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1.1 Biomolecules: Proteins 

Biomolecules are produced by living organisms and include 

macromolecules such as carbohydrates, (Queneau, Rauter et al. 2014) proteins 

(Brocchieri and Karlin 2005; Zhang 2008), lipids (Fahy, Subramaniam et al. 

2009), and nucleic acids (Bloomfield, Crothers et al. 2000). Bacteria, algae, 

plants, and animals produce similar sets of macromolecules and these are 

responsible for maintaining life. Of these biomolecules, proteins have 

essential roles in most cellular functions. Proteins mediate these functions via 

direct or indirect interactions with: 1) different proteins (e.g., protein-protein 

interactions), 2) small molecules (e.g., protein-ligand interactions), and 3) 

ribonucleic acid polymers (e.g., protein-DNA/RNA interactions).  

Four levels of protein structure are commonly defined (see Figure 1). 

Primary structure refers to all of covalent bonds linking amino acid residues in 

a polypeptide chain (Brocchieri and Karlin 2005). The most important 

element of primary structure is the sequence of amino acid residues. 

Secondary structure states to particularly stable arrangements of amino acid 

residues giving rise to repeated structural patterns (Pauling, Corey et al. 

1951). Tertiary structure describes all aspects of the three-dimensional folding 

of a polypeptide. When a protein has two or more polypeptide subunits non-

covalently bonded, their arrangement in space is referred to as quaternary 

structure.  
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Figure 1. Protein structure, from primary to quaternary structure. Figure from 

(www.wikipedia.org). 

Predominant functions mediated by proteins include detection of 

signals induced by the binding of small molecules (Alberts 1989), 

conformational changes to act as molecular motors, enzymatic reactions that 

accelerate vital chemical processes, regulation of molecules whose binding to 

other proteins inhibits or activates their function, signalling via chemically 

modified peptides or proteins, and the transport of molecules through cellular 

membranes via selective channels (Voet and Voet 2010).  

Given the importance, complexity, and range of functions that proteins 

mediate, databases have been established which contain protein structures; 

these databases contain a large number of protein-ligand interactions. Among 

them the Protein Data Bank (PDB) is probably the more important one, whose 

significance is continuously being enhanced with the increasing number of 

structures that register every year.  

1.2 Proteins targets for drug action 

In general, drugs act by binding particular targets (Imming, Sinning et 

al. 2006). When drugs are designed to target proteins, often they modify the 

endogenous function of a protein upon binding (Gohlke and Klebe 2002). For 

example, when the target is an enzyme, drugs can act as inhibitors to block the 

binding site for the natural substrate. Drugs can also act in an allosteric 

manner and bind a protein outside of its active site. In this manner, a drug can 

disturb the conformation of a binding site to modify the affinity of an enzyme 

for a particular substrate. In other cases, drugs are agonists which bind in the 

natural ligand site in an enzyme, thereby inducing its activity (Berg, 

Tymoczko et al. 2010).  

Ligand-binding sites are often only a slight part of a protein’s surface. 

Mutations may change the binding site and affect the affinity or specificity for 

ligands with little effect on the whole structure change. 

Protein-drugs complexes have been defined by the complementarity of 

shape referred as “lock and key” model (protein called as a lock and the 

ligand called as key) (Fischer 1894). On top of this complementarity shape, 

there are some specific interactions, based on the chemical nature of the 

ligand and receptor. Complementarity has been found to be a key factor in the 

formation of stable complexes, and extensive experimental and computational 
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efforts have been undertaken to predict which ligands will bind with high 

affinity to a particular protein (Tsai, Norel et al. 2001).  

With few exceptions, drug targets have included receptors, enzymes, 

carrier proteins, and ion channels (Imming, Sinning et al. 2006). However, 

while a single drug or class of drugs often only binds a specific set of targets, 

their actions are not exclusive to their intended targets. In addition, the dose of 

a drug can affect its target recognition, thereby providing an opportunity for 

unintended side effects.  

A ligand/drugs bind to the target as inhibitors in different ways 

including reversible (Segel 1987) and irreversible (Adam, Cravatt et al.) 

inhibitions.  

Reversible inhibition involves the binding and dissociation of an 

inhibitor. The affinity of the inhibitor affects the on/off rate that is observed. 

This inhibition is divided to different group involving, competitive, 

uncompetitive, and non-competitive inhibitors. 

Competitive inhibitors bind active sites of targets, thereby decreasing 

the binding of other substrates or ligands to the target. Moreover, several 

inhibitors are designed to mimic an intermediate structure of an enzyme-

catalyzed reaction, the binding affinity of the inhibitor may be better than that 

of the substrate since it provides additional stability for the enzyme to reach a 

transition state conformation.  

Uncompetitive inhibitors bind to an enzyme-ligand complex, in a 

different area of the active site, in order to prevent the enzyme from reacting 

with its ligand and forming a product. Alternatively, noncompetitive 

inhibition involves the binding of a drug to a different region of an enzyme, 

even if the substrate is already bound. Binding of the drug affects the 

conformation of the target (enzyme), including the active site in some cases, 

and this leads to reduced binding efficiency by the substrate. 

Some notable classes of reversible inhibitors include protease inhibitors 

(Hsu, Wang et al. 2006) and protein kinase inhibitors (Bogoyevitch, Barr et al. 

2005). The former strongly bind proteases based on the similarity of their 

structures to that of the natural protease substrates. Moreover, the binding site 

often involves the active site of the targeted protease. Currently, protease 

inhibitors represent a very effective class of antiretroviral drugs which are 

used for the treatment of human immunodeficiency virus (Condra, Schleif et 

al.). These inhibitors compete with the natural substrate for HIV protease and 
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non-covalently bind the active site of these enzymes. For example, darunavir 

(Ghosh, Dawson et al. 2007) was designed on 2006 to form strong 

interactions with the protease enzyme from several strains of HIV, including 

strains with multiple resistance mutations to protein inhibitors (see Figure 2).
 
 

 

Figure 2. HIV-1 protease dimer with darunavir (green sticks) bound in the 

active site. A relevant water molecule and two Asp residues are also displayed 

in ball and stick. 

An additional important class of competitive inhibitors target protein 

kinases in order to compete with substrates at the binding sites where kinase 

interactions are mediated. However, for this type of target, these inhibitors 

have to compete with high concentrations of ATP that are present in each cell. 

The inhibitors are at a disadvantage since the intracellular concentration of a 

drug is typically much lower than the concentration of ATP (Bogoyevitch, 

Barr et al. 2005).  

Alternatively, irreversible inhibitors bind a target via strong covalent 

interactions. The binding site may be within the active site of an enzyme, or at 

a site distant from an active site. As an example, aspirin (Imanishi, Morita et 

al. 2011) is an irreversible inhibitor that was first prepared in 1853 by the 

French chemist, Charles Gerhardt. However, its natural form, salicylic acid, is 

found in plants and has been used for thousands of years. Aspirin has been 

shown to covalently bond a serine residue in the active site of the 

cyclooxygenase enzyme.  

Another consideration regarding drug targeting strategies is the size of 

the drug relative to the size of its target. For example, aspirin, with a 

molecular weight of 180.157 daltons, binds cyclooxygenase-2 (COX-2), an 
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enzyme with a molecular weight of approximately 70 kDa (see Figure 3). 

Thus, a 388-fold difference in size exists between this drug and its target. 

 

 

Figure 3. Size comparison between target, COX-2, and its substrate aspirin. 

We should emphasize that targets can expand largely in size, from ~10 times 

the drug size to more hundreds of thousands. 

 

1.3 Characterization of protein-ligand interactions for drug 

discovery 

Since ancient time the study of drugs and their effects help people to 

know how to treat or manage disease (Nienhaus 2010).  For this reason, 

pharmacology is considered a very important branch of science. 

Pharmacology is the science of drug action on biological system, 

aiming to provide a deep understanding of the effects of drugs. While 

remarkable progress has been made in developing new drugs and in 

understanding how they act, challenges that remain are constant, not only in a 

better understanding of current diseases but in their constant evolution (new 

mutations) and appearance of new ones.  

Protein-drug recognition is crucial, not only to improve our 

understanding of chemistry and biology, but also to advance the treatment of 

disease. This recognition is complex due to the different type of potential 
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interactions between proteins and other molecules (hydrophobic, electrostatic, 

etc.). Moreover, it is complex due to the network of interaction between 

groups of atoms in biomolecules, interaction between molecules and solvent, 

and the scale of each system. Thus, it is not surprising that several 

experimental and computational methods have been established for the 

analysis of the molecular recognition process (Mann, Heywood et al. 1991; 

Przybylski and Glocker 1996; Lamb and Jorgensen 1997; Mohan, Oldfield et 

al. 2006). Nevertheless, each method and techniques has its own weaknesses 

and powers. 

1.4 Experimental characterization of protein-drug interactions 

Let us consider the simple binding reaction,  

P + L ↔ PL, 

in which each protein, P, binds one ligand, L, to form a complex, PL 

(see Figure 4). 

 

 

Figure 4. Diagram view of docking a small molecule to a receptor to produce 

a complex. Figure from (www.wikipedia.org). 

In order to understand such process, several experimental and 

theoretical techniques have been developed. In this section we summarize 

some of the experimental techniques that are mostly used and that our 

experimental partners have employed in our collaborative studies. At the 

structural site, since the solution of angiotensin-converting enzyme and renin 

in the 1980s (Petrillo and Ondetti 1982), three-dimensional structures of 

proteins and their interactions with other proteins and substrates have become 

central for the field of drug discovery. Besides structure, quantifying the 

equilibrium populations, as well as kinetics of association and dissociation, 

are also key concepts in protein–ligand interactions (Nienhaus 2010).  

http://www.wikipedia.org/
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The combination of these approaches has facilitated our understanding 

of the biological roles of proteins, as well as their effects in disease and their 

implications for drug design. 

1.4.1 Structural characterization of proteins by experimental 

techniques 

Studying proteins structures is very important because in almost all 

kind of disease they are targets for different treatments. Therefore methods for 

studying proteins keep developing both in terms of multiple techniques 

applied and in terms of improving approaches within specific techniques.  

There are several experimental techniques to characterize three 

dimensional structures of proteins including, X-ray crystallography (Smyth 

and Martin 2000), NMR (Callaghan 1993), etc. These two methods are briefly 

explained in the following section. 

1.4.1.1   X-ray crystallography 

One of the main techniques used to elucidate the three-dimensional 

structure of large proteins at atomic resolution is x-ray crystallography. The 

first structure was solved in 1914 and it provided an atomic resolution image 

of table salt. In 1958, the structure of sperm whale myoglobin was the first x-

ray of a protein reported (Kendrew, Bodo et al. 1958). Currently, x-ray 

crystallography is the most common method used to identify protein binding 

sites (see Figure 5).  
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Figure 5. Protocol for solving the structure of a protein (or other molecules) 

by X-ray crystallography. Figure from (www.wikipedia.org). 

Figure 6 left panel shows a X-ray diffraction image from crystals from 

the lysozyme protein. The right panel shows the electron density map (blue) 

calculated from the diffracted X-ray intensities. This map is used to locate 

atoms and build a chemical model of the structure (yellow lines). Notice, 

however, that the high level of resolution seen in the right panel is not too 

frequent. 

 

http://www.wikipedia.org/
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Figure 6. Left panel: X-ray diffraction image from lysozyme crystals. Right 

panel: electron density map and final atomic model. Figure from 

(www.sandiego.edu/cas/chemistry). 

Studying protein dynamics in solution is not possible with this method 

(big disadvantage, for example, against NMR techniques—see below). 

Besides, the X-ray technique is based on the connection of the distribution of 

waves with electron density, and therefore, hydrogen atoms are typically not 

catch since they have only one electron, with no enough scattering efficiency. 

Thus, we need another additional method for the detection of hydrogen (e.g. 

neutron diffraction, NMR, modeling solutions, etc.).  

1.4.1.2 Nuclear magnetic resonance (NMR) 

Unlike x-ray crystallography, which requires a crystalline sample, 

NMR uses a small volume of concentrated protein solution to study the 

physical properties of a protein’s conformation in solution. Due to the relative 

ease of preparing samples for NMR analysis, this approach is widely used in 

screening applications, as well as in studies of complex proteins (sees Figure 

7). However, a disadvantage of this technique is that it is not well-suited for 

high molecular mass proteins. Additionally, NMR also has difficulties to 

define the probability of a protein (or parts of it) being in a certain 

conformation, requiring more complex experimental measurements. 

 

Figure 7. A common protocol used to solve the structure of a protein by 

NMR spectroscopy. Figure from (www.sciencearchive.org.au). 
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NMR spectra are extremely sensitive to interactions between chemical 

groups and can be relied upon to change when a complex is formed. 

Consequently, NMR is very widely used in routine screening applications as 

well as investigation of detailed structural features of complexes.  

1.4.2 Measuring protein-ligand affinities 

In addition to the structural characterization that X-ray and NMR 

techniques provide, kinetic and thermodynamic studies are essential for 

measuring affinities and for the general understanding of the various types of 

protein-drug interactions. The following techniques aim to address these 

points. 

1.4.2.1 Surface Plasmon Resonance  

SPR (Pattnaik 2005) has been used to describe different types of 

molecular interactions, including protein-ligand interactions, protein binding 

of DNA, and protein binding of other proteins. In particular, SPR can 

characterize the affinity and/or selectivity of these interactions.  

For SPR assays, a ligand is immobilized on the surface of a sensor chip 

and then is incubated with various concentrations of an analyte (see Figure 8). 

The resulting binding curves are used to calculate association and dissociation 

stages of the interactions that occur in real-time.  

 

Figure 8. Schematic view of the SPR technique. Figure from 

(www.wikipedia.org). 
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Two important disadvantage of SPR method are: 1) difficulties to 

discriminate between specific and non-specific interactions with the sensor 

surface, and 2) SPR is mass sensitive thus, binding of low molecular weight 

compounds is more difficult to detect.  

1.4.2.2 Isothermal titration calorimetry  

Physical properties that affect (or result from) the protein-ligand 

complex formation can be used to determine the features of a reaction 

including binding, thermodynamic, and kinetic characteristics. ITC (Freire, 

Mayorga et al. 1990; Lewis and Murphy 2005) measures the heat generated 

when molecules interact, and this can be used to calculate binding affinity and 

the thermodynamics of binding. Currently, it is the most commonly used 

method for studying the binding of small molecules by larger 

macromolecules, including proteins, DNA, etc. ITC is also used as a 

secondary screening technique following a first round of high throughput 

screening. By obtaining a thermodynamic profile for a complex, optimization 

of small molecule binding can also be achieved (see Figure 9). 

 

Figure 9. Schematic view of an ITC instrument. Figure from 

(www.wikipedia.org). 
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1.5 Disadvantage of experimental techniques 

Now the question is whether these experimental techniques are enough 

to investigate the protein-ligand molecular recognition. 

In many protein-ligand complexes, the complementary combination of 

interactions requires a high degree of dynamics and flexibility (Boehr, 

Nussinov et al. 2009). As mentioned here, there are several experimental 

methods by which one can get information about proteins. Different methods 

are related to different types of information. Even if those methods have had 

an extraordinary influence in protein-ligands/drugs characterization and drug 

development, there is still today no experimental technique capable of giving 

a robust all atom view of the dynamical interactions. 

Most experimental techniques rely on data interpretation and fitting. 

This make difficult in many cases to obtain clear mechanistic information, 

requiring, in most cases extensive mutational studies.   All these effort make it 

time and money consuming. 

To this end, methods that permit the characterization of the protein 

mechanism (its dynamic, etc.) at atomic resolution are extremely valuable 

approaches to design molecules targeting protein-drugs interactions  

(Rosenberg and Goldblum 2006). Theoretical techniques based on all atom 

force field can be used for this purpose, modelling different molecular 

conformations that can be tried by a ligand on a protein, together with the 

dynamics of the processes of transition between them (Weiner, Kollman et al. 

1986; Wang, Donini et al. 2001).  

1.6 Protein dynamics and their effect on molecular interactions 

The conformational space of a protein can be described using an energy 

landscape. In this landscape, different conformations of a protein are 

populated depending on their energies and the energy barriers that exist 

between the different states. These conformational states can be further 

investigated by ligands, which might restrict conformations that a given 

protein is able to achieve. In some cases, certain conformational changes have 

been found to be essential for a protein’s function (Boehr, Nussinov et al. 

2009). 

From such a dynamical analysis, a question raises: do the bound 

conformations (different from the apo one) already exist at some degree in the 

absence of ligands (Monod-Wyman-Changeux, conformational selection 
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theory), or do particular ligands induce the receptor to adopt new 

conformations (Koshland-Nemethy-Filmer induced fit theory) (Changeux and 

Edelstein 2011) Recent advances in experimental and theoretical techniques 

have allowed detailed looking into both scenarios. 

In general, when two molecules bind each other, their interactions 

affect the energy landscape of each molecule. Over the last decade, concepts 

regarding protein-ligand binding mechanisms have expanded to include both a 

‘rigid docking’ model and a ‘flexible induced fit' model. Particular ligands 

induce the receptor to adopt their adequate conformation (induced fit). 

Clearly, it may be possible to design drugs to stabilize an exact conformation 

having the desired biological activity (see Figure 10). 

 

Figure 10. Schematic views of protein dynamics that were observed 

following the binding of an antigen to Immunoglobulin G. Figure from 

(Lehninger Principles of Biochemistry, W. H. Freeman, 2005) 

Protein flexibility might play an important role in the binding process 

during the induced fit procedure (Carlson and McCammon 2000). By using an 

induced fit method and conformational sampling, specific conformational 

changes can be identified for protein-ligand interactions. Moreover, 

understanding the extent of a protein’s flexibility can facilitate the design of 

ligands that induce alternate conformations. 

Computational simulation methods can help in addressing the above 

issues, by obtaining an all atom view of protein dynamics and its possible 

induced fit. In the following chapter we introduced some of them. 
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1.7 Computational methods to investigate protein structures and 

protein-ligand interactions 

Computational chemistry has increasingly gained a more central and 

accepted role in the drug discovery process (Rosenberg and Goldblum 2006). 

Moreover, the field of computational chemistry was recognized with the 

award of the 2013 Nobel Prize in Chemistry to Michael Levitt, Martin 

Karplus, and AriehWarshel “for the development of multiscale models for 

complex chemical systems”, which explore the world of molecules virtually 

using computers.  

In general, computational methods in drug discovery process involve 

the virtual screening (Huang 2007) (pharmacophore plus docking) of 

chemical structure libraries containing hundreds of thousands of compounds 

in order to identify a few drug candidates that exhibit good binding affinity to 

their target.  

In particular, multiple simulation techniques describing, for example, 

pharmacophores (Mason, Good et al. 2001), homology modelling (Schwede, 

Kopp et al. 2003), docking simulations(Kitchen, Decornez et al. 2004), 

molecular mechanics (Bowen and Allinger 2007; Lewars 2010), molecular 

dynamics (MD) (Berendsen 1988; Rapaport 2004), Monte Carlo simulations 

(Rathore and de Pablo 2002; Rubinstein and Kroese 2011), normal modes 

(Case 1994; Alexandrov, Lehnert et al. 2005; Bahar and Rader 2005), etc. 

have facilitated the use of computational methods in drug discovery. Here, we 

describe these selected techniques in more detail. 

1.7.1 Pharmacophores 

A pharmacophore model (Yang 2010) is a method to explain the 

molecular structures  and physical properties which are necessary 

for interaction of a ligand/drug with a specific target to activate or block its 

biological response. General pharmacophore types contain aromatic rings, 

hydrophobic centroids, hydrogen bond (acceptors or donor), cations 

and anions. These pharmacophoric points may be located in the receptor or 

found on the ligand itself. This method facilitates the design of new and more 

potent compounds (see Figure 11). 
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Figure 11. A pharmacophore model of the prodigiosin ligand that binds 

MCL-1. 

Pharmacophore technique has become a very important tool in drug 

discovery. A pharmacophore model can be defined either in a structure-based 

method, by discovering possible interaction between the protein target and 

ligands or in a ligand-based method, by superposing a set of molecules and 

searching common chemical features that are necessary for their bioactivity. 

These methods have successfully been applied in virtual screening, including 

lead optimization, de novo design and multi-target drug design. A variety of 

computational tools for pharmacophore modeling and applications have been 

developed for ligand, receptors or receptor-ligand complex. For example, 

GLIDE (Halgren, Murphy et al. 2004), MOE (Inc. 2013), etc methods. 

1.7.2 Homology modeling 

Homology modeling or comparative modeling, uses an experimentally 

defined protein structure as a template for modeling the three-dimensional 

structure of other proteins that have not been structurally characterized 

[Browne et al., 1969; Greer, 1981, 1991; Blundell et al., 1987]. However, it is 

important to note that proteins with similar sequences can still vary in their 

biological functions. Thus, homology modeling can provide the low-

resolution structures that will contain (hopefully sufficient) information about 

the spatial arrangement of key residues in the protein and guide the design of 

new experiments. For example, using such model structures can considerably 

help the design of site-directed mutagenesis experiments. 
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In general, homology modeling involves the following steps: 1) to find 

a template(s) for modeling, 2) to align the target sequence with the 

template(s), and 3) to build the model(s). Several different procedures have 

been developed to build the model (see Figure 12). The simpler one is to use 

the backbone from the templates and correct for deletions and insertions. 

Conserved residues are copied entirely, for other side-chains only the torsion 

angle between C-alpha and C-beta is copied. Finally new side-chains are 

added and the structure is optimized. More sophisticated algorithms, however, 

also exist, using multiple template alignment and experimentally determined 

distance maps. Most used homology modelling software (and free servers) 

include: Modeller (Eswar, Webb et al. 2002), SwissPDB (Schwede, Kopp et 

al. 2003), I-tasser (Mitra, Shultis et al. 2013), Phyre or ROBETTA (Kim, 

Chivian et al. 2004).  

 

Figure 12. Common steps for simple in silico homology modeling. 

1.7.3 Molecular docking 

Molecular docking is a method by which the binding of a small 

molecule to a protein structure is predicted based on complementarity with 

respect to structure, charge, and hydrophobicity considerations (Brooijmans 

and Kuntz 2003; Kitchen, Decornez et al. 2004). To predict the affinity of 

various compounds, binding energies are estimated to identify the best 

candidates (see Figure 13). Although this method is far from being perfect, 

http://zhanglab.ccmb.med.umich.edu/I-TASSER/
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often missing an accurate estimation of binding energies, is one the most 

common programs used in drug design and lead optimization. 

 

 

Figure 13.  Ligand docking to the active site of the MCL-1 protein. 

 

Docking methods are mainly based on two different steps. First a 

search algorithm is implemented in order to identify all possible 

conformations where the ligand candidates interact with the receptor. Multiple 

search algorithms have been implemented, and almost every month we can 

find a new docking method or variation of existing ones. Most docking 

methods perform this search on a grid, previously built on the receptor. This 

grid describes geometrical characteristics together with biophysical 

descriptors: polarity, hydrophobicity, etc (Halperin, Ma et al. 2002). Search 

algorithms on these grids are then performed using stochastic techniques, 

genetic algorithms, etc. The second step includes the scoring of these 

configurations in order to discriminate potential binding modes. Scoring is 

determined using a mathematical function (scoring function) which calculates 

the energy of the interactions between the protein and the ligand.  
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There are different types of docking techniques. One type is rigid 

docking where molecules are defined as rigid items, and their form does not 

change with docking. Another model uses flexible docking. In this method, 

(one or more of the) molecules are allowed to be flexible. Most common 

approaches use rigid receptor but flexible ligands. However, flexibility in the 

receptor, at the level of side chains, is more and more implemented in docking 

techniques (Lengauer and Rarey 1996; Brooijmans and Kuntz 2003). 

However, while flexibility of molecules is critical in drug discovery, it 

remains a challenge for estimating the binding energies involved, making 

more difficult to score the different poses. 

Docking methods that are commonly used by academic and industry 

laboratories include Glide (Halgren, Murphy et al. 2004), AutoDock (Morris, 

Huey et al. 2009), Gold (Jones, Willett et al. 1995), rDock (Ruiz-Carmona, 

Alvarez-Garcia et al. 2014) and Rosetta (Sircar, Sanni et al. 2011) programs. 

For example, the program Glide, which is commonly used in our studies, 

stands for Grid-based Ligand Docking with Energetics, and it allows a ligand 

to be rapidly docked with a receptor. For this process, Glide has three docking 

options. The fastest one, high throughput virtual screening (HTVS) uses rigid 

receptor and ligands and is capable of handling libraries containing millions 

of compounds. Sampling and scoring of a ligand involves a fraction of a 

second (milliseconds, etc.).The second option introduces ligand flexibility in a 

“standard precision” (SP method), taking approximately few seconds per 

ligand. The third is an extra precision (XP) method which includes extended 

ligand comformational sampling and improved scoring. This last option is 

typically applied to smaller libraries, taking up to 5 minutes per ligand. 

Furthermore, both SP and XP modes can minimize the clustered poses 

according to OPLS-AA non-bonded interaction energies before scoring them. 

 Providing fully flexible molecular docking is computationally 

expensive, especially when the receptor is treated as a fully flexible receptor 

model. A fully flexible receptor model can vary from thousands to millions of 

conformations; a complete flexible conformational analysis on both the ligand 

and the receptor still constitutes a big challenge, which can take a 

considerable amount of time (in particular if using expensive energy 

functions). Therefore, due to its computational expense is commonly applied 

only as a refinement method to few selected compounds.  
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1.7.4 Introduction to Molecular Mechanics  

Molecular simulations are mostly done either through a deterministic 

performance (classical mechanics) (Bowen and Allinger 2007), a stochastic 

process (Monte Carlo methods) (Rubinstein and Kroese 2011) or a 

probabilistic mechanics (quantum mechanics) (Lewars 2010). These methods 

can be used for perturbing geometry from one local minimum to another. 

Brief descriptions of the ideas in the first two methods are given in the 

following sections. 

Atoms within molecule are not static and present significant motion 

including angle bending, bond vibration and dihedral angles.  As a result of 

this motion, and as mentioned several times above, large biomolecules have 

several (thousands) conformations with different energies.  In order to 

distinguish them several different techniques have been developed to estimate 

molecular structure and energetics. When an atomic level of precision is 

desired, these have commonly been divided into two main classes, molecular 

mechanics models and quantum mechanics models. In molecular mechanics 

techniques molecules are made of spherical partial charged atoms connected 

together with spring bonds. Atom positions are then described by several 

geometrical parameters, mainly bonds and angles, which, together with their 

physical descriptors (charge radii) and a force field equation described 

uniquely its energy.  

Quantum mechanics (QM), in the other hand, solves the Schrödinger 

equation obtaining in this way a wave function from which to derive the total 

energy of the system, its electronic distribution and the gradients necessary for 

is motion (see below). Since the exact solution of the Schrodinger equation (in 

systems with more than one electron) is impossible, several approximations 

have been developed. Rigorous approaches can take up to several days to 

obtain the wave function for a small system (up to dozen of atoms). More 

approximate methods can give a solution in few minutes for up to few 

hundred of atoms. Nevertheless its application to a large biological system is 

still out of the reach today -requiring mixed molecular mechanics and 

quantum mechanics methods (QM/MM) (Kollman, Massova et al. 2000; Cho, 

Guallar et al. 2005). In any case, and due to their expense, QM methods are 

mostly used for defining chemical reactions and other electronic processes, 

such as electronic excitation or charge transfer, and not to perform exhaustive 

conformational sampling. 
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Molecular mechanics describes the energy of a molecule as sum of 

contributions from distortions of bond distances, bond and torsion angles 

together with the non-bonded, van der Waals and Coloumbic, interactions 

(Lewars 2010)(see Figure 14). The set of parameters and equations describing 

this terms is known as the force field. Its computation cost is subjected by 

evaluation of non-bonded van der Waals and Coulombic terms, which is set 

by the square of the number of atoms. In comparison with QM methods, the 

overall cost for an energy (or its derivative) takes only a fraction of a second, 

making possible to model the behavior of huge molecular system with 

millions of atoms, such as proteins, DNA, etc. 

 

 

 
Figure 14. The atomic view in molecular mechanics. Figure from 

(http://c125.chem.ucla.edu/NIH/MolMechanics.htm) 

 

 

1.7.5 Force field 

The interaction between particles (atoms) can be described in terms of 

either force (F) or a potential (Fahy, Subramaniam et al.). These are 

equivalent, as the force is the minus derivative of the potential with respect to 

the degrees of freedom. In a simple word, the purpose of the force field is to 

explain the energy and forces between the particles of a system.  

The common equation of the total energy in force field can be written 

as: 

Etotal = Ebonded + Enonbonded 

where,  
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Ebonded = Ebond + Eangle + Edihedral    and  Enonbonded = Eelectrostatic + Evan der Wal                  

(1)                                                                                               

The functional form of the widely used Assisted Model Building with 

Energy Refinement (AMBER) force field (Wang, Wolf et al. 2004) has the 

following expression,  

 

(2) 

 

Where the first term describes the potential for bonded atom pairs, the 

second term define for bonded angles, the third the potential for bonded 

dihedral angles, and the final term the potential for non-bonded atom pairs 

made up of a Lennard-Jones type diffusive interaction and a coulombic term 

(see Figure 15 for illustration).   

The equilibrium values of the bond distances and bond angles, as well 

as the equivalent force constants used in the potential energy function, are 

defined in the force field and are mostly resulting from averaged experimental 

observations (i.e. crystal structures, infra-red spectroscopy…) and quantum 

mechanics calculations. Each different molecule and atom type requires its 

own parameters. Therefore, there are force fields which are parameterized to 

provide an accurate description of different organic elements or may be 

parameterized against a particular type of molecules, such as a ligand, DNA 

or proteins (Cornell, Cieplak et al. 1995; Damm, Frontera et al. 1997). 
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Figure 15. Schematic view of molecular mechanics potential energy.  

Figure from (www.wikipedia.org) 

 

 

There are several molecular mechanics force fields that are commonly 

used, including, the above mentioned AMBER (Wang, Wolf et al. 2004), 

Optimized Potentials for Liquid Simulation (OPLS/OPLSAA) (Jorgensen, 

Maxwell et al. 1996), Chemistry at Harvard Macromolecular Mechanics 

(CHARMM) (Vanommeslaeghe, Hatcher et al. 2010), Gronigen Molecular 

Simulation (GROMOS) (Oostenbrink, Villa et al. 2004) and Merck Molecular 

Force Field (MMFF)(Halgren 1996). 

1.7.6 Molecular dynamics 

MD methods create a series of time-dependent points in a trajectory by 

spreading a set of coordinates and velocities according to the second-law 

equation of Newton (F = ma). Each atom receives an initial velocity and then 

Newton's laws are applied to spread the dynamics of the system through time. 

To this aim, to integrate this equation along time, we use the basic relation   

F= -∂V/∂R, where V is the potential energy (force field, quantum mechanics, 

etc.) and R stands for all the degrees of freedom. Thus, the main 

computational bottleneck is to compute gradients at each time step for each 

degree of freedom (several hundred of thousands in a solvated protein 

system). Moreover, for stability reasons, the time step for integration needs to 

be sufficiently low (on the order of few femtoseconds), requiring significant 

computational resources to reach propagation times relevant to biological 

processes. The method was first published during the 1950s and 1960s by the 

http://www.wikipedia.org/
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original papers of Alder and Wainwright (1957); Gibson, Goland, Milgram, 

and Vineyard (1960); and Rahman (1964).  

Typically, in MD a given temperature will control, through a thermostat 

algorithm, the different velocities and give (to each degree of freedom) a 

certain kinetic energy to overcome energy barriers and populate the different 

minima; more simulation time will produce more exploration. Obviously, for 

this sampling, a force field is required to define the forces and energies 

between elements of the system. This technique assumes the ergodicity 

assumption: any state can be populated if sufficient propagation time is 

achieved (all accessible microstates have the same probability). However, and 

due to computer limitations in reaching sufficient long times of propagation, 

MD simulations often does not provide a complete (exhaustive) sampling due 

to time limitations (certainly this is not an exclusive MD problem but inherent 

to most sapling techniques). Moreover, systems often get trapped in local 

regions of conformational space during a simulation due to the presence of 

high free-energy barriers. Thus, the key problem is to provide sufficient 

conformational sampling within a given time. Accordingly, there have been 

several attempts to improve MD sampling by introducing additional 

approaches such as: metadynamics (Laio and Parrinello 2002), steered MD 

(Shen, Shen et al. 2003), replica exchange (Sugita and Okamoto 1999), 

umbrella sampling (Kumar, Rosenberg et al. 1992), etc. All these techniques 

aim to speed up the sampling by reducing the conformational space or 

speeding transition between states.  

1.7.7 Monte Carlo simulations 

Monte Carlo method (Rathore and de Pablo 2002) is one of the most 

useful computational algorithms which is based on random sampling to 

achieve statistical results. Monte Carlo techniques developed in the last half 

century, and its fundamental idea is to solve the statistic problems repeating 

random sampling to characterize the features of the particles of a system. 

Using this method requires to run the simulations several times to obtain the 

best probability distribution of the object. This method is particularly useful 

for simulating systems with a large number of degrees of freedom. 

As compared to MD simulation, Monte Carlo methods needs less 

computer time to perform each sampling step for the same system, since 

typically they do not need to compute forces (as MD does). Nevertheless, the 

random component of the step involves less probability of sampling important 

regions (unless an efficient sampling technique is used). Lack of time-
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dependent information is also one of the most important limitations in Monte 

Carlo simulation.  

Choosing the step size (and its nature: number of atoms to be modified, 

simultaneity) in Monte Carlo simulations is one of the main difficulties in its 

practical implementation, affecting the search towards local or global 

exploration. Therefore, algorithm may explore some regions more 

exhaustively than others, as shown in Figure 16, which might require system 

specific tuning the parameters.  

 

 

Figure 16. Monte Carlo exploration for sampling of conformation space. 

1.7.7.1 Metropolis Monte Carlo 

The Monte Carlo sampling is almost always used in combination with 

an importance sampling technique. This is true, in particular, for large –lots of 

degrees of freedom- systems where, otherwise, the system will have serious 

difficulties to sample low energy areas. Possibly the most importance 

sampling technique used in biological systems is the metropolis sampling 

algorithm.  

A metropolis Monte Carlo procedure(Binder and Heermann 2010) 

starts by calculating the energy of the initial structure. The technique then 

applies a slight change to the molecular system and calculates the new energy. 

If the movement decreases the energy, then a new structure is automatically 

taken. If the final energy of the system increases, then the new position of the 

structure is accepted with probability e
-∆E/KT, 

where ∆E is the change in 

energy, K is the Boltzmann constant in proper units, and T is the temperature 
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chosen for the calculation. In this way, the outcome of accepted structures will 

follow the desired Boltzmann distribution. 

1.7.8 Normal modes 

Protein dynamics is in constant evolution, changing from one state to 

another state. Nevertheless, this motion is often confined within local minima, 

experiencing small fluctuations. Normal mode analysis (NMA) aims to 

describe the motion in proteins by approximating a harmonic nature to those 

minima and obtaining its second derivatives vectors and frequencies. While 

this, in principle, should apply only to the vicinity of the minima, normal 

modes from atomic force fields, or from other more approximate methods (see 

below) have shown to describe more complex conformational transitions in 

proteins (for example the T to R transition in hemoglobine (Xu, Tobi et al. 

2003; Eyal, Yang et al. 2006)) 

NMA is a method for the analysis of collective motions in biomolecules 

including proteins. Minimization of the conformational potential energy, 

calculation of the “Hessian” matrix, which is the second derivatives of the 

potential energy with respect to the mass-weighted atomic coordinates and the 

diagonalization of the Hessian matrix are three main steps of NMA. Each of 

these three steps can be computationally difficult, depending on the size and 

force field of the molecule.  

In general, simpler force field representations will lead to faster (but 

more approximate) normal modes. In these regards, one of the most popular 

NMA simplifications involves the development of elastic network models 

(GNM, Gaussian network model). In this algorithm the protein “force field” is 

significantly simplified:  atoms are solely connected by a network of elastic 

springs. Moreover in most cases this model is applied only to carbon alpha 

atoms in proteins. There are two main advantages in this method; 1) energy 

minimization is not needed because the distances of all of the elastic 

connections are taken to be at their minimum energy length. 2) The 

diagonalization task is reduced compared with the NMA method because the 

number of force field terms and atoms is reduced (if using only alpha carbon, 

for example, from the total number of atoms to the number of residues). 

The ANM (anisotropic network model) is possibly the most used 

version of GNM, accounting for the three coordinates per atom, thus adding 

directionality. This tool was developed in 2000 (Doruker, Atilgan et al. 2000; 

Atilgan, Durell et al. 2001) for the normal mode analysis of proteins and 
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analysis the motions of molecular systems. As mentioned, proteins are 

represented here as an elastic mass-and-spring network of alpha carbons (see 

Figure 17). 

 

Figure 17. Schematic view of an elastic network. Figure from (Chennubhotla 

et al., 2005). 

From this simplified potential, diagonalization of the second derivatives 

matrix is readily obtained (few seconds in a commodity machine), being able 

to use the resulting (approximate) modes in sampling algorithms. While only 

using the Cα-atoms as nodes might seem an oversimplified approach, Bahar et 

al. (Eyal, Yang et al. 2006) have shown in their seminal work that motion 

inferred from this vectors reproduce to a large degree fluctuation observed in 

crystals (beta factors). Lately, more sophisticated ANM have been developed 

using internal coordinates (Orellana, Rueda et al. 2010) or all heavy atoms. 

1.8 Computational methods and drug discovery process 

Computer simulation models have provided an additional opportunity 

to understand atomic detail of receptor-ligand interactions. Within the last 

twenty years, several in silico methods have been developed and applied to 

the study of biological systems in order to better understand the atomic details 

of molecular interactions between receptors and drugs. These methods, for 

example, 1) help in designing new molecules from a rational protein-ligand 

atomic interaction, 2) shorten the time for screening thousands of compounds,  

and 3) reduce cost by reducing the amount of reagents used (synthetized) for 

studies. In particular, structure-based and ligand-based drug design using 

computational methods and informatics knowledge has made the drug 

discovery process more efficient.  
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Correspondingly, remarkable progress has been made in drug design 

and discovery in many pharmaceutical companies over the past five years, 

reducing the risk of failure in some cases. This is a key point since companies 

invest a significant amount of time and money to bring a new drug to market. 

In silico approaches and in vitro data are used in almost all pharmaceutical 

companies for drug discovery and development, and they are complemented 

by pharmacology studies of toxicity and absorption, distribution, metabolism, 

and excretion (ADME) (Kapetanovic 2008). 

In order to rationally design new or improved inhibitors, an 

understanding of the inhibition mechanisms at an atomic level is very 

valuable. As we mentioned previously, atomic detailed intermolecular 

interactions are difficult to obtain from experimental approaches alone. 

Therefore, computational methods provide an additional source of data.  

Rational optimization of a lead compound may be achieved with 

considerations for chemical modifications that increase the affinity and/or 

specificity of an inhibitor for a target receptor. As mentioned, expanded 

computational simulations techniques, based on all atom force field 

simulations are commonly used to provide mechanistic details on several 

selected poses.  

Moreover, computational techniques describing the protein-ligand 

interaction mechanism at great detail open the door to study the effects on 

drugs delivery and binding upon mutations, a very important field in drug 

discovery. Due to its importance in drug resistance (for example as a 

consequence of viral evolution or high metabolic rate of cancer cells), or in 

personalized medicine, where specific patient mutations might have a large 

influence on which medication to use, it is critical to develop accurate 

protocols for predicting the effects upon protein mutation.  

1.9 Successful application of in silico methods 

There are several examples which demonstrate the successful design of 

inhibitors using in silico methods. These include a kinase inhibitor of the type 

I transforming growth factor beta (TGH β) receptor which was developed 

independently by the companies, Biogen (Singh, Chuaqui et al. 2003) and 

traditional enzyme and cell-based high-throughput screening by Eli Lilly 

(Sawyer, Anderson et al. 2003), using virtual screening. Another example is 

the anti-anxiety, anti-depression 5-HT1A agonist (Becker, Dhanoa et al. 2006). 

Using in silico modeling, this potent and selective compound was designed in 
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less than two years, and required less than six months for lead optimization 

and synthesis. Additional examples of new drugs (hits and leads) that have 

been developed or designed using a combination of screening methods 

include a dopamine D3 receptor agonist (Varady, Wu et al. 2003), various 

antibiotics (Olsen, Jost et al. 2006), c-Src/Abl kinase inhibitors(Manetti, 

Locatelli et al. 2006), a checkpoint-1 kinase inhibitor (Lyne, Kenny et al. 

2004), a PPARγ ligand (Lu, Huang et al. 2006), and a MDM2-p53 inhibitor 

(Lu, Nikolovska-Coleska et al. 2006). 

Additional successful examples of target-based virtual screening are as 

followed; novel, potent and selective CK2 (casein kinase II) inhibitors were 

obtained by screening a subset of the Novartis database using DOCK 

(Vangrevelinghe, Zimmermann et al. 2003). The ATP binding site of a human 

CK2a was inferred via homology modeling (X-ray structure of Zea mays 

CK2a, PDB entry 1DAW). Moreover, Novel BCR-ABL tyrosine kinase 

inhibitors were identified with a related TBVS workflow using DOCK (Peng, 

Huang et al. 2003). 

There are also several successful examples of ligand–based virtual 

screening; when using mibefradil, a known T-type calcium channel blocker 

(IC50 ¼ 1.7 mM) as a query (Schneider, Neidhart et al. 1999), CATS 

(chemically advanced template search) identified one significant hit with an 

IC50 <1 mM, among the top 12 ranked molecules. The same technique, 

CATS, was applied to identify structurally novel glycogen synthase kinase-3 

inhibitors, first by identifying the oxadiazol–pyridyl moiety, a new 

chemotype, then by synthesizing additional analogs. Compounds with 

inhibitory activity below 1 mM were identified. 

Nevertheless, virtual screening and docking methods have limitation 

accuracy. For example, calculating protein-ligand binding affinities (scoring 

functions) has been challenge by the pharmaceutical industry. It has been 

considered that docking methods presently dock 70 – 80% of ligands to the 

targets correctly. Recently, one study proposed that current docking and 

scoring algorithms are not able to identify key interactions and treat them 

appropriately, false positives, an important topic in structure-based virtual 

screening, for example (Kapetanovic 2008). Despite these limitations, 

computational techniques are expected to play a major role in future 

pharmacology, even more when the development of new drugs involves 

significant more research studies. 
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1.9.1 Emerging computational techniques in drug discovery 

Several computational studies, published in the last recent years, have 

introduced promising areas for a more accurate description of the protein-

ligand interaction.  

As mentioned previously QM approaches are more accurate in 

describing energy functions, capable of better characterizing protein-ligand 

interaction. As mentioned, this method has size and time limitations, not being 

possible its application for a large set virtual screening test. Nevertheless, it is 

suitable for refining and better scoring few poses. In this line, we find several 

studies in the recent years demonstrating that a better description of the 

electronic effects of the ligand (and its surrounding active site) helps in 

discriminating binding poses and in obtaining improved correlation with 

experimental binding energies (Cho, Guallar et al. 2005). 

 Improving conformational sampling remains one of the main 

challenges in biological simulation at an atomic detailed level. Recently, 

several hardware and software developments, for example from the Shaw 

research group or from laboratories developing MD simulations on graphical 

processing units (GPU), have shown that accessing microsecond time MD 

simulations is now possible (Young, Bank et al. 2009). Resulting information 

have demonstrated the power and ability of these methods and their successful 

application to drug discovery and molecular recognition studies. For instance, 

scientists at Shaw research group performed a completely blind MD 

simulation of a drug diffusion, active site search and binding, by placing it 

outside of a kinase protein (Dror, Pan et al. 2011). After running the 

simulation for a sufficient period of time to sample all of the predicted 

configurations, the drug was eventually oriented into its binding site in 

excellent agreement with the crystal structure. Such simulations suggest that 

computational methods may further be applied in a near future to calculations 

of protein-drug kinetic binding data, with comparisons made with 

experimentally determined on and off binding rates.  

These computational approaches, however, still represent a significant 

computational cost (out of the reach of a typical lab) when dealing with 

complex (partly buried active sites) systems. In the following sections, we 

will introduce our Monte Carlo approach PELE (Protein Energy Landscape 

Exploration) (Borrelli, Vitalis et al. 2005; Borrelli, Cossins et al. 2010), which 

allows for an unbiased search of the protein − ligand dynamics at an 

accessible computational cost. 
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1.10 The Protein Energy Landscape Exploration (PELE) program  

PELE is a hybrid method combing Monte Carlo sampling with protein 

structure prediction techniques capable of producing rapid and accurate 

protein and the protein-ligand conformational landscape (Borrelli, Vitalis et 

al. 2005). PELE was initially developed to provide quick protein-ligand 

interactions including, biased ligand entrance and exit pathways, induced fit 

docking, and overall protein dynamics, with less computational cost of 

molecular dynamics techniques (Borrelli, Cossins et al. 2010).  

PELE technique is based on two main steps: 

1) PERTURBATION. The procedure begins with calculating the 

energy for the initial structure followed by a perturbation in the system. This 

step can include a ligand (if present) and the protein backbone perturbation.  

Ligand perturbation. If ligands exist, the step begins with the generation 

of a local perturbation on the ligand. The ligand is perturbed through random 

rotations and translations. Moreover, ligand internal degrees of freedom are 

taken into account by building a ligand specific rotamer library. The program 

can treat several ligands. Several filters are applied to prevent any steric 

clashes between backbone of the protein and the ligand.  

Protein perturbation. The perturbation includes also the backbone of 

protein (or the backbone surrounding the ligand). To this aim, all atoms are 

minimized where the alpha carbons are forced to move to a new position by 

means of a harmonic constraint resulting from a (randomly chosen) low 

frequency mode from an ANM approach (see above normal modes section). 

Such a procedure aims to describe the global motion of the protein.  

2) RELAXATION. Relaxation is based on two protein structure 

sampling techniques: side chain prediction and minimization. 

Side chain sampling. Due to the ligand and protein motions, as a result 

of the perturbation step, the side-chain step has been developed to reposition 

residues which underwent a large energy change along the perturbation. For 

this, we typically select several residues around (within a given radii) the 

perturbed ligand. In addition, each side chain energy is computed before and 

after the perturbation. Thus, the user can choose side chains with the largest 

energy increase (top residues) and predict a better side chain position. The 

algorithm proceeds by optimally arranging the selected side chains with a 

rotamer library side-chain optimization at a rotamer resolution of 10° to 30º.  
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Minimization. The last procedure is the minimization step, which 

includes (at least) all residues local to the atoms involved in steps 1 and 2. 

Nevertheless, the user can select any desired region to be included. The 

truncated Newton minimization algorithm uses a multiscale protocol and it 

has the option of including a harmonic constraint in those alpha carbons that 

were modified in the initial ANM perturbation. 

 Figure 18 shows the heuristic process for the landscape exploration 

method. 

 

Figure 18. Two main steps of PELE program. Figure from 

(www.pele.bsc.es/pele.wt). 

After these steps, the system adopts a new conformation that is 

accepted or rejected based on a Metropolis criterion. The energy is described 

with an all-atom OPLS force field with a surface generalized born solvent 

model (a recent update in PELE allows now to use also the AMBER force 

field). All the accepted steps will then generate a stochastic trajectory. The 

combination of protein and ligand perturbations explores efficiently the 

energy landscape, reproducing large conformational changes along ligand 
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migration. These perturbations, associated to random processes, constitute the 

major part of the sampling procedure. As mentioned previously, they are 

maintained along the relaxation (minimization) step, enforcing the stochastic 

nature of the sampling and the maintenance of (an approximation to) detailed 

balance. 

1.10.1 Parallel implementation and spawning 

Optimally spawned functions are placed to speed up sampling and 

establish a collective search between different stochastic trajectories running 

on different processor. The procedure is capable of interchanging the 

coordinates between several trajectories by using the MPI communication 

protocol (see Figure 19). If one of the trajectories is significantly further as 

compared to the other trajectories along to the assumed reaction coordinate, 

then the trajectory is neglected and picked up from the position of the leading 

trajectory.  

Spawning criteria provide an affecting sampling of the configurational 

space headed for a particular objective: ligand entrance/exit, protein-ligand 

binding energy optimization, and so forth. 

 

 

Figure 19. Schematic view of spawning criteria in PELE. 
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1.10.2 PELE’s Application 

The algorithm and its application to ligand diffusion, protein-ligand 

interaction and induce fit docking are presented in several papers. Some of 

these studies described here.  

The initial applications revealed the potential of this new technique in 

mapping microsecond-time-scale processes in a highly efficient way. Ligand 

exit pathways are successfully modeled for different systems containing 

ligands of various sizes: carbon monoxide in myoglobin, camphor in 

cytochrome P450cam and palmitic acid in the intestinal fatty-acid-binding 

protein (Borrelli et al, 2005); escape pathways are consistent with 

experimental and theoretical data.  

From this early paper it was clear that PELE needed a better backbone 

and sampling procedure. Therefore, we introduced a new protein perturbation 

step based on anisotropic network model methodologies, capable of providing 

significant backbone motion. These PELE developments have been tested on 

two systems: ubiquitin and T4 lysozyme (T4lyz) which are described in detail 

in the result section (Cossins, Hosseini et al. 2012). 

PELE has recently shown to provide more accurate induced fit results 

than the state of the art in commercial software. Various protein structure 

prediction methods applied as part of an induced fit procedure to predict 

protein-ligand complexes. The best results were obtained with an ANM 

driven minimized Monte Carlo scheme (PELE) to open the active site 

followed by a hierarchical rotamer library based refinement to fine tune the 

details (Borrelli et al, 2010).  

In several studies, the method has shown its potential to describe 

diatomic ligand migration in several globin systems: myoglobin, hemoglobin 

and the mini-hemoglobin from the sea worm Cerebratulus lacteus (Lucas and 

Guallar 2013). The results clearly show that the simulations are specific to the 

system providing a different trend in the entrance pathway, as expected from 

experiments. While Mb presents multiple entrance pathways, populating the 

well-known xenon cavities, in CerHb the ligand enters the protein only by one 

apolar channel. In haemoglobin, a clear different trend is observed for the T 

and R quaternary structures and, furthermore, for the individual different 

chains.  Such detailed information, accessible through the state of the art 

algorithms in PELE, is computationally inexpensive and available to all non-

profit researchers through the BSC web site (httos://pele.bsc.es)  
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Gaining absolute binding free energies from unbiased ligand diffusion 

is an important goal due to its implications in drug discovery. As mentioned, 

several studies have shown the capability to achieve microsecond molecular 

dynamics which, combined with a Markov state model analysis, can provide 

absolute binding free energies.  In a recent study, PELE has shown to provide 

an analogous study through Monte Carlo simulations, instead of MD. The 

results are in good agreement with experimental data and other molecular 

dynamics simulations, indicating that PELE can be a useful technique for fast 

estimates of binding free energies and mechanisms (Takahashi, Gil et al. 

2013). 

1.11 Remaining challenges for computational chemists 

Although computational methods have still not solved most of the 

problems faced by a medicinal chemist, they have provided significant 

benefits for the drug discovery process. They also have great potential for 

further advancing drug discovery and development processes. However, 

additional work is needed to develop computational methods in order to 

(more) accurately predict the affinity of a ligand for a protein. 

Many aspects are currently open fronts in today’s research, for 

example: 1) development of improved force fields (with better description of 

dispersion forces, approximate polarization, torsion…); 2) explicit inclusion 

of water molecules in docking; 3) better techniques to compute entropy 

changes; 4) improving flexible sampling techniques, etc.  

This last point, obtaining better and faster conformational search in 

protein and protein-ligand dynamics, is the main goal of this thesis. By using 

and further developing PELE, together with other simulations techniques, we 

have studied several systems and provided new possibilities when mapping 

the dynamics of complex protein-ligand systems. 
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2 Objectives 
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Understanding protein-ligand interactions at a detailed atomic level is 

an important step towards the rational design of novel inhibitors. One of its 

main difficulties is the robust (complete) description of the dynamical aspects 

associated to the protein-ligand interaction, whether conformational selection 

or induced fit processes (and its combination). Obtaining such a detailed 

atomic knowledge is very challenging for experimental techniques; computer 

simulations are ideal tools to accomplish such a task. Against this 

background, this section reveals the main objectives of this PhD thesis and 

points out in which particular publications they have been addressed. 

The main goal of this thesis is to apply and refine novel computational 

techniques aiming at a comprehensive description of the protein and protein-

ligand energy landscape, advancing into the rational design of novel inhibitors 

for selected targets.  

Specific goals summarize in: 

1. Validate our in-house technology PELE (Protein Energy 

Landscape Exploration) on sampling protein-ligand 

interactions. To this end, we aim to optimize protocols to map 

the protein-ligand recognition process for several ligands and 

targets, many of them suggested by our experimental 

collaborators, comparing in silico result with experimental 

affinities.  

2. Besides protocols and software validation, we aim to develop 

specific application on biomedical and biotechnological 

relevant systems. Thus, we aim at adding information for 

contributing to the mechanistic knowledge of important 

protein-ligand interactions. 

3. Following the previous goal, we aim at the implementation of 

the atomic detailed knowledge into the rational design of new 

inhibitors, aiming to enhance specificity and binding strength.  

4. An added value of (accurately) describing protein-ligand 

interactions at a dynamical level, is being able to map 

possible changes in ligand affinities derived from mutations. 

We aim to develop protocols in PELE for the description of 

mutational effects in ligand binding. We tested this part on 

one of the most well studied systems with important 

mutational effects: HIV-1 protease. 
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5. Beside these main objectives based on methods application, 

we aim to add methodological improvements derived from 

the application and validation studies. 
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3.1 Identification of dual mTORC1 and mTORC2 inhibitors in 

melanoma cells: prodigiosin vs. obatoclax 
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Suplementary Material 

Identification of dual mTORC1 and mTORC2 inhibitors in 

melanoma cells: prodigiosin vs. obatoclax 

Espona-Fiedler M, Soto-Cerrato V, Hosseini A, Lizcano JM, Guallar 

V, Quesada R, Gao T, Pérez-Tomás R. 

 

Material and Methods 

1. Cell Viability Assay 

 SK-MEL-28 and SK-MEL-5 were plated in triplicate wells (1.5 x 10
4
 

cells/ ml) in 100 l of growth medium in 96-well plates and allowed to grow 

for 24 h. After 24 h or 48 h of treatment with PG or OBX, 10 M of MTT was 

added to each well for an additional 4 h. DMSO was added as a control. The 

blue MTT formazan precipitate was dissolved in 100 l of isopropanol: 1N 

HCl (24:1). The absorbance at 570 nm was measured on a multiwell plate 

reader. Cell viability was expressed as a percentage of the control, and data 

are shown as the mean value ± S.D. of three independent experiments.  

 

2. Immunoblot Analysis 

 The following antibodies were obtained from Cell Signaling 

Technology (Beverly, MA): anti-LC-3, anti-caspase-9, anti-procaspase-3, 

anti-actin, anti-phospho PDK-1 (Ser241), anti-phospho AKT (Ser473), anti-

phospho Akt (Thr308), anti-phospho PRAS40 (Thr246), anti-phospho 

ERK1/2 (Thr202/Tyr204), anti-phospho p70S6K (Thr389), anti-phospho 4E-

BP1 (Ser65), anti-rictor, anti-raptor, anti-AKT, anti-mTOR, anti-p44/42 MAP  

kinase, anti-PDK-1, p70S6K and 4E-BP1. We used secondary antibodies 

conjugated to horseradish peroxidase (Santa Cruz Biotechnology, Santa Cruz, 

CA), and signal was detected using the enhanced chemiluminiescence 

detection kit (GE Healthcare Bio-Sciences AB, Uppsala, Sweden). 
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3. Immunoprecipitation Assay 

 Cells were lysed in CHAPS buffer (50 mM Tris pH 7.5, 120 mM 

NaCl, 1 mM EDTA, 10 mM sodium pyrophosphate, 50 mM NaF, 0.3% 

CHAPS, 1 mM PMSF, 5M pepstatin A, 10 M leupeptin). 200 l of cell 

lysate was incubated with primary antibody (dilution 1:100) with gentle 

shaking overnight at 4ºC. 20l of Protein A Agarose beads (Cell Signaling 

Technology, Beverly, MA) was added and incubated with gentle rocking for 3 

h at 4ºC. As a negative control, cell lysates were also incubated with Protein 

A Agarose beads alone. Cell lysates were centrifuged for 30 s at 4ºC. Pellet 

were washed twice in 500l of CHAPS buffer and 3 times in a buffer 

containing 50 mM Tris pH 7.5, 40 mM NaCl, 2 mM EDTA. 

Immunoprecipitate activity was analyzed following the kinase assay 

procedure. 

 

4. Surface Plasmon Resonance (Rodger, Lodwick et al.) Assays 

  GST-tagged human recombinant mTOR (aa 1360-2549) (Invitrogen, 

Carlsbad, CA) was covalently attached to a CM5 sensor chip (GE Healthcare 

Bio-Sciences AB, Uppsala, Sweden) according to amine-coupling protocol, 

exploiting primary amine groups on the ligand after activation of the surface 

with 1-ethyl-3 (3-dimethylaminopropyl) carbodiimide (EDC) and N-

hydroxysuccinimide (NHS). The excess of reactive groups were deactivated 

with ethanolamine.  mTOR was diluted to 4.5 ng/ l in acetate buffer pH 3.9, 

and immobilized to a level of 11.897 RU into flow-cell 4. Flow cell 1 was 

activated and blocked with GST and assigned as reference. RU corresponds to 

a measure of a 0.0001 degree-shift in the refractive index.  

 Compounds were stored as stock solutions in 100% dimethyl 

sulfoxide (DMSO) at -20ºC. The compounds were diluted with 1.05-fold 

concentrated assay buffer without DMSO to prepare the highest experimental 

concentration of each compound in a final buffer composition of 10 mM 

HEPES pH 7.4, 150 mM NaCl, 100 mM MgCl2.  

Assay buffer was also used as the instrument running buffer and for 

further sample dilution. The run was started with three start-up cycles, in 

which assay buffer was injected instead of sample, followed by sample 

injection cycles. Zero concentration samples were used as blanks. A typical 

sample injection cycle consisted of a 60 s sample injection (30 l/min), 120-
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200 s of buffer flow (dissociation phase), and a 30 s buffer injection to check 

for sample carryover. The complexes were regenerated using 25 mM NaOH 

in every cycle prior to sample injection. Moreover, between sample series, a 

solvent correction cycle was run according to the instrument manual (26) to 

adjust for referencing errors due to refractive index mismatches between 

running buffer and samples.  

 Experiments were performed with the instrument temperature (flow 

cell, sensor chip, and sample compartment temperature) set to 25 ºC and the 

flow cell temperature set to 20 ºC. For kinetic and affinity evaluations, 

Biacore T100 evaluation software was used for subtraction of reference and 

blank data along with solvent correction  as well as for curve fitting. 

Small molecule binding specificity to AKT was analyzed using human 

recombinant histidine-tagged AKT (Invitrogen, Carlsbad, CA) attached to 

another CM5 sensor chip according to the same protocol. Flow cell 1 was 

activated and blocked without GST and assigned as reference. 

 

5. Theoretical Methods 

 5.1. mTOR homology modelling. Since there is no crystal structure 

available for any mTOR complex, we produced a homology model of the 

active site sequence, residues 2131-2516.  For this purpose we used two 

approaches. The first involved a BLAST search followed by multiple 

alignment model generation with Modeller. For the second approach we used 

an automatic multiple-threading alignment server from the University of 

Michigan, I-TASSER, which was ranked as the top server for protein 

structure prediction in the recent CASPS experiments. Both approaches 

identified templates from the PI3K protein kinase family with 24-28% 

identity. The alpha carbon RMSD between the top poses of each method 

(excluding the common gap regions) is <2.5Å. The ATP binding region is 

even more conserved and the RMSD, when aligning the top two models 

within 5Å of the ATP binding region, is <1.0Å. For all templates there is a 

gap of approximately 30 residues. In all models, however, the predicted gap is 

not near the ATP binding region. Based on visual inspection of this area, 

however, we chose the top I-TASSER model. I-TASSER also uses a 

secondary structure prediction algorithm, and it produced a less protruding 

gap area. Furthermore, we performed a 10 ns molecular dynamics trajectory 

using the OPLS2005 force field with implicit SGB solvent, where only the 
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gap area was allowed to move for further refinement of this segment. In any 

case, the gap area was always far from the ATP binding region. 

 5.2. Control in silico models. Two other protein kinases from the 

PI3K family, PDK1 (pdbcode:2PE1) and PKC-alpha (pdbcode:3IW4), were 

selected for in silico control experiments. These two kinases have 

crystallographic structures with bound inhibitors, LAA and LW4, 

respectively. While docking scores gave a measure of the binding strength, 

results of the docking experiments for these bound crystallographic ligands 

indicated what scores could be expected for inhibitors in the PI3K family.  

All the system were prepared with the protein wizard from Schrödinger, 

which adds hydrogens and optimizes the hydrogen bond network by dihedral 

rotation of Asn, Gln, Tyr, Cys, Thr, Ser, and histidine protonation/rotation. 

 5.3. Ligand docking and induced fit procedure. After preparation 

we performed a cavity search with SiteMap, which confirmed the ATP 

binding site as the top ranked binding cavity in all three systems. Initial rigid 

ligand docking was performed with Glide using the XP score (23). For PDK1 

and PKC-alpha we docked the crystallographic ligands together with PG. For 

mTOR we docked PG, OBX and PP242. Following the rigid docking we 

performed 600 iterations of induced fitted adjustment with PELE (Protein 

Energy Landscape Exploration), a stochastic method capable of mapping 

large conformational rearrangements and induced fit events in protein-ligand 

interactions (25). PELE’s algorithm is based on three main steps:  

 1) Localized perturbation. After an energy calculation for the initial 

structure, the procedure begins with the generation of a perturbation in the 

system. The perturbation might include a ligand translation and rotation and a 

quick minimization where the alpha carbons are forced by a harmonic 

constraint to a new position. This new position is derived from a small 

displacement in a low frequency mode (or a combination of modes) resulting 

from an anisotropic network model approach, a simple model for normal 

mode analysis (31). 

 2) Side-chain sampling. The algorithm proceeds by placing all side 

chains local (within 3Å) to the ligand with a rotamer library side chain 

optimization at a rotamer resolution of 10°. 

 3) Minimization. The last step involves the minimization of a region 

including, at least, all residues local to the atoms involved in the first two 

steps. 
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 These three steps comprise a move which is accepted (defining a new 

minimum) or rejected on the basis of a Metropolis criterion. The collection of 

accepted steps forms a stochastic trajectory. We clustered the trajectory 

(based on carbon alpha RMSD) in 5 groups and selected the median in each 

group. For each cluster representative we redocked all ligands. Thus for each 

system and ligand we have two docking scores, before (initial docking) and 

after the induced fit. 

 

Supplementary Figures 

 

 

Supplementary Fig. 1. Chemical structure of prodiginines. (A) Side-on 

view of 2-methyl-3-penthyl-6-methoxyprodigiosene (prodigiosin) and (B) the 

synthetic indol-containing prodiginine (obatoclax) showing the planar 

arrangement of the pyrrole rings. (C) Representation of the solid state 

structure of obatoclax.HCl. The structure of obatoclax as the hydrochloride 

salt was determined by single crystal X-Ray diffraction. The tris-heterocyclic 

skeleton of OBX is essentially flat, with the three NH groups oriented in the 

same directions and forming hydrogen bonds with the chloride anion (N-

H
....

Cl distances 3.17-3.18 Ǻ). 
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Supplementary Fig. 2. (A) Knockdown of endogenous mTOR and raptor. 

Stable control (sh-), mTOR (sh-mTOR) or raptor (sh-raptor) knockdown 

cells were analyzed for mTOR and raptor expression. Vinculin was used as 

the loading control. Immunoblots were quantified and normalized to the 

control cells. (B) Data is expressed as the percentage of protein expression. 

(C) Inhibition of mTOR effectors in knockdown cells. Cells were treated 

with PG or OBX at 4 M for 0-6 h. Phosphorylation and total protein 

expression of AKT and p70S6K were detected by Immunoblotting. Actin was 

used as loading control.  
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Supplementary Fig. 3. (A) Cell viability in PG- or OBX-treated 

SW-480 knockdown cells. Stable control (sh-), mTOR (sh-mTOR) or raptor 

(sh-raptor) knockdown cells were treated with PG or OBX (0- 4 M) for 24 or 

(B) 48 h. The percentage of viable cells was calculated as the ratio of A570 

between treated and control cells. Values are shown as mean ± S.E.M. of 

three independent experiments performed in triplicate. 

 

 

 

 

 



Publications 

60 
 

 

Supplementary Fig. 4. Rapamycin dose-response curve. SK-MEL-5 cells 

were treated with rapamycin at 100 nM for 30 min. Cell extracts were 

analyzed by Immunoblotting using actin as loading control. 

 

 

Supplementary Fig. 5. Kinetic characterization of OBX binding to AKT 

by Surface Plasmon Resonance (Rodger, Lodwick et al.) assays. OBX 

were injected at a range of concentrations betweenM to 1 M over 

immobilized AKT. Sensograms and curve fit (black lines) are shown.  
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of Anti-Apoptotic Bcl-2 Family Members 
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Quesada, Ricardo Pérez-Tomás, Victor Guallar 

 

PLOS ONE, 2013, DOI: 10.1371/journal.pone.0057562 
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Supplementary Material 

Molecular Interactions of Prodiginines with the BH3 Domain 

of Anti-Apoptotic Bcl-2 Family Members 
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Quesada, Ricardo Pérez-Tomás, Victor Guallar 

 

 

Pharmacophore analysis of the binding interactions 
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Figure S1. 

Pharmacophore analysis. Pharmacophore analysis for the binding interactions 

of all residues with all proteins. Residues within 3 Å from the ligand have 

been included in the anlysis. 
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Supplementary Material 

Atomic Picture of Ligand Migration in Toluene 4-

Monooxygenase 

 
Ali Hosseini, Moran Brouk, Maria Fatima Lucas, Fabian Glaser, Ayelet 

Fishman, and Victor Guallar 

 

 

Table 1. Primers used for site directed mutagenesis and sequencing of the 

F269 residue in the tmoA gene in TG1/pBS(Imanishi, Morita et al.)T4MO 
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Abstract  
 

Antiretroviral drug resistance is a major obstacle to end the HIV/AIDS 

pandemic. Protease inhibitors (PIs), one of the mainstays of HIV therapeutics, 

block HIV-1 protease (PR), which cleaves the Gag and Gag−Pol HIV-1 

polyproteins to yield mature infectious virions. Development of mutations in 

HIV-1 PR hinders the activity of these drugs, making anti-AIDS therapy less 

efficient, and forcing changes in drug prescription. Most resistance 

assessments used in the clinic and epidemiologic surveillance to date rely on 

expert-based rules to interpret predefined sets of stereotypical mutations, and 

are applied by the clinical community to design alternative therapies. Such 

approach, exclusively information-driven, is powerful, but cannot capture the 

effects of new polymorphisms impacting virus susceptibility and fitness, and 

cannot be applied for new drugs. Computational modeling of PI-PR 

interactions could provide an unbiased, wider, and more general assessment of 

PI resistance, and could be made available to clinicians and caregivers 

through the Internet. In the present proof-of-concept study, we create a 

protocol involving sequence comparison and all-atom protein-ligand induced 
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fit simulations to predict PR resistance at the molecular level. We first 

compared our predictions with experimentally determined 50% inhibitory 

concentrations (IC50) of darunavir, amprenavir, ritonavir and indinavir from 

reference PR structures of the wild type molecular clone HIV-1 NL4.3 and 

various mutant PRs displaying different PI resistance levels. We then 

performed analyses on a large set of variants harboring more than 10 PR 

mutations. Finally, several mutant sequences of HIV-1 PR isolated from real 

patients were analyzed for amprenavir and darunavir. Our computational 

approach detected all genotype changes triggering high-level PI resistance, 

even those involving a large number of mutations. 

Introduction 

 
Antiretroviral therapy (ART) is one of the most effective interventions 

in medicine and, in particular, in HIV treatment. In ideal conditions of 

treatment, ART transforms a deadly disease into a chronic pathology, 

allowing patients to achieve a life expectancy (Rodger, Lodwick et al. 2013) 

and quality similar to that of non-HIV-infected individuals.(Hogg, Heath et al. 

1998; Palella, Delaney et al. 1998) Such efficacy, however, can be offset by 

HIV’s ability to develop mutations conferring antiretroviral resistance in the 

presence of drug selective pressure(Larder and Kemp 1989; Cohen 1992; 

Condra, Schleif et al. 1995; Rhee, Fessel et al. 2005) and by patient-to-patient 

transmission of resistant viruses. In resource-limited settings, where the 

HIV/AIDS toll is higher, ART is often provided without virological 

monitoring,(Gilks, Crowley et al. 2006; Keiser, Orrell et al. 2008) which is 

being associated with an alarming increase in drug resistance.(Hamers, Wallis 

et al. 2011; Hamers, Sigaloff et al. 2012; Organization 2012) 

 
Antiretroviral drug resistance testing is key for clinical 

management(Johnson, Calvez et al. 2013) and epidemiologic 

surveillance,(Gupta, Hill et al. 2009; Sigaloff, Calis et al. 2011; Organization 

2012; Sigaloff, Hamers et al. 2012; Paredes, Marconi et al. 2013) but it is not 

trivial to assess. Caregivers often rely on expert-based rules to interpret 

predefined sets of stereotypical mutations. Such procedure assigns 

susceptibility scores to different drugs for each mutation encountered after 

sequencing, from a previously defined list; individual mutation scores are then 

added into a global score for each drug and combination of drugs. Such scores 

are usually translated into a susceptible-intermediate-resistant (Sircar, Sanni et 

al.) interpretation. Interpretation rules based on a predefined list of mutations 
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rely on previous knowledge and are limited in the mutation scope, so they 

cannot take into account the effect of non-predefined polymorphisms, 

mutational interactions, or mutation effects on different genetic backgrounds 

in the virus. Moreover, interpretation rules cannot provide resistance 

assessments to new molecules inhibiting the same target/s until new 

knowledge is generated, which can requite years of “blind” treatment.  

 
In an attempt to build a universal computational tool for resistance 

prediction that would not rely on prior knowledge on drug resistance, we have 

developed an automatic protocol combining sequence alignment with protein-

ligand induced fit sampling techniques. In this first proof-of-concept study we 

focused on the HIV-1 PR, but the process could be later extended to other 

enzymes, HIV-1 subtypes or viruses.  

 
HIV-1 protease (PR) is a 22 kDa dimeric aspartic protease that 

contributes to the maturation progress of the virus, cleaving the polyprotein 

precursor into functional viral proteins. Being one of the main targets in the 

treatment against HIV, the development of nine FDA-approved protease 

inhibitors, along with numerous crystal structures were established in the last 

two decades.(Kim, Baker et al. 1995; Turner, Strohbach et al. 1998). The 

active form of HIV-1 protease is a homodimer, with ~99 residues per chain. 

The catalytic residues Asp25 and Asp125 lie at the bottom of the binding 

cavity shielded by a pair of flaps (residues 44-55 and 144-155).(Tie, Boross et 

al. 2004) Main features common to all inhibitors are the existence of a 

hydroxyl group in contact with Asp25/125 residues, and a water molecule that 

mediates contact between a conserved carbonyl of the inhibitors and the 

protease amide groups of Ile50/Ile150 located in the flaps (Figure 1). Several 

resistant mutations have been described along the whole protease chain. Many 

mutations might occur simultaneously within a single variant highlighting the 

importance of complex cooperative effects. Typically these changes confer 

resistance not only by direct contact with the inhibitor, but also by subtle 

changes in the structure/dynamics incidentally affecting the active site. 

Obviously while these mutations block or reduce drug inhibition, they also 

need to have minor effects in the normal function of the enzyme which in the 

absence of compensatory mutations can generate changes in viral 

fitness.(Tantillo, Ding et al. 1994; Condra, Schleif et al. 1995; Gubareva, 

Bethell et al. 1996)  
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Figure 1. The HIV-1 protease dimer. Cartoon diagram of NL4-3 

protease sequence showing monomers in blue and red. Residues Asp25 and 

Asp125 and APV are shown as sticks colored by atom type. A relevant water 

molecule is displayed as ball and stick. 

 

 
In this study, we used all existing HIV-1 PR crystal structures available 

in the protein data bank and PELE (Protein Energy Landscape Exploration, a 

technique capable of reproducing complex protein-ligand induced fit(Borrelli, 

Vitalis et al. 2005; Borrelli, Cossins et al. 2010)), to explore the impact of 

mutations in inhibitor binding. Our protocol was first tested by comparing 

calculated and experimental binding energies of several FDA-approved 

inhibitors with engineered PR variants containing different amino acid 

mutations.(Koh, Nakata et al. 2003; Shenderovich, Kagan et al. 2003) Then, 

we used our approach to predict ab initio, without any informational-driven 

bias, the resistance profile of 44 clinical HIV-1 PR variants to amprenavir 

(APV) and darunavir (DRV). Our technique is fast, universal, and contrary to 

previous structure-based computational methods(Shenderovich, Kagan et al. 

2003) which were limited to variants with a reduced number of mutations, it 

can predict PI resistance to variants containing more than 10 mutations. 
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Methods 
 

Systems used 
References structures  

To build the homology models of the wild type NL4-3 and HXB2 

reference sequences (which were considered as non-resistant genotypes 

unaltered by the selective pressure of any PI), we used the crystal structure of 

HIV-1 protease bound to BE6 inhibitor (pdb code 1W5Y(Lindberg, Pyring et 

al. 2004)), with only 2 and 1 mutations per chain, respectively.  

 

HIV-1 protease-inhibitor complexes 
Several crystal structures with measured catalytic activities were used 

to tune our computational protocol. For the APV ligand, the PDB entries used 

were: 3NU3(Shen, Wang et al. 2010) a WT reference with analogous relative 

affinity as NL4-3, 3S43(Tie, Wang et al. 2012) a triple mutant with 15 fold 

increase in inhibition constant (Ki, involving a decrease in affinity), 

3NU5(Shen, Wang et al. 2010) a single mutant with 30 increase in inhibition 

constant. For the DRV ligand, the PDB entries used were, 2IEN(Tie, Boross 

et al. 2004) a WT reference with analogous relative affinity as NL4-3, and 

3EM6(Mittal, Bandaranayake et al. 2013) a double mutant with 4 fold higher 

dissociation constant. 

 

Modeling HIV-1 protease mutants 
Due to the strong correlation between sequence similarity and structure, 

our strategy to model mutants with no solved structure was to use the closest 

existing crystal structure in terms of sequence. We found ~450 crystal 

structures of HIV-1 protease which can be used as templates for building a 

given clinical sequence. Thus, modeling mutants was performed in two steps: 

(1) a search for the crystal structure with the highest similarity to the mutant 

sequence using BLAST(Altschul, Gish et al. 1990), and (2) building our 

model by replacing each mutant using the Maestro(Sastry, Adzhigirey et al. 

2013) software. Mutations were introduced simultaneously in the two protease 

chains. Using this procedure several sets of mutants were built: The first set 

was selected from the work by Koh et al.,(Koh, Nakata et al. 2003) were three 

NL4-3 variants: (L10I, G48V, I54V, L90M), (L10F, V32I, M46I, I54M, 

A71V, I84V) and (L10F, D30N, K45I, A71V, T74S) were tested against four 

inhibitors DRV, APV, IDV and RTV. The second set was obtained from the 
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study by Shenderovich et al.(Shenderovich, Kagan et al. 2003) For this case, 

we selected the more difficult set of sequences, with more than 10 mutations 

(and a maximum number of 17 mutations per monomer, giving a total of 15 

sequences) against IDV inhibitor. The third set included 21 and 23 PR 

FASTA sequences with different resistance profiles to APV and DRV, 

respectively, obtained from routine genotypic resistance testing (TRUGENE® 

HIV-1 Genotyping Assay, Siemens Healthcare, Barcelona, Spain) in the HIV 

Unit and irsiCaixa AIDS Research institute, Hospital Universitari Germans 

Trias i Pujol, Badalona, Spain. This last set of studies was performed as a 

blind test, where the modeling team had only access to the sequence but not to 

the resistance score.   

 

Systems preparations 
All systems were prepared with Schrodinger’s Protein Wizard.(Sastry, 

Adzhigirey et al. 2013) This algorithm builds hydrogen-bonded clusters and 

performs 100000 Monte Carlo moves by reorienting hydroxyl and thiol 

groups, water molecules, amide groups of Asn and Gln, and the imidazole 

ring of His, to correct for typical crystal structure refinement errors. The 

algorithm also predicts protonation states of His, Asp, Glu, Lys and Arg. Each 

possibility is scored based on the total number of hydrogen bonds and their 

quality (relative to an idealized hydrogen bond). In this work, Asp25 was 

protonated in all structures, whereas Asp125 was considered ionized. 

Histidines 69 and 169 were either epsilon or double protonated depending on 

the structural environment; all other histidines kept delta protonation. A water 

molecule, generally found in all protease-inhibitor crystal structures was kept. 

The water preserved mediates a contact between the P2/P1′ carbonyl oxygen 

atoms from the inhibitors and the amide groups of Ile50/Ile50′.  

 
Once the all atom model was built, the ligand was initially docked in 

the active site using Glide.(Halgren, Murphy et al. 2004) The top score model 

(XP scoring) obtained by glide was selected followed by a molecular 

mechanics minimization using Schrodinger’s Protein Wizard and the 

OPLS2005 force field to remove any possible geometric clashes. In order to 

keep the system close to its initial geometry, a restrain was applied to all 

heavy atoms (allowing a maximum displacement of 0.3Å). All ligands were 

quantum mechanically minimized separately in the gas phase using the 

DFT/B3LYP and 6-31G** basis set level of theory. The atomic charges 

defining ligand electrostatics were then derived from the electrostatic 

potential fitting at the same level of theory. 
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Assessing the induce fit and binding energy 
To map the protein-ligand conformational sampling we used 

PELE(Borrelli, Vitalis et al. 2005), which implements a Monte Carlo 

algorithm where new trial configurations are produced with sequential ligand 

(and protein) perturbation, side chain prediction and minimization steps. 

Ligand perturbation includes a ligand specific rotamer library.(Borrelli, 

Cossins et al. 2010) Trial configurations are then filtered with a Metropolis 

acceptance test, where the energy is described with an all-atom OPLS force 

field with a surface generalized born solvent model.(Yu, Jacobson et al. 2004) 

PELE has recently shown to provide some competitive advantages with 

respect to state of the art induced fit commercial software and to reproduce 

the conformational sampling obtained in microsecond molecular dynamics 

trajectories.(Espona-Fiedler, Soto-Cerrato et al. 2012; Hosseini, Espona-

Fiedler et al. 2013) 

A total of 12 independent MC trajectories were produced for each 

inhibitor and mutant sequence. Trajectories were interrupted after 12h of 

CPU, providing approximately a total of 6000 Monte Carlo steps and ~2000 

accepted minima. PELE’s binding energy was then obtained by averaging the 

interaction energies of all accepted minima (approximately 2000 snapshots). 

 

Results 
 

In the first part of the study, we validate the method by comparing in 

vitro IC50 results for specific mutations with our theoretical predictions. In the 

second part, attention was centered on predicting how mutations in HIV-1 

protease taken from real patients affect drug resistance against APV and 

DRV.  

 

Validation for the set of data with known experimental binding 

affinity (IC50) 

 
We first calculated the interaction energies of APV, DRV, IDV and 

RTV for three different sequences (each ligand) among the set described in 

Koh et al.(Koh, Nakata et al. 2003). Besides NL4-3, for each drug we selected 

the mutation with the lowest and highest IC50 value relative to the value for 

NL4-3 (see Table 3 in Koh et al.(Koh, Nakata et al. 2003)).  Figure 2, 

summarizes PELE’s relative increase in binding energy for each ligand and 
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target, compared to the reference NL4-3 (the higher the increase in binding 

energy, the greater the resistance conferred by the mutation). The 

experimental relative (with respect to NL4-3) increase in IC50 is also shown 

with numbers in Figure 2. Clearly, PELE’s simulations can distinguish 

between the high (dark gray) and low (light gray) resistance mutant in each 

specific inhibitor. Moreover, the relative increase in PELE’s binding energy 

correlates nicely with the experimental increase in resistance in this set of 

data.  

 

Figure 2. PELE’s relative binding energies (in kcal/mol) predicted for the 

high (dark gray) and low (light gray) resistance HIV-1 PR mutants for APV, 

DRV, IDV and RTV observed by Koh et al.(Koh, Nakata et al. 2003). 

Experimental relative (with respect to NL4-3) increase in IC50 is shown with 

numbers above each bar. 

 
For a second test, we used a subset of sequences derived from the work 

of Shenderovich et al.(Shenderovich, Kagan et al. 2003) Using known and in-

house prepared mutations, these authors developed possibly the most 

comprehensive computational predictor to date. However, as notice by the 

same authors, the quality of predictions correlates negatively with the increase 

of number of mutations. From their test set, we selected all the sequences with 

more than 10 mutations for the IDV inhibitor (a total of 15 sequences, which 

represent a specially difficult set for prediction(Shenderovich, Kagan et al. 

2003)). Figure 3 shows the correlation between our PELE relative interaction 

energy estimates, using again NL4-3 as the reference zero value, and the 

experimental relative binding energy. Additionally we include the estimates 
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derived from Shenderovich et al.(Shenderovich, Kagan et al. 2003), also 

referred to NL4-3. We should notice that in Shenderovich et al., all mutant 

models were derived from one crystal and that they used simpler side chain 

(and backbone) sampling algorithms.  

Despite the difficulty of this set of 15 compounds, the method outlined 

here behaves quite well, with a coefficient of determination equal to 0.75 

(PELE’s p-value= 2.5e
-05

 and ∆E’s p-value = 0.004), improving previous 

predictions significantly. 

 

 
Figure 3. Correlation between modeled changes in relative binding energies 

(in kcal/mol) obtained in Shenderovich et al.(Shenderovich, Kagan et al. 

2003) (∆E, blue beads) and PELE (red beads) with changes from experimental 

relative binding energy. 

 

Prediction results for APV and DRV (clinically isolated data) 
After testing our computational protocol with publicly available data, 

we proceeded to perform “blind predictions” of the resistance in clinical 

samples. Importantly, each of these variants, taken from HIV infected 

patients, contained a large number of mutations in each monomer (15-25) 

when compared to the reference NL4-3 (therefore, in some of the simulated 

systems the protease bore as many as 50 mutations, representing an incredible 

difficult test). The data for the clinical isolates was divided (and ordered) 

based on the resistance scores calculated from expert assessments in 

HIVdb(Liu and Shafer 2006). Samples were categorized as sensitive (S) when 
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HIVdb resistance scores were below 20, intermediate (I) resistance when 

scores were between 20 and 50, and resistant (R) when scores were 50 or 

higher.  

 
Figure 4 shows the results for APV where again we computed PELE’s 

relative binding energies to the reference compound NL4-3. For this 

compound we had initially run a benchmark with four variants containing 

known resistance-related mutations: two consensus reference proteins (the 

sequence from pdb structure 3NU3 and the reference sequence HXB2, which 

were both considered non-resistant), the single mutation I50V with 30 fold 

increase in Ki (pdb id 3NU5) and the triple mutant V32I/I47V/V82I with 15 

fold increase in Ki (pdb id 3S43). The data from this benchmark has also been 

included in Figure 4 (left-hand side). As can be seen, the two additional non-

resistant reference sequences (the one from 3NU3 and HXB2) show equal or 

(slightly) better interaction to that found for NL4-3. This result shows how 

our computational protocol predicts reference sensitive sequences other than 

NL4-3 as sensitive, and similarly, the two APV-resistant reference sequences 

(3S43 and 3NU5), with a 15 and 30 fold increase in Ki, respectively, were 

correctly predicted as interfering drug-binding (note that the impact of the 

mutation in predicted binding, matches the Ki increase found experimentally). 

 
For the sequences extracted from the patients (1-21), it can be seen that 

all sensitive sequences (green; columns 1-7) are predicted to be sensitive by 

our method, and all highly resistant sequences are predicted to be highly 

resistant (red, columns 14-21). Sequences classified as intermediate resistance 

(in yellow) offer a less clear differential profile, but there is only one pair 

(13/14) where PELE will have some difficult to predict the resistance level 

produced by the mutation.  
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Figure 4. PELE’s relative change in APV binding energies (kcal/mol).  

Sensitive, intermediate and resistance HIVdb values for each sequence are 

shown in green, yellow and red colors, respectively. 

 

 
 

Due to the large number of mutations in each sequence, assigning 

individual effects is not a trivial task. Figure 5 compares the protein-APV 

interactions for sequences number 1 and 20, with a ~12 kcal difference in 

relative affinity (HIVdb scores 0 and 150, respectively). Sequence 1 presents 

6 mutations (per chain) compared to NL4-3 while sequence 20 has 16 

mutations. Clearly, sequence 20 shows a reduction in the number of 

interactions. Mutations on residues Val82 and Val84 affect the binding mode 

and orientation of the inhibitor. In particular, these mutations influence the 

proper interaction of APV with polar residues, Asp25, Asp29 and Asp30, 

significantly decreasing the affinity of the ligand. Asp25, for example, plays 

an important role in ligand recognition by making a strong interaction with the 

hydroxyl group of almost all inhibitors.  
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Figure 5. Protein-APV interaction diagram for sequences number 1, panel A, 

and 20, panel B. Important residues, discussed in the main text, are underlined 

in red circles. Partial sequence alignment to NL4-3 is also shown for both 

systems. 

 

 
Figure 6 shows the result of equivalent calculations for DRV. For this 

compound we also modeled three additional variants containing known 

resistance-related mutations: two consensus reference proteins (the one taken 

from pdb structure 2IEN and the reference sequence HXB2) and the double 

mutant I50L/A71V (3M60), which has 4 fold higher dissociation constant. As 

in the APV case, reference and sensitive compounds show little or no effect 

when compared to NL4-3. Again, the most remarkable result is the correlation 

between PELE relative binding energy and the estimation of resistance, where 

all highly resistant variants are clearly identified. 
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Figure 6. PELE’s relative change in DRV binding energies (kcal/mol). 

Sensitive, intermediate and resistance HIVdb values for each sequence is 

shown in green, yellow and red colors, respectively. 

 

 

 

Discussion 
 

The primary aim of this study was to develop an automatic 

computational protocol for rapid discrimination between resistant and 

sensitive HIV-1 protease variants. To this aim we have used PELE, an atomic-

resolution sampling algorithm combining a stochastic Monte Carlo procedure 

with protein structure prediction techniques, which is specially suited for 

induced-fit docking problems.(Espona-Fiedler, Soto-Cerrato et al. 2012; 

Hosseini, Espona-Fiedler et al. 2013) 

 
Since most of the mutant structures have not been crystallized, one of 

the main questions is how to generate an all atom model for each sequence. 

Since we were comparing the binding energies to the NL4-3 reference 

sequence, one simple strategy would have been to use its structure as a 

template (in Modeller,(Fiser, Do et al. 2000; Eswar, Webb et al. 2002) I-

TASSER,(Mitra, Shultis et al. 2013) etc.). However, many sequences have up 

to 20 mutations (when compared to NL4-3) in each chain, which could 

introduce large errors in building the models. The large number of HIV-1 X-

ray crystal structures enabled better strategies. One obvious is the use of 

multiple templates in homology modeling, but our initial analysis indicated 
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that it is better to start from a well-defined single template than to combine 

different crystal structures. Thus, we decided to create a subset of several 

crystal structures to which our sequences were compared and to use the 

crystal structure with the best sequence alignment to our target (to minimize 

the number of mutations modelled) as template. By doing so, we reduced the 

largest number of mutations (in terms of model building) to a maximum of 12 

per chain.  

 
Our initial two tests compared the predicted relative binding energy 

with systems having experimental affinities. As seen in Figures 2 and 3, PELE 

is capable of distinguishing between resistant and sensitive sequences. 

Moreover, it shows a good correlation to experimental affinities even for 

sequences with a large number of mutations, improving existing theoretical 

prediction tools. Next, we tested our protocol prediction capabilities in a blind 

test with patient sequences for two well-known HIV-1 inhibitors, APV and 

DRV. The results showed again noteworthy correlations between PELE’s 

calculated changes in binding energy and the index obtained by HIVdb scores. 

In all cases we could distinguish the sequences with strong resistance, having 

predicted relative binding energies >5kcal/mol. This value is also consistently 

being observed in the initial two tests. The method showed problems to 

discriminate between mutants with moderate resistance, but this is the 

segment where rule-based methods (used here as reference) are expected to 

show the poorest performance. 

 
The majority of resistance-related mutations are conservative 

substitutions among residues Leu10, Val32, Ile54, Val82, Ile84 and Leu90. 

Our simulations indicated that these mutations do not introduce large changes 

in the structure of the complex, but modify subtle van der Waals and 

hydrogen bond interactions between the ligand and active site amino acids 

(see Figure 5). Such resistance mechanisms are observed for other systems, 

(Skálová, Dohnálek et al. 2006; Ali, Bandaranayake et al. 2010) and agree 

with the fact that none of these mutations significantly disrupts enzyme 

activity. However, even small, the subtle conformational changes induced by 

mutations are important in defining accurate binding, making it necessary the 

use of: i) specific homology models, ii) induce fit relaxation. The later point is 

clearly shown by the fact that PELE’s scores after homology modeling (or 

after only a short exploration of sampling) did not correlate with susceptibility 

data (Table 1). The quality (and necessity) of the induced fit conformational 

sampling obtained by PELE is also evident when predicting the interaction 
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with a general scoring function. For this, we used Glide XP from Schrodinger 

(Halgren, Murphy et al. 2004). Figure 7 shows relative Glide scores before 

and after the induced fit for the 21 clinical sequences in APV (plus NL4-3 and 

HXB2). Each score is the average of 50 structures obtained after clustering 

PELE’s trajectories. Clearly the correlation with HIVdb scores significantly 

improves after conformational sampling with PELE. While the final Glide 

scores still have low correlation, 0.33, they can identify most of the high 

resistance sequences. Remarkably, the correlation increases to 0.80 when 

using PELE’s all-atom binding energy (as score), revealing the importance of 

an explicit treatment of all-atom interactions (Borrelli, Cossins et al. 2010). 

Notice also that the clustering procedure only reduces the overall PELE’s 

correlation from 0.82 to 0.80.  

 
Table 1. Evolution of the coefficient of determination between PELE’s 

interaction energies and HIVdb values along the conformational sampling for 

the 21 APV patient sequences. 

  First-score Step-50 Step-100 Step-200 Step-300 Total 

 R2 0.43 0.64 0.72 0.75 0.81 0.82 
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Figure 7. Comparison between PELE and Glide (initial and final) correlation 

scores, against HIVdb values, for the 21 APV patient sequences (using 50 

representative structures after clustering). 

 

 

Conclusions 
 

Overall, this study shows how computational techniques are capable of 

quantitatively discriminating resistance variants of HIV-1 protease. Our 

protocol, combining sequence alignment to current pdb structures and state of 

the art protein-ligand induced fit sampling algorithms, shows great promise as 

an automatic tool for a quick prediction. The entire protocol can be run in less 

than 24 hours in a small commodity workstation, and is based on biophysical 

first principles. Moreover, it is able to trace the effect of novel mutations and 

the binding of new drugs. In summary, modeling drug-target interactions 

holds the potential to provide less biased and more accurate assessments of 

antiretroviral drug resistance, which could improve clinical management of 

HIV-infected subjects. 
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Abstract 

 
Steroid hormone receptor drugs have been available for more than half 

a century, but the ligand binding mechanism has remained elusive. We solved 

X-ray structures of both the glucocorticoid and mineralocorticoid receptors to 

identify a conserved plasticity at the interface of helices 3,7 and 11 extending 

the ligand binding pocket towards the receptor surface. Since none of the 

endogenous ligands exploit this region, we hypothesized that it constitutes an 

integral part of the binding event. Extensive all atom unbiased ligand exit and 

entrance simulations together with structural principal component analysis, 

corroborate a ligand entry trajectory that gives the observed structural 

plasticity a key functional role. Our findings reveal why evolution has 

conserved the capacity to open up this region and provide a new aspect to the 

selection pressure that has formed this receptor family.  

 

 

Introduction  
 

Biological functions originate from, and are maintained by, a 

combination of genomic drift and selection. The traditional method to derive 

evolutionary relationships is to compare primary sequences, tertiary 

structures, and protein function. However, while changes in the amino acid 

sequence and placement of key residues provide useful insights into lineage, 

this only provides the basic framework for mechanistic detail. A more 

complete functional understanding requires protein plasticity to be considered. 

Moreover, comparing protein flexibility of related systems adds an important 

dimension when exploring evolutionary trajectories (13. NSMB 2013). 
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The steroid receptor family consist of five closely related receptors: the 

mineralocorticoid receptor (MR), the glucocorticoid receptor (GR), the 

androgen receptor (AR), the progesterone receptor (PR), and the estrogen 

receptors (ERα and ERβ) (Fig. 1a). They all bind cholesterol derivatives and 

play a critical role in fundamental biological processes, ranging from 

pregnancy, early development, to the stress response, and electrolyte 

homeostasis (1. Evans 1988, 2. Mange 1995). Continual pharmaceutical 

efforts have resulted in several efficacious drugs, such as prednisolone 

(GR)(3. Cole 2006), eplerenone (MR) (4. Gravez 2013), bicalutamide (AR) 

(5. Shelley 2008), drospirenone (PR) (6. Sitruk 2010), and tamoxifen (ER)(53. 

Br. J. Ph. 2013). However, target class-related side-effects limit the 

prescription of these drugs in many indications and the scope for further 

improvement is considered to be high (14. Burris 2013, 15. Bertocchio 2011). 

The receptors share a common architecture with three separate 

domains: the N-terminal domain (NTD), the DNA binding domain (DBD) and 

the ligand binding domain (LBD). Besides recognizing the ligand 

pharmacophore, the LBD also contains the activation function-2 (AF-2), 

which is important for transmitting ligand binding information and partially 

driving the co-regulator interaction fingerprint (28. Gronemeyer. 2004). In the 

resting state, the receptors are associated with chaperone proteins in the 

cytoplasm. Ligand activation leads to a partial release of chaperone proteins, 

followed almost always by nuclear translocation. In the nucleus, the receptors 

will dimerize and form ligand and context specific protein complexes, 

resulting in activation and/or repression of gene transcription. 

 
The increasing number of receptor-ligand X-ray structures has provided 

valuable understanding of molecular drivers for the different pharmacological 

responses. All steroid receptor LBD structures exhibit the typical 3-layered 

alpha helical fold that fully encloses the various compounds in the ligand 

binding pocket (LBP), Figure 1b (7.Bledsoe 2002, 8.Williams 1989,9.Fagart 

2005,10.Matias 2000). Within the receptor, specific polar interactions are 

important determinants of hormone specificity. The combination of polar 

interactions with shape match between the compound and LBP provides the 

basis for ligand potency and allosteric modulation of the auxiliary surfaces, 

primarily AF-2 and the dimerization surface, directing the functional 

response.  
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When overlaying the steroid receptors, the largest structural difference 

in proximity to the ligand is located in the region where helices 3, 7 and 11 

meet (24. Li 2005). Figure 1c shows a detailed comparison of GR to its 

paralog MR. An outward tilt of the helix 6–7 (H6-H7) interface in GR results 

in an expanded ligand binding pocket, which was thought to reflect that the 

most highly potent GR ligands, such as budesonide and fluticasone furoate, 

contain a large 17α substituent (11. Li 2005). Despite the smaller pocket in 

MR, several ligands with large 17α substituents on the steroidal D-ring, such 

as desisobutyrylciclesonide (dibC, the active metabolite of the pro-drug 

ciclesonide), are more potent in our MR binding assay than the endogenous 

agonist aldosterone.  

 
To build a detailed understanding around the plasticity of this region, 

we determined the high-resolution X-ray structures of MR and GR in complex 

with both dexamethasone (Dexa) and dibC (Fig. 1d). The structures revealed 

that with a large 17α substituent, MR is fully capable of adopting an open 

structural conformation. Why has nature preserved the capacity to open up 

this region, even though it is not exploited by the endogenous ligands? We 

propose that the observed plasticity is an integral part of the ligand entry 

mechanism.  
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Figure 1 Evolutionary relationship of the steroid receptors with 

structural comparison of GR and MR LBD. (a) Evolutionary relationship 

of the steroid hormone receptors (ER, MR, GR, PR and AR). (b) GR (yellow) 

in complex with dexamethasone (magenta) overlaid on MR (lightblue) in 

complex with dexamethasone (magenta). The AF-2 surface is located where 

helices 3,4 and 12 meet. (c) Details near the region where helices 3, 7, and 11 

meet. (d) The chemical structures of dexamethasone and dibC. The steroidal 

A, B, C and D rings and positions 3 and 17 are marked on the dexamethasone 

structure. 

To investigate this hypothesis we performed comprehensive all atom 

simulations. Computer modeling has advanced considerably; specialized 

hardware and software today can perform microsecond time-scale 

simulations, overcoming previous sampling deficiencies (17. Dror 2013, 18. 

Jensen 2012, 36. Shan 2014). Spontaneous ligand binding events have been 

investigated in exposed active sites for kinases (19. Shan 2011), GPCRs (17. 

Dror 2013) and proteases (20. Fabritiis  2011). Notably, PELE (Protein 

Energy Landscape Exploration) (12. Borrelli 2005), a technological 

development combining Monte Carlo algorithms with protein structure 

prediction techniques, is capable of performing such studies rapidly for fully 

occluded binding pockets (21. Madadkar-Sobhani 2013, 22. Takahashi 2014). 
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This offers a unique opportunity to explore unbiased ligand/protein dynamics 

of complex systems that require larger structural rearrangements. 

 

Results  
 

A conserved plasticity 

 
Dexamethasone was originally developed as a GR specific agonist (53. 

Br.J Pharmacol 2013), but was later shown to be a functional MR antagonist 

with low nanomolar affinity (54. FEBS Lett 1999). The X-ray structure of MR 

in complex with dexamethasone (MR:Dexa) is similar to the corresponding 

GR:Dexa structure (normalised RMSD of 0.37 Å for 100 Cα atoms). 

However, examining in detail the region where helices 3, 7 and 11 meet 

confirms that the 17α sub-pocket is considerably smaller in the MR structure 

compared with the GR structure (Fig. 1c). This is reflected in the total volume 

of the MR:Dexa LBP, which is approximately 393Å
3
 compared with 450Å

3
 in 

the GR:Dexa structure. Supplementory Figure 1a shows the 2mFo-Dfc 

electron density from the MR:Dexa LBP, 

It has been proposed that structural differences in the loop between 

Helices 6 and 7 are primarily due to replacement of Ser843
MR

 by Pro637
GR

, 

which alters the geometrical constraints of this region and allows the receptor 

to adopt a more open conformation (24. Li  2005). However, despite the 

limited size of the MR sub-pocket, dibC has higher affinity than aldosterone 

in our scintillation proximity assay (Vangrevelinghe, Zimmermann et al.) 

using tritiated aldosterone and MR LBD fusion protein (Ki for dibC is 0.18 

nM compared to 1.0 nM for aldosterone). To study the structural flexibility 

associated with large 17α substituents, we determined the complex structures 

of MR:dibC and GR:dibC. 

The structure of MR:dibC superimposes well on the MR:Dexa structure 

(normalised RMSD of 0.28 Å for 100 Cα atoms). Moreover, in the LBP, dibC 

is placed in a nearly identical position to dexamethasone with all polar 

interactions conserved (Supplementary Fig. 1b). However, while these two 

receptor conformations are closely related, dibC induces a large 

rearrangement of the H6-H7 loop region, essentially extending the LBP 

towards the receptor surface (Fig. 2a).  
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Figure 2. Comparison of the complex structures of the MR:Dexa, 

MR:dibC, GR:Dexa, and GR:dibC. (a) MR (light blue) in complex with 

dexamethasone (magenta) overlaid on MR (dark blue) in complex with dibC 

(white).(b) The cyclohexyl motif of dibC come into direct conflict with 

residues from H7, enforcing a new structural state. (c) MR (dark blue) in 

complex with dibC (white) superimposed on GR (yellow) in complex with 

dexamethasone (magenta). (d) GR (yellow) in complex with dexamethasone 

(magenta) overlaid on GR (orange) in complex with dibC (white). 

 
Specifically, side chains of Ser843

MR
, Met845

MR
 and Cys849

MR
 in the 

MR:Dexa complex occupy the same volume as the cyclohexyl motif of dibC, 

forcing the receptor to adopt a new conformation (Fig. 2b). This leads 

essentially to a repositioning of helix 6 and an extension of helix 7. While 

Ser843
MR

 was previously buried within the protein and engaged in a hydrogen 

bond to the backbone nitrogen of Met845
MR

, it is now exposed to the solvent, 

forming the new start of helix7 (Fig. 2a).  

The size of the 17α pocket in the MR:dibC complex increases 

significantly (total LBP volume 539 Å
3
) and the superposition on the 

GR:Dexa structure shows that this region now adopts a more closely related 

structural state (Fig. 2c). However, it is interesting to note that GR in complex 
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with dibC (Fig. 2d) expands the 17α pocket even further (total LBP volume 

551 Å
3
). While the plasticity in the H6-H7 loop region seems to be conserved 

across these two receptors, the details of the ligand driven rearrangements are 

clearly different. 

To gain insights of how the flexibility in the H6-H7 region is conserved 

across the steroid receptor family, we performed principle component analysis 

(PCA) for all X-ray structures from the public domain (PDB) for each 

receptor. This technique allows visualization of the variance between 

structures as a set of normal modes. While the description of this variance will 

be highly dependent on what regions of the LBP are exploited by the various 

ligands, the mode describing H6-H7 motion is one of the dominant features 

(Supplementary Fig. 2). However, for MR the H6-H7 motion is only 

prominent if we include the MR:dibC structure from this work, emphasizing 

that the MR:dibC structure describes a novel structural conformation.  

Modeling non biased entry and exit pathways 

 
To study the ligand exit and entry pathways, we performed two 

different types of unbiased simulations. The first protocol explored ligand 

escape routes using the MR and GR X-ray complex structures as the starting 

position. In the second protocol, the ligand was randomly placed in the bulk 

solvent and allowed to freely migrate along the protein surface. All 

simulations were completed in the presence and absence of a co-factor peptide 

at the AF-2 site (NCOA1 residues 1430-1441 for MR and NCOA2 residues 

741-753 for GR). In addition, both the wild-type protein sequences and the 

specific mutants present in the X-ray structures were used. 

Ligand dissociation 

 
For all permutations of both MR and GR, we performed three separate 

exit simulations. In all instances we observed only one exit trajectory 

perforating the surface where helices 3, 7 and 11 meet. Figure 3a illustrates 

the MR:Dexa exit pathway simulation with the array of dexamethasone 

positions superimposed on the initial MR structure. Notably, ligand motion is 

coupled with significant rearrangement of the protein backbone along the 

migration pathway. In particular, the loop connecting helices 6-7 is clearly 

shifted outwards to accommodate ligand release (Fig. 3b). Interestingly, the 

simulated protein movements are reminiscent of the observed differences 

between the MR:Dexa and MR:dibC structures shown in light and dark blue, 

respectively. To better quantify the plasticity in the H6-H7 region, we 
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calculated the root mean square fluctuations (RMSF) along the exit trajectory. 

As seen in Figure 3c, the motion in this region is considerably larger than in 

the rest of the protein.  

 
Figure 3. Ligand exit pathway for the MR:Dexa complex. (a). The ligand 

center of mass is highlighted in blue beads, all oher atoms of the ligand being 

shown in transparent spacefill. (b) Detail of the backbone rearrangement 

along the exit pathway. The MR:Dexa and MR:dibC X-ray structures are 

shown in light and dark blue, respectively, with dexamethasone in the LBP in 

magenta. Three cartoon snapshots from the exit simulations are shown in 

green. (c) Residues RMSF fluctuations against the average structure along the 

MR:Dexa exit pathway plotted for each residue. The dotted line denotes the 

average RMSF across the LBD. Helices 6 and 7 are marked with green shade. 

 
Supplementary Figures 3, 4 and 5 show the equivalent exit pathways 

for the GR:Dexa, MR:dibC, and GR:dibC. Based on the complete set of 

ligand dissociation simulations it is clear that both MR and GR have the same 

ligand exit pathway. In addition, while ligand exit is associated with similar 

protein motions, the fluctuations in the H6-H7 region are significantly larger 

for MR than for GR. This is in agreement with the idea that GR would require 

smaller rearrangements as the receptor is more open to begin with. 
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Ligand association 

 
To investigate ligand entry into MR and GR, we randomly placed 

dexamethasone in the bulk solvent and released it to freely probe the protein 

surface. For each receptor we performed five runs with 64 independent 

trajectories over 48 hours. Each run yielded 1-2 trajectories where the ligand 

entered the LBP. In all runs the ligand is free to move without any predefined 

search direction.  

Figure 4a shows the evolution of the distance between the ligand’s 

center of mass and the binding site (obtained from the ligand’s center of mass 

at its crystal bound structure) for one of the MR:Dexa runs. When studying 

the distance progression in detail, it is clear that most of the trajectories 

explore the receptor surface with some excursions into the bulk solvent. 

However, the blue and red trajectories enter the LBP at steps ~50 and ~210, 

respectively. Figure 4b shows the ligand center of mass along these 

trajectories superimposed on the initial protein structure with the entry to the 

LBP denoted by a surface representation. Supplementary Movie shows the 

simulation of ligand entry into MR where dexamethasone was initially placed 

in the bulk solvent. 

While the entry along the blue trajectory is relatively fast, the red 

trajectory demonstrates the non-biased nature of the simulation, probing a 

large portion of the receptor surface before finding the entrance pathway. In 

keeping with the ligand escape simulations for all runs in both systems, 

trajectories entering the LBP pierce the protein surface at the H3-H7-H11 

junction (the corresponding figure for a GR:Dexa run is shown in 

Supplementary Fig. 6). 
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Figure 4. Unbiased simulation of dexamethasone entering MR. (a) Each 

line represents the ligand’s RMSD (heavy atom) to the bound crystal ligand 

for a different trajectory. Two of the trajectories represented by blue and red 

lines enter the LBP at step 52 and 214, respectively.(b) The ligand center of 

mass for the two trajectories that enter the LBP are shown as red and blue 

spheres. The region where the ligands enter the LBP is emphasized as a 

surface with two ligands shown in stick representation.  

 
While the mutants used in the X-ray structures did not influence the 

simulations significantly, removal of co-factor peptide at the AF-2 resulted in 

larger fluctuations in both the helix 12 and the H3-H7-H11 junction along the 

exit and entrance trajectories; the ligand migration pathway remained 

unchanged. Supplementary Figure 7 shows in detail the larger amplitude 

motion of helix 12 in absence of the co-regulator peptide.  

Active site ligand refinement and binding free energy. 

 
Once the entrance path to the MR LBP had been located, we refined the 

free search with local enhanced sampling to obtain a precise pose for the best 

binder. This procedure does not add any bias in the ligand search direction, 

but it limits the sampling to the region around the entrance point (typically 10-

15 Å). Figure 5a shows the interaction energy profile plotted against the 

ligand (heavy atom) RMSD to the bound crystal structure for the MR:Dexa 

refining process (400 trajectories). The lowest binding energies are derived 

from poses located within 0.75 Å RMSD of the X-ray ligand conformation. 

The sampling places dexamethasone in the accurate orientation with the A-

ring 3-keto moiety pointing toward the Arg817
MR

-Gln776
MR

 pair from helices 

5 and 3, and the D-ring hydroxyacetyl approaching the Asn770
MR

 on the N-

terminal half of helix3 (Fig. 5b). Studying the protein-ligand interaction 

energy plot in more detail (Fig. 5a), it is interesting to note that the surface 
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exploration exhibit a local minima at about 12Å from the LBP. In the crystal 

structure of GR:Dexa and GR:dibC, this site is occupied by a steroid-like 

CHAPS molecule that is part of the crystallization condition (Supplementary 

Fig. 8). In addition, for MR a non-steroidal antagonist has been observed at 

this position (27. Hasui .2011). It is tempting to speculate that it may 

correspond to a peripheral binding site at the H3-H7-H11 junction and that the 

energy barrier located at the 11-12Å segment reflects the energy cost 

associated with the surface crossing event. 

Since sampling along the local refinement process is fast (each 

trajectory running in 12-24 hours in a single core), it facilitates running 

hundreds of trajectories. Based upon Markov State Model (MSM) analysis, 

we used this data to calculate the absolute binding free energies for MR:Dexa 

and MR:dibC (22. Takahashi . 2014). While absolute values might be slightly 

shifted due to the absence of an exhaustive surface/bulk exploration, relative 

values should be in reasonable agreement, because both ligands share entry 

point and binding site. Figure 5c shows a 2D projection of the potential mean 

field (PMF) obtained for MR:Dexa along the 400 refinement trajectories. The 

red area corresponds to the bulk exploration whereas the global minimum, 

shown in blue, corresponds to ligand positions near the crystallographic 

structure, at 0.75 Å heavy atom ligand RMSD as seen in Figure 5a. 

Integration of the PMF volume at the active site gives a binding free energy of 

-7.5 kcal/mol for dexamethasone and -9.3 kcal/mol for dibC. The difference in 

binding free energy of 1.8 kcal/mol is in quantitative agreement with the 

experimental difference of 2.09 kcal/mol (derived from the Ki values of 6.3 

nM for dexamethasone and 0.18 nM for dibC). 
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Figure 5. Refined ligand binding simulations and estimated binding free 

energy (a) The protein-ligand interaction energy (kcal/mol) plotted against 

the ligands (heavy atoms) RMSD to the bound crystal along the 400 

refinement trajectories in MR:Dexa. (b) MR (blue) in complex with 

dexamethasone (magneta) overlaid on the lowest interaction energy structure 

after the refined exploration (Kempf, Marsh et al.). (c) X-Z 2D projection of 

the PMF obtained in the MSM analysis for the same process. 

 

The evolutionary view 

 
The ligand entry and exit mechanism establishes a functional role for 

helices 6 and 7 as a gatekeeper. As GR is constitutively open due to the 

Ser843
MR

 to Pro637
GR

 substitution, one would expect evolution to leave a 
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differential signature on the protein sequences. Provided that the residues are 

not involved in any direct downstream protein-protein contacts and that the 

influence of the potential peripheral binding site is minimal, we hypothesized 

that the H6-H7 amino-acid sequence in GR should be less constrained, 

because ligand entry does not require a significant rearrangement of this 

region. In contrast, the other steroid receptors must be able to efficiently 

switch between a more open and closed conformation. To explore this, 

sequence clusters for each receptor were downloaded from the OrthoDB 

database (64. Waterhouse 2013) by searching for the human gene and 

selecting the vertebrate subset. The sequences for each receptor were then 

aligned using ClustalX version 2.0 (65. Larkin 2007). Each position was then 

assigned a variability score based upon the number of different amino acids at 

that position across the various species (i.e. if one position is perfectly 

conserved in all species it would get a score of 1). For each receptor the 

average variability score of the H6-H7 region was then compared to the 

average score of the LBD (Table 1). 

 GR MR PR AR ERα ERβ 

LBD 2.2 2.1 2.1 2.5 1.9 3.6 

H6-H7 4.0 1.8 2.8 3.2 2.4 3.3 
Table 1. Variability score across the steroid receptor family. The residues 

included in calculating the average for the LBD are selected based on a 

structural overlay of the receptor family. The H6-H7 region was defined as 

the respective sequence corresponding to Glu837
MR

-Leu848
MR

, selected based 

upon a structural overlay.  

 
In this broad selection of receptor sequences from different species, it is 

encouraging to see that GR has the highest variability score in the H6-H7 

region relative the average across the receptor LBD. However, it is important 

to note that the initial selection from the OrthoDB yields different number of 

species sequences for the various receptors.  

To be able to compare the variability across the receptors in better 

detail, we then looked at the species overlap of GR with each of the other 

receptors in turn. The species that were present for both receptors were 

selected. However, sequences that exhibited less than 20% homology to the 

human H6-H7 region were filtered away for each receptor, to remove all 

dubious sequences from the comparison. Using this set a new variability score 

was calculated. All receptor sequences were overlaid on the GR sequence 
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using X-ray structures to define the equivalent positions. Finally we plotted 

the variability score against the amino acid sequence for all receptor pairs 

(Fig. 6). To reduce the noise in the graphs, we averaged the variability scores 

for each position using a 5 amino acid sliding window. 

 
Figure 6. Evolutionary conservation of the LBD for the steroid receptors.  

The graphs show average normalized and smoothed (sliding window of 5 AA) 

amino acid variability score for pairwise comparisons of AR, ERα, ERβ, MR, 

PR (blue) vs GR (red) plotted against the GR amino acid sequence. High 

variability scoresindicate less conservation. Helices 1-12 are demarked using 

vertical bars (green: H6-7; blue: H10-11; gray: all others;).  

 
Figure 6 confirms that important structural elements of the receptors are 

relatively conserved. For example, the AF-2 surface (H12, H4 and the c-

terminal end of H3), which is directly involved in the protein-protein 
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interaction transmitting the ligand activation signal, shows a consistently low 

variability score for all receptors. However, H6-7 shows greater variability in 

GR relative to all other receptors. This supports our hypothesis that this region 

has a differential selection pressure across the family. Interestingly, GR also 

has a segment of higher variability near the C-terminal end of H11. This 

region sits directly across from the N-terminal end of H7 (Fig. 1c) and it is 

conceivable that amino acid sequences of these regions may well co vary with 

each other. Finally, GR appears to be more conserved than the other receptors 

near the loop between H9 and H10. The functional rationale behind this 

observation remains to be determined.   

 

Discussion  

 
The fundamental role and mechanism of action of steroid receptors 

have been studied extensively over several decades, yet the details of the 

ligand recognition and binding mechanisms have remained unclear. 

 

A conserved structural plasticity 

 
By comparing the structures of MR and GR in complex with 

dexamethasone and dibC, we identified an intrinsic capacity to open up the 

H6-H7 region. While the GR:Dexa structure adopts an open conformation 

compared with the MR:Dexa complex, the MR:dibC structure is able to 

extend the ligand binding pocket significantly and adopt a structural state akin 

to the GR:Dexa arrangement. The GR:dibC complex shows that the local 

flexibility can be pushed even further. The structural differences between GR 

and MR have been attributed to the change from Ser843
MR

 to Pro637
GR

 (24. 

Li 2005). Comparing the MR:Dexa structure with MR:dibC, Ser843
MR

 is 

shifted from an internal position in the ligand binding pocket to a position at 

the protein surface at the tip of helix 7. Recent data suggests that 

phosphorylation of this residue affects both ligand binding and receptor 

translocation into the nucleus (29. Shibata 2013). The structural changes 

observed here explain how the receptor may use the local plasticity to make 

Ser843
MR

 available for modification.  

 
Studies of the ancestral corticoid receptor, AncCR, revealed that the 

Ser106
AncCR

 (corresponding to Ser843
MR

) to Pro637
GR

 switch was a 

permissive mutation that facilitated a subsequent Leu111
AncCR

 (corresponding 
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to Leu848
MR

) to Gln642
GR

 mutation (30. Bridgham Science 2006). This is an 

example of conformational epistasis and has played an important role for the 

evolution of the GR hormone selectivity (30. Bridgham Science 2006, 31. 

Ortlund Science 2007). As both GR and MR demonstrate a similar capacity to 

form the open conformation, it is likely that the AncCR also exhibited the 

same flexibility. Hence, as GR evolved from AncCR, the Ser
AncCR

 to Pro637
GR

 

mutation would primarily serve to select a subset of pre-existing structural 

states, rather than creating a completely new arrangement. The importance of 

conformational selection over induced fit has provided mechanistic insights 

for several biological systems (32. Changeux Nature 2013); it is conceivable 

that evolution through mutation operates in an analogous way.  

The structure-activity relationship (SAR) of 17-α substituted PR, AR 

and ER ligands (35. Andrieu 2015, 56. Nettles EMBO 2007) to the different 

steroid receptors suggests that plasticity near the H3-H7-H11 interface is 

conserved in the steroid receptor family. Indeed, the PCA using all structures 

in the public domain, confirms that the ability to rearrange the H6-H7 region 

is one of the most prominent features across the family. However, in the 

bound state none of the endogenous ligands exploit this region. We propose 

that the flexibility near the interface of H3-H7-H11 has been conserved 

throughout evolution due to its essential role in the ligand binding event. 

 

The ligand entry and exit pathways 

 
We performed two sets of unbiased simulations exploring both ligand 

binding and dissociation using the protein−ligand sampling code PELE (21. 

Madadkar-Sobhani 2013). In all simulations, entry and exit trajectories pass 

through the H3-H7-H11 junction. Protein conformational changes along these 

trajectories reflect the rearrangements observed when comparing the closed 

versus the open crystal structures of MR and GR. Specifically, the outward 

bending motion of the H6-H7 region is qualitatively similar to the observed 

perturbations caused by the large 17-α cyclohexyl substituent in the dibC 

complex structures. These results indicate that large-amplitude protein 

motions of helix 12, as suggested by apo and holo crystallographic nuclear 

hormone receptors (37. Moras 1998, 38. Yen 2001, 39. Brzozowski 1997), are 

not required for ligand entry. Instead, the conformation of the LBD is likely to 

resemble the ligand bound agonistic conformations of the receptors during the 

ligand entry step (25. Capelli 2013, 40. Batista 2013). We confirm that small 

scale vibrations combined with a structural rearrangement of H6-H7 region 

are enough to identify an energetically favorable pathway to allow the ligands 
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to diffuse into the LBP. In contrast to other modeling studies using biased 

protocols, we do not observe multiple ligand entry or exit pathways (25. 

Capelli 2013, 41. Sonoda 2008, 42. Aci-Sèche 2011). It is conceivable that 

even though there is likely to be cross-talk between the different regions of 

the receptors, physically separating the ligand entry plasticity from the 

structural modulation of the AF-2 surface, would provide greater freedom to 

create a more versatile genomic response. 

 
With the modeling results in hand, we could ascribe a mechanistic role 

to the H6-H7 plasticity. Further investigations of the ancestral receptors 

revealed that the AncCR ligand selectivity profile could not be recovered with 

direct reversal of key amino acids of GR to their ancestral states, because of 

additional epistatic mutations of residues near H7. (33. Bridgham Nature 

2009). This is in agreement with our hypothesis that since GR has a 

constitutively open structure, it is probably more forgiving for mutations in 

the H6-H7 area. Attempting to reverse evolution from GR to AncCR would 

enforce more specific constraints on H6-H7 dynamics for functional ligand 

entry, because the new protein must be able to efficiently switch in between 

the open and the closed state. This is corroborated by our findings that the 

mutational frequency of the GR H6-H7 region is significantly higher than for 

the corresponding region in the other steroid receptors. 

 
It is firmly established that steroid receptors depend on a number of 

chaperone and co-chaperone proteins for correct folding capable of high-

affinity hormone binding (44. Grad 2007) . Although the ligand entry function 

is likely to have evolved before the synergies with chaperone proteins, these 

proteins will nevertheless limit the access to the receptors and thereby form 

boundary conditions for any ligand entry hypothesis. Mutation and peptide 

competition studies suggest that Hsp90 is interacting at the AF-2 surface (45 

Ricketson 2007, 46. Fang 2006). In addition, co-chaperones have been 

mapped to interact with regions surrounding the C-terminal end of H1 and the 

N-terminal end of H3 (48. Caamaño 1998), and with the loop that connects 

them (49. Cluning 2013). Taken together, these observations contradict the 

idea that ligands would enter the LBP through a structural rearrangement of 

H12 (37. Moras 1998, 38. Yen 2001, 39. Brzozowski 1997). In our studies, 

the ligand entry trajectory was not affected by removal of co-regulator 

peptide, which allowed H12 to move more freely. While none of the 

suggested chaperone and co-chaperone interaction surfaces overlap with our 
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binding trajectory, the proximity provides a good rationale for why chaperone 

binding could directly facilitate ligand association.  

The energy landscape 

 
After the free ligand exploration of the MR and GR surfaces identified 

a common passage from the solvent into the LBP, a local enhanced sampling 

of the MR binding event allowed a detailed view of the binding energy 

landscape associated with ligand entry. The simulations result in productive 

binding with the lowest protein-ligand interaction energy having an RMSD of 

~0.75 Å from the X-ray complex (Fig. 5b). Careful analysis of the binding 

energies along the entry trajectory revealed a local minima ~12 Å away from 

the LBP. This site overlaps with small molecule binding observations in both 

MR and GR X-ray structures. While the peripheral binding site could be a 

crystallization artifact, our simulations indicate a local minimum  functioning 

as a pre-docking site, increasing the local concentration of the ligands near the 

access channel to the LBP. The exhaustive local sampling also facilitated 

estimation of the relative binding free energies of dexamethasone and dibC to 

MR. While we have only investigated a limited set of compounds, these 

values show remarkable agreement with experimental values; accurate 

prediction of relative binding free energies is a topic of great interest to the 

pharmaceutical industry.  

 
The tremendous growth in the number of available X-ray structures 

from increasingly more advanced protein classes and complexes provides a 

plethora of snapshots of molecular mechanism in action. However, to bridge 

the gap to detailed mechanistic insights, and to establish evolutionary 

relationships between different functions, orthogonal data from biochemical 

experiments and in silico modeling are required. Based on information from 

several X-ray structures, unbiased simulations and bioinformatic analysis, we 

have uncovered the ligand binding mechanism into the occluded LBP of 

steroid hormone receptors. While it is difficult to derive any mechanistic 

details from primary protein sequences, the ligand binding mechanism 

enabled us to focus in on the H6-H7 region and to discover that the 

evolutionary pressures to maintain the ligand entry function had left a 

differential fingerprint on the amino acid sequences for different species 

across the steroid receptor family.Ligand binding to the steroid receptors 

marks the first step in a chain of events that in the end triggers both broad 

genomic and non-genomic mechanisms. Understanding the details of ligand 

association and dissociation may facilitate the rational design of molecules 
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that exploit the plasticity of the entry and exit processes to a greater extent. 

This could yield ligands with different modes of action, such as antagonists 

that block nuclear translocation or agonists with extended receptor occupancy 

and a prolonged pharmacological response. 

 

 

Methods  
 

Protein expression and purification 

 

GR:Dexa 

 
The cDNA sequence encoding the human glucocorticoid receptor 

ligand binding domain (NR3C1; aa500-777, GR-LBD) with three introduced 

mutations N517D, F602S, C638D and an N-terminal 6-histidine tag followed 

by a thrombin cleavage site was cloned into a pFastBac-HTb vector (Life 

Technologies). Recombinant baculovirus was generated using the Bac-to-Bac 

expression system (Life Technologies) and High Five cells (Life 

Technologies)  were infected followed by suspension culture in Express Five 

medium (Gibco) for 48h at 27C, the last 24h in the presence of 10 M 

dexamethasone, after which cells were collected by centrifugation. 

All protein purification steps were performed at 4°C. Cells were lysed 

in buffer A (50 mM Tris pH 8.0, 2.5 mM DTT, 1% CHAPS, 50 M 

dexamethasone, 10% glycerol) supplemented with Complete EDTA-free 

protease inhibitor cocktail (Roche) followed by affinity purification using Ni-

NTA beads (Qiagen). Protein was eluted in buffer A supplemented with 150 

mM NaCl and 300 mM imidazole, and subjected to size exclusion 

chromatography using a HiLoad 26/60 Superdex 200 gel filtration column 

equilibrated in buffer A. Five-fold molar excess of a TIF2 peptide, 

KENALLRYLLDK (Innovagen) was added, the N-terminal 6-histidine tag 

was removed using thrombin-agarose (Sigma) and subsequently the free 6-

histidine tag was removed. The protein was thereafter passed over a Q 

Sepharose fast-flow ion-exchange column (GE Healthcare) equilibrated in 

buffer A and stored at −80 °C. Approximately 5.4 mg protein was obtained 

from 10 L High Five cells. 
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GR:dibC 

 
A pFastBac (Invitrogen) construct encoding human GR-LBD (amino 

acids 500-777) with the mutations N517D, V571M, F602S, C638D and an N-

terminal, thrombin cleavable 6-His tag was used to generate baculoviruses in 

Sf9 cells (Invitrogen). GR-LBD encoding viruses were used to infect High 

Five cells (Invitrogen) at a density of 2-3x10E6 cells/ml and a MOI of 3 in a 

Wave Bioreactor at 27
o
C. 24 hours post-infection, dexamethasone was added 

to a final concentration of 10 μM. The cells were harvested by centrifugation 

48 hours post-infection, washed in PBS and stored at -80°C until lysis.  

Cells were resuspended in lysis buffer (50 mM Tris-Cl pH 8.0, 10% 

glycerol, 1% CHAPS, 2.5 mM DTT, Complete EDTA-free protease inhibitor 

cocktail (Roche) and 50 μM dexamethasone) and lysed by 5x1 min passes in a 

polytron homogeniser. The cell-lysate was clarified by centrifugation at 18500 

g for 90 minutes and batch-bound to Ni-NTA Superflow (Qiagen) for 1.5 

hours at 4°C. The IMAC resin was packed in a column, washed with wash 

buffer (50 mM Tris pH8.0, 60 mM NaCl, 30 mM imidazole, 10% glycerol, 

1% CHAPS, 2.5 mM DTT and 50 μM dexamethasone) and GR-LBD was step 

eluted with elution buffer (50 mM Tris pH 8.0, 30 mM NaCl, 300 mM 

imidazole, 10% glycerol, 1% CHAPS, 2.5 mM DTT and 50 μM 

dexamethasone).  

The eluate was loaded on a HiLoad 26/60 Superdex 200 size exclusion 

column equilibrated in gel filtration buffer (50 mM Tris-Cl pH 8.0, 10% 

glycerol, 1% CHAPS, 2.5 mM DTT and 50 μM dexamethasone). GR 

containing fractions were pooled and a 3-fold excess of co-activator NR-box 

peptide (KENALLRYLLDK, human NCoA2, residues 740-751) was added. 

The His-tag was cleaved over night at 4
o
 C with Thrombin-agarose (Sigma) 

and removed by negative IMAC using Ni-NTA. The protein was finally 

polished through Q Sepharose FF (GE Healthcare) equilibrated in gel 

filtration buffer, flash-frozen in liquid nitrogen and stored at -80
o
C. 

MR 

 
Human MR-LBD (amino acids 735-984) with the mutations C808S, 

C910S (and S810L in the case of dibC), an N-terminal, TEV cleavable 6-HN 

tag and a C-terminal thrombin cleavable co-activator peptide 

PQAQQKSLLQQLLTE (residues 1427-1441 of the Nuclear Receptor 
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Coactivator 1 (NCoA1)) was codon optimized and cloned into pET24a(+). 

Recombinant human MR-LBD was expressed in Escherichia coli BL21 

StarTM (DE3) (Invitrogen) cells. Cells were grown in terrific broth (TB) at 

37°C until OD600=0.5-1.0, chilled on ice for 30 minutes and 100 μM of 

dexamethasone (Alfa Aesar) or dibC was added. Cells were shaken at 16°C 

for 30 minutes before protein production was induced using 0.1 mM isopropyl 

β-D-thiogalactopyranoside (IPTG) for an additional 24-48 hours.  

After harvest, cells were resuspended in lysis buffer (30 mM Na-Hepes 

pH 7.5, 150 mM NaCl, 20 mM imidazole, 100 mM arginine-Cl, 10% glycerol, 

1% CHAPS, 1 mM TCEP) containing 20 μM of respective ligand, EDTA-free 

Complete protease inhibitor cocktail (Roche) and 0.05 g/ml of CelLytic™ 

Express (C1990, SIGMA). Cells were lysed by rotation at room-temperature 

for 15 minutes. The lysate was cleared by centrifugation at 48000 g for 20 

minutes and loaded onto Ni-Sepharose FF (GE Healthcare) equilibrated in 

lysis buffer. After washing, protein was step eluted by the addition of one 

column volume (CV) of lysis buffer containing 0.5 M Arginine-Cl followed 

by 5 CV of elution buffer (30 mM Na-Hepes, pH 7.5, 150 mM NaCl, 500 mM 

imidazole, 500 mM arginine-Cl, 10% glycerol, 1% CHAPS, 1 mM TCEP, 20 

μM of respective ligand). Size exclusion chromatography was performed on a 

HiLoad Superdex 200 column (GE Healthcare) equilibrated in 20 mM Na-

Hepes pH 6.7, 150 mM NaCl, 0.5 M arginine-Cl, 10% glycerol, 0.1% 

CHAPS, 1 mM TCEP and 2 μM dexamethasone or dibC. 

Finally, MR-LBD co-expressed with dexamethasone was diluted 10x in 

20 mM Tris-HCl pH 8.0, 10 mM CaCl2, 20 μM dexamethasone, cleaved with 

TEV protease and Thrombin CleanCleave Kit (SIGMA), purified by reverse 

IMAC on Ni-Sepharose FF and concentrated to 15 mg/ml. MR-LBD co-

expressed with dibC was diluted 15x in 10 mM Tris-HCl pH 8.5, 20 μM dibC, 

1mM TCEP and concentrated to 7 mg/ml. 

Crystallization  

 

GR:Dexa 

 
A tube with 1.0 mg of GR(500-777)N517D, F602S, C638D was thawed 

and washed three times in the concentrator tube with 3.5 ml of 10 mM Tris 

pH 8.5, 2.5 mM DTT, 45μM dexamethasone. A fivefold molar excess of co-

activator NR-box peptide (KENALLRYLLDKDD, human NCoA2, residues 

740-753) was added and the complex was concentrated to 9 mg/ml.  
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Crystals were grown at 4°C in hanging drops using 1 μl of protein and 

1 μl of well solution (10% PEG8000, 10% ethylene glycol and 0.1 M Hepes 

pH 7.5). Crystals were frozen in liquid nitrogen with 20% ethylene glycol as 

cryo protectant prior to data collection.  

GR:dibC 

 
A tube with 5.0 mg’s of GR(500-777)N517D, V571M, F602S, C638D 

was thawed and concentrated to about 1.5 ml. The protein was washed three 

times in the concentrator tube with 10 ml of 10 mM Tris pH 8.5, 2.5 mM DTT 

(buffer B) to remove excess of dexamethasone and thereafter diluted to a final 

volume of 6 ml. dibC was added to a final concentration of 0.25 mM to boost 

ligand exchange prior to dialysis. Dialysis was performed using two Slide-A-

Lyzer dialysis cassettes in a beaker containing buffer B and 60 μM of dibC. 

Dialysis solution was exchanged after 20, 28 and 46 hours before harvesting 

the sample. The protein was concentrated to 1 ml and buffer was exchanged to 

fresh buffer B using a NAP10 column. A twofold molar excess of co-activator 

NR-box peptide (KENALLRYLLDKDD, human NCoA2, residues 740-753) 

was added and the complex was concentrated to 9 mg/ml.  

Crystals were grown at 4°C in hanging drops using 2 μl of protein and 

1 μl of well solution (10% PEG8000, 20% ethylene glycol and 0.1 M Hepes 

pH 7.5). Crystals appeared as rod like crystals after 1-2 days but continued to 

grow for one to two weeks. Crystals were frozen in liquid nitrogen without 

any cryo protectant prior to data collection.  

MR:Dexa 

 
Crystals of MR-LBD co-expressed and purified with dexamethasone 

were grown by sitting drop vapor diffusion in 30% PEG4000, 0.1 M NaCl, 

0.2 M Pipes pH 7.4. The crystals appeared after one day and grew to its full 

size after three days. 

Crystals were cryo-protected by transfer to a cryo solution of well 

solution supplemented with 20% glycerol and flash frozen in liquid nitrogen 

prior to data collection.  
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MR:dibC 

 
Crystals of MR-LBD co-expressed and purified with dibC were grown 

by sitting drop vapor diffusion in 18% PEG4000, 0.14 M LiSO4, 85 mM Tris 

pH 8.5, 15% glycerol. The crystals appeared after ten days and continued to 

grow for several weeks. Crystals were flash frozen in liquid nitrogen prior to 

data collection.  

Data collection and Structure determination 

 
The MR:Dexa data were collected using an Rigaku FRE rotating anode 

(wavelength 1.54 Å). The GR:Dexa data were collected at the ID14:4 beam 

line at the ESRF (wavelength 0.94 Å). The MR:dibC and GR:dibC data were 

collected at the ID29 beam line et the ESRF (wavelength 0.98 Å). All data 

sets were collected from a single crystal at 100K. The MR data sets were 

integrated with XDS (57. Kabsch 2010) and the GR data sets were integrated 

with Mosflm (58. Leslie 2007). All data sets were merged with SCALA (59. 

Evans, 2006) from the CCP4 suite (60. Collaborative Computational Project, 

Number 4). The MR and GR structures were solved with PHASER (61. 

McCoy 2007) using PDB entry 2AA2 and 1M2Z as starting models, 

respectively. The structures were refined using the BUSTER (62. BUSTER)  

and manual rebuilding using Coot (63. Emsley 2004). The GR:Dexa structure 

had 1 (0.39%) Ramachandran outlier while the other structures did not have 

any outliers. All figures were prepared using PyMOL (www.pymol.org). 

Crystallographic coordinates and structure factor amplitudes have been 

deposited into the protein data bank (MR:Dexa 4uda , MR:dibC 4udb , 

GR:Dexa 4udc , GR:dibC 4udd). 

 

Mineralocorticoid receptor ligand competition binding assay 

 
The human mineralocorticoid receptor ligand binding domain 

(NR3C2; aa729-984) with an N-terminal maltose binding protein (MBP) tag 

was expressed using the Bac-to-Bac expression system (Life Technologies). 

High Five cells were co-infected with recombinant P23 co-chaperone 

baculovirus followed by suspension culture in Express Five medium (Gibco) 

for 48h at 27C. Cells were lysed in lysis buffer (10 mM Tris-HCl pH 7.4, 0.5 

mM EDTA, 2.5 mM DTT, 10% glycerol, 20 mM Na2MoO4, Complete 

protease inhibitor (Roche)) followed by centrifugation and the supernatant 

was stored at -80°C. Compound binding was assessed using a ligand 

competition binding scintillation proximity assay (Vangrevelinghe, 

http://www.genecards.org/cgi-bin/carddisp.pl?gene=NR3C2#search
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Zimmermann et al.). Compounds were incubated with MR-High Five cell 

lysate (7g/ml) and 5 nM 
3
H-aldosterone (Perkin Elmer (NET419250UC) in 

assay buffer (10 mM Tris-HCl, 0.5 mM EDTA, 20 mM Sodium molybdate 

dehydrate, 10 % Glycerol, 0.1 mM DTT) for one hour before addition of 2.5 

mg/ml anti-rabbit SPA PS beads (Perkin Elmer RPNQ0299) and 2 µg/ml 

rabbit anti-MBP antibodies (Abcam ab9084) followed by incubation at room 

temperature for 8 hours before detection of signal using a LeadSeeker 

imaging system (GE Healthcare). 

 

Sequence homology analysis 

 
Sequence clusters for each receptor were downloaded from the 

OrthoDB database (64. Waterhouse 2013) by searching for the human ENS 

gene ID and selecting the vertebrate subset. For each receptor, the sequences 

were filtered to remove sequences with a length two standard deviations 

below the average or that contained more than 100 ‘X’ (unknown amino 

acids). The sequences for each receptor were then aligned using ClustalX 

version 2.0 (65. Larkin 2007), then further filtered to only keep sequences 

with an intact H6-7 region (max 1 indel or ‘X’ and >= 20% homology to the 

human H6-7 sequence). In order to remove bias stemming from the inclusion 

of sequences from different species, subsets were generated where the same 

species were included for pairs of GR with either of (AR, ERα, ERβ, MR, 

PR). The paired subsets were realigned and the resulting alignments were 

analyzed and scored using custom perl scripts as follows; for each position in 

the alignment, a conservation score was calculated by counting the number of 

different types of amino acids (i.e. if an alignment position contained 5F, 3Y 

and 9L, then the score is 3). Averages were calculated for the entire protein 

and for specific subsets thereof, including DBD, LBD and the H6-7 loop 

region using the coordinates from Table 1. 

 

PELE simulations  

 

Systems setup 

 
Initial coordinates for GR and MR were obtained from the crystals 

presented here. Three different models were prepared for studying the ligand 

exit, entry and protein rearrangement: 1) the crystallographic GR (F602S and 

C638D) and MR (C808S and C910S) mutants, 2) the wild type by reverting 

the mutations with the maestro software, and 3) the wild type in absence of 
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the peptide cofactor. All structures were preprocessed with the protein 

preparation wizard available in the Schrödinger package (50. Madhavi 2013) 

adding hydrogen atoms and optimizing the hydrogen bond network. Final 

visual inspection ensured that the predicted states were coherent with the 

system under study and maximized hydrogen bond formation.  

 

PELE sampling 

 
Long-timescale dynamics associated with the free ligand diffusion are 

computationally feasible with PELE (12. Borrelli 2005. 51. Benjamin 2012). 

PELE uses a combination of a Monte Carlo approach with protein structure 

prediction methods. Three main steps define the algorithm: 1) protein 

backbone and ligand perturbation, 2) specific side-chain sampling, and 3) 

global minimization. Ligand perturbations involves a random rotation and 

translation, while protein perturbations is based on the displacement of α-

carbon according to an anisotropic network model (ANM) (52. Bahar 1998). 

The side-chain sampling step involves arranging all side chains adjacent to the 

ligand within a predefined distance of 6 Å of the ligand’s center of mass. The 

last stage involves the minimization of a region including, at least, all residues 

local to the atoms involved in the perturbation and side-chain steps. Finally, 

the new structure is accepted or rejected based on a Metropolis test. The 

program uses an OPLS (Optimized Potentials for Liquid Simulations) all-

atom force field with an implicit surface-generalized Born (SGB) continuum 

solvent model. 

 

Simulation protocols 

 
Ligand exit. From the crystallographic prepared models, the exit 

protocol included random ligand’s translations of 0.8 Å and rotation of 0.2 

radians. The backbone perturbation included the lowest 6 ANM modes with 

maximum displacements of each alpha carbon up to 1Å. The perturbed mode, 

randomly selected, was updated every 6 Monte Carlo steps and included a 

40% mixing of the remaining 5 modes. The ligands displacement was 

randomly selected at each step. A spawning criteria of 4Å was used: any 

ligand whose center of mass is 4Å behind the structure with the center of mass 

farthest coordinates (with respect to the initial position), in any direction, will 

abandon its position and continue the execution with the coordinates from the 

leading (farthest) one. Thus, all processors search collectively, with no bias in 

direction, for an effective escape path. Simulations were finished after the 
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ligand’s solvent accessible area (SASA) was larger than 0.5, with typical 

simulations times of 10-20 CPU hours. 

Ligand entrance. After convenient preparation of the protein structure 

an initial simulation was done to create a set of 20 independent initial ligand 

where ligand’s coordinates occupy randomly distributed sites over the protein 

surface. Having these structures as initial states, free search simulations were 

performed with runs of 64 independent simulations for 48 CPU hours. Ligand 

perturbation included equally probable translations of 3.0Å/1.0Å and rotation 

of 0.25/0.05 radians. The backbone perturbation was the same as in the exit 

procedure. Ligands displacement direction was randomly updated every 6 

steps. Doing so, we guarantee that trajectories explore the entire surface. 

Furthermore, keeping the perturbation direction for 6 steps is necessary to 

observe entrance events in difficult cases (buried active sites). We should 

emphasize that no predetermined search direction is taken and ligand 

perturbations are completey random. Furthermore, in the entrance protocol all 

processors search independently (no spawning criteria was used). 
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Supplementary Material 

 

Ligand recognition in steroid hormone receptors: from   

conserved plasticity to binding mechanism 

Karl Edman, Anders Hogner, Ali Hussein, Magnus K Bjursell, Anna 

Aagaard, Stefan Bäckström, Cristian Bodin, Lisa Wissler, Tina Jellesmark-

Jensen, Anders Cavallin, Ulla Karlsson, Ewa Nilsson, Daniel Lecina, Ryoji 

Takahashi, Christoph Grebner, Matti Lepistö & Victor Guallar 

 

 
Supplementary Figure 1. Comparision of the complex structures of the 

MR:Dexa and MR:dibC. (a) Stereo view of the 2mFo-dFc density map of 

the  MR:Dexa LBP.  (b) The structure of MR (light blue) in complex with 

dexamethasone (magenta) superimposed on the MR structure (dark blue) in 

complex with dibC (white). The steroid template overlays nearly perfectly 

(RMSD 0.28Å) with all hydrophilic interactions conserved. 
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Supplementary Figure 2. Principle component analysis for all X-ray 

structures of the steroid hormone receptors (AR, ER, GR, PR, and MR) 

in the public domain (PDB). Graphs showing the amplitude of the top six 

modes from the PCA of the structures in the public domain for AR (a), ER 

(b), GR (c), PR (d) and MR (e). The H6-H7 sequence is highlighted in green. 

AR and MR exhibits the smallest variation in the H6-H7 region in the public 

domain structures.  
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Supplementary Figure 3. Ligand exit pathway for the GR:Dexa complex. 

(a) The ligand center of mass is highlighted in blue beads all other atoms of 

the ligand being shown in transparent spacefill. (b) Detail of the backbone 

rearrangement along the exit pathway. The GR:Dexa and GR:dibC X-ray 

structures are shown in light yellow and orange, respectively. Three snapshots 

from the exit simulations are shown in green and a dexamethasone ligand 

from the exit trajectory is shown in magenta. (c) Residues RMSF fluctuations 

against the average structure along the GR:Dexa exit pathway where helices 6 

and 7 are marked with green shade.  
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Supplementary Figure 4. Ligand exit pathway for the MR.dibC complex. 

(a) The ligand center of mass is highlighted in gray beads, all other atoms of 

the ligand being shown in transparent spacefill. (b) Detail of the backbone 

rearrangement along the exit pathway. The MR:dibC X-ray structures is 

shown in dark blue. Three snapshots from the exit simulations are shown in 

green and a dibC ligand from the exit trajectory is shown in white. (c) 

Residues RMSF fluctuations against the average structure along the MR.dibC 

exit pathway where helices 6 and 7 are marked with green shade.  
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Supplementary Figure 5. Ligand exit pathway for the GR:dibC complex. 

(a) The ligand center of mass is highlighted in gray beads, all other atoms of 

the ligand being shown in transparent spacefill. (b) Detail of the backbone 

rearrangement along the exit pathway. The GR:dibC X-ray structures is 

shown in  orange. Three snapshots from the exit simulations are shown in 

green and a dibC ligand from the exit trajectory is shown in white. (c) 

Residues RMSF fluctuations against the average structure along the GR:dibC 

exit pathway where helices 6 and 7 are marked with green shade.  
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Supplementary Figure 6. Unbiased simulation of dexamethasone entering 

GR. (a) Each line represents the ligand’s RMSD (heavy atom) to the bound 

crystal ligand for the total 64 trajectories. One of the trajectories represented 

by blue line enter the LBP at step ~330. (b) The ligand’s center of mass for 

the one trajectory that enter the LBP are shown as blue spheres. The region 

where the ligand enter the LBP is emphasized as a surface with the ligand 

shown in stick representation.  

 

 
Supplementary Figure 7. Detail of the Helix 12 rearrangement from free 

simulation dexamethasone entering MR in presence and absence of the co-
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regulator peptide. The initial structure is shown in light blue and the 

maximum movement of the helix 12 is shown in dark green (with peptide) 

and light green (without peptide). The dexamethasone ligand in the LBP is 

shown in magenta.  

 

 

 
 
Supplementary Figure 8. A peripheral binding site about 13Å away from the 

LBP is revealed in the crystal structure of GR (yellow) in complex with 

dexamethasone (yellow). This site is occupied by a steroid-like CHAPS 

molecule (white) that is part of the crystallization conditions.  
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Supplementary Table S2. Data collection and refinement statistics 

(molecular replacement) 

 MR: dexa MR: dibC GR:dexa GR:dibC 

Data 

collection 

    

Space group P212121 P41212 P3221 P3221 

Cell 

dimensions   

    

    a, b, c (Å) 73.00, 

81.40, 

45.23 

75.92, 

75.92, 

117.00 

84.66, 

84.66, 

105.91 

87.20, 

87.20, 

102.89 

    a, b, g  ()  90.00, 

90.00, 

90.00 

90.00, 

90.00, 90.00 

90.00, 

90.00, 

120.00 

90.00, 

90.00, 

120.00 

Resolution 

(Å) 

40.7-2.03 

(2.17-2.03) 

48.79-2.36 

(2.55-2.36) 

31.81-2.50 

(2.67-2.50) 

40.14-1.80 

(1.85-1.80) 

Rsym or Rmerge 0.06(0.50) 0.13(1.30) 0.08(0.55) 0.08(1.05) 

I / sI 13.10(2.30) 15.10(1.90) 8.80(1.60) 7.40(0.70) 

Completeness 

(%) 

83.9(83.7) 100.0(100.0) 99.6(99.5) 99.9(100.0) 

Redundancy 3.3(2.5) 12.6(11.7) 4.1(4.2) 3.5(3.6) 

     

Refinement     

Resolution 

(Å) 

2.03 2.36 2.50 1.80 

No. 

reflections 

15085 14672 15559 42339 

Rwork / Rfree 0.185/0.240 0.182/0.218 0.210/0.253 0.213/0.224 

No. atoms     

    Protein 2080 2118 2133 2184 

    Ligand/ion 34 49 64 146 

    Water 101 60 83 250 

B-factors (Ask for 

input) 

   

    Protein 30.14 53.25 49.72 33.25 

    Ligand/ion 22.12 44.16 34.51 23.55 

    Water 36.03 56.86 46.23 46.95 

R.m.s. 

deviations 

    

    Bond 

lengths (Å) 

0.010 0.010 0.010 0.010 
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    Bond 

angles () 

1.01 1.04 1.12 1.06 

*Number of xtals for each structure should be noted in footnote. 

*Values in parentheses are for highest-resolution shell. 

 

[AU: Equations defining various R-values are standard and hence are 

no longer defined in the footnotes.] 

[AU: Ramachandran statistics should be in Methods section at the end 

of Refinement subsection.] 

[AU: Wavelength of data collection, temperature and beamline should 

all be in Methods section.] 
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4 Summary of the results and discussion 
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A complete understanding of complex formation between proteins and 

ligands, a crucial matter for pharmacology and, more in general, in 

biomedicine, requires a detailed knowledge of their static and dynamic atomic 

interactions. The main objective of this thesis is to test recent developments in 

conformational sampling techniques in providing such a dynamical view. We 

aim at developing new protocols and methods for such a study. Moreover, we 

want to show how its application can aid in addressing existing problems in 

the biophysics of protein ligand interactions. We provide here a summary of 

the main results and discussion along this work where we frame the different 

publication in the overall objectives described above.  

4.1 Validate our in-house technology PELE (Protein Energy 

Landscape Exploration) on sampling protein-ligand 

interactions and induce fit procedure.  

In the introduction of this thesis we have underline the importance of 

computational techniques in obtaining an atomic detailed and dynamical view 

of molecular recognition, and, in particular, for protein-ligands interactions. 

We further highlighted that computational approaches in the majority of the 

cases are much cheaper and faster than in-vitro and in-vivo experiments; these 

last methods having difficulties in obtaining atomic detailed information of 

the binding mechanism. Moreover, we have stated how traditional docking 

techniques might not be enough for describing the induced fit recognition, and 

how molecular dynamics, who could describe it, introduce a significant 

computational cost (computer time).   

The initial studies along this thesis aimed at addressing the above 

difficulties through a series of studies on clinically relevant targets. The PELE 

algorithm was applied to these systems, which were suggested by our 

experimental collaborators, to explore the capabilities of a quicker and 

accurate sampling in protein structure and ligand induced fit docking. 

Within the two publications presented in the section 3.1 and 3.2, we 

used Glide docking scores before and after the PELE run (aimed at modeling 

the induced fit procedure), to determine if advanced sampling algorithms 

improve the description of the protein-ligand molecular recognition and 

binding scores. For each system, involving six know receptors: mTOR, PDK-

1, PKC-alpha, MCL1, BCL-xl and BCL-2, we studied the binding of some 

prodiginines, under investigation by the lab of Prof Ricardo Perez (University 

of Barcelona), and of some control compounds. These controls involved both 

positives: crystal structures or know binders, and negative controls: non-
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binders as shown by kinase assays. Our results clearly indicate the excellent 

capabilities of our sampling method. By applying PELE, we could distinguish 

in every case between binders and non-binders. More importantly, such a 

distinction is not possible when using standard docking techniques; Glide 

score after docking but before conformational sampling could not identify 

binders. Moreover, the results show nice correlation between the amount of 

the receptor rearrangement, computed as the alpha carbon RMSD along the 

sampling, and the “need” for induced fit. For example, when a ligand is 

docked into its crystal structure the induced fit procedure does not 

significantly change the scores, and only introduces slight changes to the 

protein–ligand structures in the active site. 

 

 

Figure 1. Image of the two inhibitors used in this work.  

Prodigiosin (A) and Obatoclax (B). 

  

Table 1 summarizes the before and after PELE docking scores, together 

with the active site RMSD along with the induced fit process, for all systems 

and ligands which have been used for these two studies.  

In the first study, we demonstrate that mTOR is a molecular target of 

the two prodiginines studied: prodigiosin (PG) and obatoclax (OBX) (Figure 

1). This computational study was aimed at finding the molecular targets after 

noticing that these two drugs were capable of considerably reducing the 

melanoma cells, a highly drug-resistant cancer model in cellular assays. In 

addition, in vitro binding assays were performed for several kinases (as 

control). As expected, for PDK1 and PKC-alpha (control systems) we 

obtained very good docking scores, below -9, for their two crystallographic 
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residues, LAA and LW4, see table 1. As mentioned before, when starting 

from the crystal bound structure, no large RSMD along the induced fit is 

observed. Thus, our (positive) controls indicated good binding scores with 

low RMSD. Interestingly, the induced fit procedure increased the RMSD but 

did not substantially improve the affinity for PDK-1 and PKC-α against PG; 

this (negative) control experiments support the absence of inhibition in PDK1 

and PKC observed in the kinase profiling. Regarding mTOR ligand docking, 

the initial docking score of pp242, PG and OBX is about -7 to -8, similar to 

the value measured for PG in our in silico  control assays. For mTOR, 

however, the induced fit procedure (the same used for PDK1 and PKC-alpha) 

introduced significant changes. We observed a clear increase in binding 

affinity along with a significant active site adjustment, the RMSD increases to 

2.1 and 2.3 for PG and OBX, respectively. Thus, our simulation studies 

support binging of PG to mTOR in a similar fashion of the pp242, a positive 

control with 0.008 μM IC50 in the Presence of 10 μM ATP. 

 This study supported the in vivo cellular assays indicating the 

capabilities of PG (and its derivatives) for use in some apoptotic targets. 

Moreover our findings contributed to the understanding of the molecular 

mechanisms of action of both molecules and provide data about their 

structural properties that will allow the development of more-effective mTOR 

inhibitors in the future (the paper has been cited 23 times since 2012, 5 of 

which reported studies on novel inhibitors). 

                         MCL1         BCL-xl       BCL-2

LAA LW4 pp242 PG PG OBX 6 PG OBX ABT PG OBX ABT

Initial 

Score
-9.2 -12.0 -7.9 -7.4 -4,3 -2,9 -6 -7 -3,4 -7,9 -6,3 -6 -8,5

Induced 

Score
-10.1 -11.5 -9.7 -10.1 -8,6 -8,8 -8,7 -7,4 -8,3 -13,9 -7,9 -8,8 -9,6

 RMSD 1.1 1.3 1.7 2.1 3 4 7,4 3 -5,5 1,4 4,8 4,5 4

PDK-1 PKC-alpha mTOR

PG PG OBX

1.77 1.4 2.3

-6.2 -7.1 -8.5

-6.6 -7.6 -10.3

Table 1.  Initial and after PELE (induced fit) scores obtained with Glide. 

For the second study, we applied a similar protocol to the BCL-2 

protein family against PG and OBX (Figure 1), together with two positive 

control ligands: 6 and ABT. Since there are no crystal structures of this 

protein family bound to PG, OBX or 6, we expected a significant RMSD 

change and an improvement in the docking score along the induced fit 

process. Clearly for all ligands we observed a large RMSD increase, ranging 

from 3 to 7 and significant improvement in the scores. Interestingly, in 

MCL1, similar scores (~ 9) are obtained for the control, ligand 6 with a 0.25 

μM IC50, and for the two prodigionines studied, OBX and PG.  
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For BCL-xL the initial crystal structure used to model the target has 

already the control ligand ABT-737 bound to it. Thus, as expected, we 

observe the lowest induced fit RMSD for this ligand, 1.4 Å. Additionally, we 

found good initial and (very good) final scores for ABT-737 a potent inhibitor 

of BCL-xL from Abbott Laboratories with an IC50 of 0.06 µM. In BCL-2 our 

model was derived from a peptide (43B) bound crystallographic structure. 

Accordingly, we observed again significant induced fit RMSD changes and 

improvements in the scores. For ABT-737 we observe good initial scores and 

the lower RMSD, possibly as a result of its large size and excellent BH3 helix 

mimetic properties. Overall this second test confirmed the inhibition of this 

family of targets by the prodiginin compounds in a similar fashion to other 

high nanomolar/low micromolar inhibitors (not reaching, however, low 

nanomolar activity). 

These set of initial studies, using PELE as a conformational sampling 

tool, represent a significant step towards improving the accuracy of modelled 

protein ligand interactions and demonstrate the necessity of induced fit 

docking. It showed how computational techniques are mature enough to 

provide a good protein-ligand recognition mechanism (and binding scores) in 

~24 hours of a modest workstation (16 cores) CPU usage. 

4.2 Besides protocols and software validation, we aim to develop 

specific application on biomedical and biotechnological 

relevant systems. Thus, we aim at adding information for 

contributing to the mechanistic knowledge of important 

protein-ligand interactions. 

One of the main objectives of this dissertation is to get a deeper 

understanding of the biophysical mechanism behind protein-ligand 

interactions. Moreover we aim at performing such study for 

pharmacologically relevant systems. Besides the above mentioned studies on 

apoptotic targets inhibition, we have performed additional mechanistic 

contributions. Possibly, one of the most interesting and challenging (as well as 

trendy) ones involved the free ligand diffusion coupled to active site search 

and binding. Such type of studies allow for a full mechanistic exploration of 

the protein ligand interaction in absence of information of the active site. 

Such a free search has become quite popular since the first molecular 

dynamics simulation performing such a non-biased sampling by the David 
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Shaw research group. In their 2011 Journal of American Society paper: “How 

does a drug molecule find its target binding site?” (already cited 160 times), 

the authors perform 20 microsecond of non-biased MD where a ligand 

explores a Src-kinase surface, finding the binding site and identifying the 

lowest protein-ligand interaction energy as a pose within ~1Å of the 

crystallographic pose. Certainly, studies like this show the potential of 

biophysical computer simulations in aiding drug design, providing a complete 

mechanistic knowledge and identifying the correct protein-ligand complex. 

However, these calculations still use a massive amount of computational time 

that is not accessible to a normal lab.  

Along the thesis, we have developed algorithms to perform such a 

search with PELE. The same Src kinase study performed by the Shaw group, 

for example, can be studied analogously with PELE in 24 hours of a modest 

single processor 32-cores workstation (a commodity machine). Fruit of this 

study, we have a ready-made script in our server (https://pele.bsc.es) 

“Unconstrained Ligand Exploration and Binding Site Search” which is one of 

the most popular ones. Some examples are also shown in 

https://pele.bsc.es/pele.wt/examples. Furthermore, PELE’s sampling 

capabilities allows for such a study in fully occluded (buried) active sites; all 

MD explorations have been achieved in partially exposed binding sites. Here 

we show how our technique can be used to scan the binding of 

dexamethasone (DEX) and dibC to steroid receptors family and perform a 

blind docking simulation.  

 In collaboration with AstraZeneca, we performed extensive all atoms 

unbiased ligand exit and entrance simulations together with structural 

principal component and bioinformatics analysis for an important 

pharmacological target: the Nuclear Hormone Receptors (NHRs) family. This 

study was combined with crystallography and ligand binding assays 

(scintillation proximity assay) performed in Sweden at the AstraZeneca lab. In 

this study, presented in section 3.6, ligands were randomly placed outside the 

receptors and allowed to freely explore the protein surface. Figure 2 shows the 

unbiased simulation of DEX exploring the mineralcorticoid receptor (MR), 

where two of the 80 trajectories (running for 24 hours) clearly entered the 

active site and adopted conformations within ~1Å of the crystallographic 

pose. We should emphasize that no knowledge of the crystal bound complex 

is used along the simulation.   

https://pele.bsc.es/pele.wt/examples
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Figure 2. Unbiased simulation of dexamethasone entering MR. (a) 

Each line represents the ligand’s RMSD (heavy atom) to the bound crystal 

ligand for a different trajectory. Two of the trajectories represented by blue 

and red lines enter the ligand binding protein (LBP) domain at step 52 and 

214, respectively. (b)The ligand center of mass for the two trajectories that 

enter the LBP are shown using red and blue spheres. The region where the 

ligands enter the LBP is emphasized as a surface with two ligands shown in 

stick representation. 

Remarkably, such quick performance by PELE allows to run 

exhaustive sampling in an affordable computational time (using ~600 

trajectories in this study), from which absolute binding free energies can be 

derived by means of Markov State Model techniques. In this study we 

performed such analysis introducing a 20 Å constraint from the entrance 

point, obtaining absolute binding energy differences in quantitative agreement 

to the experimentally measured ones. 

 More importantly, such detailed mechanistic study indicated that the 

large-amplitude protein motion of helix 12, as suggested by apo and holo 

crystallographic nuclear hormone receptors, is not required for ligand entry. 

Instead, we show that mid-scale vibrations combined with a structural 

rearrangement of H6-H7 region are enough to identify an energetically 

favorable pathway to allow the ligands to diffuse into the LBP. In summary, 

using PELE we introduced a new structural and dynamic paradigm for ligand 

binding in this important family of receptors. The discovery may influence 

(work already being performed at AstraZeneca) future rational design of 

inhibitors for hormone receptors that exploits this plasticity to generate 

ligands with differential modes of action. Moreover, the procedure outlined in 
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this study can be used to challenging problems where huge computational 

resources are not accessible and a fast and cheap protein-ligand sampling is 

needed. 

4.3 Following the previous goal, we aim at the implementation of 

the atomic detailed knowledge into the rational design of new 

inhibitors, aiming to enhance specificity and binding strength.  

Motivated by our success with validation studies (applied to several 

systems for protein-ligand interaction and induce fit procedure) we attempted 

to design a new inhibitor for a specific target. For doing so, we used the 

system from our second study: Molecular interactions of prodiginines with the 

BH3 domain of BCL-2 family members.  

Once we had tested the protocol and gained enough information about 

the protein-ligand structure of our target, we introduced chemical changes on 

the drugs, working towards a rational design of new inhibitors for Mcl-1 

enhancing specificity and binding strength. The strategy was (aimed at) an 

iterative work between our group and the chemical lab of Dr. Roberto 

Quesada, from university of Burgos, where different rounds of theoretical 

prediction and organic synthesis where produced. In this way we aimed 

towards a highly active, but still easy to synthetize compound. We introduced 

a novel and in-silico more potent inhibitor of Mcl-1 protein, as compared to 

Obatoclax (an already known good binder of Bcl-2 family particularly Mcl-1 

protein) (Figure 3). As of July 2014, two compounds were produced in silico, 

but only having about 60% of the original design (due to synthetic limitations 

and lack of students in the Burgos lab). This compound has been tested in the 

lab of Professor Ricardo Perez (UB) showing high micromolar binding. 

Certainly much more resources will be needed to reach the pure compound 

predicted in silico; due to lack of man-power this objective is, at the present 

time, in a dead point. Nevertheless, this limited result indicates the potential 

of this techniques opening new directions in selective drug design (two 

different projects of drug design are currently running in the lab.) 
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Figure 3. Image of the designed inhibitor for MCL-1 protein. 

 

4.4 An added value of (accurately) describing protein-ligand and 

protein/substrate interactions at a dynamical level, is being 

able to map possible changes in ligand/substrate affinities 

derived from mutations. We aim to develop protocols in 

PELE for the description of mutational effects in ligand 

binding. We tested this part on one of the most well studied 

systems with important mutational effects: HIV-1 protease. 

Recently, due to its implications in drug design and enzyme 

engineering there has been an increasing interest in applying molecular 

dynamics techniques for mapping ligand diffusion (entrance and exit), 

coupled to changes introduced by mutations in them (and in ligand affinities). 

Within the two publications presented in sections 3.3 and 3.5 we present our 

efforts in characterizing such mutational effects in ligand binding and 

enzymatic activity.  

In the first study, entering the world of biocatalyst, we present our 

initial attempts to rationalize the role of single mutations into ligand delivery 

and product release. In order to understand the atomic detailed mechanism of 

substrate oxidation in T4MO (a soluble four-component BMM that oxidizes 

toluene with ∼95% regiospecificity at the para position) as well as the 

involvement of S395 in the catalytic rate enhancement, we modelled the 

ligand migration pathways with all-atom computational techniques. T4MO is 

of particular interest in industry given the high number of substrates that can 

be oxidized along with the elevated specificity. 
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The results indicate that two different tunnels cross T4MO’s alpha-

subunits in a nearly 90º disposition. As seen in the Figure 4, one channel 

(hereafter known as channel 1 depicted in green) is a traverse of about 23 Å to 

the protein’s surface which provides the shortest path between the active site 

and the solvent. The second observed route, for ligand migration, is a long 

hydrophobic passage (channel 2 in red) with a length of 30–35 Å and exiting 

close to S395. Channel 2 connects the diiron active site to the solvent, with an 

overlapping section with channel 1 close to the binding pocket. Both 

pathways are in good agreement with previous experimental data. Along these 

pathways, residue F269 plays an important role as a gate keeper for substrate 

diffusion. Due to its strategic position at the bifurcation point observed in the 

modeled pathways, and in order to understand the possible influence of the 

S395C mutation on ligand delivery, we performed the following in silico 

mutations: S395C, F269V and F269W. 

 
Figure 4. The two observed expulsion paths obtained with the PELE 

simulations. 

A total of 10 independent runs were produced for each mutant 

simulation involving: i) ligand exit, where the ligand initially placed in the 

active site is asked to leave the protein, and ii) ligand entrance, where ligands 

placed at the solvent and in the vicinity of the exit point are asked to enter the 

active site. Computational results show that mutations propagate changes to 

the close-by helices altering the way ligands exit/enter the protein. In the case 

of the tryptophan, and in contradiction to the larger size of the side chain, the 

ligand enters more easily the active site, as a result of an increase in the 
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migration pathway tunnel. This increase of the passageway between the 

surface of the protein and the active site explains the increase in activity 

observed in the F269W experiments. In the case of the F269V, we find that 

very few exits are observed as a consequence of the collapse of the tunnel 

derived from the smaller side chain (in agreement with the decrease 

experimental activity). These results clearly show the ability of PELE’s 

technique to connect biophysical response to mutational experiments. 

Moreover, it represents a pure example of how the simulations might assists 

in designing improved biocatalysts.  

In our second study we performed induce fit docking studies in HIV-1 

protease with several numbers of mutations in each of the two chains of this 

enzyme. Predicting the effects of a mutation in HIV protease has been (and 

continues to be) a central issue in inhibitor design. Once the virus develops 

resistance to a drug, as a consequence of a mutation (not largely affecting the 

protease activity), the patient are forced to change treatment; typical 

treatments include a cocktail of inhibitors. Thus, it would be ideal to develop 

methodologies to efficiently predict drug resistance levels, but also to 

understand the resistance mechanism associated with mutations. Several 

computational studies have attempted to design such prediction tools, 

nevertheless still there is no significant success when the number of mutations 

in each chain is large (on the order of >10). 

Using PELE together with docking homology modelling, we developed 

a methodology capable of tackling this problem. Besides checking the 

prediction capability to a well-known series of mutants and ligands, test case 

described in Koh et al.(Koh, Nakata et al. 2003), we were challenged by the 

researchers of the IrsiCaixa AIDS institute to perform “blind resistance 

predictions” in clinical samples. Thus, we had only access to the sequence but 

not to the resistance score, which had representatives of three different ranges: 

sensitive (<30), intermediate (between 30 and 60), and high-level resistance 

(>60) based on the resistance scores calculated from expert assessments in 

HIVdb. Importantly, each of these variants, taken from HIV-infected patients, 

contained a large number of mutations in each monomer (15-25) when 

compared to the reference NL4-3 (therefore, in some of the simulated systems 

the protease bore as many as 50 mutations, representing an incredibly difficult 

test).  

We used the same sampling protocol for all mutants: i) search for the 

crystal structure with the highest identity to the mutant sequence using 

BLAST; ii) building our model by replacing each mutant using 
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Maestro(Sastry, Adzhigirey et al. 2013) ; iii) initial docking of the ligand with 

Glide; iv) PELE exploration of the induced fit response to the mutations (12 

processors x 12 hours); v) computation of the binding energy change (upon 

mutation) by averaging the interaction energies of all accepted minima 

(approximately 2000 snapshots) and comparison with the reference (non-

resistance) sequence.  

Figure 5 shows the results for amprenavir (APV) where we computed 

PELE’s relative binding energies to the reference compound NL4-3. 

Sensitive, intermediate and resistance HIVdb values for each sequence are 

shown in green, yellow and red colors, respectively. Clearly our prediction 

technique could identify all high resistant mutations (with a decrease in 

binding affinity, turning into an increase of relative interaction energy > 

5kcal/mol); similar accuracy was obtained for Darunavir. This outstanding 

results indicate how computational techniques are today mature enough to 

accurately predict the effect of multiple mutations in drug binding (drug 

resistance). This prediction tool has been added to our public server, 

https://pele.bsc.es. 

 

Figure 5. PELE’s relative change in APV binding energies (kcal/mol).  

Sensitive, intermediate and resistance HIVdb values for each sequence are 

shown in green, yellow and red colors, respectively. 
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4.5 Beside these main objectives based on methods application, 

we aim to add methodological improvements derived from 

the application and validation studies. 

Along with the previous main objectives we performed method 

development and studied PELE protocols to model long-time protein 

dynamics by means of normal mode perturbation and constrained 

minimization.  

As we discussed in the introduction section, from the early papers it 

was clear that PELE needed a better backbone and sampling procedure. 

Therefore, we introduced a new protein perturbation step based on anisotropic 

network model methodologies, capable of providing significant backbone 

motion that was coupled to constraint minimization. Such new perturbation 

protocol was examined by comparison to microsecond MD on ubiquitin and 

to metadynamic sampling on T4Lysozyme (Cossins, Hosseini et al. 2012). 

Figure 6 shows the comparison of the RMSD from the initial structure 

for individual residues from the PELE and 3 explicitly solvated 1 μs MD 

simulations of ubiquitin, each of them using a different force field: 

CHARMM, AMBER and OPLS-AA. While there are some quantitative 

differences (among PELE and MD but also among different MD simulations) 

there is an overall good qualitative agreement. The agreement was also 

present when comparing clustering results and the atomistic forces. For 

T4Lysozyme, PELE results indicate that we can quickly sample all regions 

observed in the metadynamics study. Overall, our results indicate that PELE 

was able to provide protein sampling using a reduced network model eigen 

problem approach in a fast manner, showing a clear competitive 

(computational time) advantage over molecular dynamics simulations.  
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Figure 6. Mean residue displacement along the PELE and MD 

trajectories 
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1. The PELE method and its application to proteins and protein 

complex simulation have been evaluated. The method was tested and 

compared against available experimental data and designed control test. The 

technique was used to discover and predict the possible active site and 

protein-ligand interaction in several proteins, such as mTOR and BCL-2 

proteins. Importantly, we demonstrate the critical role of sampling the protein-

ligand dynamics in order to improve the docking score.  Moreover, the 

findings reported here clearly shown the capabilities of PG (and its 

derivatives) for use in particular apoptotic targets.  

2. We demonstrated the applicability of the PELE method in solving 

relevant biophysical problems.  In particular, using PELE we introduced a 

new structural and dynamic paradigm for ligand binding in steroid nuclear 

receptors. 

3. We have shown how PELE can be used in effectively design 

improved compounds with significant better docking results. We have shown 

that our designed small molecules bind to the BH3 binding site of MCL1. 

 4.  The protein-ligand landscape exploration of PELE´s algorithm 

allows for an efficient analysis of mutational effects on ligand delivery. Our 

study on T4MO shows how such an analysis has great possibilities on enzyme 

engineering. In particular, reside F269 on T4MO, located at the entrance of 

binding pocket, has a significant role in substrate delivery.  

5. We have developed a protocol that is potentially useful in 

characterizing the effect of multiple mutations on drugs binding to the HIV-1 

protease. Using this protocol we introduced a significant advance in 

predicting the affinity of different drugs against HIV-1 protease with several 

mutations. This application is fully automated and installed on PELE web 

server.  

6. New backbone perturbation combined with normal modes increased 

the capability of PELE method to explore local dynamics and large 

conformational changes.  

 

Overall, the main message of this thesis is that an accurate dynamical view of 

atomic detailed protein-ligand interaction is necessary… and possible 
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