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Chapter 1

Introduction

Many biological systems exhibit a periodic behaviour. From a mathematical point of

view they can be considered as systems moving along a stable limit cycle, that can be

parametrised by its phase. The phase can be extended to the whole basin of attraction

of the limit cycle via the asymptotic phase and the set of all points having the same

asymptotic phase is called isochron. Isochrons were introduced in 1974 by Winfree [5]

in order to understand the behaviour of an oscillatory system under a brief stimulus,

namely, the phase advance or delay that the system would experience when sent away

from the periodic orbit. This helps understanding, for example, the synchronisation

in neural nets. Soon after Winfree’s paper, Guckenheimer [6] showed that isochrones

are in fact the leaves of the stable foliation of the stable manifold of a periodic orbit.

Different techniques have been developed to compute the isochrons [1, 8].

An important part of this undergraduate thesis consists on understanding the math-

ematical concept underlying the idea of isochron. In chapter 2 a definition is given

and we describe some properties of isochrons with the objective of being able to find

an approximation to first order. We also formulate a functional equation for the

parametrisation of the invariant cycle and the tangent vector to the isochrons and we

show how it can be solved using a quasi-Newton method. Our arguments are based

in [1], where the parametrisation of the whole isochron is found. With some trans-

formations we can simplify our equations and easily solve them. We end the chapter

by giving some hints on how to proof the convergence of the method using KAM ar-

guments [2]. In chapter 3 we describe briefly a simplified version of the well-known

Hodgkin-Huxley model for the neuron and try to get some insight on what isochrons

can tell us about this model.

Another important part of this thesis has been writing a program in language C to

implement the algorithm described in chapter 2 in order to be able to apply it to the

reduced Hodgkin-Huxley model. The program is described in chapter 4 and the source

code is appended. In chapter 5 the results obtained with the program are discussed.
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Chapter 2

Mathematical analysis

Consider a differential equation in the plane

ẋ = X(x), x ∈ R2, (2.1)

where X is analytic. Let ϕ(t, x0) be the associated flow, i.e.:
d

dt
ϕ(t, x0) = X(ϕ(t, x0)),

ϕ(0, x0) = x0.
(2.2)

We assume that X admits a stable hyperbolic limit cycle K. Recall that a limit

cycle is an isolated periodic orbit, i.e., a periodic orbit which is the ω-limit or α-limit

set of a certain neighbourhood Ω around it. Furthermore, if the limit cycle is stable,

it is the ω-limit of Ω, which is called the basin of attraction.

Our first goal is to find a parametrisation for K, i.e. to find ω ∈ R+ and some

1-periodic map:

K : T = R/Z→ R2

θ 7→ K(θ)
(2.3)

such that ϕ(t,K(θ)) = K(θ + ωt) and K(T) = K. Clearly if T = 1/ω is the period of

the limit cycle ϕ(T,K(θ)) = K(θ + ωT ) = K(θ + 1) = K(θ).

Proposition 2.1. The map K : T→ R2 and the number ω satisfy the following func-

tional equation on K and ω:

X
(
K(θ)

)
−K ′(θ)ω = 0 (2.4)

Proof. It suffices to insert ϕ(t,K(θ)) = K(θ + ωt) into equation (2.2).

Note that the solution of (2.4) is not unique. If (K,ω) is a solution of that equation,

so is (K̃, ω), with K̃(θ) = K(θ + θ0), for any θ0 ∈ T. This phase shift, which allows
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CHAPTER 2. MATHEMATICAL ANALYSIS 5

us to place the phase origin wherever we want in the orbit, is the only source of

non-uniqueness for (2.4).

So far K has been parametrised in such a way that to each point of K a phase

θ ∈ T has been assigned. As K is a stable limit cycle we have that for each x ∈ Ω

d(ϕ(t, x),K)
t→∞−−−→ 0. (2.5)

It is quite natural to wonder what point K(θ) ∈ K evolves under the flow ϕ(t, ·) in

such a way that

d(ϕ(t, x), ϕ(t,K(θ))) = d(ϕ(t, x), K(θ + ωt))
t→∞−−−→ 0. (2.6)

As pointed out in [6] it is possible to find a unique Θ: Ω→ T such that

d(ϕ(t, x), K(Θ(x) + ωt))
t→∞−−−→ 0, (2.7)

Observe that Θ allows to extend the concept of phase out of the periodic orbit.

Definition 1. We say that a point x ∈ Ω is in asymptotic phase with a point K(θ) ∈ K
if the following holds

d(ϕ(t, x), K(θ + ωt))
t→∞−−−→ 0, (2.8)

i.e., if Θ(x) = θ. In this case we say that x has asymptotic phase θ.

Definition 2. The set of points having the same asymptotic phase is called isochron:

Sθ = {x ∈ Ω: Θ(x) = θ}. (2.9)

Note that in the case that K is unstable it suffices to reverse time in order to adapt

the definitions given here. Note also that our definitions are also valid in the case of

n > 2, where the isochrons are called isochronous sections and they are manifolds of

dimension n− 1.

The isochrons are the level sets of Θ(x) and they foliate the basin of attraction. In

fact, soon after the isochrons were introduced by Winfree in 1974 [5], Guckenheimer

showed [6] that they are the leaves of the stable manifold, that is W s(K(θ)), for each

θ ∈ T. The isochrons are therefore tangent to the stable space Es(K(θ)), for each

θ ∈ T. As a consequence we can obtain a linear approximation of the isochrons by

finding the stable bundle of K.

Proposition 2.2. For each θ ∈ T, let vθ ∈ TK(θ)Sθ, the tangent space of Sθ in the

intersection with K. Then vθ is an eigenvector of Dϕ(T,K(θ)):

Dϕ(T,K(θ))vθ = eλTvθ, (2.10)

for some λ ∈ R<0. The other eigenvector of Dϕ(T,K(θ)) is K(θ) with eigenvalue 1.
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Proof. The first statement is a direct consequence of the observation made just before

the proposition. We should strictly write λ(θ), but in the next proposition we will

see that the stable vectors have the same eigenvalue everywhere. The sign of λ is in

agreement with K being attractive. In the repulsive case we would have λ > 0.

Furthermore, it follows from the definition of isochron that vθ and K ′(θ) are trans-

verse. Now consider ϕ(T,K(θ)) = K(θ). Differentiating with respect to θ one obtains

Dϕ(T,K(θ))K ′(θ) = K ′(θ), (2.11)

which proves the second statement.

Let N(0) be the stable vector in K(0) with

Dϕ(T,K(0))N(0) = eλTN(0). (2.12)

In the next proposition we show that the stable vectors along K can be obtained by

simply propagating N(0) under the differential of the flux.

Proposition 2.3. Let us define

N(θ) = e−λTθDϕ(Tθ,K(0))N(0), θ ∈ T. (2.13)

The following holds:

Dϕ(T,K(θ))N(θ) = eλTN(θ). (2.14)

Proof.

Dϕ(T,K(θ))N(θ) =e−λTθDϕ(T,K(θ))Dϕ(Tθ,K(0))N(0)

=e−λTθDϕ(T, ϕ(Tθ,K(0)))Dϕ(Tθ,K(0))N(0)

=e−λTθDϕ(T + Tθ,K(0))N(0)

=e−λTθDϕ(Tθ, ϕ(T,K(0)))Dϕ(T,K(0))N(0)

=e−λTθDϕ(Tθ,K(0))Dϕ(T,K(0))N(0)

=e−λTθDϕ(Tθ,K(0))eλTN(0)

=eλTN(θ)

(2.15)

Proposition 2.4. The map N : T→ R2 and the number λ satisfy the following func-

tional equation on N and λ:

DX
(
K(θ)

)
N(θ) = λN(θ) + ωN ′(θ). (2.16)
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Proof. Let us recall that by differentiating (2.2) with respect to x0 one obtains the

variational equations: 
d

dt
Dϕ(t, x0) = DX(ϕ(t, x0))Dϕ(t, x0),

Dϕ(0, x0) = id2 .
(2.17)

If we differentiate N(θ) = e−λTθDϕ(Tθ,K(0))N(0) with respect to θ:

N ′(θ) =− λTe−λTθDϕ(Tθ,K(0))N(0)+

+ Te−λTθ
d

dt
Dϕ(Tθ,K(0))N(0) =

=− λTN(θ)+

+ Te−λTθDX(ϕ(Tθ,K(0)))Dϕ(Tθ,K(0))N(0) =

=− λTN(θ) + TDX(K(θ))N(θ),

(2.18)

which yields the desired result after multiplying by ω.

Note that the solutions of (2.16) are not unique. If (N, λ) is a solution of that

equation, so is (Ñ , λ), with Ñ(θ) = bN(θ), for any b ∈ R \ {0}. This rescaling factor

is the only source of non-uniqueness for (2.16).

Let us now sum up what we have done so far. Two approaches for obtaining (K,ω)

and (N, λ) have arisen. The first one consists on determining first a point in K, which

we will name K(0). Letting K(0) evolve under the flux one can obtain the whole limit

cycle and the period T , i.e., the number such that ϕ(T,K(0)) = K(0). Additionally,

one can obtain N(0) and λ by solving the eigenvalue problem Dϕ(T,K(0))N(0) =

eλTN(0) and then propagate N(0) under the differential of the flux in order to obtain

N(θ).

For the second approach consider the functional equations (2.4) and (2.16), which

must be thought of as equations for the mappings K and N and for the real numbers

ω and λ. In the rest of the chapter we will show how they can be solved by means

of a Newton-like method, provided that a good initial approximation is known. In

section 2.1 we will design the method to be used in an informal way. In section 2.2

we will introduce some norms and give some basic properties that will allow us to give

some estimate of the errors after one Newton step is performed. The error estimates

will be given in section 2.3 and we will see that they are quadratically small. In this

section we will also give a sketch of the proof of the convergence of the method. The

kind of reasoning that we will do is very similar to that carried out in [1], where a

parametrisation of the whole isochron is found by solving a functional equation. Our

arguments are also very standard in KAM theory, and we will therefore follow very

closely [2], where typical KAM problems are presented. However, note that ”small

divisors”, a central piece in KAM theory, do not appear here.
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2.1 The quasi-Newton method

Our objective is to find K,ω,N and λ that satisfy the functional equations derived in

the previous section, namely:

X
(
K(θ)

)
−K ′(θ)ω = 0

DX
(
K(θ)

)
N(θ)−N ′(θ)ω −N(θ)λ = 0

(2.19)

Suppose, however, that we have found K,ω,N and λ which are only an approxi-

mation, so that

X
(
K(θ)

)
−K ′(θ)ω = EK(θ)

DX
(
K(θ)

)
N(θ)−N ′(θ)ω −N(θ)λ = EN(θ)

(2.20)

In this section we will describe how to refine this solutions using a quasi-Newton

method.

2.1.1 Substep 1: correction of (K,ω)

We could in fact improve our solution (K,ω) alone without making use of N . However

it proves useful to improve K and N together as seen below.

The functional equation to solve for K and ω is

X
(
K(θ)

)
−K ′(θ)ω = 0. (2.21)

Given an approximate solution (K,ω) of (2.21) such that

X
(
K(θ)

)
−K ′(θ)ω = EK(θ), (2.22)

we are looking for (∆K, δω) such that (K + ∆K,ω + δω) eliminates the error EK(θ)

in the linear approximation:

Retaining only linear terms in the corrections:

X
(
K(θ) + ∆K(θ)

)
≈ X

(
K(θ)

)
+DX

(
K(θ)

)
∆K(θ), (2.23)

and (
K ′(θ) + ∆K ′(θ)

)
(ω + δω) ≈ K ′(θ)ω +K ′(θ)δω + ∆K ′(θ)ω, (2.24)

which, when inserted in (2.21) yield

0 =X
(
K(θ) + ∆K(θ)

)
−
(
K ′(θ) + ∆K ′(θ)

)
(ω + δω) ≈

≈X
(
K(θ)

)
+DX

(
K(θ)

)
∆K(θ)−K ′(θ)ω −K ′(θ)δω −∆K ′(θ)ω =

=EK(θ) +DX
(
K(θ)

)
∆K(θ)−K ′(θ)δω −∆K ′(θ)ω,

(2.25)
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Therefore the corrections must satisfy the following equation:

−EK(θ) = DX
(
K(θ)

)
∆K(θ)−K ′(θ)δω −∆K ′(θ)ω. (2.26)

However, we will not solve this equation directly. A change of variables along with

some further approximations will allow us to simplify it. The simplified equation will

be easily solved. This is what we call a quasi-Newton method.

Consider the following adapted frame1:

P (θ) =
(
L(θ)

∣∣∣N(θ)
)

=
(
K ′(θ)

∣∣∣N(θ)
)
. (2.27)

We may now rewrite EK and ∆K in this frame:

∆K(θ) = P (θ)ξ(θ),

EK(θ) = P (θ)η(θ),
(2.28)

Inserting this expressions in (2.26) and multiplying by P−1 in order to rewrite it in

the frame we obtain:

−η(θ) = P−1(θ)DX
(
K(θ)

)
P (θ)ξ(θ)−

(
δω

0

)
− P−1(θ)P ′(θ)ξ(θ)ω − ξ′(θ)ω, (2.29)

which needs to be solved for ξ and δω.

In the first term on the right-hand side of the last equation we can do the following

approximation

P−1(θ)DX
(
K(θ)

)
P (θ)ξ(θ) =P−1(θ)

(
DX

(
K(θ)

)
K ′(θ)

∣∣∣DX(K(θ)
)
N(θ)

)
ξ(θ) =

=P−1(θ)
(
K ′′(θ)ω + E ′K(θ)

∣∣∣N ′(θ)ω +N(θ)λ+ EN(θ)
)
ξ(θ) ≈

≈P−1(θ)
(
K ′′(θ)ω

∣∣∣N ′(θ)ω +N(θ)λ
)
ξ(θ) =

=P−1(θ)
(
K ′′(θ)

∣∣∣N ′(θ))ξ(θ)ω + P−1(θ)
(

0
∣∣∣N(θ)

)
ξ(θ)λ =

=P−1(θ)P ′(θ)ξ(θ)ω + P−1(θ)
(

0
∣∣∣N(θ)

)
ξ(θ)λ =

=P−1(θ)P ′(θ)ξ(θ)ω +

(
0 0

0 λ

)
ξ(θ),

(2.30)

1Note that any vector V satisfying 〈K ′, V 〉 6= 0 could have been chosen for the second component

and there would be no need to introduce N . However we select N since this highly simplifies our

calculations. It is clear that the exact K ′ and N are transverse, but it may not be the case with the

approximations. We assume that the non-degeneracy condition is satisfied if the initial approximation

is close enough to the real solution.
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where we have made use of (2.20) and assumed that, since E ′K(θ) is controlled by

EK(θ), and ξ(θ) is of the same order of smallness as EK(θ), E ′K(θ)ξ(θ) and EN(θ)ξ(θ)

are quadratically small and can be ignored in the linear approximation.

Inserting (2.30) into (2.29) we obtain the cohomological equation

−η(θ) =

(
0 0

0 λ

)
ξ(θ)−

(
δω

0

)
− ξ′(θ)ω. (2.31)

This equation can be readily split into two uncoupled differential equations in the L

and N components and we realise that the change of variables introduced has allowed

us to reduce the initial equation to a much simpler one up to quadratically small terms,{
ηL(θ) = ω∂θξ

L(θ) + δω,

ηN(θ) = ω∂θξ
N(θ)− λξN(θ),

(2.32)

that can be solved by considering Fourier series expansions for ξL(θ), ξN(θ), ηL(θ) and

ηN(θ):

For the first equation we have:∑
k∈Z

ηLk e
2πikθ = δω +

∑
k∈Z

2πikωξLk e
2πikθ, (2.33)

which yields the following solution

δω = ηL0 , ξLk =
ηLk

2πikω
, for k 6= 0. (2.34)

Observe that there is a free parameter, namely,

ξL0 = 〈ξL〉 =

∫ 1

0

ξL(θ) dθ. (2.35)

This parameter can be adjusted at each step so that there is no shift in the initial

parametrisation phase, so that ∆K(0) = 0, or we can take it to be zero at each step

and adjust it at the end if needed.

The second equation∑
k∈Z

ηNk e
2πikθ =

∑
k∈Z

(2πikω − λ)ξNk e
2πikθ, (2.36)

has the following solution

ξNk =
ηNk

2πikω − λ
. (2.37)
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2.1.2 Substep 2: correction of (N, λ)

Once (K,ω) has been improved to (K̃, ω̃) = (K + ∆K,ω + δω), a similar reasoning

can be made to refine (N, λ). We start the correction by redefining the errors at the

mid-step:

X
(
K̃(θ)

)
− K̃ ′(θ)ω̃ = ẼK(θ) (2.38)

DX
(
K̃(θ)

)
N(θ)−N ′(θ)ω̃ −N(θ)λ = ẼN(θ) (2.39)

We proceed as before introducing the corrected solution (N + ∆N, λ + δλ) in the

equation for N and λ,

DX
(
K̃(θ)

)
N(θ)−N ′(θ)ω̃ −N(θ)λ = 0, (2.40)

and retaining only linear terms in the corrections:

DX
(
K̃(θ)

)(
N(θ) + ∆N(θ)

)
= DX

(
K̃(θ)

)
N(θ) +DX

(
K̃(θ)

)
∆N(θ),(

N ′(θ) + ∆N ′(θ)
)
ω̃ = N ′(θ)ω̃ + ∆N ′(θ)ω̃,(

N(θ) + ∆N(θ)
)
(λ+ δλ) ≈ N(θ)λ+N(θ)δλ+ ∆N(θ)λ,

(2.41)

which yields:

−ẼN(θ) = DX
(
K̃(θ)

)
∆N(θ)−N(θ)δλ−∆N ′(θ)ω̃ −∆N(θ)λ. (2.42)

We can now rewriteEN and ∆N in the frame P̃ (θ) =
(
L̃(θ)

∣∣∣N(θ)
)

=
(
K̃ ′(θ)

∣∣∣N(θ)
)

:

∆N(θ) = P̃ (θ)ν(θ),

ẼN(θ) = P̃ (θ)ζ(θ),
(2.43)

Inserting this expressions in (2.42) and multiplying by P̃−1 in order to rewrite it in

the frame we obtain:

−ζ(θ) = P̃−1(θ)DX
(
K̃(θ)

)
P̃ (θ)ν(θ)−

(
0

δλ

)
− P̃−1(θ)P̃ ′(θ)ν(θ)ω̃ − ν ′(θ)ω̃ − ν(θ)λ,

(2.44)

which needs to be solved for ν and δλ.
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As before some further approximations can be made:

P̃−1(θ)DX
(
K̃(θ)

)
P̃ (θ)ν(θ) =P̃−1(θ)

(
DX

(
K̃(θ)

)
K̃ ′(θ)

∣∣∣DX(K̃(θ)
)
N(θ)

)
ν(θ) =

=P̃−1(θ)
(
K̃ ′′(θ)ω̃ + Ẽ ′K(θ)

∣∣∣N ′(θ)ω̃ +N(θ)λ+ ẼN(θ)
)
ν(θ) ≈

≈P̃−1(θ)
(
K̃ ′′(θ)ω̃

∣∣∣N ′(θ)ω̃ +N(θ)λ
)
ν(θ) =

=P̃−1(θ)
(
K̃ ′′(θ)

∣∣∣N ′(θ))ν(θ)ω̃ + P̃−1(θ)
(

0
∣∣∣N(θ)

)
ν(θ)λ =

=P̃−1(θ)P̃ ′(θ)ν(θ)ω̃ + P̃−1(θ)
(

0
∣∣∣N(θ)

)
ν(θ)λ =

=P̃−1(θ)P̃ ′(θ)ν(θ)ω̃ +

(
0 0

0 λ

)
ν(θ),

(2.45)

where we have dropped again Ẽ ′K(θ)ν(θ) and ẼN(θ)ν(θ).

Inserting (2.45) into (2.44) we obtain the cohomological equation for the correction

of N and λ:

−ζ(θ) =

(
0 0

0 λ

)
ν(θ)−

(
0

δλ

)
− ν ′(θ)ω̃ − ν(θ)λ, (2.46)

which gives two differential equations of the same kind as obtained in the previous

section: {
ζL(θ) = ω̃∂θν

L(θ) + λνL(θ),

ζN(θ) = ω̃∂θν
N(θ) + δλ,

(2.47)

From the first equation we can obtain the Fourier coefficients of νL(θ):

νLk =
ζLk

2πikω̃ + λ
, (2.48)

and from the second those of νN(θ) and δλ:

δλ = ζN0 , νNk =
ζNk

2πikω̃
, for k 6= 0. (2.49)

The coefficient νN0 = 〈νN〉 is now free and it determines the normalisation condition

upon N . We can set νN0 = 0 at each step and rescale vectors N at the end of the

Newton method if needed.

2.2 Theoretical background

As we want to estimate the errors we need to be able to measure functions in some

function space. For the following arguments we need to consider that all the functions

that have appeared so far can be analytically extended to a complex neighbourhood.
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Consider a complex strip of width ρ > 0:

Tρ = {θ ∈ C/Z | | Im(θ)| < ρ}. (2.50)

Definition 3. Given a holomorphic periodic function f : Tρ → C we define the

following norm

‖f‖ρ = sup
θ∈Tρ
|f(θ)|. (2.51)

The set of functions with finite ‖·‖ρ norm form a Banach space with this norm.

For vector-valued functions we will use the maximum norm. Given a periodic

function f = (f1, f2) : Tρ → C2 we extend the norm in the following way

‖f‖ρ = max(‖f1‖ρ , ‖f2‖ρ). (2.52)

For matrices of holomorphic functions on Tρ the corresponding induced norm will

be used. Given a 2× 2 matrix A = (f |g) we define:

‖A‖ρ = max(‖f1‖ρ + ‖g1‖ρ , ‖f2‖ρ + ‖g2‖ρ). (2.53)

Proposition 2.5. Let f be an holomorphic function on Tρ. For any δ > 0 the deriva-

tive of f(θ), f ′(θ), is holomorphic on Tρ−δ and the following holds:

‖f ′‖ρ−δ ≤
1

δ
‖f‖ρ . (2.54)

Proof. For every θ ∈ Tρ consider the closed disk Dr contained in Tρ. It is a typical

result of complex analysis that

|f ′(θ)| ≤ |f(θ)|
r

. (2.55)

The largest r that one can choose for every θ ∈ Tρ−δ is δ. Taking supremums at both

sides yields the desired result. If a vector-valued function f = (f1, f2) is considered:

‖f ′‖ρ−δ = max(‖f1‖ρ−δ , ‖f2‖ρ−δ) ≤
1

δ
max(‖f ′1‖δ , ‖f

′
2‖ρ) =

1

δ
‖f‖ρ . (2.56)

Proposition 2.6. Let X be an analytic vector field in a domain U ⊂ C2. Let K : Tρ →
C2 be such that

d(K(Tρ),C2 − U) ≥ κ > 0. (2.57)

Then the following hold:

• X ◦K is holomorphic on Tρ.
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• For ∆K : Tρ → C2 with ‖∆K‖ρ sufficiently small (so that d((K+∆K)(Tρ),C2−
U) > 0), we have

‖X ◦ (K + ∆K)−X ◦K − (DX ◦K)∆K‖ρ ≤ C ‖∆K‖2ρ . (2.58)

Proof. It follows from Taylor’s theorem:

X
(
K(θ) + ∆K(θ)

)
= X

(
K(θ)

)
+DX

(
K(θ)

)
∆K(θ)+

+

∫ 1

0

(1− t)DX2
(
K(θ) + t∆K(θ)

)
[∆K(θ),∆K(θ)]t

(2.59)

Taking supremums at both sides yields the desired result with C = 1
2

supx∈U ‖D2X‖.

Proposition 2.7. Let f : Tρ → C be written as a Fourier series

f(θ) =
∑
k∈Z

fke
2πikθ. (2.60)

Then for all 0 < ρ̃ < ρ the following holds:

|fk| ≤ e−2π|k|ρ̃ ‖f‖ρ ≤ ‖f‖ρ (2.61)

Proof. For k > 0 the path of integration can be shifted downwards:

fk =

∫
T
f(θ)e−2πikθdθ =

∫ −ρ̃
0

f(0 + is)e−2πik(0+is)ds

+

∫
T
f(θ − iρ̃)e−2πik(θ−iρ̃)dθ +

∫ 0

−ρ̃
f(1 + is)e−2πik(1+is)ds.

(2.62)

As f(0 + is) = f(1 + is) we have that

fk =

∫
T
f(θ − iρ̃)e−2πik(θ−iρ̃)dθ = e−2πikρ̃

∫
T
f(θ − iρ̃)e−2πikθdθ, (2.63)

so that

|fk| ≤ e−2πkρ̃
∫
T
‖f‖ρ dθ = e−2πkρ̃ ‖f‖ρ . (2.64)

For k < 0 shift the path of integration upwards. For k = 0 the path along the real

line gives the desired result.

2.3 Estimating the error

So far we have presented the quasi-Newton method in an informal way by simply

dropping some terms that we have considered to be quadratically small. We will here
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give an estimate of the error after one step and see that it is bounded by the square of

the error before performing the step. When developing the method we have highlighted

the approximately equal symbol ≈ in order to keep track of all the terms that have

been ignored.

We will denote the errors after the first half step with Ẽ and the errors after the

whole quasi-Newton step has been performed as Ē.

Proposition 2.8. Assume that X is analytic in some domain U ⊂ C2. Let K : Tρ →
U be such that

d(K(Tρ),C2 − U) ≥ κ > 0 (2.65)

and let N : Tρ → C2. Let ε ≥ 0 be such that

‖EK‖ρ = ‖X ◦K − ωK ′‖ρ ≤ ε

‖EN‖ρ = ‖(DX ◦K)N − ωN ′ − λN‖ρ ≤ ε
(2.66)

and let δ > 0 be such that it satisfies a certain relation

δ−1Cε < 1, (2.67)

for a certain constant C depending on κ, |ω|, |λ|, supx∈U ‖D2X‖, ‖P‖ρ, ‖P−1‖ρ, where

P = (K ′|N). Then the errors ĒN , ĒK for the improved solutions (K + ∆K,ω + δω)

and (N + ∆N, λ+ δλ) obtained after the quasi-Newton step satisfy∥∥ĒN∥∥ρ−δ ≤ Cδ−1ε2,∥∥ĒK∥∥ρ−δ ≤ Cδ−1ε2,
(2.68)

where the constant C appearing in the conclusions is different than that appearing in

the hypothesis, as is common practice in KAM arguments.

Only a sketch of the proof will be given:

Let us first consider substep 1. Using proposition 2.7 and the explicit expressions

for the corrections in the frame derived in the last section we can give the following

bounds:

|δω| ≤ ‖η‖ρ ≤
∥∥P−1∥∥

ρ
‖EK‖ρ ≤ Cε,∥∥ξL∥∥

ρ
≤ 1

ω

∥∥ηL∥∥
ρ
≤
(

1

ω
+

1

λ

)∥∥ηL∥∥
ρ
,

∥∥ξN∥∥
ρ
≤
(

1

ω
+

1

λ

)∥∥ηN∥∥
ρ
,

‖ξ‖ρ ≤
(

1

ω
+

1

λ

)
‖η‖ρ ≤

(
1

ω
+

1

λ

)∥∥P−1∥∥
ρ
‖EK‖ρ ≤ Cε

(2.69)



CHAPTER 2. MATHEMATICAL ANALYSIS 16

From these expressions and using also proposition 2.5 we can obtain the following

bounds:

‖E ′K‖ρ−δ ≤
C

δ
‖EK‖ρ ≤

C

δ
ε,

‖∆K‖ρ ≤ ‖P‖ρ ‖ξ‖ρ ≤ Cε,

‖∆K ′‖ρ−δ ≤
C

δ
‖∆K‖ρ ≤

C

δ
ε.

(2.70)

Now if we go back to substep 1 of the Newton method, where the correction of K

and ω is considered we can add and substract terms to obtain the following expression:

ẼK(θ) =X
(
K(θ) + ∆K(θ)

)
− (K ′(θ) + ∆K ′(θ))(ω + δω) =

=X
(
K(θ) + ∆K(θ)

)
−X

(
K(θ)

)
−DX

(
K(θ)

)
∆K(θ)+

+X
(
K(θ)

)
+DX

(
K(θ)

)
∆K(θ)−K ′(θ)ω −∆K ′(θ)ω −K ′(θ)δω −∆K ′(θ)δω =

=X
(
K(θ) + ∆K(θ)

)
−X

(
K(θ)

)
−DX

(
K(θ)

)
∆K(θ)+

+ EK(θ) +DX
(
K(θ)

)
∆K(θ)−∆K ′(θ)ω −K ′(θ)δω−

−∆K ′(θ)δω =

=X
(
K(θ) + ∆K(θ)

)
−X

(
K(θ)

)
−DX

(
K(θ)

)
∆K(θ)+

+ EK(θ)− EK(θ) + P−1(θ)
(
E ′K(θ)

∣∣∣EN(θ)
)
ξ(θ)

−∆K ′(θ)δω =

=X
(
K(θ) + ∆K(θ)

)
−X

(
K(θ)

)
−DX

(
K(θ)

)
∆K(θ)+

+ P−1(θ)
(
E ′K(θ)

∣∣∣EN(θ)
)
ξ(θ)

−∆K ′(θ)δω =

=A1 + A2 + A3,

(2.71)

where we denote each line in the last expression by A1, A2, A3.

Making use of the bounds that we have just computed we can estimate each line

as follows:

‖A1‖ρ ≤ C ‖∆K‖2ρ ≤ Cε2,

‖A2‖ρ−δ ≤
∥∥P−1∥∥

ρ−δ

∥∥E ′KξL + ENξ
N
∥∥
ρ−δ ≤

≤
∥∥P−1∥∥

ρ−δ

(
‖E ′K‖ρ−δ

∥∥ξL∥∥
ρ−δ + ‖EN‖ρ−δ

∥∥ξN∥∥
ρ−δ

)
≤

≤ C

δ
ε2 + Cε2,

‖A3‖ρ−δ ≤ ‖∆K
′‖ρ−δ |δω| ≤

C

δ
ε2.

(2.72)

Note that for the first estimate the proposition 2.6 has been used.
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We can see that each term is bounded by the square of the initial error as desired.

A similar reasoning can be applied for the mid-step error for the functional equation

on N :

ẼN(θ) =DX
(
K(θ) + ∆K(θ)

)
N(θ)−N ′(θ)(ω + δω)−N(θ)λ =

=DX
(
K(θ) + ∆K(θ)

)
N(θ)−DX

(
K(θ)

)
N(θ)+

+DX
(
K(θ)

)
N(θ)−N ′(θ)ω −N(θ)λ−

−N ′(θ)δω =

=B1 + EN(θ) +B2,

(2.73)

where we use a similar notation as before.

Using Taylor in a similar way as in proposition 2.6 one can find

‖B1‖ρ ≤ C ‖∆K‖ρ ‖N‖ρ ≤ Cε, (2.74)

and using proposition 2.5:

‖B2‖ρ−δ ≤ ‖N
′‖ρ−δ |δω| ≤

C

δ
ε, (2.75)

so that ẼN , the mid-step error for N , is of the order of EN .

The same kind of bounds can be found for the correction of N and λ, but they will

not be specified here, since it is out of the scope of this undergraduate thesis.

However, a key point must be noted. To control the error in the second substep

we must be able to control the inverse of P̃ . This can be done using Neumann series.

Consider the following expression:

P̃−1 = (P̃ − P + P )−1 = P−1(I + (P̃ − P )P−1)−1 = P−1(I −X +X2 − . . . ), (2.76)

where X = P−1(P̃ − P ).

The matrix P̃ is invertible if P is invertible and ‖X‖ρ < 1. And we can write

‖X‖ρ =
∥∥∥P̃ − P∥∥∥

ρ
·
∥∥P−1∥∥

ρ
< 1 (2.77)

From this we can clearly see that the worse conditioned P is, the closer P̃ needs to

be to P , which means that the error in the initial approximation needs to be smaller.

In fact from (2.76) we can write the following bound∥∥∥P̃−1∥∥∥
ρ
≤ ‖P‖ρ

1

1− ‖X‖ρ
, (2.78)

which would allow us to obtain a specific condition that could be included in the

constant C appearing in the hypothesis. We would like to repeat now that the greater
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C is, the smaller ε can be, i.e., the better the initial condition passed to the algorithm

has to be, for it to converge quadratically.

So far we have shown that the error after the iterative step is bounded by the square

of the error before the step. However one must carefully observe that the functions

after the step are in a slightly smaller domain and that there is some constant δ−1

that determines this loss of analyticity appearing in the bounds. A balance must be

satisfied between taking a very small δ (where the constants blow up) and keeping the

constants small (where we finally end up with no domain). This kind of problems are

very usual in KAM theory and they are solved in the following way. The following

sequence is considered for each step n ≥ 1

δn =
1

4
δ02
−n, (2.79)

where δ0 is the global analyticity loss. If the initial approximation is good enough it

can be shown that the hypothesis of proposition 2.8 is satisfied at each step and the

error at step n can be estimated as

εn ≤ C(δ02
−n−1)−1ε2n−1 ≤ · · · ≤ (Cδ−10 22ε0)

2n. (2.80)

If (Cδ−10 22ε0) < 1 (which would appear as a hypothesis in the theorem stating the

convergence of the method), εn decreases superexponentially, while δn decreases only

exponentially. This is the key point in understanding why the hypothesis of our propo-

sition is satisfied again after the Newton step, provided that the initial approximation

is good enough.



Chapter 3

The reduced Hodgkin-Huxley

model

The electrical activity in neurons can be understood in terms of four ions travelling

through its membrane: sodium (Na+), potassium (K+), calcium (Ca2+) and chloride

(Cl−). When the cell membrane is at rest, there is a high concentration of Na+ and

Cl− in the extracellular medium, while the intracellular medium is rich in K+ and

negatively charged molecules.

The different concentrations of these ions inside and outside the cell membrane

creates electrochemical gradients that are responsible for the electrical activity of the

cells. The cell membrane does not allow ions to pass through it, but it has some

ion-specific channels that can open and allow the flow of ions.

In 1952 Hodgkin and Huxley proposed a mathematical model [10] of the squid

giant axon, which is one of the most important models in computational neuroscience.

It must be said, however, that this model has the difficulty of involving four variables,

and several simplifications that capture the essence of the dynamics of the neuron with

only two variables have been proposed. The simplified model that we will consider in

this thesis can be described with the following equations:

CV̇ = I − gNam∞(V )(V − VNa)− gKn(V − VK)− gL(V − VL),

ṅ = n∞(V )− n,
(3.1)

with

m∞(V ) =
1

1 + exp(−(V − Vmax,m)/km)
,

n∞(V ) =
1

1 + exp(−(V − Vmax,n)/kn)
.

(3.2)

This model is called the INa,p + IK-model and is said to describe a fast persistent

sodium current and a slower potassium current. In order to understand briefly the

19
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meaning of these equations, consider the first equation in (3.1) written in the following

way:

I = CV̇ + gNam∞(V )(V − VNa) + gKn(V − VK) + gL(V − VL) (3.3)

This equation is a simple application of Kirchoff’s law to the neuron membrane. I

represents the total current crossing the membrane, which may be due to synaptic

current, axial current, tangential current along the membrane surface or current in-

jected artificially with an electrode. On the right hand side of the last equality, we

have CV̇ , which amounts for the capacitative current of the membrane, i.e., for the

accumulation of ions at each side of the membrane when the membrane potential is

changing. The third terms is called leakage current and is due to the fact that the

membrane is never fully impermeable. Finally the two middle terms correspond to the

flow of sodium and potassium ions with conductances gNam∞(V ) and gKn, respec-

tively. As we have said before the membrane has several ion channels that can open

and close. gNa and gK can be interpreted as the maximum conductances, when all the

channels are open, and m∞(V ) and n as the fraction of channels that are open at a

given time. As we can see the fraction of open channels is voltage dependent in both

cases, but time-dependent only in the second one.

As in [1] and [8] we use the following values for the parameters: Cm = 1, gNa = 20,

VNa = 60, gK = 10, VK = −90, gL = 8, VL = −80, Vmax,m = −20, km = 15,

Vmax,n = −25 and kn = 5. The parameter I can be studied as a bifurcation parameter.

For I = 0 the system has no periodic orbits as shown in figure 3.1. A fixed point

is localised at about (V, n) ≈ (−30, 0.4). The other two equilibria are localised at

about n = 0 for V ≈ −55,−65 and they are joined by two heteroclinic orbits. The

neuron is expected to be in the stable equilibrium. If a small positive perturbation in

the potential is applied, the neuron will go back to the stable equilibrium through a

short path close to the short heteroclinic orbit. However, if this perturbation is such

that the V -nullcline is crossed, then the neuron will go for a long loop close to the

long heteroclinic orbit before returning to the starting point. In this case an action

potential is elicited. Systems exhibiting this feature are called excitable media.

As the value of the parameter I is increased the stable and unstable equilibria

connected by the two heteroclinic orbits become closer and closer until they fuse at

I = 4.51, as shown in figure 3.2. At this point a bifurcation called Saddle-Node on an

invariant circle (SNIC) happens.

For larger values of I, a limit cycle appears as shown in figure 3.3 and the membrane

voltage exhibits a periodic behaviour with periodic spiking as seen in figure 3.4.

For the case I = 10 we show in figure 3.5 the isochrons defined in the last chapter

computed for 40 evenly distributed phases. Let us recall that the concept of isochron

allowed us to extend the idea of phase of oscillation to the basin of attraction of a
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Figure 3.1: INa,p + IK-model. No periodic orbits for I = 0. Source: [7]

Figure 3.2: INa,p + IK-model. SNIC bifurcation for I = 4.51. Source: [7]
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Figure 3.3: INa,p + IK-model. Limit cycle attractor for I = 10. Source: [7]

Figure 3.4: INa,p+IK-model. Transition from resting state to periodic spiking. Source:

[7]

limit cycle. Consider a neuron whose dynamics can be qualitatively described with

figure 3.5. The neuron is periodically spiking and travelling along the limit cycle. As
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we did before (I = 0) we can ask what happens if a small perturbation in the voltage

occurs at a certain time. The neuron abandons the limit cycle and evolves in such a

way that it will clearly go back to it, but it may have experienced a phase advance or

delay. Isochrons allow us to determine quantitatively the phase shift experienced by

the neuron. If a perturbation occurs when the neuron is at a phase θi and the neuron

falls on an isochron with phase θf we know that when the neuron goes back to the

limit cycle it will have suffered a phase shift:

∆θ = θf − θi. (3.4)

Figure 3.5: INa,p + IK-model. Isochrons of the limit cycle attractor in figure 3.3.

Source: [7]

Understanding the concept of isochron and being able to compute them plays a

central role in computational neuroscience since it allows to understand how two cou-

pled neurons behave depending on their intrinsic dynamics, how a net of synchronous

neurons will react in front of a perturbation or how one desynchronised neuron can

resynchronise again in front of the stimulus passed by the others.

Isochrons offer another kind information. Looking again at figure 3.5 we can see

that isochrons accumulate at a certain part of the limit cycle, while they are spaciously

distributed in other parts. As the isochrons are plotted for evenly distributed values

of θ, which corresponds to evenly distributed values of t, we can easily see where the

neuron goes faster and slower in the periodic orbit. It must be noted that the points

where the trajectory slows down are those where the bifurcation occurred. In this case

very strong slow-fast dynamics are observed.



Chapter 4

Numerical implementation

We select the model described in the last chapter (equations 3.1) and write a program

in language C that is able to find a parametrisation of the periodic orbit K(θ) and

find the vectors N(θ) through integration and that refines the initial solutions using

the quasi-Newton method described in chapter 2. The source code is appended at the

end of this undergraduate thesis, and the reader is invited to have a look at it while

reading this chapter in order to follow the explanations given here.

4.1 The Taylor method for integrating ODEs

Our program needs to integrate the flux and the variational equations. For the inte-

gration of differential equations we use the Taylor method.

Consider the following Cauchy problem:

x′(t) = f(t, x(t)),

x(t0) = x0,
(4.1)

The Taylor method is based on the possibility of performing a Taylor expansion of

the function x(t) around t0, for h ∈ R:

x(t0 + h) = x(t0) + x′(t0)h+
1

2!
x′′(t0)h

2 + . . .
1

p!
x(p)(t0)h

p + . . . , (4.2)

Taking a certain step h we can approximate x(t0+h) by the truncated Taylor series

up to order p1 and we call this approximation x1:

x1 = x(t0) + x′(t0)h+
1

2!
x′′(t0)h

2 + . . .
1

p!
x(p)(t0)h

p, (4.3)

Now we can consider the new Cauchy problem with initial condition x(t1) = x1,

where we use the notation t1 = t0 + h. The same procedure can be used in order to

1If p = 1 the method is know as the Euler method

24
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obtain an approximation x2 ≈ x(t2), for t2 = t1 + h. The process can be iterated as

long as needed, so that for each pair ti, xi a new xi+1 can be obtained for ti+1 = ti +h.

Consider equation (4.3). At each step of the integration we need to compute the

values of the derivatives x(j)(t0) up to order p. The first derivative is given directly by

the field: x′(t0) = f(t0, x0). For higher order derivatives we can differentiate the first

equation in (4.1):

x′′(t) = ft(t, x(t)) + fx(t, x(t))x′(t), (4.4)

and so on. However, as we consider derivatives of higher order, the expressions that

we get become more and more complicated and it becomes difficult to compute the

derivatives of f and also to evaluate such long expressions numerically.

This difficulty however can be overcome using automatic differentiation, a recursive

procedure which allows to compute easily the derivatives of a given function at a given

point. This works only for a special class of functions, those that can be obtained

by sum, product, quotient, and composition of elementary functions (polynomials,

trigonometric functions, real powers, exponentials and logarithms).

Consider a function a : R→ R, which is assumed to be smooth, and which can be

written as a(t) = F (b(t), c(t)), and assume furthermore that we know b(j)(t) and c(j)(t)

up to order n at a given t0. If F is one of the functions specified before the rules of

automatic differentiation [4] allow us to write a(j)(t) in t0 up to order n as a function

of the already know derivatives of b and c in t0. These rules can be applied recursively

in x′(t) = f(t, x(t)) to obtain the derivatives of x(t) in t0 up to any order desired.

In our program we use the software package provided by Jorba and Zou [4], which,

given some differential equations, is able to generate some routines of integration,

which are in the header file taylor.h and have the structure:

i n t tay lo r s t ep name ( long double ∗ t i , long double ∗x , i n t d ir , i n t

s t e p c t l , double log10abse r r , double l o g 1 0 r e l e r r , long double

∗endtime , long double ∗ht , i n t ∗ order )

The arguments ti and x correspond to the initial conditions ti and xi and are

overwritten with the new conditions ti+1 and xi+1 after one step of the integration.

This routines implement also optional stepsize and order control, which means

that a different step h and different order p may be used for each step. By setting

step ctl to 1, the stepsize and order control are performed and the integrator tries

to keep either the absolute or relative errors below the values given by the user. The

decimal logarithm of the absolute and relative accuracy is passed to the function with

log10abserr and log10abserr, respectively. At the end of the step, ht gives the time

step used and order gives the degree used in the Taylor expansion. The flag dir can

be either 1 for forward integration, or -1 for backward integration. Additionally, one

can set a value for endtime, so that the size of the last step is adapted in order to fit
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the required end time. The output of the function is 0, unless ti=endtime. In this

case the function returns 1.

On the other hand, it is possible to set step ctl to 0. In this case no stepsize or

order control are performed and the stepsize and order to be used are defined by the

user through ht and order, while the other flags are ignored.

4.2 Discrete Fourier transform

As we will be dealing with periodic functions and we will need to solve some equa-

tions involving their Fourier coefficients it essential to be able to find them. Consider

f : Tρ → R:

f(θ) =
∞∑

k=−∞

f̃ke
2πikθ. (4.5)

As we have seen in proposition 2.7 the coefficients are expected to decay exponentially

with |k| and therefore the Fourier series can be truncated at some point:

f(θ) ≈
N/2−1∑
k=−N/2

f̃ke
2πikθ. (4.6)

With the objective of finding such an approximation we will make use of the Dis-

crete Fourier Transform (DFT). We discretise Tρ by taking N values {θj = j/N}N−1j=0

equally spaced on the interval, and we evaluate the function f at these points in order

to obtain a set of values:

{fj = f(θj)}N−1j=0 (4.7)

The DFT transforms this set of N values into an N periodic set of complex values

f̃k =
N−1∑
j=0

fje
−2πikθj , k ∈ Z, (4.8)

that satisfy f̃j = f̃j(modN). Those indexed by 0, . . . , N are the coefficients of the

interpolating trigonometric polynomial up to a factor 1/N :

P (θ) =
N−1∑
j=0

1

N
f̃je

2πijθ, (4.9)

that satisfies P (θj) = fj.

The implementation of the Discrete Fourier Transform will be done using the Fast

Fourier Transform algorithms found in the library FFTW, included in the code with

the header fftw3.h. These algorithms are able to perform the transform in O(NlogN)

operations (specially if N is a power of 2).



CHAPTER 4. NUMERICAL IMPLEMENTATION 27

In our code one can see that there is a bunch of functions related to Fourier trans-

forms. The technical requirements of the routines in the FFTW library have been

hidden under the functions void createfourier() and void destroyfourier() for

the sake of clarity, and they can be thought of as allocating and freeing memory when

working with pointers. The functions in fftw3.h perform the DFT on an array of

numbers. However, as we are working with arrays of two-dimensional vectors we have

also created our own functions

void f o r w a r d f o u r i e r ( long double complex ∗∗IN , long double complex

∗∗OUT) ;

void backwardfour ie r ( long double complex ∗∗IN , long double complex

∗∗OUT) ;

that work on arrays of vectors.

The function forwardfourier reads an array IN[2][Ngrid], performs the DFT

on each array of components and divides the result by Ngrid before writing it on

OUT[2][Ngrid], so that we obtain directly the coefficients of the interpolating trigono-

metric polynomial. The function backwardfourier performs a backward DFT, which

simply consists in evaluating the interpolating polynomial at the values θj = j/N , for

j = 1, . . . N , so that no further rescaling is needed.

As already said when we do the forward Fourier transform we obtain the coefficients

of the interpolating polynomial (4.9), that correspond, up to a shift in the indexes,

to the coefficients of the truncated Fourier series (4.6). A function int ind(int i)

has been also created, which reads an integer i=-N/2,...,N/2-1 and shifts it to the

range 0,...,N-1. When working with vectors in the Fourier space this function will

be used.

The function void derivatefourier(long double complex **K , long double

complex **DK ) is used for differentiating truncated Fourier series (4.6):

f(θ) =

N/2−1∑
k=−N/2

2πikf̃ke
2πikθ. (4.10)

The function int ind(int i) turns out to be very useful in this case.

Still an important observation is to be made. As our functions are real-valued, the

Fourier coefficient for a certain k is the complex conjugate of that for −k. However,

when truncating the series and working with even N , we can see that the so-called

Nyquist term, f̃−N/2, is not compensated by a complex conjugate, since f̃N/2 is taken

to be 0. This means that we are no longer working with real objects. This could be

compensated by artificially adding a term f̃N/2 to compensate for this effect. This is

something we don’t do, because we don’t need to evaluate the Fourier series out of the

grid. However, this problem naturally arises when differentiating. In this case we set

the Nyquist term of the derivative to be zero as suggested in [9].
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4.3 The program

In the appendix, the source code is commented. However, some features are still worth

mentioning.

As already seen, our program is written using precision long double. At the

beginning of the code one can see that the values of the parameters are specified. The

values chosen are those that already appeared in the previous chapter, and we choose

the bifurcation paramater I to be 10 mV . The absolute and relative tolerances that

we used for the integrator and for other purposes are 10−16.

Several functions are defined: void matrixvector2(long double M[2][2], long

double *v) and void invmatrixvector2(long double M[2][2], long double *v),

which apply the matrix M (and its inverse, respectively) to the vector v.

For the computation of the periodic orbit we first choose a Pincaré section Σ at

V = −40 (see figure 3.5) and give initial conditions x[0]=-40; x[1]= 0.2. This

is passed to the function long double poincaremap(long double *x), which reads

x[2], applies the Poincaré map p : Σ → Σ to this point and returns the so-called

return time. The internal structure of the function poincaremap is divided in two

parts. In the first one it lets the point evolve until the Poincaré section is overpassed.

Let x0 be the last point before the Pincaré section is reached and h the step of the

last integration, then we know that

Π1(ϕ(0, x0)) = Π1(x0) < −40,

Π1(ϕ(h, x0)) > −40,
(4.11)

where Π1 : R2 → R is the projection on the x axis, which in this case corresponds to

the variable V . Then we are interested in solving the equation

Π1(ϕ(τ, x0)) + 40 = 0, (4.12)

for the variable τ . This is done in the second part of the function poincaremap by

means of a Newton method.

The function poincaremap is applied recursively until the point in the periodic

orbit is found and the return value of the function gives the period of the oscillation,

which is stored in T.

We start with Ngrid=64 and store in K[][0]2 the point of the orbit obtained in the

Poincaré section. Using taylor step inapik we let this point evolve in time in order

to obtain Ngrid samples on the periodic orbit evenly distributed in time, i.e, K(θj),

for θj = j/N . Then the Fourier transform is performed and the coefficients are stored

2In our program K[i][j] means the i-th component of the j-th sample in (4.7), i.e., j goes from

0 to Ngrid, and for each j, we can have K[0][j] and K[1][j].



CHAPTER 4. NUMERICAL IMPLEMENTATION 29

in K [2][Ngrid]. The tail of the Fourier series is checked in order to determine if a

larger number of samples is needed. In that case we choose Ngrid*=2 and start again.

With all this information the error function for the functional equation in K and

ω is evaluated and the results are stored in EK.

Then we proceed to compute the stable vector N . The first step is to find N(0). In

order to do this we integrate the variational equations backwards for a whole period

so that we obtain:

Dϕ(−T,K(0)). (4.13)

This is obtained using another integration routine: taylor step inapikvariational(&t,

vareqn, -1, 1, log10tol, log10rtol, &tau, &h, &order), where the initial con-

ditions are vareqn[0]=K[0][0] and vareqn[1]=K[1][0] for the point in the orbit

K(0) and vareqn[3]=1., vareqn[4]=0., vareqn[5]=0. and vareqn[6]=1. for the

values of the matrix Dϕ at K(0). As the integration is backwards and the orbit is un-

stable, we integrate at time intervals of -T/Ngrid and force the point to stay in the or-

bit by setting manually vareqn[0]=K[0][Ngrid-j] and vareqn[1]=K[1][Ngrid-j],

for the j which corresponds at every step.

The matrix Dϕ(−T,K(0)) is stored in M and the eigenvalues and eigenvectors

are obtained. From these we can find N(0) and λ. And by propagating this vector

(backwards again) as discussed in proposition 2.3 we can obtain N(θj) for θj = j/N .

The Fourier transform is performed and the error function is evaluated.

Finally, with this initial approximations in hand, the Newton method described in

chapter 2 is applied.



Chapter 5

Results

5.1 The reduced Hodgkin-Huxley model

Our program is applied to the reduced Hudgkin-Huxley model described in chapter 3.1.

We start with the case I = 10, in which 8192 samples are needed for the Fourier series.

We obtain a period T = 7.0735 and λ = −3.9110. With the initial approximation

found by integration the error in the functional equation for K is of the order of 10−11,

but for N it is of the order of 10−7. In figure 5.1 we plot the limit cycle obtained

and the the linear approximation of 64 isochrons. The slow-fast dynamics is clearly

observable.

Figure 5.1: INa,p + IK-model. I = 10. Limit cycle and 64 stable vectors. The stable

vectors have been rescaled since they have extremely different length scales.

We expected the Newton method designed in chapter 2 to improve the solutions

found, but to our surprise the method failed to find better solutions. Instead after ten

30
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iterations the error of both K and N blows up to orders of 103, which is clearly unac-

ceptable. We understand this anomalous behaviour in terms of numerical problems.

On one hand when the differential of the flux is integrated for one period and the two

eigenvalues are found, we see that one of them is 1, while the other is of the order

of 10−12. Compare this difference with the 10−16 tolerance that we chose for our pro-

gram. We are in front of a very attractive limit cycle, which simplifies the calculation

of K(θ), but makes it really difficult to find N(θ) satisfactorily. Yet another problem

is to be considered. In figure 5.2 we plot for each θ the angle between the limit cycle

and the isochron crossing it at K(θ), i.e., the angle between N(θ) and K ′(θ).

Figure 5.2: INa,p + IK-model. I = 10. Angle between the orbit and the vector N for

each θ. Note that Π1(K(θ = 0)) = −40.

It is clear that, apart from being far from continuous, even if so many samples have

been considered, the angle is very close to 0 for most of the values of θ. Let us recall

at this point that for the Newton method we need to transform our equations to the

frame P =
(
K ′
∣∣N), and it is clear that K ′ and N must satisfy the non-degeneracy

condition 〈K ′, N〉 6= 0. The further they are from this condition the better our initial

approximations have to be for our method to converge. The numerical instability is

intrinsic to the model we have selected, which presents stiff dynamics, but we hope

that it could be overcome using extended precision arithmetic.

We have also run our program for I = 100, which is a bit further from the SNIC

bifurcation. In this case we obtain T = 2.7405 and λ = −5.4031. The initial approx-

imation for K and N is also found with an error similar to that of I = 10, and the

Newton method also fails to improve the solutions, even though the error grows a bit

slowlier. A plot of the periodic orbit is shown in figure 5.3. Observe how in this case
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the vectors N are more evenly distributed. This is due to the fact that, as already

mentioned, the SNIC bifurcation is much further than at I = 10.

Figure 5.3: INa,p + IK-model. I = 100. Limit cycle and 64 stable vectors. The stable

vectors have been rescaled since they have extremely different length scales.

We have still considered the case I = 190, close to a Hopf bifurcation that occurs

at around I = 214. In this case T = 1.3055 and λ = −0.4639, and we obtain an error

of about 10−12 in the initial approximation of K and about 10−11 for N . Note than in

this case the stable eigenvalue of the Dϕ(T,K(0)) is eλT = 0.5457, which is not even

one order of magnitude below 0. In this case the Newton method can be applied as

many times as desired and the error does not grow, nor does it decrease. In figure 5.4

the linear approximation of 64 isochrons is shown.

5.2 The Rayleigh oscillator

We have seen in the previous section that our program can effectively compute an

initial approximation for K, N , T and λ for several values of I in the INa,p+IK-model,

but the Newton method that we have designed did not work properly. Therefore, we

consider in this section a much simpler model in order to show the convergence of our

method. The Rayleigh oscillator has equations:

ẋ = −y + µ(x− x3),
ẏ = x.

(5.1)

It is known to have an unstable focus at (0, 0). For µ = 1 it also has a stable limit

cycle, for which we have found T = 6.6632 and λ = −1.059. In this case we have
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Figure 5.4: INa,p + IK-model. I = 190. Limit cycle and 64 stable vectors.

needed N = 2048, and initial approximations of K and N are found with errors of

10−14 and 10−13, respectively. The Newton method is able to reduce these errors to

10−16 in both cases after only two steps. A plot of the periodic orbit with 32 stable

vectors is shown in figure 5.5

Figure 5.5: Rayleigh oscillator. µ = 1. Limit cycle and 32 stable vectors.

Just for comparison with the INa,p + IK-model and figure 5.2 we show in figure

5.6 the angle between K ′ and N in the Rayleigh oscillator. This is a much better

conditioned problem and it is easy to understand why our method performs efficiently

here.
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Figure 5.6: Rayleigh oscillator. µ = 1. Angle between the orbit and the vector N for

each θ. In this case Π1(K(θ = 0)) = 0

The Newton method that we designed allows also to do continuation with respect

to parameters. For the case µ = 1.2 we can take the values of K, T , N and λ that we

obtained for µ = 1 as an initial approximation and use the Newton method to improve

them. No integration is needed in this case. For µ = 1.2 and using this procedure the

initial error is 10−2, which is rapidly reduced to 10−15 after 20 iterations of the method.

We obtain T = 6.8212 and λ = −1.2997. We plot the limit cycle and 32 stable vectors

in figure 5.7. The same is done for µ = 1.6 with an initial error of almost 1, which

after 20 steps is reduced to 10−13. We obtain T = 7.1966 and λ = −1.8180. The limit

cycle and 32 stable vectors are shown in figure 5.8.
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Figure 5.7: Rayleigh oscillator. µ = 1.2. Limit cycle and 32 stable vectors obtained

by improving the solutions found for µ = 1.

Figure 5.8: Rayleigh oscillator. µ = 1.6. Limit cycle and 32 stable vectors obtained

by improving the solutions found for µ = 1.



Chapter 6

Conclusions

Some new techniques and concepts have been learnt throughout the development of

this thesis. With an example we have seen how a biological system can be satisfac-

torily modelled with mathematical tools and how this can help to understand many

properties of such a system.

Although the algorithm designed in chapter 2 did not work as expected for the

model that we selected, we have also learnt many numerical techniques for program-

ming that turn out to be very useful in front of real problems, that cannot usually be

described by means of an analytical expression.

At the same time, we have also seen the close relationship between the designed

algorithms and the numerical implementation, so that we can understand under which

circumstances a numerical algorithm will fail.

Three topics remain open for the author as further work. The first one is to get a

better understanding of the KAM theory and its implications. The second one is to

think how to improve the designed algorithms in order for them to work in the first

model considered here. The third one is to read more about how to effectively apply

the concept of isochron to coupled oscillators and the implications that this has in

neural systems.

36
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Appendix A

The program

1 #inc lude ” t ay l o r . h”

2 #inc lude <s t d i o . h>

3 #inc lude <s t d l i b . h>

4 #inc lude <math . h>

5 #inc lude <complex . h>

6 // I f <complex . h> comes be f o r e <f f tw3 . h>, then f f tw l comp l ex i s de f ined to be the

nat ive complex type and you can manipulate i t with ord inary a r i thmet i c

7 #inc lude <f f tw3 . h>

8

9 long double cur rent =10. ;

10

11 long double C=1.0 , gNa=20. , VNa=60. , gK=10. , VK=−90. , gL=8. , VL=−80. , Vmaxm=−20. , km

=15. , Vmaxn=−25. , kn=5. ;

12

13 double t o l=1e−16;

14 double l o g 1 0 t o l ;

15 double r t o l=1e−16;

16 double l o g 1 0 r t o l ;

17

18 void f i e l d ( long double ∗x , long double ∗ f ) ;
19 void d f i e l d ( long double ∗x , long double df [ 2 ] [ 2 ] ) ;

20 void matr ixvector2 ( long double M[ 2 ] [ 2 ] , long double ∗v ) ;
21 void invmatr ixvector2 ( long double M[ 2 ] [ 2 ] , long double ∗v ) ;
22

23 void checkpo int ( ) ;

24 void space ( i n t n) ;

25 long double poincaremap ( long double ∗x ) ;
26

27 // Four i e r th ing s

28 i n t Ngrid=64;

29 f f tw l comp l ex ∗ in , ∗out ;
30 f f tw l p l a n planback , p l an f o r ;

31 void c r e a t e f o u r i e r ( ) ;

32 void d e s t r o y f o u r i e r ( ) ;

33 void f o rwa rd f ou r i e r ( long double complex ∗∗IN , long double complex ∗∗OUT) ;

34 void backwardfour i e r ( long double complex ∗∗IN , long double complex ∗∗OUT) ;

35 void d e r i v a t e f o u r i e r ( long double complex ∗∗K , long double complex ∗∗DK ) ;

36 i n t ind ( i n t i ) ;

37

38 void qNewton K step ( long double ∗ lambda , long double ∗omega , long double complex ∗∗K,

long double complex ∗∗N, long double complex ∗∗DK, long double complex ∗∗EK) ;

38



APPENDIX A. THE PROGRAM 39

39 void qNewton N step ( long double ∗ lambda , long double ∗omega , long double complex ∗∗K,

long double complex ∗∗N, long double complex ∗∗DK, long double complex ∗∗DN, long

double complex ∗∗EN) ;

40

41 i n t main ( void ) {
42 l o g 1 0 t o l=log10 ( t o l ) ;

43 l o g 1 0 r t o l=log10 ( r t o l ) ;

44

45 space (2 ) ;

46 p r i n t f ( ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n” ) ;
47 p r i n t f ( ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n” ) ;
48 p r i n t f ( ”−−−−−−−−−−−−−−−−−−−− I N A P I K M O D E L −−−−−−−−−−−−−−−−−−−−\n” ) ;
49 p r i n t f ( ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n” ) ;
50 p r i n t f ( ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n” ) ;
51 space (2 ) ;

52

53

54 p r i n t f ( ”Looking f o r K and T\n” ) ;
55 p r i n t f ( ”−−−−−−−−−−−−−−−−−−−−−−−−\n” ) ;
56 space (1 ) ;

57

58 long double t=0, h=0;

59 long double x [ 2 ] ;

60 long double aux ;

61 i n t order =20;

62 i n t f i n i s h e d ;

63 // I n i t i a l va lue s are g iven on the Poincare s e c t i o n f o r V=−40
64 x [0]=−40;

65 x [ 1 ]=0 . 2 ;

66

67 // The Poincare map i s app l i ed un t i l the f i x ed po int i s found up to a t o l e r an c e t o l

68 do{
69 aux=x [ 1 ] ;

70 t=poincaremap (x ) ;

71 }whi le ( f abs (x [1]−aux )>t o l ) ;

72 long double T=t ;

73 long double omega=1./T;

74 long double orbp [ 2 ] ;

75 orbp [0 ]=x [ 0 ] ;

76 orbp [1 ]=x [ 1 ] ;

77

78 p r i n t f ( ”T=%20.12Lf\n” , T) ;

79 space (1 ) ;

80

81 // Find Four i e r c o e f f i c i e n t s us ing f f tw l 3

82 t=0;

83 long double complex ∗K[ 2 ] , ∗K [ 2 ] ;

84 long double t a i l [ 2 ] ;

85 t a i l [0 ]=−1. ;

86

87 // We s t a r t with Ngrid=64. After doing the FFT, the t a i l i s checked in order to

determine i f a l a r g e r number o f samples i s needed .

88 do{
89 i f ( t a i l [ 0 ] != −1 . ) {
90 Ngrid ∗=2;

91 d e s t r o y f o u r i e r ( ) ;

92 f r e e (K[ 0 ] ) ;

93 f r e e (K[ 1 ] ) ;



APPENDIX A. THE PROGRAM 40

94 f r e e (K [ 0 ] ) ;

95 f r e e (K [ 1 ] ) ;

96 }
97 c r e a t e f o u r i e r ( ) ;

98 // In K we w i l l s t o r e the samples values , in K the Four i e r c o e f f i c i e n t s o f K(\
theta )

99 K[0 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

100 K[1 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

101 K [0 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

102 K [1 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

103

104 // We i n t e g r a t e the f l u x at i n t e r v a l s o f T/Ngrid in order to obta in the va lue s o f

K(\ theta )

105 t=0;

106 long double tau=0;

107 f o r ( i n t i =0; i<Ngrid ; i++){
108 K[ 0 ] [ i ]=x [ 0 ] ;

109 K[ 1 ] [ i ]=x [ 1 ] ;

110 tau+=T/( long double ) Ngrid ;

111 do{
112 f i n i s h e d=t a y l o r s t e p i n a p i k (&t , x , 1 , 1 , l og10 to l , l o g10 r t o l , &tau , &h , &

order ) ;

113 }whi le ( f i n i s h e d !=1) ;

114 }
115

116 f o rwa rd f ou r i e r (K, K ) ;

117

118 // The norm o f the t a i l i s found . Use o f the func t i on ind f o r a r e index ing i s

made s i n c e we are working Four i e r c o e f f i c i e n t s

119 f o r ( i n t i =0; i <2; i++){
120 t a i l [ i ]= cabs (K [ i ] [ ind(−Ngrid /2) ] ) ;

121 f o r ( i n t j=Ngrid /4 ; j<Ngrid /2 ; j++){
122 t a i l [ i ]+=cabs (K [ i ] [ ind ( j ) ] )+cabs (K [ i ] [ ind(− j ) ] ) ;

123 }
124 }
125 // An average o f the t a i l i s computed

126 t a i l [0 ]= t a i l [ 0 ] / ( long double ) ( Ngrid /2) ;

127 t a i l [1 ]= t a i l [ 1 ] / ( long double ) ( Ngrid /2) ;

128 }whi le ( t a i l [0]> t o l | | t a i l [1]> t o l ) ;

129 p r i n t f ( ”Ngrid=%d\n” , Ngrid ) ;

130

131 // We s t o r e in DK the c o e f f i c i e n t s o f the d e r i v a t i v e o f K(\ theta ) and in DK the

va lue s o f t h i s d e r i v a t i v e eva luated at each \ theta
132 long double complex ∗DK[ 2 ] , ∗DK [ 2 ] ;

133 DK[0 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

134 DK[1 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

135 DK [0 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

136 DK [1 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

137

138 d e r i v a t e f o u r i e r (K ,DK ) ;

139 backwardfour i e r (DK ,DK) ;

140

141 // Find the e r r o r func t i on eva lua t ing the f un c t i o na l equat ion

142 long double complex ∗EK[ 2 ] ;

143 EK[0 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

144 EK[1 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

145

146 long double norm ;
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147 long double maxEK;

148 maxEK=0;

149

150 f o r ( i n t j =0; j<Ngrid ; j++){
151 x [0 ]=K[ 0 ] [ j ] ;

152 x [1 ]=K[ 1 ] [ j ] ;

153 long double f [ 2 ] ;

154 f i e l d (x , f ) ;

155 EK[ 0 ] [ j ]= f [0]−DK[ 0 ] [ j ]∗ omega ;

156 EK[ 1 ] [ j ]= f [1]−DK[ 1 ] [ j ]∗ omega ;

157 norm=hypot l (EK[ 0 ] [ j ] ,EK[ 1 ] [ j ] ) ;

158 i f (norm>maxEK) {
159 maxEK=norm ;

160 }
161 }
162 space (1 ) ;

163 p r i n t f ( ”maxEK=%.2Le\n” , maxEK) ;

164

165 space (2 ) ;

166

167

168 p r i n t f ( ”Looking f o r N and lambda\n” ) ;
169 p r i n t f ( ”−−−−−−−−−−−−−−−−−−−−−−−−\n” ) ;
170 space (1 ) ;

171

172 long double complex ∗N[ 2 ] , ∗N [ 2 ] ;

173 N[0 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

174 N[1 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

175 N [0 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

176 N [1 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

177

178 long double vareqn [ 6 ] ;

179 long double lambda=0;

180 long double taux ;

181 long double vaux [ 2 ] ;

182 long double V [ 2 ] ;

183 long double M[ 2 ] [ 2 ] ;

184

185 // In t e g r a t e backwards v a r i a t i o n a l equat ions toge the r with the f l u x f o r one per iod .

186 vareqn [0 ]=K[ 0 ] [ 0 ] ;

187 vareqn [1 ]=K[ 1 ] [ 0 ] ;

188 vareqn [ 2 ]= 1 . ;

189 vareqn [ 3 ]= 0 . ;

190 vareqn [ 4 ]= 0 . ;

191 vareqn [ 5 ]= 1 . ;

192 t=0;

193 tau=0;

194 f o r ( i n t j =1; j<Ngrid+1; j++){
195 tau−=T/( long double ) Ngrid ;

196 do{
197 f i n i s h e d=t a y l o r s t e p i n a p i k v a r i a t i o n a l (&t , vareqn , −1, 1 , l og10 to l ,

l o g 10 r t o l , &tau , &h , &order ) ;

198 }whi le ( f i n i s h e d !=1) ;

199 // The i n t e g r a t i o n i s performed at i n t e r v a l s o f T/Ngrid and a f t e r each step

we f o r c e the po int to stay in the o rb i t s i n c e we are i n t e g r a t i n g backwards

and the problem i s very unstab le

200 vareqn [0 ]=K[ 0 ] [ Ngrid−j ] ;
201 vareqn [1 ]=K[ 1 ] [ Ngrid−j ] ;
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202 }
203

204 M[ 0 ] [ 0 ]= vareqn [ 2 ] ;

205 M[ 0 ] [ 1 ]= vareqn [ 3 ] ;

206 M[ 1 ] [ 0 ]= vareqn [ 4 ] ;

207 M[ 1 ] [ 1 ]= vareqn [ 5 ] ;

208

209 // Find the e i g enva lu e s and e i g env e c t o r s o f the matrix M, which i s the d i f f e r e n t i a l

o f the f l u x a f t e r one cy c l e has been completed .

210

211 long double det=M[ 0 ] [ 0 ] ∗M[1 ] [ 1 ] −M[ 1 ] [ 0 ] ∗M[ 0 ] [ 1 ] ;

212 long double t r=M[ 0 ] [ 0 ]+M[ 1 ] [ 1 ] ;

213

214 long double e i g v a l 1=t r /2+sq r t ( t r ∗ t r /4−det ) ;

215 long double e i g v a l 2=t r /2− s q r t ( t r ∗ t r /4−det ) ;

216

217 i f ( e i gva l1<e i g va l 2 ) {
218 aux=e i gva l 1 ;

219 e i g va l 1=e i gva l 2 ;

220 e i g va l 2=aux ;

221 }
222

223 // e i g va l 2 must be 1 and e i g va l 1 must be e ˆ{ lambda∗T}
224 p r i n t f ( ” e i g va l 1 =%20.12Lf\n” , e i g va l 1 ) ;

225 p r i n t f ( ” e i g va l 2 =%20.12Lf\n” , e i g va l 2 ) ;

226

227 lambda=−l og ( e i g v a l 1 ) ∗omega ;

228

229 vaux [0 ]=M[ 1 ] [ 0 ] ;

230 vaux [1 ]= e igva l1−M[ 0 ] [ 0 ] ;

231 norm=sq r t ( vaux [ 0 ] ∗ vaux [0 ]+ vaux [ 1 ] ∗ vaux [ 1 ] ) ;

232 vaux [0 ]/=norm ;

233 vaux [1 ]/=norm ;

234

235 p r i n t f ( ”%20.12Lf %20.12Lf\n” , vaux [ 0 ] , vaux [ 1 ] ) ;

236

237 // We s t o r e the s t ab l e vec to r in N( theta=0)

238 N[ 0 ] [ 0 ]= vaux [ 0 ] ;

239 N[ 1 ] [ 0 ]= vaux [ 1 ] ;

240

241 p r i n t f ( ”lambda=%20.12Lf\n” , lambda ) ;

242 space (1 ) ;

243

244

245 // Propagate N(0) backwards under the d i f f e r e n t i a l o f the f l u x to f i nd N( theta )

246 vareqn [0 ]=K[ 0 ] [ 0 ] ;

247 vareqn [1 ]=K[ 1 ] [ 0 ] ;

248 vareqn [ 2 ]= 1 . ;

249 vareqn [ 3 ]= 0 . ;

250 vareqn [ 4 ]= 0 . ;

251 vareqn [ 5 ]= 1 . ;

252 t=0;

253 tau=0;

254 long double maxnorm=1;

255 f o r ( i n t j =1; j<Ngrid ; j++){
256 tau−=T/( long double ) Ngrid ;

257 do{
258 f i n i s h e d=t a y l o r s t e p i n a p i k v a r i a t i o n a l (&t , vareqn , −1, 1 , l og10 to l , l o g 10 r t o l ,
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&tau , &h , &order ) ;

259 }whi le ( f i n i s h e d !=1) ;

260 vareqn [0 ]=K[ 0 ] [ Ngrid−j ] ;
261 vareqn [1 ]=K[ 1 ] [ Ngrid−j ] ;
262

263 M[ 0 ] [ 0 ]= vareqn [ 2 ] ;

264 M[ 0 ] [ 1 ]= vareqn [ 3 ] ;

265 M[ 1 ] [ 0 ]= vareqn [ 4 ] ;

266 M[ 1 ] [ 1 ]= vareqn [ 5 ] ;

267

268 vaux [0 ]=N [ 0 ] [ 0 ] ;

269 vaux [1 ]=N [ 1 ] [ 0 ] ;

270 matr ixvector2 (M, vaux ) ;

271

272 // We apply the d i f f e r e n t i a l o f the f l u x to N(0) to obta in N( theta ) , s i n c e we

know that i s o ch ron s go to i s o ch ron s under the f l u x

273 N [ 0 ] [ Ngrid−j ]=vaux [ 0 ] ∗ exp(−lambda∗ tau ) ;

274 N [ 1 ] [ Ngrid−j ]=vaux [ 1 ] ∗ exp(−lambda∗ tau ) ;

275

276 norm=hypot l (N [ 0 ] [ Ngrid−j ] ,N [ 1 ] [ Ngrid−j ] ) ;

277 i f (norm>maxnorm) {
278 maxnorm=norm ;

279 }
280

281 }
282

283 // Check that with one more s tep we obta in N(0) again

284 tau−=T/( long double ) Ngrid ;

285 do{
286 f i n i s h e d=t a y l o r s t e p i n a p i k v a r i a t i o n a l (&t , vareqn , −1, 1 , l og10 to l , l o g 10 r t o l , &

tau , &h , &order ) ;

287 }whi le ( f i n i s h e d !=1) ;

288

289 M[ 0 ] [ 0 ]= vareqn [ 2 ] ;

290 M[ 0 ] [ 1 ]= vareqn [ 3 ] ;

291 M[ 1 ] [ 0 ]= vareqn [ 4 ] ;

292 M[ 1 ] [ 1 ]= vareqn [ 5 ] ;

293

294 vaux [0 ]=N [ 0 ] [ 0 ] ;

295 vaux [1 ]=N [ 1 ] [ 0 ] ;

296 matr ixvector2 (M, vaux ) ;

297 vaux [0 ]∗=exp(−lambda∗ tau ) ;

298 vaux [1 ]∗=exp(−lambda∗ tau ) ;

299 p r i n t f ( ”%20.12Lf %20.12Lf\n” , c r e a l l (N [ 0 ] [ 0 ] ) , c r e a l l (N [ 1 ] [ 0 ] ) ) ;

300 p r i n t f ( ”%20.12Lf %20.12Lf\n” , vaux [ 0 ] , vaux [ 1 ] ) ;

301

302

303 // Normalise a l l the ve c t o r s N by the maximum norm

304 f o r ( i n t j =0; j<Ngrid ; j++){
305 N [ 0 ] [ j ]/=maxnorm ;

306 N [ 1 ] [ j ]/=maxnorm ;

307 }
308

309

310 f o rwa rd f ou r i e r (N, N ) ;

311

312 // As be f o r e we s t o r e in DN the Four i e r c o e f f i c i e n t s o f the d e r i v a t i v e o f N and in

DN the va lues o f t h i s d e r i v a t i v e at each theta
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313 long double complex ∗DN[ 2 ] , ∗DN [ 2 ] ;

314 DN[0 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

315 DN[1 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

316 DN [0 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

317 DN [1 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

318

319 d e r i v a t e f o u r i e r (N ,DN ) ;

320 backwardfour i e r (DN ,DN) ;

321

322 // Find the e r r o r func t i on eva lua t ing the f un c t i o na l equat ion f o r N and lambda

323 long double complex ∗EN[ 2 ] ;

324 EN[0 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

325 EN[1 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

326

327 long double maxEN;

328 maxEN=0;

329

330 f o r ( i n t j =0; j<Ngrid ; j++){
331 long double df [ 2 ] [ 2 ] ;

332 x [0 ]=K[ 0 ] [ j ] ;

333 x [1 ]=K[ 1 ] [ j ] ;

334 V[0 ]=N[ 0 ] [ j ] ;

335 V[1 ]=N[ 1 ] [ j ] ;

336 d f i e l d (x , df ) ;

337 matr ixvector2 ( df ,V) ;

338 EN[ 0 ] [ j ]=V[0]− lambda∗N[ 0 ] [ j ]−DN[ 0 ] [ j ]∗ omega ;

339 EN[ 1 ] [ j ]=V[1]− lambda∗N[ 1 ] [ j ]−DN[ 1 ] [ j ]∗ omega ;

340 norm=hypot l (EN[ 0 ] [ j ] ,EN [ 1 ] [ j ] ) ;

341 i f (norm>maxEN) {
342 maxEN=norm ;

343 }
344

345 }
346 space (2 ) ;

347 p r i n t f ( ”maxEN=%.2Le\n” , maxEN) ;

348

349 space (2 ) ;

350

351

352 p r i n t f ( ” Re f in ing s o l u t i o n s f o r K, N, omega , lambda\n” ) ;
353 p r i n t f ( ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n” ) ;
354 space (1 ) ;

355

356 i n t d=0;

357 do{
358 // The substep f o r K and omega i s app l i ed

359 qNewton K step(&lambda ,&omega ,K,N,DK,EK) ;

360 // The va lues are r e f r e s h ed

361 T=1./omega ;

362 p r i n t f ( ”%20.12Lf\n” , c r e a l l (K[ 0 ] [ 0 ] ) ) ;

363 f o rwa rd f ou r i e r (K, K ) ;

364 d e r i v a t e f o u r i e r (K ,DK ) ;

365 backwardfour i e r (DK ,DK) ;

366 // The e r r o r func t i on EK i s r e f r e s h ed

367 maxEK=0;

368 f o r ( i n t j =0; j<Ngrid ; j++){
369 x [0 ]=K[ 0 ] [ j ] ;

370 x [1 ]=K[ 1 ] [ j ] ;
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371 long double f [ 2 ] ;

372 f i e l d (x , f ) ;

373 EK[ 0 ] [ j ]= f [0]−DK[ 0 ] [ j ]∗ omega ;

374 EK[ 1 ] [ j ]= f [1]−DK[ 1 ] [ j ]∗ omega ;

375 norm=hypot l (EK[ 0 ] [ j ] ,EK[ 1 ] [ j ] ) ;

376 i f (norm>maxEK) {
377 maxEK=norm ;

378 }
379 }
380 p r i n t f ( ”maxEK=%.2Le\n” , maxEK) ;

381 // The e r r o r s func t i on EN i s r e f r e s h ed to the mid−value
382 f o r ( i n t j =0; j<Ngrid ; j++){
383 long double df [ 2 ] [ 2 ] ;

384 x [0 ]=K[ 0 ] [ j ] ;

385 x [1 ]=K[ 1 ] [ j ] ;

386 V[0 ]=N[ 0 ] [ j ] ;

387 V[1 ]=N[ 1 ] [ j ] ;

388 d f i e l d (x , df ) ;

389 matr ixvector2 ( df ,V) ;

390 EN[ 0 ] [ j ]=V[0]− lambda∗N[ 0 ] [ j ]−DN[ 0 ] [ j ]∗ omega ;

391 EN[ 1 ] [ j ]=V[1]− lambda∗N[ 1 ] [ j ]−DN[ 1 ] [ j ]∗ omega ;

392 }
393 // The substep f o r N and lambda i s app l i ed

394 qNewton N step(&lambda ,&omega ,K,N,DK,DN,EN) ;

395 // The va lue s are r e f r e s h ed

396 p r i n t f ( ”%20.12Lf\n” , lambda ) ;

397 f o rwa rd f ou r i e r (N, N ) ;

398 d e r i v a t e f o u r i e r (N ,DN ) ;

399 backwardfour i e r (DN ,DN) ;

400 // The e r r o r func t i on EN i s r e f r e s h ed

401 maxEN=0;

402 f o r ( i n t j =0; j<Ngrid ; j++){
403 long double df [ 2 ] [ 2 ] ;

404 x [0 ]=K[ 0 ] [ j ] ;

405 x [1 ]=K[ 1 ] [ j ] ;

406 V[0 ]=N[ 0 ] [ j ] ;

407 V[1 ]=N[ 1 ] [ j ] ;

408 d f i e l d (x , df ) ;

409 matr ixvector2 ( df ,V) ;

410 EN[ 0 ] [ j ]=V[0]− lambda∗N[ 0 ] [ j ]−DN[ 0 ] [ j ]∗ omega ;

411 EN[ 1 ] [ j ]=V[1]− lambda∗N[ 1 ] [ j ]−DN[ 1 ] [ j ]∗ omega ;

412 norm=hypot l (EN[ 0 ] [ j ] ,EN [ 1 ] [ j ] ) ;

413 i f (norm>maxEN) {
414 maxEN=norm ;

415 }
416 }
417 p r i n t f ( ”maxEN=%.2Le\n” , maxEN) ;

418 d++;

419 }whi le (d<10) ;

420

421

422

423

424 d e s t r o y f o u r i e r ( ) ;

425 f r e e (K[ 0 ] ) ;

426 f r e e (K[ 1 ] ) ;

427 f r e e (K [ 0 ] ) ;

428 f r e e (K [ 1 ] ) ;
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429 f r e e (DK[ 0 ] ) ;

430 f r e e (DK[ 1 ] ) ;

431 f r e e (DK [ 0 ] ) ;

432 f r e e (DK [ 1 ] ) ;

433 f r e e (EK[ 0 ] ) ;

434 f r e e (EK[ 1 ] ) ;

435

436 f r e e (N[ 0 ] ) ;

437 f r e e (N[ 1 ] ) ;

438 f r e e (N [ 0 ] ) ;

439 f r e e (N [ 1 ] ) ;

440 f r e e (DN[ 0 ] ) ;

441 f r e e (DN[ 1 ] ) ;

442 f r e e (DN [ 0 ] ) ;

443 f r e e (DN [ 1 ] ) ;

444 f r e e (EN[ 0 ] ) ;

445 f r e e (EN[ 1 ] ) ;

446

447 space (2 ) ;

448

449 re turn 0 ;

450 }
451

452

453

454 void checkpo int ( ) {
455 s t a t i c i n t countercheck=1;

456 p r i n t f ( ”THIS IS CHECKPOINT NUMBER %d\n” , countercheck ) ;

457 countercheck++;

458 }
459

460

461

462 void space ( i n t n) {
463 f o r ( i n t i =0; i<n ; i++){
464 p r i n t f ( ”\n” ) ;
465 }
466 }
467

468

469

470 // The f i e l d eva luated at vec to r x and s to r ed in vec to r f

471 void f i e l d ( long double ∗x , long double ∗ f ) {
472 long double min f i=1.+exp(−(x [0]−Vmaxm)/km) ;

473 long double minf=1./ min f i ;

474 long double n i n f i =1.+exp(−(x [0]−Vmaxn) /kn ) ;

475 long double n i n f =1./ n i n f i ;

476 f [ 0 ]=( current−gNa∗minf ∗( x [0]−VNa)−gK∗x [ 1 ] ∗ ( x [0]−VK)−gL∗( x [0]−VL) ) /C;

477 f [1 ]= ninf−x [ 1 ] ;

478 }
479

480

481

482 // The d i f f e r e n t i a l o f the f i e l d i s eva luated at vec to r x and s to r ed in matrix df

483 void d f i e l d ( long double ∗x , long double df [ 2 ] [ 2 ] ) {
484 long double min f i=1.+exp(−(x [0]−Vmaxm)/km) ;

485 long double minf=1./ min f i ;

486 long double n i n f i =1.+exp(−(x [0]−Vmaxn) /kn ) ;
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487 long double n i n f =1./ n i n f i ;

488 long double dminf dV=(minf−minf∗minf ) /km;

489 long double dninf dV=(ninf−n in f ∗ n in f ) /kn ;

490 df [0 ] [ 0 ]=( −gNa∗minf−gNa∗( x [0]−VNa) ∗dminf dV−gK∗x [1]−gL) /C;

491 df [1 ] [ 0 ]=( −gK∗( x [0]−VK) ) /C;

492 df [ 0 ] [ 1 ]= dninf dV ;

493 df [ 1 ] [ 1 ]= −1 . ;

494 }
495

496

497

498 // Computes the r e s u l t o f apply ing M to v and s t o r e s the r e s u l t in v

499 void matr ixvector2 ( long double M[ 2 ] [ 2 ] , long double ∗v ) {
500 long double vaux [ 2 ] ;

501 vaux [0 ]=v [ 0 ] ;

502 vaux [1 ]=v [ 1 ] ;

503 v [0 ]= vaux [ 0 ] ∗M[ 0 ] [ 0 ]+ vaux [ 1 ] ∗M[ 1 ] [ 0 ] ;

504 v [1 ]= vaux [ 0 ] ∗M[ 0 ] [ 1 ]+ vaux [ 1 ] ∗M[ 1 ] [ 1 ] ;

505 }
506

507

508

509 // Appl ies the i nv e r s e o f matrix M to v and s t o r e s the r e s u l t in v

510 void invmatr ixvector2 ( long double M[ 2 ] [ 2 ] , long double ∗v ) {
511 long double det=M[ 0 ] [ 0 ] ∗M[1 ] [ 1 ] −M[ 0 ] [ 1 ] ∗M[ 1 ] [ 0 ] ;

512 long double vaux [ 2 ] ;

513 vaux [0 ]=v [ 0 ] ;

514 vaux [1 ]=v [ 1 ] ;

515 v [0 ]= vaux [ 0 ] ∗M[1 ] [ 1 ] − vaux [ 1 ] ∗M[ 1 ] [ 0 ] ;

516 v[1]=−vaux [ 0 ] ∗M[ 0 ] [ 1 ]+ vaux [ 1 ] ∗M[ 0 ] [ 0 ] ;

517 v [0 ]/= det ;

518 v [1 ]/= det ;

519 }
520

521

522

523 // I f x i s in the Poincare s e c t i o n at V=−40 app l i e s to i t the Poincare map, i f i t i s

not i t l e t s i t evo lve under the f l u x un t i l the Poincare s e c t i o n i s reached anyway

524 long double poincaremap ( long double ∗x ) {
525 long double tau=0;

526 long double h=0;

527 i n t order =20;

528 long double taux ;

529 long double xaux [ 2 ] ;

530

531 // Right s emicyc l e i f needed

532 whi le ( x[0]>=−40.− t o l ) {
533 t a y l o r s t e p i n a p i k (&tau , x , 1 ,1 , l og10 to l , l o g10 r t o l , NULL, &h , &order ) ;

534 }
535

536 // I t approaches the Poincare s e c t i o n and stops with xaux r i g h t be f o r e and x r i gh t

a f t e r

537 do{
538 xaux [0 ]=x [ 0 ] ;

539 xaux [1 ]=x [ 1 ] ;

540 taux=tau ;

541 t a y l o r s t e p i n a p i k (&tau , x , 1 ,1 , l og10 to l , l o g10 r t o l , NULL, &h , &order ) ;

542 }whi le ( x[0]<−40) ;
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543

544 x [0 ]= xaux [ 0 ] ;

545 x [1 ]= xaux [ 1 ] ;

546 tau=taux ;

547

548 // Newton to obta in tau and the re turn po int to the Poincare s e c t i o n .

549 long double de l t a =0;

550 long double t=h ;

551 long double ∗∗a ;

552 do{
553 taux=0;

554 xaux [0 ]=x [ 0 ] ;

555 xaux [1 ]=x [ 1 ] ;

556 t a y l o r s t e p i n a p i k (&taux , xaux , 1 , 0 , l og10 to l , l o g 10 r t o l , NULL, &t , &order ) ;

557 /∗ a=t a y l o r c o e f i c i e n t s i n a p i k ( t , x , order ) g i v e s a two dim array . The rows are

the t ay l o r c o e f f i c i e n t s o f order i o f the s t a t e v a r i a b l e s ∗/
558 /∗ a [ 0 ] [ 0 ] and a [ 1 ] [ 0 ] are x [ 0 ] and x [ 1 ] ∗/
559 /∗ a [ 0 ] [ 1 ] and a [ 1 ] [ 1 ] are the components o f the f i e l d in ( a [ 0 ] [ 0 ] , a [ 1 ] [ 0 ] ) ∗/
560 /∗ a [ ] [ 2 ] g i v e s the second order c o e f f i c i e n t s , which are the d e r i v a t i v e s t imes 2 !

∗/
561 /∗ . . . ∗/
562 a=t a y l o r c o e f f i c i e n t s i n a p i k (0 , xaux , 1 ) ;

563 de l t a=(xaux [0]−(−40.) ) /( a [ 0 ] [ 1 ] ) ;

564 t=t−de l t a ;

565 // Ensure that t i s < dstep ( the l a s t s tep taken f o r which the t ay l o r s tep was

p r e c i s e enough

566 i f ( f abs ( t )>f abs (h) ) {
567 p r i n t f ( ”\ nL i t t l e problem : t>l a s t s tep : t−h=%20.12Le\n\n” , t−h) ;
568 }
569 }whi le ( f abs ( xaux [0]−(−40) )>t o l /100 . ) ;

570 x [0 ]= xaux [ 0 ] ;

571 x [1 ]= xaux [ 1 ] ;

572 tau=tau+t ;

573

574 re turn tau ;

575 }
576

577

578

579 void c r e a t e f o u r i e r ( ) {
580 in=( f f tw l comp l ex ∗) f f tw l ma l l o c ( s i z e o f ( f f tw l comp l ex ) ∗Ngrid ) ;

581 out=( f f tw l comp l ex ∗) f f tw l ma l l o c ( s i z e o f ( f f tw l comp l ex ) ∗Ngrid ) ;

582 p l an f o r=f f tw l p l a n d f t 1 d ( Ngrid , in , out ,FFTWFORWARD,FFTWESTIMATE) ;

583 planback=f f tw l p l a n d f t 1 d ( Ngrid , in , out ,FFTWBACKWARD,FFTWESTIMATE) ;

584 }
585

586

587

588 void d e s t r o y f o u r i e r ( ) {
589 f f tw l d e s t r o y p l a n ( planback ) ;

590 f f tw l d e s t r o y p l a n ( p l an f o r ) ;

591 f f t w l f r e e ( in ) ;

592 f f t w l f r e e ( out ) ;

593 }
594

595

596

597 // Computation o f the forward Four i e r trans form o f the vec to r array IN . The r e s u l t i s
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s to r ed in OUT. Note that the r e s u l t i s d iv ided by Ngrid

598 void f o rwa rd f ou r i e r ( long double complex ∗∗IN , long double complex ∗∗OUT) {
599 i n t i ;

600 f o r ( i =0; i<Ngrid ; i++){
601 in [ i ]=IN [ 0 ] [ i ] ;

602 }
603 f f tw l e x e c u t e ( p l an f o r ) ;

604 f o r ( i =0; i<Ngrid ; i++){
605 OUT[ 0 ] [ i ]=out [ i ] / Ngrid ;

606 }
607

608 f o r ( i =0; i<Ngrid ; i++){
609 in [ i ]=IN [ 1 ] [ i ] ;

610 }
611 f f tw l e x e c u t e ( p l an f o r ) ;

612 f o r ( i =0; i<Ngrid ; i++){
613 OUT[ 1 ] [ i ]=out [ i ] / Ngrid ;

614 }
615 }
616

617

618

619 // Computation o f the backward Four i e r trans form o f the vec to r array IN . The r e s u l t

i s s t o r ed in OUT

620 void backwardfour i e r ( long double complex ∗∗IN , long double complex ∗∗OUT) {
621 i n t i ;

622 f o r ( i =0; i<Ngrid ; i++){
623 in [ i ]=IN [ 0 ] [ i ] ;

624 }
625 f f tw l e x e c u t e ( planback ) ;

626 f o r ( i =0; i<Ngrid ; i++){
627 OUT[ 0 ] [ i ]=out [ i ] ;

628 }
629 f o r ( i =0; i<Ngrid ; i++){
630 in [ i ]=IN [ 1 ] [ i ] ;

631 }
632 f f tw l e x e c u t e ( planback ) ;

633 f o r ( i =0; i<Ngrid ; i++){
634 OUT[ 1 ] [ i ]=out [ i ] ;

635 }
636 }
637

638

639

640 // Der ivat ion o f the func t i on K( theta ) . We have the Four i e r c o e f f i c i e n t s o f t h i s

f unc t i on in K and t h i s func t i on s t o r e s the c o e f f i c i e n t s o f the d e r i v a t i v e in DK .

Note that the Nyquist c o e f f i c i e n t i s s e t to 0 .

641 void d e r i v a t e f o u r i e r ( long double complex ∗∗K , long double complex ∗∗DK ) {
642 DK [ 0 ] [ ind(−Ngrid /2) ]=0.∗K [ 0 ] [ ind(−Ngrid /2) ] ;

643 DK [ 1 ] [ ind(−Ngrid /2) ]=0.∗K [ 1 ] [ ind(−Ngrid /2) ] ;

644 f o r ( i n t j=−Ngrid /2 ; j<Ngrid /2 ; j++){
645 DK [ 0 ] [ ind ( j ) ]=2.∗M PI∗ j ∗ I ∗K [ 0 ] [ ind ( j ) ] ;

646 DK [ 1 ] [ ind ( j ) ]=2.∗M PI∗ j ∗ I ∗K [ 1 ] [ ind ( j ) ] ;

647 }
648 }
649

650

651
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652 // Reindexing . Given an index i between −N/2 and N/2−1 ( Four i e r c o e f f i c i e n t s ) and i t

r e tu rn s the cor re spond ing index f o r the ar rays g iven by the forward Four i e r

trans form by FFTW

653 in t ind ( i n t i ) {
654 i f ( i>=0 && i<Ngrid /2) {
655 re turn i ;

656 } e l s e i f ( i<0 && i>−Ngrid/2−1){
657 re turn i+Ngrid ;

658 } e l s e {
659 p r i n t f ( ”The index i s out o f the boundary\n” ) ;
660 e x i t (−1) ;
661 }
662 }
663

664

665

666 // quasiNewton substep f o r K and omega

667 void qNewton K step ( long double ∗ lambda , long double ∗omega , long double complex ∗∗K,

long double complex ∗∗N, long double complex ∗∗DK, long double complex ∗∗EK) {
668 long double vaux [ 2 ] ;

669 long double M[ 2 ] [ 2 ] ;

670 long double complex ∗ frame [ 2 ] [ 2 ] ;

671 frame [ 0 ] [ 0 ] = ( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

672 frame [ 0 ] [ 1 ] = ( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

673 frame [ 1 ] [ 0 ] = ( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

674 frame [ 1 ] [ 1 ] = ( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

675 long double complex ∗EKframe [ 2 ] ;

676 EKframe [0 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

677 EKframe [1 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

678 long double complex ∗EKframe [ 2 ] ;

679 EKframe [0 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

680 EKframe [1 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

681 long double complex ∗DeltaKframe [ 2 ] ;

682 DeltaKframe [0 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

683 DeltaKframe [1 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

684 long double complex ∗DeltaKframe [ 2 ] ;

685 DeltaKframe [0 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid )

;

686 DeltaKframe [1 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid )

;

687

688 long double deltaomega ;

689 long double complex ∗DeltaK [ 2 ] ;

690 DeltaK [0 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

691 DeltaK [1 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

692

693

694

695

696 f o r ( i n t j =0; j<Ngrid ; j++){
697

698 // Store the frame P f o r each value o f theta . P=(K ’ |N)

699 frame [ 0 ] [ 0 ] [ j ]=DK[ 0 ] [ j ] ;

700 frame [ 0 ] [ 1 ] [ j ]=DK[ 1 ] [ j ] ;

701 frame [ 1 ] [ 0 ] [ j ]=N [ 0 ] [ j ] ;

702 frame [ 1 ] [ 1 ] [ j ]=N [ 1 ] [ j ] ;

703 M[ 0 ] [ 0 ]= frame [ 0 ] [ 0 ] [ j ] ;

704 M[ 0 ] [ 1 ]= frame [ 0 ] [ 1 ] [ j ] ;
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705 M[ 1 ] [ 0 ]= frame [ 1 ] [ 0 ] [ j ] ;

706 M[ 1 ] [ 1 ]= frame [ 1 ] [ 1 ] [ j ] ;

707

708 vaux [0 ]=EK[ 0 ] [ j ] ;

709 vaux [1 ]=EK[ 1 ] [ j ] ;

710 // Apply P(−1) to the e r r o r func t i on in order to f i nd the e r r o r in the frame .

Index 0 corresponds to the c o r r e c t i o n in the tangent d i r e c t i on , whi l e

index 1 corresponds to the c o r r e c t i o n in the d i r e c t i o n o f the s t ab l e

vec to r

711 invmatr ixvector2 (M, vaux ) ;

712 EKframe [ 0 ] [ j ]=vaux [ 0 ] ;

713 EKframe [ 1 ] [ j ]=vaux [ 1 ] ;

714 }
715

716 // Four i e r c o e f f i c i e n t s o f the e r r o r in the frame

717 f o rwa rd f ou r i e r (EKframe , EKframe ) ;

718

719 // Find de l t a omega and the c o r r e c t i o n s o f the Four i e r c o e f f i c i e n t s in the frame

accord ing to the formulas

720 deltaomega=EKframe [ 0 ] [ ind (0 ) ] ;

721 f o r ( i n t j=−Ngrid /2 ; j<Ngrid /2 ; j++){
722 i f ( j !=0){
723 DeltaKframe [ 0 ] [ ind ( j ) ]=EKframe [ 0 ] [ ind ( j ) ] / ( 2∗M PI∗ I ∗ j ∗(∗omega ) ) ;

724 } e l s e {
725 DeltaKframe [ 0 ] [ ind ( j ) ]=0;

726 }
727 DeltaKframe [ 1 ] [ ind ( j ) ]=EKframe [ 1 ] [ ind ( j ) ] / ( 2∗M PI∗ I ∗ j ∗(∗omega )−(∗lambda ) ) ;

728 }
729

730 // Obtain the c o r r e c t i o n in the frame at each theta from the c o r r e c t i o n o f the

Four i e r c o e f f i c i e n t s v ia an i nv e r s e Four i e r trans form

731 backwardfour i e r ( DeltaKframe , DeltaKframe ) ;

732

733 f o r ( i n t j =0; j<Ngrid ; j++){
734 M[ 0 ] [ 0 ]= frame [ 0 ] [ 0 ] [ j ] ;

735 M[ 0 ] [ 1 ]= frame [ 0 ] [ 1 ] [ j ] ;

736 M[ 1 ] [ 0 ]= frame [ 1 ] [ 0 ] [ j ] ;

737 M[ 1 ] [ 1 ]= frame [ 1 ] [ 1 ] [ j ] ;

738 vaux [0 ]=DeltaKframe [ 0 ] [ j ] ;

739 vaux [1 ]=DeltaKframe [ 1 ] [ j ] ;

740 // Go back from the frame to the o r i g i n a l coo rd ina te system

741 matr ixvector2 (M, vaux ) ;

742 DeltaK [ 0 ] [ j ]=vaux [ 0 ] ;

743 DeltaK [ 1 ] [ j ]=vaux [ 1 ] ;

744 }
745

746 // Refresh va lue s f o r K, omega

747 f o r ( i n t j =0; j<Ngrid ; j++){
748 K[ 0 ] [ j ]+=DeltaK [ 0 ] [ j ] ;

749 K[ 1 ] [ j ]+=DeltaK [ 1 ] [ j ] ;

750 }
751 (∗omega )+=deltaomega ;

752

753

754 f r e e ( frame [ 0 ] [ 0 ] ) ;

755 f r e e ( frame [ 0 ] [ 1 ] ) ;

756 f r e e ( frame [ 1 ] [ 0 ] ) ;

757 f r e e ( frame [ 1 ] [ 1 ] ) ;
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758 f r e e (EKframe [ 0 ] ) ;

759 f r e e (EKframe [ 1 ] ) ;

760 f r e e (EKframe [ 0 ] ) ;

761 f r e e (EKframe [ 1 ] ) ;

762 f r e e ( DeltaKframe [ 0 ] ) ;

763 f r e e ( DeltaKframe [ 1 ] ) ;

764 f r e e ( DeltaKframe [ 0 ] ) ;

765 f r e e ( DeltaKframe [ 1 ] ) ;

766

767 f r e e (DeltaK [ 0 ] ) ;

768 f r e e (DeltaK [ 1 ] ) ;

769 }
770

771

772

773 // quasiNewton substep f o r N and lambda ( s im i l a r as be f o r e )

774 void qNewton N step ( long double ∗ lambda , long double ∗omega , long double complex ∗∗K,

long double complex ∗∗N, long double complex ∗∗DK, long double complex ∗∗DN, long

double complex ∗∗EN) {
775 long double vaux [ 2 ] ;

776 long double M[ 2 ] [ 2 ] ;

777 long double complex ∗ frame [ 2 ] [ 2 ] ;

778 frame [ 0 ] [ 0 ] = ( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

779 frame [ 0 ] [ 1 ] = ( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

780 frame [ 1 ] [ 0 ] = ( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

781 frame [ 1 ] [ 1 ] = ( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

782 long double complex ∗ENframe [ 2 ] ;

783 ENframe [0 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

784 ENframe [1 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

785 long double complex ∗ENframe [ 2 ] ;

786 ENframe [0 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

787 ENframe [1 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

788 long double complex ∗DeltaNframe [ 2 ] ;

789 DeltaNframe [0 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

790 DeltaNframe [1 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

791 long double complex ∗DeltaNframe [ 2 ] ;

792 DeltaNframe [0 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid )

;

793 DeltaNframe [1 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid )

;

794

795 long double deltalambda ;

796 long double complex ∗DeltaN [ 2 ] ;

797 DeltaN [0 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

798 DeltaN [1 ]=( long double complex ∗) mal loc ( s i z e o f ( long double complex ) ∗Ngrid ) ;

799

800

801 f o r ( i n t j =0; j<Ngrid ; j++){
802

803 frame [ 0 ] [ 0 ] [ j ]=DK[ 0 ] [ j ] ;

804 frame [ 0 ] [ 1 ] [ j ]=DK[ 1 ] [ j ] ;

805 frame [ 1 ] [ 0 ] [ j ]=N [ 0 ] [ j ] ;

806 frame [ 1 ] [ 1 ] [ j ]=N [ 1 ] [ j ] ;

807 M[ 0 ] [ 0 ]= frame [ 0 ] [ 0 ] [ j ] ;

808 M[ 0 ] [ 1 ]= frame [ 0 ] [ 1 ] [ j ] ;

809 M[ 1 ] [ 0 ]= frame [ 1 ] [ 0 ] [ j ] ;

810 M[ 1 ] [ 1 ]= frame [ 1 ] [ 1 ] [ j ] ;

811
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812 vaux [0 ]=EN[ 0 ] [ j ] ;

813 vaux [1 ]=EN[ 1 ] [ j ] ;

814 invmatr ixvector2 (M, vaux ) ;

815 ENframe [ 0 ] [ j ]=vaux [ 0 ] ;

816 ENframe [ 1 ] [ j ]=vaux [ 1 ] ;

817 }
818

819 f o rwa rd f ou r i e r (ENframe , ENframe ) ;

820

821

822 f o r ( i n t j=−Ngrid /2 ; j<Ngrid /2 ; j++){
823 DeltaNframe [ 0 ] [ ind ( j ) ]=ENframe [ 0 ] [ ind ( j ) ] / ( ( ∗ lambda )+2∗M PI∗ I ∗ j ∗(∗omega ) ) ;

824 i f ( j !=0){
825 DeltaNframe [ 1 ] [ ind ( j ) ]=ENframe [ 1 ] [ ind ( j ) ] / ( 2∗M PI∗ I ∗ j ∗(∗omega ) ) ;

826 } e l s e {
827 deltalambda=ENframe [ 1 ] [ ind (0 ) ] ;

828 DeltaNframe [ 1 ] [ ind ( j ) ]=0 . ;

829 }
830 }
831

832 backwardfour i e r ( DeltaNframe , DeltaNframe ) ;

833

834 f o r ( i n t j =0; j<Ngrid ; j++){
835 M[ 0 ] [ 0 ]= frame [ 0 ] [ 0 ] [ j ] ;

836 M[ 0 ] [ 1 ]= frame [ 0 ] [ 1 ] [ j ] ;

837 M[ 1 ] [ 0 ]= frame [ 1 ] [ 0 ] [ j ] ;

838 M[ 1 ] [ 1 ]= frame [ 1 ] [ 1 ] [ j ] ;

839 vaux [0 ]=DeltaNframe [ 0 ] [ j ] ;

840 vaux [1 ]=DeltaNframe [ 1 ] [ j ] ;

841 matr ixvector2 (M, vaux ) ;

842 DeltaN [ 0 ] [ j ]=vaux [ 0 ] ;

843 DeltaN [ 1 ] [ j ]=vaux [ 1 ] ;

844 }
845

846 // Refresh va lue s f o r N, lambda

847 f o r ( i n t j =0; j<Ngrid ; j++){
848 N [ 0 ] [ j ]+=DeltaN [ 0 ] [ j ] ;

849 N [ 1 ] [ j ]+=DeltaN [ 1 ] [ j ] ;

850 }
851 (∗ lambda )+=deltalambda ;

852

853

854 f r e e ( frame [ 0 ] [ 0 ] ) ;

855 f r e e ( frame [ 0 ] [ 1 ] ) ;

856 f r e e ( frame [ 1 ] [ 0 ] ) ;

857 f r e e ( frame [ 1 ] [ 1 ] ) ;

858 f r e e (ENframe [ 0 ] ) ;

859 f r e e (ENframe [ 1 ] ) ;

860 f r e e ( ENframe [ 0 ] ) ;

861 f r e e ( ENframe [ 1 ] ) ;

862 f r e e ( DeltaNframe [ 0 ] ) ;

863 f r e e ( DeltaNframe [ 1 ] ) ;

864 f r e e ( DeltaNframe [ 0 ] ) ;

865 f r e e ( DeltaNframe [ 1 ] ) ;

866

867 f r e e (DeltaN [ 0 ] ) ;

868 f r e e (DeltaN [ 1 ] ) ;

869 }
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