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Abstract

Antibiotic resistance in Streptococcus pneumoniae has increased worldwide by the spread of a few clones. Fluoroquinolone
resistance occurs mainly by alteration of their intracellular targets, the type II DNA topoisomerases, which is acquired either
by point mutation or by recombination. Increase in fluoroquinolone-resistance may depend on the balance between
antibiotic consumption and the cost that resistance imposes to bacterial fitness. In addition, pneumococcal prophages
could play an important role. Prophage induction by fluoroquinolones was confirmed in 4 clinical isolates by using Southern
blot hybridization. Clinical isolates (105 fluoroquinolone-resistant and 160 fluoroquinolone-susceptible) were tested for
lysogeny by using a PCR assay and functional prophage carriage was studied by mitomycin C induction. Fluoroquinolone-
resistant strains harbored fewer inducible prophages (17/43) than fluoroquinolone-susceptible strains (49/70) (P = 0.0018). In
addition, isolates of clones associated with fluoroquinolone resistance [CC156 (3/25); CC63 (2/20), and CC81 (1/19)], had
lower frequency of functional prophages than isolates of clones with low incidence of fluoroquinolone resistance [CC30 (4/
21), CC230 (5/20), CC62 (9/21), and CC180 (21/30)]. Likewise, persistent strains from patients with chronic respiratory
diseases subjected to fluoroquinolone treatment had a low frequency of inducible prophages (1/11). Development of
ciprofloxacin resistance was tested with two isogenic strains, one lysogenic and the other non-lysogenic: emergence of
resistance was only observed in the non-lysogenic strain. These results are compatible with the lysis of lysogenic isolates
receiving fluoroquinolones before the development of resistance and explain the inverse relation between presence of
inducible prophages and fluoroquinolone-resistance.
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Introduction

Streptococcus pneumoniae (the pneumococcus) is a major etiological

agent of community-acquired pneumonia, meningitis and acute

otitis media, as well as an important cause of acute exacerbations

in patients with chronic respiratory diseases [1]. Antimicrobial

resistance in the pneumococcus (including resistance to b-lactams,

macrolides, tetracycline and co-trimoxazole) has expanded world-

wide [2], influenced by patterns of antibiotic use and spread of a

few international clones [3]. Therefore, fluoroquinolones (Fqs) are

nowadays widely used for treating community-acquired pneumo-

nia and other respiratory diseases in adults [4]. In Spain, the

current prevalence of Fq resistance in pneumococci is lower than

3%, although it reaches 6.6% among strains isolated from acute

exacerbations of chronic obstructive pulmonary disease [5,6]. We

have found that CC156, CC63, and CC81 are the main FqR

clones since 2002 in Spain [5,7].

Resistance to Fqs in pneumococci occurs mainly by alteration of

their intracellular drug targets, i.e., DNA topoisomerase IV and

DNA gyrase. Fqs inhibit these enzymes by forming a ternary

complex of drug, enzyme, and DNA. Their killing effect has been

related to the resolution of reaction intermediates of DNA-Fq-

topoisomerase, which yield to the formation of irreparable double-

stranded DNA breaks [8]. However, it has been also described

that hydroxyl radical formation utilizing internal iron and the

Fenton reaction are generated following gyrase poisoning and play

an important role in cell killing by Fqs [9]. Fq resistance is

acquired by point mutation as well as by intraspecific or

interspecific recombination with streptococci of the mitis group

[10–12]. A future increase in Fq resistance in S. pneumoniae would

depend on the balance between antibiotic consumption and the

cost that resistance imposes to bacterial fitness. A direct

relationship between Fq consumption and increase in the
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prevalence of resistance in S. pneumoniae was reported [13]. We and

others have reported that specific Fq-resistant (FqR) mutations

confer a fitness cost to S. pneumoniae [14,15]. However, compen-

sation of this fitness cost in isolates carrying recombinant

topoisomerase genes has been observed [16]. In this context, if

Fqs are able to induce pneumococcal prophages, they might have

an important role in the emergence of Fq resistance in S.

pneumoniae and would also modulate bacterial fitness in the

presence of Fqs. Induction of prophages by Fqs has not been yet

investigated in S. pneumoniae. This process has been described,

among Gram-positive bacteria, only in Streptococcus canis [17],

Staphylococcus aureus [18,19], Enterococcus faecalis [20], and Clostridium

difficile [21]. Two methods have been used to estimate rates of

prophage carriage in S. pneumoniae, which reach different values: a)

42% was deduced from induction of bacterial lysis with mitomycin

C (MitC) [22], and b) 76% was proposed from hybridization with

a lytA bacterial probe [23]. Recently, using a PCR protocol,

pneumococcal prophages have been classified into three types

[24]. A study performed in 240 isolates of the CC81 clone showed

multiple recombination events at the prophage region [25],

suggesting that the presence of phages genes does not always

equate to the presence of a functional phage.

In this study we have performed experiments of phage induction

in the presence of Fqs and investigated the relation between

presence of inducible prophages and Fq resistance in clinical

isolates of S. pneumoniae.

Materials and Methods

Ethics statement
This study and publication of the results were approved by the

‘‘Comité Ètic d’Investigació Clı́nica del Hospital Universitari de

Bellvitge’’ and the written or oral informed consent was considered

not necessary, because the source of bacterial isolates was

anonymized and the study was retrospective.

Bacterial isolates
FqR [ciprofloxacin (CPX) MICs $4 mg/L] strains were isolated

during the 2002–2009 period from 112 hospitals nationwide and

previously published [5,7]. A randomized selection of FqS isolates

collected at Bellvitge Hospital during the same period was used as

a control. Most isolates were from invasive sites (blood [90],

cerebrospinal fluid [9], pleural fluid [18], synovial fluid [2]), and

respiratory tract samples (sputum [125], bronchoalveolar lavage

[12]). Clonal complex (CC) characterization was made on the

basis of pulsed-field gel electrophoresis (PFGE) and assessed by

multilocus sequence typing (MLST). Briefly, genomic DNA

embedded in agarose plugs was restricted with SmaI or ApaI

and fragments were separated by PFGE in a CHEF-DRIII

apparatus (Bio-Rad). PFGE patterns were compared with

representative clones of the Pneumococcal Molecular Epidemiol-

ogy Network (PMEN), the world-wide epidemic clones [3]. Isolates

with patterns varying by three or less bands were considered to

represent the same PFGE type. In order to assess the identity with

global pneumococcal clones, at least one isolate of each PFGE

pattern/serotype combination was analyzed by MLST. Allele

numbers and sequence types (ST) were assigned using the MLST

web site (http://www.mlst.net).

Detection of phage DNA
PCR detection of the hol1 gene, indicative of the presence of

phage, was performed as described previously [24]. Strains with

hol1 positive PCR were tested for the presence of int1, int2 and mtp

with specific oligonucleotide pairs to identify phage types.

Fragments of parC or rpoB genes, which were amplified with

oligonucleotides parC50/parC152, or rpoB428/rpoB474R [14],

respectively, were used as controls. Strains 949, which carry the

type 1 prophage MM1, and R6 (no prophage), were used as

controls. For phage induction, cultures were grown exponentially

in Todd-Hewitt medium supplemented with 0.5% of yeast extract

(THY) at 37uC until OD620 = 0.1. Then, growth kinetics of isolates

with and without the addition of 75 ng/mL MitC was monitored

by OD620 measured every 15 min during a 4-h period. The

induction with MitC was considered positive when a 2-to 3-fold

decrease in OD with respect to the untreated culture was observed

after 2-to 3 h of treatment.

Southern blot hybridizations
Cultures were grown exponentially until OD620 = 0.1. At this

time (time 0) antibiotics were added at concentrations equivalent

to 16MIC for each strain and samples were taken during 4 h.

Phage and chromosomal DNAs were obtained as follows. First,

2.92 g of NaCl were added to 50 mL of culture, and the solution

kept at 4uC for 1 h. The suspension was centrifuged at 2,2006g for

20 min at 4uC. The supernatant, containing phages, was

precipitated overnight at 4uC with polyethylene glycol 800 (1 g/

10 mL solution). The suspension was centrifuged at 11,2006g

during 15 min at 4uC and the pellet suspended in 0.5 mL of buffer

(100 mM Tris-HCl pH 7.5, 0.1 M NaCl, 10 mM MgCl2). To

eliminate cellular nucleic acids, the phage suspension was treated

with RNase and DNase (100 mg/mL each) during 1 h at 37uC.

Phage particles were digested 90 min with proteinase K (150 mg/

mL) in the presence of 0.5% SDS and 50 mM EDTA at 50uC.

Phenol extraction and ethanol precipitation allowed the isolation

of phage DNA. A 191-bp phage probe containing hol1 was

obtained with biotinylated P9 and P9-R oligonucleotides [24]

using strain 949 as template. The Phototope-Star Detection Kit

(New England Biolabs) was used following the manufacturer’s

instructions.

Statistical analysis
The Fisher exact test (x2 test) was used when appropriate.

P,0.05 was considered significant.

Results

Induction of prophages by Fq treatment
First, the kinetics of growth of two isolates, (CipR-6.55 and

CipR-6.49) belonging to the CC156 clone was analyzed in the

presence of Fqs and MitC, a typical prophage inducer. Treatment

with CPX and levofloxacin (LVX) inhibited the growth of both

isolates in a concentration-dependent manner, being the inhibition

more evident in CipR-6.55 (carrying phages of types 1 and 2) than

in CipR-6.49 (no prophages), which suggested prophage induction

by the drug. In accordance, CipR-6.55 showed lysis after

treatment with MitC (Figure 1). This lysis was also observed in

three additional isolates, one of CC156 (CipR-6.87, with two

phages of types 1 and 2), and two of CC63 with phages of type 2

(CipS-6.3 and CipS-6.10). Phage induction was also followed by

Southern blotting. First, phage induction was tested in CipR-6.55

in the presence of CPX and LVX, MitC and the gyrase B inhibitor

novobiocin. Phage DNA was purified, digested with EcoRV and

hybridized with a hol1 probe. As shown in Figure 2, discrete

restriction bands were detected in the culture supernatants, which

corresponded to phage DNA. Some basal spontaneous induction

of phage was also observed in the untreated cultures. However, the

amount of phage DNA, as detected by hybridization, was higher

when Fqs or MitC were used. These results showed induction of
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prophages by both Fqs and MitC, but not by novobiocin. Given

that induction by LVX was more efficient than by CPX, the first

Fq was chosen for further studies. In three additional lysogenic

isolates studied, induction with LVX and MitC was also observed

(Figure 2).

Detection of prophages by PCR in a collection of
S. pneumoniae isolates

A total of 265 clinical isolates were tested for the presence of

phages [105 FqR and 160 Fq-susceptible (FqS)]. Of them, 113

(42.6%) carried prophage DNA, and no significant difference was

found among FqR (40.9%; 43/105) and FqS (43.5%; 70/160).

Likewise, no difference was observed among prophage carriage

rates of isolates collected from invasive samples (36.9%; 45/122)

and respiratory tract samples (46.7%; 64/137). Types 1 and 2

prophages were more abundant than those of type 3. A majority

(77/113) of isolates carried prophages of a single type, (51 isolates

with type 1 phages, 25 isolates with type 2 phages and 1 isolate

with a type 3 phage), 16 isolates carried prophages of two types (11

isolates with types 1 and 2, and 5 isolates with types 2 and 3), and 6

isolates carried prophages of the three types. Fourteen isolates

showed amplification with hol1 oligonucleotides but not with those

specific for int1, int2 or mtp suggesting the presence of prophage

remnants or of temperate phages of an unknown type.

Presence of inducible prophages among isolates of
prevalent clones

Since we showed a correlation between prophage induction by

MitC and Fqs (Figures 1 and 2), MitC induction was chosen to test

the functionality of the prophages detected by PCR in all lysogenic

isolates. The kinetics of growth in the presence of MitC was

analyzed as described in methods. Among 113 lysogenic isolates,

only 66 (58.4%) exhibited detectable lysis after treatment with

MitC. The frequencies of functional prophages were statistically

lower (P = 0.0018) in FqR (17/43) than in FqS (49/70) isolates

(Table 1). No difference was observed in the distribution of

functional phages among invasive (28/122) and respiratory tract

samples (37/137).

As shown in Table 1, several clones had low presence of phage

DNA: CC156; CC81; CC63; and CC306. No association between

the type of phage carried and the genotype was observed. Isolates

of the same clone carried different phage types or combinations,

with the exception of CC180 in which 20 out of 22 isolates carried

a type 1 prophage. Four clones: CCT156 (3/25); CC63 (2/20);

Figure 1. Lysogenic isolates exhibited lysis in the presence of mitomycin C and fluoroquinolones. The growth kinetics of three isolates
of the CC156 clone (one non-lysogen and two lysogens) and two lysogenic isolates of the CC63 clone were followed in the presence of
fluoroquinolones or MitC. Cultures growing exponentially in THY at 37uC to OD620 = 0.1 were divided and treated as indicated. Growth was monitored
every 15 min during a 4-h period.
doi:10.1371/journal.pone.0094358.g001
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CCT81 (1/19) and CC306 (1/29) showed low rates of functional

prophage carriage. The first three are the main FqR Spanish

clones since 2002 [5,7] whereas, CC306, is usually antimicrobial

susceptible. On the other hand, isolates belonging to CC180 (21/

30); CC30 (4/21); CC230 (5/20); and CC62 (9/21) showed higher

frequencies of functional prophage carriage. These last four clones

were low prevalent among FqR Spanish pneumococci [5,7].

Low frequency of inducible prophages among persistent
strains isolated from patients that received Fq treatment

To test the role of Fq therapy in phage induction in vivo, 11

persistent pneumococci collected from 10 adult patients with

chronic respiratory diseases were studied (Table 2). Details of these

strains have been previously reported [26]. All isolates from each

patient were clonally related (same MLST) and were repeatedly

isolated throughout the period (27 to 165 weeks) in which these

patients received multiple Fq therapy courses. Only isolates of two

patients (7 and 11) showed a positive detection of the hol1 gene.

Moreover, only prophages from the pneumococci of patient 7

were induced with MitC. Four strains were FqR since the first

isolation and did not carry any inducible prophages, although one

of them had a phage remnant (patient 11). Among the five FqS

strains that did not carry prophages, two developed resistance after

Fq course (patients 7 and 9). Patient 7 was sequentially colonized

Figure 2. Prophage induction with Fqs and mitomycin C was detected by Southern-blot hybridization. Cultures were grown either
without treatment (C), or in the presence of antibiotics at concentrations equivalent to 16MIC: 32 mg/ml of ciprofloxacin (CPX); 1–16 mg/ml of
levofloxacin (LVX); 1 mg/ml of novobiocin (NOV). MitC was used at 75 ng/ml. Phages were concentrated from the supernatant as described in
methods at the beginning of the experiment (time 0) and at 1-to 4 h after treatment. (A, C, E. and G) Amounts of DNA equivalent to 0.5 OD620 units of
the culture were digested with EcoRV, run in 0.8% agarose gels, and stained with ethidium bromide. (B, D, F and H) The DNA bands were blotted to a
nylon membrane and hybridized with a hol1-probe.
doi:10.1371/journal.pone.0094358.g002
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Table 1. Relevant characteristics of S. pneumoniae isolates and their prophages analyzed in this study.

Type of phage

CCa (no. of isolates) Phenotypeb hol1 +c MitC +d 1 2 3 1+2 1+2+3 2+3 Other

CC180 (30) 29 S 22 21 20 2 2 2 2 2 2

1 R 0 0 2 2 2 2 2 2 2

CC306 (29) 28 S 1 1 2 2 2 2 2 2 1

1 R 0 0 2 2 2 2 2 2 2

CC156 (25) 6 S 1 1 2 1 2 2 2 2 2

19 R 3 2 2 1 2 2 2 2 2

CC30 (21) 17 S 8 4 2 2 2 2 2 2 4

4 R 1 0 2 2 2 2 1 2 2

CC62 (21) 19 S 14 8 6 4 2 2 2 2

2 R 2 1 2 2 2 2 2 2 2

CC63 (20) 7 S 2 2 2 2 2 2 2 2 2

13 R 1 0 2 2 2 2 2 2 1

CC230 (20) 18 S 6 4 1 3 2 2 2 2 2

2 R 1 1 1 2 2 2 2 2 2

CC81 (19) 7 S 2 0 2 2 2 2 2 2 2

12 R 4 1 2 3 2 2 2 2 1

CC97 (6) 3 S 3 1 3 2 2 2 2 2 2

3 R 3 0 2 2 2 2 2 2 1

CC433 (6) 3 S 1 1 1 2 2 2 2 2 2

3 R 2 0 1 2 2 1 2 2 2

CC42 (5) 4 S 0 0 2 2 2 2 2 2 2

1 R 0 0 2 2 2 2 2 2 2

CC717 (5) 3 S 3 1 3 2 2 2 2 2 2

2 R 2 2 2 2 2 2 2 2 2

CC17 (4) 2 S 2 2 2 2 2 2 2 2 2

2 R 2 1 2 2 2 2 2 2 2

CC90 (4) 2 S 2 1 2 1 2 2 1 2 2

2 R 2 1 2 1 2 2 1 2 2

CC260 (4) 2 S 0 0 2 2 2 2 2 2 2

2 R 1 0 1 2 2 2 2 2 2

CC67 (3) 2 S 2 2 2 2 2 2 2 2 2

1 R 0 0 2 2 2 2 2 2 2

CC191(3) 2 S 0 0 2 2 2 2 2 2 2

1 R 0 0 2 2 2 2 2 2 2

CC88 (2) 2 S 0 0 2 2 2 2 2 2 2

0 R 0 0 2 2 2 2 2 2 2

CC247 (2) 2 S 0 0 2 2 2 2 2 2 2

0 R 0 0 2 2 2 2 2 2 2

CC989 (2) 1 S 0 0 2 2 2 2 2 2 2

1 R 0 0 2 2 2 2 2 2 2

Others (34) 1 S 1 0 2 1 2 2 2 2 2

33 R 19 8 4 3 1 3 2 3 5

aClones are named by their clonal complex number. Those showed in boldface and underlined are the main clones involved in Fq resistance in Spain since 2002.
bIsolates are separated on the basis of their Fq susceptibility: S, susceptible (CPX MICs #2 mg/L); R, resistant (MICs $4 mg/L).
cPCR detection for hol1 gene.
dFunctional phages caused cell lysis in the presence of MitC.
doi:10.1371/journal.pone.0094358.t001
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by two different strains. Although the first one (of ST6315A) carried

functional prophage and developed Fq resistance, it was replaced

by a new nonlysogenic strain (ST55835B) after Fq therapy [26].

The presence of a prophage affects development of CPX
resistance

The observation that FqR isolates have lower rates of inducible

prophages than FqS pneumococci, together with the results of

induction of phages by Fqs, suggest that under Fq selective

pressure, lysogenic pneumococci will be prone to die due to phage-

mediated lysis, while non-lysogenic isolates would be able to

develop Fq resistance. Resistance would be hence more likely to

arise in isolates that do not carry prophage. To test this hypothesis,

two isogenic strains, R36A (wild type) and R36AP (an R36A

derivative carrying an inducible prophage) [27] were cultured for

4 h in the presence of 16MIC of CPX (0.5 mg/ml) and the

presence of quinolone resistant mutants was evaluated by plating

on several CPX concentrations (Figure 3). We assumed that

phage-mediated lysis would occur preferentially in liquid medium;

although we cannot discard that lysis is also occurring on plates. At

46MIC of CPX (2 mg/ml), there were no colonies in the R36AP

strain, while a total of 1.4610360.26103 (mean 6 SD) colonies

(frequency of 3.561025) were obtained from the R36A strain.

Among them, 8 isolates were selected and their parC QRDR

regions were sequenced as described [5,7]. Results showed that a

majority (6 out of 8) carry the S79Y mutation, a classical mutation

known to be involved in CPX resistance. At 3 mg/ml CPX, 2

colonies of the R36A strain were obtained (frequency of 561029),

one of these also carried the ParC S79Y change. These results are

consistent with a deleterious effect of prophage carriage for the

development of quinolone resistance in pneumococci.

Discussion

In this study we first showed that Fqs targeting topoisomerase

IV, such as CPX and LVX, are able to induce the lytic cycle of

pneumococcal temperate phages. Comparison of growth kinetics

in the presence of 16MIC of these fluoroquinolones showed lower

OD increases in isolates carrying inducible prophages, than in the

non-lysogenic CipR-6.49 isolate. This behavior was related with

the induction of cell lysis by the prophages. In contrast,

novobiocin, an inhibitor of the DNA gyrase, was unable to induce

lysis of CipR-6.55. All these results suggest a role of the inhibition

of topoisomerase IV in the lysis response. This could be a

consequence of the cellular processes acting on the ternary

complex formed by topoisomerase IV-Fq and DNA [8]. However,

it could also be due to transcriptional regulation of phage or

bacterial genes by changes in DNA supercoiling caused by

inhibition of topoisomerase IV, given that treatment of S.

pneumoniae with LVX causes a complex transcriptomic response

[28]. On this respect, it has been shown that the transcription of

the pneumococcal recA gene, a competence-induced gene, is

necessary for temperate phage induction [29], and that compe-

tence in S. pneumoniae, a bacterium lacking an SOS-like system, is

induced by Fqs and MitC but not by other antibiotics [30].

Since our results showed that Fqs caused bacterial lysis by phage

induction, we determined the rates of inducible phages in isolates

of the most frequent clones causing pneumococcal diseases in adult

patients. Using a PCR approach, we determined that about half of

the isolates analyzed were lysogenic, a figure compatible with the

previously reported value (42%) based on MitC induced bacterial

lysis [22], but lower than the 76% estimated by detection of the

prophage lytA-like gene by hybridization with a host lytA probe

[23]. However, both the PCR detection and the hybridization

approaches overestimate the rate of inducible, functional prophage

carriage, since these methods detect also defective prophages, and

experiments of induction with MitC were necessary to determine

the functional phage rate.

We showed that FqR isolates have lower rates of inducible

prophage carriage than FqS pneumococci. These findings,

Table 2. Persistent S. pneumoniae strains causing $3
episodes of acute exacerbations in patients with chronic
respiratory diseases.

Patient ID Clone Episode Fq phenotypea hol1/MitC b

1 ST1569V 1st to 3rd LL-R 2

3 ST8389V 1st to 4rd S 2

4 ST8389V 1st to 3rd HL-R 2

5 ST8389V 1st HL-R 2

2nd LL-R 2

3rd HL-R 2

7 ST6315A 1st, 2nd S +/+

3rd, 4rd, 6th HL-R +/+

ST55835B 5rd, 7th, 8th S 2

8 ST6315A 1st S 2

2nd to 5th LL-R 2

9 ST8819F 1st S 2

2nd and 3rd HL-R 2

10 ST8719F 1st to 5th S 2

11 ST210019F 1st to 3rd HL-R +/2

12 ST27619A 1st to 3rd S 2

aS, susceptible (CPX MICs #2 mg/L); LL-R, low- level of resistance (MICs 4–8 mg/
L); HL-R, high level of resistance (MICs $16 mg/L).
bhol1 + indicates PCR detection for hol1 gene; MitC + indicates cell lysis of the
culture in the presence of MitC.
doi:10.1371/journal.pone.0094358.t002

Figure 3. Non-lysogenic R36A strain developed CX-resistance
while lysogenic R36A (R36AP) did not. Overnight cultures of R36A
and R36AP were grown in THY until OD620 = 0.4, then these were
diluted 20-fold in 500 ml of the same medium and grown until
OD620 = 0.1. At this point CPX was added to the cultures to reach 16MIC
(0.5 mg/ml). Cultures were grown for 4 h and bacteria were recovered
by centrifugation at 5000 g for 30 minutes. Cells were suspended in
THY +25% glycerol at concentrations of 3.36108 and 4.16108 CFUs/ml
for R36A and R36AP, respectively. Bacteria were plated in THY agar
plates containing the indicated CPX concentrations. Results are the
means 6SD of three independent replicates.
doi:10.1371/journal.pone.0094358.g003
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together with the induction of phages by Fqs, and the inability to

select FqR isolates in the R36AP strain in conditions when these

arise readily in the non-lysogenic parental strain R36A, suggest

that under Fq pressure lysogenic pneumococci will be prone to die

due to phage-mediated lysis, while non-lysogenic isolates are able

to develop Fq resistance. Consistent with this hypothesis, isolates

belonging to the three main FqR Spanish clones (CC156, CC63,

and CC81), have a frequency of inducible prophages lower than

clones not related with Fq resistance, such as CC30, CC62 or

CC180. In contrast, the vast majority of isolates of CC306, which

were FqS, were non-lysogenic. There are two possible explanations

for this finding. The first is that isolates of this clone usually cause

invasive pneumococcal disease in children, who are not treated

with Fqs. The second is that, since this clone is rarely found as a

colonizer (neither in children nor adult patients with chronic

obstructive pulmonary disease), it may seldom exchange DNA

with other streptococci or have the chance to be infected by

temperate bacteriophages.

Another possibility could be that the clones within which Fq

resistance is most common are less likely to be lysogenic for

unrelated reasons. However, our results shown that there are

differences in the prevalence of inducible phage between different

clones not commonly resistant to Fq, ranging from 1/29 to 21/30

(Table 1) and experiments with isogenic strains differing only in

the carriage of a prophage support a role of prophages in

preventing the development of Fq resistance.

Finally, we found a low frequency of functional prophages

(1/11) in strains persistently colonizing patients which received

multiple courses of Fq therapy. These results also support the role

of prophage in cell lysis and development of in vivo Fq resistance in

S. pneumoniae. This ecological niche is optimal for the development

of antibiotic resistance; given that the patients had multiple

infections with different pathogens and that they received multiple

courses of antibiotic treatment. In relation with fluoroquinolone

treatments, the doses of CPX that are able to kill Gram-negative

bacteria are subinhibitory for S. pneumoniae and this would allow,

both the development of resistance in this kind of patients, and also

the induction of prophages.

The evolution of bacteria cannot be understood without the

contribution of their prophages [31]. These could change from

inducible to cryptic prophages (unable to excise from the

chromosome and cause cell lysis), which contribute significantly

to resistance to sub-lethal concentrations of Fqs and b-lactam

antibiotics primarily through phage-encoded proteins that inhibit

cell division, as recently demonstrated for Escherichia coli prophages

that do not excise on MitC treatment [32]. Lysogeny is also

important for interspecies competition, as showed by the killing of

S. aureus by prophage induction caused by H2O2 production by S.

pneumoniae in the nasopharynx [19]. Activation of key proteins

involved in phage-induced cell lysis, encoded either by the

prophages or by the bacterial host, may be a novel way to fight

antimicrobial resistance.
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11. Balsalobre L, Ferrándiz MJ, Liñares J, Tubau F, de la Campa AG (2003)

Viridans group streptococci are donors in horizontal transfer of topoisomerase

IV genes to Streptococcus pneumoniae. Antimicrob Agents Chemother 47: 2072–

2081.

12. Stanhope MJ, Walsh SL, Becker JA, Italia MJ, Ingraham KA, et al. (2005)

Molecular evolution perspectives on intraspecific lateral DNA transfer of

topoisomerase and gyrase loci in Streptococcus pneumoniae, with implications for

fluoroquinolone resistance development and spread. Antimicrob Agents Che-

mother 49: 4315–4326.

13. Chen DK, McGeer A, de Azavedo JC, Low DE (1999) Decreased susceptibility

of Streptococcus pneumoniae to fluoroquinolones in Canada. N Engl J Med 341:

233–239.

14. Balsalobre L, de la Campa AG (2008) Fitness of Streptococcus pneumoniae

fluoroquinolone-resistant strains with topoisomerase IV recombinant genes.

Antimicrob Agents Chemother 52: 822–830.

15. Rozen DE, McGee L, Levin BR, Klugman KP (2007) Fitness costs of

fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Che-

mother 51: 412–416.

16. Balsalobre L, Ferrandiz MJ, de Alba G, de la Campa AG (2011) Nonoptimal

DNA topoisomerases allow maintenance of supercoiling levels and improve

fitness of Streptococcus pneumoniae. Antimicrob Agents Chemother 55: 1097–1105.

17. Ingrey KT RJ, Prescott JF (2003) A fluoroquinolone induces a novel mitogen-

encoding bacteriophage in Streptococcus canis. Infect Immun 71: 3028–3033.

18. Cirz RT JM, Gingles NA, Minogue TD, Jarrahi B, Peterson SN, Romesberg FE

(2007) Complete and SOS-mediated response of Staphylococcus aureus to the

antibiotic ciprofloxacin. J Bacteriol 189: 531–539.

19. Selva L, Viana D, Regev-Yochay G, Trzcinski K, Corpa JM, et al. (2009) Killing

niche competitors by remote-control bacteriophage induction. Proc Natl Acad

Sci USA 106: 1234–1238.

20. Yasmin AKJ, Shankar J, Darby AC, Hall N, Edwards C, et al. (2010)

Comparative genomics and transduction potential of Enterococcus faecalis

temperate bacteriophages. J Bacteriol 192: 1122–1130.

21. Meessen-Pinard M, Sekulovic O, Fortier LC (2012) Evidence of in vivo

prophage induction during Clostridium difficile infection. Appl Environ Microbiol

78: 7662–7670.

22. Bernheimer HP (1979) Lysogenic pneumococci and their bacteriophages.

J Bacteriol 138: 618–624.

23. Ramirez M, Severina E, Tomasz A (1999) A high incidence of prophage

carriage among natural isolates of Streptococcus pneumoniae. J Bacteriol 181: 3618–

3625.

24. Romero P, Garcı́a E, Mitchell TJ (2009) Development of a prophage typing

system and analysis of prophage carriage in Streptococcus pneumoniae. Appl Environ

Microbiol 75: 1642–1649.

25. Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, et al. (2011) Rapid

pneumococcal evolution in response to clinical interventions. Science 331: 430–

434.

Induction of Prophages by Fluoroquinolones

PLOS ONE | www.plosone.org 7 April 2014 | Volume 9 | Issue 4 | e94358



26. Domenech A, Ardanuy C, Balsalobre L, Martı́ S, Calatayud L, et al. (2012)

Pneumococci can persistently colonize adult patients with chronic respiratory

disease. J Clin Microbiol 50: 4047–4053.

27. Frias MJ, Melo-Cristino J, Ramirez M (2009) The autolysin LytA contributes to

efficient bacteriophage progeny release in Streptococcus pneumoniae. J Bacteriol 191:

5428–5440.

28. Ferrándiz MJ, de la Campa AG (2014) The fluoroquinolone levofloxacin triggers

the transcriptional activation of iron transport genes that contribute to cell death

in Streptococcus pneumoniae. Antimicrob Agents Chemother 58: 247–257.
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