Undergraduate Thesis

MAJOR IN MATHEMATICS

Department of Mathematics

University of Barcelona

Isochrons (and applications to Neuroscience)

Manel Vila Vidal
manel@vilavidal.net

Advisor: Àlex Haro Provinciale
Barcelona, January the 29th, 2015
Acknowledgements

I would like to express my gratitude to Àlex, my advisor, with whom I have learnt a lot during the development of the research and the writing of the program. Thanks also for his encouragement to do things always better and for the coffees that have taken together.

I would also like to thank my father for his support and help, without which this project would have been difficult to accomplish. Thanks also to my mother, my brother and Clara for their understanding and for their constant support. Thanks Clara also for her interest in understanding what I was working on.
Contents

1 Introduction 3

2 Mathematical analysis 4
 2.1 The quasi-Newton method 8
 2.1.1 Substep 1: correction of \((K, \omega)\) 8
 2.1.2 Substep 2: correction of \((N, \lambda)\) 11
 2.2 Theoretical background 12
 2.3 Estimating the error 14

3 The reduced Hodgkin-Huxley model 19

4 Numerical implementation 24
 4.1 The Taylor method for integrating ODEs 24
 4.2 Discrete Fourier transform 26
 4.3 The program .. 28

5 Results 30
 5.1 The reduced Hodgkin-Huxley model 30
 5.2 The Rayleigh oscillator 32

6 Conclusions 36

A The program 38
Chapter 1

Introduction

Many biological systems exhibit a periodic behaviour. From a mathematical point of view they can be considered as systems moving along a stable limit cycle, that can be parametrised by its phase. The phase can be extended to the whole basin of attraction of the limit cycle via the asymptotic phase and the set of all points having the same asymptotic phase is called isochron. Isochrons were introduced in 1974 by Winfree \[5\] in order to understand the behaviour of an oscillatory system under a brief stimulus, namely, the phase advance or delay that the system would experience when sent away from the periodic orbit. This helps understanding, for example, the synchronisation in neural nets. Soon after Winfree’s paper, Guckenheimer \[6\] showed that isochrones are in fact the leaves of the stable foliation of the stable manifold of a periodic orbit. Different techniques have been developed to compute the isochrons \[1, 8\].

An important part of this undergraduate thesis consists on understanding the mathematical concept underlying the idea of isochron. In chapter 2 a definition is given and we describe some properties of isochrons with the objective of being able to find an approximation to first order. We also formulate a functional equation for the parametrisation of the invariant cycle and the tangent vector to the isochrons and we show how it can be solved using a quasi-Newton method. Our arguments are based in \[1\], where the parametrisation of the whole isochron is found. With some transformations we can simplify our equations and easily solve them. We end the chapter by giving some hints on how to proof the convergence of the method using KAM arguments \[2\]. In chapter 3 we describe briefly a simplified version of the well-known Hodgkin-Huxley model for the neuron and try to get some insight on what isochrons can tell us about this model.

Another important part of this thesis has been writing a program in language C to implement the algorithm described in chapter 2 in order to be able to apply it to the reduced Hodgkin-Huxley model. The program is described in chapter 4 and the source code is appended. In chapter 5 the results obtained with the program are discussed.
Chapter 2
Mathematical analysis

Consider a differential equation in the plane
\[\dot{x} = X(x), \quad x \in \mathbb{R}^2, \] (2.1)
where \(X \) is analytic. Let \(\varphi(t, x_0) \) be the associated flow, i.e.:
\[
\begin{cases}
\frac{d}{dt} \varphi(t, x_0) = X(\varphi(t, x_0)), \\
\varphi(0, x_0) = x_0.
\end{cases}
\] (2.2)

We assume that \(X \) admits a stable hyperbolic limit cycle \(K \). Recall that a limit cycle is an isolated periodic orbit, i.e., a periodic orbit which is the \(\omega \)-limit or \(\alpha \)-limit set of a certain neighbourhood \(\Omega \) around it. Furthermore, if the limit cycle is stable, it is the \(\omega \)-limit of \(\Omega \), which is called the basin of attraction.

Our first goal is to find a parametrisation for \(K \), i.e. to find \(\omega \in \mathbb{R}^+ \) and some 1-periodic map:
\[K : T = \mathbb{R}/\mathbb{Z} \to \mathbb{R}^2 \]
\[\theta \mapsto K(\theta) \] (2.3)
such that \(\varphi(t, K(\theta)) = K(\theta + \omega t) \) and \(K(T) = K \). Clearly if \(T = 1/\omega \) is the period of the limit cycle \(\varphi(T, K(\theta)) = K(\theta + \omega T) = K(\theta + 1) = K(\theta) \).

Proposition 2.1. The map \(K : T \to \mathbb{R}^2 \) and the number \(\omega \) satisfy the following functional equation on \(K \) and \(\omega \):
\[X(K(\theta)) - K'(\theta) \omega = 0 \] (2.4)

Proof. It suffices to insert \(\varphi(t, K(\theta)) = K(\theta + \omega t) \) into equation (2.2). \(\square \)

Note that the solution of (2.4) is not unique. If \((K, \omega) \) is a solution of that equation, so is \((\hat{K}, \omega) \), with \(\hat{K}(\theta) = K(\theta + \theta_0) \), for any \(\theta_0 \in T \). This phase shift, which allows
us to place the phase origin wherever we want in the orbit, is the only source of non-uniqueness for (2.4).

So far K has been parametrised in such a way that to each point of K a phase $\theta \in \mathbb{T}$ has been assigned. As K is a stable limit cycle we have that for each $x \in \Omega$

$$d(\varphi(t, x), K) \xrightarrow{t \to \infty} 0.$$

(2.5)

It is quite natural to wonder what point $K(\theta) \in K$ evolves under the flow $\varphi(t, \cdot)$ in such a way that

$$d(\varphi(t, x), \varphi(t, K(\theta))) = d(\varphi(t, x), K(\theta + \omega t)) \xrightarrow{t \to \infty} 0.$$

(2.6)

As pointed out in [6] it is possible to find a unique $\Theta: \Omega \to \mathbb{T}$ such that

$$d(\varphi(t, x), K(\Theta(x) + \omega t)) \xrightarrow{t \to \infty} 0,$$

(2.7)

Observe that Θ allows to extend the concept of phase out of the periodic orbit.

Definition 1. We say that a point $x \in \Omega$ is in asymptotic phase with a point $K(\theta) \in K$ if the following holds

$$d(\varphi(t, x), K(\theta + \omega t)) \xrightarrow{t \to \infty} 0.$$

(2.8)

i.e., if $\Theta(x) = \theta$. In this case we say that x has asymptotic phase θ.

Definition 2. The set of points having the same asymptotic phase is called isochron:

$$S_\theta = \{x \in \Omega: \Theta(x) = \theta\}.$$

(2.9)

Note that in the case that K is unstable it suffices to reverse time in order to adapt the definitions given here. Note also that our definitions are also valid in the case of $n > 2$, where the isochrons are called isochronous sections and they are manifolds of dimension $n - 1$.

The isochrons are the level sets of $\Theta(x)$ and they foliate the basin of attraction. In fact, soon after the isochrons were introduced by Winfree in 1974 [5], Guckenheimer showed [6] that they are the leaves of the stable manifold, that is $W^s(K(\theta))$, for each $\theta \in \mathbb{T}$. The isochrons are therefore tangent to the stable space $E^s(K(\theta))$, for each $\theta \in \mathbb{T}$. As a consequence we can obtain a linear approximation of the isochrons by finding the stable bundle of K.

Proposition 2.2. For each $\theta \in \mathbb{T}$, let $v_\theta \in T_{K(\theta)}S_\theta$, the tangent space of S_θ in the intersection with K. Then v_θ is an eigenvector of $D\varphi(T, K(\theta))$:

$$D\varphi(T, K(\theta))v_\theta = e^{\lambda T}v_\theta,$$

(2.10)

for some $\lambda \in \mathbb{R}_{<0}$. The other eigenvector of $D\varphi(T, K(\theta))$ is $K(\theta)$ with eigenvalue 1.
Proof. The first statement is a direct consequence of the observation made just before the proposition. We should strictly write $\lambda(\theta)$, but in the next proposition we will see that the stable vectors have the same eigenvalue everywhere. The sign of λ is in agreement with K being attractive. In the repulsive case we would have $\lambda > 0$.

Furthermore, it follows from the definition of isochron that v_θ and $K'(\theta)$ are transverse. Now consider $\varphi(T, K(\theta)) = K(\theta)$. Differentiating with respect to θ one obtains

$$D\varphi(T, K(\theta))K'(\theta) = K'(\theta), \quad (2.11)$$

which proves the second statement.

Let $N(0)$ be the stable vector in $K(0)$ with

$$D\varphi(T, K(0))N(0) = e^{\lambda T} N(0). \quad (2.12)$$

In the next proposition we show that the stable vectors along K can be obtained by simply propagating $N(0)$ under the differential of the flux.

Proposition 2.3. Let us define

$$N(\theta) = e^{-\lambda T \theta} D\varphi(T \theta, K(0)) N(0), \quad \theta \in \mathbb{T}. \quad (2.13)$$

The following holds:

$$D\varphi(T, K(\theta)) N(\theta) = e^{\lambda T} N(\theta). \quad (2.14)$$

Proof.

$$D\varphi(T, K(\theta)) N(\theta) = e^{-\lambda T \theta} D\varphi(T, K(\theta)) D\varphi(T \theta, K(0)) N(0)$$

$$= e^{-\lambda T \theta} D\varphi(T, \varphi(T \theta, K(0))) D\varphi(T \theta, K(0)) N(0)$$

$$= e^{-\lambda T \theta} D\varphi(T + T \theta, K(0)) N(0)$$

$$= e^{-\lambda T \theta} D\varphi(T \theta, \varphi(T, K(0))) D\varphi(T, K(0)) N(0) \quad (2.15)$$

$$= e^{-\lambda T \theta} D\varphi(T \theta, K(0)) D\varphi(T, K(0)) N(0)$$

$$= e^{-\lambda T \theta} D\varphi(T \theta, K(0)) e^{\lambda T} N(0)$$

$$= e^{\lambda T} N(\theta)$$

\[\square \]

Proposition 2.4. The map $N : \mathbb{T} \rightarrow \mathbb{R}^2$ and the number λ satisfy the following functional equation on N and λ:

$$DX(K(\theta)) N(\theta) = \lambda N(\theta) + \omega N'(\theta). \quad (2.16)$$
Proof. Let us recall that by differentiating (2.2) with respect to x_0 one obtains the variational equations:

\[
\begin{aligned}
\frac{d}{dt}D\varphi(t, x_0) &= DX(\varphi(t, x_0))D\varphi(t, x_0), \\
D\varphi(0, x_0) &= \text{id}_2.
\end{aligned}
\]

(2.17)

If we differentiate $N(\theta) = e^{-\lambda T\theta}D\varphi(T\theta, K(0))N(0)$ with respect to θ:

\[
\begin{aligned}
N'(\theta) &= -\lambda T e^{-\lambda T\theta}D\varphi(T\theta, K(0))N(0) + \\
&+ T e^{-\lambda T\theta} \frac{d}{dt}D\varphi(T\theta, K(0))N(0) = \\
&= -\lambda T N(\theta) + \\
&+ T e^{-\lambda T\theta}DX(\varphi(T\theta, K(0)))D\varphi(T\theta, K(0))N(0) = \\
&= -\lambda T N(\theta) + TDX(K(\theta))N(\theta),
\end{aligned}
\]

(2.18)

which yields the desired result after multiplying by ω. \qed

Note that the solutions of (2.16) are not unique. If (N, λ) is a solution of that equation, so is (\tilde{N}, λ), with $\tilde{N}(\theta) = bN(\theta)$, for any $b \in \mathbb{R} \setminus \{0\}$. This rescaling factor is the only source of non-uniqueness for (2.16).

Let us now sum up what we have done so far. Two approaches for obtaining (K, ω) and (N, λ) have arisen. The first one consists on determining first a point in \mathcal{K}, which we will name $K(0)$. Letting $K(0)$ evolve under the flux one can obtain the whole limit cycle and the period T, i.e., the number such that $\varphi(T, K(0)) = K(0)$. Additionally, one can obtain $N(0)$ and λ by solving the eigenvalue problem $D\varphi(T, K(0))N(0) = e^{\lambda T}N(0)$ and then propagate $N(0)$ under the differential of the flux in order to obtain $N(\theta)$.

For the second approach consider the functional equations (2.4) and (2.16), which must be thought of as equations for the mappings K and N and for the real numbers ω and λ. In the rest of the chapter we will show how they can be solved by means of a Newton-like method, provided that a good initial approximation is known. In section 2.1 we will design the method to be used in an informal way. In section 2.2 we will introduce some norms and give some basic properties that will allow us to give some estimate of the errors after one Newton step is performed. The error estimates will be given in section 2.3 and we will see that they are quadratically small. In this section we will also give a sketch of the proof of the convergence of the method. The kind of reasoning that we will do is very similar to that carried out in [1], where a parametrisation of the whole isochron is found by solving a functional equation. Our arguments are also very standard in KAM theory, and we will therefore follow very closely [2], where typical KAM problems are presented. However, note that ”small divisors”, a central piece in KAM theory, do not appear here.
CHAPTER 2. MATHEMATICAL ANALYSIS

2.1 The quasi-Newton method

Our objective is to find K, ω, N and λ that satisfy the functional equations derived in the previous section, namely:

\[
X(K(\theta)) - K'(\theta)\omega = 0 \\
DX(K(\theta)) N(\theta) - N'(\theta)\omega - N(\theta)\lambda = 0
\] \quad (2.19)

Suppose, however, that we have found K, ω, N and λ which are only an approximation, so that

\[
X(K(\theta)) - K'(\theta)\omega = E_K(\theta) \\
DX(K(\theta)) N(\theta) - N'(\theta)\omega - N(\theta)\lambda = E_N(\theta)
\] \quad (2.20)

In this section we will describe how to refine this solutions using a quasi-Newton method.

2.1.1 Substep 1: correction of (K, ω)

We could in fact improve our solution (K, ω) alone without making use of N. However it proves useful to improve K and N together as seen below.

The functional equation to solve for K and ω is

\[
X(K(\theta)) - K'(\theta)\omega = 0.
\] \quad (2.21)

Given an approximate solution (K, ω) of (2.21) such that

\[
X(K(\theta)) - K'(\theta)\omega = E_K(\theta),
\] \quad (2.22)

we are looking for $(\Delta K, \delta \omega)$ such that $(K + \Delta K, \omega + \delta \omega)$ eliminates the error $E_K(\theta)$ in the linear approximation:

Retaining only linear terms in the corrections:

\[
X(K(\theta) + \Delta K(\theta)) \approx X(K(\theta)) + DX(K(\theta)) \Delta K(\theta),
\] \quad (2.23)

and

\[
(K'(\theta) + \Delta K'(\theta))(\omega + \delta \omega) \approx K'(\theta)\omega + K'(\theta)\delta \omega + \Delta K'(\theta)\omega,
\] \quad (2.24)

which, when inserted in (2.21) yield

\[
0 = X(K(\theta) + \Delta K(\theta)) - (K'(\theta) + \Delta K'(\theta))(\omega + \delta \omega) \approx
\approx X(K(\theta)) + DX(K(\theta)) \Delta K(\theta) - K'(\theta)\omega - K'(\theta)\delta \omega - \Delta K'(\theta)\omega,
\] \quad (2.25)

\[
= E_K(\theta) + DX(K(\theta)) \Delta K(\theta) - K'(\theta)\delta \omega - \Delta K'(\theta)\omega.
\]
Therefore the corrections must satisfy the following equation:

\[-E_K(\theta) = DX(K(\theta))\Delta K(\theta) - K'(\theta)\delta \omega - \Delta K'(\theta)\omega.\] \hspace{1cm} (2.26)

However, we will not solve this equation directly. A change of variables along with some further approximations will allow us to simplify it. The simplified equation will be easily solved. This is what we call a quasi-Newton method.

Consider the following adapted frame:

\[P(\theta) = \left(L(\theta) \mid N(\theta) \right) = \left(K'(\theta) \mid N(\theta) \right).\] \hspace{1cm} (2.27)

We may now rewrite \(E_K\) and \(\Delta K\) in this frame:

\[\Delta K(\theta) = P(\theta)\xi(\theta),\]
\[E_K(\theta) = P(\theta)\eta(\theta),\] \hspace{1cm} (2.28)

Inserting this expressions in (2.26) and multiplying by \(P^{-1}\) in order to rewrite it in the frame we obtain:

\[-\eta(\theta) = P^{-1}(\theta)DX(K(\theta))P(\theta)\xi(\theta) - \begin{pmatrix} \delta \omega \\ 0 \end{pmatrix} - P^{-1}(\theta)P'(\theta)\xi(\theta)\omega - \xi'(\theta)\omega,\] \hspace{1cm} (2.29)

which needs to be solved for \(\xi\) and \(\delta \omega\).

In the first term on the right-hand side of the last equation we can do the following approximation

\[P^{-1}(\theta)DX(K(\theta))P(\theta)\xi(\theta) = P^{-1}(\theta)\left(DX(K(\theta))K'(\theta) \right) P(\theta)\xi(\theta) =
\approx P^{-1}(\theta)\left(K''(\theta)\omega + E_K'N' + N'(\theta)\lambda + E_N(\theta) \right)\xi(\theta)
\approx P^{-1}(\theta)\left(K''(\theta)\omega \right)\xi(\theta) + \xi'(\theta)\lambda =
= P^{-1}(\theta)P'(\theta)\xi(\theta)\omega + P^{-1}(\theta)\begin{pmatrix} 0 \\ N(\theta) \end{pmatrix} \xi(\theta)\lambda =
= P^{-1}(\theta)P'(\theta)\xi(\theta)\omega + \begin{pmatrix} 0 \\ \lambda \end{pmatrix} \xi(\theta),\] \hspace{1cm} (2.30)

Note that any vector \(V\) satisfying \(\langle K', V \rangle \neq 0\) could have been chosen for the second component and there would be no need to introduce \(N\). However we select \(N\) since this highly simplifies our calculations. It is clear that the exact \(K'\) and \(N\) are transverse, but it may not be the case with the approximations. We assume that the non-degeneracy condition is satisfied if the initial approximation is close enough to the real solution.
where we have made use of (2.20) and assumed that, since $E'_K(\theta)$ is controlled by $E_K(\theta)$, and $\xi(\theta)$ is of the same order of smallness as $E_K(\theta)$, $E'_K(\theta)\xi(\theta)$ and $E_N(\theta)\xi(\theta)$ are quadratically small and can be ignored in the linear approximation.

Inserting (2.30) into (2.29) we obtain the cohomological equation

$$-\eta(\theta) = \begin{pmatrix} 0 & 0 \\ 0 & \lambda \end{pmatrix} \xi(\theta) - \begin{pmatrix} \delta \omega \\ 0 \end{pmatrix} - \xi'(\theta)\omega.$$

(2.31)

This equation can be readily split into two uncoupled differential equations in the L and N components and we realise that the change of variables introduced has allowed us to reduce the initial equation to a much simpler one up to quadratically small terms,

$$\begin{align*}
\eta^L(\theta) &= \omega \partial_\theta \xi^L(\theta) + \delta \omega, \\
\eta^N(\theta) &= \omega \partial_\theta \xi^N(\theta) - \lambda \xi^N(\theta),
\end{align*}$$

(2.32)

that can be solved by considering Fourier series expansions for $\xi^L(\theta)$, $\xi^N(\theta)$, $\eta^L(\theta)$ and $\eta^N(\theta)$:

For the first equation we have:

$$\sum_{k \in \mathbb{Z}} \eta^L_k e^{2\pi i k \theta} = \delta \omega + \sum_{k \in \mathbb{Z}} 2\pi i k \omega \xi^L_k e^{2\pi i k \theta},$$

(2.33)

which yields the following solution

$$\delta \omega = \eta^L_0, \quad \xi^L_k = \frac{\eta^L_k}{2\pi i k \omega}, \quad \text{for } k \neq 0.$$

(2.34)

Observe that there is a free parameter, namely,

$$\xi^L_0 = \langle \xi^L \rangle = \int_0^1 \xi^L(\theta) \, d\theta.$$

(2.35)

This parameter can be adjusted at each step so that there is no shift in the initial parametrisation phase, so that $\Delta K(0) = 0$, or we can take it to be zero at each step and adjust it at the end if needed.

The second equation

$$\sum_{k \in \mathbb{Z}} \eta^N_k e^{2\pi i k \theta} = \sum_{k \in \mathbb{Z}} (2\pi i k \omega - \lambda) \xi^N_k e^{2\pi i k \theta},$$

(2.36)

has the following solution

$$\xi^N_k = \frac{\eta^N_k}{2\pi i k \omega - \lambda}.$$

(2.37)
CHAPTER 2. MATHEMATICAL ANALYSIS

2.1.2 Substep 2: correction of \((N, \lambda)\)

Once \((K, \omega)\) has been improved to \((\tilde{K}, \tilde{\omega}) = (K + \Delta K, \omega + \delta \omega)\), a similar reasoning can be made to refine \((N, \lambda)\). We start the correction by redefining the errors at the mid-step:

\[
X(\tilde{K}(\theta)) - \tilde{K}'(\theta)\tilde{\omega} = \tilde{E}_K(\theta) \tag{2.38}
\]
\[
DX(\tilde{K}(\theta)) N(\theta) - N'(\theta)\tilde{\omega} - N(\theta)\lambda = \tilde{E}_N(\theta) \tag{2.39}
\]

We proceed as before introducing the corrected solution \((N + \Delta N, \lambda + \delta \lambda)\) in the equation for \(N\) and \(\lambda\),

\[
DX(\tilde{K}(\theta)) N(\theta) - N'(\theta)\tilde{\omega} - N(\theta)\lambda = 0, \tag{2.40}
\]

and retaining only linear terms in the corrections:

\[
DX(\tilde{K}(\theta)) (N(\theta) + \Delta N(\theta)) = DX(\tilde{K}(\theta)) N(\theta) + DX(\tilde{K}(\theta)) \Delta N(\theta),
\]
\[
(N'(\theta) + \Delta N'(\theta))\tilde{\omega} = N'(\theta)\tilde{\omega} + \Delta N'(\theta)\tilde{\omega},
\]
\[
(N(\theta) + \Delta N(\theta))(\lambda + \delta \lambda) \approx N(\theta)\lambda + N(\theta)\delta \lambda + \Delta N(\theta)\lambda,
\]

which yields:

\[
-\tilde{E}_N(\theta) = DX(\tilde{K}(\theta)) \Delta N(\theta) - N(\theta)\delta \lambda - \Delta N'(\theta)\tilde{\omega} - \Delta N(\theta)\lambda. \tag{2.42}
\]

We can now rewrite \(E_N\) and \(\Delta N\) in the frame \(\tilde{P}(\theta) = (\tilde{L}(\theta)|N(\theta)) = (\tilde{K}'(\theta)|N(\theta))\):

\[
\Delta N(\theta) = \tilde{P}(\theta)\nu(\theta),
\]
\[
\tilde{E}_N(\theta) = \tilde{P}(\theta)\zeta(\theta), \tag{2.43}
\]

Inserting this expressions in \(2.42\) and multiplying by \(\tilde{P}^{-1}\) in order to rewrite it in the frame we obtain:

\[
-\zeta(\theta) = \tilde{P}^{-1}(\theta)DX(\tilde{K}(\theta))\tilde{P}(\theta)\nu(\theta) - \begin{pmatrix} 0 \\ \delta \lambda \end{pmatrix} - \tilde{P}^{-1}(\theta)\tilde{P}'(\theta)\nu(\theta)\tilde{\omega} - \nu'(\theta)\tilde{\omega} - \nu(\theta)\lambda, \tag{2.44}
\]

which needs to be solved for \(\nu\) and \(\delta \lambda\).
As before some further approximations can be made:

\[
\tilde{P}^{-1}(\theta)DX(\tilde{K}(\theta))\tilde{P}(\theta)\nu(\theta) = \tilde{P}^{-1}(\theta)\left(DX(\tilde{K}(\theta))\tilde{K}'(\theta)\right)DX(\tilde{K}(\theta)N(\theta))\nu(\theta) = \\
\approx \tilde{P}^{-1}(\theta)\left(\tilde{K}''(\theta)\dot{\omega} + \tilde{K}'(\theta)\nu + N(\theta)\lambda + \tilde{E}_K(\theta)\right)\nu(\theta) \\
\approx \tilde{P}^{-1}(\theta)\left(\tilde{K}''(\theta)\dot{\omega} + \tilde{K}'(\theta)\nu + N(\theta)\lambda\right)\nu(\theta) = \\
= \tilde{P}^{-1}(\theta)\tilde{P}'(\theta)\nu(\theta)\dot{\omega} + \tilde{P}^{-1}(\theta)\left(0\right)\nu(\theta)\lambda = \\
= \tilde{P}^{-1}(\theta)\tilde{P}'(\theta)\nu(\theta)\dot{\omega} + \tilde{P}^{-1}(\theta)\left(0\right)\nu(\theta)\lambda = \\
\approx \tilde{P}^{-1}(\theta) \tilde{P}'(\theta)\nu(\theta)\dot{\omega} + \left(0 0 \lambda\right)\nu(\theta),
\]

(2.45)

where we have dropped again \(\tilde{E}_K(\theta)\nu(\theta)\) and \(\tilde{E}_N(\theta)\nu(\theta)\).

Inserting (2.45) into (2.44) we obtain the cohomological equation for the correction of \(N\) and \(\lambda\):

\[
-\zeta(\theta) = \begin{pmatrix} 0 & 0 \\ 0 & \lambda \end{pmatrix} \nu(\theta) - \begin{pmatrix} 0 \\ \delta\lambda \end{pmatrix} - \nu'(\theta)\dot{\omega} - \nu(\theta)\lambda,
\]

(2.46)

which gives two differential equations of the same kind as obtained in the previous section:

\[
\begin{aligned}
\zeta^L(\theta) &= \dot{\omega}\partial_\theta \nu^L(\theta) + \lambda\nu^L(\theta), \\
\zeta^N(\theta) &= \dot{\omega}\partial_\theta \nu^N(\theta) + \delta\lambda,
\end{aligned}
\]

(2.47)

From the first equation we can obtain the Fourier coefficients of \(\nu^L(\theta)\):

\[
\nu^L_k = \frac{\zeta^L_k}{2\pi ik\dot{\omega} + \lambda},
\]

(2.48)

and from the second those of \(\nu^N(\theta)\) and \(\delta\lambda\):

\[
\delta\lambda = \zeta^N_0, \quad \nu^N_k = \frac{\zeta^N_k}{2\pi ik\dot{\omega}}, \quad \text{for} \ k \neq 0.
\]

(2.49)

The coefficient \(\nu^N_0 = \langle \nu^N \rangle\) is now free and it determines the normalisation condition upon \(N\). We can set \(\nu^N_0 = 0\) at each step and rescale vectors \(N\) at the end of the Newton method if needed.

2.2 Theoretical background

As we want to estimate the errors we need to be able to measure functions in some function space. For the following arguments we need to consider that all the functions that have appeared so far can be analytically extended to a complex neighbourhood.
Consider a complex strip of width $\rho > 0$:

$$T_\rho = \{ \theta \in \mathbb{C}/\mathbb{Z} \mid |\text{Im}(\theta)| < \rho \}. \quad (2.50)$$

Definition 3. Given a holomorphic periodic function $f : T_\rho \to \mathbb{C}$ we define the following norm

$$\|f\|_\rho = \sup_{\theta \in T_\rho} |f(\theta)|. \quad (2.51)$$

The set of functions with finite $\|\cdot\|_\rho$ norm form a Banach space with this norm.

For vector-valued functions we will use the maximum norm. Given a periodic function $f = (f_1, f_2) : T_\rho \to \mathbb{C}^2$ we extend the norm in the following way

$$\|f\|_\rho = \max(\|f_1\|_\rho, \|f_2\|_\rho). \quad (2.52)$$

For matrices of holomorphic functions on T_ρ the corresponding induced norm will be used. Given a 2×2 matrix $A = (f\,|g)$ we define:

$$\|A\|_\rho = \max(\|f_1\|_\rho + \|g_1\|_\rho, \|f_2\|_\rho + \|g_2\|_\rho). \quad (2.53)$$

Proposition 2.5. Let f be an holomorphic function on T_ρ. For any $\delta > 0$ the derivative of $f(\theta)$, $f'(\theta)$, is holomorphic on $T_{\rho-\delta}$ and the following holds:

$$\|f'\|_{\rho-\delta} \leq \frac{1}{\delta} \|f\|_{\rho}. \quad (2.54)$$

Proof. For every $\theta \in T_\rho$ consider the closed disk D_r contained in T_ρ. It is a typical result of complex analysis that

$$|f'(\theta)| \leq \frac{|f(\theta)|}{r}. \quad (2.55)$$

The largest r that one can choose for every $\theta \in T_{\rho-\delta}$ is δ. Taking supremaums at both sides yields the desired result. If a vector-valued function $f = (f_1, f_2)$ is considered:

$$\|f'\|_{\rho-\delta} = \max(\|f_1\|_{\rho-\delta}, \|f_2\|_{\rho-\delta}) \leq \frac{1}{\delta} \max(\|f_1'\|_\delta, \|f_2'\|_\delta) = \frac{1}{\delta} \|f\|_\rho. \quad (2.56)$$

\[\square\]

Proposition 2.6. Let X be an analytic vector field in a domain $U \subset \mathbb{C}^2$. Let $K : T_\rho \to \mathbb{C}^2$ be such that

$$d(K(T_\rho), \mathbb{C}^2 - U) \geq \kappa > 0. \quad (2.57)$$

Then the following hold:

- $X \circ K$ is holomorphic on T_ρ.

• For \(\Delta K : \mathbb{T}_\rho \to \mathbb{C}^2 \) with \(\| \Delta K \|_\rho \) sufficiently small (so that \(d((K + \Delta K)(\mathbb{T}_\rho), \mathbb{C}^2 - U) > 0 \)), we have

\[
\| X \circ (K + \Delta K) - X \circ K - (DX \circ K) \Delta K \|_\rho \leq C \| \Delta K \|_\rho^2. \tag{2.58}
\]

Proof. It follows from Taylor’s theorem:

\[
X(K(\theta) + \Delta K(\theta)) = X(K(\theta)) + DX(K(\theta)) \Delta K(\theta) + \int_0^1 (1 - t)DX^2(K(\theta) + t \Delta K(\theta)) [\Delta K(\theta), \Delta K(\theta)] t \tag{2.59}
\]

Taking supremums at both sides yields the desired result with \(C = \frac{1}{2} \sup_{x \in U} \| D^2 X \| \).

Proposition 2.7. Let \(f : \mathbb{T}_\rho \to \mathbb{C} \) be written as a Fourier series

\[
f(\theta) = \sum_{k \in \mathbb{Z}} f_k e^{2\pi i k \theta}. \tag{2.60}
\]

Then for all \(0 < \tilde{\rho} < \rho \) the following holds:

\[
| f_k | \leq e^{-2\pi |k| \tilde{\rho}} \| f \|_\rho \leq \| f \|_\rho \tag{2.61}
\]

Proof. For \(k > 0 \) the path of integration can be shifted downwards:

\[
f_k = \int_{\mathbb{T}} f(\theta)e^{-2\pi i k \theta} d\theta = \int_0^{-\tilde{\rho}} f(0 + is)e^{-2\pi i k(0+is)} ds + \int_{-\tilde{\rho}}^0 f(\theta - i\tilde{\rho})e^{-2\pi i k(\theta - i\tilde{\rho})} d\theta + \int_0^0 f(1+is)e^{-2\pi i k(1+is)} ds. \tag{2.62}
\]

As \(f(0 + is) = f(1 + is) \) we have that

\[
f_k = \int_{\mathbb{T}} f(\theta - i\tilde{\rho})e^{-2\pi i k(\theta - i\tilde{\rho})} d\theta = e^{-2\pi i k \tilde{\rho}} \int_{\mathbb{T}} f(\theta - i\tilde{\rho})e^{-2\pi i k \theta} d\theta, \tag{2.63}
\]

so that

\[
| f_k | \leq e^{-2\pi i k \tilde{\rho}} \int_{\mathbb{T}} \| f \|_\rho d\theta = e^{-2\pi i k \tilde{\rho}} \| f \|_\rho. \tag{2.64}
\]

For \(k < 0 \) shift the path of integration upwards. For \(k = 0 \) the path along the real line gives the desired result.

2.3 Estimating the error

So far we have presented the quasi-Newton method in an informal way by simply dropping some terms that we have considered to be quadratically small. We will here
give an estimate of the error after one step and see that it is bounded by the square of
the error before performing the step. When developing the method we have highlighted
the approximately equal symbol \(\approx \) in order to keep track of all the terms that have
been ignored.

We will denote the errors after the first half step with \(\tilde{E} \) and the errors after the
whole quasi-Newton step has been performed as \(\bar{E} \).

Proposition 2.8. Assume that \(X \) is analytic in some domain \(U \subset \mathbb{C}^2 \). Let \(K : T_\rho \to U \) be such that
\[
d(K(T_\rho), \mathbb{C}^2 - U) \geq \kappa > 0 \tag{2.65}
\]
and let \(N : T_\rho \to \mathbb{C}^2 \). Let \(\epsilon \geq 0 \) be such that
\[
\|E_K\|_\rho = \|X \circ K - \omega K'\|_\rho \leq \epsilon
\]
\[
\|E_N\|_\rho = \|(DX \circ K)N - \omega N' - \lambda N\|_\rho \leq \epsilon \tag{2.66}
\]
and let \(\delta > 0 \) be such that it satisfies a certain relation
\[
\delta^{-1} C \epsilon < 1, \tag{2.67}
\]
for a certain constant \(C \) depending on \(\kappa, |\omega|, |\lambda|, \sup_{x \in U} \|D^2 X\|, \|P\|_\rho, \|P^{-1}\|_\rho \), where
\(P = (K' \vert N) \). Then the errors \(\bar{E}_N, \bar{E}_K \) for the improved solutions \((K + \Delta K, \omega + \delta \omega) \)
and \((N + \Delta N, \lambda + \delta \lambda) \) obtained after the quasi-Newton step satisfy
\[
\|\bar{E}_N\|_{\rho-\delta} \leq C \delta^{-1} \epsilon^2,
\]
\[
\|\bar{E}_K\|_{\rho-\delta} \leq C \delta^{-1} \epsilon^2, \tag{2.68}
\]
where the constant \(C \) appearing in the conclusions is different than that appearing in
the hypothesis, as is common practice in KAM arguments.

Only a sketch of the proof will be given:

Let us first consider substep 1. Using proposition [2.7] and the explicit expressions
for the corrections in the frame derived in the last section we can give the following bounds:
\[
|\delta \omega| \leq \|\eta\|_\rho \leq \|P^{-1}\|_\rho \|E_K\|_\rho \leq C \epsilon,
\]
\[
\|\xi^L\|_\rho \leq \frac{1}{\omega} \|\eta^L\|_\rho \leq \left(\frac{1}{\omega} + \frac{1}{\lambda} \right) \|\eta^L\|_\rho,
\]
\[
\|\xi^N\|_\rho \leq \left(\frac{1}{\omega} + \frac{1}{\lambda} \right) \|\eta^N\|_\rho,
\]
\[
\|\xi\|_\rho \leq \left(\frac{1}{\omega} + \frac{1}{\lambda} \right) \|\eta\|_\rho \leq \left(\frac{1}{\omega} + \frac{1}{\lambda} \right) \|P^{-1}\|_\rho \|E_K\|_\rho \leq C \epsilon \tag{2.69}
\]
CHAPTER 2. MATHEMATICAL ANALYSIS

From these expressions and using also proposition 2.5 we can obtain the following bounds:

$$
\|E'_K\|_{\rho-\delta} \leq \frac{C}{\delta} \|E_K\|_{\rho} \leq \frac{C}{\delta} \epsilon,
$$

$$
\|\Delta K\|_{\rho} \leq \|P\|_{\rho} \|\xi\|_{\rho} \leq C \epsilon, \tag{2.70}
$$

$$
\|\Delta K'\|_{\rho-\delta} \leq \frac{C}{\delta} \|\Delta K\|_{\rho} \leq \frac{C}{\delta} \epsilon.
$$

Now if we go back to substep 1 of the Newton method, where the correction of K and ω is considered we can add and subtract terms to obtain the following expression:

$$
\hat{E}_K(\theta) = X(K(\theta) + \Delta K(\theta)) - (K'(\theta) + \Delta K'(\theta))(\omega + \delta \omega) =
$$

$$
= X(K(\theta) + \Delta K(\theta)) - X(K(\theta)) - DX(K(\theta)) \Delta K(\theta) +
$$

$$
+ X(K(\theta)) + DX(K(\theta)) \Delta K(\theta) - K'(\theta) \omega - \Delta K'(\theta) \omega - K'(\theta) \delta \omega - \Delta K'(\theta) \delta \omega =
$$

$$
= X(K(\theta) + \Delta K(\theta)) - X(K(\theta)) - DX(K(\theta)) \Delta K(\theta) +
$$

$$
+ E_K(\theta) + DX(K(\theta)) \Delta K(\theta) - \Delta K'(\theta) \omega - K'(\theta) \delta \omega -
$$

$$
- \Delta K'(\theta) \delta \omega =
$$

$$
= X(K(\theta) + \Delta K(\theta)) - X(K(\theta)) - DX(K(\theta)) \Delta K(\theta) +
$$

$$
+ E_K(\theta) - E_K(\theta) + P^{-1}(\theta) \left(E_K'(\theta) \left| E_N(\theta) \right| \xi(\theta) \right)
$$

$$
- \Delta K'(\theta) \delta \omega =
$$

$$
= X(K(\theta) + \Delta K(\theta)) - X(K(\theta)) - DX(K(\theta)) \Delta K(\theta) +
$$

$$
+ P^{-1}(\theta) \left(E_K'(\theta) \left| E_N(\theta) \right| \xi(\theta) \right)
$$

$$
- \Delta K'(\theta) \delta \omega =
$$

$$
= A_1 + A_2 + A_3, \tag{2.71}
$$

where we denote each line in the last expression by A_1, A_2, A_3.

Making use of the bounds that we have just computed we can estimate each line as follows:

$$
\|A_1\|_{\rho} \leq C \|\Delta K\|_{\rho}^2 \leq C \epsilon^2,
$$

$$
\|A_2\|_{\rho-\delta} \leq \|P^{-1}\|_{\rho-\delta} \left(\|E_K'\|_{\rho-\delta} \|\xi\|_{\rho-\delta} + \|E_N\|_{\rho-\delta} \|\xi\|_{\rho-\delta} \right) \leq
$$

$$
\leq \frac{C}{\delta} \epsilon^2 + C \epsilon^2, \tag{2.72}
$$

$$
\|A_3\|_{\rho-\delta} \leq \|\Delta K'\|_{\rho-\delta} |\delta \omega| \leq \frac{C}{\delta} \epsilon^2.
$$

Note that for the first estimate the proposition 2.6 has been used.
We can see that each term is bounded by the square of the initial error as desired. A similar reasoning can be applied for the mid-step error for the functional equation on N:

$$\tilde{E}_N(\theta) = DX \left(K(\theta) + \Delta K(\theta) \right) N(\theta) - N'(\theta)(\omega + \delta \omega) - N(\theta) \lambda = DX \left(K(\theta) + \Delta K(\theta) \right) N(\theta) - DX \left(K(\theta) \right) N(\theta) + DX \left(K(\theta) \right) N(\theta) - N'(\theta)\omega - N(\theta) \lambda = B_1 + E_N(\theta) + B_2,$$

where we use a similar notation as before.

Using Taylor in a similar way as in proposition 2.6 one can find

$$\|B_1\|_\rho \leq C \|\Delta K\|_\rho \|N\|_\rho \leq C\epsilon,$$ \hfill (2.74)

and using proposition 2.5:

$$\|B_2\|_{\rho-\delta} \leq \|N'\|_{\rho-\delta} |\delta \omega| \leq \frac{C}{\delta} \epsilon,$$ \hfill (2.75)

so that \tilde{E}_N, the mid-step error for N, is of the order of E_N.

The same kind of bounds can be found for the correction of N and λ, but they will not be specified here, since it is out of the scope of this undergraduate thesis.

However, a key point must be noted. To control the error in the second substep we must be able to control the inverse of \tilde{P}. This can be done using Neumann series. Consider the following expression:

$$\tilde{P}^{-1} = (\tilde{P} - P + P)^{-1} = P^{-1}(I + (\tilde{P} - P)P^{-1})^{-1} = P^{-1}(I - X + X^2 - \ldots),$$ \hfill (2.76)

where $X = P^{-1}(\tilde{P} - P)$.

The matrix \tilde{P} is invertible if P is invertible and $\|X\|_\rho < 1$. And we can write

$$\|X\|_\rho = \|\tilde{P} - P\|_\rho \cdot \|P^{-1}\|_\rho < 1$$ \hfill (2.77)

From this we can clearly see that the worse conditioned P is, the closer \tilde{P} needs to be to P, which means that the error in the initial approximation needs to be smaller. In fact from (2.76) we can write the following bound

$$\|\tilde{P}^{-1}\|_\rho \leq \|P\|_\rho \frac{1}{1 - \|X\|_\rho},$$ \hfill (2.78)

which would allow us to obtain a specific condition that could be included in the constant C appearing in the hypothesis. We would like to repeat now that the greater
C is, the smaller ϵ can be, i.e., the better the initial condition passed to the algorithm has to be, for it to converge quadratically.

So far we have shown that the error after the iterative step is bounded by the square of the error before the step. However one must carefully observe that the functions after the step are in a slightly smaller domain and that there is some constant δ^{-1} that determines this loss of analyticity appearing in the bounds. A balance must be satisfied between taking a very small δ (where the constants blow up) and keeping the constants small (where we finally end up with no domain). This kind of problems are very usual in KAM theory and they are solved in the following way. The following sequence is considered for each step $n \geq 1$

$$\delta_n = \frac{1}{4}\delta_0 2^{-n}, \quad (2.79)$$

where δ_0 is the global analyticity loss. If the initial approximation is good enough it can be shown that the hypothesis of proposition 2.8 is satisfied at each step and the error at step n can be estimated as

$$\epsilon_n \leq C(\delta_0 2^{-n-1})^{-1} \epsilon_{n-1}^2 \leq \cdots \leq (C\delta_0^{-1}2^2 \epsilon_0)^{2n}. \quad (2.80)$$

If $(C\delta_0^{-1}2^2 \epsilon_0) < 1$ (which would appear as a hypothesis in the theorem stating the convergence of the method), ϵ_n decreases superexponentially, while δ_n decreases only exponentially. This is the key point in understanding why the hypothesis of our proposition is satisfied again after the Newton step, provided that the initial approximation is good enough.
Chapter 3

The reduced Hodgkin-Huxley model

The electrical activity in neurons can be understood in terms of four ions travelling through its membrane: sodium (Na$^+$), potassium (K$^+$), calcium (Ca$^{2+}$) and chloride (Cl$^-$). When the cell membrane is at rest, there is a high concentration of Na$^+$ and Cl$^-$ in the extracellular medium, while the intracellular medium is rich in K$^+$ and negatively charged molecules.

The different concentrations of these ions inside and outside the cell membrane creates electrochemical gradients that are responsible for the electrical activity of the cells. The cell membrane does not allow ions to pass through it, but it has some ion-specific channels that can open and allow the flow of ions.

In 1952 Hodgkin and Huxley proposed a mathematical model [10] of the squid giant axon, which is one of the most important models in computational neuroscience. It must be said, however, that this model has the difficulty of involving four variables, and several simplifications that capture the essence of the dynamics of the neuron with only two variables have been proposed. The simplified model that we will consider in this thesis can be described with the following equations:

\[
\begin{align*}
C \frac{dV}{dt} &= I - g_{Na}m_\infty(V)(V - V_{Na}) - g_{K}n(V - V_{K}) - g_{L}(V - V_{L}), \\
\dot{n} &= n_\infty(V) - n,
\end{align*}
\]

with

\[
\begin{align*}
m_\infty(V) &= \frac{1}{1 + \exp(-(V - V_{max,m})/k_m)}, \\
n_\infty(V) &= \frac{1}{1 + \exp(-(V - V_{max,n})/k_n)}.
\end{align*}
\]

This model is called the $I_{Na,p} + I_{K}$-model and is said to describe a fast persistent sodium current and a slower potassium current. In order to understand briefly the
meaning of these equations, consider the first equation in (3.1) written in the following way:

\[I = C \dot{V} + g_{Na} m_\infty(V)(V - V_{Na}) + g_K n(V - V_{K}) + g_L(V - V_{L}) \] (3.3)

This equation is a simple application of Kirchoff’s law to the neuron membrane. \(I \) represents the total current crossing the membrane, which may be due to synaptic current, axial current, tangential current along the membrane surface or current injected artificially with an electrode. On the right hand side of the last equality, we have \(C \dot{V} \), which amounts for the capacitative current of the membrane, i.e., for the accumulation of ions at each side of the membrane when the membrane potential is changing. The third terms is called leakage current and is due to the fact that the membrane is never fully impermeable. Finally the two middle terms correspond to the flow of sodium and potassium ions with conductances \(g_{Na} m_\infty(V) \) and \(g_K n \), respectively. As we have said before the membrane has several ion channels that can open and close. \(g_{Na} \) and \(g_K \) can be interpreted as the maximum conductances, when all the channels are open, and \(m_\infty(V) \) and \(n \) as the fraction of channels that are open at a given time. As we can see the fraction of open channels is voltage dependent in both cases, but time-dependent only in the second one.

As in [1] and [8] we use the following values for the parameters: \(C_m = 1, g_{Na} = 20, V_{Na} = 60, g_K = 10, V_{K} = -90, g_L = 8, V_{L} = -80, V_{max,m} = -20, k_m = 15, V_{max,n} = -25 \) and \(k_n = 5 \). The parameter \(I \) can be studied as a bifurcation parameter.

For \(I = 0 \) the system has no periodic orbits as shown in figure 3.1. A fixed point is localised at about \((V,n) \approx (-30,0.4) \). The other two equilibria are localised at about \(n = 0 \) for \(V \approx -55,-65 \) and they are joined by two heteroclinic orbits. The neuron is expected to be in the stable equilibrium. If a small positive perturbation in the potential is applied, the neuron will go back to the stable equilibrium through a short path close to the short heteroclinic orbit. However, if this perturbation is such that the \(V \)-nullcline is crossed, then the neuron will go for a long loop close to the long heteroclinic orbit before returning to the starting point. In this case an action potential is elicited. Systems exhibiting this feature are called excitable media.

As the value of the parameter \(I \) is increased the stable and unstable equilibria connected by the two heteroclinic orbits become closer and closer until they fuse at \(I = 4.51 \), as shown in figure 3.2. At this point a bifurcation called Saddle-Node on an invariant circle (SNIC) happens.

For larger values of \(I \), a limit cycle appears as shown in figure 3.3 and the membrane voltage exhibits a periodic behaviour with periodic spiking as seen in figure 3.4.

For the case \(I = 10 \) we show in figure 3.5 the isochrons defined in the last chapter computed for 40 evenly distributed phases. Let us recall that the concept of isochron allowed us to extend the idea of phase of oscillation to the basin of attraction of a
Figure 3.1: $I_{Na,p} + I_K$-model. No periodic orbits for $I = 0$. Source: [7]

Figure 3.2: $I_{Na,p} + I_K$-model. SNIC bifurcation for $I = 4.51$. Source: [7]
Figure 3.3: $I_{Na,p} + I_K$-model. Limit cycle attractor for $I = 10$. Source: [7]

Figure 3.4: $I_{Na,p} + I_K$-model. Transition from resting state to periodic spiking. Source: [7]

limit cycle. Consider a neuron whose dynamics can be qualitatively described with figure 3.5. The neuron is periodically spiking and travelling along the limit cycle. As
we did before \((I = 0)\) we can ask what happens if a small perturbation in the voltage occurs at a certain time. The neuron abandons the limit cycle and evolves in such a way that it will clearly go back to it, but it may have experienced a phase advance or delay. Isochrons allow us to determine quantitatively the phase shift experienced by the neuron. If a perturbation occurs when the neuron is at a phase \(\theta_i\) and the neuron falls on an isochron with phase \(\theta_f\) we know that when the neuron goes back to the limit cycle it will have suffered a phase shift:

\[
\Delta \theta = \theta_f - \theta_i.
\]

(3.4)

Figure 3.5: \(I_{Na,p} + I_K\)-model. Isochrons of the limit cycle attractor in figure 3.3. Source: [7]

Understanding the concept of isochron and being able to compute them plays a central role in computational neuroscience since it allows to understand how two coupled neurons behave depending on their intrinsic dynamics, how a net of synchronous neurons will react in front of a perturbation or how one desynchronised neuron can resynchronise again in front of the stimulus passed by the others.

Isochrons offer another kind information. Looking again at figure 3.5 we can see that isochrons accumulate at a certain part of the limit cycle, while they are sparsely distributed in other parts. As the isochrons are plotted for evenly distributed values of \(\theta\), which corresponds to evenly distributed values of \(t\), we can easily see where the neuron goes faster and slower in the periodic orbit. It must be noted that the points where the trajectory slows down are those where the bifurcation occurred. In this case very strong slow-fast dynamics are observed.
Chapter 4

Numerical implementation

We select the model described in the last chapter (equations 3.1) and write a program in language C that is able to find a parametrisation of the periodic orbit $K(\theta)$ and find the vectors $N(\theta)$ through integration and that refines the initial solutions using the quasi-Newton method described in chapter 2. The source code is appended at the end of this undergraduate thesis, and the reader is invited to have a look at it while reading this chapter in order to follow the explanations given here.

4.1 The Taylor method for integrating ODEs

Our program needs to integrate the flux and the variational equations. For the integration of differential equations we use the Taylor method.

Consider the following Cauchy problem:

$$\begin{align*}
x'(t) &= f(t, x(t)), \\
x(t_0) &= x_0.
\end{align*}$$

(4.1)

The Taylor method is based on the possibility of performing a Taylor expansion of the function $x(t)$ around t_0, for $h \in \mathbb{R}$:

$$x(t_0 + h) = x(t_0) + x'(t_0)h + \frac{1}{2!}x''(t_0)h^2 + \ldots + \frac{1}{p!}x^{(p)}(t_0)h^p + \ldots,$$

(4.2)

Taking a certain step h we can approximate $x(t_0 + h)$ by the truncated Taylor series up to order p and we call this approximation x_1:

$$x_1 = x(t_0) + x'(t_0)h + \frac{1}{2!}x''(t_0)h^2 + \ldots + \frac{1}{p!}x^{(p)}(t_0)h^p,$$

(4.3)

Now we can consider the new Cauchy problem with initial condition $x(t_1) = x_1$, where we use the notation $t_1 = t_0 + h$. The same procedure can be used in order to

\footnote{If $p = 1$ the method is know as the Euler method}
obtain an approximation $x_2 \approx x(t_2)$, for $t_2 = t_1 + h$. The process can be iterated as long as needed, so that for each pair t_i, x_i a new x_{i+1} can be obtained for $t_{i+1} = t_i + h$.

Consider equation (4.3). At each step of the integration we need to compute the values of the derivatives $x^{(j)}(t_0)$ up to order p. The first derivative is given directly by the field: $x'(t_0) = f(t_0, x_0)$. For higher order derivatives we can differentiate the first equation in (4.1):

$$x''(t) = f_t(t, x(t)) + f_x(t, x(t)) x'(t),$$

(4.4)

and so on. However, as we consider derivatives of higher order, the expressions that we get become more and more complicated and it becomes difficult to compute the derivatives of f and also to evaluate such long expressions numerically.

This difficulty however can be overcome using automatic differentiation, a recursive procedure which allows to compute easily the derivatives of a given function at a given point. This works only for a special class of functions, those that can be obtained by sum, product, quotient, and composition of elementary functions (polynomials, trigonometric functions, real powers, exponentials and logarithms).

Consider a function $a: \mathbb{R} \to \mathbb{R}$, which is assumed to be smooth, and which can be written as $a(t) = F(b(t), c(t))$, and assume furthermore that we know $b^{(j)}(t)$ and $c^{(j)}(t)$ up to order n at a given t_0. If F is one of the functions specified before the rules of automatic differentiation \cite{4} allow us to write $a^{(j)}(t)$ in t_0 up to order n as a function of the already know derivatives of b and c in t_0. These rules can be applied recursively in $x'(t) = f(t, x(t))$ to obtain the derivatives of $x(t)$ in t_0 up to any order desired.

In our program we use the software package provided by Jorba and Zou \cite{4}, which, given some differential equations, is able to generate some routines of integration, which are in the header file taylor.h and have the structure:

```c
int taylor_step_name(long double *ti, long double *x, int dir, int step_ctl, double log10abserr, double log10relerr, long double *endtime, long double *ht, int *order)
```

The arguments t_i and x_i correspond to the initial conditions t_i and x_i and are overwritten with the new conditions t_{i+1} and x_{i+1} after one step of the integration.

This routines implement also optional stepsize and order control, which means that a different step h and different order p may be used for each step. By setting $step_ctl$ to 1, the stepsize and order control are performed and the integrator tries to keep either the absolute or relative errors below the values given by the user. The decimal logarithm of the absolute and relative accuracy is passed to the function with $log10abserr$ and $log10relerr$, respectively. At the end of the step, ht gives the time step used and $order$ gives the degree used in the Taylor expansion. The flag dir can be either 1 for forward integration, or -1 for backward integration. Additionally, one can set a value for $endtime$, so that the size of the last step is adapted in order to fit
the required end time. The output of the function is 0, unless \(ti=\text{endtime} \). In this case the function returns 1.

On the other hand, it is possible to set \texttt{step_ctl} to 0. In this case no stepsize or order control are performed and the stepsize and order to be used are defined by the user through \texttt{ht} and \texttt{order}, while the other flags are ignored.

4.2 Discrete Fourier transform

As we will be dealing with periodic functions and we will need to solve some equations involving their Fourier coefficients it essential to be able to find them. Consider \(f: \mathbb{T}_\rho \to \mathbb{R} \):

\[
f(\theta) = \sum_{k=-\infty}^{\infty} \hat{f}_k e^{2\pi ik\theta}.
\]

(4.5)

As we have seen in proposition 2.7, the coefficients are expected to decay exponentially with \(|k|\) and therefore the Fourier series can be truncated at some point:

\[
f(\theta) \approx \sum_{k=-N/2}^{N/2-1} \hat{f}_k e^{2\pi ik\theta}.
\]

(4.6)

With the objective of finding such an approximation we will make use of the Discrete Fourier Transform (DFT). We discretise \(\mathbb{T}_\rho \) by taking \(N \) values \(\{\theta_j = j/N\}_{j=0}^{N-1} \) equally spaced on the interval, and we evaluate the function \(f \) at these points in order to obtain a set of values:

\[
\{f_j = f(\theta_j)\}_{j=0}^{N-1}
\]

(4.7)

The DFT transforms this set of \(N \) values into an \(N \) periodic set of complex values

\[
\hat{f}_k = \sum_{j=0}^{N-1} f_j e^{-2\pi ik\theta_j}, \quad k \in \mathbb{Z},
\]

(4.8)

that satisfy \(\hat{f}_j = \hat{f}_{j(\text{mod}N)} \). Those indexed by \(0, \ldots, N \) are the coefficients of the interpolating trigonometric polynomial up to a factor \(1/N \):

\[
P(\theta) = \sum_{j=0}^{N-1} \frac{1}{N} \hat{f}_j e^{2\pi ij\theta},
\]

(4.9)

that satisfies \(P(\theta_j) = f_j \).

The implementation of the Discrete Fourier Transform will be done using the Fast Fourier Transform algorithms found in the library FFTW, included in the code with the header \texttt{fftw3.h}. These algorithms are able to perform the transform in \(O(N\log N) \) operations (specially if \(N \) is a power of 2).
In our code one can see that there is a bunch of functions related to Fourier transforms. The technical requirements of the routines in the FFTW library have been hidden under the functions `void createfourier()` and `void destroyfourier()` for the sake of clarity, and they can be thought of as allocating and freeing memory when working with pointers. The functions in `fftw3.h` perform the DFT on an array of numbers. However, as we are working with arrays of two-dimensional vectors we have also created our own functions

```c
void forwardfourier(long double complex **IN, long double complex **OUT);
void backwardfourier(long double complex **IN, long double complex **OUT);
```

that work on arrays of vectors.

The function `forwardfourier` reads an array \(\text{IN}[2][\text{Ngrid}] \), performs the DFT on each array of components and divides the result by \(\text{Ngrid} \) before writing it on \(\text{OUT}[2][\text{Ngrid}] \), so that we obtain directly the coefficients of the interpolating trigonometric polynomial. The function `backwardfourier` performs a backward DFT, which simply consists in evaluating the interpolating polynomial at the values \(\theta_j = j/N \), for \(j = 1, \ldots, N \), so that no further rescaling is needed.

As already said when we do the forward Fourier transform we obtain the coefficients of the interpolating polynomial \([4.9]\), that correspond, up to a shift in the indexes, to the coefficients of the truncated Fourier series \([4.6]\). A function `int ind(int i)` has been also created, which reads an integer \(i = -\text{N}/2, \ldots, \text{N}/2-1 \) and shifts it to the range \(0, \ldots, \text{N}-1 \). When working with vectors in the Fourier space this function will be used.

The function `void derivatefourier(long double complex **K, long double complex **DK)` is used for differentiating truncated Fourier series \([4.6]\):

\[
f(\theta) = \sum_{k=\text{N}/2}^{N/2-1} 2\pi ik \tilde{f}_k e^{2\pi i k \theta}.
\]

The function `int ind(int i)` turns out to be very useful in this case.

Still an important observation is to be made. As our functions are real-valued, the Fourier coefficient for a certain \(k \) is the complex conjugate of that for \(-k \). However, when truncating the series and working with even \(N \), we can see that the so-called Nyquist term, \(\tilde{f}_{-\text{N}/2} \), is not compensated by a complex conjugate, since \(\tilde{f}_{\text{N}/2} \) is taken to be 0. This means that we are no longer working with real objects. This could be compensated by artificially adding a term \(\tilde{f}_{\text{N}/2} \) to compensate for this effect. This is something we don’t do, because we don’t need to evaluate the Fourier series out of the grid. However, this problem naturally arises when differentiating. In this case we set the Nyquist term of the derivative to be zero as suggested in \([9]\).

4.3 The program

In the appendix, the source code is commented. However, some features are still worth mentioning.

As already seen, our program is written using precision `long double`. At the beginning of the code one can see that the values of the parameters are specified. The values chosen are those that already appeared in the previous chapter, and we choose the bifurcation parameter I to be 10 mV. The absolute and relative tolerances that we used for the integrator and for other purposes are 10^{-16}.

Several functions are defined: `void matrixvector2(long double M[2][2], long double *v)` and `void invmatrixvector2(long double M[2][2], long double *v)`, which apply the matrix M (and its inverse, respectively) to the vector v.

For the computation of the periodic orbit we first choose a Poincaré section Σ at $V = -40$ (see figure 3.5) and give initial conditions $x[0]=-40$; $x[1]=0.2$. This is passed to the function `long double poincaremap(long double *x)`, which reads $x[2]$, applies the Poincaré map $p: \Sigma \rightarrow \Sigma$ to this point and returns the so-called return time. The internal structure of the function `poincaremap` is divided in two parts. In the first one it lets the point evolve until the Poincaré section is overpassed. Let x_0 be the last point before the Poincaré section is reached and h the step of the last integration, then we know that

\begin{align}
\Pi_1(\varphi(0, x_0)) = \Pi_1(x_0) &< -40, \\
\Pi_1(\varphi(h, x_0)) &> -40,
\end{align}

(4.11)

where $\Pi_1: \mathbb{R}^2 \rightarrow \mathbb{R}$ is the projection on the x axis, which in this case corresponds to the variable V. Then we are interested in solving the equation

\begin{align}
\Pi_1(\varphi(\tau, x_0)) + 40 = 0,
\end{align}

(4.12)

for the variable τ. This is done in the second part of the function `poincaremap` by means of a Newton method.

The function `poincaremap` is applied recursively until the point in the periodic orbit is found and the return value of the function gives the period of the oscillation, which is stored in T.

We start with $N_{\text{grid}}=64$ and store in $K[0][0]^2$ the point of the orbit obtained in the Poincaré section. Using `taylor_step_inapik` we let this point evolve in time in order to obtain N_{grid} samples on the periodic orbit evenly distributed in time, i.e, $K(\theta_j)$, for $\theta_j = j/N$. Then the Fourier transform is performed and the coefficients are stored.

\footnote{In our program $K[i][j]$ means the i-th component of the j-th sample in (4.7), i.e., j goes from 0 to N_{grid}, and for each j, we can have $K[0][j]$ and $K[1][j]$.}
in $K_{[2]}[N_{\text{grid}}]$. The tail of the Fourier series is checked in order to determine if a larger number of samples is needed. In that case we choose $N_{\text{grid}}^* = 2$ and start again.

With all this information the error function for the functional equation in K and ω is evaluated and the results are stored in E_K.

Then we proceed to compute the stable vector N. The first step is to find $N(0)$. In order to do this we integrate the variational equations backwards for a whole period so that we obtain:

$$D\varphi(-T, K(0)). \quad (4.13)$$

This is obtained using another integration routine: $\text{taylor_step_inapikvariational}(&t, \text{vareqn}, -1, 1, \text{log10tol}, \text{log10rtol}, &\tau, &h, &\text{order})$, where the initial conditions are $\text{vareqn}[0]=K[0][0]$ and $\text{vareqn}[1]=K[1][0]$ for the point in the orbit $K(0)$ and $\text{vareqn}[3]=1., \text{vareqn}[4]=0., \text{vareqn}[5]=0.$ and $\text{vareqn}[6]=1.$ for the values of the matrix $D\varphi$ at $K(0)$. As the integration is backwards and the orbit is unstable, we integrate at time intervals of $-T/N_{\text{grid}}$ and force the point to stay in the orbit by setting manually $\text{vareqn}[0]=K[0][N_{\text{grid}}-j]$ and $\text{vareqn}[1]=K[1][N_{\text{grid}}-j]$, for the j which corresponds at every step.

The matrix $D\varphi(-T, K(0))$ is stored in M and the eigenvalues and eigenvectors are obtained. From these we can find $N(0)$ and λ. And by propagating this vector (backwards again) as discussed in proposition [2.3] we can obtain $N(\theta_j)$ for $\theta_j = j/N$. The Fourier transform is performed and the error function is evaluated.

Finally, with this initial approximations in hand, the Newton method described in chapter [2] is applied.
Chapter 5

Results

5.1 The reduced Hodgkin-Huxley model

Our program is applied to the reduced Hodgkin-Huxley model described in chapter 3.1. We start with the case $I = 10$, in which 8192 samples are needed for the Fourier series. We obtain a period $T = 7.0735$ and $\lambda = -3.9110$. With the initial approximation found by integration the error in the functional equation for K is of the order of 10^{-11}, but for N it is of the order of 10^{-7}. In figure 5.1 we plot the limit cycle obtained and the linear approximation of 64 isochrons. The slow-fast dynamics is clearly observable.

Figure 5.1: $I_{Na,p} + I_K$-model. $I = 10$. Limit cycle and 64 stable vectors. The stable vectors have been rescaled since they have extremely different length scales.

We expected the Newton method designed in chapter 2 to improve the solutions found, but to our surprise the method failed to find better solutions. Instead after ten
iterations the error of both K and N blows up to orders of 10^3, which is clearly unacceptable. We understand this anomalous behaviour in terms of numerical problems. On one hand when the differential of the flux is integrated for one period and the two eigenvalues are found, we see that one of them is 1, while the other is of the order of 10^{-12}. Compare this difference with the 10^{-16} tolerance that we chose for our program. We are in front of a very attractive limit cycle, which simplifies the calculation of $K(\theta)$, but makes it really difficult to find $N(\theta)$ satisfactorily. Yet another problem is to be considered. In figure 5.2 we plot for each θ the angle between the limit cycle and the isochron crossing it at $K(\theta)$, i.e., the angle between $N(\theta)$ and $K'(\theta)$.

Figure 5.2: $I_{N_{a,p}} + I_K$-model. $I = 10$. Angle between the orbit and the vector N for each θ. Note that $\Pi_1(K(\theta = 0)) = -40$.

It is clear that, apart from being far from continuous, even if so many samples have been considered, the angle is very close to 0 for most of the values of θ. Let us recall at this point that for the Newton method we need to transform our equations to the frame $P = (K'|N)$, and it is clear that K' and N must satisfy the non-degeneracy condition $\langle K', N \rangle \neq 0$. The further they are from this condition the better our initial approximations have to be for our method to converge. The numerical instability is intrinsic to the model we have selected, which presents stiff dynamics, but we hope that it could be overcome using extended precision arithmetic.

We have also run our program for $I = 100$, which is a bit further from the SNIC bifurcation. In this case we obtain $T = 2.7405$ and $\lambda = -5.4031$. The initial approximation for K and N is also found with an error similar to that of $I = 10$, and the Newton method also fails to improve the solutions, even though the error grows a bit slower. A plot of the periodic orbit is shown in figure 5.3. Observe how in this case
CHAPTER 5. RESULTS

the vectors N are more evenly distributed. This is due to the fact that, as already mentioned, the SNIC bifurcation is much further than at $I = 10$.

Figure 5.3: $I_{Na,p} + I_K$-model. $I = 100$. Limit cycle and 64 stable vectors. The stable vectors have been rescaled since they have extremely different length scales.

We have still considered the case $I = 190$, close to a Hopf bifurcation that occurs at around $I = 214$. In this case $T = 1.3055$ and $\lambda = -0.4639$, and we obtain an error of about 10^{-12} in the initial approximation of K and about 10^{-11} for N. Note than in this case the stable eigenvalue of the $D\varphi(T, K(0))$ is $e^{\lambda T} = 0.5457$, which is not even one order of magnitude below 0. In this case the Newton method can be applied as many times as desired and the error does not grow, nor does it decrease. In figure 5.4 the linear approximation of 64 isochrons is shown.

5.2 The Rayleigh oscillator

We have seen in the previous section that our program can effectively compute an initial approximation for K, N, T and λ for several values of I in the $I_{Na,p} + I_K$-model, but the Newton method that we have designed did not work properly. Therefore, we consider in this section a much simpler model in order to show the convergence of our method. The Rayleigh oscillator has equations:

$$\dot{x} = -y + \mu(x - x^3),$$
$$\dot{y} = x. \quad (5.1)$$

It is known to have an unstable focus at $(0, 0)$. For $\mu = 1$ it also has a stable limit cycle, for which we have found $T = 6.6632$ and $\lambda = -1.059$. In this case we have
needed $N = 2048$, and initial approximations of K and N are found with errors of 10^{-14} and 10^{-13}, respectively. The Newton method is able to reduce these errors to 10^{-16} in both cases after only two steps. A plot of the periodic orbit with 32 stable vectors is shown in figure 5.5.

Just for comparison with the $I_{Na,p} + I_K$-model and figure 5.2 we show in figure 5.6 the angle between K' and N in the Rayleigh oscillator. This is a much better conditioned problem and it is easy to understand why our method performs efficiently here.
Figure 5.6: Rayleigh oscillator. $\mu = 1$. Angle between the orbit and the vector N for each θ. In this case $\Pi_1(K(\theta = 0)) = 0$

The Newton method that we designed allows also to do continuation with respect to parameters. For the case $\mu = 1.2$ we can take the values of K, T, N and λ that we obtained for $\mu = 1$ as an initial approximation and use the Newton method to improve them. No integration is needed in this case. For $\mu = 1.2$ and using this procedure the initial error is 10^{-2}, which is rapidly reduced to 10^{-15} after 20 iterations of the method. We obtain $T = 6.8212$ and $\lambda = -1.2997$. We plot the limit cycle and 32 stable vectors in figure 5.7. The same is done for $\mu = 1.6$ with an initial error of almost 1, which after 20 steps is reduced to 10^{-13}. We obtain $T = 7.1966$ and $\lambda = -1.8180$. The limit cycle and 32 stable vectors are shown in figure 5.8.
CHAPTER 5. RESULTS

Figure 5.7: Rayleigh oscillator. $\mu = 1.2$. Limit cycle and 32 stable vectors obtained by improving the solutions found for $\mu = 1$.

Figure 5.8: Rayleigh oscillator. $\mu = 1.6$. Limit cycle and 32 stable vectors obtained by improving the solutions found for $\mu = 1$.
Chapter 6

Conclusions

Some new techniques and concepts have been learnt throughout the development of this thesis. With an example we have seen how a biological system can be satisfactorily modelled with mathematical tools and how this can help to understand many properties of such a system.

Although the algorithm designed in chapter 2 did not work as expected for the model that we selected, we have also learnt many numerical techniques for programming that turn out to be very useful in front of real problems, that cannot usually be described by means of an analytical expression.

At the same time, we have also seen the close relationship between the designed algorithms and the numerical implementation, so that we can understand under which circumstances a numerical algorithm will fail.

Three topics remain open for the author as further work. The first one is to get a better understanding of the KAM theory and its implications. The second one is to think how to improve the designed algorithms in order for them to work in the first model considered here. The third one is to read more about how to effectively apply the concept of isochron to coupled oscillators and the implications that this has in neural systems.
Bibliography

Appendix A

The program

```c
#include "taylor.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <complex.h>

// If <complex.h> comes before <fftw3.h>, then fftw1_complex is defined to be the
// native complex type and you can manipulate it with ordinary arithmetic
#include <fftw3.h>

long double current = 10.;

long double C = 1.0, gNa = 20., VNa = 60., gK = 10., VK = -90., gL = 8., VL = -80., Vmaxm = -20., km = 15., Vmaxn = -25., kn = 5.;

double tol = 1e-16;
double log10tol;
double rtol = 1e-16;
double log10rtol;

void field(long double x, long double f);
void dfield(long double x, long double df[2][2]);
void matrixvector2(long double M[2][2], long double *v);
void invmatrixvector2(long double M[2][2], long double *v);

void checkpoint();
void space(int n);
long double poincaremap(long double *x);

// Fourier things
int Ngrid = 64;
fftwl_complex *in, *out;
fftwl_plan planback, planfor;
void createfourier();
void destroyfourier();
void forwardfourier(long double complex **IN, long double complex **OUT);
void backwardfourier(long double complex **IN, long double complex **OUT);
void derivatefourier(long double complex **K, long double complex **DK);
int ind(int i);

void qNewton_K_step(long double *lambda, long double *omega, long double complex **K,
                    long double complex **N, long double complex **DK, long double complex **EK);
```
void qNewton_N_step(long double *lambda, long double *omega, long double complex **K, long double complex **N, long double complex **DK, long double complex **DN, long double complex **EN);

int main(void)
{
 log10tol=log10(tol);
 log10rtol=log10(rtol);

 space(2);

 printf("−−
 n") ;
 printf("−−
 n") ;
 printf("−−
 n") ;
 printf("−−
 n") ;
 space(2);

 printf("Looking for K and T
") ;
 printf("−−
 n") ;
 space(1);

 long double t=0, h=0;
 long double x[2];
 long double aux;
 int order=20;
 int finished;

 // Initial values are given on the Poincare section for V=-40
 x[0]=-40;
 x[1]=0.2;

 // The Poincare map is applied until the fixed point is found up to a tolerance tol
 do{
 aux=x[1];
 t=poincaremap(x);
 }while(fabs(x[1]-aux)>tol);
 long double T=t;
 long double omega=1./T;
 long double orbp[2];
 orbp[0]=x[0];
 orbp[1]=x[1];

 printf("T=%20.12Lf\n", T);
 space(1);

 // Find Fourier coefficients using fftw3
 t=0;
 long double complex *K[2], *Kw[2];
 long double tail[2];
 tail[0]=-1.;

 // We start with Ngrid=64. After doing the FFT, the tail is checked in order to
determine if a larger number of samples is needed.
 do{
 if(tail[0]!=-1.){
 Ngrid*=2;
 destroyfourier();
 free(K[0]);
 free(K[1]);
 }
APPENDIX A. THE PROGRAM

```c
free(K[0]);
free(K[1]);
}
createfourier();
// In K we will store the samples values, in K_ the Fourier coefficients of K(\theta)
K[0]=(long double complex *) malloc(sizeof(long double complex)*Ngrid);
K[1]=(long double complex *) malloc(sizeof(long double complex)*Ngrid);
K_0=(long double complex *) malloc(sizeof(long double complex)*Ngrid);
K_1=(long double complex *) malloc(sizeof(long double complex)*Ngrid);

// We integrate the flux at intervals of T/Ngrid in order to obtain the values of K(\theta)
t=0;
long double tau=0;
for(int i=0; i<Ngrid; i++){
    K[0][i]=x[0];
    K[1][i]=x[1];
    tau+=T/(long double)Ngrid;
    do{
        finished=taylor_step_inapik(&t, x, 1, 1, log10tol, log10rtol, &tau, &h, &order);
    }while(finished!=1);
}
forwardfourier(K,K_);

// The norm of the tail is found. Use of the function ind for a reindexing is made since we are working Fourier coefficients
for(int i=0; i<2; i++){
    tail[i]=cabs(K_0[i][ind(-Ngrid/2)]);
    for(int j=Ngrid/4; j<Ngrid/2; j++){
        tail[i]+=cabs(K_0[i][ind(j)])+cabs(K_0[i][ind(-j)]);
    }
}

// An average of the tail is computed
tail[0]=tail[0]/(long double)(Ngrid/2);
tail[1]=tail[1]/(long double)(Ngrid/2);
printf("%d\n", Ngrid);

// We store in DK_ the coefficients of the derivative of K(\theta) and in DK the values of this derivative evaluated at each \theta
long double complex *DK[2], *DK_[2];
DK[0]=(long double complex *) malloc(sizeof(long double complex)*Ngrid);
DK[1]=(long double complex *) malloc(sizeof(long double complex)*Ngrid);
DK_[0]=(long double complex *) malloc(sizeof(long double complex)*Ngrid);
DK_[1]=(long double complex *) malloc(sizeof(long double complex)*Ngrid);
derivatefourier(K_,DK_);
backwardfourier(DK_,DK);

// Find the error function evaluating the functional equation
long double complex *EK[2];
EK[0]=(long double complex *) malloc(sizeof(long double complex)*Ngrid);
EK[1]=(long double complex *) malloc(sizeof(long double complex)*Ngrid);

long double norm;
```
long double maxEK;
maxEK=0;

for(int j=0; j<Ngrid; j++){
x[0]=K[0][j];
x[1]=K[1][j];
long double f[2];
field(x, f);
EK[0][j]= f[0]−DK[0][j]*omega;
EK[1][j]= f[1]−DK[1][j]*omega;
norm=hypotl(EK[0][j],EK[1][j]);
if(norm>maxEK){
maxEK=norm;
}
}

space(1);
printf("maxEK=%.2Le\n", maxEK);

space(2);

printf("Looking for N and lambda\n");
printf("\n");

long double complex *N[2], *Nn[2];
N[0]=(long double complex *) malloc(sizeof(long double complex)*Ngrid);
N[1]=(long double complex *) malloc(sizeof(long double complex)*Ngrid);
Nn[0]=(long double complex *) malloc(sizeof(long double complex)*Ngrid);
Nn[1]=(long double complex *) malloc(sizeof(long double complex)*Ngrid);

long double vareqn[6];
long double lambda=0;
long double taux;
long double vaux[2];
long double V[2];
long double M[2][2];

// Integrate backwards variational equations together with the flux for one period.

vareqn[0]=K[0][0];
vareqn[1]=K[1][0];
vareqn[2]=1.;
vareqn[3]=0.;
vareqn[4]=0.;
vareqn[5]=1.;
t=0;
tau=0;

for(int j=1; j<Ngrid+1; j++){
tau=T/(long double)Ngrid;
do{
 finished=taylors_step_inapikvariational(&t, vareqn, −1, 1, log10tol, 10*r10tol, &tau, &h, &order);
}while(finished!=1);

// The integration is performed at intervals of T/Ngrid and after each step
// we force the point to stay in the orbit since we are integrating backwards
// and the problem is very unstable
vareqn[0]=K[0][Ngrid−j];
vareqn[1]=K[1][Ngrid−j];
APPENDIX A. THE PROGRAM

202 }
203
204 M[0][0] = vareqn[2];
205 M[0][1] = vareqn[3];
206 M[1][0] = vareqn[4];
207 M[1][1] = vareqn[5];
208
209 // Find the eigenvalues and eigenvectors of the matrix M, which is the differential of the flux after one cycle has been completed.
210
211 long double det = M[0][0] * M[1][1] - M[1][0] * M[0][1];
212 long double tr = M[0][0] + M[1][1];
213
214 long double eigval1 = tr / 2 + sqrt(tr * tr / 4 - det);
215 long double eigval2 = tr / 2 - sqrt(tr * tr / 4 - det);
216
217 if (eigval1 < eigval2) {
218 aux = eigval1;
219 eigval1 = eigval2;
220 eigval2 = aux;
221 }
222
223 // eigval2 must be 1 and eigval1 must be e^{-\lambda T}
224 printf("eigval1=%20.12Lf\n", eigval1);
225 printf("eigval2=%20.12Lf\n", eigval2);
226
227 lambda = -log(eigval1) * omega;
228
229 vaux[0] = M[1][0];
230 vaux[1] = eigval1 - M[0][0];
231 norm = sqrt(vaux[0] * vaux[0] + vaux[1] * vaux[1]);
232 vaux[0] /= norm;
233 vaux[1] /= norm;
234
235 printf("%20.12Lf\n", vaux[0], vaux[1]);
236
237 // We store the stable vector in N(\theta=0)
238 N[0][0] = vaux[0];
239 N[1][0] = vaux[1];
240
241 printf("lambda=%20.12Lf\n", lambda);
242 space(1);
243
244 // Propagate N(0) backwards under the differential of the flux to find N(\theta)
245 vareqn[0] = K[0][0];
246 vareqn[1] = K[1][0];
247 vareqn[2] = 1.;
248 vareqn[3] = 0.;
249 vareqn[4] = 0.;
250 vareqn[5] = 1.;
251 t = 0;
252 tau = 0;
253 long double maxnorm = 1;
254 for (int j = 1; j < Ngrid; j++) {
255 tau = t / (long double) Ngrid;
256 do {
257 finished = taylor_step_inapikvariational(&t, vareqn, -1, 1, log10tol, log10rtol,
258 }
&tau, &h, &order);
} while (finished != 1);

vareqn[0]=K[0][Ngrid−j];
vareqn[1]=K[1][Ngrid−j];

M[0][0] = vareqn[2];
M[0][1] = vareqn[3];
M[1][0] = vareqn[4];
M[1][1] = vareqn[5];

vaux[0]=N[0][0];
vaux[1]=N[1][0];
matrixvector2(M, vaux);

// We apply the differential of the flux to N(0) to obtain N(theta), since we know that isochrons go to isochrons under the flux
N[0][Ngrid−j]=vaux[0]∗exp(−lambda∗tau);
N[1][Ngrid−j]=vaux[1]∗exp(−lambda∗tau);

norm=hypotl(N[0][Ngrid−j],N[1][Ngrid−j]);
if (norm>maxnorm){
 maxnorm=norm;
}

// Check that with one more step we obtain N(0) again
tau−=T/(long double)Ngrid;
do{
 finished=taylor_step_inapikvariational(&t, vareqn, −1, 1, log10tol, log10rtol, &tau, &h, &order);
} while (finished != 1);

M[0][0] = vareqn[2];
M[0][1] = vareqn[3];
M[1][0] = vareqn[4];
M[1][1] = vareqn[5];

vaux[0]=N[0][0];
vaux[1]=N[1][0];
matrixvector2(M, vaux);

vaux[0]∗= exp(−lambda∗tau);
vaux[1]∗= exp(−lambda∗tau);
printf("%20.12Lf\n", creal(N[0][0]));
printf("%20.12Lf\n", creal(N[1][0]));
printf("%20.12Lf\n", vaux[0]);
printf("%20.12Lf\n", vaux[1]);

// Normalise all the vectors N by the maximum norm
for (int j=0; j<Ngrid; j++){
 N[0][j]/=maxnorm;
 N[1][j]/=maxnorm;
}

forwardfourier(N, N_);

// As before we store in DN the Fourier coefficients of the derivative of N and in DN the values of this derivative at each theta
APPENDIX A. THE PROGRAM

long double complex *DN[2] , *DN_[2];
DN[0]= (long double complex *) malloc (sizeof (long double complex) *Ngrid);,
DN_[0]= (long double complex *) malloc (sizeof (long double complex) *Ngrid);
DN_[1]= (long double complex *) malloc (sizeof (long double complex) *Ngrid);

DN[0]=(long double complex) malloc (sizeof (long double complex) *Ngrid) ;
DN[1]=(long double complex) malloc (sizeof (long double complex) *Ngrid) ;
derivatefourier (N_ ,DN_);
backwardfourier (DN ,DN);

// Find the error function evaluating the functional equation for N and lambda
long double complex *EN [2] ;
EN[0]=(long double complex) malloc (sizeof (long double complex) *Ngrid) ;
EN[1]=(long double complex) malloc (sizeof (long double complex) *Ngrid) ;

long double maxEN;
maxEN=0;

for (int j =0; j <Ngrid ; j++){
 long double df [2] [2] ;
 x[0]=K[0][j] ;
 x[1]=K[1][j] ;
 V[0]=N[0][j] ;
dfield (x , df) ;
 matrixvector2 (df ,V) ;
 EN[0][j]=V[0]−lambda∗N[0][j]−DN[0][j]∗omega ;
 norm=hypotl (EN[0][j] ,EN[1][j]) ;
 if (norm>maxEN){
 maxEN=norm ;
 }
}

space(2);
printf ("maxEN=%.2Le
", maxEN) ;

space(2);

printf("Refining solutions for K, N, omega, lambda
") ;
printf("----------------
") ;

int d=0;

for(int d=0; d<Ngrid; d++){
 x[0]=K[0][d] ;
 x[1]=K[1][d] ;

 qNewton_Kstep (&lambda , &omega , K, N, DK, EK) ;
 forwardfourier (K,K_);
derivatefourier (K_ ,DK_);
backwardfourier (DK_,DK);

 maxEK=0;
 for(int j=0; j<Ngrid; j++){
 x[0]=K[0][j] ;
 x[1]=K[1][j] ;

 T=1./omega ;
 printf("%20.12Lf\n" , creall (K[0][0]));
 forwardfourier (K,K_);
derivatefourier (K_ ,DK_);
backwardfourier (DK_,DK);

 // The error function EK is refreshed
 maxEK=0;
 for(int j=0; j<Ngrid; j++){
 x[0]=K[0][j] ;
 x[1]=K[1][j] ;
long double f[2];
field(x,f);
EK[0][j]=f[0]−DK0[j]*omega;
EK[1][j]=f[1]−DK[1][j]*omega;
norm=hypotl(EK[0][j],EK[1][j]);
if(norm>maxEK){
 maxEK=norm;
}
}
printf("maxEK=%.2Le\n", maxEK);
// The errors function EN is refreshed to the mid−value
for(int j=0; j<Ngrid; j++){
 long double df[2][2];
x[0]=K[0][j];
x[1]=K[1][j];
V[0]=N[0][j];
V[1]=N[1][j];
dfield(x,df);
matrixvector2(df,V);
EN[0][j]=V[0]−lambda*N[0][j]−DN[0][j]*omega;
}
// The substep for N and lambda is applied
qNewton_N_step(&lambda , &omega , K, N, DK, DN, EN);
// The values are refreshed
printf("%20.12Lfn", lambda);
forwardfourier(N, N);
derivativefourier(N, DN);
backwardfourier(DN, DN);
// The error function EN is refreshed
maxEN=0;
for(int j=0; j<Ngrid; j++){
 long double df[2][2];
x[0]=K[0][j];
x[1]=K[1][j];
V[0]=N[0][j];
V[1]=N[1][j];
dfield(x,df);
matrixvector2(df,V);
EN[0][j]=V[0]−lambda*N[0][j]−DN[0][j]*omega;
norm=hypotl(EN[0][j],EN[1][j]);
if(norm>maxEN){
 maxEN=norm;
}
}
printf("maxEN=%.2Le\n", maxEN);
d++;
} while(d<10);
destroyfourier();
free(K[0]);
free(K[1]);
free(K[0][0]);
free(K[1]);
free (DK[0]);
free (DK[1]);
free (DK[0]);
free (DK[1]);
free (EK[0]);
free (EK[1]);
free (N[0]);
free (N[1]);
free (N[0]);
free (N[1]);
free (DN[0]);
free (DN[1]);
free (DN[0]);
free (DN[1]);
free (EN[0]);
free (EN[1]);
space (2);
return 0;
}
void checkpoint()
{
static int countercheck = 1;
printf("THIS IS CHECKPOINT NUMBER %d\n", countercheck);
countercheck++;
}
void space(int n){
for(int i=0; i<n; i++){
printf("\n");
}
}

// The field evaluated at vector x and stored in vector f
void field(long double *x, long double *f){
 long double minfi = 1. + exp(-(x[0] - Vmaxm) / km);
 long double minf = 1. / minfi;
 long double ninf = 1. + exp(-(x[0] - Vmaxn) / kn);
 f[0] = (current - gNa * minfi * (x[0] - VNa) - gK * x[1] * (x[0] - VK) - gL * (x[0] - VL)) / C;
 f[1] = ninf - x[1];
}

// The differential of the field is evaluated at vector x and stored in matrix df
void dfield(long double *x, long double df[2][2]){
APPENDIX A. THE PROGRAM

477 long double ninfi =1./ninfi;
478 long double dminfi =ninfi -minfi*minfi/km;
479 long double dV=(minfi -minfi*minfi)/kn;
480 df[0][0]=(-gNa*minf-gNa*(x[0]-VNa)*dminf*dV-gK*x[1]-gL)/C;
481 df[1][0]=(-gK*(x[0]-VK))/C;
482 df[0][1]=dminf*dV;
483 df[1][1]=-1.;
484 }
485
486 // Computes the result of applying M to v and stores the result in v
487 void matrixvector2(long double M[2][2], long double *v) {
488 long double vaux[2];
489 vaux[0]=v[0];
490 vaux[1]=v[1];
491 v[0]=vaux[0]*M[0][0]+vaux[1]*M[1][0];
492 v[1]=vaux[0]*M[0][1]+vaux[1]*M[1][1];
493 }
494
495 // Applies the inverse of matrix M to v and stores the result in v
496 void invmatrixvector2(long double M[2][2], long double *v) {
497 long double det=M[0][0]*M[1][1]-M[0][1]*M[1][0];
498 long double vaux[2];
499 vaux[0]=v[0];
500 vaux[1]=v[1];
501 v[0]=vaux[0]*M[1][1]-vaux[1]*M[1][0];
502 v[1]=-vaux[0]*M[0][1]+vaux[1]*M[0][0];
503 v[0]/=det;
504 v[1]/=det;
505 }
506
507 // If x is in the Poincare section at V=-40 applies to it the Poincare map, if it is
508 // not it lets it evolve under the flux until the Poincare section is reached anyway
509 long double poincaremap(long double *x) {
510 long double tau=0;
511 long double h=0;
512 int order=20;
513 long double taux;
514 long double xaux[2];
515
516 // Right semicycle if needed
517 while (x[0] >= -40. - tol) {
518 taylor_step_inapik(&tau, x, 1,1, log10tol, log10rtol, NULL, &h, &order);
519 }
520
521 // It approaches the Poincare section and stops with xaux right before and x right
522 // after
523 do {
524 xaux[0]=x[0];
525 xaux[1]=x[1];
526 tau=tau;
527 taylor_step_inapik(&tau, x, 1,1, log10tol, log10rtol, NULL, &h, &order);
528 } while (x[0] < -40);
APPENDIX A. THE PROGRAM

48

543
544 x[0]=xaux[0];
545 x[1]=xaux[1];
546 tau=taux;
547
548 // Newton to obtain tau and the return point to the Poincare section.
549 long double delta=0;
550 long double t=h;
551 long double **a;
552 do{
553 tau=0;
554 xaux[0]=x[0];
555 xaux[1]=x[1];
556 taylor_step_inapik(&taux, xaux, 1, 0, log10tol, log10rtol, NULL, &t, &order);
557 /* a=taylor_coefficients_inapik (t, x, order) gives a two dim array. The rows are
558 the taylor coefficients of order i of the state variables */
559 /* a[0][0] and a[1][0] are x[0] and x[1] */
560 /* a[0][1] and a[1][1] are the components of the field in (a[0][0],a[1][0]) */
561 /* a[][2] gives the second order coefficients, which are the derivatives times 2!
562 */
563 a=taylor_coefficients_inapik(0,xaux,1);
564 delta=(xaux[0]+(-40.))/a[0][1];
565 t=t-delta;
566 // Ensure that t is < dstep (the last step taken for which the taylor step was
567 precise enough
568 if(fabs(t)>fabs(h)){
569 printf("\nLittle problem: t>last step: t-h=%20.12Le\n\n", t-h);
570 }
571 while(fabs(xaux[0]+(-40.))>tol/100.);
572 x[0]=xaux[0];
573 x[1]=xaux[1];
574 tau=tau+t;
575 }
576
577
578 void createfourier(){
579 in=(fftwl_complex *) fftwl_malloc(sizeof(fftwl_complex)*Ngrid);
580 out=(fftwl_complex *) fftwl_malloc(sizeof(fftwl_complex)*Ngrid);
581 planfor=fftwl_plan_dft_1d (Ngrid,in,out,FFTW_FORWARD,FFTW_ESTIMATE);
582 planback=fftwl_plan_dft_1d (Ngrid,in,out,FFTW_BACKWARD,FFTW_ESTIMATE);
583 }
584
585
586 void destroyfourier(){
587 fftwl_destroy_plan(planback);
588 fftwl_destroy_plan(planfor);
589 fftwl_free(in);
590 fftwl_free(out);
591 }
592
593 // Computation of the forward Fourier transform of the vector array IN. The result is
APPENDIX A. THE PROGRAM

void forwardfourier(long double complex **IN, long double complex **OUT){
 int i;
 for (i=0; i<Ngrid; i++){
 in [i]=IN[0][i];
 }
 fftwlExecute(planfor);
 for (i=0; i<Ngrid; i++){
 OUT[0][i]=out [i]/Ngrid;
 }
 for (i=0; i<Ngrid; i++){
 in [i]=IN[1][i];
 }
 fftwlExecute(planfor);
 for (i=0; i<Ngrid; i++){
 OUT[1][i]=out [i]/Ngrid;
 }
}

// Computation of the backward Fourier transform of the vector array IN. The result is stored in OUT
void backwardfourier(long double complex **IN, long double complex **OUT){
 int i;
 for (i=0; i<Ngrid; i++){
 in [i]=IN[0][i];
 }
 fftwlExecute(planback);
 for (i=0; i<Ngrid; i++){
 OUT[0][i]=out [i];
 }
 for (i=0; i<Ngrid; i++){
 in [i]=IN[1][i];
 }
 fftwlExecute(planback);
 for (i=0; i<Ngrid; i++){
 OUT[1][i]=out [i];
 }
}

// Derivation of the function K(\theta). We have the Fourier coefficients of this function in K_ and this function stores the coefficients of the derivative in DK_.
Note that the Nyquist coefficient is set to 0.
void derivatefourier(long double complex **K_, long double complex **DK_){
 DK_[0][ind(-Ngrid/2)]=0.*K_[0][ind(-Ngrid/2)];
 DK_[1][ind(-Ngrid/2)]=0.*K_[1][ind(-Ngrid/2)];
 for (int j=-Ngrid/2; j<Ngrid/2; j++){
 DK_[0][ind(j)]=2.*M_PI*j*K_[0][ind(j)];
 DK_[1][ind(j)]=2.*M_PI*j*K_[1][ind(j)];
 }
}
// Reindexing. Given an index i between $-N/2$ and $N/2-1$ (Fourier coefficients) and it returns the corresponding index for the arrays given by the forward Fourier transform by FFTW

```c
int ind(int i){
    if (i>=0 && i<Ngrid/2){
        return i ;
    } else if (i<0 && i>=-Ngrid/2-1){
        return i+Ngrid ;
    } else {
        printf("The index is out of the boundary\n");
        exit (-1);
    }
}
```

// quasiNewton substep for K and omega

```c
void qNewton_K_step(long double *lambda, long double *omega, long double complex **K, long double complex **N, long double complex **DK, long double complex **EK){
    long double vaux[2];
    long double M[2][2];
    long double complex *frame[2][2];
    frame[0][0]=(long double complex *) malloc(sizeof(long double complex)*Ngrid);
    frame[0][1]=(long double complex *) malloc(sizeof(long double complex)*Ngrid);
    frame[1][0]=(long double complex *) malloc(sizeof(long double complex)*Ngrid);
    frame[1][1]=(long double complex *) malloc(sizeof(long double complex)*Ngrid);
    long double complex *EKframe[2];
    EKframe[0]=(long double complex *) malloc(sizeof(long double complex)*Ngrid);
    EKframe[1]=(long double complex *) malloc(sizeof(long double complex)*Ngrid);
    long double complex *DeltaKframe[2];
    DeltaKframe[0]=(long double complex *) malloc(sizeof(long double complex)*Ngrid);
    DeltaKframe[1]=(long double complex *) malloc(sizeof(long double complex)*Ngrid);
    long double complex *Deltaomega;
    DeltaK[0]=(long double complex *) malloc(sizeof(long double complex)*Ngrid);
    DeltaK[1]=(long double complex *) malloc(sizeof(long double complex)*Ngrid);
    for (int j=0; j<Ngrid; j++){
        // Store the frame $P$ for each value of theta. $P=(K'|N)$
        frame[0][0][j]=DK[0][j];
        frame[0][1][j]=DK[1][j];
        frame[1][0][j]=N[0][j];
        frame[1][1][j]=N[1][j];
        M[0][0]=frame[0][0][j];
        M[0][1]=frame[0][1][j];
```
APPENDIX A. THE PROGRAM

M[1][0]=frame[1][0][j];
M[1][1]=frame[1][1][j];
vaux[0]=EK[0][j];
vaux[1]=EK[1][j];

// Apply P(-1) to the error function in order to find the error in the frame.
Index 0 corresponds to the correction in the tangent direction, while
index 1 corresponds to the correction in the direction of the stable
vector
invmatrixvector2(M, vaux);
EKframe[0][j]=vaux[0];
EKframe[1][j]=vaux[1];
}

// Fourier coefficients of the error in the frame
forwardfourier(EKframe, EKframe);

// Find delta omega and the corrections of the Fourier coefficients in the frame
according to the formulas
deltaomega=EKframe[0][0][ind(0)];
for(int j=-Ngrid/2; j<Ngrid/2; j++){
 if(j!=0){
 DeltaKframe[0][ind(j)]=EKframe[0][ind(j)]/(2*PI*I*j*(omega));
 }
 else{
 DeltaKframe[0][ind(j)]=0;
 }
 DeltaKframe[1][ind(j)]=EKframe[1][ind(j)]/(2*PI*I*j*(omega)-(lambda));
}

// Obtain the correction in the frame at each theta from the correction of the
Fourier coefficients via an inverse Fourier transform
backwardfourier(DeltaKframe, DeltaKframe);

for(int j=0; j<Ngrid; j++){
 M[0][0]=frame[0][0][j];
 M[0][1]=frame[0][1][j];
 M[1][0]=frame[1][0][j];
 M[1][1]=frame[1][1][j];
 vaux[0]=DeltaKframe[0][j];
 vaux[1]=DeltaKframe[1][j];
}

// Go back from the frame to the original coordinate system
matrixvector2(M, vaux);
DeltaK[0][j]=vaux[0];
DeltaK[1][j]=vaux[1];
}

// Refresh values for K, omega
for(int j=0; j<Ngrid; j++){
 K[0][j]+=DeltaK[0][j];
 K[1][j]+=DeltaK[1][j];
}
(*omega)+=deltaomega;

free(frame[0][0]);
free(frame[0][1]);
free(frame[1][0]);
free(frame[1][1]);
APPENDIX A. THE PROGRAM

```c
758  free(EKframe[0]);
759  free(EKframe[1]);
760  free(EKframe[0]);
761  free(EKframe[1]);
762  free(DeltaKframe[0]);
763  free(DeltaKframe[1]);
764  free(DeltaKframe[0]);
765  free(DeltaKframe[1]);
766  free(DeltaK[0]);
767  free(DeltaK[1]);
768  }
769
770 // quasiNewton substep for N and lambda (similar as before)
771 void qNewton_Nstep(long double *lambda, long double *omega, long double complex **K,
772               long double complex **N, long double complex **DK, long double complex **DN, long
double complex **EN)
773 {
774    long double vaux[2];
775    long double M[2][2];
776    long double complex *frame[2][2];
777    frame[0][0]=(long double complex *) malloc(sizeof(long double complex)*Ngrid);
778    frame[0][1]=(long double complex *) malloc(sizeof(long double complex)*Ngrid);
779    frame[1][0]=(long double complex *) malloc(sizeof(long double complex)*Ngrid);
780    frame[1][1]=(long double complex *) malloc(sizeof(long double complex)*Ngrid);
781
782    long double complex *ENframe[2];
783    ENframe[0]=(long double complex *) malloc(sizeof(long double complex)*Ngrid);
784    ENframe[1]=(long double complex *) malloc(sizeof(long double complex)*Ngrid);
785
786    ENframe[0]=malloc(sizeof(long double complex)*Ngrid);
787    ENframe[1]=malloc(sizeof(long double complex)*Ngrid);
788    DeltaNframe[0]=malloc(sizeof(long double complex)*Ngrid);
789    DeltaNframe[1]=malloc(sizeof(long double complex)*Ngrid);
790    DeltaNframe_0=malloc(sizeof(long double complex)*Ngrid);
791    DeltaNframe_1=malloc(sizeof(long double complex)*Ngrid);
792
793    long double deltalambda;
794    long double complex *DeltaN[2];
795    DeltaN[0]=malloc(sizeof(long double complex)*Ngrid);
796    DeltaN[1]=malloc(sizeof(long double complex)*Ngrid);
797
798    for(int j=0; j<Ngrid; j++){
799      frame[0][0][j]=DK[0][j];
800      frame[0][1][j]=DK[1][j];
801      frame[1][0][j]=N[0][j];
802      frame[1][1][j]=N[1][j];
803      M[0][0]=frame[0][0][j];
804      M[0][1]=frame[0][1][j];
805      M[1][0]=frame[1][0][j];
806      M[1][1]=frame[1][1][j];
807    }
808  }
```
APPENDIX A. THE PROGRAM

```c
vaux[0] = EN[0][j];
vaux[1] = EN[1][j];
invmatrixvector2(M, vaux);
ENframe[0][j] = vaux[0];
ENframe[1][j] = vaux[1];
}

forwardfourier(ENframe, ENframe);

for(int j = -Ngrid/2; j < Ngrid/2; j++){
    DeltaNframe_[0][ind(j)] = ENframe_[0][ind(j)] / ((*lambda) + 2*M_PI*I*j*(*omega));
    if(j != 0){
        DeltaNframe_[1][ind(j)] = ENframe_[1][ind(j)] / (2*M_PI*I*j*(*omega));
    }
    deltalamda = ENframe_[1][ind(0)];
    DeltaNframe_[1][ind(j)] = 0.;
}
backwardfourier(DeltaNframe_, DeltaNframe);

for(int j = 0; j < Ngrid; j++){
    M[0][0] = frame_[0][0][j];
    M[0][1] = frame_[0][1][j];
    M[1][0] = frame_[1][0][j];
    M[1][1] = frame_[1][1][j];
    vaux[0] = DeltaNframe_[0][j];
    vaux[1] = DeltaNframe_[1][j];
    matrixvector2(M, vaux);
    DeltaN[0][j] = vaux[0];
    DeltaN[1][j] = vaux[1];
}

// Refresh values for N, lambda
for(int j = 0; j < Ngrid; j++){
    N[0][j] += DeltaN[0][j];
    N[1][j] += DeltaN[1][j];
}
(*lambda) += deltalamda;
free(frame_[0][0]);
free(frame_[0][1]);
free(frame_[1][0]);
free(frame_[1][1]);
free(ENframe_[0]);
free(ENframe_[1]);
free(DeltaNframe_[0]);
free(DeltaNframe_[1]);
free(DeltaN[0]);
free(DeltaN[1]);
```