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ABSTRACT 

The Mediterranean diet (MD) is considered a dietary pattern with beneficial effects on 

human health. The aim of this study was to assess the effect of an MD on urinary 

metabolome by comparing subjects at 1 and 3 years of follow-up, after an MD 

supplemented with either extra-virgin olive oil (MD+EVOO) or nuts (MD+Nuts), to 

those on advice to follow a control low-fat diet (LFD). Ninety-eight non-diabetic 

volunteers were evaluated, using metabolomic approaches, corresponding to 

MD+EVOO (n=41), MD+Nuts (n=27) or LFD (n=30) groups. The 
1
H-NMR urinary 

profiles were examined at baseline, after 1 and 3 years of follow-up. Multivariate data 

analysis (OSC-PLS-DA and HCA) methods were used to identify the potential 

biomarker discriminating groups, exhibiting a urinary metabolome separation between 

MD groups against baseline and LFD. Results revealed that the most prominent 

hallmarks concerning MD groups were related to the metabolism of carbohydrates (3-

hydroxybutyrate, citrate, cis-aconitate), creatine, creatinine, amino acids (proline, N-

acetylglutamine, glycine, branched-chain amino acids and derived metabolites), 

lipids(oleic and suberic acids), and microbial co-metabolites (phenylacetylglutamine, p-

cresol). Otherwise, hippurate, trimethylamine-N-oxide, histidine and derivates 

(methylhistidines, carnosine, anserine) and xanthosine were predominant after LFD. 

The application of NMR-based metabolomics enabled the classification of individuals 

regarding their dietary pattern and highlights the potential of this approach for 

evaluating changes in the urinary metabolome at different time points of follow-up in 

response to specific dietary interventions.  
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INTRODUCTION 

Nowadays, the importance of a healthy diet is widely highlighted, along with the 

lifestyle needed to prevent several metabolic disorders and nutrition-linked illnesses 

such as obesity, diabetes and cardiovascular disease. Traditionally, studies centred on 

diet have focused on a single nutrient or dietary component in the evaluation of dietary 

intake (1, 2). However, the assessment of dietary patterns to elucidate the beneficial 

effects in complex disease processes is increasing. For instance, the Mediterranean diet 

(MD) is a dietary pattern that has recently shown beneficial effects on human health (3). 

This particular diet is based on the consumption of vegetables, fish, legumes, nuts and 

cereals. Other representative features are the consumption of olive oil as the main 

source of fat, moderate wine intake, relatively low amounts of meat (mainly poultry, 

instead of beef and pork) and low to moderate consumption of dairy products (4). 

Likewise, recently studies reported that MD supplemented with extra-virgin olive oil 

(EVOO) or nuts can reduce the incidence and prevalence of major cardiovascular events 

(3, 5-8). Moreover, frequency of nut consumption was recently shown to be inversely 

associated with the prevalence of obesity, metabolic syndrome and diabetes (9), and 

lower incidence of mortality (10) in subjects at high cardiovascular risk from the 

PREDIMED study. Similarly, extra-virgin olive oil consumption was recently reported 



3 
 

to be inversely related to cardiovascular disease mortality (11), and reduced the risk of 

atrial fibrillation (12).  

Metabolomics is an interesting tool for assessing the nutritional status of an individual, 

as well as for studying the biological consequences or metabolic mechanisms following 

a nutritional intervention (13-15). For instance, population-based studies have shown 

marked differences in metabolic profiles within and between populations that reflect 

dietary differences (16, 17). A number of metabolic profiling studies have been 

undertaken to assess the metabolic phenotype of humans due to their dietary pattern (18, 

19). Moreover, a metabolomic approach has been proposed to evaluate the intricate 

relationship between nutrition and health (20). 

In the present study, we aimed to assess the impact on urine metabolites of a long-term 

intervention with a complex diet in a cohort study population. Specifically, we 

evaluated the effect on the urine metabolome of a 1- and 3-year dietary intervention 

with an MD plus either EVOO or nuts as supplements in a sub-cohort from 

PREDIMED non-diabetic subjects using high-throughput screening 
1
H-NMR 

spectroscopy. To our knowledge, this is the first time that a long-term MD 

interventional study has been evaluated on the metabolic profile of individuals using a 

metabolomic approach. 

MATERIAL AND METHODS 

Study design and participants 

The PREDIMED study is a parallel-group, single-blind, multicentre, randomized, 

controlled, 5-year feeding trial assessing the effects of a Mediterranean diet (MD) 

supplemented either with EVOO (MD+EVOO) or mixed nuts (MD+Nuts) on the 

primary prevention of cardiovascular disease (CVD) compared to a low-fat diet (LFD). 

Details of the study protocol were published previously (21-23). The present sub-study 

is an analysis using 98 clinically evaluated non-diabetic subjects at high CVD risk, 

recruited from the Barcelona (IDIBAPS) and Valencia centres of the PREDIMED study 

(3) (ISRCTN 35739639). These participants had at least three cardiovascular risk 

factors (current smoking, hypertension, hypercholesterolemia, body mass index (BMI) 

≥25 kg/m
2
, or a family history of premature cardiovascular disease). Exclusion criteria 

were type 2 diabetes mellitus, cardiovascular disease, any severe chronic illness, drug or 

alcohol addiction, history of allergy, or intolerance to olive oil or nuts. Urine samples 

were obtained at baseline and after 1 and 3 years of the intervention period, along with 

other clinical and dietary data, collected according to the PREDIMED study protocols.  

Dietary intervention 

Participants allocated to the low-fat diet were advised to reduce all types of fat and were 

given written recommendations according to the American Heart Association 

guidelines. MD group participants received instructions directed at upscaling the 14-

item score measuring adherence to MD, including the use of EVOO for cooking and 

dressing; increased consumption of vegetables, nuts and fish products; consumption of 

white meat instead of red or processed meat; and following a moderate pattern of red 

wine consumption (Supporting Information, Table S1). Neither energy restriction nor 

physical activity promotion were suggested for any intervention group. MD group 

subjects were given free allotments of EVOO (1 L/week) or mixed nuts (30 g/day, as 15 
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g of walnuts, 7.5 g of hazelnuts and 7.5 g of almonds). All participants had free access 

to their dietitian throughout the study. The fatty acid and minor component composition 

of the EVOO and nuts employed in the study was published elsewhere (21). The local 

research ethics committee approved the study protocol, and all participants provided 

written informed consent.
 

Metabolomic analysis of urine samples 

1
-NMR Sample Preparation Data Acquisition and Processing 

A procedure based on previously published methodology was applied for the 

metabolomic analysis. Briefly, the initial volume of urine samples from the study 

participants was 300 µl diluted with 200 µl of H2O/D2O (8:2) and mixed with a buffer 

solution (24). The spectral data processed were intelligent, bucketed in domains of 

0.005 ppm and integrated using ACD/NMR Processor 12.0 software (Advanced 

Chemistry Development, Inc.). The spectral region between 4.75 and 5.00 ppm was 

excluded from the data set to avoid spectral interference from residual water. The 
1
H-

NMR experiment was processed with 128 scans with a spectral width of 14 ppm, an 

acquisition time of 3.2 s and a relaxation delay of 3 s. To exclude data points showing 

little variance across experimental conditions, data were interquartile range (IQR) 

filtered, row-wise normalized by sum to reduce systematic bias during sample 

collection and cube root transformed by a corresponding tool provided by 

MetaboAnalyst (25). 

Exploratory data analysis and orthogonal signal correction partial least squares 

discriminant analysis (OSC-PLS-DA) 

Data were imported to SIMCA-P+13.0 software (Umetrics, Umeå, Sweden) and Pareto-

scaled prior to being analysed. An exploratory data analysis, principal component 

analysis (PCA), which provides a summary overview of all observations in the data, 

was performed. After the initial overview of the data, the aim was to build a model that 

could be useful for classifying new samples, and at the same time could allow 

identification of biomarkers from the distinct groups (26). Then, the data set was 

preprocessed using orthogonal signal correction (OSC) filtration before PLS-DA 

analysis to reduce the variability not associated with the diet effect (27). The ability to 

classify each individual in the correct group was assessed by the proportion of the 

variance of the response variable that is explained by the model (R
2
Y) and the 

predictive ability parameter (Q
2
), which was calculated by a seven-round internal cross-

validation of the data using a default option of the SIMCA-P+ 13.0 software. The values 

of Q
2 

< 0 suggest a model with no predictive ability, and 0 < Q
2
 < 1 suggests some 

predictive character, with the reliability increasing as Q
2
 approaches 1 (28). Validation 

of the models and the evaluation of the degree of overfitting were then crucial to ensure 

that models were robust and not overfitted, as well as to exclude models that are just 

due to chance. For this purpose, a response permutation test (n = 200) was performed, 

and the correlation coefficient between the original Y and the permuted Y plotted 

against the cumulative R
2
 and Q

2
 was calculated. Generally, the R

2
- and Q

2
-intercept 

limits for a valid model should be less than 0.4 and 0.05, respectively (29). Despite this 

validation, the predictive ability of the OSC-PLS-DA models was also evaluated. In this 

context, the analysis with a training set (75% of the samples), removing 25% of the 

population (as validation set), was repeated four times, and the ability to classify each 
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individual in the correct group was also assessed each time (30). The percentage of 

correctly classified individuals for the validation set was further evaluated. Potential 

markers of interest were extracted from variable importance in projection (VIP) scores 

that were constructed from the OSC-PLS-DA analysis, and markers were chosen based 

on their contribution to the variation and correlation within the data set. VIP value is 

defined as the influence that each variable has in the PLS-DA model. Thus, the higher 

the VIP value, the more relevant is the variable in the model. Variables with a VIP value 

>1.5 were considered important in discriminating between groups (31) and were 

selected as the most relevant to explain the differences in metabolic profile. While a 

VIP >1 threshold is generally accepted (32-34), the cut-off applied in this study is more 

restrictive, reducing the possibility of obtaining false positive results. 

Two-way hierarchical clustering analysis (two-way HCA)  

The data set composed of the important signals (VIP>1.5) obtained from the OSC-PLS-

DA model was submitted to two-way HCA using PermutMatrix version 1.9.3 (35). 

PermutMatrix is a freely available program 

(http://www.lirmm.fr/∼caraux/PermutMatrix/EN/index.html). Two-way clustering 

means that the NMR signals (rows) and urine samples/individuals (columns) are 

clustered simultaneously to obtain groups of samples (individuals) and NMR signals 

that behave as similarly as possible (36). Groups of individuals with similar patterns are 

adjacent in this tree (37). Two-way HCA was carried out using Euclidean distance, and 

aggregation of the observations was performed using Ward’s method. A heat map of the 

peak intensities of the metabolites and samples of the individuals was obtained to 

visualize and characterize urinary metabolome constructed based on the potential 

candidates of importance. 

Statistical analysis of covariance (ANCOVA)  

Before submitting the data to ANCOVA analysis, the normality of continuous variables 

derived from the VIP scores was assessed by the Kolmogorov-Smirnov test. Then, 

statistical analysis was used to evaluate differences among the three intervention groups 

and the time periods during the study. Changes among interventions were analysed by 

ANCOVA (covariance test) with a subsequent Bonferroni post hoc test. Potential 

confounding was controlled by baseline values. After 1 and 3 years, changes for each 

treatment were assessed using a t-test. Pearson correlation was also applied for 

significant metabolites and FFQ data in order to find significant correlations between 

metabolites and food records (r>0.3, p<0.05). The SPSS 20 statistical package (SPSS, 

Chicago, IL, USA) was used for the analysis. Differences were considered significant at 

p<0.05.  

Metabolite identification and interpretation 

Significant metabolites were tentatively identified using the Chenomx NMR Suite 7.6 

profiler software (Chenomx Inc. Edmonton, Canada), by comparing NMR spectral data 

to those available in databases such as the Human Metabolome Database (HMDB), the 

Biological Magnetic Resonance Data Bank (BMRB) and the Madison Metabolomics 

Consortium Database (MMCD), along with the existing NMR-based metabolomics 

literature. Secondly, features were correlated using Pearson’s correlation coefficient (r ≥ 

0.7 as cut-off, p<0.001) to identify clusters of features that were likely related. Finally, 
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the biological interpretation was carried out using information from the HMDB and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, and the published 

research reports. 

RESULTS  

The current study was assessed with 98 non-diabetic men and women, aged 53 to 79 

years. A flow chart of the participants allocated in the present study (Figure S1) and 

descriptive data of the initially eligible individuals (Table S2) are presented in the 

Supplementary Material. 

Metabolomic differences between baseline, 1 and 3 years of follow-up  

Orthogonal signal correction-PLS-DA (OSC-PLS-DA) analysis  

The initial overview of the 
1
H-NMR urine data by PCA analysis showed substantial 

separation of signals from the data corresponding to acetaminophen and derived 

metabolites (Supporting Information Figure S2). To allow differentiation of spectra 

without the overriding influence of the strong acetaminophen peaks, these signals from 

the NMR data were removed before performing further metabolomic analysis (38). 

Then, the OSC-PLS-DA analysis resulted in a model with R
2
Y=0.75 and Q

2
= 0.58. The 

permutation test displayed an R
2
 intercept of 0.28 and a Q

2
 intercept of -0.28. To further 

assess the modelling quality process, a training subset of the individuals was taken 

(75% of participants) and a validation subset (25%) was used to test the model. This 

analysis was repeated four times, with each sample appearing once in the validation set. 

The mean value of R
2
Y from this analysis was 0.75 and the mean Q

2
(cum) was 0.54. 

The mean percentage of correctly classified individuals performed in the validation set 

was 96.94%. The validation set fitted reasonably, confirming the validation of the 

model (Supporting Information, Table S3).VIP values, which indicate the contribution 

of metabolites to the classification of samples, were calculated for each variable in the 

OSC-PLS-DA model. Discriminant individuals of MD vs. LFD and baseline groups 

were observed on the score plot graphic (Supporting Information, Figure S3).  

Identification of features from the multivariate analysis  

The selected features (VIP>1.5) for the partial least squares discriminant analysis were 

tentatively identified using the procedure explained above. The information concerning 

the tentative identification, chemical shifts and multiplicity of each metabolite is 

provided in Table 1. 

(VIP>1.5) of NMR signal intensities in urine. For the direction of change in ANCOVA 

analysis, (↑) indicates a relatively higher metabolite urinary excretion; (↓) indicates a relatively 

lower excretion. A dash indicates no statistical significance in ANCOVA analysis (p <0.05). 
* 

Statistical significance from the baseline (t-test, p<0.05). 
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Metabolite ID 
δ 

(multiplicity) 

1-year ANCOVA (p) 
3-year 

ANCOVA (p) 

E vs. L 

 

N vs. L 

 

E vs. N 

 

E vs. L 

 

N vs. L E vs. N 

MD associated metabolites       

3-HB 1.20 (d) ↑
*
 ↑

*
 - ↑

* 
↑

*
 - 

Leucine 0.93 (d) ↑
* 

↑
*
 - ↑

*
 ↑

*
 - 

Isobutyric 

acid
1,2

 

1.06 (d) ↑
*
 ↑

*
 - ↑

*
 ↑

*
 - 

2-oxoisovaleric
3,7

 1.14 (d) - - - ↑
*
 - - 

4-DTEA
4
 1.22 (d) ↑

*
 ↑

*
 - ↑

*
 ↑

*
 - 

N-Ac
5,9

 2.06 (s) ↑
*
 - - ↑

*
 - - 

Glycine 3.57 (s) - - - ↑ ↑ - 

p-cresol
2
 2.34 (s) 

7.22 (d) 

7.27 (d) 

↑
*
 - - - ↑

*
 ↓

*
 

Suberic acid 1.29 (m) 

1.60 (t) 

↑
* 

↑
*
 - ↑

*
 ↑

*
 ↓

*
 

Oleic acid  1.33 (m) 

1.63 (m) 

1.80 (m) 

2.00 (m) 

↑
*
 ↑

*
 - ↑

*
 ↑

*
 - 

Proline 1.95 (m) 

2.06 (m) 

3.38dt 

4.12dd 

↑
*
 ↑

*
 - ↑

*
 ↑

*
 - 

U3.46
 3.46 (s) ↑

*
 ↑ - ↑

*
 ↑

*
 - 

U3.33 3.33 (m) - - - - - - 

U3.50 3.50 (s) - - - ↑
*
 ↑

*
 - 

U3.81 3.81(s) - ↑ - ↑
*
 ↑

*
 - 

Metabolite ID δ(multiplicity) 1-year ANCOVA (p) 3-year ANCOVA (p) 

MD+Nuts associated metabolites N vs. E 

 

N vs. L 

 

E vs. L 

 

N vs. E 

 

N vs. L 

 

E vs. L 

 

PAGN
8 1.93 (m) 

2.25 (t) 

3.67 (m) 

4.18 (m) 

7.36
**

 

7.42 (t) 

↑
*
 ↑

*
 ↑

*
 - ↑

*
 ↑

* 

N-AGN 2.08 (m)
 
 

2.26 (m)
 
 

4.18 (m) 

↑
*
 ↑

*
 ↑

*
 ↑ ↑

*
 ↑

*
 

Creatine 3.04 (s) 

3.93 (s) 

- - - ↑
*
 ↑

*
 - 

U5.02 5.02 (t) ↓
*
 ↓

*
 - - - - 

U5.15 5.15 (t) ↓
*
 ↓

*
 - - ↑

*
 ↑

*
 

U6.76 6.76 (m) - ↑* - ↑* ↑ - 

Metabolite ID δ(multiplicity) 1-year ANCOVA (p) 3-year ANCOVA (p) 
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MD+EVOO associated 

metabolites 

E vs. N 

 

E vs. L 

 

N vs. L 

 

E vs. N 

 

E vs. L 

 

N vs. L 

 

Creatinine  3.05 (s) 

4.06 (s) 

↑ ↑ - ↑* ↑* - 

Citrate 2.55 (dd) 

2.69 (dd) 

↑* ↑* - - ↑* - 

cis-aconitate 5.74 (s) 

3.12 (s) 

↑* - ↑
*
 - - - 

U7.50 7.50 (d) ↓* ↓* - - - - 
U8.49 8.49 (s) - ↓ - - ↓* - 
Metabolite ID δ(multiplicity) 1-year ANCOVA (p) 3-year ANCOVA (p) 

LFD associated metabolites L vs. E 

 

L vs. N 

 

E vs. N 

 

L vs. E 

 

L vs. N 

 

E vs. N 

Hippurate 3.97 (d) 

7.54 (t) 

7.64 (t) 

7.83 (d) 

8.54 (bb) 

↑
*
 ↑

*
 - ↑

*
 ↑

*
 ↓

*
 

TMAO 3.28 (s) - - ↓ ↑
*
 - ↓

*
 

Anserine 3.78 (s) 

8.28 (s) 

↑
*
 ↑ - ↓

* - - 

Histidine
7 7.08 (s) 

7.93 (s) 

↑
*
 ↑

*
 - - - - 

3-MH
7 7.05 (s) 

7.95(s) 

↑
*
 - ↓

*
 -

 
- - 

1-MH
7
 7.73 (s) 

7.01 (s) 

-  ↑ ↓ - - - 

Carnosine 8.11 (s) 

7.18 (s)
 

- ↑ - ↑
*
 - - 

Proline betaine
6
 3.11 (s)  

3.30 (s) 

- - - ↑
*
 ↑

*
 ↑

*
 

Xanthosine 5.87 (d) - ↑
*
 ↑

* 
↑

*
 - - 

Footnotes: 3-HB: 3-hydroxybutyrate; 4-DTEA: 4-deoxythreonic acid; bb: broad band; d: doublet; E: 

MD+EVOO; L: LFD; N: MD+Nuts; N-Ac: N-acetylglycoproteins; N-AGN: N-acetylglutamine; L: LFD; 

bb: broad band; d: doublet; m: multiplet; MH: methylhistidine; N-Ac: N-acetylglycoproteins; PAGN: 

phenylacetylglutamine; s: singlet; t: triplet; TMAO: trimethylamine-N-oxide; U: unassigned signals. 

**signal excluded from the analysis because it overlapped with a signal of acetaminophen. Identifications 

agree with 
1
(76), 

2
(71), 

3
(77), 

4
(78), 

5
(79, 80), 

6
(63), 

7
(81), 

8
(16), 

9
(82), HMDB and Chenomx NMR Suite 

software. 

 

Two-way hierarchical cluster analysis (HCA) and heat map visualization 

For HCA, the samples were classified into two main groups corresponding with MD 

diets against baseline and LFD samples. Subsequently, these clusters were divided into 

two cluster levels: on the one hand, clusters A and B, and on the other hand, clusters C 

and D (Figure 1). Cluster A was predominantly formed by baseline individuals. Cluster 

B exhibited LFD individuals (1- and 3-year follow-up). The other two clusters 

corresponded to MD groups: cluster C was the MD+EVOO (1- and -3 year follow-up) 

and cluster D was the MD+Nuts (1- and 3-year follow-up) group. The classification 
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table of the individuals in the corresponding cluster for the HCA is shown in Supporting 

Information (Table S4). 

 

Figure 1. Two-way hierarchical clustering analysis (processed with PermutMatrix 

according to the Euclidean distance and Ward’s aggregation method). Heat map 

representation of the clustered data matrix in which each coloured cell represents the 

intensity of appropriate NMR signals, according to the colour scale at the bottom of the 

figure. Rows: NMR signals (253, VIP>1.5). Columns: urine samples baseline and LFD 

(1y+3y); MD+EVOO (1y+3y), MD+Nuts (1y+3y). 

 

 

 

Footnote: Cluster A: including predominantly baseline individuals; cluster B: including predominantly 

low-fat-diet individuals; Cluster C: including predominantly Mediterranean diet supplemented with extra-

virgin olive oil group of individuals; Cluster D: predominantly Mediterranean diet supplemented with 

nuts group of individuals; U: unidentified compound; N-ac: N-acetylglycoproteins; 4-DTEA: 4-

deoxythreonic acid; 3-HB: 3-hydroxybutyrate; NAG: N-acetylglutamine; PAGN: phenylacetylglutamine; 

TMAO: trimethylamine-N-oxide; 1MH: 1-methylhistidine; 3-MH: 3-methylhistidine. 
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ANCOVA and t-test analysis to assess urinary metabolomic differences  

After the identification procedure, metabolites were submitted to statistical analysis 

comparing their urinary excretion between interventions (using ANCOVA analysis) and 

between time periods (using t-test analysis). The significant metabolites were divided 

according to their excretion into: MD-associated metabolites (observed in both MD 

groups), MD+Nuts-associated metabolites, MD+EVOO-associated metabolites and 

LFD-associated metabolites (Table 1). The MD-associated metabolites group  

concerned ketone bodies such as 3-hydroxybutyrate (3-HB), amino acids such as 

proline, glycine, the branched-chain amino acid (BCAA) leucine and its derived 

metabolites (isobutyric acid, 2-oxoisovaleric acid), the threonine metabolite 4-

deoxythreonic acid (4-DTEA), the N-acetyl groups of glycoproteins (N–Ac), gut 

microbiota co-metabolite p-cresol, and also the fatty acid (oleic acid) and its breakdown 

product (suberic acid), along with the unidentified metabolites U3.46, U3.50 and U3.81. 

The MD+Nuts-associated metabolites compress metabolites of the amino acid 

glutamine (phenylacetylglutamine [PAGN] and n-acetylglutamine [N-AGN]), creatine 

and four unknown metabolites. PAGN and N-AGN were statistically significantly more 

highly excreted in both MD groups than LFD, however they were also higher in 

MD+Nuts versus MD+EVOO. The MD+EVOO-related metabolites included creatinine 

and two intermediates of the tricarboxylic acid cycle (TCA), citrate and cis-aconitate, 

with higher excretion in MD+EVOO than in the other groups. Finally, LFD-associated 

metabolites involved a higher excretion in particular of hippurate (in both time periods), 

but also of Trimethyl-N-oxide (TMAO) and histidine and its derived metabolites (3-

methylhistidine [3-MH], 1-methylhistidine [1-MH], carnosine, anserine), as well as 

proline-betaine and xanthosine.  

In general, results showed more differences between the MD groups than the LFD 

group, particularly comparing the MD+EVOO and LFD groups, which had the most 

predominant changes in statistical analysis (lower p-values; see Supporting Information, 

Table S5). Moreover, most MD-associated metabolites were excreted in 1 and 3 years 

with the same trend. However, some metabolites, particularly from LFD, are 

characteristic of one of the two time points evaluated.  

DISCUSSION 

The present results showed that the 1- and 3-year intervention follow-ups presented a 

marked effect on urinary metabolomic phenotype in the volunteers.  

Metabolites from protein, lipid and carbohydrate metabolic pathways in MD 

groups 

BCAA leucine and the products of BCAA reflect differences in gluconeogenesis (GNG) 

(16) in MD compared to the control diet (LFD). Moreover, these results could suggest a 

particular importance of BCAAs in lipid oxidation and ketone body synthesis. 4-DTEA 

is a diastereoisomer of 2,3-dihydroxybutanoic acid. 4-DTEA is a breakdown product of 

threonine also involved in amino acid catabolism. Threonine deaminase converts 

threonine to α-ketobutyrate, a precursor of isoleucine (a BCAA), and this is further 

modified by reductases to 4-deoxyerythronicacid and its diastereoisomer 4-DTEA (39). 
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The similar results with 3-HB excretion could suggest a possible relationship between 

these threonine catabolic products and ketone body production, consistent with the 

ketogenic nature of the amino acid threonine (40). 

The increase in urinary excretion of the ketone body 3-HB in MD could suggest an 

increase in fatty acid oxidation (FAO) (41). FAO is indispensable for the conversion of 

lipids (dietary or from lipid storage) to ketone bodies (42). Moreover, PAGN is 

endogenously formed in humans by phenylacetate, which could be related to oxidation 

of phenyl containing fatty acids (43) or through the exogenous intake contained in plant 

food sources (44). Differences in excretion of PAGN are described that reflect changes 

in GNG and the tricarboxylic acid (TCA) cycle (45).  

Higher levels of creatine and creatinine present in MD groups are observed. The high 

excretion of creatine reflects increased turnover in the creatine/creatinine pathway (46). 

Furthermore, changes in citrate and cis-aconitate suggest a different modulation of the 

TCA cycle (47). Also, proline is the catabolite of peptide degradation and is a precursor 

of pyruvate. Pyruvate can be converted into acetyl-CoA, which is the main input for a 

series of reactions such as the TCA cycle. Additionally, decreases in levels of proline 

and citrate were observed in diet-induced hyperlipidemia in rats (48).  

Food intake metabolites (food metabolome) particular for each intervention group  

PAGN and NAG, both derived from the amino acid glutamine, were found associated 

within the MD groups, particularly in the MD-Nuts group, suggesting an important 

implication of glutamine metabolism in this group of individuals. Additionally, 

glutamic acid, whose conversion into glutamine takes place in tissues such as the liver, 

skeletal muscle and brain (49), is the major amino acid from walnuts (50), hazelnuts 

(51) and almonds (52), in consonance with the higher excretion in the MD+Nuts group 

from our results. 

Oleic acid (highly excreted in the MD groups, particularly in MD-EVOO) is the major 

fatty acid in olive oil (75.0% ± 0.8) and is also highly present in nuts (hazelnuts 72.1% 

± 0.2, almonds 61.2% ± 0.4, walnuts 14.0% ± 0.3 (data extracted from the composition 

of virgin olive oil and nuts used in the present trial (21)). Oleic acid is mainly 

metabolized in the body by FAO; however, amounts of it could be excreted (53) and 

detected (54) in urine. It is reported that the upregulated short-chain dicarboxylic acids 

and long-chain fatty acids (such as oleic acid) in the urine of rats showed an increasing 

pressure on energy utilization from the catalysis of the fatty acid pathway in fasting 

(55). Further, suberic acid is a dicarboxylic acid, which is a metabolic breakdown 

product derived from oleic acid (56). The increased intake of PUFAs ((polyunsaturated 

fatty acids, contained within nuts) and MUFAs (monounsaturated fatty acids, contained 

in EVOO and nuts) resulted in greater excretion of FAO products in the urine. Thus, it 

is suggested that a supplementation with EVOO and nuts in the MD groups manifested 

an increase in their FAO metabolism and turnover. These results are in line with other 

results published after 12 weeks of nut consumption in an interventional study (57). 

Similarly, it is described that MUFA and PUFA upregulate FAO (4) by activating 

ligands for peroxisome proliferator-activated receptors (PPARs), as fatty acids are 

natural PPAR ligands (58). Activation of PPARs by dietary fatty acids such as oleic 

acid makes tissues more dependent on FAO by stimulating fatty acid utilization 

pathways including transport, esterification and oxidation (59), thereby improving fatty 

acid utilization. 
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3-MH, 1-M, carnosine and anserine are compounds derived from the histidine metabolic 

pathway related to muscle protein breakdown (60) and also biomarkers of meat 

consumption (8). Likewise, in the LFD group, a moderate association (r>0.4, p<0.05) 

was found with reported red meat intake from the FFQ for histidine, 3-MH and 

carnosine. Some studies exhibited metabolites being discriminant among 

lactovegetarian and omnivorous people, showing a decreased excretion of them in 

people following vegetarian diets, while an increase of N-Ac, citrate, glycine and 

PAGN is evidenced (18, 19) in vegetarian diets. Similarly, a moderate association 

(r>0.3, p<0.05) was found with some MD-associated metabolites (3-HB, leucine, 

isobutyric, 2-oxoisovaleric acid, N-Ac, proline, glycine p-cresol and PAGN) with 

vegetable, legume and fruit intake in MD groups from the FFQ.  

Finally, xanthosine is a metabolite involved in purine metabolism. Decreased levels of 

urinary xanthosine are found in rats with myocardial infarction compared with controls 

(61). Also, xanthosine is a discriminant compound indicating different diets found in the 

urine of rats fed by a normal diet and a turkey-based diet (62). On the other hand, 

proline betaine is a marker of citrus consumption based on orange juice intake (63) . 

Moreover, the proline betaine signals of the present results correlate with the orange 

consumption(r>0.5, p<0.0001) reported in the FFQ in the LFD group, but also in the 

MD groups, exhibiting a moderate association of citrus fruit consumption by all the 

population. 

Metabolites derived from microbial metabolism 

A number of studies have demonstrated the importance of the gut microbiota in 

contributing to the excretion of metabolites such as PAGN and TMAO, hippurate and p-

cresol, which are often referred to as urinary microbial co-metabolites (64-66). Overall, 

our results suggest an increase in the activity of microbiota in an MD associated with 

PAGN and p-cresol, while, on the other hand, in the LFD group an increase in the gut 

microbiota-related pathway associated with hippurate and TMAO is shown. Gut 

microbiota also extensively catabolize protein and aromatic amino acids including 

phenylalanine and tyrosine, to form PAGN and p-cresol (67, 68). Gut microbiota 

facilitate host energy recovery from dietary sources (which suggests that gut microbiota 

are an important environmental factor that affects energy harvest from the diet and 

energy storage in the host) (69). p-Cresol is a microbial metabolite associated with both 

dietary polyphenols and aromatic amino acids (from dietary proteins) (70). The 

presence of PAGN and p-cresol in MD groups may highlight a relationship between 

microbiota activity and the host metabolism of aromatic compounds (71). 

TMAO was also associated with fish intake; however, no correlation in our samples has 

been shown with any kind of fish or seafood intake in the LFD group. In addition, 

TMAO has recently been proposed as a pro-atherogenic species (72); in this regard, low 

levels of this metabolite in MD+EVOO present after 3 years of intervention are an 

interesting focus to explore. Hippurate is a gut microbial mammalian co-metabolite of 

benzoic acid that can be generated by a range of gut microbes from low-molecular-

weight aromatic compounds and polyphenols in the gut (73). Urinary levels of hippurate 

have been shown to correlate with the obese phenotype in different animal models (74). 

Hippurate has also been inversely linked to blood pressure, suggesting a further 

connection with diet and obesity (17). However, no correlation with body mass index, 

hypercholesterolemia or hypertension has been associated with these signals in the 

present results. We conclude that differences in hippurate in the LFD group suggest a 
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disturbance of the intestinal microbiota associated with hippurate metabolism. Likewise, 

higher urinary excretion of metabolites such as hippurate and TMAO was observed in 

heart failure patients, whereas metabolites such as creatinine, citrate and cis-aconitate 

(higher in MD groups) were relatively lower (75).  

 

The present results show important changes in urinary metabolome predominantly at 1-

year follow-up for all three groups. Some urinary excretion changes are maintained at 3 

years of follow-up. The marked changes are a predominant enhancement in an MD of 

catabolic-associated pathways. Results suggest a persistent effect of an MD, particularly 

MD+EVOO, on urinary metabolome for the 3-year follow-up (see significance in 

Supporting Information Table S1). Further, MD+Nuts also had the same excretion 

pattern tendency as the MD+EVOO group. Likewise, compliance with both 

Mediterranean diets was assessed on the whole population of the PREDIMED study 

with compliance biomarkers for both MD groups (3), exhibiting an overall good 

compliance in the interventions. In addition, future steps along similar lines will be 

taken to evaluate changes in metabolome in a diabetic population linked to 

Mediterranean diets. 

CONCLUSIONS 

These results have shown that the interventions monitored after 3 years of follow-up 

had an observed effect on human urinary metabolome. MD groups had a different 

metabolic fingerprinting compared to baseline and the control (LFD) groups. The most 

prominent hallmarks of these changes concerning MD groups were related to 

carbohydrate and lipid metabolism, amino acids (and derived metabolites) and also 

microbial co-metabolites (PAGN, p-cresol). Finally, LFD-associated metabolites were 

hippurate and metabolites related to histidine metabolism, as well as xanthosine. 

Furthermore, food metabolome metabolites have enabled to associate intervention 

groups with particular food intakes. MD groups exhibited a moderate association with 

vegetable and fruit intake. Additionally, a moderate association with meat intake 

biomarkers was observed in the LFD group. The application of NMR-based 

metabolomics enabled the classification of individuals regarding their dietary pattern 

and highlighted the potential of this approach in evaluating changes in the urinary 

metabolomic fingerprinting of these individuals at different time points of follow-up in 

response to a particular intervention.  
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