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1.1 Biomolecules: Proteins

Biomolecules are produced by living organisms and include
macromolecules such as carbohydrates, (Queneau, Rauter et al. 2014) proteins
(Brocchieri and Karlin 2005; Zhang 2008), lipids (Fahy, Subramaniam et al.
2009), and nucleic acids (Bloomfield, Crothers et al. 2000). Bacteria, algae,
plants, and animals produce similar sets of macromolecules and these are
responsible for maintaining life. Of these biomolecules, proteins have
essential roles in most cellular functions. Proteins mediate these functions via
direct or indirect interactions with: 1) different proteins (e.g., protein-protein
interactions), 2) small molecules (e.g., protein-ligand interactions), and 3)
ribonucleic acid polymers (e.g., protein-DNA/RNA interactions).

Four levels of protein structure are commonly defined (see Figure 1).
Primary structure refers to all of covalent bonds linking amino acid residues in
a polypeptide chain (Brocchieri and Karlin 2005). The most important
element of primary structure is the sequence of amino acid residues.
Secondary structure states to particularly stable arrangements of amino acid
residues giving rise to repeated structural patterns (Pauling, Corey et al.
1951). Tertiary structure describes all aspects of the three-dimensional folding
of a polypeptide. When a protein has two or more polypeptide subunits non-
covalently bonded, their arrangement in space is referred to as quaternary
structure.
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Figure 1. Protein structure, from primary to quaternary structure. Figure from
(www.wikipedia.org).

Predominant functions mediated by proteins include detection of
signals induced by the binding of small molecules (Alberts 1989),
conformational changes to act as molecular motors, enzymatic reactions that
accelerate vital chemical processes, regulation of molecules whose binding to
other proteins inhibits or activates their function, signalling via chemically
modified peptides or proteins, and the transport of molecules through cellular
membranes via selective channels (Voet and Voet 2010).

Given the importance, complexity, and range of functions that proteins
mediate, databases have been established which contain protein structures;
these databases contain a large number of protein-ligand interactions. Among
them the Protein Data Bank (PDB) is probably the more important one, whose
significance is continuously being enhanced with the increasing number of
structures that register every year.

1.2 Proteins targets for drug action

In general, drugs act by binding particular targets (Imming, Sinning et
al. 2006). When drugs are designed to target proteins, often they modify the
endogenous function of a protein upon binding (Gohlke and Klebe 2002). For
example, when the target is an enzyme, drugs can act as inhibitors to block the
binding site for the natural substrate. Drugs can also act in an allosteric
manner and bind a protein outside of its active site. In this manner, a drug can
disturb the conformation of a binding site to modify the affinity of an enzyme
for a particular substrate. In other cases, drugs are agonists which bind in the
natural ligand site in an enzyme, thereby inducing its activity (Berg,
Tymoczko et al. 2010).

Ligand-binding sites are often only a slight part of a protein’s surface.
Mutations may change the binding site and affect the affinity or specificity for
ligands with little effect on the whole structure change.

Protein-drugs complexes have been defined by the complementarity of
shape referred as “lock and key” model (protein called as a lock and the
ligand called as key) (Fischer 1894). On top of this complementarity shape,
there are some specific interactions, based on the chemical nature of the
ligand and receptor. Complementarity has been found to be a key factor in the
formation of stable complexes, and extensive experimental and computational
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efforts have been undertaken to predict which ligands will bind with high
affinity to a particular protein (Tsai, Norel et al. 2001).

With few exceptions, drug targets have included receptors, enzymes,
carrier proteins, and ion channels (Imming, Sinning et al. 2006). However,
while a single drug or class of drugs often only binds a specific set of targets,
their actions are not exclusive to their intended targets. In addition, the dose of
a drug can affect its target recognition, thereby providing an opportunity for
unintended side effects.

A ligand/drugs bind to the target as inhibitors in different ways
including reversible (Segel 1987) and irreversible (Adam, Cravatt et al.)
inhibitions.

Reversible inhibition involves the binding and dissociation of an
inhibitor. The affinity of the inhibitor affects the on/off rate that is observed.
This inhibition is divided to different group involving, competitive,
uncompetitive, and non-competitive inhibitors.

Competitive inhibitors bind active sites of targets, thereby decreasing
the binding of other substrates or ligands to the target. Moreover, several
inhibitors are designed to mimic an intermediate structure of an enzyme-
catalyzed reaction, the binding affinity of the inhibitor may be better than that
of the substrate since it provides additional stability for the enzyme to reach a
transition state conformation.

Uncompetitive inhibitors bind to an enzyme-ligand complex, in a
different area of the active site, in order to prevent the enzyme from reacting
with its ligand and forming a product. Alternatively, noncompetitive
inhibition involves the binding of a drug to a different region of an enzyme,
even if the substrate is already bound. Binding of the drug affects the
conformation of the target (enzyme), including the active site in some cases,
and this leads to reduced binding efficiency by the substrate.

Some notable classes of reversible inhibitors include protease inhibitors
(Hsu, Wang et al. 2006) and protein kinase inhibitors (Bogoyevitch, Barr et al.
2005). The former strongly bind proteases based on the similarity of their
structures to that of the natural protease substrates. Moreover, the binding site
often involves the active site of the targeted protease. Currently, protease
inhibitors represent a very effective class of antiretroviral drugs which are
used for the treatment of human immunodeficiency virus (Condra, Schleif et
al.). These inhibitors compete with the natural substrate for HIV protease and
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non-covalently bind the active site of these enzymes. For example, darunavir
(Ghosh, Dawson et al. 2007) was designed on 2006 to form strong
interactions with the protease enzyme from several strains of HIV, including
strains with multiple resistance mutations to protein inhibitors (see Figure 2).

Figure 2. HIV-1 protease dimer with darunavir (green sticks) bound in the
active site. A relevant water molecule and two Asp residues are also displayed
in ball and stick.

An additional important class of competitive inhibitors target protein
kinases in order to compete with substrates at the binding sites where kinase
interactions are mediated. However, for this type of target, these inhibitors
have to compete with high concentrations of ATP that are present in each cell.
The inhibitors are at a disadvantage since the intracellular concentration of a
drug is typically much lower than the concentration of ATP (Bogoyevitch,
Barr et al. 2005).

Alternatively, irreversible inhibitors bind a target via strong covalent
interactions. The binding site may be within the active site of an enzyme, or at
a site distant from an active site. As an example, aspirin (Imanishi, Morita et
al. 2011) is an irreversible inhibitor that was first prepared in 1853 by the
French chemist, Charles Gerhardt. However, its natural form, salicylic acid, is
found in plants and has been used for thousands of years. Aspirin has been
shown to covalently bond a serine residue in the active site of the
cyclooxygenase enzyme.

Another consideration regarding drug targeting strategies is the size of
the drug relative to the size of its target. For example, aspirin, with a
molecular weight of 180.157 daltons, binds cyclooxygenase-2 (COX-2), an
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enzyme with a molecular weight of approximately 70 kDa (see Figure 3).
Thus, a 388-fold difference in size exists between this drug and its target.

Cyclooxygenase-2

Figure 3. Size comparison between target, COX-2, and its substrate aspirin.
We should emphasize that targets can expand largely in size, from ~10 times
the drug size to more hundreds of thousands.

1.3 Characterization of protein-ligand interactions for drug
discovery

Since ancient time the study of drugs and their effects help people to
know how to treat or manage disease (Nienhaus 2010). For this reason,
pharmacology is considered a very important branch of science.

Pharmacology is the science of drug action on biological system,
aiming to provide a deep understanding of the effects of drugs. While
remarkable progress has been made in developing new drugs and in
understanding how they act, challenges that remain are constant, not only in a
better understanding of current diseases but in their constant evolution (new
mutations) and appearance of new ones.

Protein-drug recognition is crucial, not only to improve our
understanding of chemistry and biology, but also to advance the treatment of
disease. This recognition is complex due to the different type of potential
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interactions between proteins and other molecules (hydrophobic, electrostatic,
etc.). Moreover, it is complex due to the network of interaction between
groups of atoms in biomolecules, interaction between molecules and solvent,
and the scale of each system. Thus, it is not surprising that several
experimental and computational methods have been established for the
analysis of the molecular recognition process (Mann, Heywood et al. 1991;
Przybylski and Glocker 1996; Lamb and Jorgensen 1997; Mohan, Oldfield et
al. 2006). Nevertheless, each method and techniques has its own weaknesses
and powers.

1.4 Experimental characterization of protein-drug interactions

Let us consider the simple binding reaction,
P+L < PL,

in which each protein, P, binds one ligand, L, to form a complex, PL
(see Figure 4).

_I_ EE—

Figure 4. Diagram view of docking a small molecule to a receptor to produce
a complex. Figure from (www.wikipedia.org).

In order to understand such process, several experimental and
theoretical techniques have been developed. In this section we summarize
some of the experimental techniques that are mostly used and that our
experimental partners have employed in our collaborative studies. At the
structural site, since the solution of angiotensin-converting enzyme and renin
in the 1980s (Petrillo and Ondetti 1982), three-dimensional structures of
proteins and their interactions with other proteins and substrates have become
central for the field of drug discovery. Besides structure, quantifying the
equilibrium populations, as well as kinetics of association and dissociation,
are also key concepts in protein-ligand interactions (Nienhaus 2010).


http://www.wikipedia.org/

Introduction

The combination of these approaches has facilitated our understanding
of the biological roles of proteins, as well as their effects in disease and their
implications for drug design.

1.4.1 Structural characterization of proteins by experimental
techniques

Studying proteins structures is very important because in almost all
kind of disease they are targets for different treatments. Therefore methods for
studying proteins keep developing both in terms of multiple techniques
applied and in terms of improving approaches within specific techniques.

There are several experimental techniques to characterize three
dimensional structures of proteins including, X-ray crystallography (Smyth
and Martin 2000), NMR (Callaghan 1993), etc. These two methods are briefly
explained in the following section.

1.4.1.1 X-ray crystallography

One of the main techniques used to elucidate the three-dimensional
structure of large proteins at atomic resolution is x-ray crystallography. The
first structure was solved in 1914 and it provided an atomic resolution image
of table salt. In 1958, the structure of sperm whale myoglobin was the first x-
ray of a protein reported (Kendrew, Bodo et al. 1958). Currently, x-ray
crystallography is the most common method used to identify protein binding
sites (see Figure 5).
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.‘@ crystal
mn‘
diffraction
pattern

electron
density map

refinement

*  atomic
" model

Figure 5. Protocol for solving the structure of a protein (or other molecules)
by X-ray crystallography. Figure from (www.wikipedia.org).

Figure 6 left panel shows a X-ray diffraction image from crystals from
the lysozyme protein. The right panel shows the electron density map (blue)
calculated from the diffracted X-ray intensities. This map is used to locate
atoms and build a chemical model of the structure (yellow lines). Notice,
however, that the high level of resolution seen in the right panel is not too
frequent.

10


http://www.wikipedia.org/

Introduction

Figure 6. Left panel: X-ray diffraction image from lysozyme crystals. Right
panel: electron density map and final atomic model. Figure from
(www.sandiego.edu/cas/chemistry).

Studying protein dynamics in solution is not possible with this method
(big disadvantage, for example, against NMR techniques—see below).
Besides, the X-ray technigue is based on the connection of the distribution of
waves with electron density, and therefore, hydrogen atoms are typically not
catch since they have only one electron, with no enough scattering efficiency.
Thus, we need another additional method for the detection of hydrogen (e.g.
neutron diffraction, NMR, modeling solutions, etc.).

1.4.1.2 Nuclear magnetic resonance (NMR)

Unlike x-ray crystallography, which requires a crystalline sample,
NMR uses a small volume of concentrated protein solution to study the
physical properties of a protein’s conformation in solution. Due to the relative
ease of preparing samples for NMR analysis, this approach is widely used in
screening applications, as well as in studies of complex proteins (sees Figure
7). However, a disadvantage of this technique is that it is not well-suited for
high molecular mass proteins. Additionally, NMR also has difficulties to
define the probability of a protein (or parts of it) being in a certain
conformation, requiring more complex experimental measurements.

NMR spectroscopy

Sample at w. Excited
equilibrium —— state
relaxation

observation

o l
i,

) spectrum

"~ h‘.’
2 __“-w"-'\m\-\l‘b. i | on A e

Figure 7. A common protocol used to solve the structure of a protein by
NMR spectroscopy. Figure from (www.sciencearchive.org.au).
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NMR spectra are extremely sensitive to interactions between chemical
groups and can be relied upon to change when a complex is formed.
Consequently, NMR is very widely used in routine screening applications as
well as investigation of detailed structural features of complexes.

1.4.2 Measuring protein-ligand affinities

In addition to the structural characterization that X-ray and NMR
techniques provide, kinetic and thermodynamic studies are essential for
measuring affinities and for the general understanding of the various types of
protein-drug interactions. The following techniques aim to address these
points.

1.4.2.1 Surface Plasmon Resonance

SPR (Pattnaik 2005) has been used to describe different types of
molecular interactions, including protein-ligand interactions, protein binding
of DNA, and protein binding of other proteins. In particular, SPR can
characterize the affinity and/or selectivity of these interactions.

For SPR assays, a ligand is immobilized on the surface of a sensor chip
and then is incubated with various concentrations of an analyte (see Figure 8).
The resulting binding curves are used to calculate association and dissociation
stages of the interactions that occur in real-time.

Mgty A

Conjugated 3 ,3 -
Ligand P £ / ¢

Dextran
Metal Surface
Prism

Aetacins L
At | o

Light Source

Figure 8. Schematic view of the SPR technique. Figure from
(www.wikipedia.org).
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Two important disadvantage of SPR method are: 1) difficulties to
discriminate between specific and non-specific interactions with the sensor
surface, and 2) SPR is mass sensitive thus, binding of low molecular weight
compounds is more difficult to detect.

1.4.2.2 Isothermal titration calorimetry

Physical properties that affect (or result from) the protein-ligand
complex formation can be used to determine the features of a reaction
including binding, thermodynamic, and kinetic characteristics. ITC (Freire,
Mayorga et al. 1990; Lewis and Murphy 2005) measures the heat generated
when molecules interact, and this can be used to calculate binding affinity and
the thermodynamics of binding. Currently, it is the most commonly used
method for studying the binding of small molecules by larger
macromolecules, including proteins, DNA, etc. ITC is also used as a
secondary screening technique following a first round of high throughput
screening. By obtaining a thermodynamic profile for a complex, optimization
of small molecule binding can also be achieved (see Figure 9).

Uigand Injection

Cell feedboack
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\ > ; " "
J I Calibration
he

Adizbatlc

Figure 9. Schematic view of an ITC instrument. Figure from
(www.wikipedia.org).
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1.5 Disadvantage of experimental techniques

Now the question is whether these experimental techniques are enough
to investigate the protein-ligand molecular recognition.

In many protein-ligand complexes, the complementary combination of
interactions requires a high degree of dynamics and flexibility (Boehr,
Nussinov et al. 2009). As mentioned here, there are several experimental
methods by which one can get information about proteins. Different methods
are related to different types of information. Even if those methods have had
an extraordinary influence in protein-ligands/drugs characterization and drug
development, there is still today no experimental technique capable of giving
a robust all atom view of the dynamical interactions.

Most experimental techniques rely on data interpretation and fitting.
This make difficult in many cases to obtain clear mechanistic information,
requiring, in most cases extensive mutational studies. All these effort make it
time and money consuming.

To this end, methods that permit the characterization of the protein
mechanism (its dynamic, etc.) at atomic resolution are extremely valuable
approaches to design molecules targeting protein-drugs interactions
(Rosenberg and Goldblum 2006). Theoretical techniques based on all atom
force field can be used for this purpose, modelling different molecular
conformations that can be tried by a ligand on a protein, together with the
dynamics of the processes of transition between them (Weiner, Kollman et al.
1986; Wang, Donini et al. 2001).

1.6 Protein dynamics and their effect on molecular interactions

The conformational space of a protein can be described using an energy
landscape. In this landscape, different conformations of a protein are
populated depending on their energies and the energy barriers that exist
between the different states. These conformational states can be further
investigated by ligands, which might restrict conformations that a given
protein is able to achieve. In some cases, certain conformational changes have
been found to be essential for a protein’s function (Boehr, Nussinov et al.
2009).

From such a dynamical analysis, a question raises: do the bound
conformations (different from the apo one) already exist at some degree in the
absence of ligands (Monod-Wyman-Changeux, conformational selection

14
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theory), or do particular ligands induce the receptor to adopt new
conformations (Koshland-Nemethy-Filmer induced fit theory) (Changeux and
Edelstein 2011) Recent advances in experimental and theoretical techniques
have allowed detailed looking into both scenarios.

In general, when two molecules bind each other, their interactions
affect the energy landscape of each molecule. Over the last decade, concepts
regarding protein-ligand binding mechanisms have expanded to include both a
‘rigid docking” model and a ‘flexible induced fit' model. Particular ligands
induce the receptor to adopt their adequate conformation (induced fit).
Clearly, it may be possible to design drugs to stabilize an exact conformation
having the desired biological activity (see Figure 10).

Conformation with Conformation changed
no antigen bound with atigen bound

Figure 10. Schematic views of protein dynamics that were observed
following the binding of an antigen to Immunoglobulin G. Figure from
(Lehninger Principles of Biochemistry, W. H. Freeman, 2005)

Protein flexibility might play an important role in the binding process
during the induced fit procedure (Carlson and McCammon 2000). By using an
induced fit method and conformational sampling, specific conformational
changes can be identified for protein-ligand interactions. Moreover,
understanding the extent of a protein’s flexibility can facilitate the design of
ligands that induce alternate conformations.

Computational simulation methods can help in addressing the above
issues, by obtaining an all atom view of protein dynamics and its possible
induced fit. In the following chapter we introduced some of them.

15
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1.7 Computational methods to investigate protein structures and
protein-ligand interactions

Computational chemistry has increasingly gained a more central and
accepted role in the drug discovery process (Rosenberg and Goldblum 2006).
Moreover, the field of computational chemistry was recognized with the
award of the 2013 Nobel Prize in Chemistry to Michael Levitt, Martin
Karplus, and ArienWarshel “for the development of multiscale models for
complex chemical systems”, which explore the world of molecules virtually
using computers.

In general, computational methods in drug discovery process involve
the virtual screening (Huang 2007) (pharmacophore plus docking) of
chemical structure libraries containing hundreds of thousands of compounds
in order to identify a few drug candidates that exhibit good binding affinity to
their target.

In particular, multiple simulation techniques describing, for example,
pharmacophores (Mason, Good et al. 2001), homology modelling (Schwede,
Kopp et al. 2003), docking simulations(Kitchen, Decornez et al. 2004),
molecular mechanics (Bowen and Allinger 2007; Lewars 2010), molecular
dynamics (MD) (Berendsen 1988; Rapaport 2004), Monte Carlo simulations
(Rathore and de Pablo 2002; Rubinstein and Kroese 2011), normal modes
(Case 1994; Alexandrov, Lehnert et al. 2005; Bahar and Rader 2005), etc.
have facilitated the use of computational methods in drug discovery. Here, we
describe these selected techniques in more detail.

1.7.1 Pharmacophores

A pharmacophore model (Yang 2010) is a method to explain the
molecular structures  and physical properties which are necessary
for interaction of a ligand/drug with a specific target to activate or block its
biological response. General pharmacophore types contain aromatic rings,
hydrophobic centroids, hydrogen  bond (acceptors or  donor), cations
and anions. These pharmacophoric points may be located in the receptor or
found on the ligand itself. This method facilitates the design of new and more
potent compounds (see Figure 11).
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Figure 11. A pharmacophore model of the prodigiosin ligand that binds
MCL-1.

Pharmacophore technique has become a very important tool in drug
discovery. A pharmacophore model can be defined either in a structure-based
method, by discovering possible interaction between the protein target and
ligands or in a ligand-based method, by superposing a set of molecules and
searching common chemical features that are necessary for their bioactivity.
These methods have successfully been applied in virtual screening, including
lead optimization, de novo design and multi-target drug design. A variety of
computational tools for pharmacophore modeling and applications have been
developed for ligand, receptors or receptor-ligand complex. For example,
GLIDE (Halgren, Murphy et al. 2004), MOE (Inc. 2013), etc methods.

1.7.2 Homology modeling

Homology modeling or comparative modeling, uses an experimentally
defined protein structure as a template for modeling the three-dimensional
structure of other proteins that have not been structurally characterized
[Browne et al., 1969; Greer, 1981, 1991; Blundell et al., 1987]. However, it is
important to note that proteins with similar sequences can still vary in their
biological functions. Thus, homology modeling can provide the low-
resolution structures that will contain (hopefully sufficient) information about
the spatial arrangement of key residues in the protein and guide the design of
new experiments. For example, using such model structures can considerably
help the design of site-directed mutagenesis experiments.
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In general, homology modeling involves the following steps: 1) to find
a template(s) for modeling, 2) to align the target sequence with the
template(s), and 3) to build the model(s). Several different procedures have
been developed to build the model (see Figure 12). The simpler one is to use
the backbone from the templates and correct for deletions and insertions.
Conserved residues are copied entirely, for other side-chains only the torsion
angle between C-alpha and C-beta is copied. Finally new side-chains are
added and the structure is optimized. More sophisticated algorithms, however,
also exist, using multiple template alignment and experimentally determined
distance maps. Most used homology modelling software (and free servers)
include: Modeller (Eswar, Webb et al. 2002), SwissPDB (Schwede, Kopp et
al. 2003), I-tasser (Mitra, Shultis et al. 2013), Phyre or ROBETTA (Kim,
Chivian et al. 2004).

P

2 % Target ...EADEDS-PYG...

\:‘} — Template ... ESEAERFTFS..
Template structure Sequence alignment

Initial model

Model evaluation

1. Backbone is copied and corrected for
deletions and insertions.

2. Conserved residues are copied entirely

3. Forside-chains only the torsion angle between
C-alpha and C-beta are copied

4. New side-chains are added

v
Model refinement ]
timization of the final structure

Figure 12. Common steps for simple in silico homology modeling.

1.7.3 Molecular docking

Molecular docking is a method by which the binding of a small
molecule to a protein structure is predicted based on complementarity with
respect to structure, charge, and hydrophobicity considerations (Brooijmans
and Kuntz 2003; Kitchen, Decornez et al. 2004). To predict the affinity of
various compounds, binding energies are estimated to identify the best
candidates (see Figure 13). Although this method is far from being perfect,
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often missing an accurate estimation of binding energies, is one the most
common programs used in drug design and lead optimization.

Figure 13. Ligand docking to the active site of the MCL-1 protein.

Docking methods are mainly based on two different steps. First a
search algorithm is implemented in order to identify all possible
conformations where the ligand candidates interact with the receptor. Multiple
search algorithms have been implemented, and almost every month we can
find a new docking method or variation of existing ones. Most docking
methods perform this search on a grid, previously built on the receptor. This
grid describes geometrical characteristics together with biophysical
descriptors: polarity, hydrophobicity, etc (Halperin, Ma et al. 2002). Search
algorithms on these grids are then performed using stochastic techniques,
genetic algorithms, etc. The second step includes the scoring of these
configurations in order to discriminate potential binding modes. Scoring is
determined using a mathematical function (scoring function) which calculates
the energy of the interactions between the protein and the ligand.
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There are different types of docking technigues. One type is rigid
docking where molecules are defined as rigid items, and their form does not
change with docking. Another model uses flexible docking. In this method,
(one or more of the) molecules are allowed to be flexible. Most common
approaches use rigid receptor but flexible ligands. However, flexibility in the
receptor, at the level of side chains, is more and more implemented in docking
techniques (Lengauer and Rarey 1996; Brooijmans and Kuntz 2003).
However, while flexibility of molecules is critical in drug discovery, it
remains a challenge for estimating the binding energies involved, making
more difficult to score the different poses.

Docking methods that are commonly used by academic and industry
laboratories include Glide (Halgren, Murphy et al. 2004), AutoDock (Morris,
Huey et al. 2009), Gold (Jones, Willett et al. 1995), rDock (Ruiz-Carmona,
Alvarez-Garcia et al. 2014) and Rosetta (Sircar, Sanni et al. 2011) programs.
For example, the program Glide, which is commonly used in our studies,
stands for Grid-based Ligand Docking with Energetics, and it allows a ligand
to be rapidly docked with a receptor. For this process, Glide has three docking
options. The fastest one, high throughput virtual screening (HTVS) uses rigid
receptor and ligands and is capable of handling libraries containing millions
of compounds. Sampling and scoring of a ligand involves a fraction of a
second (milliseconds, etc.).The second option introduces ligand flexibility in a
“standard precision” (SP method), taking approximately few seconds per
ligand. The third is an extra precision (XP) method which includes extended
ligand comformational sampling and improved scoring. This last option is
typically applied to smaller libraries, taking up to 5 minutes per ligand.
Furthermore, both SP and XP modes can minimize the clustered poses
according to OPLS-AA non-bonded interaction energies before scoring them.

Providing fully flexible molecular docking is computationally
expensive, especially when the receptor is treated as a fully flexible receptor
model. A fully flexible receptor model can vary from thousands to millions of
conformations; a complete flexible conformational analysis on both the ligand
and the receptor still constitutes a big challenge, which can take a
considerable amount of time (in particular if using expensive energy
functions). Therefore, due to its computational expense is commonly applied
only as a refinement method to few selected compounds.
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1.7.4 Introduction to Molecular Mechanics

Molecular simulations are mostly done either through a deterministic
performance (classical mechanics) (Bowen and Allinger 2007), a stochastic
process (Monte Carlo methods) (Rubinstein and Kroese 2011) or a
probabilistic mechanics (quantum mechanics) (Lewars 2010). These methods
can be used for perturbing geometry from one local minimum to another.
Brief descriptions of the ideas in the first two methods are given in the
following sections.

Atoms within molecule are not static and present significant motion
including angle bending, bond vibration and dihedral angles. As a result of
this motion, and as mentioned several times above, large biomolecules have
several (thousands) conformations with different energies. In order to
distinguish them several different techniques have been developed to estimate
molecular structure and energetics. When an atomic level of precision is
desired, these have commonly been divided into two main classes, molecular
mechanics models and quantum mechanics models. In molecular mechanics
techniques molecules are made of spherical partial charged atoms connected
together with spring bonds. Atom positions are then described by several
geometrical parameters, mainly bonds and angles, which, together with their
physical descriptors (charge radii) and a force field equation described
uniquely its energy.

Quantum mechanics (QM), in the other hand, solves the Schrddinger
equation obtaining in this way a wave function from which to derive the total
energy of the system, its electronic distribution and the gradients necessary for
is motion (see below). Since the exact solution of the Schrodinger equation (in
systems with more than one electron) is impossible, several approximations
have been developed. Rigorous approaches can take up to several days to
obtain the wave function for a small system (up to dozen of atoms). More
approximate methods can give a solution in few minutes for up to few
hundred of atoms. Nevertheless its application to a large biological system is
still out of the reach today -requiring mixed molecular mechanics and
guantum mechanics methods (QM/MM) (Kollman, Massova et al. 2000; Cho,
Guallar et al. 2005). In any case, and due to their expense, QM methods are
mostly used for defining chemical reactions and other electronic processes,
such as electronic excitation or charge transfer, and not to perform exhaustive
conformational sampling.
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Molecular mechanics describes the energy of a molecule as sum of
contributions from distortions of bond distances, bond and torsion angles
together with the non-bonded, van der Waals and Coloumbic, interactions
(Lewars 2010)(see Figure 14). The set of parameters and equations describing
this terms is known as the force field. Its computation cost is subjected by
evaluation of non-bonded van der Waals and Coulombic terms, which is set
by the square of the number of atoms. In comparison with QM methods, the
overall cost for an energy (or its derivative) takes only a fraction of a second,
making possible to model the behavior of huge molecular system with
millions of atoms, such as proteins, DNA, etc.

Torsion

Bond

stretching

Non-Bonded Interactions

Figure 14. The atomic view in molecular mechanics. Figure from
(http://c125.chem.ucla.edu/NIH/MolMechanics.htm)

1.7.5 Force field

The interaction between particles (atoms) can be described in terms of
either force (F) or a potential (Fahy, Subramaniam et al.). These are
equivalent, as the force is the minus derivative of the potential with respect to
the degrees of freedom. In a simple word, the purpose of the force field is to
explain the energy and forces between the particles of a system.

The common equation of the total energy in force field can be written
as:

Etotal = Ebonded + Enonbonded

where,
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Ebonded = Ebond + Eangle + Edihedral and Enonbonded = Eelectrostatic + Evan der Wal

1)

The functional form of the widely used Assisted Model Building with
Energy Refinement (AMBER) force field (Wang, Wolf et al. 2004) has the
following expression,
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Where the first term describes the potential for bonded atom pairs, the
second term define for bonded angles, the third the potential for bonded
dihedral angles, and the final term the potential for non-bonded atom pairs
made up of a Lennard-Jones type diffusive interaction and a coulombic term
(see Figure 15 for illustration).

The equilibrium values of the bond distances and bond angles, as well
as the equivalent force constants used in the potential energy function, are
defined in the force field and are mostly resulting from averaged experimental
observations (i.e. crystal structures, infra-red spectroscopy...) and quantum
mechanics calculations. Each different molecule and atom type requires its
own parameters. Therefore, there are force fields which are parameterized to
provide an accurate description of different organic elements or may be
parameterized against a particular type of molecules, such as a ligand, DNA
or proteins (Cornell, Cieplak et al. 1995; Damm, Frontera et al. 1997).
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Distance bond length or 3-atom ange
Figure 15. Schematic view of molecular mechanics potential energy.
Figure from (www.wikipedia.org)

There are several molecular mechanics force fields that are commonly
used, including, the above mentioned AMBER (Wang, Wolf et al. 2004),
Optimized Potentials for Liquid Simulation (OPLS/OPLSAA) (Jorgensen,
Maxwell et al. 1996), Chemistry at Harvard Macromolecular Mechanics
(CHARMM) (Vanommeslaeghe, Hatcher et al. 2010), Gronigen Molecular
Simulation (GROMOS) (Oostenbrink, Villa et al. 2004) and Merck Molecular
Force Field (MMFF)(Halgren 1996).

1.7.6 Molecular dynamics

MD methods create a series of time-dependent points in a trajectory by
spreading a set of coordinates and velocities according to the second-law
equation of Newton (F = ma). Each atom receives an initial velocity and then
Newton's laws are applied to spread the dynamics of the system through time.
To this aim, to integrate this equation along time, we use the basic relation
F= -OVIOR, where V is the potential energy (force field, quantum mechanics,
etc) and R stands for all the degrees of freedom. Thus, the main
computational bottleneck is to compute gradients at each time step for each
degree of freedom (several hundred of thousands in a solvated protein
system). Moreover, for stability reasons, the time step for integration needs to
be sufficiently low (on the order of few femtoseconds), requiring significant
computational resources to reach propagation times relevant to biological
processes. The method was first published during the 1950s and 1960s by the
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original papers of Alder and Wainwright (1957); Gibson, Goland, Milgram,
and Vineyard (1960); and Rahman (1964).

Typically, in MD a given temperature will control, through a thermostat
algorithm, the different velocities and give (to each degree of freedom) a
certain kinetic energy to overcome energy barriers and populate the different
minima; more simulation time will produce more exploration. Obviously, for
this sampling, a force field is required to define the forces and energies
between elements of the system. This technique assumes the ergodicity
assumption: any state can be populated if sufficient propagation time is
achieved (all accessible microstates have the same probability). However, and
due to computer limitations in reaching sufficient long times of propagation,
MD simulations often does not provide a complete (exhaustive) sampling due
to time limitations (certainly this is not an exclusive MD problem but inherent
to most sapling techniques). Moreover, systems often get trapped in local
regions of conformational space during a simulation due to the presence of
high free-energy barriers. Thus, the key problem is to provide sufficient
conformational sampling within a given time. Accordingly, there have been
several attempts to improve MD sampling by introducing additional
approaches such as: metadynamics (Laio and Parrinello 2002), steered MD
(Shen, Shen et al. 2003), replica exchange (Sugita and Okamoto 1999),
umbrella sampling (Kumar, Rosenberg et al. 1992), etc. All these techniques
aim to speed up the sampling by reducing the conformational space or
speeding transition between states.

1.7.7 Monte Carlo simulations

Monte Carlo method (Rathore and de Pablo 2002) is one of the most
useful computational algorithms which is based on random sampling to
achieve statistical results. Monte Carlo techniques developed in the last half
century, and its fundamental idea is to solve the statistic problems repeating
random sampling to characterize the features of the particles of a system.
Using this method requires to run the simulations several times to obtain the
best probability distribution of the object. This method is particularly useful
for simulating systems with a large number of degrees of freedom.

As compared to MD simulation, Monte Carlo methods needs less
computer time to perform each sampling step for the same system, since
typically they do not need to compute forces (as MD does). Nevertheless, the
random component of the step involves less probability of sampling important
regions (unless an efficient sampling technique is used). Lack of time-
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dependent information is also one of the most important limitations in Monte
Carlo simulation.

Choosing the step size (and its nature: number of atoms to be modified,
simultaneity) in Monte Carlo simulations is one of the main difficulties in its
practical implementation, affecting the search towards local or global
exploration. Therefore, algorithm may explore some regions more
exhaustively than others, as shown in Figure 16, which might require system
specific tuning the parameters.

Energy

Conformational space
Figure 16. Monte Carlo exploration for sampling of conformation space.

1.7.7.1 Metropolis Monte Carlo

The Monte Carlo sampling is almost always used in combination with
an importance sampling technique. This is true, in particular, for large —lots of
degrees of freedom- systems where, otherwise, the system will have serious
difficulties to sample low energy areas. Possibly the most importance
sampling technique used in biological systems is the metropolis sampling
algorithm.

A metropolis Monte Carlo procedure(Binder and Heermann 2010)
starts by calculating the energy of the initial structure. The technique then
applies a slight change to the molecular system and calculates the new energy.
If the movement decreases the energy, then a new structure is automatically
taken. If the final energy of the system increases, then the new position of the
structure is accepted with probability e®* "™ where AE is the change in
energy, K is the Boltzmann constant in proper units, and T is the temperature
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chosen for the calculation. In this way, the outcome of accepted structures will
follow the desired Boltzmann distribution.

1.7.8 Normal modes

Protein dynamics is in constant evolution, changing from one state to
another state. Nevertheless, this motion is often confined within local minima,
experiencing small fluctuations. Normal mode analysis (NMA) aims to
describe the motion in proteins by approximating a harmonic nature to those
minima and obtaining its second derivatives vectors and frequencies. While
this, in principle, should apply only to the vicinity of the minima, normal
modes from atomic force fields, or from other more approximate methods (see
below) have shown to describe more complex conformational transitions in
proteins (for example the T to R transition in hemoglobine (Xu, Tobi et al.
2003; Eyal, Yang et al. 2006))

NMA is a method for the analysis of collective motions in biomolecules
including proteins. Minimization of the conformational potential energy,
calculation of the “Hessian” matrix, which is the second derivatives of the
potential energy with respect to the mass-weighted atomic coordinates and the
diagonalization of the Hessian matrix are three main steps of NMA. Each of
these three steps can be computationally difficult, depending on the size and
force field of the molecule.

In general, simpler force field representations will lead to faster (but
more approximate) normal modes. In these regards, one of the most popular
NMA simplifications involves the development of elastic network models
(GNM, Gaussian network model). In this algorithm the protein “force field” is
significantly simplified: atoms are solely connected by a network of elastic
springs. Moreover in most cases this model is applied only to carbon alpha
atoms in proteins. There are two main advantages in this method; 1) energy
minimization is not needed because the distances of all of the elastic
connections are taken to be at their minimum energy length. 2) The
diagonalization task is reduced compared with the NMA method because the
number of force field terms and atoms is reduced (if using only alpha carbon,
for example, from the total number of atoms to the number of residues).

The ANM (anisotropic network model) is possibly the most used
version of GNM, accounting for the three coordinates per atom, thus adding
directionality. This tool was developed in 2000 (Doruker, Atilgan et al. 2000;
Atilgan, Durell et al. 2001) for the normal mode analysis of proteins and
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analysis the motions of molecular systems. As mentioned, proteins are
represented here as an elastic mass-and-spring network of alpha carbons (see
Figure 17).

Figure 17. Schematic view of an elastic network. Figure from (Chennubhotla
et al., 2005).

From this simplified potential, diagonalization of the second derivatives
matrix is readily obtained (few seconds in a commodity machine), being able
to use the resulting (approximate) modes in sampling algorithms. While only
using the Ca-atoms as nodes might seem an oversimplified approach, Bahar et
al. (Eyal, Yang et al. 2006) have shown in their seminal work that motion
inferred from this vectors reproduce to a large degree fluctuation observed in
crystals (beta factors). Lately, more sophisticated ANM have been developed
using internal coordinates (Orellana, Rueda et al. 2010) or all heavy atoms.

1.8 Computational methods and drug discovery process

Computer simulation models have provided an additional opportunity
to understand atomic detail of receptor-ligand interactions. Within the last
twenty years, several in silico methods have been developed and applied to
the study of biological systems in order to better understand the atomic details
of molecular interactions between receptors and drugs. These methods, for
example, 1) help in designing new molecules from a rational protein-ligand
atomic interaction, 2) shorten the time for screening thousands of compounds,
and 3) reduce cost by reducing the amount of reagents used (synthetized) for
studies. In particular, structure-based and ligand-based drug design using
computational methods and informatics knowledge has made the drug
discovery process more efficient.
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Correspondingly, remarkable progress has been made in drug design
and discovery in many pharmaceutical companies over the past five years,
reducing the risk of failure in some cases. This is a key point since companies
invest a significant amount of time and money to bring a new drug to market.
In silico approaches and in vitro data are used in almost all pharmaceutical
companies for drug discovery and development, and they are complemented
by pharmacology studies of toxicity and absorption, distribution, metabolism,
and excretion (ADME) (Kapetanovic 2008).

In order to rationally design new or improved inhibitors, an
understanding of the inhibition mechanisms at an atomic level is very
valuable. As we mentioned previously, atomic detailed intermolecular
interactions are difficult to obtain from experimental approaches alone.
Therefore, computational methods provide an additional source of data.

Rational optimization of a lead compound may be achieved with
considerations for chemical modifications that increase the affinity and/or
specificity of an inhibitor for a target receptor. As mentioned, expanded
computational simulations techniques, based on all atom force field
simulations are commonly used to provide mechanistic details on several
selected poses.

Moreover, computational techniques describing the protein-ligand
interaction mechanism at great detail open the door to study the effects on
drugs delivery and binding upon mutations, a very important field in drug
discovery. Due to its importance in drug resistance (for example as a
consequence of viral evolution or high metabolic rate of cancer cells), or in
personalized medicine, where specific patient mutations might have a large
influence on which medication to use, it is critical to develop accurate
protocols for predicting the effects upon protein mutation.

1.9 Successful application of in silico methods

There are several examples which demonstrate the successful design of
inhibitors using in silico methods. These include a kinase inhibitor of the type
I transforming growth factor beta (TGH PB) receptor which was developed
independently by the companies, Biogen (Singh, Chuaqui et al. 2003) and
traditional enzyme and cell-based high-throughput screening by Eli Lilly
(Sawyer, Anderson et al. 2003), using virtual screening. Another example is
the anti-anxiety, anti-depression 5-HT 5 agonist (Becker, Dhanoa et al. 2006).
Using in silico modeling, this potent and selective compound was designed in
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less than two years, and required less than six months for lead optimization
and synthesis. Additional examples of new drugs (hits and leads) that have
been developed or designed using a combination of screening methods
include a dopamine D3 receptor agonist (Varady, Wu et al. 2003), various
antibiotics (Olsen, Jost et al. 2006), c-Src/Abl kinase inhibitors(Manetti,
Locatelli et al. 2006), a checkpoint-1 kinase inhibitor (Lyne, Kenny et al.
2004), a PPARYy ligand (Lu, Huang et al. 2006), and a MDM2-p53 inhibitor
(Lu, Nikolovska-Coleska et al. 2006).

Additional successful examples of target-based virtual screening are as
followed; novel, potent and selective CK2 (casein kinase Il) inhibitors were
obtained by screening a subset of the Novartis database using DOCK
(Vangrevelinghe, Zimmermann et al. 2003). The ATP binding site of a human
CK2a was inferred via homology modeling (X-ray structure of Zea mays
CK2a, PDB entry 1DAW). Moreover, Novel BCR-ABL tyrosine kinase
inhibitors were identified with a related TBVS workflow using DOCK (Peng,
Huang et al. 2003).

There are also several successful examples of ligand—based virtual
screening; when using mibefradil, a known T-type calcium channel blocker
(IC50 ¥ 1.7 mM) as a query (Schneider, Neidhart et al. 1999), CATS
(chemically advanced template search) identified one significant hit with an
IC50 <1 mM, among the top 12 ranked molecules. The same technique,
CATS, was applied to identify structurally novel glycogen synthase kinase-3
inhibitors, first by identifying the oxadiazol-pyridyl moiety, a new
chemotype, then by synthesizing additional analogs. Compounds with
inhibitory activity below 1 mM were identified.

Nevertheless, virtual screening and docking methods have limitation
accuracy. For example, calculating protein-ligand binding affinities (scoring
functions) has been challenge by the pharmaceutical industry. It has been
considered that docking methods presently dock 70 — 80% of ligands to the
targets correctly. Recently, one study proposed that current docking and
scoring algorithms are not able to identify key interactions and treat them
appropriately, false positives, an important topic in structure-based virtual
screening, for example (Kapetanovic 2008). Despite these limitations,
computational techniques are expected to play a major role in future
pharmacology, even more when the development of new drugs involves
significant more research studies.
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1.9.1 Emerging computational techniques in drug discovery

Several computational studies, published in the last recent years, have
introduced promising areas for a more accurate description of the protein-
ligand interaction.

As mentioned previously QM approaches are more accurate in
describing energy functions, capable of better characterizing protein-ligand
interaction. As mentioned, this method has size and time limitations, not being
possible its application for a large set virtual screening test. Nevertheless, it is
suitable for refining and better scoring few poses. In this line, we find several
studies in the recent years demonstrating that a better description of the
electronic effects of the ligand (and its surrounding active site) helps in
discriminating binding poses and in obtaining improved correlation with
experimental binding energies (Cho, Guallar et al. 2005).

Improving conformational sampling remains one of the main
challenges in biological simulation at an atomic detailed level. Recently,
several hardware and software developments, for example from the Shaw
research group or from laboratories developing MD simulations on graphical
processing units (GPU), have shown that accessing microsecond time MD
simulations is now possible (Young, Bank et al. 2009). Resulting information
have demonstrated the power and ability of these methods and their successful
application to drug discovery and molecular recognition studies. For instance,
scientists at Shaw research group performed a completely blind MD
simulation of a drug diffusion, active site search and binding, by placing it
outside of a kinase protein (Dror, Pan et al. 2011). After running the
simulation for a sufficient period of time to sample all of the predicted
configurations, the drug was eventually oriented into its binding site in
excellent agreement with the crystal structure. Such simulations suggest that
computational methods may further be applied in a near future to calculations
of protein-drug kinetic binding data, with comparisons made with
experimentally determined on and off binding rates.

These computational approaches, however, still represent a significant
computational cost (out of the reach of a typical lab) when dealing with
complex (partly buried active sites) systems. In the following sections, we
will introduce our Monte Carlo approach PELE (Protein Energy Landscape
Exploration) (Borrelli, Vitalis et al. 2005; Borrelli, Cossins et al. 2010), which
allows for an unbiased search of the protein — ligand dynamics at an
accessible computational cost.
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1.10 The Protein Energy Landscape Exploration (PELE) program

PELE is a hybrid method combing Monte Carlo sampling with protein
structure prediction techniques capable of producing rapid and accurate
protein and the protein-ligand conformational landscape (Borrelli, Vitalis et
al. 2005). PELE was initially developed to provide quick protein-ligand
interactions including, biased ligand entrance and exit pathways, induced fit
docking, and overall protein dynamics, with less computational cost of
molecular dynamics techniques (Borrelli, Cossins et al. 2010).

PELE technique is based on two main steps:

1) PERTURBATION. The procedure begins with calculating the
energy for the initial structure followed by a perturbation in the system. This
step can include a ligand (if present) and the protein backbone perturbation.

Ligand perturbation. If ligands exist, the step begins with the generation
of a local perturbation on the ligand. The ligand is perturbed through random
rotations and translations. Moreover, ligand internal degrees of freedom are
taken into account by building a ligand specific rotamer library. The program
can treat several ligands. Several filters are applied to prevent any steric
clashes between backbone of the protein and the ligand.

Protein perturbation. The perturbation includes also the backbone of
protein (or the backbone surrounding the ligand). To this aim, all atoms are
minimized where the alpha carbons are forced to move to a new position by
means of a harmonic constraint resulting from a (randomly chosen) low
frequency mode from an ANM approach (see above normal modes section).
Such a procedure aims to describe the global motion of the protein.

2) RELAXATION. Relaxation is based on two protein structure
sampling techniques: side chain prediction and minimization.

Side chain sampling. Due to the ligand and protein motions, as a result
of the perturbation step, the side-chain step has been developed to reposition
residues which underwent a large energy change along the perturbation. For
this, we typically select several residues around (within a given radii) the
perturbed ligand. In addition, each side chain energy is computed before and
after the perturbation. Thus, the user can choose side chains with the largest
energy increase (top residues) and predict a better side chain position. The
algorithm proceeds by optimally arranging the selected side chains with a
rotamer library side-chain optimization at a rotamer resolution of 10° to 30°.
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Minimization. The last procedure is the minimization step, which
includes (at least) all residues local to the atoms involved in steps 1 and 2.
Nevertheless, the user can select any desired region to be included. The
truncated Newton minimization algorithm uses a multiscale protocol and it
has the option of including a harmonic constraint in those alpha carbons that
were modified in the initial ANM perturbation.

Figure 18 shows the heuristic process for the landscape exploration

method.
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Figure 18. Two main steps of PELE program. Figure from
(www.pele.bsc.es/pele.wt).

After these steps, the system adopts a new conformation that is
accepted or rejected based on a Metropolis criterion. The energy is described
with an all-atom OPLS force field with a surface generalized born solvent
model (a recent update in PELE allows now to use also the AMBER force
field). All the accepted steps will then generate a stochastic trajectory. The
combination of protein and ligand perturbations explores efficiently the
energy landscape, reproducing large conformational changes along ligand
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migration. These perturbations, associated to random processes, constitute the
major part of the sampling procedure. As mentioned previously, they are
maintained along the relaxation (minimization) step, enforcing the stochastic
nature of the sampling and the maintenance of (an approximation to) detailed
balance.

1.10.1 Parallel implementation and spawning

Optimally spawned functions are placed to speed up sampling and
establish a collective search between different stochastic trajectories running
on different processor. The procedure is capable of interchanging the
coordinates between several trajectories by using the MPI communication
protocol (see Figure 19). If one of the trajectories is significantly further as
compared to the other trajectories along to the assumed reaction coordinate,
then the trajectory is neglected and picked up from the position of the leading
trajectory.

Spawning criteria provide an affecting sampling of the configurational
space headed for a particular objective: ligand entrance/exit, protein-ligand
binding energy optimization, and so forth.

=
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Figure 19. Schematic view of spawning criteria in PELE.
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1.10.2 PELE’s Application

The algorithm and its application to ligand diffusion, protein-ligand
interaction and induce fit docking are presented in several papers. Some of
these studies described here.

The initial applications revealed the potential of this new technique in
mapping microsecond-time-scale processes in a highly efficient way. Ligand
exit pathways are successfully modeled for different systems containing
ligands of various sizes: carbon monoxide in myoglobin, camphor in
cytochrome P450cam and palmitic acid in the intestinal fatty-acid-binding
protein (Borrelli et al, 2005); escape pathways are consistent with
experimental and theoretical data.

From this early paper it was clear that PELE needed a better backbone
and sampling procedure. Therefore, we introduced a new protein perturbation
step based on anisotropic network model methodologies, capable of providing
significant backbone motion. These PELE developments have been tested on
two systems: ubiquitin and T4 lysozyme (T4lyz) which are described in detail
in the result section (Cossins, Hosseini et al. 2012).

PELE has recently shown to provide more accurate induced fit results
than the state of the art in commercial software. Various protein structure
prediction methods applied as part of an induced fit procedure to predict
protein-ligand complexes. The best results were obtained with an ANM
driven minimized Monte Carlo scheme (PELE) to open the active site
followed by a hierarchical rotamer library based refinement to fine tune the
details (Borrelli et al, 2010).

In several studies, the method has shown its potential to describe
diatomic ligand migration in several globin systems: myoglobin, hemoglobin
and the mini-hemoglobin from the sea worm Cerebratulus lacteus (Lucas and
Guallar 2013). The results clearly show that the simulations are specific to the
system providing a different trend in the entrance pathway, as expected from
experiments. While Mb presents multiple entrance pathways, populating the
well-known xenon cavities, in CerHb the ligand enters the protein only by one
apolar channel. In haemoglobin, a clear different trend is observed for the T
and R quaternary structures and, furthermore, for the individual different
chains. Such detailed information, accessible through the state of the art
algorithms in PELE, is computationally inexpensive and available to all non-
profit researchers through the BSC web site (httos://pele.bsc.es)
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Gaining absolute binding free energies from unbiased ligand diffusion
is an important goal due to its implications in drug discovery. As mentioned,
several studies have shown the capability to achieve microsecond molecular
dynamics which, combined with a Markov state model analysis, can provide
absolute binding free energies. In a recent study, PELE has shown to provide
an analogous study through Monte Carlo simulations, instead of MD. The
results are in good agreement with experimental data and other molecular
dynamics simulations, indicating that PELE can be a useful technique for fast
estimates of binding free energies and mechanisms (Takahashi, Gil et al.
2013).

1.11 Remaining challenges for computational chemists

Although computational methods have still not solved most of the
problems faced by a medicinal chemist, they have provided significant
benefits for the drug discovery process. They also have great potential for
further advancing drug discovery and development processes. However,
additional work is needed to develop computational methods in order to
(more) accurately predict the affinity of a ligand for a protein.

Many aspects are currently open fronts in today’s research, for
example: 1) development of improved force fields (with better description of
dispersion forces, approximate polarization, torsion...); 2) explicit inclusion
of water molecules in docking; 3) better techniques to compute entropy
changes; 4) improving flexible sampling techniques, etc.

This last point, obtaining better and faster conformational search in
protein and protein-ligand dynamics, is the main goal of this thesis. By using
and further developing PELE, together with other simulations techniques, we
have studied several systems and provided new possibilities when mapping
the dynamics of complex protein-ligand systems.
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2 Objectives
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Understanding protein-ligand interactions at a detailed atomic level is
an important step towards the rational design of novel inhibitors. One of its
main difficulties is the robust (complete) description of the dynamical aspects
associated to the protein-ligand interaction, whether conformational selection
or induced fit processes (and its combination). Obtaining such a detailed
atomic knowledge is very challenging for experimental techniques; computer
simulations are ideal tools to accomplish such a task. Against this
background, this section reveals the main objectives of this PhD thesis and
points out in which particular publications they have been addressed.

The main goal of this thesis is to apply and refine novel computational
techniques aiming at a comprehensive description of the protein and protein-
ligand energy landscape, advancing into the rational design of novel inhibitors
for selected targets.

Specific goals summarize in:

1. Validate our in-house technology PELE (Protein Energy
Landscape Exploration) on sampling protein-ligand
interactions. To this end, we aim to optimize protocols to map
the protein-ligand recognition process for several ligands and
targets, many of them suggested by our experimental
collaborators, comparing in silico result with experimental
affinities.

2. Besides protocols and software validation, we aim to develop
specific application on biomedical and biotechnological
relevant systems. Thus, we aim at adding information for
contributing to the mechanistic knowledge of important
protein-ligand interactions.

3. Following the previous goal, we aim at the implementation of
the atomic detailed knowledge into the rational design of new
inhibitors, aiming to enhance specificity and binding strength.

4, An added value of (accurately) describing protein-ligand
interactions at a dynamical level, is being able to map
possible changes in ligand affinities derived from mutations.
We aim to develop protocols in PELE for the description of
mutational effects in ligand binding. We tested this part on
one of the most well studied systems with important
mutational effects: HIV-1 protease.
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5. Beside these main objectives based on methods application,
we aim to add methodological improvements derived from
the application and validation studies.
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ARTICLE INFO ABSTRACT

The PIIR/AKTIMTOR signaling pathway regulates cell praliferation. survival dmd angiogenesis, The
mammalian target of rapamycin (mTOR) is a protemn kinase ubiguitousty expressed within cells that
regulates cell growth and survival by = and h wal signals. mTOR exists in two
complexes, mTORC) andd mTORC2, Hypefxuvanon of the mTOR protein has been linked 1o deveiopment
of cancer, raxsing mTOR as an attractive target for cancer therapy. Prodigiosin [PG) and obatoclax (08X},
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Keywont: two bers of the p family, are smail molecudes with anticancer properties which are
MU ‘”;" currently under clinical trals: In the present paper, we demanstrate that mTOR Is 2 moleular target of
Melanoma bath prodiginines in melanoma, a Mgly drug-resistant cancer madel The inkibition of MTORCT and
TIK/AXT mTORCE complexes by PG or OBX resulted in a loss of AKT phosphorylation at S473, preventing its full
MYOR inhdxtors activation, with no significant effect on T308. The strangest actavity shibition {89%) was induced by PG
mMTOR compleses on MTORCZ. Binding assays using Surface Plasmon Resonance [SPR) provide kinesic and affinity data of
the interaction of these small inolecudes with MTOR. In addition. i silico modeling produced a detaded
atomic description of the bindimg modes. These results provide new data to understand the mechanism
of action of these malecules, and provide new structural data that will allow the development of moce

specific mTOR inhibitars for cancer sreatment,
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1. Introduction process tiggered by PG s mediated through the mitochondrial

Procigiosin (PG) and obatoclax (OBX) are two prodiginine
family members which have emerged as promising anticances
drugs and are currently in clinical trials. Prodiginines are bacrerial
metabolites with a pyrrolylpyrromethene skeleton which have
shown immunosuppressive and anticancer properties. PG has
shown apoptotic activity against several cancer cell types with low
<y ity in nor 3 cells. The N | Cancer Institute
(www.dtpncinmihgov) tested prodigiosin (amd some of its
derivates) against a collection of ~60 cell lines wath an average
ICep {for PGYof 2.1 oM |11 It has been described that the apoptotic
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pathway and involves the induction of the proapoptotic gene NAG-
1 |2|. Nevertheless, the molecular target of this agent is still

Further studies are also necessary to understamd the
mechanism of action of OBX. OBX is a synthetic indolylprodigiosin
derivative, which was developed by GeminX Pharmaceuticals
{recently acquired by Cephalon) and was described as a BH3
mimetic drug [3).

In the present report we tdentify the mammabian target of
rapamy¢in (MTOR) as 2 new molecular target of the prodiginines.
mMTOR is an evolutionartly conserved serine/threonine protein
kinase which is constituted by two signaling complexes: mTOR
complex 1 (mTORCH) and mTOR complex 2 (mTORC2), Both
complexes have specific effects on distinet cellular functions,
such as controlling mANA translation, ribosome biogenesis,
autophagy and metabolism [4-6]. mTORC2 phosphorylates AGC
kinases such as AKT, serum- and glucocorticold-induced protein
kinase-1 (SGK1) and protein Kinase C-alpha (PKCa) | 7-9). AKT is
one of the best-known downstream effectors of phosphatidyli-
nositod-3 kinase (M3K). Complete AKT activation depends on

45



Publications

a0 M Espoma-fiedler of of / Mochemeon) Pharmcolagy 80 (2072] S40-490

phosphoinesitide-dependent  kinase-1 (PDK1) and mTORC2,
which phasphorylate AKT at twe key sites: the activation loop
(T308) and the C-terminal hydrophobic motif (5473 ), respective-
ly [10,17], mTOR signaling is regulated through a network of
feedback loops. proteln partners. substrates, and regulators
[12.13). Among them. PRAS4D {proline-rich AKT substrate
40 kDa) is a key regulator of mTORC1. Moreover, in contrast to
mTORCZ, which contains rictor {rapamycin-i itive ¢

2.4, Cell viabiliry assay

Cell viability was determined by MTT assay using 3-{4.5-
dimethyithiazol-2-y1-2,5-diphenyltetrazolium bromide (Sigma-
Aldrich Chemical Co. St. Louls, MO) {see Supplementary matersal
and methods )

24 K

ion of mTOR), mTORC| contains raptor {regulatory .lswculed
protein of mTOR), which positively regulates mTOR activity and
functions as a scaffold for recruiting mTORCT substrates [14.15],
PRAS40 interacts with raptor in insulin-deprived cells and
Inhibits the activation of mTORCI pathway [16) mTORCI
regulates protein synthests through S6-kinase and the transla-
tion repressor protein AE-BPL. mTORCI phosphorylates the
hydrophobic matif of p70S6K on T389 [17]. On the other hand,
phosphorylation of 4E-BP1 at S65 by mTORC! prevents the
binding of 4E-8P1 to the elF4E translation initiation factor
activating cap-dependent translation [13]

Interest (n identifying and developing new mTOR Inhibitors has
increased since the second generation of mTOR inhibitors showed
encouraging results in the treatment of different types of cancer,
including melanoma |18 Melanoma is an extremely aggressive
disease with high metastatic potential and notoriously strong
resistance to cytotexic agents, Development of resistance has been
related to the presence of dlfferrm frcdhuck loops that link both
PIZK/AKT/mTOR and mitoge protein kinase (MAPK)
pathways, These pathways are mntal to melanoma progression
and both are deregulated In melanoma, but not i normal cells
[19.20). Thus, compounds that counteract these feedback loops are
considered in cancer therapy.

Here, we report that prodiginines inhibit both mTORCE and
mTORC2 complexes and thus counteract the S6K-1/IRS-1 negative
feedback loop in melanoma, Moreover, binding assays provide data
on the stability and affinity of the interaction between these small
molecules and mTOR. [n addition, we describe several of the
recognition motifs involved In these interactions by Ir silico model,

2. Material and methods
2.1, Reogents

Prodigiosin (2-methyl-3-pentyl-6-methoxyprodigiosene) was
provided by Dr. R ). Schultz of the National Cancer Drug Synthesis
and Chemistry Branch Chemotherapeutic  Agents  Repository
(Bethesda, MD). Obatoclax, a synthetic indol-containing prodigi-
nine, was provided by Dr. Roberto Quesada of the University of
Burgos (Supplementary Fig. |} Ragamycin (FRAPI/mTOR inhibi-
tor) was purchased from Invitragen (Carlsbad, CA). All stock
solutions were diluted in DMSO and stored at 20 °C,

2.2 Cefl tines and culture conditions

Human metanoma cancer cedl lines SK-MEL-28 and SK-MEL-5
were purchased from American Type Culture Collection [Manassas,
VAL

Stable control. mTOR knockdown and raptor knockdown
human colan cancer cells SW480 were generated using lentivi
rus-based shRNA targeting mTOR or raptar as described in {21].

All cell types were cultured in Dulbecco's Modified Eagle's
Medium (DMEM, Biological Industries, Beit Haemek, Israel)
supplemented with 10% heat-ipactivated fetal bovine serum
[FBS; Uife Technologhes, Carisbad, CA), 100U/mi pendcitlin,
100 pgiml streptomycin, and 2 mM i-glutamine all from Biological
Industries, Cells were grown at 37 Cin a 5% CO; atmosphere,

ht staining

Cell morphology was evaluated by fluorescence microscopy
following Hoesche 33342 DNA staining (Sigma-Aldnch Chemical
Co., 5t Louis. MO Cells [2 » 10° cells/ml) were treated or not with
PG for 24 h, They were washed in PBS and resuspended in 2 pg/ml
Hoescht 33342 and incubated for 30 min at 37 Cin the dark. Then,
cells were washed (n PBS and examined under a Carl Zeiss Jena
micrascope.

25, Kinase profifing

Kinase profiling was performed by The National Centre tor
Protein Kinase Profiling (MRC Protein Phosphorylation Unit
Dundee, UK\ All kinase assays were carmied out using a radioactive
(**p-ATP) filter-binding assay In duplicate, Screening was carried
out at 10 uM and industry standard QC procedures were used to
validate each assay,

24, fmmunoblet analysis

Cells were treated with prodiginines before insulin (Sigma-
Aldrich Chemical Co. St. Louls, MO) stimulation. Adherent and
floating cells were lysed in bulfer (50 mM Tris pH 7.5, 60 mM
glycerophosphate, 20 mM sodium pyrophosphate, 2 mM EGTA
SmM EDTA, 30 mM NaF, | mM orthovanadate, | mM DTT, 1%
Triton X100, | mM PMSF, 5 uM pepstatin A, 10 pM leupeptin)
Protein concentration was determined with the BCA protein
assay {(Picrce, Rockford, IL) using bovine serum albumin as
standard. 40 g of protein extracts was separated by SDS-PAGE
and transferred  to  Immobilon-F  membranes (Milllpore,
Bedford, MA). Immunobloss were developed with primary
antibodies according to the manufacterers instructions [see
Supplementary material and methods). DMSO was used as a
control.

2.7, tmmunoprecipitation end nor-redicactive kinase activity assay

MTORCT and MTORCZ complexes were immunoprecipltated
from SK-MELS cells (see Supplementasy material and methods)
Immunoprecipitates were assayed against recombinant protein
AKT1 and p70-S6K1 {Invitrogen, Carlsbad, CA), respectively, in 4
final volume of 30 pl containing 50 mM Tris pH 7.5, 10mM
magnesium chioride and 10 pM ATP which was incubated for
30min at 20 C wath gentle shaking. Assavs were stopped by
addition of 5 ! Laemmli buffer and samples were then heated to
100°C for 5min Samples were loaded on SDS-PAGE gel and
analyzed by Immupoblotting.

2.8, Surfuce Plasmon Resonance (SPR) ussays

SPR assays were performed using Biacore T-100 ([see
Supplementary material and methods), which s a sensitive,
high-performance, flow-cell-based SPR biosensor used for the
analysis of proteln-protein or protein-small molecule Interac-
tions |22]. This system Incorporates software wizards which
Assist with the analysis of every intecaction parameter, Including
kinetic and affinity evaluation and determination of binding
specificity.
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2.9, Theorencal methods

Using two separate computational approaches, (1) Blast + Mo-
deller and {2) I-TASSER. we developed a homodogy modeling
procedure for mTOR. Both approaches identified templates from
the PI3K protein kinase family with 24-28% identity, and both built
similar models. Additionally, two contrad in sitice models from the
PEK family, POKI (pdbeode:2PEl) and PEC-alpha (pxibeo-
de:3IW4), were chosen for the protein-ligand simulations (see
Supplementary material and methods ),

After preparing the models, we performed a cavity search with
SiteMap. which confirmed the ATF binding site as the top ranked
binding cavity, followed by initlal rigid ligand docking with Glide
{23). For PDK1 and PKC-alpha we docked the crystaliographic
ligands together with PG. For mTOR we docked PG, OBX and
PP242, a ligand that inhibits mTOR with an ICy, of 8 nM [24]. The
induced fit was modeled by 600 iterations with PELE (Protein
Energy Landscape Exploration), a stochastic method of mapping
large conformational rearrangements and induced fit events in
protein-tigand Interactions |25 To map the change in affinity
after the protein-ligand induced fit, the PELE results were
clustered and representative structures were redocked with
Glide.
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210, Stanstical analysis

For analysis of actvity kinase, results are expressed as the
mean = S.0. of three independent experiments, Stanstical analysis
{ANOVA} was carrled out with the Statgraphics plus 5.1. statistical
package. P<005 and P< 001 are represented by * and **
respectively.

3. Results
3.1, Prodiginines induce cell death in melanoma cells

To determine whether prodiginines could be potential mela-
noma chemotherapeutical agents, we first examined their effect on
two melanoma cell lines obtained from different stages of
melanoma progression according to the broadly accepted Clark
model [26]. We examined SK-MEL-28 (radial growth phase) cells
derived from an in sitce melanoma. We then examined the next
progression stage SK-MEL-5 (vertical growth phase) cells derived
from a metastatic site (axilary node) of a melanoma-bearing
patient.

To compare the cytotoxic-inducing potential of PG and 08X on
melanoma cells, we treated SK-MEL-28 and SK-MEL-5 cells with
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both compounds at concentrations ranging from 1 WM 1o 8 uM for
24 and 43 h. Cell viability was reduced by PG in a dose-dependent
mannper. PG showed a half inhibltory concentration (1Cy ) value of
451 £ 047 pM and 102 & 015 pM in SK-MEL-28 and SK-MEL-5
celis, respectively (Fig. 1A and B). In contrast to PG, OBX had little
effect an cell viability at 24 h. At 48 b of treatment, 08X showed an
oo value 0f 2.2 pM + 043 and 1.8 kM + 0.21 in SK-MEL-28 and SK-
MEL-5 cells, respectively,

Previous studies showed that 08X mediates cell death through
the induction o’ phagy and subseq activation of apoprosi
[27} Therefore, we analyzed which cell death mechanism was
triggered by PG, using caspase-3, -9 and 1C-3 proteins as apoptotic
and avtophagic markers, respectively, After PG treatment, the
cytosolic form of LC-3 (LC-3 1) disappeared and the form
conjugated to phosphatidylethanolamine (LC-3 11} appeared. in a
dose-dependent manner (Fig. 1C)L 1t has been reported that LC-3 11
i recruited 1o autophagosomal membranes, thus partcipating in
autophagy [28]. LC-3 1l was induced at shorter time exposures than
the activation of caspase-9, indicating that bath processes are
triggered, bur that autophagy precedes apoptosis, Marcover.
caspase-3 proteodysis and the tormation of apoptotic bodies
coroborate the apoptotic process (Fig 1D)

In addition, these results demonsirate that the cytotaxic effect
mediated by PG is higher than by OBX in melanoma cells,
especially in SK-MEL-5,

32, Regulation of P3KAKT/MTOR and MAPK pathways s mediated
by prodiglasin

To analyze the potential of prodiginines as protein kinase
regulators a kinase profiling procedure was performed, The results

A Protein Minase % mctivity 5.0
IGF1R [954-1367) 72 15
IR [1001-1382] 112 12
BTK [2.659] 15 1
CaMK1 [2-369] 19 5
MSK1 [2-802] 32 3
RSK1 [1-735) 69 10
RSK2 [2.740) 22 1
SGK1(S422D) [60-431) 29 3
S6K1 (T412E) [1-421] 96 5
ERK1 [2-379) 78 1
ERK2 [2-360} 96 15
GSK3fi [2-420) 48 19
PIBaMAPK [1 121 3
PIBIMAPK [1-364] 100 19
PIBMAPK [1-367] a2 1

[1-385] w1
1KKg [1-736] 66 12
JNK1a1 [1-384] n 16
JNK202 [1-424) 90 15
MNK1 [2-424) 120 4
PKA [2-351] 70 4
PKCa [1-672] a8 3
PKC{ [2-592) 92 6
PODK1 [52-556] 112 7
PDK1 [2.912) : 12 7
PKBa (S473D) [118-480] 24 2

shawed that PG (10 uM) suppressed the activity of few protein
kinases from a panel of 65 protein kinases encoded by the human
genome. The proteins that were significantly inhibited (=-70%)
were AKT, ribosomal S6 kinase [RSK)»-2, mitogen amnd stress
activated protein kinase (MSK)- 1, serum glucocorticoid - inducible
kinase [SGKR1, calmodulin-dependent kinase (CaMKJ-1 and
Bruton's tyrosine kinase (Btk) |29,30], All these proteins partici-
pate in PISK/AKT/mTOR and MAPK pathways. Interestingly, other
proteins closely redated to these pathways such as PDK1, insulin
growth factor (IGFH receptor, MAPK protein Kinases (extracellular
related kinases (ERK)-1/2, p38, ¢-Jun N-terminal kinase ([NK)-172)
and inhibitor of nuclear factor kappa-8 kinase [IKK) were not
inhibited. Unforrunately, other proteins of interest such as mTOR
were not included in this kinase profiling (Fig. 2A) These results
characterize PG as a multi-kinase Inhibitor, and they provide a
range of pew potential targets of prodiginines, all of which play a
critical role in the control of the cell cycle and tumor progression,

To elucidate the specific molecular mechanisms that induce the
cytotoxic effect of prodiginines, and based on the kinase profiling
results, we stadied the effect of PG and 08X on PI3K/AKT/mTOR
and MAPK pathways in melanoma cells. Both pathways regulate
melanoma cell death and profiferation | 26).

We first examined the activation of the two key effector kinases
of these pathways, AKT and ERX1)2. Phosphorylation levels of
these kinases were higher in SK-MEL-28 than in SK-MEL-5 cells
(Fig. 2B). These differences in the up-regulation of pro-survival
protein kinases might explain why resistance to prodiginine
treatment depends on the cell line,

We then analyzed the effect of PG on both pathways. Cells were
treated with PG at the IC;, cone ions established as described
above. PG reduced AKT phasphorylation on 5473 in a time-
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dependent manner. Nevertheless, only a slight effect was observed
on T308, and PG had no effect on PDK-1 or ERK1)2 (Fig. 2C) These
results, together with the kinase profiling, indicate that mTOR
signaling might be down-regulated In the presence of prodiginines,

3.3. Inhibition of mTOR signating by prodiginines in melanoma cells

After observing significant inhibitory effects of PG on AKT, we
sought to confirm the inhibition of the AKT/mTOR/p70S6K
signaling pathway by prodiginines in melanoma celis. Thus, we
examined the effect of prodiginines on the main regulators and
substrates of this pathway. As shown in Fig. 34 both PG and 08X
inhibited mTORC2 activity, leading to an inhibition of the insulin-
stimulated phosphorylation of AKT and PRAS40. Nevertheless, it
was necessary to use higher doses of OBX ( IO p.M) to obtain same
effects as PG at 1 h of treatment, Insuli d phasphoryla-
tlon of PRAS40 at T246 by AKT suppresses (ts mTORCT inhibitory
activity. Therefore, insulin stimulation activates mTORC1 and
increases p70S6K phosphorylation |16). After treatment with
prodiginines, p7056K and 4E-BP1, which are directly regulated by
mTORC1 were also dephosphorylated, Dephosphorylation of
mTOR eflectors suggests that prodiginines inhibit mTOR pathway.

To further confirm that prodiginines target mTOR pathway, we
first determined whether knockdown of mTOR (sh-mTOR) or raptor
(sh-raptor) in SW-480 cells prevented the cytotoxic effect induced
by prodiginines. Knockdown of mTOR or raptor resulted in 47% or
74% reduction in endogenous prolein expression, respectively,
compared with stable control cells (sh-b) {Supplementary Fig. 2A
and B). The functional depletion of mTOR pathway was confirmed by
decreased phosphosylation levels of p70S6K and AKT in mTOR and
raptor knockdown cells (Supplementary Fig. 2C), According to
protein depletion levels in both cell Tines, results showed higher
p70S6K Inhibition in raptor knockdown cells. Complete AKT
inhibition was observed after treatment with PG or OBX at 4 uM
for 1h, After 61 of treatment with bath prodiginines, protein
expression down-regulation was induced in both mTOR effectors.

We next assessed whether depletion of mTOR  activity
prevented from prodiginines-mediated cell death. Stable control
cells and knockdowm cells were treated with a range of
concentrations (04 wM) of PG or OBX for 24 or 48 h (Supplemen-
tary Fig. 3A and B). Results showed greater cytotoxic effects in sh-&
cells after treatment with PG than OBX, as observed in melanoma
cells, Nevertheless, the most signiflcant resules were obtained after
48 h of treatment. At 4 pM of PG or OBX. sh-mTOR and sh-raptor
cell death was reduced in a ~35-40% compared with shed cells
(Fig. 3B), demonstrating that mTOR complexes are critical for
prodiginines cytotoxic effect.

d In wiphcate. Statistical sigaadicance s shown as “F < 001,

3.4. Prodiginines counteract the activation of the S6K-1/IRS-1
neganve feedback loop through mTORCT and mTORCZ inhibition

We further examined the ability of PG and OBX to Inhibit
mTORCT and mTORC2 complexes in melanoma cells, Inhibition of
mTORCT induces activation of SEK-1/IRS-1 negative feedback [ 19].
Dual inhibition of mTORC1 and mTORC2 might counteract this
mechanism, With this in mind, we first compared the effect of bath
compounds with that of rapamycin, which inhibits mTORC1,
leading to an increase in AKT phosphorylation through an IGF-1R-
dependent mechanism. As expected, rapamyan alone decreased
phosho-p70S6K levels, while increasing phospho-AKT levels. The
greatest effect of rapamycin was seen at 100 nM (Supplementary
Fig. 4). As a further comparison, we co-treated both cell lines with
PG (s} or OBX (10 uM) and 100 nM rapamycin for 1 h, before
insulin stimulation, In contrast to both prodiginines alone,
reatment with rapamycin induced a stronger decrease In the
phospho-p70S6K levels, suggesting that mTORC1 is not completely
inhibited by PC or OBX (Fig. 4A), Neverthedess, in both cell lines, PG
rather than OBX counteracted the activation of this feedback loop,
leaving AKT quite dephospharyiated.

To evaluate the inhibition on mTORC2 and mTORC1 complexes,
further kinase activity assays were performed, We isolated active
mTORCZ and mTORCT compl from mel a cells after
inselin stimulation. Active mTORC2 and mTORC1 were immuno-
precipitated from the lysates using anti-rictor and anti-raptor
antibodies, respectively. mTORC2 activity was analyzed using
recombinant AXT as substrate. The inhibition of mTORC2 by PG or
08X resulted in a loss of AKT phosphorylation (Fig. 48). We next
measured the effect of both molecules on MTORCE activity using
p70S6 as a substrate (Fig. 4C). Both prodiginines markedly
inhibited both mTOR complexes, The strongest inhibition (89%)
was induced by PG on mTORC2 (Fig. 4D

35, Kinetic charecterization

In ordes to further characterize the prodiginines as mTOR
Inhibitors, we first monitored the interaction between mTOR and
prodiginines by real-time interaction analysis. We used Surface
Plasmon Resonance (SPR) assays, which allow kinetic and affinity
evaluation and determination of binding specificity between
proteins and small molecules [22],

For binding experiments, we first immobilized the recombinant
protein mTOR (aa 1360-2549) on a sensor surface. The analytes
(PG and OBX) were then injected in solution over the surface,
Changes in SPR response were detected even ar nanomolar
concentrations. The interactions of small molecule inhibitors with
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mTOR were analyzed, providing kinetic and affinity data in the
nanomolar range (Fig. 5A and B). The same order of magnitude in

AKT. In this case, the data did not At this interaction model using
PG as analyte. Moreover, using OBX no high-affinity saturable

the affinity data (Kp) and the kyw dissocation rates (Kd) suggest

that both molecules form similar specific and stable binders
Small molecule specificity was tested by performing interaction

analysis between these compounds and anather protein kinase:

component was obtained (Supplementary Fig. 51 These marked
differences in the characteristics of the interactions compared to
mTOR suggest that stable binding does not occur between
prodiginines and AKT,

response (RU) 00

120

time (s)

g S Kinetic characterazation of PG and OUX bindeg to mTOR by Surface Masmaon Resooance (SPR) assayy, (A1 PG or (0] ODX were sngected ot 2 ranpe of concestrations
beoween 006 M and 1 oM over inumobileed mTOR (39 1 350- 2549 Sensograms and curve Nt {black llnes) are shown, Ksetics and alfinity evalaation of these senuograns
shoved affinay (K;, = KdKa) comsants of 416 & 49 oM foe PG and 355 & 121 oM for OBX, re@ectmvely. RU, sestaance units
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1.6. In silico docking prediction

To further characterize the interaction of prodiginines with
mTOR, we developed a homology moded of the active site sequence
(residwes 2131-2516), PDK1 and PKC-alpha were used as control
systems. Fig. 6A shows the Glide docking scores before and after
the PELE run modeling the induced fit procedure, together with the
active site RMSD along the fit process, for all systems and ligands.
As expected, we obtain good initial docking scores for the two
crystallographic ligands in PDK1 and PKC-alpha, -9.2 and —12.0,
respectively, Furthermare, when comparing the docked structure
for each ligand with its crystal structure we obtained an RMSD of

0.3 A, Such agreement, however, s expected when a ligand is
docked Into its orystal structure. The induced fit procedure does
not significantly change the scores, and only Introduces slight
changes to the protein-Tigand Structures in the active site: L1 A
and 1.3 A for LAA and LW4, respectively. Thus, the control test with
bath crystallographic ligands indicates good affinities and small
induced fit reorganization, Next, we applicd the same protocol to
PG and found significantly lower ininial binding scores: -6 to 7
‘The initial madels, however, were taken from the crystal structures
with bound lgands. Thus, they are biased towards the crystal
ligands, requiring some induced it in order to adapt 1o PG. For this
purpose PELE was used [25]. The induced Nt procedure increased
the RMSD bat did not substantially improve the affinity for PG; the

contral experiments support the absence of inhibation in PDK1 and
PKC observed in the kinase profiling.

Regarding the mTOR ligand docking. the initial docking score of
pp242, PG and OBX s about -7 to -8, similar to the valuwe
measured for PG nour In silico control assays. For mTOR, however,
the induced fir procedure (the same used for PDK1 and PKC-alpha)
introduced significant changes. We observe & cdear increase in
binding affinity along with a significant active site adjustment, the
RMSD increases to 2.1 and 2.3 for PG and OBX, respectively. For all
three ligands we obtained scores which are similar to those
ohtained for the crystal ligands in PDKY and PKC-alpha, Thus, our
simukation studies corroborate recent observations on pp242 [24)
and also suppoct our expertmental findings with PG and OBX.

In Fig. 68 and € we display the detailed atomic view of the
Induced fit of the PG- and OBX-mTOR complex, where we can
observe several recognition moetils. For example, in the fit PG~
mTOR complex, the hydrophobse environment around the pentyl
side chain includes le2500, 162559 and Val2504, We also observe
a stacking interaction between His2340 and the PG pyrrole rings,
The most interesting feature, however, s the “H-bond ring”
created by the akcohod side chain In Ser2342 and the two extreme
pyrroke mitrogens. M silico mutation of this serine to a glycine
reduces the glide score by 3 units, pointing to the importance of
this interaction |31}

4. Discussion

Prodiposin (PG} and obatoclax [OBX), both belong to the
prodiginine family, which are pyrrole alkaloids of bacterial origin,
Both moldecules are promesing candidates as anticancer drugs,
since they have pro-apoptotic activity in @ broad range of human
cancer cell lines | 1], Although they are currently in pre-clinical and
clinical trials, respectively, further studies are necessary to identify
the molecular target involved in their anticancer activity, It was
hypothesized that OBX has mare complex effects on melanoma
celis than merely binding to and inhibiting antiapoptotic Bcl-2
family proteins |3]. In the present report, we considered other
survival signals to further understand the mechanism of action of
prodiginines. We studied the prodiginine-mediated cytotoxic
effect in different stages of melanoma progression, PIEK/mTOR
and MAPK signaling pathways are involved in growth and
progression in melanoma. Desegulation of these pathways is
associated with resistance ta apoptosis, increased cell growth, cell
proliferation and cell energy metabolism. It also confers o
melanoma resistance to many chemotherapeutic agents |26),
Prodiginines overcome this resistance, and are thus cytotoxic in
both cell lines. Moreover, deregulation of these pathways might
explain the bigher ICq, value of SK-MEL-28 cells compared 1o SK-
MEL-5 cells.

Melanoma cells were mare sensitive to PG than to OBX. Our
results are consistent with previous reports where melanoma cells
rendered more sensitive to OBX-induced apoptosis only in
combination with molecules that induce reticulum stress, but
not as a single agent [32), It was also described that OBX induces
autophagy before apoptosts {27). Our results show that PG also
activates both mechanisms. Moreover. cytotoxic effect of prodi-
winines was partially prevented by mTOR and raptor proteins
depletion, concluding that prodiginines-induced mTOR pathway
inhibition leads to cell death. We have characterized the efiect of
bath pradiginines on cotical elements of mTOR signaling such as
AKT, PRAS40, p70 SBK and 4E-BP1, as well as on different
compensatory mechanisms which link PE3K/MTOR and MAPK
signaling | 18.20). Our results demonstrate that prodiginines target
MTOR pathway. In contrast 1o rapamycin, prodiginines counteract
the feedback loop triggered by mTORC] inhibition, which leads 1o
AKT activation through IGF-1)IRS-1 signaling [19]. The effective.
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ness of prodiginines refies on thesr ability to inhibit mTOR activity.
Therefore, the suppression of mTORCT as well as mTORCZ activity
implies a reduction of phasphorylation of AKT at 5473,

The kinetics and affinity evaluation revealed high-afMnity
binding between mTOR and prodiginines. Nevertheless, although
mTOR is & validated target for the treatment of cancer, it might be
necessary o develop more effective prodiginine-derivates with
improved chemical properties that increase their bioavailability,

The second generatlon of mTOR (nhibitors targets the ATP site.
These compounds suppress AKT phosphorylation, leading to a
stronger antipeoliferative effect than that of rapamycin [18,33)
Therefore, prodiginines effect might be closer to the second
generation of mTOR inhibitors, Thus, it will be interesting to
compare prodiginines with other small molecules such as AZD-
8055 (AstraZeneca), INK-128 (Intellikine), OSI-027 (OSI pharma-
ceuticals) or pp242 which also block both mTORC] and mTORC2
complexes. pp242 is structurally similar to prodiginines |24). In
silico models suggest that prodiginines, like pp242, could interact
in the active-site of mTOR and provided several of the recognition
maotifs involved in their interaction. Moreover, these models also
illustrate the Importance of the alcohod side chain and the two
extreme pyrrole nitrogens of the prodiginines for the Interaction
on Ser2342 of mTOR.

These Andings described bere by PC and OBX as mTORC1 and
mTORC2 inhibitors contribute to our understanding of the
molecular mechanisms of action of bath molecules and provide
data about their structural properties that will allow the
development of more-effective mTOR Inhibitors in the future.
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Suplementary Material

Identification of dual mMTORC1 and mTORC2 inhibitors in
melanoma cells: prodigiosin vs. obatoclax

Espona-Fiedler M, Soto-Cerrato V, Hosseini A, Lizcano JM, Guallar
V, Quesada R, Gao T, Pérez-Tomas R.

Material and Methods
1. Cell Viability Assay

SK-MEL-28 and SK-MEL-5 were plated in triplicate wells (1.5 x 10*
cells/ ml) in 100 ul of growth medium in 96-well plates and allowed to grow
for 24 h. After 24 h or 48 h of treatment with PG or OBX, 10 uM of MTT was
added to each well for an additional 4 h. DMSO was added as a control. The
blue MTT formazan precipitate was dissolved in 100 ul of isopropanol: 1N
HCI (24:1). The absorbance at 570 nm was measured on a multiwell plate
reader. Cell viability was expressed as a percentage of the control, and data
are shown as the mean value + S.D. of three independent experiments.

2. Immunoblot Analysis

The following antibodies were obtained from Cell Signaling
Technology (Beverly, MA): anti-LC-3, anti-caspase-9, anti-procaspase-3,
anti-actin, anti-phospho PDK-1 (Ser241), anti-phospho AKT (Ser473), anti-
phospho Akt (Thr308), anti-phospho PRAS40 (Thr246), anti-phospho
ERK1/2 (Thr202/Tyr204), anti-phospho p70S6K (Thr389), anti-phospho 4E-
BP1 (Ser65), anti-rictor, anti-raptor, anti-AKT, anti-mTOR, anti-p44/42 MAP
kinase, anti-PDK-1, p70S6K and 4E-BP1. We used secondary antibodies
conjugated to horseradish peroxidase (Santa Cruz Biotechnology, Santa Cruz,
CA), and signal was detected using the enhanced chemiluminiescence
detection kit (GE Healthcare Bio-Sciences AB, Uppsala, Sweden).
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3. Immunoprecipitation Assay

Cells were lysed in CHAPS buffer (50 mM Tris pH 7.5, 120 mM
NaCl, 1 mM EDTA, 10 mM sodium pyrophosphate, 50 mM NaF, 0.3%
CHAPS, 1 mM PMSF, 5 uM pepstatin A, 10 uM leupeptin). 200 ul of cell
lysate was incubated with primary antibody (dilution 1:100) with gentle
shaking overnight at 4°C. 20 ul of Protein A Agarose beads (Cell Signaling
Technology, Beverly, MA) was added and incubated with gentle rocking for 3
h at 4°C. As a negative control, cell lysates were also incubated with Protein
A Agarose beads alone. Cell lysates were centrifuged for 30 s at 4°C. Pellet
were washed twice in 500 ul of CHAPS buffer and 3 times in a buffer
containing 50 mM Tris pH 7.5 40 mM NaCl, 2 mM EDTA.
Immunoprecipitate activity was analyzed following the Kkinase assay
procedure.

4. Surface Plasmon Resonance (Rodger, Lodwick et al.) Assays

GST-tagged human recombinant mTOR (aa 1360-2549) (Invitrogen,
Carlsbad, CA) was covalently attached to a CM5 sensor chip (GE Healthcare
Bio-Sciences AB, Uppsala, Sweden) according to amine-coupling protocol,
exploiting primary amine groups on the ligand after activation of the surface
with 1-ethyl-3 (3-dimethylaminopropyl) carbodiimide (EDC) and N-
hydroxysuccinimide (NHS). The excess of reactive groups were deactivated
with ethanolamine. mTOR was diluted to 4.5 ng/ ul in acetate buffer pH 3.9,
and immobilized to a level of 11.897 RU into flow-cell 4. Flow cell 1 was
activated and blocked with GST and assigned as reference. RU corresponds to
a measure of a 0.0001 degree-shift in the refractive index.

Compounds were stored as stock solutions in 100% dimethyl
sulfoxide (DMSO) at -20°C. The compounds were diluted with 1.05-fold
concentrated assay buffer without DMSO to prepare the highest experimental
concentration of each compound in a final buffer composition of 10 mM
HEPES pH 7.4, 150 mM NaCl, 100 mM MgCl,.

Assay buffer was also used as the instrument running buffer and for
further sample dilution. The run was started with three start-up cycles, in
which assay buffer was injected instead of sample, followed by sample
injection cycles. Zero concentration samples were used as blanks. A typical
sample injection cycle consisted of a 60 s sample injection (30 ul/min), 120-
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200 s of buffer flow (dissociation phase), and a 30 s buffer injection to check
for sample carryover. The complexes were regenerated using 25 mM NaOH
in every cycle prior to sample injection. Moreover, between sample series, a
solvent correction cycle was run according to the instrument manual (26) to
adjust for referencing errors due to refractive index mismatches between
running buffer and samples.

Experiments were performed with the instrument temperature (flow
cell, sensor chip, and sample compartment temperature) set to 25 °C and the
flow cell temperature set to 20 °C. For kinetic and affinity evaluations,
Biacore T100 evaluation software was used for subtraction of reference and
blank data along with solvent correction as well as for curve fitting.

Small molecule binding specificity to AKT was analyzed using human
recombinant histidine-tagged AKT (Invitrogen, Carlsbad, CA) attached to
another CM5 sensor chip according to the same protocol. Flow cell 1 was
activated and blocked without GST and assigned as reference.

5. Theoretical Methods

5.1. mTOR homology modelling. Since there is no crystal structure
available for any mTOR complex, we produced a homology model of the
active site sequence, residues 2131-2516. For this purpose we used two
approaches. The first involved a BLAST search followed by multiple
alignment model generation with Modeller. For the second approach we used
an automatic multiple-threading alignment server from the University of
Michigan, I-TASSER, which was ranked as the top server for protein
structure prediction in the recent CASPS experiments. Both approaches
identified templates from the PI3K protein kinase family with 24-28%
identity. The alpha carbon RMSD between the top poses of each method
(excluding the common gap regions) is <2.5A. The ATP binding region is
even more conserved and the RMSD, when aligning the top two models
within 5A of the ATP binding region, is <1.0A. For all templates there is a
gap of approximately 30 residues. In all models, however, the predicted gap is
not near the ATP binding region. Based on visual inspection of this area,
however, we chose the top I-TASSER model. I-TASSER also uses a
secondary structure prediction algorithm, and it produced a less protruding
gap area. Furthermore, we performed a 10 ns molecular dynamics trajectory
using the OPLS2005 force field with implicit SGB solvent, where only the
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gap area was allowed to move for further refinement of this segment. In any
case, the gap area was always far from the ATP binding region.

5.2. Control in silico models. Two other protein kinases from the
PI3K family, PDK1 (pdbcode:2PE1) and PKC-alpha (pdbcode:31W4), were
selected for in silico control experiments. These two Kkinases have
crystallographic  structures with bound inhibitors, LAA and LWs4,
respectively. While docking scores gave a measure of the binding strength,
results of the docking experiments for these bound crystallographic ligands
indicated what scores could be expected for inhibitors in the PI3K family.

All the system were prepared with the protein wizard from Schrédinger,
which adds hydrogens and optimizes the hydrogen bond network by dihedral
rotation of Asn, Gln, Tyr, Cys, Thr, Ser, and histidine protonation/rotation.

5.3. Ligand docking and induced fit procedure. After preparation
we performed a cavity search with SiteMap, which confirmed the ATP
binding site as the top ranked binding cavity in all three systems. Initial rigid
ligand docking was performed with Glide using the XP score (23). For PDK1
and PKC-alpha we docked the crystallographic ligands together with PG. For
MTOR we docked PG, OBX and PP242. Following the rigid docking we
performed 600 iterations of induced fitted adjustment with PELE (Protein
Energy Landscape Exploration), a stochastic method capable of mapping
large conformational rearrangements and induced fit events in protein-ligand
interactions (25). PELE’s algorithm is based on three main steps:

1) Localized perturbation. After an energy calculation for the initial
structure, the procedure begins with the generation of a perturbation in the
system. The perturbation might include a ligand translation and rotation and a
quick minimization where the alpha carbons are forced by a harmonic
constraint to a new position. This new position is derived from a small
displacement in a low frequency mode (or a combination of modes) resulting
from an anisotropic network model approach, a simple model for normal
mode analysis (31).

2) Side-chain sampling. The algorithm proceeds by placing all side
chains local (within 3A) to the ligand with a rotamer library side chain
optimization at a rotamer resolution of 10°.

3) Minimization. The last step involves the minimization of a region
including, at least, all residues local to the atoms involved in the first two
steps.
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These three steps comprise a move which is accepted (defining a new
minimum) or rejected on the basis of a Metropolis criterion. The collection of
accepted steps forms a stochastic trajectory. We clustered the trajectory
(based on carbon alpha RMSD) in 5 groups and selected the median in each
group. For each cluster representative we redocked all ligands. Thus for each
system and ligand we have two docking scores, before (initial docking) and
after the induced fit.

Supplementary Figures
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Supplementary Fig. 1. Chemical structure of prodiginines. (A) Side-on
view of 2-methyl-3-penthyl-6-methoxyprodigiosene (prodigiosin) and (B) the
synthetic indol-containing prodiginine (obatoclax) showing the planar
arrangement of the pyrrole rings. (C) Representation of the solid state
structure of obatoclax.HCI. The structure of obatoclax as the hydrochloride
salt was determined by single crystal X-Ray diffraction. The tris-heterocyclic
skeleton of OBX is essentially flat, with the three NH groups oriented in the
same directions and forming hydrogen bonds with the chloride anion (N-
HCl distances 3.17-3.18 A).
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Supplementary Fig. 2. (A) Knockdown of endogenous mTOR and raptor.
Stable control (sh-¢), mTOR (sh-mTOR) or raptor (sh-raptor) knockdown
cells were analyzed for mTOR and raptor expression. Vinculin was used as
the loading control. Immunoblots were quantified and normalized to the
control cells. (B) Data is expressed as the percentage of protein expression.
(C) Inhibition of MTOR effectors in knockdown cells. Cells were treated
with PG or OBX at 4 uM for 0-6 h. Phosphorylation and total protein
expression of AKT and p70S6K were detected by Immunoblotting. Actin was
used as loading control.
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Supplementary Fig. 3. (A) Cell viability in PG- or OBX-treated
SW-480 knockdown cells. Stable control (sh-¢), mTOR (sh-mTOR) or raptor
(sh-raptor) knockdown cells were treated with PG or OBX (0- 4 uM) for 24 or
(B) 48 h. The percentage of viable cells was calculated as the ratio of Asz
between treated and control cells. Values are shown as mean + S.E.M. of
three independent experiments performed in triplicate.
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Supplementary Fig. 4. Rapamycin dose-response curve. SK-MEL-5 cells

were treated with rapamycin at 100 nM for 30 min. Cell extracts were
analyzed by Immunoblotting using actin as loading control.
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Supplementary Fig. 5. Kinetic characterization of OBX binding to AKT
by Surface Plasmon Resonance (Rodger, Lodwick et al.) assays. OBX
were injected at a range of concentrations between 0.06 uM to 1 uM over
immobilized AKT. Sensograms and curve fit (black lines) are shown.
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3.2 Molecular Interactions of Prodiginines with the BH3 Domain
of Anti-Apoptotic Bcl-2 Family Members

Ali Hosseini, Margarita Espona-Fiedler, Vanessa Soto-Cerrato, Roberto
Quesada, Ricardo Pérez-Tomas, Victor Guallar
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Abstract

Prodigiosin and obatockax, members of the prodiginings famdy, are small molecules with anticancer properties that are
currently under preclinical and clinical trials. The malecular targetis) of thess agents, however, is an open question.
Combining experimental and computational techniques we find that prodigiosin binds to the 8H3 domaln in some BCL-2
peatein families, which play an imporant role in the apoptotic programmed cell death. In particular, our results indicate
@ large affinity of prodigiosin for MCL-1, an anti-apoptotic member of the BCL-2 family. In melanoma cells, we demonstrate
that prodigiosin activates the mitochondrial apoptotic pathway by discupting MCL-1/BAK complexes. Computer simulations
with the PELE software allow the description of the Induced fit process, obtaining a detalled atomic view of the molecular
interactions. These results provide new data to understand the mechanism of action of these molecules, and assist in the
development of more specfic inhibitors of anti-apaptotic BCL-2 proteins,
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Introduction

In order 10 advance in malecular tanget therapies, it is importans
o cluooxlate the targer wnd the womic detaded mechanisms of
protean-drug nternctions. A wide set of experimental rechniques,
sch as crysallography, NMR, calorimetry, etc, together with
theoretical docking eflorts ammn to addsess this e, Recently, we
have surned aur atention i sobving the modecular trges and the
bindling mechanisim o peodigaasin PG, PG, a bicterial mctsh-
obite lrom the prodigmme family (see Figure 1), has shown
upapionic activiey against several cancer cell ypes with Jow
evtotoaeity in noo-msahigrant cells. The National Cancer Irstrtone
(dipascnihgov) sested prodigicsin against o collecrion o’ ~64)
cancerons cell lines with an average hall masimal inhibitory
covcentranan (10 of 2.1 M [1]. Furthenmore, recent studies
elucicated that PG triggees apaptasis hy the mtrinsic patbway [2],
provokang the merease i the prosspopestic NAG-1 protem and
the aegative cell cycle regulator p28 [3], and inducmg down-
regilation of the inlibizor of apoptosts survivin 1], SKP2 [5] and
RADGI [6] proteins. Neverthedes, the direct molecalar tanget's) of
this ageat & sill an open queston.

Apoptosis, the programmed cell death that controls removal of
damaged cells, is extremely well vegulated by the exerinsic and
intripse patbways, The key regulator peatemns of the fintrmsh
pathiway are known as the BOL-2 famaly, being BAX and BAK the
pro-apopeotic members respocsibie foe the mitochondrial outer
membrane permeatalisation, Cytochirome ¢ is then released o the

FLOS ONE | www.plosane arg

eytosol allowang the activanon of provaspused, leading o cell
death [7]. In survival condations, BAX and BAK are sequestered
by the ami-opopusic lumily members: BCL-2, BCL-X;. MCL-1,
BCLAY, BCL-B and BCLIAL Thes anti-spoptotc protems
share four regions of high sequence simdarity known as the BOL-2
Homology (BH) demain, (BECT, BH2, BHY and BHAL When
a stress stimulus vcenrs, BH3-only protens bind 1o the BHY
dommam of antd-apapentic BOEL-2 proteins, displacing and releasing
pro-apoptotic BAK or BAX, commining the cell 1o death, [2.8],

BH3-mimetic molecules have emerged as promising anti-cancer
drgs sinee they are able 10 direcdy reverse the evasion of
apoptosis (9], This is the case for Obatoclax (OBX), which hinds
tw a broad specuum of BCLY family ssembers [10-15] To
elucnlate whether PG oako beluves o a BHERmuowete drug amd
how these interactions cccur at the molecular level, we combined
agaln immunopeedipitation oy it i sl modeling [ 14). We
focused on MCL-1, BCL=xL and BCL-Z, throe anteapoptobe
proteins repeesentative of selectiviry patterms amony BHS doenains
sithin the BCL-2 faonily thae have centered most of recent stodies
[15-17]. We firdd that PG antaganzzes MCL-1 by hinedimg to the
BHA domuin mageering BAK release. Purthermore, we obiain an
awnve detailed deseription of PG mitevaction (n the BHI
domaim. Altagether, these results shaw, for the first tane, the
BHS mimetic nature of PG and pronsde & detaded aomie view of
the molecular interactions of prodiginines (PGs) with the BHY
doeamn of severad antiapaponic BOL-2 peatcins,
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Materials and Methods
Reagents
Prodigiosin  (2-methyi-2-pentyii-methoxyprodigiosene)  was

provided by Dre. R. J, Scliahz of the Natonal Cancer Diug
Synthesss and Chemistry Branch Chemotherapeutic: Agents Re-
pository (Bethesda, MD). Obatoclax, a synthetc mdol-containing
prodiginine, was prepared by ucid caralyzed condensation of 244
methooy-Svmyl-1 H-pyrrok-2- - I H-mdole and 2 4-dimethyl-1 H-
pyrrdde [18]. All stock sobutions were dilused in DMSO asd sored
o =20°C.

Cell Lines and Culture Conditions

Hutwan melanoona cancer coll Bine SKMET-S was parchsed
fram the Amencan Type Culture Collection [Manassass, VAL Cells
were cultured i Dulbeecos Modified Eagles Medivam (DMEM,
Woologacal Inclusaries, Beit Huemek, D) supplernented with
10% heat-inactivated foctal bovme serum [FBS; Life Fechnolo-
gies, Carlshad, CAL 100 U/ml penicilling 100 pgdml strepeaony -
viny, and 2 mM L ghetamime, all fom Biologseal Industries. Cells
were grown at 37O in a 5% CO, ammasphere,

Immunoblot Analysis

After their respective trvatments, adbesent s floating cells
were hsed o immumopeecipiation 1P baffer 50 mM Tris
(pH 8.0, 60 M KCL T mM EDTAC T mM DI 0.5% Nonidet
P-40 IGEPALYL 10 mM sodium vanacate, 3 mM Nal’, | pg/ml

il NH
NH N HN
~0
Prodigicsn Obatociax
O~?
~
N
N\/-N‘QYO s/\g‘\/
(o]
HN- /@N"’
o
ABT-737
S o
N
? | "(N-<‘ e
~
& (a rhodanine derlvative)

Figure 1. The ligands used. The ligands usedd in this study we
showr: prodigiasin, obatodxe, gand dervath

peodhy & (a shodanl
and ABT-737,
dai 101371/ journal pone 00575626001
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MCLT Inhibition by PG

aprotinin, | pg/ml Jeupeptin, | pg/ml pepstatin and 0.1 mM
PMSE or lysiv buffer ({1.1% SDS, 1% NP-40, 05% sodium
deoxyrhalare, 0 mM NaF, 40 mM fLelycerophosphare. 200 pM
sl omthosvanadate, | mM phenyimethiylastfony| fluorice and
wome ol eysteine peateir Inbabioe cockeall  (Roche
TIESGI70001 ) tor MCLA] overexpression anabses Total cell
extracts were centrifuged at 12000 xg for 10 min at 4 C. Protem
comcentration wis determined with the BCA proaein assay (Peercr,
Rockford, 11 vsing bosane serim albamin as standard 40 pg of
profein extracts were sepavated by SDS-PAGE and srasfered
Trnmobalon-P onembranes (Millipore, Bedbord, MAL They were
then meubiated wish primary antibodies anti-MCL-1, HOL-2,
BAK, BAX, and actin Santa Cruz Biceechnology, Inc., Sama
Craz, CAj, anti-Caspases 9 and PARP (Cell Signalling. Beverly,
MAL or wnt=Vinewdin Sigma-Aldncl Chemical Ca,, St.Eosis,
MO sccorcing o the manufactune’s fostructons. Antibody
hindfmg was detected with secondary antibodies conjugated 1o
peroxadase and the ECL detection kit (Amerslam, Buckingham-
shire, UK,

Co-immunoprecipitation from Cells

Cell extracrs 300 pg of protein] were brought weoa solume of
1 oml wath 1P bufler and incobsted wath 2 pg of ana-MCE-|
antibody (Santa Cruz Biotechiology, anti-BAK (Cell Signallmg
Technology) or ami-BAX antbody [Invitrogen, Carlsbad, CA)
overnight ot 4°C, lmmune complexes were peecipitaned by
meuhintion with protem A<coated agamvee beads (SigmacAldeich
Chemical o previeasly equalibeated with 117 buffer, and washoed
three tames with 0.5 mb of 1P bulfer. Tomunopeecipitated protemns
were doaded an a 12% SDS-PAGE gel and analyzed by
Immmupoblot wsing amtE-MOL- 1, ani-BAK and anti-BAX ant-
bodies (Santa Cruz Biosechnology).

MCL-1 Overexpression and Cell Viability Evaluation
SKMEL cells weee seeded i fewell plases and allowed
wraw up 1o 70% confluerse. Before transfection, growth media
was replaced by Optimem medm withowt FBS (Invitrogen! and
1 gz of plasnidic DNA was vansfeced 10 cells using 20 pl of
Bpodecting reagent (Invirogen) per condinon. Empey peDNAS
GFP veaor or pTOPOMUCLT plasiid (Addgene plasenicl 21005
[10], were ased. After 20 b of transfection, the media wi replaced
by complete media with or without 2 or 20 uM PG or OBN,
respectively, After 24 h ol treatment, cells were resuspended and
100 i of each conditan wese passed in tripbcate 10 a %6-well
plate. Cell viabiliey was desermined using the methylathiazode-
sevazolion (M) assay [20], Beiedly, 10 uM of MTT (Sigran
Clhermical Cof was addded to eaclh well for an additional 2 b, The
blue MTF formazan precipatute was dasalved in 100 g1l of
sopropanck: IN HCI (24:10 The absorbance at 570 nm was
mcasared oo o mudiwell plate veader. Cell viability was expressed
ax 4 percentage of nonstredsed celle and daca are shown as the
mean valie = S D of bea mdependent experiments. Statsaical
amalysis (ANOVA and 15D wests) was canved our with the

STATGRAPHICS Centurion XVLL statistical package. F<0.03

and <01 were represented with * axd **%, respecively. To
derermine tansfecion  efficeney,  immuneblot analyses were
pedonmed 10 assess MCLL proin expressan levels in each
conditan,

Analyses with Isolated Mitochondria

SKR-MEL-S cells were ereated with PG (100 aM, OBX (10 pAM)
or DMSOY (vehicke) at 37°C for 24 e Cells were lysed mice-cokd
25 mM Tris [pH 6.8), 230 mM sucrase, | mM EDTA, 0405%
digieonin, 1M DT, | pg/ol aprotinim, | pe/ml leupepin,

February 2013 | Volume 8 | lssue 2 | e57562
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MCL-T inhibiton by PG
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Figure 2. PG is a BM3-mimetic molecule. (A and B} PG disrupts constautive MCL-T/BAK mteracton. Cell lysates were subjected 10

:mmunom«ovmon wuh anh-MCL 1 or anti-BAK antboéf anev PG treatment at | pM (B B} and 100 nM (24 h),
itated from PG (50, 100 and 500 nd), OBX {10 pM)orDMSO treated cells far 24 h
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and then BAX/BAX complex formation was analyzed by lmnunoblot with anthBAK and anti 8AX antibodies.

dot10,1371journal pone 0057562 g002

| pg/ml pepsgatm, 0.1 mM PMSF, Samples were then contri-
Fuged at 13000 xg far 5 min at +'C. Mitochondrial fractan (peller)
wans ssolitedd, washed onee and resuspended waly lysis budfer. Toral
vell bsase, mutochondrial and cytosolx fractions were analyzed by
Immunoblor wsing cytocheome ¢, porin and actin uoibodics
Santa Cruz Biotechnodogy ),

Computational Methods

Computational docking was modeled by combinmg PELE
[Protein Evengy Landscape Exploration) [21] with Gide [22]. To
map protein-liguod conformational chunges and induced fit we
] oar in bovse proggram PELE, & Moute Carlo algorithm where
wew trial conligurations are produced with sequentinl ligand (and
protean) perturhatan, side chain predicton and  minimization
steps, Ligand perturbation idudes o lgand specilic rotmer
libeary. “Frial configurations are then filtered with 2 Mewopalis
aveeptance st where the energy is deseribed with an wll-atam
OPF1LS farce field with a surface generalized Born solvent model,
PELE has recently shown o proadde mare accurate induced fic
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Figure 3. PG induces activation of the intri

vesults than the state of the art commercial software (23], and w
reproduce the confarmational sampling obtained in microsecond
moleculnr dynamiics ragectones with wo osders of magnitode
reduction in computatonal cost [24).

We hase modeled PG and OBN bioding 1o theee ditferent ani-
apoprone BCL-2 members for which crystal structures  and
mhbibitors (as conered) are kown: MCL-1, BCL-2 ad BCLAxLL

MCL-L. o wodd MCLAL we vsed the crystal structuee
hound 10 a BHS-peptice, pdb code 2NLA [25]. For the control
samulation we used the ligund named 6, a dernvative of thodanine
heat Deas and 1C0 of 025 pM [26], Addisosally, OBX has been
shown to bind so MOL-1 with an 1C50 of 2.% pAL [10-13]

BCL-2. To model BCL2 the erystal sanscture bound 1o the
HIB peptiche (BHS i), pb code TYSW win wsed [27]. Far the
comtrol simulation we used the ligand ABT-737, with an 1C30 of
012 pM [10.28],

BCL-xL.  Tomodel BOL-xL we usared a erystal strocture hoursd
o 2 known mhibitor, ABT-757, with pxdb code 2YXJ [20.24). For

B
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OBX 10 uM

kDa
3 Ws=== cleaved Caspase-9

"‘ om0 rare

a S actin

¥ A PG induces cytochrome ¢ release 10 the ctosol, Cytocheome ¢ seleass

from SK-MEL-5 isofated mitochandela after FG and oax m'meot, Milod\omth were isolated froen PG {100 r], OBX (10 M) ar DVISO- treited cels

for 24 h. Cytocheame ¢ release from mitcchondna to cytasol was analyzed by Immunobior using

the mitochandrial marker porin as a quality controf

of the isolaton process. (B) Activation of caspases. Cels were treated with PG (100 nM) or OBX (10 uM) for 24 b and total cell lysates were

anatyzed by immuncblol Actin wis wsed as lnading control,
ot 10,1371/ jowrnal pane.0057562.0003
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Figure 4. Effect of MCL-1 averexpression on celi viability. (A) MCL 7 owerexpression partially blocks PGs cytotanicity. SKMELS calls warm

transfected with | pg of pTOPOMCL) plasmic and, after 20 b, cels were treated with PGs (2 anc 20 pM,
cel viobility was sssessed by the MTT sssay, (B Analysis of MCL-1 protein levels, After MCLI
d by Immunoblot Vinculin was used as 4 faading cantred,

levels wene
dal10.1371joumal. pone 0057562.9004

the control simulitivn we used the ligand present in the mitial
crystal, ABT-757, with an G50 of 0,06 uM [10,29].

All Igands wsed in this suxly are shiwn in Figure 1.

For all systerns we vemoved the cryseallographic Bgands amd
prepeeted the protein with Schrodiger's Protein Wieard [¥1], This
alzorthm bailds bydrogen-bovded clusters amdd pertorms 1OU0O0
Monte Carlo moves by reorienting hydroxyl and thial groups.
warer molecules, wiide groaps of A aed Gl asd the imilazobe
ving i Hiv, The algonithm also predscn protonation states of His,
Asp, Glu, Lys and Arg. Each possibility is scored based on the total
number of hydrogen boods and their quality [relative w an
dealized bydrogen bond), b pasticular, all Asp, Glu, Lys and Arg
Kept their anionie state. Histidines 224, 252 and 277 n MCGL-1,

Table 1. Before and after induced fit docking scores.

velyl for an add 24 h. Then
and PGs

MICL-1 protein

aed 117 and 183 i BCL-Y were epslon protonated: all ober
husticlivees Kept the defauls dedin prowosation, The ligand's atamic
charges were derved from the elecirastatde potential fring of
avmgle pomt DET/BILYP calculation with the 6-31G** basis set.

Ligund docldng und induced fit procedure.  Adics the
protem and ligand's preparations, we performed 4 caviey search
with SieeMap [S1], which confirmed the BHE dosain ax the top
runked binding cavity in the three systems, Inital rigid docking
was perdormed with Glide [22] wsing the exwa procsson (NP
soaring feocton [52), curreotly viewed as the state of the are
docking soltware/ procedure. Correlation of Glide scores with
bincling affinities, Bosever. can only be done at a qualiative level.
While score values below =8/ =% indicate & good bader, & maore

MCL-Y PO BCL-2
Uigandh " [ 6 "o oéx AsT (9 o8 AT
Irstial Sccre 41 “319 &0 10 a4 re L) on s
Final Scoee -an -58 -7 ~TA -n3 138 78 -8 %5
RS0 0 a0 A i 55 T a8 45 40

Ao shown Is the ligond FMSD slong the Induced &t peocess
doe10.137 5 foumalpoee 00575521001
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5. Ind

Figure d fit docked str
B detailed view of the moleculs imteracticns of PG, OBX and 6 with MCL-1,
dot 101371 Journal pone. 00575670005

quanttative asessment requires s system specific cantrol, Thes,
for each protein we docked an mhibitor with known (good)
binding affinmies. Comparing the values predicted for these
contol ligands with those obtaied foe PG, we conld estienase
e accurately thelr Bindmg strengrh

Fallowomg the ngid docking we perfarmed I independent PELE
trajectories, cach ncludiog G00 itevations (29 boan), of induced
titved adgustment. We then chustered the trajectony e 5 groups,
Lewser] om the Digarnd™ heavy atoen roon mean square deviation
IRMSD), and selected the median in each group. For cach
representative cluster we re-docked all igands with Giide. T
for each system und lignmt we bave two XP score valoes: un
one biased o the coystnl stracnsee aod a final score afler the
mduced fit (the kargest score rom the 5 clusters), whach aoms o
adape the protein to each specibe lgand,

Results

PG Disrupts MCL-1/BAK Complex in Melanoma Cells
BCL-2 famdly member MCLAL b w0 e segulates BAK
withm the mitochondrial oater membrane [33] and the BH3
mimetic mokecule OBX bas been neponted o inhibiz this
coistingive interaction |54, To examine whether PG could akso
alter this hinding, MCL-1/BAK comples, was co-msmunaprecipi-
tted from PG, OBX or DMSO- ireated SKEMEL-S oclls, In
DMSO-treated cedls, MCLAl was co-mmunoprecipitated with
BAK wing MCL-| antibody, mdicating thar these proteins

FLOS ONE | www.plosane arg
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Top panels (AL fimal induce fit structures in MCL-1 Geft) BCL-d (center) and 8CL-2 (right). Bottom panies

heterodmerzee - Ieal coodstions, Allematively, treatment with
PG ar OBX resulted in 2 complete release of BAK fiom MCL-1,
showing the BHS mimetic nanare of PGa (Figure 2A), As MCE-|
fevels were downreguliated by 1 M PG, lower doses were ward (o
corrobotite these resule, Similuly, BAK immunopeevipitation
vesalted m the appearanee of MCL-L/BAK complex m non-
wreated cells; whilst this boding desappeared m teated cells and oo
progein level moddications were obsesved (Figuee 281 Finally,
ance BAK ane BAN heterodimerzee when they are rebeased from
thedr anti-apoptatic proteins MCL-1 and BCL2 (in order 10 form
pores b the widtochondial membrane), the fosmation of this
complex was anadvzed in treated cells. As observed i Figure 20,
after 24 b of wrearment, PG oas well as OBX incuced BAK/BAX
complex Formation, indicating matochondrial membrane permsca-
bilization.

Mitochondrial Apoptesis Is Triggered after PGs
Treatment

At the samie time that MUL-1/BAK complex was disrogited by
PGs reatment and the misochodiial  membeane pore wus
formmed, we abserver eytachrome ¢ rebease Tom the mitochondng
w the oywesol (Figure 3AL This protem binds 1o Apalkl axd
caspuse- 10 form the apoprossone and this comiplex facilicares
catspase-9 activation by proteolysis, In Figore 3B we can observe
cleaved caspased appearance after PGs wreatment, mdicating ins
activation, Mareover, we alsy observe cleavige of the caspose
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o Charged iregefive) Schent espoare

J WM « Hbond (side chan)
- ﬂ!m

3 Hﬂm Qyone

Figure 6, MCL-1 contact map with PG, (4) Crystal structure of the
miNoxaB BH3 peptide bound to MCL-1, In cyan we show Gly82, the 11
hellx residue lccated In the h3 position Leu267 In blue, The266 In red
ond Mis224 in green. from MCL-1 are also shown, (8] Pharmacophore
anatysis of the binding interactions. Residus within 3 & fram the Sgard
have been included In the anlysis.
dot10.1371/journal pane. 0057 562.9006

sihsrate called PARP, correbosating caspases activation. Alwo-

wether these resubts demorstrane the actnsetion of the lntrmsh
apoptotic pathway after PGs treamment.

FLOS ONE | www.plosanearg
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MCL-1 Overexpression Partially Abrogates PGs Induced
Cell Death

To elucidate whether MCLAL was involved in the ¢yroatoxic
effect waggered by PGa, MOLA L wins overexpresed m SK-MEL-S
cells, Alter 20 b from tromsfecton, PGs rament was adeed
during 24 h ol coll viability was anahzed by MTT assay
(Fagure 4). PGs-mduced cysoxic effeer was sigmificantly blocked
hy overexpeessing MCL-1, These resulis mighs sugpest thar PGs
are nat able o divupt all the MCE-1/BAK. complexes when
MCLA & overexpressad, preventiog some BAK protein o Form
mitochontral membrane pores, though being lower the apoptotc
cfecy, Figure 4 B shawa MCE-| protem levels ot basal or
enverexpressing condisions afier PGs treamment.

Molecular Docking

Tahle | summarizes the docking resules for MCL-1, BCLAL,
and BOL-2, Besdos from PG amt OBX, for cach ant-apoptotic
ainget we have docked o controd Tigarsd known to be a good binder,
For each ligmwd and target we show the initial docking score,
hissed towards the mical (eryseal] stroactore, and thye finad soore as
w resiles ol the induced i (afier PELE simubanion ). For MCL-| the
mitial docking win performed alter romoving the BHE pepuide
from the crystal structure, Thus, we expect o sgnificans RMSD
change und an wnprovement in the docking seare along the
mduced fir process, Clearly far all Bgands we observe a large
RMSD, sangmg G 3 w0 7, and a ssgnificant increase ) the
scoee. Interestingly, smilar scores | == are obealned for the
comtrol. ligand 6, and foe the two prodigmines ander saxdy, OBX
and PG

For BCLex1, the micial cryseal structure used w model the targer
abready i the conmal ligand ABT-733 bovnd o i Thas, ax
exprated, we olnerve the lowes mduced fie RMSD for this bgand,
14 A Additonally, we find good mmial and (very good) final
scoves for ABT-737 a potent inbibaor of BOL-xL fram Abbott
l..llmrnmmn with an IC30 0l 006 uM [10]. Foe OBX we olserve

5 A RMSD change aking the PELE simulation, wgether with
a lm.-t provemens of its bindmg wore. For PG, we obaene
a lower fmal score and a medinm induced it pomung W
macvamolar rather than nanoawolar actvity.

In BCE2 onr model was derived from a pepride (5B housd
crpstallographic seructure. Accordingly, we observe again signifi-
cant induced Gt RMSD changes and improvements in the scorvs,
For ABT-737 we ohiserve good mitial seores and the lower RMSD,
possibly as a result of its lange size and excellent BHS helix mimetic
propenies As expected fram s JC30 of D12 pM [10], the final
sore s =900 OBX b again the second best seorer follawed Iy
(L6

Figure 5 shows the induced Bt structures obtained  after
modeling wizh PELE. The left panel in Figure 5A coenpares the
final struetures for OBX, PG and 6 in the HS hinding domain of
MCEAL The center and right panels show the final structures
abeained for OBX and PG in BCL-xL and BCE-2. Far simphbaoty,
we superimpeose the fisal pusition for cach ligamd imo a consensus
ribbon representation. In all three peateins, PG oand OBX use
sightly different regions of the BHI domain and peesens diffenent
protein-bgand  mueracthons. Figuee 3B shows the protein-digasd
mteractions foe PG, OBX and & with MCL-1 Al three liginds
bl ta the bydrophobic core defined by Val2i3, Val249, Ala227
and Leu2Bi. PG forms a hydragens bod with The266. OBX
makes o hydrogen bond winth Met231 axd ligand 6 nakes
hydrogen bonds with As260 e Ang263, Drspite shaemg
a similar molecular skeleton, PG oand OBX present impostam
differences m the bydragen band network. As seen in Figore 1,
u wdrogen bond accepeor ring in PG turms wiro a hydrogen bord
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donor in OBX, explaining the differences in the binding modes. In
supporting information we provide a pharmacophore analysis
(Supplementary Figure S1) and the atomic coordinates (in pdb
format) for the docked structures shown in Figure 5A, the best
scoring structures for cach ligand and protein.

Discussion

The proapoptotic agent prodigiosin has shown an aver.
value of 2.1 pM when tested against a collection of ~60
cell ines [1]. Thus, it seems a good candidate as a base druq to
carry on further development. For this, it is necessary to elucidate
1ts target(s) and obtain an atomic detailed description ol'its binding
mcechanism. In a previous study we analyzed the interactions of
PG and OBX with scveral kinases, demonstrating that the
mammalian target of rapamycin mTOR) is a molecular target
of both PGs in melanoma [14].
showed that inhibition of mTOR was accompanied by the
both cell death autophagy and

e 1C5

Moreover, these results also

activation  of’ mechanismns,

apoptosis. Here we show how PG, as indicated previously for

OBX [1

0], binds to the BII3 domain of the anti-apoptotic BCL-2
izing the proapoprtotic effects induced by mTOR
inhibition. In particular, in melanoma cells, we demonstrate that
PG disrupts the interaction between MCIL-1 and BAK, allowing
the formation of BAK/BAX complex and the subsequent
cytochrome ¢ to the cytosol,
mitochondrial apoptosis activation. Moreover, MCL-1 has been
identified as a molccular target dircetly involved in PGs induced
cell death, since its overexpression is able to decrcase PGs
cytotoxicity.

In order to characterize the protein-drug complex, we used
recent advances in protein-ligand recognition sottware. It is clear
from the results that the induced fit process is essential in order to
get good binding allinitics. Rigid docking into the crystals, for
example, would fail 1o recognize ligand 6 as a nanomolar binder in
MCIL-1. Furthermore, the induced fit simulations allow comparing
the ABT-737 scores with the experimental 1C5, in BCL-xI. and
BCL-2. Ovecrall, the results with the two prodiginines and the
three BCI-2 family mcembers indicate good protein-ligand
interactions when compared to control ligands. In MCL-1, in
particular, PG scores are similar to the control ligand, suggesting

release which mediates the

an 1G5y in the hundreds of nanomolar range.

PG, OBX and ligand 6 bind in a specific region of the MCL-1
BH3 domain, defined by a hydrophobic core including Val233,
Val219, Ala227 and T.cu267. This region corresponds closcly to
the h1-h3 position of the BH3 peptides. Tigure 6A shows the
mteraction of a BH3 helix peptide with MCL-1. Peptide residue
11, located at the h3 position of the helix (G82 in the crystal
structure, shown in cyan), is a conserved small residue i contact
with the hydrophobic core, which has been shown to be important
for ligand binding [35,36]. Additional studies by Chen ct al. [13]
and Day etal. [37] have also underlined the importance of
positions hl and h3 for binding to MCI-1 and BCIL-xI.
Compurtational studics also pointed to this hydrophobic corc in
the MCI-1 ligand recognition [26,38]. Interestingly, in BCL-xL,,
the two prodiginines have more distant binding modes,
the hl h2 region, in agreement with the larger degree of flexibility
observed in this end of the helix for BCL-xL [35,36].

Tigure 6B shows a pharmacophore analysis for the PG/MCI.-1
binding interactions {the other ligand and proteins are shown in

entered in
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supporting information). Clearly, the combination of the hydro-
phobic interactions {in green) together with the hydrogen bond to
Thr266 play a key role in PG’s binding. Stacking to His224 is also
underlined in the pharmacophore analysis [15]. To further
analyze the role of Thr266, we have modeled a single mutation
T266A in the active site of MCI-1. The final score, associated with
a 1.2A RMSD, is reduced 10 —6.3 (instead of a —8.6 for the wild
type), indicating the Importance of this residue for binding.
Obviously, confirmation of these binding modes simulations and
residue analysis will require future directed mutagenesis.

The identification of PG as a new BH3 mimetic molecule,
together with previous results demonstrating the potential of PG as
an inhibitor for both mTOR complexes [14], evidences the
potential of PG as a chemotherapeutic agent. In fact, emergent
molecular therapies are focused on molecules that are able to
target multiple proteins involved in cell survival. Molccules such as
PP242 (ATP mimetic inhibitor) [39] or ABT-263 {analog of ABT-
737) [10] have shown similar successful results as OBX in clinical
tials [11,34]. combinational strategies are still
necessary to improve the cffect of these molecules. Based on
previous results which markedly enhanced OBX-mediated cell
death [12,13], we might consider combining PG with the R stress
inducers such as tunicamyein [41], cisplatin [42] or sorafenib
[13,11] which markedly enhanced apoptotic cell death.

Altogether, our results demonstrate, for the first tme, that
MCL-1 is a molecular target of PG involved in its cytotoxic effect
and that this is duc to the capacity of PG to displace activating
BH3 proteins from the pocket of MCL-1 wiggering BAK
oligomerization and the subscquent cytochrome ¢ release-mediat-
ed apoptosis.

Nevertheless,

Supporting Information

The coordinates (in pdb format) and pharmacophore analyses
are provided for the best scoring structures for each ligand and
protein.

Supporting Information

Figure S1 Pharmacophore analysis. Pharmacophorc anal-
ysis for the bmdmg interactions ot all residues with all proteins.
Rasidues within 3 A from the ligand have been included in the

File S1 The coordinates (in pdb format) are provided
for the best scoring structures for each ligand and
protein.
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Figure S1.

Pharmacophore analysis. Pharmacophore analysis for the binding interactions
of all residues with all proteins. Residues within 3 A from the ligand have
been included in the anlysis.
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ABSTRACT: Computational modeling combined with mutational and activity
assays was used to underine the substrate migration pathways in toluene 4

Ve a ber of the important family of bacterial muit-
component monooxygeaases (BMMs). In all structurally defined BMM
hydroxylases, several hydrophobic cavities in the @-subanit map a preserved
path from the protein surface to the diiron active site. Our results confirm the
presence of two pathways by which different aromatic molecules can enter/
escape the active site. While the substrate is observed to enter from both
channels, the more hydrophilic product s withdeawn mainly from the shorter
channel ending at residues D285 and E1I4. The long channel ends in the
vicinity of §395, whose vartants have been seen to affect activity and specificity.
These mutational effects are dearly reproduced and rationalized by the i sifico
studies, Furthermore, the combined computational and experimental results
highlight the importance of residue F269, which is Jocated at the intersection of

the two channels.

B INTRODUCTION

Bacterial multicompanent monooxygenases (BMMs)' are a
family of proteins containing & noabeme carboxylate-bridged
dilran center capable of actnvating molecular oxygen (O;) for
the oxidation of several hydrocarbon substrates. These proteins
present 4 common architecture with three of four components
including a multisubunit dimenc  hydroxylase -.nmpnnem
where the diiron center and catalytic active site are contaimed.”
Toluene 4-monooxygenase (TAMO) Is a soluble four-
component BMM that mmim:ss toluene with ~95% regiospe-
cificity at the para position.’™ The reaction occurs in the
toluene 4-manooxygenase hydroxylase which contaias alpha,
beta, and gamma subunits.” TAMO is of particular intesest in
industry given the high number of substrates that cn be
oxidized along with the elevated specificity.’

Different studses of these systems, and related diron active
site enzymes, show that mautagenesis in the active site can
change the regiospecificity for reactions with toluene and other
nonphysiclogical substrates. " Moreover, using directed
evolution, the TAMO vartant S395C showed different activity
and speaficity.’ The production of hydroxytyrosel, a phenal
with high antioxidant and anticarcinogensc activities obtained
via double hydroxylation of 2-phenylethanol (PEA), showed a
15-fold improvement in the mutated protein in comparison to
the wild-type specie. In contrast to other cases, this residue is
located 30 A away from the active site, near the Interface of

' y ACS Publications  © Xoie Ameran Chesnical Socety

subunits @ and 7, suggesting that its catadytic influence should
be the result of a change in the active site dynamics or in the
ligand defivery, Several crystallographic studies of the BMM
soperfamily proposed 2 common channel through the o subunt
connecting the diivon center to the surface: this palhhug‘
involves surface residves D285 and E214 in T4MO,"™'
Additional reports desceibed two other hydrophobic cavities,
one near the active site pocket and another which is Jocated
neat the interface of the a and y subunits."®'™ ' Measurements
of oxygen migration by the formation rates of a peroxodiiron-
{111) intermediate suggested that the two cavities may conpect
sl movement of the protein components thus regulating
oxidation rate.'” This was further supported by the findings
describing changes in the volume of the pockets upon binding
of the effector protein to the hydroxylase, thus restricting free
access from the solvent to the active site,'”

To understand the atomic detall of Hgand migration in
TAMO as well 3 the involvement of $395 in the catalytic rate
enhancement, we have modeled the bigand migration pathways
with all-atom u:nm[mnnnml lc\‘hnlquﬁ. Recently, due to its
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implications in drug design and enzyme engineering there has
been an increasing interest in applying mobecular dynamscs
techniques for mapping ligand diffusion, entrance and exit,'™'*
To this nm. many biased approaches, such as steered molecular
dynamics'” or metadynamics,' hxw bren applied,  Using

cial purpose hines or graf units, 3
nonbiased search auemg m!trosecond ume suk dmnlauons
is also possible.””™ These

Since our main interest 3 the ligand migration pathways, and
due to the hck of accurate details in the THAMO reaction
mechanism, we modeled the diiron center (directly from the
crystal} as Fe, O, (Figure 1). Charges were obtained from the
OPLS200S foece Hield where, in this case, we partly reduce the
polarization in the active site by moddying the Fe and O
charges to 2+ and 1=, respectively. All distances in the iron

stifl represent a significant cumpmaumal cost (out of the nmr.h
of a typical lab} when dealing with complex systems such as
T4MO. Our Monte Cardo approach PELE (Protein Energy
Landscape Exploration) allows for an unblased scarch of the
protem—ligand dynamics, which incdudes mapping the exit and
entrance pathways at an accessible computational cost.”'
Along the simulations, two different substrates were
evaluated: the restant PEA and the first hydroxylation product,
ptyrosol {payr) (see Figure 18). Our results confirm the

A B 2.phenylethanc!

Figure 1. Panel A: TAMO active ste veew. Panel B the two substrates
(rvactant and product) used in this work,

P e of two | v5, § ly ohserved, "' by which
aromatic molecules can enter/escape the active site. While the
substrate enters from both channels, the more hydrophilic
products are withdrawn mainly from the shorter channel
ending at residues D28S and E214. Farthermore, computa-
tional studies were complemented with mutational and actvity
assays. The combined results highlight the importance of
ressdue F269, which s located at the intersection of the two
channels.

B METHODS AND MATERIALS

Computational Work, The starting coordinates were uhm
from the Protein Data Bank (l’DB) \ﬂth entry 3DHG." The
protein preparation wizard * implemented in the
Schradinger software package was ampky)wl to prepare the
initial stracture. The algorith states of
histidines, aspartic acid, and gﬁutamk and optimizes the

coordi sphere were constrained to their mitial crystal
value. Likewise, the Fe—Fe distance was maintained at 3.2 A As
seen in Figure 1A, reactant and product molecules were placed
in a similar position in the active site. This assumption is based
on the high degree of complementarity of the T4MO active site
that shows that toluene and other aromatic ring substrates bind
In a semilar fashion,"***

Ligand diftasion was studied with our m-house program
PELE™™® This technique is based on a Monte Carlo
algorithm, where new trial gurations are produced with
sequential ligand and protein perturbation, side chain
prediction, and minimization stws Trial configuratioas are

then filtered with a M lulwhcret}n
em-rgy 15 desarib«i with an all-atom QPLS force field™” with a
lized Born solvent model®™ PELE has recently

b«n shown to provide more accurate induced fit results than
state ofthemoammanzl ftware and to duce the

brained in microsecond molecubar
dynamics mp:ctoﬂu with a two-order reduction in compauta-
tional cost.™

Two different sets of simulations, describing the bgand exit
and entrance, were performed for the wid-type and the S395C,
F269V, and F269W mutants

Ligand Exit. A total of 10 mdependent runs were produced
for each simulation, where the higand mmally pbcvd m thf.-
active site, after Glide™ docking, exph Iy §
exit paths. Each run is based on 12 trajectories (running on
different cores) that search collectively for an exit route, The
collective search uses the distance from the ligand center of
mass to the distance of the ligand to its active site position to
couple the different trajectory search. In particular, if 2
processor i 3 A behind the leading processor (the one with
the furthest distance to the point), it will abandon its current
coordinates and receive the leading ones. Thus, there & no bias
in the direction that the ligand should take, All 10 runs were
interrupted after 24 h of CPL or when (if) the ligand reached 2
solvent-accessible surface area larger than 045 Le, the ligand
enters the solvent.

Ligand Entrance, Studies were also dane for the migration
of the sub from the surface of the pratein to the active site
for both channels identified in the exit exploration. In this case
the ligands were placed at the solvent and in the vicinity of the
exit point as described in the exit paths. Again, we performed
10 independent rans with 12 trajectories in each run, where the
trajectories search collectively to move toward the active site
(with 2 3 A distance to the distance of the Jigand to its active
site pmmon)

Fpocket'™! was employed to measure the cavity size and
thetr hydrophoblc natore. This method uses a Monte Caro

hydrogen bond network. In this work, all charged resid
(at pH 7) kept their initial state. Histidines 4, 36, 37, 137, 163,
174, 247, 329, 332, and 484 were epsilon protonated, and 328,
421, and 447 were double protonated; all other histidine
residues kept their default delta protonation state, Two water
malecules, generally found in the active site of TAMO, one in
the first coordination sphere of an iron atom and the other in
the active site pocket, were kept in the system.

approadl 1o find a path where a sphere of variable radius can
pass. Mareover, Fpoclet also alms-s pocket detection on a large

set of structy § a traj )

W EXPERIMENTAL WORK

Chemicals. 2-Phenylethanot (PEA) and 0-, m-, and p-
tyrosol were purchased from Sigma.Aldrich Chemical Co.

thodouomy 1000 1R Y2500 1.2 Py Chve 0 0CEK, XEL 006 10K
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('Slgmn-t\hlm'h, Rebovat, Isracl), Hydroxytyrosol was obtained
from Cayman Chemical Co. (MI, USA). All standards were
prepared as stock solutions in ethanol. Al materials used were
of the highest purity available and were used without further
purification.

Bacterial Strains and Growth Conditions. Esciierichia
colt TG (supE hsdAS thi A(lacproAB) F' [traD36 proAB™ lacl®
lacZAMI5]) with the plasmid constructs was routinely
caltivated at 37 "C In Lora=Bertan) (LB) mediom®™
supplemented with kanamycin at 100 pg/mL to maintain the
plasmads. To stably and constitutively express the toluene
monooxygenase genes from the same promoter, the expression
vector pBS(Kan)T4MO (henceforth TAMO} was constructed
as described eardier.”™™ All experiments were conducted as
described ptnwucly.‘ oAy Shortly, overnight cells were diluted
to an optical density (OD} at 600 nm of 0.1 and grown te an
OD of L3 The exponentally grown cells were centrifuged
{8000g for 10 min at 2§ “C) and resuspended in potassium
phosphate buffer {100 mM, pH 7.0). Cells were subsequently
used in biotransformation protocols as desceibed later on,

Construction of TAMO Mutants. Varant S395C was
obtained through random mutagenesis a3 described by Brouk
and Pshman.* Varants F269V and F269W were constructed
using site-directed mutagenesis at the TAIMO tmod gene via
overlap extension PCR.™ Briefly, three oligonucleotide primer
pairs were dessgned (Supporting Information, Table 1) to
generate the desired mutations. For generating the F269V and
FIOW mutations, the first mutated PCR fragment was
amplified using primers T4MO-.befEcoRl-front and
T4AMO_269 V_rear and T4AMO-befEcoRI-front and
T4MO_269W _reas, respectively. The second mutated PCR
fragment was amplified using T4MO_ 269 V front and
THMO-ABRear and TAMO _ 269W _front and T4MO-ABRear,
respectively. The PCR program consisted of an  Initial
denaturation at 94 "C for 2 min, followed by 25 cycles of 94
°C for 45 5 35 °C for 45 5, and 72 °C for 2.2 min, with a final
extenslon at 72 C for 8 mun. The two fragments were
combined during the final reassembly PCR m a 1:1 molar ratio
using the outer primers THMObefEcoRI Front and T4MOAB-
Rear. The assembling PCR was programmed similardy to the
above PCR program, with extension at 72 °C for .15 min
instead of 22 min. The assembled PCR fragment was figated
into WT T4MO, after the double digestion of both vector and
insert with Ecoll and Aatll, replacing the corresponding
fragment in the original plasmid, The resulting plasmid library
was electroporated into E coli TG cells. Plasmid DNA was
isolated using 2 Mini Kit (Qiagen, CA, USA), and verification
of the mutations was done by sequencing with primer T4MO

1

Whole-Cell Enzymatic Biotransformations. Whole-cell
activity assays were performed as described |>rf’\'|mld)'."“ The
biotransformation was carried out in screw capped 16 mL glass
vials containing 2 mL of cells and 0.25 mM substrate (added
from a 100 mM stock solutson in ethanol). All the vials were
shaken 2t 600 rpm (Vibramax 100, Heidolph, Nurenberg,
Germany ) at 30 °C. The reaction was stopped pedodically (a
vial was sacrificed) by filtration of the cells and analysis by
HPLC. The negative control used in these experiments was
TG1/pBS(Kan) (a plasmid withoat the monooxygenase). The
initial transformation rates were determined by sampling at 3—
20 min mtervals during the first 2-5 h The specific activity
(nmaol/min/mg protein} was calculated as the ratio of the initial
transformation rate and the total protein content, 0.24 [mg

PR AT

protein/mL/ODgy,; .., Activity data reported in this paper
are based on at least three mdependent results. Analytical
methods were described previously, **

W RESULTS

Ligand Migration in the Wild Type. We started our
computational study by searching possible migration pathways
connecting the active site and the protein surface. For this
purpose, we placed both the reactant (PEA) and the first
hydroxylation product (ptyr) at the active site cavity and
modeled their exit wsing PELE. As seen in Figure 2, we found

Figure 2. Two otwerved migration paths obtamwed with the PELE
simulations. Clunnel 1 1s shown in green, while channel 2 is shown in
red.

two different channels crossing T4AMO's a-subunit and
adopting a nearly 90° disposition. Ome channel (hereafter
known as channel 1) s a traverse of about 23 A to the protein’s
surface providing the shortest path between the active site and
sobvent. This channel is formed mainly by H9%, F269, Q204,
D213, E214, and D28S, The second route, channel 2, is
signibaantly longer, 35 A, and presents a larger hydrophobac
natose: F269, P30, V335, W167, W338, and S395. As seen in
Figure 2, both channels share the active site pathway section
and bifurcate around F269,

From the 10 simulations performed for the reactants, we
observe a similar number of migrations in either pathway (40%
by channel 1 and 60% by channel 2). In the case of the
products, however, we see that 90% of the runs leave by
channel 1, while only 10% follow channel 2 (see Talde 2). As
menttoned above, visual lnspection of both channels indicates
the presence of more polar residues in channet 1. Thes might be
the main reason why the products prefer this exit pathway; the
product presents an extra hydroxyl group in the para pesition.
To quantify better the polar nature of each pathway we used
Fpnckﬂ.m ! which allows us to compute the hydrophobicity of
both channels. As seen in Figure 3, channel 1 is significantly less
hydrophobéc than channel 2,

Role of $395. Figure 2 indicates the location of $395, in
close wicinity to the solvent exit point in channel 2 As
mentioned previously, varant S395C, obtained by directed
evolution, shows a 15-fold improvement in PEA oxidation in
comparison to the wild-type specie.’ Performing saturation
mutagenesis at position 395 revealed three additional variants

Gtk sog V00 Vg0 | £ P CAere B 30CKE. JOCR. JOOK- XX
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tigand with the protein {less favorable Interaction) at this 15—
25 A segment, facilitating in this way its passage through the
channel At the active site, however, we cbserve the opposite
effect, an mcrease in mteraction energy for the mutated species.
Interestingly, the minimum at the active site is shifted in the
mutant, pointing to an increase in volume, Panel A in Figure 4
compares the main contacts of the protein with the substrate at
the active site, where we observe a slight increase in the numbes
of Interactions in the mutant.

PELE uses a random walk approach, producing hundreds of
new conformations that are accepted or rejected based on their
energy change (following a Metropolis algorithm). Under the
same conditions, the of steps required to plish 2
task indicates gualitatively its “level of difficulty”. 'wa. for

|-,. freevhinhs

Figure 3. Comp of chaneel | and ch

le, by comparing the number of steps required by

the different snapshots produced by PELE along the exit ;uﬂnr.nx

with improved activity on PEA. The product distribution
obtalned from PEA oxidation displayed o deceease In the
regaospectficity by the varants and ability to form o-tyrosol
which wild-type cannot {results not shown). Thus, residue
5395, which Is distant from the active site, has a strong
influence on both activity and selectivity of T4MO.

To und d the possible influence of the S395C mutation
on higand delivery, we oompulrd the average protein—substrate
interaction energy along channel 2 for the wilkd-type and the
mutant. Flgure 4 shows both interaction encrgy plots,
presenting clear binding profiles for both systems, with lower
eoerges at the active site distance (~3 A). Distances to the
active site were measured using the initial (Glide) docked
ligand center of msass as a reference, The main differences
between the wild-type and the mutant, however, are observed
precisely at the active site and at the 15-25 A distance segment
from the active site, where residues W67 and W338 are
located. These two residues play an important role as
gatekeepers in ligand egression throogh channel 2. Replace-
ment of the serine by a cysteine reduces the interaction of the

different ligands, or by introducing a mutation in the protein,
we can obtain an approximation to the system dysamics, In the
case of the wild type the substrate reached the active site i 700
steps, while for S395C only 500 steps are needed (average
numbers for the 10 runs), This translates into a significantly
faster migration for S395C when compared to the wild-type
systems, in agreement with the lower protein—substrate
mteraction energy observed in Figure 4.

To complete the analyses we have inspected the differences
in the cavity radius along the entrance in channel 2. Figure §
shows the radius for two different runs, where we combined all
12 tragectories for each run. As mentioned above, the number
of steps to reach the active site Is deardy lower in the mutant.
Mamv:r, and in agrumcﬂt with the Interaction energy and
the g the pathway for the
presents a larger cavity radius. The main variation occurs clase
to pasitions W167/W338 and at the entrance to the active site,
the regions where we observed the biger interaction energy
differences. Thus, the Fpocket analysis confirms an increase in
volume for the mutant at the active site.

Role of F269. Due to the strategic pasition of F269 at the
bifurcation point observed m the modeled pathways, we
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Table 1. Initial PEA Oxidation Rate and Product Formation Rates of WT T4MO and the F269 Variants

TAMO varsnt
fake {umolming/mg pootein ) wr FusW Fasay
PEA oealation 0062 = 0002 013 = 0017 Q032 1 (008
mtyr fonmation 0,541 = 0008 D60 = D007 Q010 + (001
petye Sermaticn 0.i20 = 0.002 0223 = 000 Np'

“ND; The p-tyr formation rate by the F269V could not be cakculated due to its ko activity.

performed the following In vitro and in silico mutations: F269
V and F269W. We substituted position 269 to valine and
tryptophan with the expectation that the smaller residoe woald
allow better and faster discharge of the product, whereas the
larger residue would slow down catalysis. In fact, the
experimental results show quite the opposite (Figure 6A).
The F269V mutant was very show and quite imactive, The
product distribution was smilar to wildaype (Figure 6B),
However, the F269W variant was more active than WT (L.1-
fold), and the regioselectivity changed. The enzyme favors p-
tyrosol rather than mi-tyrosol. This latter fact Is unigue since all
the mutants we have g_cncmcd until now (prabably tens of
different variants) ™" were always pro.meta except for
position 395 which also influenced the regioselectivity. The
change in selectivity is the result of different formation rates of
the two products {Table 1),

To furthee understand the influence of residue 269, we
performed i silico analysis of PEA and petyr movement after
placing them in the active site. As observed for the wild-type
protein, for both F269 mutants we find again channel | and
channel 2 as the only possible migration pathways, Mareover,

a5 observed previously, the products have a strong preference
for channel 1. Interestingly, bowever, the peeferred channed for
PEA's migration changes with the mutation at residae 269. In
particular, our calculations show that upon mutation of
phenylal 269 to tryptophan the main exit pathway shifts
from an almost even ratio to exclusively channel 1. A summary
of all results is depicted in Table 2.

Besides shifting the ratio of migration pathways, we find that
the mutation at pasition 269 strongly affects the dynamics of
both ligands in channel 1. Table 3 lists the number of

Table 2. Distribution of Ligand Exit by the Two Channels
for the Reactant and Product Species™

PEA P
channl | vhunned 3 ol § channel 2
wikd-aype « w 90 0
F2N N 8 ™ w
W LA o Ll n

“Values arv in %

shecken cop 10082 1ApS00 500 | L My Chwen 8 JU00C 00K, 00K K30
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Table 3. Average Steps Required for the Migration of the
Ligands through Channel 1

PEA poy
wild-type 175 + 2131 130 + 2252
Faeayv 110 + 2408 150 & 155)
Fleow 10+ 3033 TS ILIE

simulation steps needed o displace the ligand from the active
site to the protein's surface for all species and ligands aloag
channel 1. Cleardy the product requires significantly less steps,
which correfates with its larger polarity, capable of creating new
contacts along the polar cavity, The most Interesting result,
however, is how mutation at F269 influences the ligand’s
diffusion. In the case of the wild-type the reactant molecule
finds the solvent m an average of 175 steps, while for F269V
210 steps are needed, Migration was particulasly fast {~100
steps) for the F269W when compared to the other two
systems.

The difficulty in ligand migration shown by PELE agrees
nicely with the experimental relative activities, To gain more
insight into the substrate diffusion toward the active site, we

deled PEA's ent along channel 1 for the wild type and
the two mutants, Figure 7 shows the interaction energy along

r T T v ™ v -T

o Wlll I)pe

Tmeraction eaergy

Figure 7. literaction energles versus the distance for the substrite
entrance through chaneel | for wildtype and F269 vanants. The
di in A, correspond to the di of the ligand to its active
site pesition, Enengies s in keal /mol,

the entrance process, where we observe considerable differ-
ences among the different systems, Placing a tryptophan
residue results in substantial lower interaction energy,
facilitating the migration of the reactants from the solvent
into the catalytic active site. For the valine mutant, however, we
see a slight mcrease in the interaction energy, which explains
the Increase In simulation time required to complete the
migration.

Finally, Figure 8 shows the changes in the radius for the
entrance along channel | for one run (other runs give
analogous results), While the volune of the lunnel is Jargely
increased for the tryptoph o the phenyl-
alanine to a valine sbightly decreases the radius along the
migration cxuty Thus, contrary to our nmtul intuition,
inserting a tryptophan at the “bifurcati 269 resulted

L L i
A0 00 o

L L L
0 X000 000
Snapshols

Figure & Canity radivs for the wild-type and the F269 vastants aloeyg
the entrance stimulations i dunnel 1.

B DISCUSSION
Our dynamic simulati confirm the p e of
two kmportant passiges for T llgand entry/exit to the active site of
T4MO. One begins in the active site pocket and extends to the
protein surface cose to E214 and E285 (channel 1), which was
described previously by Sazinsky et al'’ for the analogous
ToMO. The second (dunnel 2) s a longer passage connecting
the active site to the p rface by | g W67 and
exiting close to §395 and is in good agreement t with recent
experimental data'* While Song et al suggested that this
latter channpel ks lhe major pathway by which dioxygen enters
the active site," our experimental and computational work
suggest that it is akso a meany for substrate entrance/exit. The
differences in hydrophobicity of these two channels explain the
preference of the more hydrophilic product to exit by channel
1, the less hydrophabic among the two. PELE simulations also
revealed the involvement of W167 and W338 in the restriction
of aromatic molecules within the enzyme. The presence of
cysteine rather than serine at the entrance of channel 2 in the
variant caused an increase in the radins of the channel precisely
around W167 and W337 (Figure 5), and this was corroborated
with less favorable interactions with the substrate (Figure 4).
Faster rates of reaction with PEA may be possible, as well as
different orientation and positioning of the substrate in the
active site, leading to the differences observed in regiospeci-
fcity. In particubar, an increase in the volume at the active site
of the mutant could enable several options for orientation of
the substrate thus changing the reglospecificity, These two
residues are conserved in ToMO, and indeed a site-specific
mutation in this enxyme, WI67E, enabled a 3-fold increase in
oxygen transfer rate,' The crystal structure of the wild-type
and the varfant revealed that the indole ring of W167 obstructs

the channel, while the gluitamic acid residue fi ‘h)'dmgcn
bonds with adjacent resid ing an opening ol
channel !

While In the pressous case Monte Cardo simulations were
wsed to explain the experimental results observed for $395C,
the opposite scenario occurred with residue  F269. This
position, conserved in both T4MO and ToMO, has not been
reported In the lerature, However, visual Inspection of lhc
T4MO's active site Jed that residue F269 is positioned in

In a substantial increase of the volume along channet 1, easter
migration of the substrate to the active site, and overall increase
of the activity.

the i ion of the two channels. This fmdmg motivated
further experimental lies, and the mutints F269V and
F20W were produced, Intevestingly, modificaon to the
smaller valine and the lasger tryptophan revealed apparent

Ao 101001 RS20 5090 11 A Chen @ X000C JO0C K000~ 0
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contradictory resilts. While we expected a i bety

the size of this residue and the dlﬂicu!brs in migration through
the channel, the opposite was seen, To rationaliee these
findings additional PELE simulations were performed for the
mutated proteins, The results revealed locl and propagated
conformational changes in the protein’s structure which explain
the experimental results. The tryptophan at position 269
Increased the radius of channel | rather than reduced It, leading
to better access to and from the active site by this pathway and
possible different orientation within the pocket which may
explain the changes In reglospecificity of vamant F269W.
Determination of the crystal structure of this variant could
substantiate this assumption,

It is concluded that in distant locations in the
protein may alter the activity and selectivity of nonheme
Ve The combination of experimental and
computational facilitates understanding of struc-
ture~function corvelations and assists in designing tmproved
biocatalysts.
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Atomic Picture of Ligand Migration in Toluene 4-
Monooxygenase

Ali Hosseini, Moran Brouk, Maria Fatima Lucas, Fabian Glaser, Ayelet
Fishman, and Victor Guallar

Table 1. Primers used for site directed mutagenesis and sequencing of the
F269 residue in the tmoA gene in TG1/pBS(Imanishi, Morita et al.) T4AMO

Primer Nucleotide sequence®
nniagenesis
T4MObefEccRI Front

5 - CCATGATTACGCCAAGCGCG-3°
T4MOAER.ear 5. TCCATGCTCTTCACTGTTGAC-3
T4MO 260V _Front 5- CAATTTGGCGTGCCTGGCGTCTAGTTGOGG-3"
T4MO 260V Rear 5 -GGCOCGGTTAGTACCGCAACTAGACGOCAG-3
T4MO_269W _Front 5 .CAATTTGGCGTGCCTGGCGTCTATGGGCGGTAC-3
T4MO_260W Rear 5 -CGGOCCGGTTAGTACCGCCCATAGACGCCAG-3
Sequencing

T4MO seq 1 5 CCCGCATGAATACTGTAAGAAGGATCGC-3

* Positions subjected to mutagenesis are underlined and bases modified to obtain the desired
potnt nmitation are indicated in bold.
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ABSTRACT: A lecal laty thods are naw able to explare 1 d dy d
spueinammbhmywlbmdaodlmhumm-dmamlwandqtlw bhsingfora mer. manyof these methods either

a careful of di or the knowledge of an initral pathway of some kind. Thus, it & important that
y data in an efficent fashion. PELE, a proven peotein—ligand sampling

dfecdve-“‘m""lo duce thas path
«»k has been dowlopud (o pmvkic rapid ptotnln umpllng in highly flexible cases, using a redoced nmmrk modcl vigen
hod is able to rapidly sample configuration space with very general
%ﬂmappbdmuqummablemupmduumsnmdmyfuudaufwndmmdmdu icx simulations.
PELE was ulso:ppllod to exyhm the opmmgfdoung mmmon of T4 lysoryme. A mcu—dyumlu exploration usiog a low
d by PELE

energy pathway that the ¢ the most p I regions of phase space. PELE

andmenpdynmluaplmnmdw&mvmd:bwﬁuaqyupnnwhu!ah:geamvdnmhdno(Tﬂywzym:s

broken in two, There 5 previows NMR evidence for the validity of this unfolded helix region.

. INTRODUCTION
ll:cent years have bmu#ll lbe m:lmhon of important
in Simulations of

velatively large time sak ovents such a8 protein folding,
prowein—lgand assocation, and lage scale mnfnnnmoml
change are becoming tractable and predictive.’ ™" These
m!unos rdy oa accelerated methods wluch e s:nphﬁed
e to ~rl P many

pmw and/vr molecular simulation  techni
efliciently wse lrge 1 of comp
Whatever the combination of methods used, thcrc A nccd
!0 o . Aend. o{ A ‘mh of 1, "
nmpllng.'l'henlcd iy power needed for sy of
interest is not available to all, and so for the majority, the
problem of rapidly obtaining realistic dynamic information on
proteins remains,

Methoeds able to quickly probe fage scale protean

able lo

Alternative pathway bullding methads have been developed
bused on minimization rather than MD. A family of methods
based on the nudged elastic hand method {NEB)™ ™ have
been used to find pathways between two ex;venmmul
structures of the same § NEB methods in g | work
on the bosis of the minimization of a series of intermediate
noaﬁgunnons betwun two end point protein stroctures. Every

) i to the previous and
nmbyspmpwhxhhepdwmucnueof&epﬂhuﬁﬂc
allowing minima to be found. NEB mﬂhods luw been wsed to

Bnd probable low energy pathway formational
change, which can then be used In mn]um:uon wuh free energy
methods to give predictive mformation.™

We peesent here a navel methodology capable of producag
accurate and quick conformational sampling, and of providing
reliable mitial pathways for free energy methods. The
methodology is a new development of the Protein Energy

tional changes based on molecular dyn.lmm such as steered
MD* (SMD) and iad dy sumpling (EDS))'*""
hawbrmust«dlo&mh([)lnadlmmonof‘- h

Land Expl {PELE) program. PELE, a Monte Cado
(MC) bases] nmbod, has thus far been wsed to characterize the
exit pathways of bpund molecules from proteins and for

clever constraints o restraints. There are many examples of
steered or biased MD ssmalations being used to find a pathway
for farther free enerp analysis with umbrella sampling or other
such methods. ™ ™' A recently developed method, temper-
ature-enhanced essential dynamics teplica exchange, seems abde
to steer large beomolecatar M simufations through temper-
ature :onlrul of specific essential space modes whlle

protein-ligand docking™' ™" We introduced 2 new protein
perturbation step based on anisotropic network model
methodologies, capable of providing significant  backbone
motion.

These PELE developments have been tested on two systems:
ubiguitin (Ubi) and T4 lysosyme (T4lyz). Both systems were
chasen due to their small size and the amount of experimental
and cwnpmbonal studies on their dynamics. For Ubi, 2 76

$oai l\ Other ad 4

-

sach a the firite p strms

, we have compared the PELE

b ) 7 ¥

path sampling' ™" attempe to sample defined pathways using
molecular dynamics.
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conformational search with theee | pe MD trajectories, MD
simulations of this Jength have been shown to map the
mnfnrmmnd space of native Ubi, through comparison with
NMR data.™ For T4lyz, an enzyme found in Escherichia coli (E,
coli), which bas been infected with the bacteriophage T4, we
perform  meta-dynamics calcuhhons" o using 3 pathway
defined after a PELE expl of the opening and closing
pathways of the two domains presents in T‘Iyz.

2. METHODS

2.1. Anisotropic Network Model (ANM) driven PELE.
The methedolegy has been bullt on the foundations of the
PELE program which has thus far been used to characterize
ligand ext pathways from proteins ™ *® PELE uses a Monte
Carlo (MC) scheme where new trial configurations are
produced with sequential systems perturbation, side chain
prediction, and minimization steps. Trial co Bons are
then filtered with 4 Metropolis acceptance test. Usiog the MPI
protocol, multiple ln)e«urm can ;vroduw slmdumeom trial
mnﬁprmu that share i and & 1He Cooe

i one goal.

2.1.1. Perturbation Step. Previows PELE studies used ligand
translation and rotation for the perturbation step. Now, a
protein pecturbation step has been added to the PELE MC
scheme that uses a reduced harmonic model of the system to
calculate the probable major mati The reduced harmonic
model and the appbication of the cabeulated motions 1o b
the system can take a2 number of forms.

a-Carbon ANM Perturbation, The mitial reduced harmonic
model used was the a-carbon anisotropic network model
(PELE-CA) similar to that descobed by Tinon. The PELE.
CA model uses the a-carbons (CAs) to create a network modo|

¥

study). This more complex harmonk model gives more
' Nad P 3 '3 § . ] du* 3 are

more slowly {2—10 5 for PELE-CA and 2 min for PELE-HA on
4 2000 atom system ).

For the PELE-HA model, t vectoes are acquired for
all beavy atoms, Hydrogen movement vectoes are found by
copying the vectors of atoms to which the hydrogens in
question are covalently bonded. For this AA pertushation
scheme, the system is not minimized with a biased potential
following a chasen mode, as performed in the PELE.CA.
Pertarbation aleps along e vectoes are directly applied on all
atoms, followed by a where we constrain all CAs
to the final pertusbed posinon, Additionally, PELE-HA uses a
nested-move consisting of a2 hrge number (50) of small
randomly directed moves with move sizes scaled by the
fkgcnmluc of the mode, Nested moves with an mergy abom a
!Impk A o5 Lok are 1, k.
almast all moves are accepted. "Of coarse llw Ihnl trial
configuration may be rejected by the acceptance test at the end
of the PELE step.

Choosing ANM Modes. The problem of which ANM modes
to apply is solved in a number of different ways. Single ANM
modes or combinatsons can be chasen at random from a range
of 1 to N modes where only these N modes are calculated to
save time. This random sampling of mades can also be blased
by the frequency of the modes such that the lowest frequency
modes are chosen more often. In this study, modes were
<hosen at random from the top 10 (N = 10} for PELE-CA and
from the top 50 (N = 30) using a biased distribution for PELE-
HA.

The magnitude of the displ down the calculated
movement vectors can also be chosen at random from a

with identical springs connecting all CAs within a predefi

cutoff (15 A for PELE.CA in this study). A dcay pasameter
(2.5 for PELE-CA in this study) is also inclled such that the
force constant of the PELE-CA spangs is decreased with the
integactson distance. A stmilar decay parameter has been shown
to improve the accuracy of ANM models in a recent study.™
Extra user defined atoms and/or automatically chosen atoms
from any ligand can also be included In the network, The
Hessian  matrix  diagonalization of this reduced harmonic
potential results in a series of eigenvectors that have been
shawn to dﬁ«ﬁw the vibrational dynamics of proteins and
their complexes. OF course, for this model,

defined range of distances which can bo blased by the
fr:quenql of the modes in question such that lower frequency
maodes use larger displacements. Of course in the case of PELE-
CA dhplxtmmu dm:mud bere are in faxct the length of

3d b

i target structure is provided, a PELE simulation can move
toward this target. This is achieved by picking ANM modes
which display a predefined level of directional overlap with the
vectors of each atoms of the initial structure to the equivalent
atoms of the target. Directional overlap is simply the dot
product of the mode vector with the vectors 1o the target

A ber can then be wsed to discard some

vectors are acquired only for CAs. Thus, PELE-CA calaulated
motions are applied to the all aom (AA) system theough the
addition of harmonic restraints to CAs in the directions of the
chosen PELE-CA modes. The system is then minimized for this
biased potential, which has the effect of moving the system in
the desired direction. A prototype versson of this PELE-CA
methodology bas been nsed with success in 3 recent study of
ligand migration in 2 truncated hemoglobin,

Heavy-Atom ANM Model. A more claborate alternative
reduced barmonic model has been developed which uses all
heavy atoms (HAs) of the AA system to create an elastic
network model (PELE-HA). Pairs of HAs which have covalent
or disulfide bonds between them are given a very high force
constant spring (300 keal mol™') while nonbonded HA pairs
are given a spring with a far weaker force constant (0.5 keal
mol™'; HA pairs more distant than 50 A are not included ). This
model has similasities to ly published ANM and GNM
madels ™ Again, a force constant decay pasameter is applied
such that longer speings are softer {3 for PELE-HA in this

overlapping modes sach that sequential tnads have differing
overdapping mosles. When a target structure is not available the
spawning methodology of PELE is applicable, as described
below in the Minimization Step section.

2.1.2 Slde Chaln Step. Due to larger protein motion, as a
result of the new perturbation, the side-chain optimization step
has been developed to pick residues which undecwent a large
energy change along the pertushation, Each side chain residue
energy is computed before and after the perturbation, Thus, the
user can choose side chains with the largest energy increase
(top residues) and predict a better side chain pocmon (using
the algorithms developed i the PLOP program™). There is
also the option to chaose fewer top residues and select a
spherical cluster around them. The vser can control the number
of high-energy residues optimized and the radius of the clusters
around these residues. In this study, all PELE searches used two
high enecgy residues and clusters with radii of 3 A In car
experience, the number of side chains to be optimized should
not exceed 25, Due to the approximate (but quicker ) side chain

ooy’ 01001100675 L Chen, Theoy Corpar. J01J, 1 339-065

90



Publications

Journal of Chemical Theory and Computation

prediction algorithms, larger groups of side chains will result in
high energy states and a Jow Metropolis acceptance,
ZIJMmmwonSrep.Tlnhnmpmthem
hm uses 2 t d Newton ming
:lloﬁhesystun (ocotthoscpmn(tlusynmlndudedmﬂle
fint two steps). While the minimization allows us to attain
ically accessibl i it might also revert the
stractare to the iitial conditions. In order to improve the
conformational sampling, we have added the possibiity to
constrain the CAs to their final perturbed position within the
finad minimization, After this minimization, the trial config-
uration Is accepted or repected as stated above,
The multiprocessor parallel implementation of PELE shares
predefioed metrics across wdentical replica caleul Far
ple, several p @ identical PELE calculations
can perform a random search with ANM proteln sampling,
those which manage to move away from an nitial structare will
expont!ltlrooordnmumdlepmcﬁmh“mgbdmd
{within a given threshold). ** This multiprocessor stracture is
able to drive the sampling to find new low energy
configurations away from the initial. This “spawning” algosithm
can be used to drive many different metrics. In this study, one
of our spawning critera for T4Lyz is the distance between the

and
Lol im-rien®t
HAR) = bm ——I : &
R) r—00 ln'/") ¢ 2)

[n our case, R &5 a series of protein a-carbon coondinates for

of a protein which describe the motion of
interest and (R — R(r))* & the mean square displacement
between the present configuration and the defined path, For
sufficiently large A, these functions allow a meta-dynamics
search of the path defined by R such that the s path defines the
distance along R and the ¢ path defines the distance from R, In
this way, a representation of the free energy landscape of R and
survounding regions can be calculated through

#o )= =2la <5(, — Rz — :(R]))
f 13)

2,3. Simulation Setup. T4lyz and Ubi structures used were
l’DB codes 3DMV and JAAR, respectively. For T4lyz, all
including ligands, ions, and water were removed,

hydrogens were added, and HIS 31 was protonated at both the
A and ¢ postions. For Ubi again all heteroatoms were
renmv:d, hydrogens were added, and o residues received extra
The were then minkmtzed with constrained

tr-carhons of GLU22Z and ARGI37. Hence, 2 multip
search would allow all processors to search the conformational
space of T4Lyz randomly until one p has a GLU22-
ARG 137 distance which is 4 A smaller than the largest GLUZ22-
ARGI37 destance foond. At this point, the processor with the
smallest GLU22~ARG13Y distance takes on the config

d-carbons using 1 truncated-Newton algorithm and SGB
solvation of PLOP,™

The MD simudation of Ubl was performed with GROMACS
40.5° and three different force fields: OPLSAA, Amber, and
Charm. The system was solvated with a persodic cubic box,

contalnt

with the largest GLU22-ARGIZT distance and continues to
search.
2.2.Free Energy Methods. Meta-dynamics is a free energy
hodol loped by the P. llo group and 15 able to
exploce the free gy diﬂemm of atomistic systems using a
series of d& bles. Here, we use meta
dynamics to u:phu the pathways found with PELE as a form
of validation. A very brief description of meta-dynamics follows;
more information can be found in varioas reviews. ™
The concept of meta-dynamics is based around finding a
collective variable of a system which, in 3 coarse-grained
fashson, describes a property of interest within a simulation,
Gaussians of width a, are then added to the collective variable
i a history dependent manner such that the system s kess
Hikely to returmn to a region of the collective variable which has
aleeady been explored. The free energy surface of the region
exploved can then be found through the negative of the total
biasing potential which was added through the samalation.
More recent developments of meta - dynamics (well tempered
mcundynamiu] have Livtn the possibility of Euter and mare
< h 'bﬁ ! ¥ d
the (uumm d:pmbon ate o), .udmvd by mcalmg W, the
height of Gaussians,
Another development by the same group provides two
functions of a possible reaction coordinate R which allow for
efficient exploration of otherwise complex collective variabdes; ™

ht

R)yw= i _
HAY= [ HRROF

1 MR-REOF 4,

)

g 8813 TIPIP™ molecules and particle mesh Ewald
(PME) |ong~mns¢ electrostatics.! Lennard-fones interactions
were cut off at 9 A with a switching function, and Coalomb
interactions were cut off at 10 A Temperature and pressuee
equilibrations preceded the I ps of production at 300 K and |
atm where system configurations were saved every 10 ps.
Meta-dynamics simulations were performed with GRO-
MACS 4.05 patched with Plumed.* The OPLSAA force-fiekl
wus used along with PME and similar cutofi and equilibeation
arrargemenis 1o the GROMACS simulations described above.

3. RESULYS

In ocder to study the capabilities of PELE being able to
reproduce Jocal floctuations, PELE-CA and PBLB—HA explors-
tions of Ubi bave been compared to molecular dynamics, Eight
were allowed to freely expl (nommhguh‘hnoe)
conformations around the Initial steuctare for 24 h; an
additional 24 h dxd not produce any significant change.
Mades were chosen randomly from the top S0 in terms of
frequency, and move sizes had 4 maxmum of 1.5 A and were
biased not to be teo small
Figure 1| shows the RMSD from the initial structure for
individual sesidues from PELE and three | ps (each with a
different force field) explictly sobvated MD simulations, While
there are a few differences for most residues, in particular
between the different force felds, there v an overall
Remarkably, PELE cap most of
the maximam and jons at a fraction of the
MD cost. This agroement can also be seen when comparing
average atomistic simulation focces. Bond length forces are of
course very different owing to the minmmiation of PELE
Nonbonded, 1=4 interaction, torsional, and angle forces are
very similar to those seen in Figure 2 and the Supposting

PR i
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Figure 2. Histograms of stomaic nonbonded farces from PELE (red)
and MDD (bloe ).

Information. These comparisons suggest that the conforma-
tional space explored by PELE is very similar to that of MD.

Table | shows the results of a cluster analysis of PELE and
MD ubiguitin trajectories. As seen when comparing PELE with
MD, but also when comparing the different MD foroe fields, all
simulations produce a similar number of chasters and agree on
the percentage popalation of the top 4 and top 1 cluster. It is
remarkable that PELE, a quick exploration Ied\nlquc with
approximately 1 orders of magnitude less comp | cost,
can reproduce this semiquantitative analysis, Additionally,
PELE has the most clusters with a 2 A cutoff, suggesting that
PELE finds more significantly different conformations.

Both PELE-CA and PELE-HA protocols as defined in the
Method son were applied to open Tdlyz. After the initial
minimization, PELE starts with a local explosation (100

iterations of free search) of the initial dosed structure In
order to relax the sy Then, hes of the opening
process using driving metnes were performed. PELE-CA and
HA searches used spawning on energy and atom—atom
distance (GLU22 and ARG137 a-carbons). Once fully opens,
with an @ carbon RMSD of 5 A from the initial structure,
another short local search of the opened stractare is canted out,
Then, the driving metrics are reversed, and searches retum
toward the Initial strusture.

PELE-CA and -HA searches using 32 processors and drawing
modes fram the top 50 blased by frequency were able to open
and close T4Lyz 1-2 times in 48 h. The potential energy data
(Fagure A} seem to suggest low energy regions at the closed and
open states. The energy profile dearly indicates that PELE-CA
and -HA calculations seem very similar and essentially provide
the same trajectories. Figure 4 shows the progection of the
conformers of the PELE-HA trajectory on the PCA vectors
clcufated from the same trajectories. The opening—closing
mation &5 very clear in vector 1, and there seems to be a small

lation with this for vectors 2 and 5. For the other
PCA vectors, there seems to be more of a relaxation through
the simulation. For these PELE trajectories, the eigenvalue of
the first PCA vector is 20 times larger than any other, and this
is borne out in the projection analysis (Figure 4). A visual
comparison of the PCA vectars caleulated for both PELE-CA
and -HA and those found through a similar procedure wsing

MD*" suggested a geod level of smilanity.

The red arces in the HA plots of Figure 3 show the
configarations chosen by binning all configurations by RMSD
to the initial and choosing the lowest energy conﬁgumwn in
each bin, These configurations were d to
ensure maximal eqmity in RMSD between all If a chosen

ation was d { to be too far from the required
RMSD equality, it was cemoved, and the gap was filled wsing
the Morph Server of Krebs and Gerstein™ The four open

‘rzumctweawnh the same stricture as that used here (130

were weathin 1.3 A of one of the configurations of the final
paumay used in the meta-<dynamics analysis. PELE projected
these conformations without any previous knowledge of the
open structure,

Figure 5 shows the frec-energy lndscape around the
pathway taken from the PELE scarch. The x axis shows the
S-path (see eq 1), which starts 3t 4 and ends at 7.5 units. The y
axis shows the Z-path (see eq 2), which describes the distance
from the S.path in A”. Figure 6 shows graphic representations
of the important regions found in Figare S, The Jowest free-
eneryy regions (regions 1—3} of phase space were found close
to the path found by PELE and correspond directly to the low
energy regions in Figure 3. The two Jowest energy regions
stggest that T4Lyz is able to open and close with energy
barriers of around 10 and 30 kJ mol™', respectively.

Table 1. Table of Results for a Series of Cluster Analyses of Ubiquitin Trajectories Using PELE and MD with Different Force

Fiekds"
PELE MD:OPLS MDAMRIER MD:CHARMM
anod (A) I 1.5 2 1 3 2 I 15 P ) 1 15 1
no. of chasers Lol 1 L] 13% o 157 " 4 Nne 2 4
% s top 4 distes s 86 55 3 " " 90 100 w0 56 00
% &= tup chater 7 36 a0 " " 4 56 #6 kY] 83 9%
no dusery for WA of frames LX) s : “+ | 2 4 b3 16 2 1

“This analysis was carnied out with the gduster GROMACS® toal, using the linkage algosithm sod -carbon RMSD.
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Figare 3, Potential energy against o-cabon RMSD from the mital structure for (2) PELE.CA and (b) PELE HA searches targeted with spawning
on qe-carbon RMSD and atom, Red ceces represent canfigurations chasen by the lew enengy bioning procedure and wsed w0 create the meta-
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Additonally, the large cross domain hefix was found to break in
the most open conformations (region 3), and this helix was
found to become even more beoken in an solated region,
which may not be significantly popubated (region 4),

2. Open

1. Closed ;
4. Very
3. Broke
% w

Figure 6. T4Lyz structures representing the different states found in
the mesa-dynamics anadysis and eeferenced in Figure 5.

4. DISCUSSION
Combining p«mln alruuum pm!k(lon algorithms with a
Moate Cardo 7 we introduced PELE, a

program capable of deﬁmhlng the protein energy landscape
associated with ligand migration in proteins. By adding a
backbone perturbation following normal modes, we have
expanded these capabdities to explore local dynamics and
lange conformational dunge\ A comparison of residue based
RMSD and ge force decomposition for Ubi suggests that
PELE can rapidly give an idea of the protein conformational
space. Emplaying the spawning methodology, PELE was able
to rapidly explore the large conformational space of THlyx
Both PELE.CA and PELE-HA seem suitable for the purposes
of rapid exploration of protein large conformational change and
fully explored the open/close transstions in T4Lyz in just 1-2
days usage of a small cluster. The minimum RMSD between
the pathway denoted by red cirdes in Figure 3 and the open
and cosed states In Figure 6 was 135 A and 180 A,
mpemvely We should emphasize that PELE pmfe:cted the
open confor and the pathway ithout any
knowledge of the open structure, As stated, the mnfanmnmal
exploration used the GLU22 and ARGI37 atom distance as

Hesciony’ 1010015100675 L Chen. Theoy Corpar. 011 1 339065
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spawning critena. Equivalent results, however, were obtained
when using as spawning crtedia the RMSD to the initial
structure, indicating the robusiness of the landscape and of the
search procedure, The overall mc(hod could be very useful as in
the ab of initial pathy fi son, MD would need
significant compnnnolul resources. The low free-energy
reglons of T4lyz phasespace found by meta-dymamics were
very similar to the Jow potential energy pathway found by
PELE, However, If accurate free energles are necessary, then
PEL!-‘, shocld be bined with more  rig:
techni ible experimental methods.

" Our calculations- mggesl ‘that the main crass-domain helix s
broken as T4Lyz becomes more open. This helix becomes
slightly broken at the extremity of the probably well popalated
open reglon (region 3 of Fagure 3) and very broken In the lintle
populated region 4. Any fanctional significance & not clear, but
there is exp I NMR evid based on a lass of stability
and bydrogen bonds in the hel ™ Aaother simulation
analysis of T4Lyz"' has been carried out, and although this
study only uses | ns trajectories, the PCA analysis provides
similar modes and eigenvalues to those found in the present
study and analyzed in the PCA projection :miys& While there
is some controversy, experimental studies™ ™ seem to suggest
that, in solution, T4lyz is generally more open than dosed. Our
energy peofiles indicate a larges basn (and moere minima} for
the open state. Uslog the OPLS-AA force field, bowuver, the
dased state & 3 keal mal™ more stable. Thus, it is difficult to
predict the prefermed state of the system without 2 lanetic
analysis (which is not the aim of this study),

The protein sampling capabdities of PELE are an addition to
!bc molccuhr modellng mo! kig, which allows rapid sampling of

on the istic scale. These
apabllms are complemented well by those of meta-dynamics,
but PELE & aiso wseful for any appli which requi
protein sampling such as pm(ein-ﬁsand and protein—protein
. A pubbc Web senver for PELE protocels will be made
available in January 2012 at birp://pele.bsces.
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Exploration of protein conformational change with PELE
and Meta-dynamics
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Figure 1: Histograms of atomistic forces from PELE (red) and MD (blue) simulations of ubiquitin.
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Abstract

Antiretroviral drug resistance is a major obstacle to end the HIV/AIDS
pandemic. Protease inhibitors (PIs), one of the mainstays of HIV therapeutics,
block HIV-1 protease (PR), which cleaves the Gag and Gag—Pol HIV-1
polyproteins to yield mature infectious virions. Development of mutations in
HIV-1 PR hinders the activity of these drugs, making anti-AIDS therapy less
efficient, and forcing changes in drug prescription. Most resistance
assessments used in the clinic and epidemiologic surveillance to date rely on
expert-based rules to interpret predefined sets of stereotypical mutations, and
are applied by the clinical community to design alternative therapies. Such
approach, exclusively information-driven, is powerful, but cannot capture the
effects of new polymorphisms impacting virus susceptibility and fitness, and
cannot be applied for new drugs. Computational modeling of PI-PR
interactions could provide an unbiased, wider, and more general assessment of
Pl resistance, and could be made available to clinicians and caregivers
through the Internet. In the present proof-of-concept study, we create a
protocol involving sequence comparison and all-atom protein-ligand induced
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fit simulations to predict PR resistance at the molecular level. We first
compared our predictions with experimentally determined 50% inhibitory
concentrations (ICsp) of darunavir, amprenavir, ritonavir and indinavir from
reference PR structures of the wild type molecular clone HIV-1 NL4.3 and
various mutant PRs displaying different PI resistance levels. We then
performed analyses on a large set of variants harboring more than 10 PR
mutations. Finally, several mutant sequences of HIV-1 PR isolated from real
patients were analyzed for amprenavir and darunavir. Our computational
approach detected all genotype changes triggering high-level Pl resistance,
even those involving a large number of mutations.

Introduction

Antiretroviral therapy (ART) is one of the most effective interventions
in medicine and, in particular, in HIV treatment. In ideal conditions of
treatment, ART transforms a deadly disease into a chronic pathology,
allowing patients to achieve a life expectancy (Rodger, Lodwick et al. 2013)
and quality similar to that of non-HIV-infected individuals.(Hogg, Heath et al.
1998; Palella, Delaney et al. 1998) Such efficacy, however, can be offset by
HIV’s ability to develop mutations conferring antiretroviral resistance in the
presence of drug selective pressure(Larder and Kemp 1989; Cohen 1992;
Condra, Schleif et al. 1995; Rhee, Fessel et al. 2005) and by patient-to-patient
transmission of resistant viruses. In resource-limited settings, where the
HIV/AIDS toll is higher, ART is often provided without virological
monitoring,(Gilks, Crowley et al. 2006; Keiser, Orrell et al. 2008) which is
being associated with an alarming increase in drug resistance.(Hamers, Wallis
et al. 2011; Hamers, Sigaloff et al. 2012; Organization 2012)

Antiretroviral drug resistance testing is key for clinical
management(Johnson, Calvez et al. 2013) and epidemiologic
surveillance,(Gupta, Hill et al. 2009; Sigaloff, Calis et al. 2011; Organization
2012; Sigaloff, Hamers et al. 2012; Paredes, Marconi et al. 2013) but it is not
trivial to assess. Caregivers often rely on expert-based rules to interpret
predefined sets of stereotypical mutations. Such procedure assigns
susceptibility scores to different drugs for each mutation encountered after
sequencing, from a previously defined list; individual mutation scores are then
added into a global score for each drug and combination of drugs. Such scores
are usually translated into a susceptible-intermediate-resistant (Sircar, Sanni et
al.) interpretation. Interpretation rules based on a predefined list of mutations
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rely on previous knowledge and are limited in the mutation scope, so they
cannot take into account the effect of non-predefined polymorphisms,
mutational interactions, or mutation effects on different genetic backgrounds
in the virus. Moreover, interpretation rules cannot provide resistance
assessments to new molecules inhibiting the same target/s until new
knowledge is generated, which can requite years of “blind” treatment.

In an attempt to build a universal computational tool for resistance
prediction that would not rely on prior knowledge on drug resistance, we have
developed an automatic protocol combining sequence alignment with protein-
ligand induced fit sampling techniques. In this first proof-of-concept study we
focused on the HIV-1 PR, but the process could be later extended to other
enzymes, HIV-1 subtypes or viruses.

HIV-1 protease (PR) is a 22 kDa dimeric aspartic protease that
contributes to the maturation progress of the virus, cleaving the polyprotein
precursor into functional viral proteins. Being one of the main targets in the
treatment against HIV, the development of nine FDA-approved protease
inhibitors, along with numerous crystal structures were established in the last
two decades.(Kim, Baker et al. 1995; Turner, Strohbach et al. 1998). The
active form of HIV-1 protease is a homodimer, with ~99 residues per chain.
The catalytic residues Asp25 and Aspl25 lie at the bottom of the binding
cavity shielded by a pair of flaps (residues 44-55 and 144-155).(Tie, Boross et
al. 2004) Main features common to all inhibitors are the existence of a
hydroxyl group in contact with Asp25/125 residues, and a water molecule that
mediates contact between a conserved carbonyl of the inhibitors and the
protease amide groups of 11e50/1le150 located in the flaps (Figure 1). Several
resistant mutations have been described along the whole protease chain. Many
mutations might occur simultaneously within a single variant highlighting the
importance of complex cooperative effects. Typically these changes confer
resistance not only by direct contact with the inhibitor, but also by subtle
changes in the structure/dynamics incidentally affecting the active site.
Obviously while these mutations block or reduce drug inhibition, they also
need to have minor effects in the normal function of the enzyme which in the
absence of compensatory mutations can generate changes in viral
fitness.(Tantillo, Ding et al. 1994; Condra, Schleif et al. 1995; Gubareva,
Bethell et al. 1996)
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Figure 1. The HIV-1 protease dimer. Cartoon diagram of NL4-3
protease sequence showing monomers in blue and red. Residues Asp25 and
Aspl25 and APV are shown as sticks colored by atom type. A relevant water
molecule is displayed as ball and stick.

In this study, we used all existing HIV-1 PR crystal structures available
in the protein data bank and PELE (Protein Energy Landscape Exploration, a
technique capable of reproducing complex protein-ligand induced fit(Borrelli,
Vitalis et al. 2005; Borrelli, Cossins et al. 2010)), to explore the impact of
mutations in inhibitor binding. Our protocol was first tested by comparing
calculated and experimental binding energies of several FDA-approved
inhibitors with engineered PR variants containing different amino acid
mutations.(Koh, Nakata et al. 2003; Shenderovich, Kagan et al. 2003) Then,
we used our approach to predict ab initio, without any informational-driven
bias, the resistance profile of 44 clinical HIV-1 PR variants to amprenavir
(APV) and darunavir (DRV). Our technique is fast, universal, and contrary to
previous structure-based computational methods(Shenderovich, Kagan et al.
2003) which were limited to variants with a reduced number of mutations, it
can predict Pl resistance to variants containing more than 10 mutations.
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Methods

Systems used
References structures
To build the homology models of the wild type NL4-3 and HXB2

reference sequences (which were considered as non-resistant genotypes
unaltered by the selective pressure of any PI), we used the crystal structure of
HIV-1 protease bound to BEG6 inhibitor (pdb code 1W5Y (Lindberg, Pyring et
al. 2004)), with only 2 and 1 mutations per chain, respectively.

HIV-1 protease-inhibitor complexes
Several crystal structures with measured catalytic activities were used

to tune our computational protocol. For the APV ligand, the PDB entries used
were: 3NU3(Shen, Wang et al. 2010) a WT reference with analogous relative
affinity as NL4-3, 3S43(Tie, Wang et al. 2012) a triple mutant with 15 fold
increase in inhibition constant (K; involving a decrease in affinity),
3NU5(Shen, Wang et al. 2010) a single mutant with 30 increase in inhibition
constant. For the DRV ligand, the PDB entries used were, 2IEN(Tie, Boross
et al. 2004) a WT reference with analogous relative affinity as NL4-3, and
3EM6(Mittal, Bandaranayake et al. 2013) a double mutant with 4 fold higher
dissociation constant.

Modeling HIV-1 protease mutants
Due to the strong correlation between sequence similarity and structure,

our strategy to model mutants with no solved structure was to use the closest
existing crystal structure in terms of sequence. We found ~450 crystal
structures of HIV-1 protease which can be used as templates for building a
given clinical sequence. Thus, modeling mutants was performed in two steps:
(1) a search for the crystal structure with the highest similarity to the mutant
sequence using BLAST(Altschul, Gish et al. 1990), and (2) building our
model by replacing each mutant using the Maestro(Sastry, Adzhigirey et al.
2013) software. Mutations were introduced simultaneously in the two protease
chains. Using this procedure several sets of mutants were built: The first set
was selected from the work by Koh et al.,(Koh, Nakata et al. 2003) were three
NL4-3 variants: (L10l, G48V, 154V, L90M), (L10F, V32l, M46l, 154M,
A71V, 184V) and (L10F, D30N, K451, A71V, T74S) were tested against four
inhibitors DRV, APV, IDV and RTV. The second set was obtained from the
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study by Shenderovich et al.(Shenderovich, Kagan et al. 2003) For this case,
we selected the more difficult set of sequences, with more than 10 mutations
(and a maximum number of 17 mutations per monomer, giving a total of 15
sequences) against IDV inhibitor. The third set included 21 and 23 PR
FASTA sequences with different resistance profiles to APV and DRV,
respectively, obtained from routine genotypic resistance testing (TRUGENE®
HIV-1 Genotyping Assay, Siemens Healthcare, Barcelona, Spain) in the HIV
Unit and irsiCaixa AIDS Research institute, Hospital Universitari Germans
Trias i Pujol, Badalona, Spain. This last set of studies was performed as a
blind test, where the modeling team had only access to the sequence but not to
the resistance score.

Systems preparations

All systems were prepared with Schrodinger’s Protein Wizard.(Sastry,
Adzhigirey et al. 2013) This algorithm builds hydrogen-bonded clusters and
performs 100000 Monte Carlo moves by reorienting hydroxyl and thiol
groups, water molecules, amide groups of Asn and GlIn, and the imidazole
ring of His, to correct for typical crystal structure refinement errors. The
algorithm also predicts protonation states of His, Asp, Glu, Lys and Arg. Each
possibility is scored based on the total number of hydrogen bonds and their
quality (relative to an idealized hydrogen bond). In this work, Asp25 was
protonated in all structures, whereas Aspl25 was considered ionized.
Histidines 69 and 169 were either epsilon or double protonated depending on
the structural environment; all other histidines kept delta protonation. A water
molecule, generally found in all protease-inhibitor crystal structures was kept.
The water preserved mediates a contact between the P2/P1’ carbonyl oxygen
atoms from the inhibitors and the amide groups of Ile50/I1e50".

Once the all atom model was built, the ligand was initially docked in
the active site using Glide.(Halgren, Murphy et al. 2004) The top score model
(XP scoring) obtained by glide was selected followed by a molecular
mechanics minimization using Schrodinger’s Protein Wizard and the
OPLS2005 force field to remove any possible geometric clashes. In order to
keep the system close to its initial geometry, a restrain was applied to all
heavy atoms (allowing a maximum displacement of 0.3A). All ligands were
guantum mechanically minimized separately in the gas phase using the
DFT/B3LYP and 6-31G** basis set level of theory. The atomic charges
defining ligand electrostatics were then derived from the electrostatic
potential fitting at the same level of theory.
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Assessing the induce fit and binding energy
To map the protein-ligand conformational sampling we used

PELE(Borrelli, Vitalis et al. 2005), which implements a Monte Carlo
algorithm where new trial configurations are produced with sequential ligand
(and protein) perturbation, side chain prediction and minimization steps.
Ligand perturbation includes a ligand specific rotamer library.(Borrelli,
Cossins et al. 2010) Trial configurations are then filtered with a Metropolis
acceptance test, where the energy is described with an all-atom OPLS force
field with a surface generalized born solvent model.(Yu, Jacobson et al. 2004)
PELE has recently shown to provide some competitive advantages with
respect to state of the art induced fit commercial software and to reproduce
the conformational sampling obtained in microsecond molecular dynamics
trajectories.(Espona-Fiedler, Soto-Cerrato et al. 2012; Hosseini, Espona-
Fiedler et al. 2013)

A total of 12 independent MC trajectories were produced for each
inhibitor and mutant sequence. Trajectories were interrupted after 12h of
CPU, providing approximately a total of 6000 Monte Carlo steps and ~2000
accepted minima. PELE’s binding energy was then obtained by averaging the
interaction energies of all accepted minima (approximately 2000 snapshots).

Results

In the first part of the study, we validate the method by comparing in
vitro 1Cs results for specific mutations with our theoretical predictions. In the
second part, attention was centered on predicting how mutations in HIV-1
protease taken from real patients affect drug resistance against APV and
DRV.

Validation for the set of data with known experimental binding
affinity (1Csp)

We first calculated the interaction energies of APV, DRV, IDV and
RTV for three different sequences (each ligand) among the set described in
Koh et al.(Koh, Nakata et al. 2003). Besides NL4-3, for each drug we selected
the mutation with the lowest and highest 1Cs, value relative to the value for
NL4-3 (see Table 3 in Koh et al.(Koh, Nakata et al. 2003)). Figure 2,
summarizes PELE’s relative increase in binding energy for each ligand and
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target, compared to the reference NL4-3 (the higher the increase in binding
energy, the greater the resistance conferred by the mutation). The
experimental relative (with respect to NL4-3) increase in ICs is also shown
with numbers in Figure 2. Clearly, PELE’s simulations can distinguish
between the high (dark gray) and low (light gray) resistance mutant in each
specific inhibitor. Moreover, the relative increase in PELE’s binding energy
correlates nicely with the experimental increase in resistance in this set of
data.
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Figure 2. PELE’s relative binding energies (in kcal/mol) predicted for the
high (dark gray) and low (light gray) resistance HIV-1 PR mutants for APV,
DRV, IDV and RTV observed by Koh et al.(Koh, Nakata et al. 2003).
Experimental relative (with respect to NL4-3) increase in 1Cs is shown with
numbers above each bar.

For a second test, we used a subset of sequences derived from the work
of Shenderovich et al.(Shenderovich, Kagan et al. 2003) Using known and in-
house prepared mutations, these authors developed possibly the most
comprehensive computational predictor to date. However, as notice by the
same authors, the quality of predictions correlates negatively with the increase
of number of mutations. From their test set, we selected all the sequences with
more than 10 mutations for the IDV inhibitor (a total of 15 sequences, which
represent a specially difficult set for prediction(Shenderovich, Kagan et al.
2003)). Figure 3 shows the correlation between our PELE relative interaction
energy estimates, using again NL4-3 as the reference zero value, and the
experimental relative binding energy. Additionally we include the estimates
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derived from Shenderovich et al.(Shenderovich, Kagan et al. 2003), also
referred to NL4-3. We should notice that in Shenderovich et al., all mutant
models were derived from one crystal and that they used simpler side chain
(and backbone) sampling algorithms.

Despite the difficulty of this set of 15 compounds, the method outlined
here behaves quite well, with a coefficient of determination equal to 0.75
(PELE’s p-value= 2.5¢® and AE’s p-value = 0.004), improving previous
predictions significantly.
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Figure 3. Correlation between modeled changes in relative binding energies
(in kcal/mol) obtained in Shenderovich et al.(Shenderovich, Kagan et al.
2003) (AE, blue beads) and PELE (red beads) with changes from experimental
relative binding energy.

Prediction results for APV and DRV (clinically isolated data)
After testing our computational protocol with publicly available data,

we proceeded to perform “blind predictions” of the resistance in clinical
samples. Importantly, each of these variants, taken from HIV infected
patients, contained a large number of mutations in each monomer (15-25)
when compared to the reference NL4-3 (therefore, in some of the simulated
systems the protease bore as many as 50 mutations, representing an incredible
difficult test). The data for the clinical isolates was divided (and ordered)
based on the resistance scores calculated from expert assessments in
HIVdb(Liu and Shafer 2006). Samples were categorized as sensitive (S) when
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HIVdb resistance scores were below 20, intermediate (I) resistance when
scores were between 20 and 50, and resistant (R) when scores were 50 or
higher.

Figure 4 shows the results for APV where again we computed PELE’s
relative binding energies to the reference compound NL4-3. For this
compound we had initially run a benchmark with four variants containing
known resistance-related mutations: two consensus reference proteins (the
sequence from pdb structure 3NU3 and the reference sequence HXB2, which
were both considered non-resistant), the single mutation 150V with 30 fold
increase in K; (pdb id 3NU5) and the triple mutant V321/147V/V82l with 15
fold increase in K; (pdb id 3S43). The data from this benchmark has also been
included in Figure 4 (left-hand side). As can be seen, the two additional non-
resistant reference sequences (the one from 3NU3 and HXB2) show equal or
(slightly) better interaction to that found for NL4-3. This result shows how
our computational protocol predicts reference sensitive sequences other than
NL4-3 as sensitive, and similarly, the two APV-resistant reference sequences
(3S43 and 3NU5), with a 15 and 30 fold increase in K;, respectively, were
correctly predicted as interfering drug-binding (note that the impact of the
mutation in predicted binding, matches the K; increase found experimentally).

For the sequences extracted from the patients (1-21), it can be seen that
all sensitive sequences (green; columns 1-7) are predicted to be sensitive by
our method, and all highly resistant sequences are predicted to be highly
resistant (red, columns 14-21). Sequences classified as intermediate resistance
(in yellow) offer a less clear differential profile, but there is only one pair
(13/14) where PELE will have some difficult to predict the resistance level
produced by the mutation.
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Figure 4. PELE’s relative change in APV binding energies (kcal/mol).
Sensitive, intermediate and resistance HIVdb values for each sequence are
shown in green, yellow and red colors, respectively.

Due to the large number of mutations in each sequence, assigning
individual effects is not a trivial task. Figure 5 compares the protein-APV
interactions for sequences number 1 and 20, with a ~12 kcal difference in
relative affinity (HIVVdb scores 0 and 150, respectively). Sequence 1 presents
6 mutations (per chain) compared to NL4-3 while sequence 20 has 16
mutations. Clearly, sequence 20 shows a reduction in the number of
interactions. Mutations on residues Val82 and Val84 affect the binding mode
and orientation of the inhibitor. In particular, these mutations influence the
proper interaction of APV with polar residues, Asp25, Asp29 and Asp30,
significantly decreasing the affinity of the ligand. Asp25, for example, plays
an important role in ligand recognition by making a strong interaction with the
hydroxy! group of almost all inhibitors.
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Sequence number 1 vs NL4.J3 Sequence number 20 vs NL43

. & “““ ‘ " ®®
Figure 5. Protein-APV interaction diagram for sequences number 1, panel A,
and 20, panel B. Important residues, discussed in the main text, are underlined
in red circles. Partial sequence alignment to NL4-3 is also shown for both
systems.

Figure 6 shows the result of equivalent calculations for DRV. For this
compound we also modeled three additional variants containing known
resistance-related mutations: two consensus reference proteins (the one taken
from pdb structure 2IEN and the reference sequence HXB2) and the double
mutant I50L/A71V (3M60), which has 4 fold higher dissociation constant. As
in the APV case, reference and sensitive compounds show little or no effect
when compared to NL4-3. Again, the most remarkable result is the correlation
between PELE relative binding energy and the estimation of resistance, where
all highly resistant variants are clearly identified.
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Figure 6. PELE’s relative change in DRV binding energies (kcal/mol).
Sensitive, intermediate and resistance HIVdb values for each sequence is
shown in green, yellow and red colors, respectively.

Discussion

The primary aim of this study was to develop an automatic
computational protocol for rapid discrimination between resistant and
sensitive HIV-1 protease variants. To this aim we have used PELE, an atomic-
resolution sampling algorithm combining a stochastic Monte Carlo procedure
with protein structure prediction techniques, which is specially suited for
induced-fit docking problems.(Espona-Fiedler, Soto-Cerrato et al. 2012;
Hosseini, Espona-Fiedler et al. 2013)

Since most of the mutant structures have not been crystallized, one of
the main questions is how to generate an all atom model for each sequence.
Since we were comparing the binding energies to the NL4-3 reference
sequence, one simple strategy would have been to use its structure as a
template (in Modeller,(Fiser, Do et al. 2000; Eswar, Webb et al. 2002) I-
TASSER,(Mitra, Shultis et al. 2013) etc.). However, many sequences have up
to 20 mutations (when compared to NL4-3) in each chain, which could
introduce large errors in building the models. The large number of HIV-1 X-
ray crystal structures enabled better strategies. One obvious is the use of
multiple templates in homology modeling, but our initial analysis indicated
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that it is better to start from a well-defined single template than to combine
different crystal structures. Thus, we decided to create a subset of several
crystal structures to which our sequences were compared and to use the
crystal structure with the best sequence alignment to our target (to minimize
the number of mutations modelled) as template. By doing so, we reduced the
largest number of mutations (in terms of model building) to a maximum of 12
per chain.

Our initial two tests compared the predicted relative binding energy
with systems having experimental affinities. As seen in Figures 2 and 3, PELE
is capable of distinguishing between resistant and sensitive sequences.
Moreover, it shows a good correlation to experimental affinities even for
sequences with a large number of mutations, improving existing theoretical
prediction tools. Next, we tested our protocol prediction capabilities in a blind
test with patient sequences for two well-known HIV-1 inhibitors, APV and
DRV. The results showed again noteworthy correlations between PELE’s
calculated changes in binding energy and the index obtained by HIVdb scores.
In all cases we could distinguish the sequences with strong resistance, having
predicted relative binding energies >5kcal/mol. This value is also consistently
being observed in the initial two tests. The method showed problems to
discriminate between mutants with moderate resistance, but this is the
segment where rule-based methods (used here as reference) are expected to
show the poorest performance.

The majority of resistance-related mutations are conservative
substitutions among residues Leul0, Val32, lle54, Val82, 11e84 and Leu90.
Our simulations indicated that these mutations do not introduce large changes
in the structure of the complex, but modify subtle van der Waals and
hydrogen bond interactions between the ligand and active site amino acids
(see Figure 5). Such resistance mechanisms are observed for other systems,
(Skélova, Dohnalek et al. 2006; Ali, Bandaranayake et al. 2010) and agree
with the fact that none of these mutations significantly disrupts enzyme
activity. However, even small, the subtle conformational changes induced by
mutations are important in defining accurate binding, making it necessary the
use of: i) specific homology models, ii) induce fit relaxation. The later point is
clearly shown by the fact that PELE’s scores after homology modeling (or
after only a short exploration of sampling) did not correlate with susceptibility
data (Table 1). The quality (and necessity) of the induced fit conformational
sampling obtained by PELE is also evident when predicting the interaction
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with a general scoring function. For this, we used Glide XP from Schrodinger
(Halgren, Murphy et al. 2004). Figure 7 shows relative Glide scores before
and after the induced fit for the 21 clinical sequences in APV (plus NL4-3 and
HXB2). Each score is the average of 50 structures obtained after clustering
PELE’s trajectories. Clearly the correlation with HIVdb scores significantly
improves after conformational sampling with PELE. While the final Glide
scores still have low correlation, 0.33, they can identify most of the high
resistance sequences. Remarkably, the correlation increases to 0.80 when
using PELE’s all-atom binding energy (as score), revealing the importance of
an explicit treatment of all-atom interactions (Borrelli, Cossins et al. 2010).
Notice also that the clustering procedure only reduces the overall PELE’s
correlation from 0.82 to 0.80.

Table 1. Evolution of the coefficient of determination between PELE’s
interaction energies and HIVVdb values along the conformational sampling for
the 21 APV patient sequences.

First-score

Step-50

Step-100

Step-200

Step-300

Total

0.43

0.64

0.72

0.75

0.81

0.82
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Figure 7. Comparison between PELE and Glide (initial and final) correlation
scores, against HIVVdb values, for the 21 APV patient sequences (using 50
representative structures after clustering).

Conclusions

Overall, this study shows how computational techniques are capable of
quantitatively discriminating resistance variants of HIV-1 protease. Our
protocol, combining sequence alignment to current pdb structures and state of
the art protein-ligand induced fit sampling algorithms, shows great promise as
an automatic tool for a quick prediction. The entire protocol can be run in less
than 24 hours in a small commodity workstation, and is based on biophysical
first principles. Moreover, it is able to trace the effect of novel mutations and
the binding of new drugs. In summary, modeling drug-target interactions
holds the potential to provide less biased and more accurate assessments of
antiretroviral drug resistance, which could improve clinical management of
HIV-infected subjects.
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Abstract

Steroid hormone receptor drugs have been available for more than half
a century, but the ligand binding mechanism has remained elusive. We solved
X-ray structures of both the glucocorticoid and mineralocorticoid receptors to
identify a conserved plasticity at the interface of helices 3,7 and 11 extending
the ligand binding pocket towards the receptor surface. Since none of the
endogenous ligands exploit this region, we hypothesized that it constitutes an
integral part of the binding event. Extensive all atom unbiased ligand exit and
entrance simulations together with structural principal component analysis,
corroborate a ligand entry trajectory that gives the observed structural
plasticity a key functional role. Our findings reveal why evolution has
conserved the capacity to open up this region and provide a new aspect to the
selection pressure that has formed this receptor family.

Introduction

Biological functions originate from, and are maintained by, a
combination of genomic drift and selection. The traditional method to derive
evolutionary relationships is to compare primary sequences, tertiary
structures, and protein function. However, while changes in the amino acid
sequence and placement of key residues provide useful insights into lineage,
this only provides the basic framework for mechanistic detail. A more
complete functional understanding requires protein plasticity to be considered.
Moreover, comparing protein flexibility of related systems adds an important
dimension when exploring evolutionary trajectories (13. NSMB 2013).
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The steroid receptor family consist of five closely related receptors: the
mineralocorticoid receptor (MR), the glucocorticoid receptor (GR), the
androgen receptor (AR), the progesterone receptor (PR), and the estrogen
receptors (ERa and ERP) (Fig. 1a). They all bind cholesterol derivatives and
play a critical role in fundamental biological processes, ranging from
pregnancy, early development, to the stress response, and electrolyte
homeostasis (1. Evans 1988, 2. Mange 1995). Continual pharmaceutical
efforts have resulted in several efficacious drugs, such as prednisolone
(GR)(3. Cole 2006), eplerenone (MR) (4. Gravez 2013), bicalutamide (AR)
(5. Shelley 2008), drospirenone (PR) (6. Sitruk 2010), and tamoxifen (ER)(53.
Br. J. Ph. 2013). However, target class-related side-effects limit the
prescription of these drugs in many indications and the scope for further
improvement is considered to be high (14. Burris 2013, 15. Bertocchio 2011).

The receptors share a common architecture with three separate
domains: the N-terminal domain (NTD), the DNA binding domain (DBD) and
the ligand binding domain (LBD). Besides recognizing the ligand
pharmacophore, the LBD also contains the activation function-2 (AF-2),
which is important for transmitting ligand binding information and partially
driving the co-regulator interaction fingerprint (28. Gronemeyer. 2004). In the
resting state, the receptors are associated with chaperone proteins in the
cytoplasm. Ligand activation leads to a partial release of chaperone proteins,
followed almost always by nuclear translocation. In the nucleus, the receptors
will dimerize and form ligand and context specific protein complexes,
resulting in activation and/or repression of gene transcription.

The increasing number of receptor-ligand X-ray structures has provided
valuable understanding of molecular drivers for the different pharmacological
responses. All steroid receptor LBD structures exhibit the typical 3-layered
alpha helical fold that fully encloses the various compounds in the ligand
binding pocket (LBP), Figure 1b (7.Bledsoe 2002, 8.Williams 1989,9.Fagart
2005,10.Matias 2000). Within the receptor, specific polar interactions are
important determinants of hormone specificity. The combination of polar
interactions with shape match between the compound and LBP provides the
basis for ligand potency and allosteric modulation of the auxiliary surfaces,
primarily AF-2 and the dimerization surface, directing the functional
response.
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When overlaying the steroid receptors, the largest structural difference
in proximity to the ligand is located in the region where helices 3, 7 and 11
meet (24. Li 2005). Figure 1c shows a detailed comparison of GR to its
paralog MR. An outward tilt of the helix 6—7 (H6-H7) interface in GR results
in an expanded ligand binding pocket, which was thought to reflect that the
most highly potent GR ligands, such as budesonide and fluticasone furoate,
contain a large 170 substituent (11. Li 2005). Despite the smaller pocket in
MR, several ligands with large 17a substituents on the steroidal D-ring, such
as desisobutyrylciclesonide (dibC, the active metabolite of the pro-drug
ciclesonide), are more potent in our MR binding assay than the endogenous
agonist aldosterone.

To build a detailed understanding around the plasticity of this region,
we determined the high-resolution X-ray structures of MR and GR in complex
with both dexamethasone (Dexa) and dibC (Fig. 1d). The structures revealed
that with a large 17a substituent, MR is fully capable of adopting an open
structural conformation. Why has nature preserved the capacity to open up
this region, even though it is not exploited by the endogenous ligands? We
propose that the observed plasticity is an integral part of the ligand entry
mechanism.
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Figure 1 Evolutionary relationship of the steroid receptors with
structural comparison of GR and MR LBD. (a) Evolutionary relationship
of the steroid hormone receptors (ER, MR, GR, PR and AR). (b) GR (yellow)
in complex with dexamethasone (magenta) overlaid on MR (lightblue) in
complex with dexamethasone (magenta). The AF-2 surface is located where
helices 3,4 and 12 meet. (c) Details near the region where helices 3, 7, and 11
meet. (d) The chemical structures of dexamethasone and dibC. The steroidal
A, B, C and D rings and positions 3 and 17 are marked on the dexamethasone
structure.

To investigate this hypothesis we performed comprehensive all atom
simulations. Computer modeling has advanced considerably; specialized
hardware and software today can perform microsecond time-scale
simulations, overcoming previous sampling deficiencies (17. Dror 2013, 18.
Jensen 2012, 36. Shan 2014). Spontaneous ligand binding events have been
investigated in exposed active sites for kinases (19. Shan 2011), GPCRs (17.
Dror 2013) and proteases (20. Fabritiis 2011). Notably, PELE (Protein
Energy Landscape Exploration) (12. Borrelli 2005), a technological
development combining Monte Carlo algorithms with protein structure
prediction techniques, is capable of performing such studies rapidly for fully
occluded binding pockets (21. Madadkar-Sobhani 2013, 22. Takahashi 2014).

128



Publications

This offers a unique opportunity to explore unbiased ligand/protein dynamics
of complex systems that require larger structural rearrangements.

Results

A conserved plasticity

Dexamethasone was originally developed as a GR specific agonist (53.
Br.J Pharmacol 2013), but was later shown to be a functional MR antagonist
with low nanomolar affinity (54. FEBS Lett 1999). The X-ray structure of MR
in complex with dexamethasone (MR:Dexa) is similar to the corresponding
GR:Dexa structure (normalised RMSD of 0.37 A for 100 Co atoms).
However, examining in detail the region where helices 3, 7 and 11 meet
confirms that the 17a sub-pocket is considerably smaller in the MR structure
compared with the GR structure (Fig. 1c). This is reflected in the total volume
of the MR:Dexa LBP, which is approximately 393A° compared with 450A° in
the GR:Dexa structure. Supplementory Figure la shows the 2mFo-Dfc
electron density from the MR:Dexa LBP,

It has been proposed that structural differences in the loop between
Helices 6 and 7 are primarily due to replacement of Ser843“® by Pro637°%,
which alters the geometrical constraints of this region and allows the receptor
to adopt a more open conformation (24. Li 2005). However, despite the
limited size of the MR sub-pocket, dibC has higher affinity than aldosterone
in our scintillation proximity assay (Vangrevelinghe, Zimmermann et al.)
using tritiated aldosterone and MR LBD fusion protein (K; for dibC is 0.18
nM compared to 1.0 nM for aldosterone). To study the structural flexibility
associated with large 17a substituents, we determined the complex structures
of MR:dibC and GR:dibC.

The structure of MR:dibC superimposes well on the MR:Dexa structure
(normalised RMSD of 0.28 A for 100 Ca atoms). Moreover, in the LBP, dibC
is placed in a nearly identical position to dexamethasone with all polar
interactions conserved (Supplementary Fig. 1b). However, while these two
receptor conformations are closely related, dibC induces a large
rearrangement of the H6-H7 loop region, essentially extending the LBP
towards the receptor surface (Fig. 2a).
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Figure 2. Comparison of the complex structures of the MR:Dexa,
MR:dibC, GR:Dexa, and GR:dibC. (a) MR (light blue) in complex with
dexamethasone (magenta) overlaid on MR (dark blue) in complex with dibC
(white).(b) The cyclohexyl motif of dibC come into direct conflict with
residues from H7, enforcing a new structural state. (¢) MR (dark blue) in
complex with dibC (white) superimposed on GR (yellow) in complex with
dexamethasone (magenta). (d) GR (yellow) in complex with dexamethasone
(magenta) overlaid on GR (orange) in complex with dibC (white).

Specifically, side chains of Ser843“? Met845™® and Cys849™F in the
MR:Dexa complex occupy the same volume as the cyclohexyl motif of dibC,
forcing the receptor to adopt a new conformation (Fig. 2b). This leads
essentially to a repositioning of helix 6 and an extension of helix 7. While
Ser843""F was previously buried within the protein and engaged in a hydrogen
bond to the backbone nitrogen of Met845™F it is now exposed to the solvent,
forming the new start of helix7 (Fig. 2a).

The size of the 17a pocket in the MR:dibC complex increases
significantly (total LBP volume 539 A® and the superposition on the
GR:Dexa structure shows that this region now adopts a more closely related
structural state (Fig. 2c). However, it is interesting to note that GR in complex
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with dibC (Fig. 2d) expands the 17a pocket even further (total LBP volume
551 A%). While the plasticity in the H6-H7 loop region seems to be conserved
across these two receptors, the details of the ligand driven rearrangements are
clearly different.

To gain insights of how the flexibility in the H6-H7 region is conserved
across the steroid receptor family, we performed principle component analysis
(PCA) for all X-ray structures from the public domain (PDB) for each
receptor. This technique allows visualization of the variance between
structures as a set of normal modes. While the description of this variance will
be highly dependent on what regions of the LBP are exploited by the various
ligands, the mode describing H6-H7 motion is one of the dominant features
(Supplementary Fig. 2). However, for MR the H6-H7 motion is only
prominent if we include the MR:dibC structure from this work, emphasizing
that the MR:dibC structure describes a novel structural conformation.

Modeling non biased entry and exit pathways

To study the ligand exit and entry pathways, we performed two
different types of unbiased simulations. The first protocol explored ligand
escape routes using the MR and GR X-ray complex structures as the starting
position. In the second protocol, the ligand was randomly placed in the bulk
solvent and allowed to freely migrate along the protein surface. All
simulations were completed in the presence and absence of a co-factor peptide
at the AF-2 site (NCOAL1 residues 1430-1441 for MR and NCOA2 residues
741-753 for GR). In addition, both the wild-type protein sequences and the
specific mutants present in the X-ray structures were used.

Ligand dissociation

For all permutations of both MR and GR, we performed three separate
exit simulations. In all instances we observed only one exit trajectory
perforating the surface where helices 3, 7 and 11 meet. Figure 3a illustrates
the MR:Dexa exit pathway simulation with the array of dexamethasone
positions superimposed on the initial MR structure. Notably, ligand motion is
coupled with significant rearrangement of the protein backbone along the
migration pathway. In particular, the loop connecting helices 6-7 is clearly
shifted outwards to accommodate ligand release (Fig. 3b). Interestingly, the
simulated protein movements are reminiscent of the observed differences
between the MR:Dexa and MR:dibC structures shown in light and dark blue,
respectively. To better quantify the plasticity in the H6-H7 region, we
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calculated the root mean square fluctuations (RMSF) along the exit trajectory.
As seen in Figure 3c, the motion in this region is considerably larger than in
the rest of the protein.
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Figure 3. Ligand exit pathway for the MR:Dexa complex. (a). The ligand
center of mass is highlighted in blue beads, all oher atoms of the ligand being
shown in transparent spacefill. (b) Detail of the backbone rearrangement
along the exit pathway. The MR:Dexa and MR:dibC X-ray structures are
shown in light and dark blue, respectively, with dexamethasone in the LBP in
magenta. Three cartoon snhapshots from the exit simulations are shown in
green. (c) Residues RMSF fluctuations against the average structure along the
MR:Dexa exit pathway plotted for each residue. The dotted line denotes the
average RMSF across the LBD. Helices 6 and 7 are marked with green shade.

Supplementary Figures 3, 4 and 5 show the equivalent exit pathways
for the GR:Dexa, MR:dibC, and GR:dibC. Based on the complete set of
ligand dissociation simulations it is clear that both MR and GR have the same
ligand exit pathway. In addition, while ligand exit is associated with similar
protein motions, the fluctuations in the H6-H7 region are significantly larger
for MR than for GR. This is in agreement with the idea that GR would require
smaller rearrangements as the receptor is more open to begin with.
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Ligand association

To investigate ligand entry into MR and GR, we randomly placed
dexamethasone in the bulk solvent and released it to freely probe the protein
surface. For each receptor we performed five runs with 64 independent
trajectories over 48 hours. Each run yielded 1-2 trajectories where the ligand
entered the LBP. In all runs the ligand is free to move without any predefined
search direction.

Figure 4a shows the evolution of the distance between the ligand’s
center of mass and the binding site (obtained from the ligand’s center of mass
at its crystal bound structure) for one of the MR:Dexa runs. When studying
the distance progression in detail, it is clear that most of the trajectories
explore the receptor surface with some excursions into the bulk solvent.
However, the blue and red trajectories enter the LBP at steps ~50 and ~210,
respectively. Figure 4b shows the ligand center of mass along these
trajectories superimposed on the initial protein structure with the entry to the
LBP denoted by a surface representation. Supplementary Movie shows the
simulation of ligand entry into MR where dexamethasone was initially placed
in the bulk solvent.

While the entry along the blue trajectory is relatively fast, the red
trajectory demonstrates the non-biased nature of the simulation, probing a
large portion of the receptor surface before finding the entrance pathway. In
keeping with the ligand escape simulations for all runs in both systems,
trajectories entering the LBP pierce the protein surface at the H3-H7-H11
junction (the corresponding figure for a GR:Dexa run is shown in
Supplementary Fig. 6).

133



Publications

RMSD (A")

Number of steps

Figure 4. Unbiased simulation of dexamethasone entering MR. (a) Each
line represents the ligand’s RMSD (heavy atom) to the bound crystal ligand
for a different trajectory. Two of the trajectories represented by blue and red
lines enter the LBP at step 52 and 214, respectively.(b) The ligand center of
mass for the two trajectories that enter the LBP are shown as red and blue
spheres. The region where the ligands enter the LBP is emphasized as a
surface with two ligands shown in stick representation.

While the mutants used in the X-ray structures did not influence the
simulations significantly, removal of co-factor peptide at the AF-2 resulted in
larger fluctuations in both the helix 12 and the H3-H7-H11 junction along the
exit and entrance trajectories; the ligand migration pathway remained
unchanged. Supplementary Figure 7 shows in detail the larger amplitude
motion of helix 12 in absence of the co-regulator peptide.

Active site ligand refinement and binding free enerqy.

Once the entrance path to the MR LBP had been located, we refined the
free search with local enhanced sampling to obtain a precise pose for the best
binder. This procedure does not add any bias in the ligand search direction,
but it limits the sampling to the region around the entrance point (typically 10-
15 A). Figure 5a shows the interaction energy profile plotted against the
ligand (heavy atom) RMSD to the bound crystal structure for the MR:Dexa
refining process (400 trajectories). The lowest binding energies are derived
from poses located within 0.75 A RMSD of the X-ray ligand conformation.
The sampling places dexamethasone in the accurate orientation with the A-
ring 3-keto moiety pointing toward the Arg817™-GIn776™® pair from helices
5 and 3, and the D-ring hydroxyacetyl approaching the Asn770™" on the N-
terminal half of helix3 (Fig. 5b). Studying the protein-ligand interaction
energy plot in more detail (Fig. 5a), it is interesting to note that the surface
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exploration exhibit a local minima at about 12A from the LBP. In the crystal
structure of GR:Dexa and GR:dibC, this site is occupied by a steroid-like
CHAPS molecule that is part of the crystallization condition (Supplementary
Fig. 8). In addition, for MR a non-steroidal antagonist has been observed at
this position (27. Hasui .2011). It is tempting to speculate that it may
correspond to a peripheral binding site at the H3-H7-H11 junction and that the
energy barrier located at the 11-12A segment reflects the energy cost
associated with the surface crossing event.

Since sampling along the local refinement process is fast (each
trajectory running in 12-24 hours in a single core), it facilitates running
hundreds of trajectories. Based upon Markov State Model (MSM) analysis,
we used this data to calculate the absolute binding free energies for MR:Dexa
and MR:dibC (22. Takahashi . 2014). While absolute values might be slightly
shifted due to the absence of an exhaustive surface/bulk exploration, relative
values should be in reasonable agreement, because both ligands share entry
point and binding site. Figure 5¢ shows a 2D projection of the potential mean
field (PMF) obtained for MR:Dexa along the 400 refinement trajectories. The
red area corresponds to the bulk exploration whereas the global minimum,
shown in blue, corresponds to ligand positions near the crystallographic
structure, at 0.75 A heavy atom ligand RMSD as seen in Figure 5a.
Integration of the PMF volume at the active site gives a binding free energy of
-7.5 kcal/mol for dexamethasone and -9.3 kcal/mol for dibC. The difference in
binding free energy of 1.8 kcal/mol is in quantitative agreement with the
experimental difference of 2.09 kcal/mol (derived from the Ki values of 6.3
nM for dexamethasone and 0.18 nM for dibC).
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Figure 5. Refined ligand binding simulations and estimated binding free
energy (a) The protein-ligand interaction energy (kcal/mol) plotted against
the ligands (heavy atoms) RMSD to the bound crystal along the 400
refinement trajectories in MR:Dexa. (b) MR (blue) in complex with
dexamethasone (magneta) overlaid on the lowest interaction energy structure
after the refined exploration (Kempf, Marsh et al.). (c) X-Z 2D projection of
the PMF obtained in the MSM analysis for the same process.

The evolutionary view

The ligand entry and exit mechanism establishes a functional role for
helices 6 and 7 as a gatekeeper. As GR is constitutively open due to the
Ser843™R to Pro637°® substitution, one would expect evolution to leave a
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differential signature on the protein sequences. Provided that the residues are
not involved in any direct downstream protein-protein contacts and that the
influence of the potential peripheral binding site is minimal, we hypothesized
that the H6-H7 amino-acid sequence in GR should be less constrained,
because ligand entry does not require a significant rearrangement of this
region. In contrast, the other steroid receptors must be able to efficiently
switch between a more open and closed conformation. To explore this,
sequence clusters for each receptor were downloaded from the OrthoDB
database (64. Waterhouse 2013) by searching for the human gene and
selecting the vertebrate subset. The sequences for each receptor were then
aligned using ClustalX version 2.0 (65. Larkin 2007). Each position was then
assigned a variability score based upon the number of different amino acids at
that position across the various species (i.e. if one position is perfectly
conserved in all species it would get a score of 1). For each receptor the
average variability score of the H6-H7 region was then compared to the
average score of the LBD (Table 1).

GR MR PR AR ERa ERB
LBD 2.2 2.1 2.1 25 1.9 3.6
H6-H7 | 4.0 1.8 2.8 3.2 2.4 3.3

Table 1. Variability score across the steroid receptor family. The residues
included in calculating the average for the LBD are selected based on a
structural overlay of the receptor family. The H6-H7 region was defined as
the respective sequence corresponding to Glug37™R-Leu848™R, selected based
upon a structural overlay.

In this broad selection of receptor sequences from different species, it is
encouraging to see that GR has the highest variability score in the H6-H7
region relative the average across the receptor LBD. However, it is important
to note that the initial selection from the OrthoDB yields different number of
species sequences for the various receptors.

To be able to compare the variability across the receptors in better
detail, we then looked at the species overlap of GR with each of the other
receptors in turn. The species that were present for both receptors were
selected. However, sequences that exhibited less than 20% homology to the
human H6-H7 region were filtered away for each receptor, to remove all
dubious sequences from the comparison. Using this set a new variability score
was calculated. All receptor sequences were overlaid on the GR sequence
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using X-ray structures to define the equivalent positions. Finally we plotted
the variability score against the amino acid sequence for all receptor pairs
(Fig. 6). To reduce the noise in the graphs, we averaged the variability scores
for each position using a 5 amino acid sliding window.

Figure 6. Evolutionary conservation of the LBD for the steroid receptors.
The graphs show average normalized and smoothed (sliding window of 5 AA)
amino acid variability score for pairwise comparisons of AR, ERa, ER, MR,
PR (blue) vs GR (red) plotted against the GR amino acid sequence. High
variability scoresindicate less conservation. Helices 1-12 are demarked using
vertical bars (green: H6-7; blue: H10-11; gray: all others;).

Figure 6 confirms that important structural elements of the receptors are
relatively conserved. For example, the AF-2 surface (H12, H4 and the c-
terminal end of H3), which is directly involved in the protein-protein
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interaction transmitting the ligand activation signal, shows a consistently low
variability score for all receptors. However, H6-7 shows greater variability in
GR relative to all other receptors. This supports our hypothesis that this region
has a differential selection pressure across the family. Interestingly, GR also
has a segment of higher variability near the C-terminal end of H11. This
region sits directly across from the N-terminal end of H7 (Fig. 1c) and it is
conceivable that amino acid sequences of these regions may well co vary with
each other. Finally, GR appears to be more conserved than the other receptors
near the loop between H9 and H10. The functional rationale behind this
observation remains to be determined.

Discussion

The fundamental role and mechanism of action of steroid receptors
have been studied extensively over several decades, yet the details of the
ligand recognition and binding mechanisms have remained unclear.

A conserved structural plasticity

By comparing the structures of MR and GR in complex with
dexamethasone and dibC, we identified an intrinsic capacity to open up the
H6-H7 region. While the GR:Dexa structure adopts an open conformation
compared with the MR:Dexa complex, the MR:dibC structure is able to
extend the ligand binding pocket significantly and adopt a structural state akin
to the GR:Dexa arrangement. The GR:dibC complex shows that the local
flexibility can be pushed even further. The structural differences between GR
and MR have been attributed to the change from Ser843"® to Pro637°R (24.
Li 2005). Comparing the MR:Dexa structure with MR:dibC, Ser843"F is
shifted from an internal position in the ligand binding pocket to a position at
the protein surface at the tip of helix 7. Recent data suggests that
phosphorylation of this residue affects both ligand binding and receptor
translocation into the nucleus (29. Shibata 2013). The structural changes
observed here explain how the receptor may use the local plasticity to make
Ser843“® available for modification.

Studies of the ancestral corticoid receptor, AncCR, revealed that the
Ser106™™“R  (corresponding to Ser843“F) to Pro637°% switch was a
permissive mutation that facilitated a subsequent Leu111"® (corresponding
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to Leu848") to GIn642°R mutation (30. Bridgham Science 2006). This is an
example of conformational epistasis and has played an important role for the
evolution of the GR hormone selectivity (30. Bridgham Science 2006, 31.
Ortlund Science 2007). As both GR and MR demonstrate a similar capacity to
form the open conformation, it is likely that the AncCR also exhibited the
same flexibility. Hence, as GR evolved from AncCR, the Ser"™® to Pro637°%
mutation would primarily serve to select a subset of pre-existing structural
states, rather than creating a completely new arrangement. The importance of
conformational selection over induced fit has provided mechanistic insights
for several biological systems (32. Changeux Nature 2013); it is conceivable
that evolution through mutation operates in an analogous way.

The structure-activity relationship (SAR) of 17-a substituted PR, AR
and ER ligands (35. Andrieu 2015, 56. Nettles EMBO 2007) to the different
steroid receptors suggests that plasticity near the H3-H7-H11 interface is
conserved in the steroid receptor family. Indeed, the PCA using all structures
in the public domain, confirms that the ability to rearrange the H6-H7 region
is one of the most prominent features across the family. However, in the
bound state none of the endogenous ligands exploit this region. We propose
that the flexibility near the interface of H3-H7-H11 has been conserved
throughout evolution due to its essential role in the ligand binding event.

The ligand entry and exit pathways

We performed two sets of unbiased simulations exploring both ligand
binding and dissociation using the protein—ligand sampling code PELE (21.
Madadkar-Sobhani 2013). In all simulations, entry and exit trajectories pass
through the H3-H7-H11 junction. Protein conformational changes along these
trajectories reflect the rearrangements observed when comparing the closed
versus the open crystal structures of MR and GR. Specifically, the outward
bending motion of the H6-H7 region is qualitatively similar to the observed
perturbations caused by the large 17-a cyclohexyl substituent in the dibC
complex structures. These results indicate that large-amplitude protein
motions of helix 12, as suggested by apo and holo crystallographic nuclear
hormone receptors (37. Moras 1998, 38. Yen 2001, 39. Brzozowski 1997), are
not required for ligand entry. Instead, the conformation of the LBD is likely to
resemble the ligand bound agonistic conformations of the receptors during the
ligand entry step (25. Capelli 2013, 40. Batista 2013). We confirm that small
scale vibrations combined with a structural rearrangement of H6-H7 region
are enough to identify an energetically favorable pathway to allow the ligands
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to diffuse into the LBP. In contrast to other modeling studies using biased
protocols, we do not observe multiple ligand entry or exit pathways (25.
Capelli 2013, 41. Sonoda 2008, 42. Aci-Seche 2011). It is conceivable that
even though there is likely to be cross-talk between the different regions of
the receptors, physically separating the ligand entry plasticity from the
structural modulation of the AF-2 surface, would provide greater freedom to
create a more versatile genomic response.

With the modeling results in hand, we could ascribe a mechanistic role
to the H6-H7 plasticity. Further investigations of the ancestral receptors
revealed that the AncCR ligand selectivity profile could not be recovered with
direct reversal of key amino acids of GR to their ancestral states, because of
additional epistatic mutations of residues near H7. (33. Bridgham Nature
2009). This is in agreement with our hypothesis that since GR has a
constitutively open structure, it is probably more forgiving for mutations in
the H6-H7 area. Attempting to reverse evolution from GR to AncCR would
enforce more specific constraints on H6-H7 dynamics for functional ligand
entry, because the new protein must be able to efficiently switch in between
the open and the closed state. This is corroborated by our findings that the
mutational frequency of the GR H6-H7 region is significantly higher than for
the corresponding region in the other steroid receptors.

It is firmly established that steroid receptors depend on a number of
chaperone and co-chaperone proteins for correct folding capable of high-
affinity hormone binding (44. Grad 2007) . Although the ligand entry function
is likely to have evolved before the synergies with chaperone proteins, these
proteins will nevertheless limit the access to the receptors and thereby form
boundary conditions for any ligand entry hypothesis. Mutation and peptide
competition studies suggest that Hsp90 is interacting at the AF-2 surface (45
Ricketson 2007, 46. Fang 2006). In addition, co-chaperones have been
mapped to interact with regions surrounding the C-terminal end of H1 and the
N-terminal end of H3 (48. Caamafio 1998), and with the loop that connects
them (49. Cluning 2013). Taken together, these observations contradict the
idea that ligands would enter the LBP through a structural rearrangement of
H12 (37. Moras 1998, 38. Yen 2001, 39. Brzozowski 1997). In our studies,
the ligand entry trajectory was not affected by removal of co-regulator
peptide, which allowed H12 to move more freely. While none of the
suggested chaperone and co-chaperone interaction surfaces overlap with our
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binding trajectory, the proximity provides a good rationale for why chaperone
binding could directly facilitate ligand association.

The energy landscape

After the free ligand exploration of the MR and GR surfaces identified
a common passage from the solvent into the LBP, a local enhanced sampling
of the MR binding event allowed a detailed view of the binding energy
landscape associated with ligand entry. The simulations result in productive
binding with the lowest protein-ligand interaction energy having an RMSD of
~0.75 A from the X-ray complex (Fig. 5b). Careful analysis of the binding
energies along the entry trajectory revealed a local minima ~12 A away from
the LBP. This site overlaps with small molecule binding observations in both
MR and GR X-ray structures. While the peripheral binding site could be a
crystallization artifact, our simulations indicate a local minimum functioning
as a pre-docking site, increasing the local concentration of the ligands near the
access channel to the LBP. The exhaustive local sampling also facilitated
estimation of the relative binding free energies of dexamethasone and dibC to
MR. While we have only investigated a limited set of compounds, these
values show remarkable agreement with experimental values; accurate
prediction of relative binding free energies is a topic of great interest to the
pharmaceutical industry.

The tremendous growth in the number of available X-ray structures
from increasingly more advanced protein classes and complexes provides a
plethora of snapshots of molecular mechanism in action. However, to bridge
the gap to detailed mechanistic insights, and to establish evolutionary
relationships between different functions, orthogonal data from biochemical
experiments and in silico modeling are required. Based on information from
several X-ray structures, unbiased simulations and bioinformatic analysis, we
have uncovered the ligand binding mechanism into the occluded LBP of
steroid hormone receptors. While it is difficult to derive any mechanistic
details from primary protein sequences, the ligand binding mechanism
enabled us to focus in on the H6-H7 region and to discover that the
evolutionary pressures to maintain the ligand entry function had left a
differential fingerprint on the amino acid sequences for different species
across the steroid receptor family.Ligand binding to the steroid receptors
marks the first step in a chain of events that in the end triggers both broad
genomic and non-genomic mechanisms. Understanding the details of ligand
association and dissociation may facilitate the rational design of molecules
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that exploit the plasticity of the entry and exit processes to a greater extent.
This could yield ligands with different modes of action, such as antagonists
that block nuclear translocation or agonists with extended receptor occupancy
and a prolonged pharmacological response.

Methods

Protein expression and purification

GR:Dexa

The cDNA sequence encoding the human glucocorticoid receptor
ligand binding domain (NR3CL1; aa500-777, GR-LBD) with three introduced
mutations N517D, F602S, C638D and an N-terminal 6-histidine tag followed
by a thrombin cleavage site was cloned into a pFastBac-HTb vector (Life
Technologies). Recombinant baculovirus was generated using the Bac-to-Bac
expression system (Life Technologies) and High Five cells (Life
Technologies) were infected followed by suspension culture in Express Five
medium (Gibco) for 48h at 27°C, the last 24h in the presence of 10 uM
dexamethasone, after which cells were collected by centrifugation.

All protein purification steps were performed at 4°C. Cells were lysed
in buffer A (50 mM Tris pH 8.0, 25 mM DTT, 1% CHAPS, 50 uM
dexamethasone, 10% glycerol) supplemented with Complete EDTA-free
protease inhibitor cocktail (Roche) followed by affinity purification using Ni-
NTA beads (Qiagen). Protein was eluted in buffer A supplemented with 150
mM NaCl and 300 mM imidazole, and subjected to size exclusion
chromatography using a HiLoad 26/60 Superdex 200 gel filtration column
equilibrated in buffer A. Five-fold molar excess of a TIF2 peptide,
KENALLRYLLDK (Innovagen) was added, the N-terminal 6-histidine tag
was removed using thrombin-agarose (Sigma) and subsequently the free 6-
histidine tag was removed. The protein was thereafter passed over a Q
Sepharose fast-flow ion-exchange column (GE Healthcare) equilibrated in
buffer A and stored at —80 °C. Approximately 5.4 mg protein was obtained
from 10 L High Five cells.
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GR:dibC

A pFastBac (Invitrogen) construct encoding human GR-LBD (amino
acids 500-777) with the mutations N517D, V571M, F602S, C638D and an N-
terminal, thrombin cleavable 6-His tag was used to generate baculoviruses in
Sf9 cells (Invitrogen). GR-LBD encoding viruses were used to infect High
Five cells (Invitrogen) at a density of 2-3x10E6 cells/ml and a MOI of 3 in a
Wave Bioreactor at 27°C. 24 hours post-infection, dexamethasone was added
to a final concentration of 10 puM. The cells were harvested by centrifugation
48 hours post-infection, washed in PBS and stored at -80°C until lysis.

Cells were resuspended in lysis buffer (50 mM Tris-Cl pH 8.0, 10%
glycerol, 1% CHAPS, 2.5 mM DTT, Complete EDTA-free protease inhibitor
cocktail (Roche) and 50 uM dexamethasone) and lysed by 5x1 min passes in a
polytron homogeniser. The cell-lysate was clarified by centrifugation at 18500
g for 90 minutes and batch-bound to Ni-NTA Superflow (Qiagen) for 1.5
hours at 4°C. The IMAC resin was packed in a column, washed with wash
buffer (50 mM Tris pH8.0, 60 mM NaCl, 30 mM imidazole, 10% glycerol,
1% CHAPS, 2.5 mM DTT and 50 puM dexamethasone) and GR-LBD was step
eluted with elution buffer (50 mM Tris pH 8.0, 30 mM NaCl, 300 mM
imidazole, 10% glycerol, 1% CHAPS, 2.5 mM DTT and 50 uM
dexamethasone).

The eluate was loaded on a HiLoad 26/60 Superdex 200 size exclusion
column equilibrated in gel filtration buffer (50 mM Tris-Cl pH 8.0, 10%
glycerol, 1% CHAPS, 2.5 mM DTT and 50 uM dexamethasone). GR
containing fractions were pooled and a 3-fold excess of co-activator NR-box
peptide (KENALLRYLLDK, human NCoA2, residues 740-751) was added.
The His-tag was cleaved over night at 4° C with Thrombin-agarose (Sigma)
and removed by negative IMAC using Ni-NTA. The protein was finally
polished through Q Sepharose FF (GE Healthcare) equilibrated in gel
filtration buffer, flash-frozen in liquid nitrogen and stored at -80°C.

MR

Human MR-LBD (amino acids 735-984) with the mutations C808S,
C910S (and S810L in the case of dibC), an N-terminal, TEV cleavable 6-HN
tag and a C-terminal thrombin cleavable co-activator peptide
PQAQQKSLLQQLLTE (residues 1427-1441 of the Nuclear Receptor
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Coactivator 1 (NCoALl)) was codon optimized and cloned into pET24a(+).
Recombinant human MR-LBD was expressed in Escherichia coli BL21
StarTM (DE3) (Invitrogen) cells. Cells were grown in terrific broth (TB) at
37°C until OD600=0.5-1.0, chilled on ice for 30 minutes and 100 uM of
dexamethasone (Alfa Aesar) or dibC was added. Cells were shaken at 16°C
for 30 minutes before protein production was induced using 0.1 mM isopropyl
B-D-thiogalactopyranoside (IPTG) for an additional 24-48 hours.

After harvest, cells were resuspended in lysis buffer (30 mM Na-Hepes
pH 7.5, 150 mM NaCl, 20 mM imidazole, 100 mM arginine-Cl, 10% glycerol,
1% CHAPS, 1 mM TCEP) containing 20 uM of respective ligand, EDTA-free
Complete protease inhibitor cocktail (Roche) and 0.05 g/ml of CelLytic™
Express (C1990, SIGMA). Cells were lysed by rotation at room-temperature
for 15 minutes. The lysate was cleared by centrifugation at 48000 g for 20
minutes and loaded onto Ni-Sepharose FF (GE Healthcare) equilibrated in
lysis buffer. After washing, protein was step eluted by the addition of one
column volume (CV) of lysis buffer containing 0.5 M Arginine-Cl followed
by 5 CV of elution buffer (30 mM Na-Hepes, pH 7.5, 150 mM NaCl, 500 mM
imidazole, 500 mM arginine-Cl, 10% glycerol, 1% CHAPS, 1 mM TCEP, 20
UM of respective ligand). Size exclusion chromatography was performed on a
HiLoad Superdex 200 column (GE Healthcare) equilibrated in 20 mM Na-
Hepes pH 6.7, 150 mM NaCl, 0.5 M arginine-Cl, 10% glycerol, 0.1%
CHAPS, 1 mM TCEP and 2 pM dexamethasone or dibC.

Finally, MR-LBD co-expressed with dexamethasone was diluted 10x in
20 mM Tris-HCI pH 8.0, 10 mM CaCl,, 20 uM dexamethasone, cleaved with
TEV protease and Thrombin CleanCleave Kit (SIGMA), purified by reverse
IMAC on Ni-Sepharose FF and concentrated to 15 mg/ml. MR-LBD co-
expressed with dibC was diluted 15x in 10 mM Tris-HCI pH 8.5, 20 uM dibC,
1mM TCEP and concentrated to 7 mg/ml.

Crystallization

GR:Dexa

A tube with 1.0 mg of GR(500-777)N517D, F602S, C638D was thawed
and washed three times in the concentrator tube with 3.5 ml of 10 mM Tris
pH 8.5, 2.5 mM DTT, 45uM dexamethasone. A fivefold molar excess of co-
activator NR-box peptide (KENALLRYLLDKDD, human NCoA2, residues
740-753) was added and the complex was concentrated to 9 mg/ml.
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Crystals were grown at 4°C in hanging drops using 1 pl of protein and
1 pl of well solution (10% PEG8000, 10% ethylene glycol and 0.1 M Hepes
pH 7.5). Crystals were frozen in liquid nitrogen with 20% ethylene glycol as
cryo protectant prior to data collection.

GR:dibC

A tube with 5.0 mg’s of GR(500-777)N517D, V571M, F602S, C638D
was thawed and concentrated to about 1.5 ml. The protein was washed three
times in the concentrator tube with 10 ml of 10 mM Tris pH 8.5, 2.5 mM DTT
(buffer B) to remove excess of dexamethasone and thereafter diluted to a final
volume of 6 ml. dibC was added to a final concentration of 0.25 mM to boost
ligand exchange prior to dialysis. Dialysis was performed using two Slide-A-
Lyzer dialysis cassettes in a beaker containing buffer B and 60 pM of dibC.
Dialysis solution was exchanged after 20, 28 and 46 hours before harvesting
the sample. The protein was concentrated to 1 ml and buffer was exchanged to
fresh buffer B using a NAP10 column. A twofold molar excess of co-activator
NR-box peptide (KENALLRYLLDKDD, human NCoAz2, residues 740-753)
was added and the complex was concentrated to 9 mg/ml.

Crystals were grown at 4°C in hanging drops using 2 pl of protein and
1 pl of well solution (10% PEG8000, 20% ethylene glycol and 0.1 M Hepes
pH 7.5). Crystals appeared as rod like crystals after 1-2 days but continued to
grow for one to two weeks. Crystals were frozen in liquid nitrogen without
any cryo protectant prior to data collection.

MR:Dexa

Crystals of MR-LBD co-expressed and purified with dexamethasone
were grown by sitting drop vapor diffusion in 30% PEG4000, 0.1 M NaCl,
0.2 M Pipes pH 7.4. The crystals appeared after one day and grew to its full
size after three days.

Crystals were cryo-protected by transfer to a cryo solution of well
solution supplemented with 20% glycerol and flash frozen in liquid nitrogen
prior to data collection.
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MR:dibC

Crystals of MR-LBD co-expressed and purified with dibC were grown
by sitting drop vapor diffusion in 18% PEG4000, 0.14 M LiSO4, 85 mM Tris
pH 8.5, 15% glycerol. The crystals appeared after ten days and continued to
grow for several weeks. Crystals were flash frozen in liquid nitrogen prior to
data collection.

Data collection and Structure determination

The MR:Dexa data were collected using an Rigaku FRE rotating anode
(wavelength 1.54 A). The GR:Dexa data were collected at the 1D14:4 beam
line at the ESRF (wavelength 0.94 A). The MR:dibC and GR:dibC data were
collected at the D29 beam line et the ESRF (wavelength 0.98 A). All data
sets were collected from a single crystal at 100K. The MR data sets were
integrated with XDS (57. Kabsch 2010) and the GR data sets were integrated
with Mosflm (58. Leslie 2007). All data sets were merged with SCALA (59.
Evans, 2006) from the CCP4 suite (60. Collaborative Computational Project,
Number 4). The MR and GR structures were solved with PHASER (61.
McCoy 2007) using PDB entry 2AA2 and 1M2Z as starting models,
respectively. The structures were refined using the BUSTER (62. BUSTER)
and manual rebuilding using Coot (63. Emsley 2004). The GR:Dexa structure
had 1 (0.39%) Ramachandran outlier while the other structures did not have
any outliers. All figures were prepared using PyMOL (www.pymol.org).
Crystallographic coordinates and structure factor amplitudes have been
deposited into the protein data bank (MR:Dexa 4uda , MR:dibC 4udb ,
GR:Dexa 4udc , GR:dibC 4udd).

Mineralocorticoid receptor ligand competition binding assay

The human mineralocorticoid receptor ligand binding domain
(NR3C2; aa729-984) with an N-terminal maltose binding protein (MBP) tag
was expressed using the Bac-to-Bac expression system (Life Technologies).
High Five cells were co-infected with recombinant P23 co-chaperone
baculovirus followed by suspension culture in Express Five medium (Gibco)
for 48h at 27°C. Cells were lysed in lysis buffer (10 mM Tris-HCI pH 7.4, 0.5
mM EDTA, 25 mM DTT, 10% glycerol, 20 mM Na,MoO,, Complete
protease inhibitor (Roche)) followed by centrifugation and the supernatant
was stored at -80°C. Compound binding was assessed using a ligand
competition binding scintillation proximity assay (Vangrevelinghe,
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Zimmermann et al.). Compounds were incubated with MR-High Five cell
lysate (7ug/ml) and 5 nM *H-aldosterone (Perkin Elmer (NET419250UC) in
assay buffer (10 mM Tris-HCI, 0.5 mM EDTA, 20 mM Sodium molybdate
dehydrate, 10 % Glycerol, 0.1 mM DTT) for one hour before addition of 2.5
mg/ml anti-rabbit SPA PS beads (Perkin Elmer RPNQ0299) and 2 pg/ml
rabbit anti-MBP antibodies (Abcam ab9084) followed by incubation at room
temperature for 8 hours before detection of signal using a LeadSeeker
imaging system (GE Healthcare).

Sequence homology analysis

Sequence clusters for each receptor were downloaded from the
OrthoDB database (64. Waterhouse 2013) by searching for the human ENS
gene ID and selecting the vertebrate subset. For each receptor, the sequences
were filtered to remove sequences with a length two standard deviations
below the average or that contained more than 100 ‘X’ (unknown amino
acids). The sequences for each receptor were then aligned using ClustalX
version 2.0 (65. Larkin 2007), then further filtered to only keep sequences
with an intact H6-7 region (max 1 indel or ‘X’ and >= 20% homology to the
human H6-7 sequence). In order to remove bias stemming from the inclusion
of sequences from different species, subsets were generated where the same
species were included for pairs of GR with either of (AR, ERa, ERB, MR,
PR). The paired subsets were realigned and the resulting alignments were
analyzed and scored using custom perl scripts as follows; for each position in
the alignment, a conservation score was calculated by counting the number of
different types of amino acids (i.e. if an alignment position contained 5F, 3Y
and 9L, then the score is 3). Averages were calculated for the entire protein
and for specific subsets thereof, including DBD, LBD and the H6-7 loop
region using the coordinates from Table 1.

PELE simulations

Systems setup

Initial coordinates for GR and MR were obtained from the crystals
presented here. Three different models were prepared for studying the ligand
exit, entry and protein rearrangement: 1) the crystallographic GR (F602S and
C638D) and MR (C808S and C910S) mutants, 2) the wild type by reverting
the mutations with the maestro software, and 3) the wild type in absence of
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the peptide cofactor. All structures were preprocessed with the protein
preparation wizard available in the Schrddinger package (50. Madhavi 2013)
adding hydrogen atoms and optimizing the hydrogen bond network. Final
visual inspection ensured that the predicted states were coherent with the
system under study and maximized hydrogen bond formation.

PELE sampling

Long-timescale dynamics associated with the free ligand diffusion are
computationally feasible with PELE (12. Borrelli 2005. 51. Benjamin 2012).
PELE uses a combination of a Monte Carlo approach with protein structure
prediction methods. Three main steps define the algorithm: 1) protein
backbone and ligand perturbation, 2) specific side-chain sampling, and 3)
global minimization. Ligand perturbations involves a random rotation and
translation, while protein perturbations is based on the displacement of a-
carbon according to an anisotropic network model (ANM) (52. Bahar 1998).
The side-chain sampling step involves arranging all side chains adjacent to the
ligand within a predefined distance of 6 A of the ligand’s center of mass. The
last stage involves the minimization of a region including, at least, all residues
local to the atoms involved in the perturbation and side-chain steps. Finally,
the new structure is accepted or rejected based on a Metropolis test. The
program uses an OPLS (Optimized Potentials for Liquid Simulations) all-
atom force field with an implicit surface-generalized Born (SGB) continuum
solvent model.

Simulation protocols

Ligand exit. From the crystallographic prepared models, the exit
protocol included random ligand’s translations of 0.8 A and rotation of 0.2
radians. The backbone perturbation included the lowest 6 ANM modes with
maximum displacements of each alpha carbon up to 1A. The perturbed mode,
randomly selected, was updated every 6 Monte Carlo steps and included a
40% mixing of the remaining 5 modes. The ligands displacement was
randomly selected at each step. A spawning criteria of 4A was used: any
ligand whose center of mass is 4A behind the structure with the center of mass
farthest coordinates (with respect to the initial position), in any direction, will
abandon its position and continue the execution with the coordinates from the
leading (farthest) one. Thus, all processors search collectively, with no bias in
direction, for an effective escape path. Simulations were finished after the
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ligand’s solvent accessible area (SASA) was larger than 0.5, with typical
simulations times of 10-20 CPU hours.

Ligand entrance. After convenient preparation of the protein structure
an initial simulation was done to create a set of 20 independent initial ligand
where ligand’s coordinates occupy randomly distributed sites over the protein
surface. Having these structures as initial states, free search simulations were
performed with runs of 64 independent simulations for 48 CPU hours. Ligand
perturbation included equally probable translations of 3.0A/1.0A and rotation
of 0.25/0.05 radians. The backbone perturbation was the same as in the exit
procedure. Ligands displacement direction was randomly updated every 6
steps. Doing so, we guarantee that trajectories explore the entire surface.
Furthermore, keeping the perturbation direction for 6 steps is necessary to
observe entrance events in difficult cases (buried active sites). We should
emphasize that no predetermined search direction is taken and ligand
perturbations are completey random. Furthermore, in the entrance protocol all
processors search independently (no spawning criteria was used).
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Supplementary Material

Ligand recognition in steroid hormone receptors: from
conserved plasticity to binding mechanism

Karl Edman, Anders Hogner, Ali Hussein, Magnus K Bjursell, Anna
Aagaard, Stefan Backstrom, Cristian Bodin, Lisa Wissler, Tina Jellesmark-
Jensen, Anders Cavallin, Ulla Karlsson, Ewa Nilsson, Daniel Lecina, Ryoji

Takahashi, Christoph Grebner, Matti Lepistd & Victor Guallar

Supplementary Figure 1. Comparision of the complex structures of the
MR:Dexa and MR:dibC. (a) Stereo view of the 2mFo-dFc density map of
the MR:Dexa LBP. (b) The structure of MR (light blue) in complex with
dexamethasone (magenta) superimposed on the MR structure (dark blue) in
complex with dibC (white). The steroid template overlays nearly perfectly
(RMSD 0.28A) with all hydrophilic interactions conserved.
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Supplementary Figure 2. Principle component analysis for all X-ray
structures of the steroid hormone receptors (AR, ER, GR, PR, and MR)
in the public domain (PDB). Graphs showing the amplitude of the top six
modes from the PCA of the structures in the public domain for AR (a), ER
(b), GR (c), PR (d) and MR (e). The H6-H7 sequence is highlighted in green.
AR and MR exhibits the smallest variation in the H6-H7 region in the public
domain structures.
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Supplementary Figure 3. Ligand exit pathway for the GR:Dexa complex.
(a) The ligand center of mass is highlighted in blue beads all other atoms of
the ligand being shown in transparent spacefill. (b) Detail of the backbone
rearrangement along the exit pathway. The GR:Dexa and GR:dibC X-ray
structures are shown in light yellow and orange, respectively. Three snapshots
from the exit simulations are shown in green and a dexamethasone ligand
from the exit trajectory is shown in magenta. (¢) Residues RMSF fluctuations
against the average structure along the GR:Dexa exit pathway where helices 6
and 7 are marked with green shade.
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Supplementary Figure 4. Ligand exit pathway for the MR.dibC complex.
(a) The ligand center of mass is highlighted in gray beads, all other atoms of
the ligand being shown in transparent spacefill. (b) Detail of the backbone
rearrangement along the exit pathway. The MR:dibC X-ray structures is
shown in dark blue. Three snapshots from the exit simulations are shown in
green and a dibC ligand from the exit trajectory is shown in white. (c)
Residues RMSF fluctuations against the average structure along the MR.dibC
exit pathway where helices 6 and 7 are marked with green shade.
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Supplementary Figure 5. Ligand exit pathway for the GR:dibC complex.
(a) The ligand center of mass is highlighted in gray beads, all other atoms of
the ligand being shown in transparent spacefill. (b) Detail of the backbone
rearrangement along the exit pathway. The GR:dibC X-ray structures is
shown in orange. Three snapshots from the exit simulations are shown in
green and a dibC ligand from the exit trajectory is shown in white. (c)
Residues RMSF fluctuations against the average structure along the GR:dibC
exit pathway where helices 6 and 7 are marked with green shade.
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Supplementary Figure 6. Unbiased simulation of dexamethasone entering
GR. (a) Each line represents the ligand’s RMSD (heavy atom) to the bound
crystal ligand for the total 64 trajectories. One of the trajectories represented
by blue line enter the LBP at step ~330. (b) The ligand’s center of mass for
the one trajectory that enter the LBP are shown as blue spheres. The region
where the ligand enter the LBP is emphasized as a surface with the ligand
shown in stick representation.

Supplementary Figure 7. Detail of the Helix 12 rearrangement from free
simulation dexamethasone entering MR in presence and absence of the co-
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regulator peptide. The initial structure is shown in light blue and the
maximum movement of the helix 12 is shown in dark green (with peptide)
and light green (without peptide). The dexamethasone ligand in the LBP is
shown in magenta.
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Supplementary Figure 8. A peripheral binding site about 13A away from the
LBP is revealed in the crystal structure of GR (yellow) in complex with
dexamethasone (yellow). This site is occupied by a steroid-like CHAPS
molecule (white) that is part of the crystallization conditions.

163



Publications

Supplementary Table S2. Data collection and refinement statistics
(molecular replacement)

MR: dexa MR: dibC GR:dexa GR:dibC
Data
collection
Space group  P212121 P41212 P3221 P3221
Cell
dimensions
a,b,c(A) 73.00, 75.92, 84.66, 87.20,
81.40, 75.92, 84.66, 87.20,
45.23 117.00 105.91 102.89
a,b,g (°) 90.00, 90.00, 90.00, 90.00,
90.00, 90.00, 90.00 90.00, 90.00,
90.00 120.00 120.00
Resolution 40.7-2.03 48.79-2.36 31.81-2.50 40.14-1.80
(A) (2.17-2.03) (2.55-2.36) (2.67-2.50) (1.85-1.80)
Reym OF Rmerge  0.06(0.50)  0.13(1.30) 0.08(0.55)  0.08(1.05)
I /sl 13.10(2.30) 15.10(1.90) 8.80(1.60)  7.40(0.70)
Completeness 83.9(83.7)  100.0(100.0) 99.6(99.5)  99.9(100.0)
(%)
Redundancy  3.3(2.5) 12.6(11.7) 4.1(4.2) 3.5(3.6)
Refinement
Resolution 2.03 2.36 2.50 1.80
(A)
No. 15085 14672 15559 42339
reflections
Rwork / Riree 0.185/0.240 0.182/0.218 0.210/0.253 0.213/0.224
No. atoms
Protein 2080 2118 2133 2184
Ligand/ion 34 49 64 146
Water 101 60 83 250
B-factors (Ask  for
input)
Protein 30.14 53.25 49.72 33.25
Ligand/ion 22.12 44.16 34.51 23.55
Water 36.03 56.86 46.23 46.95
R.m.s.
deviations
Bond 0.010 0.010 0.010 0.010

lengths (A)
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Bond 1.01 1.04 1.12 1.06
angles (°)

*Number of xtals for each structure should be noted in footnote.
*Values in parentheses are for highest-resolution shell.

[AU: Equations defining various R-values are standard and hence are
no longer defined in the footnotes.]

[AU: Ramachandran statistics should be in Methods section at the end
of Refinement subsection.]

[AU: Wavelength of data collection, temperature and beamline should
all be in Methods section.]
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A complete understanding of complex formation between proteins and
ligands, a crucial matter for pharmacology and, more in general, in
biomedicine, requires a detailed knowledge of their static and dynamic atomic
interactions. The main objective of this thesis is to test recent developments in
conformational sampling techniques in providing such a dynamical view. We
aim at developing new protocols and methods for such a study. Moreover, we
want to show how its application can aid in addressing existing problems in
the biophysics of protein ligand interactions. We provide here a summary of
the main results and discussion along this work where we frame the different
publication in the overall objectives described above.

4.1 Validate our in-house technology PELE (Protein Energy
Landscape Exploration) on sampling protein-ligand
interactions and induce fit procedure.

In the introduction of this thesis we have underline the importance of
computational techniques in obtaining an atomic detailed and dynamical view
of molecular recognition, and, in particular, for protein-ligands interactions.
We further highlighted that computational approaches in the majority of the
cases are much cheaper and faster than in-vitro and in-vivo experiments; these
last methods having difficulties in obtaining atomic detailed information of
the binding mechanism. Moreover, we have stated how traditional docking
techniques might not be enough for describing the induced fit recognition, and
how molecular dynamics, who could describe it, introduce a significant
computational cost (computer time).

The initial studies along this thesis aimed at addressing the above
difficulties through a series of studies on clinically relevant targets. The PELE
algorithm was applied to these systems, which were suggested by our
experimental collaborators, to explore the capabilities of a quicker and
accurate sampling in protein structure and ligand induced fit docking.

Within the two publications presented in the section 3.1 and 3.2, we
used Glide docking scores before and after the PELE run (aimed at modeling
the induced fit procedure), to determine if advanced sampling algorithms
improve the description of the protein-ligand molecular recognition and
binding scores. For each system, involving six know receptors: mTOR, PDK-
1, PKC-alpha, MCL1, BCL-xl and BCL-2, we studied the binding of some
prodiginines, under investigation by the lab of Prof Ricardo Perez (University
of Barcelona), and of some control compounds. These controls involved both
positives: crystal structures or know binders, and negative controls: non-
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binders as shown by kinase assays. Our results clearly indicate the excellent
capabilities of our sampling method. By applying PELE, we could distinguish
in every case between binders and non-binders. More importantly, such a
distinction is not possible when using standard docking techniques; Glide
score after docking but before conformational sampling could not identify
binders. Moreover, the results show nice correlation between the amount of
the receptor rearrangement, computed as the alpha carbon RMSD along the
sampling, and the “need” for induced fit. For example, when a ligand is
docked into its crystal structure the induced fit procedure does not
significantly change the scores, and only introduces slight changes to the
protein—ligand structures in the active site.

Figure 1. Image of the two inhibitors used in this work.
Prodigiosin (A) and Obatoclax (B).

Table 1 summarizes the before and after PELE docking scores, together
with the active site RMSD along with the induced fit process, for all systems
and ligands which have been used for these two studies.

In the first study, we demonstrate that mTOR is a molecular target of
the two prodiginines studied: prodigiosin (PG) and obatoclax (OBX) (Figure
1). This computational study was aimed at finding the molecular targets after
noticing that these two drugs were capable of considerably reducing the
melanoma cells, a highly drug-resistant cancer model in cellular assays. In
addition, in vitro binding assays were performed for several kinases (as
control). As expected, for PDK1 and PKC-alpha (control systems) we
obtained very good docking scores, below -9, for their two crystallographic
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residues, LAA and LW4, see table 1. As mentioned before, when starting
from the crystal bound structure, no large RSMD along the induced fit is
observed. Thus, our (positive) controls indicated good binding scores with
low RMSD. Interestingly, the induced fit procedure increased the RMSD but
did not substantially improve the affinity for PDK-1 and PKC-a against PG;
this (negative) control experiments support the absence of inhibition in PDK1
and PKC observed in the kinase profiling. Regarding mTOR ligand docking,
the initial docking score of pp242, PG and OBX is about -7 to -8, similar to
the value measured for PG in our in silico control assays. For mTOR,
however, the induced fit procedure (the same used for PDK1 and PKC-alpha)
introduced significant changes. We observed a clear increase in binding
affinity along with a significant active site adjustment, the RMSD increases to
2.1 and 2.3 for PG and OBX, respectively. Thus, our simulation studies
support binging of PG to mTOR in a similar fashion of the pp242, a positive
control with 0.008 uM IC50 in the Presence of 10 uM ATP.

This study supported the in vivo cellular assays indicating the
capabilities of PG (and its derivatives) for use in some apoptotic targets.
Moreover our findings contributed to the understanding of the molecular
mechanisms of action of both molecules and provide data about their
structural properties that will allow the development of more-effective mTOR
inhibitors in the future (the paper has been cited 23 times since 2012, 5 of
which reported studies on novel inhibitors).

PDK-1 PKC-alpha mTOR MCL1 BCL-x| BCL-2

LAA| PG | LW4| PG |pp242| PG |OBX| PG |OBX| 6 | PG JOBX|ABT| PG |OBX| ABT

Initial

-9.2(-62]-120(-71| -79|-7.4|-85]|-43|-29| -6 | -7 | -34|-79] 63| -6 | -85
Score

'”Sdc‘:)crgd -10.1| -6.6[-11.5| -7.6] -0.7 |-10.1]-10.3| -86| -88| -87| -74| -83 |-139| -79]| -88 ] -96

RMSD | 1.1 ]1.77] 1.3 | 14| 17| 21|23] 3 4 | 74] 3 | -55] 14| 48| 45] 4

Table 1. Initial and after PELE (induced fit) scores obtained with Glide.

For the second study, we applied a similar protocol to the BCL-2
protein family against PG and OBX (Figure 1), together with two positive
control ligands: 6 and ABT. Since there are no crystal structures of this
protein family bound to PG, OBX or 6, we expected a significant RMSD
change and an improvement in the docking score along the induced fit
process. Clearly for all ligands we observed a large RMSD increase, ranging
from 3 to 7 and significant improvement in the scores. Interestingly, in
MCL1, similar scores (~ 9) are obtained for the control, ligand 6 with a 0.25
uM IC50, and for the two prodigionines studied, OBX and PG.
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For BCL-xL the initial crystal structure used to model the target has
already the control ligand ABT-737 bound to it. Thus, as expected, we
observe the lowest induced fit RMSD for this ligand, 1.4 A. Additionally, we
found good initial and (very good) final scores for ABT-737 a potent inhibitor
of BCL-xL from Abbott Laboratories with an 1C50 of 0.06 uM. In BCL-2 our
model was derived from a peptide (43B) bound crystallographic structure.
Accordingly, we observed again significant induced fit RMSD changes and
improvements in the scores. For ABT-737 we observe good initial scores and
the lower RMSD, possibly as a result of its large size and excellent BH3 helix
mimetic properties. Overall this second test confirmed the inhibition of this
family of targets by the prodiginin compounds in a similar fashion to other
high nanomolar/low micromolar inhibitors (not reaching, however, low
nanomolar activity).

These set of initial studies, using PELE as a conformational sampling
tool, represent a significant step towards improving the accuracy of modelled
protein ligand interactions and demonstrate the necessity of induced fit
docking. It showed how computational techniques are mature enough to
provide a good protein-ligand recognition mechanism (and binding scores) in
~24 hours of a modest workstation (16 cores) CPU usage.

4.2 Besides protocols and software validation, we aim to develop
specific application on biomedical and biotechnological
relevant systems. Thus, we aim at adding information for
contributing to the mechanistic knowledge of important
protein-ligand interactions.

One of the main objectives of this dissertation is to get a deeper
understanding of the biophysical mechanism behind protein-ligand
interactions. Moreover we aim at performing such study for
pharmacologically relevant systems. Besides the above mentioned studies on
apoptotic targets inhibition, we have performed additional mechanistic
contributions. Possibly, one of the most interesting and challenging (as well as
trendy) ones involved the free ligand diffusion coupled to active site search
and binding. Such type of studies allow for a full mechanistic exploration of
the protein ligand interaction in absence of information of the active site.

Such a free search has become quite popular since the first molecular
dynamics simulation performing such a non-biased sampling by the David
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Shaw research group. In their 2011 Journal of American Society paper: “How
does a drug molecule find its target binding site?” (already cited 160 times),
the authors perform 20 microsecond of non-biased MD where a ligand
explores a Src-kinase surface, finding the binding site and identifying the
lowest protein-ligand interaction energy as a pose within ~1A of the
crystallographic pose. Certainly, studies like this show the potential of
biophysical computer simulations in aiding drug design, providing a complete
mechanistic knowledge and identifying the correct protein-ligand complex.
However, these calculations still use a massive amount of computational time
that is not accessible to a normal lab.

Along the thesis, we have developed algorithms to perform such a
search with PELE. The same Src kinase study performed by the Shaw group,
for example, can be studied analogously with PELE in 24 hours of a modest
single processor 32-cores workstation (a commodity machine). Fruit of this
study, we have a ready-made script in our server (https://pele.bsc.es)
“Unconstrained Ligand Exploration and Binding Site Search” which is one of
the most popular ones. Some examples are also shown in
https://pele.bsc.es/pele.wt/examples.  Furthermore, @ PELE’s  sampling
capabilities allows for such a study in fully occluded (buried) active sites; all
MD explorations have been achieved in partially exposed binding sites. Here
we show how our technique can be used to scan the binding of
dexamethasone (DEX) and dibC to steroid receptors family and perform a
blind docking simulation.

In collaboration with AstraZeneca, we performed extensive all atoms
unbiased ligand exit and entrance simulations together with structural
principal component and bioinformatics analysis for an important
pharmacological target: the Nuclear Hormone Receptors (NHRs) family. This
study was combined with crystallography and ligand binding assays
(scintillation proximity assay) performed in Sweden at the AstraZeneca lab. In
this study, presented in section 3.6, ligands were randomly placed outside the
receptors and allowed to freely explore the protein surface. Figure 2 shows the
unbiased simulation of DEX exploring the mineralcorticoid receptor (MR),
where two of the 80 trajectories (running for 24 hours) clearly entered the
active site and adopted conformations within ~1A of the crystallographic
pose. We should emphasize that no knowledge of the crystal bound complex
is used along the simulation.
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Figure 2. Unbiased simulation of dexamethasone entering MR. (a)
Each line represents the ligand’s RMSD (heavy atom) to the bound crystal
ligand for a different trajectory. Two of the trajectories represented by blue
and red lines enter the ligand binding protein (LBP) domain at step 52 and
214, respectively. (b)The ligand center of mass for the two trajectories that
enter the LBP are shown using red and blue spheres. The region where the
ligands enter the LBP is emphasized as a surface with two ligands shown in
stick representation.

Remarkably, such quick performance by PELE allows to run
exhaustive sampling in an affordable computational time (using ~600
trajectories in this study), from which absolute binding free energies can be
derived by means of Markov State Model techniques. In this study we
performed such analysis introducing a 20 A constraint from the entrance
point, obtaining absolute binding energy differences in quantitative agreement
to the experimentally measured ones.

More importantly, such detailed mechanistic study indicated that the
large-amplitude protein motion of helix 12, as suggested by apo and holo
crystallographic nuclear hormone receptors, is not required for ligand entry.
Instead, we show that mid-scale vibrations combined with a structural
rearrangement of H6-H7 region are enough to identify an energetically
favorable pathway to allow the ligands to diffuse into the LBP. In summary,
using PELE we introduced a new structural and dynamic paradigm for ligand
binding in this important family of receptors. The discovery may influence
(work already being performed at AstraZeneca) future rational design of
inhibitors for hormone receptors that exploits this plasticity to generate
ligands with differential modes of action. Moreover, the procedure outlined in
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this study can be used to challenging problems where huge computational
resources are not accessible and a fast and cheap protein-ligand sampling is
needed.

4.3 Following the previous goal, we aim at the implementation of
the atomic detailed knowledge into the rational design of new
inhibitors, aiming to enhance specificity and binding strength.

Motivated by our success with validation studies (applied to several
systems for protein-ligand interaction and induce fit procedure) we attempted
to design a new inhibitor for a specific target. For doing so, we used the
system from our second study: Molecular interactions of prodiginines with the
BH3 domain of BCL-2 family members.

Once we had tested the protocol and gained enough information about
the protein-ligand structure of our target, we introduced chemical changes on
the drugs, working towards a rational design of new inhibitors for Mcl-1
enhancing specificity and binding strength. The strategy was (aimed at) an
iterative work between our group and the chemical lab of Dr. Roberto
Quesada, from university of Burgos, where different rounds of theoretical
prediction and organic synthesis where produced. In this way we aimed
towards a highly active, but still easy to synthetize compound. We introduced
a novel and in-silico more potent inhibitor of Mcl-1 protein, as compared to
Obatoclax (an already known good binder of Bcl-2 family particularly Mcl-1
protein) (Figure 3). As of July 2014, two compounds were produced in silico,
but only having about 60% of the original design (due to synthetic limitations
and lack of students in the Burgos lab). This compound has been tested in the
lab of Professor Ricardo Perez (UB) showing high micromolar binding.
Certainly much more resources will be needed to reach the pure compound
predicted in silico; due to lack of man-power this objective is, at the present
time, in a dead point. Nevertheless, this limited result indicates the potential
of this techniques opening new directions in selective drug design (two
different projects of drug design are currently running in the lab.)
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Figure 3. Image of the designed inhibitor for MCL-1 protein.

4.4  An added value of (accurately) describing protein-ligand and
protein/substrate interactions at a dynamical level, is being
able to map possible changes in ligand/substrate affinities
derived from mutations. We aim to develop protocols in
PELE for the description of mutational effects in ligand
binding. We tested this part on one of the most well studied
systems with important mutational effects: HIV-1 protease.

Recently, due to its implications in drug design and enzyme
engineering there has been an increasing interest in applying molecular
dynamics techniques for mapping ligand diffusion (entrance and exit),
coupled to changes introduced by mutations in them (and in ligand affinities).
Within the two publications presented in sections 3.3 and 3.5 we present our
efforts in characterizing such mutational effects in ligand binding and
enzymatic activity.

In the first study, entering the world of biocatalyst, we present our
initial attempts to rationalize the role of single mutations into ligand delivery
and product release. In order to understand the atomic detailed mechanism of
substrate oxidation in T4AMO (a soluble four-component BMM that oxidizes

toluene with ~95% regiospecificity at the para position) as well as the
involvement of S395 in the catalytic rate enhancement, we modelled the
ligand migration pathways with all-atom computational techniques. T4MO is
of particular interest in industry given the high number of substrates that can
be oxidized along with the elevated specificity.

176



Summary of the results and discussion

The results indicate that two different tunnels cross T4MO’s alpha-
subunits in a nearly 90° disposition. As seen in the Figure 4, one channel
(hereafter known as channel 1 depicted in green) is a traverse of about 23 A to
the protein’s surface which provides the shortest path between the active site
and the solvent. The second observed route, for ligand migration, is a long
hydrophobic passage (channel 2 in red) with a length of 3035 A and exiting
close to S395. Channel 2 connects the diiron active site to the solvent, with an
overlapping section with channel 1 close to the binding pocket. Both
pathways are in good agreement with previous experimental data. Along these
pathways, residue F269 plays an important role as a gate keeper for substrate
diffusion. Due to its strategic position at the bifurcation point observed in the
modeled pathways, and in order to understand the possible influence of the
S395C mutation on ligand delivery, we performed the following in silico
mutations: S395C, F269V and F269W.

Channel 1

Channel 2

Figure 4. The two observed expulsion paths obtained with the PELE
simulations.

A total of 10 independent runs were produced for each mutant
simulation involving: i) ligand exit, where the ligand initially placed in the
active site is asked to leave the protein, and ii) ligand entrance, where ligands
placed at the solvent and in the vicinity of the exit point are asked to enter the
active site. Computational results show that mutations propagate changes to
the close-by helices altering the way ligands exit/enter the protein. In the case
of the tryptophan, and in contradiction to the larger size of the side chain, the
ligand enters more easily the active site, as a result of an increase in the
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migration pathway tunnel. This increase of the passageway between the
surface of the protein and the active site explains the increase in activity
observed in the F269W experiments. In the case of the F269V, we find that
very few exits are observed as a consequence of the collapse of the tunnel
derived from the smaller side chain (in agreement with the decrease
experimental activity). These results clearly show the ability of PELE’s
technique to connect biophysical response to mutational experiments.
Moreover, it represents a pure example of how the simulations might assists
in designing improved biocatalysts.

In our second study we performed induce fit docking studies in HIV-1
protease with several numbers of mutations in each of the two chains of this
enzyme. Predicting the effects of a mutation in HIV protease has been (and
continues to be) a central issue in inhibitor design. Once the virus develops
resistance to a drug, as a consequence of a mutation (not largely affecting the
protease activity), the patient are forced to change treatment; typical
treatments include a cocktail of inhibitors. Thus, it would be ideal to develop
methodologies to efficiently predict drug resistance levels, but also to
understand the resistance mechanism associated with mutations. Several
computational studies have attempted to design such prediction tools,
nevertheless still there is no significant success when the number of mutations
in each chain is large (on the order of >10).

Using PELE together with docking homology modelling, we developed
a methodology capable of tackling this problem. Besides checking the
prediction capability to a well-known series of mutants and ligands, test case
described in Koh et al.(Koh, Nakata et al. 2003), we were challenged by the
researchers of the IrsiCaixa AIDS institute to perform “blind resistance
predictions” in clinical samples. Thus, we had only access to the sequence but
not to the resistance score, which had representatives of three different ranges:
sensitive (<30), intermediate (between 30 and 60), and high-level resistance
(>60) based on the resistance scores calculated from expert assessments in
HIVdb. Importantly, each of these variants, taken from HIV-infected patients,
contained a large number of mutations in each monomer (15-25) when
compared to the reference NL4-3 (therefore, in some of the simulated systems
the protease bore as many as 50 mutations, representing an incredibly difficult
test).

We used the same sampling protocol for all mutants: i) search for the
crystal structure with the highest identity to the mutant sequence using
BLAST; ii) building our model by replacing each mutant using
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Maestro(Sastry, Adzhigirey et al. 2013) ; iii) initial docking of the ligand with
Glide; iv) PELE exploration of the induced fit response to the mutations (12
processors x 12 hours); v) computation of the binding energy change (upon
mutation) by averaging the interaction energies of all accepted minima
(approximately 2000 snapshots) and comparison with the reference (non-
resistance) sequence.

Figure 5 shows the results for amprenavir (APV) where we computed
PELE’s relative binding energies to the reference compound NL4-3.
Sensitive, intermediate and resistance HIVdb values for each sequence are
shown in green, yellow and red colors, respectively. Clearly our prediction
technique could identify all high resistant mutations (with a decrease in
binding affinity, turning into an increase of relative interaction energy >
5kcal/mol); similar accuracy was obtained for Darunavir. This outstanding
results indicate how computational techniques are today mature enough to
accurately predict the effect of multiple mutations in drug binding (drug
resistance). This prediction tool has been added to our public server,
https://pele.bsc.es.
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Figure 5. PELE’s relative change in APV binding energies (kcal/mol).
Sensitive, intermediate and resistance HIVVdb values for each sequence are
shown in green, yellow and red colors, respectively.
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4.5 Beside these main objectives based on methods application,
we aim to add methodological improvements derived from
the application and validation studies.

Along with the previous main objectives we performed method
development and studied PELE protocols to model long-time protein
dynamics by means of normal mode perturbation and constrained
minimization.

As we discussed in the introduction section, from the early papers it
was clear that PELE needed a better backbone and sampling procedure.
Therefore, we introduced a new protein perturbation step based on anisotropic
network model methodologies, capable of providing significant backbone
motion that was coupled to constraint minimization. Such new perturbation
protocol was examined by comparison to microsecond MD on ubiquitin and
to metadynamic sampling on T4Lysozyme (Cossins, Hosseini et al. 2012).

Figure 6 shows the comparison of the RMSD from the initial structure
for individual residues from the PELE and 3 explicitly solvated 1 us MD
simulations of ubiquitin, each of them using a different force field:
CHARMM, AMBER and OPLS-AA. While there are some quantitative
differences (among PELE and MD but also among different MD simulations)
there is an overall good qualitative agreement. The agreement was also
present when comparing clustering results and the atomistic forces. For
T4Lysozyme, PELE results indicate that we can quickly sample all regions
observed in the metadynamics study. Overall, our results indicate that PELE
was able to provide protein sampling using a reduced network model eigen
problem approach in a fast manner, showing a clear competitive
(computational time) advantage over molecular dynamics simulations.
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Figure 6. Mean residue displacement along the PELE and MD
trajectories
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Conclusion

1. The PELE method and its application to proteins and protein
complex simulation have been evaluated. The method was tested and
compared against available experimental data and designed control test. The
technique was used to discover and predict the possible active site and
protein-ligand interaction in several proteins, such as mTOR and BCL-2
proteins. Importantly, we demonstrate the critical role of sampling the protein-
ligand dynamics in order to improve the docking score. Moreover, the
findings reported here clearly shown the capabilities of PG (and its
derivatives) for use in particular apoptotic targets.

2. We demonstrated the applicability of the PELE method in solving
relevant biophysical problems. In particular, using PELE we introduced a
new structural and dynamic paradigm for ligand binding in steroid nuclear
receptors.

3. We have shown how PELE can be used in effectively design
improved compounds with significant better docking results. We have shown
that our designed small molecules bind to the BH3 binding site of MCL1.

4. The protein-ligand landscape exploration of PELE"s algorithm
allows for an efficient analysis of mutational effects on ligand delivery. Our
study on T4MO shows how such an analysis has great possibilities on enzyme
engineering. In particular, reside F269 on T4MO, located at the entrance of
binding pocket, has a significant role in substrate delivery.

5. We have developed a protocol that is potentially useful in
characterizing the effect of multiple mutations on drugs binding to the HIV-1
protease. Using this protocol we introduced a significant advance in
predicting the affinity of different drugs against HIV-1 protease with several
mutations. This application is fully automated and installed on PELE web
server.

6. New backbone perturbation combined with normal modes increased
the capability of PELE method to explore local dynamics and large
conformational changes.

Overall, the main message of this thesis is that an accurate dynamical view of
atomic detailed protein-ligand interaction is necessary... and possible
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