d’afegir restriccions extres, l’espai FFP recupera estats

que mostren fermentació aeròbica.
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[132] M. Boguñá and M. Ángeles Serrano. Generalized percolation in random

directed networks. Phys. Rev. E, 72:016106, 2005.
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[184] D. Segrè, D., and G. M. Church. Analysis of optimality in natural and

perturbed metabolic networks. Proc. Natl. Acad. Sci. USA, 99:15112–

15117, 2002.



250 Bibliography

[185] O. Folger, L. Jerby, C. Frezza, E. Gottlieb, E. Ruppin, and T. Shlomi.

Predicting selective drug targets in cancer through metabolic networks.

Mol. Syst. Biol., 7:501, 2011.

[186] O. Güell, F. Sagués, G. Basler, Z. Nikoloski, and M. Á. Serrano. Assessing
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[225] O. Ebenhöh and R. Heinrich. Evolutionary optimization of metabolic

pathways. Theoretical reconstruction of the stoichiometry of ATP and

NADH producing systems. B. Math. Biol., 63(1):21–55, 2001.

[226] R. J. Mailloux, R. Bériaut, J. Lemire, R. Singh, D. R. Chénier, R. D.

Hamel, and V. D. Appanna. The tricarboxylic acid cycle, an ancient

metabolic network with a novel twist. PLoS ONE, 2(8):e690, 2007.

[227] D. A. Fell and A. Wagner. The small world of metabolism. Nat. Biotechnol.,

18:1221–1122, 2000.

[228] D. R. Evans and H. I. Guy. Mammalian pyrimidine biosynthesis: fresh

insights into an ancient pathway. J. Biol. Chem., 279(32):33035–33038,

2004.

[229] M. W. Powner, B. Gerland, and J. D. Sutherland. Synthesis of activated

pyrimidine ribonucleotides in prebiotically plausible conditions. Nature,

459(7244):239–242, 2009.



Bibliography 255

[230] G. Caetano-Anolles, H. S. Kim, and J. E. Mittenthal. The origin of

modern metabolic networks inferred from phylogenomic analysis of protein

architecture. Proc. Natl. Acad. Sci. USA, 104(22):9358–9363, 2007.

[231] S. Suen, H. H. S. Lu, and C. H. Yeang. Evolution of domain architectures

and catalytic functions of enzymes in metabolic systems. Genome Biol.

Evol., 4(9):976–993, 2012.

[232] H. Tao, C. Bausch, C. Richmond, F. R. Blattner, and T. Conway. Func-

tional genomics: expression analysis of Escherichia coli growing on minimal

and rich media. J. Bacteriol., 181(20):6425–6440, 1999.

[233] A. Lourenço, S. Carneiro, J. P. Pinto, M. Rocha, E. C. Ferreira, and

I. Rocha. A study of the short and long-term regulation of E. coli metabolic

pathways. J. Integr. Bioinform., 8(3):183, 2011.

[234] J. M. Monk et al. Genome-scale metabolic reconstructions of multiple

Escherichia coli strains highlight strain-specific adaptations to nutritional

environments. Proc. Natl. Acad. Sci. USA, 110(50):20338–20343, 2013.

[235] R. Bourqui et al. Metabolic network visualization eliminating node re-

dundancy and preserving metabolic pathways. BMC Syst. Biol., 1:29,

2009.

[236] K. Faust, P. Dupont, J. Callut, and J. van Helden. Pathway discovery in

metabolic networks by subgraph extraction. Bioinformatics, 26:1211–1218,

2010.

[237] L. M. Blank, L. Kuepfer, and U. Sauer. Large-scale 13C-flux analysis

reveals mechanistic principles of metabolic network robustness to null

mutations in yeast. Genome Biol., 6(6):R49, 2005.



256 Bibliography
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high-growth phenotypes in the flux space of microbial metabolism. arXiv :1409.

4595 [q-bio.MN].
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