

### Secondary channel of the RNA polymerase, a target for transcriptional regulation in bacteria

Llorenç Fernández Coll

**ADVERTIMENT**. La consulta d'aquesta tesi queda condicionada a l'acceptació de les següents condicions d'ús: La difusió d'aquesta tesi per mitjà del servei TDX (**www.tdx.cat**) i a través del Dipòsit Digital de la UB (**diposit.ub.edu**) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d'investigació i docència. No s'autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d'un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora.

**ADVERTENCIA**. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (**www.tdx.cat**) y a través del Repositorio Digital de la UB (**diposit.ub.edu**) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB. No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR o al Repositorio Digital de la UB (framing). Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la persona autora.

**WARNING**. On having consulted this thesis you're accepting the following use conditions: Spreading this thesis by the TDX (**www.tdx.cat**) service and by the UB Digital Repository (**diposit.ub.edu**) has been authorized by the titular of the intellectual property rights only for private uses placed in investigation and teaching activities. Reproduction with lucrative aims is not authorized nor its spreading and availability from a site foreign to the TDX service or to the UB Digital Repository. Introducing its content in a window or frame foreign to the TDX service or to the UB Digital Repository is not authorized (framing). Those rights affect to the presentation summary of the thesis as well as to its contents. In the using or citation of parts of the thesis it's obliged to indicate the name of the author.



Departament de Microbiologia Facultat de Biologia Universitat de Barcelona

# Secondary channel of the RNA polymerase, a target for transcriptional regulation in bacteria

Memòria presentada per Llorenç Fernàndez Coll per optar al títol de Doctor per la Universitat de Barcelona

Programa de Doctorat: Microbiologia Ambiental i Biotecnologia

VºBº del director i tutor de la Tesi,

Memòria presentada per

Dr. Carlos Balsalobre Parra

Llorenç Fernàndez Coll

I don't see the logic of rejecting data just because they seem incredible Sir Fred Hoyle (1915-2001) English astronomer

Ha arribat el moment de fer un petit balanç del que ha sigut aquesta tesi, i és el moment en que et poses a pensar en tota la gent que has conegut durant aquest procés. Mires les llibretes velles i te n'adones que realment són més velles del que creies, la qual cosa implica / suggereix que el temps ha passat volant. Vaig començar col·laborant com estudiant de llicenciatura (si, jo no sóc de Grau, y con mucha honra) al Departament de Microbiologia al Setembre de 2005 (si la memòria no em falla i la llibreta no m'enganya). Des de llavors he conegut a molta gent, amb alguns ens hem portat més bé, d'altres més malament i d'altres ens hem portat a matar (per què negar-ho?). El fet d'haver vist passar tanta gent pel Departament fa encara més estrany entrar un dia per la porta i veure que no coneixes ni la meitat dels que hi ha ara. D'això se'n diu relleu generacional. O fins i tot entristeix quan veus que no hi ha ni la meitat del volum de gent que hi solia haver. Però això són figues d'un altre paner.

Com comprendreu, no puc posar-vos a tots i per això abans de començar a parlar de forma més individual, vull donar-vos les gràcies per tot, sense vosaltres no hagués sigut el mateix (moment llagrimeta).

Primer de tot li vull agrair al Carlos tot el que ha fet per mi i tot el temps que hi ha dedicat. Sempre ha tingut un moment o un segon per una pregunta o un consell, i això és d'agrair. Sé que no ha sigut fàcil, sé que ha tingut una enoooorme paciència, però d'una manera o altre ens n'hem sortit. He aprés moltes coses i no totes eren de ciència. Ha estat un plaer.

Si el Carlos és el "papi" del laboratori, sense cap mena de dubte la "mami" és la Cristina, sobretot quan entra a fer neteja... Motes gràcies per tots els bons consells.

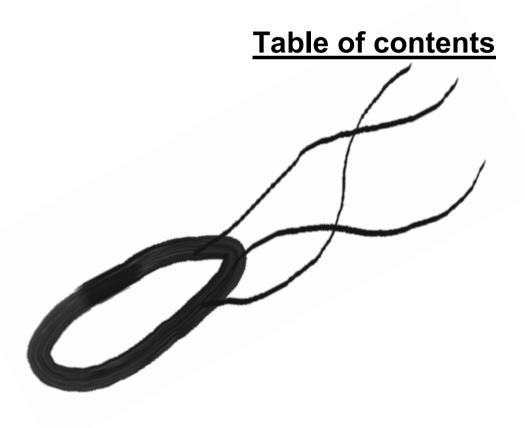
M'agradaria agrair a l'Antonio l'oportunitat que em va donar al principi de tot de la tesi. Quan cap ministeri ni conselleria donava un duro per mi (literalment) ell em va oferir una plaça de professor associat. Moltes gràcies.

Vull agrair a tots els meus companys de laboratori, tant si estan al lab 4, al lab 3 o a l'IBEC. Alguns encara hi són, d'altres han marxat i d'altres tenen un peu dins i l'altre fora. A la Marta, també coneguda com a Santa Marta de los Becarios FPU, la meva companya directe de poiata i de laboratori 3, la que ha

#### Acknowledgements

hagut d'aguantar-me durant... jo que sé quant de temps. Ella era la guia de referència dels pesos moleculars de qualsevol element, no se'n sabia cap, però com que és química sempre li havia de preguntar. Al Mario, l'altre boig del laboratori 3 amb el seu genial sentit de l'humor. A la Carla, amb la que hem rigut i hem passat molt bones estones (bé, sempre i quant no ens tiréssim els plats pel cap). Quins dos ens hem anat a ajuntar... la gana amb les ganes de menjar... A la Tania, també coneguda com a Pelucas, Srta. Rottenmeier (només quan porta monyo), Mamita rica.... etc. Com vas dir un cop, nosaltres som germans per part de "papi". Ara anem a per les Sonies. A la Sonia A. (altrament coneguda com a Sonieta), no sé que hauria fet sense tu. La meva companya de sopars de Departament (be, durant la època que hi anàvem). A la Sonia P. (La Paytu) sempre disposada a ajudar i a fumar un cigarro. Apa que no hem parlat cops de les patades que dono a judo... Al Youseff, Yussi para los amigos, amb qui sempre pots compartir un cacaolat. Et passo el càrrec de responsable de laboratori, cuida-me'l bé, eh? També hi ha noves incorporacions d'estudiants de Grau, com la Cintia, o de màster com la Lídia (Campygirl) que, tot i que no hem coincidit molt, també hem rigut una estona, o si més no, ho hem intentat. I aquests són els que encara estan en "actiu" al laboratori. També vull agrair el seu suport i amistat a tots els que ja no hi són, com la Rosa, l'Aitziber, la Mar, la Laura, la Nahia, el Nacho, el Jorge, el Juanda, etc.

Però el Departament no només és laboratori 4. Per això vull agrair a tota la gent del Departament les bones estones que hem passat, tant de la fase I com de la fase II. Moltes gràcies per les bones estones, les bromes, les birres compartides a biofestes, sopars de tesis i altres.

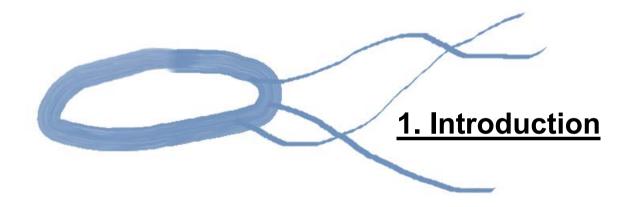

A els secretaris i tècnics del Departament, Macu, Manolo, Rosario, Bea i Susana. Moltes gràcies per estar sempre disposats a resoldre qualsevol dubte i donar un cop de ma quan ha sigut necessari.

I would like to thank to Kasia for giving me the opportunity to collaborate with her at Gdansk, as well as for all what she did when I was there. Thank you very much for all the advices, supervision and help that you give me. Thank you for the Tea / Coffee time. It was a pleasure. Dziękuję! També m'agradaria agrair a tots els meus amics que han aguantat durant aquest anys les histories sobre la Tesi, i altres coses. Al Kux, la Patty, la Gemma, la Curis i l'Ali, moltes gràcies per els mojitos compartits i el Jagger. Per els nostres xous a restaurants, viatges o ficant gent a taxis. Sort en tenim de la Jefa que posa ordre, menys quan esta al cangrejo i sona la Rafaela Carrà, que es descontrola. Al Dani, a la Sílvia i a la Lorena, el grupet 5 pisos... a part d'escandalitzar restaurants, hem rigut força amb les nostres històries.

A tu Mac, moltes gràcies pel teu suport en tot, la tesi i el que no era la tesi. Tot i estar a uns 1500 Km de distància sempre hi has estat quan t'he necessitat. Moltes gràcies. ;)

Finalment vull agrair a la meva família tot el suport que m'han donat durant tot aquest temps. Vull donar les gràcies als meus pares, a les iaies i a la tieta per preocupar-vos per mi i per preguntar (tot i patir el risc de ser fulminats amb la mirada) "i com va la Tesi?". A la Txell, la senyoreta dinosaure, que tot i no tenirne necessitat, és capaç empassar-se uns rotllos interminables sense queixarse. I en especial al monstre de la casa, la Laia. Un petó molt gran a tots.

Moltes gràcies a tots per fer que el temps passés volant. I com diuen a judo: Hajime! (Que comenci el combat).




| 1. Introduction                                                         | 1  |
|-------------------------------------------------------------------------|----|
| 1.1. "Of environment and genes": effect of environmental alterations on |    |
| gene expression in bacteria                                             | 5  |
| 1.1.1. Gene transcription, the key of the adaptative response           | 5  |
| 1.1.2. Transcription regulation                                         | 12 |
| 1.1.2.1. Regulatory proteins                                            | 13 |
| 1.1.2.2. Changes in $\sigma$ subunit                                    | 13 |
| 1.1.2.3. DNA topology                                                   | 14 |
| 1.1.2.4. sRNA                                                           | 15 |
| 1.1.2.5. Anti-sigma factors                                             | 15 |
| 1.1.2.6. Alarmones                                                      | 17 |
| 1.1.2.7. Regulation through the secondary channel of the RNApol         | 18 |
| 1.2. Factors that bind into the secondary channel of the RNApol         | 19 |
| 1.2.1. GreA, a transcription elongation factor                          | 20 |
| 1.2.2. The alarmone ppGpp                                               | 23 |
| 1.2.2.1 The stringent response                                          | 27 |
| 1.2.2.2. Phenotype of the ppGpp-deficient strain                        | 29 |
| 1.2.2.3. Influence of the promoter discriminator in ppGpp-mediated      |    |
| regulation                                                              | 30 |
| 1.2.2.4. ppGpp mediated mechanisms of regulation not-related with the   |    |
| RNApol                                                                  | 31 |
| 1.2.3. Protein DksA as a ppGpp co-regulator                             | 32 |
| 1.2.4. Other proteins that bind into the secondary channel of the       |    |
| RNApol                                                                  | 35 |
| 1.2.5. Competition between the different factors that bind to the       |    |
| secondary channel of the RNApol                                         | 37 |
| 1.3. The players                                                        | 40 |
| 1.3.1. Escherichia coli                                                 | 40 |
| 1.3.2. Salmonella enterica subsp. enterica serovar Typphimurium         | 42 |
| 2. Objectives                                                           | 47 |
| 3. Materials and methods                                                | 51 |
| 3.1. Strains and plasmids                                               | 53 |
| 3.2. Media and antibiotics                                              | 56 |
| 3.3. Oligonucleotides                                                   | 58 |

| 3.4. DNA manipulation                                                      | . 59 |
|----------------------------------------------------------------------------|------|
| 3.4.1. Plasmidic DNA isolation                                             | . 59 |
| 3.4.2. DNA fragments amplification by Polymerase Chain Reaction            |      |
| (PCR)                                                                      | . 59 |
| 3.4.3. Error-Prone PCR                                                     | . 60 |
| 3.4.4. DNA fragments sequencing                                            | . 60 |
| 3.4.5. DNA electrophoresis in agarose gels                                 | . 61 |
| 3.4.6. Gel band extraction                                                 | . 61 |
| 3.5. RNA manipulation                                                      | . 61 |
| 3.5.1. RNA isolation                                                       | . 61 |
| 3.5.2. cDNA transcription                                                  | . 62 |
| 3.5.3. Real-Time qPCR                                                      | . 62 |
| 3.5.4. Transcriptomic study                                                | . 64 |
| 3.6. Protein manipulation                                                  | . 66 |
| 3.6.1. Protein electrophoresis in SDS polyacrilamide gels                  | . 66 |
| 3.6.2. Protein immunodetection                                             | . 66 |
| 3.7. Genetic transfer methods                                              | . 67 |
| 3.7.1. Bacterial transformation                                            | . 67 |
| 3.7.1.1. Transformation by CaCl <sub>2</sub> treated competent cells       | . 67 |
| 3.7.1.2. Transformation by electroporation                                 | . 68 |
| 3.7.1.3. TSS transformation                                                | . 68 |
| 3.7.2. Transduction with bacteriophage P1 <i>vir</i> in <i>E. coli</i>     | . 69 |
| 3.7.3. Transduction with bacteriophage P22 in Salmonella                   | . 70 |
| 3.7.4. pSLT conjugation                                                    | . 71 |
| 3.7.5. Transcriptional-fusion's insertion at the attB locus of the E. coli |      |
| chromosome                                                                 | . 71 |
| 3.8. Bacterial mutagenesis methods                                         | . 73 |
| 3.8.1. One-step inactivation of chromosomal genes using PCR products       | . 73 |
| 3.8.2. <i>lacZ</i> genetic fusions constructed by FLP recombination        | . 75 |
| 3.9. Bacterial physiology studies                                          | . 76 |
| 3.9.1. Bacterial growth monitoring                                         | . 76 |
| 3.9.2. β-galactosidase activity determination                              | . 76 |
| 3.9.3. Motility assay                                                      | . 77 |
| 3.9.4. Biofilm formation                                                   | . 77 |

| 3.9.5. Haemolytic activity                                                          | 78    |
|-------------------------------------------------------------------------------------|-------|
| 3.10. Microscopy techniques                                                         | 78    |
| 3.10.1. Optical microscopy                                                          | 78    |
| 3.10.2. Transmission electron microscopy                                            | 78    |
| 3.11. Bioinformatics methods                                                        | 79    |
| 4. Results and discussion                                                           | 81    |
| 4.1. Study of greA expression                                                       | 83    |
| 4.1.1. Autoregulation: Effect of GreA over its own expression                       | 86    |
| 4.1.2. Expression of GreA through the growth curve                                  | 94    |
| 4.1.3. Effect of changes in diverse environmental parameters in the                 |       |
| greA expression                                                                     | 98    |
| 4.1.3.1. Effect of the $\sigma^{E}$ subunit of the RNApol on <i>greA</i> expression | 101   |
| 4.1.4. In silico analysis of the promoter region of greA gene                       | 104   |
| 4.1.4.1. Effect of FadR on greA expression                                          | 107   |
| 4.1.4.2. Effect of CRP and DgsA on greA expression                                  | 109   |
| 4.1.4.3. Effect of GadX on greA expression                                          | 112   |
| 4.2. Crosstalk between the factors that bind to the secondary channel of            |       |
| the RNApol                                                                          | . 114 |
| 4.3. Effect of the interplay between factors that bind to the RNApol on             |       |
| flagella genes expression in <i>E. coli</i>                                         | 121   |
| 4.3.1. Effect of the factors that bind into the secondary channel of the            |       |
| RNApol on <i>fliC</i> expression                                                    | 123   |
| 4.3.2. Effect of GreA, DksA and ppGpp on the regulation pathway of                  |       |
| flagella                                                                            | 128   |
| 4.3.3. Effect of possible pausing sequences on the expression of <i>fliC</i>        | 133   |
| 4.3.4. Effect of changes in environmental parameters in the expression              |       |
| of <i>fliC</i>                                                                      | 136   |
| 4.3.4.1. Expression of <i>fliC</i> through the growth phase                         | 136   |
| 4.3.4.2. Effect of osmolarity on the expression of <i>fliC</i>                      | 138   |
| 4.4. Effect of GreA overexpression on bacterial growth                              | 142   |
| 4.5. Structural study of the protein GreA                                           | 150   |
| 4.5.1. Antipause effect on <i>fliC</i>                                              | 157   |
| 4.5.2. Prototrophy recuperation in <i>dksA</i> / ppGpp <sup>0</sup> strains         | 163   |
| 4.5.3. Possible effect of the different mutations on the structure of GreA          | 168   |

| 4.6. Phylogenetic analysis of the distribution of factors that bind to the |     |
|----------------------------------------------------------------------------|-----|
| secondary channel of the RNApol                                            | 171 |
| 4.6.1. Study of the GreA family                                            | 172 |
| 4.6.2. Study of the DksA family                                            | 176 |
| 4.6.3. Distribution of the different factors that bind into the secondary  |     |
| channel of the RNApol in bacteria                                          | 178 |
| 4.6.4. Phylogenetic analysis of the structure of GreA                      | 179 |
| 4.7. Effect of ppGpp and DksA in the gene expression profile of            |     |
| Salmonella                                                                 | 182 |
| 4.7.1. Effect of ppGpp and DksA on core genome gene expression             | 186 |
| 4.7.1.1. Response to low temperature                                       | 190 |
| 4.7.1.2. Response to oxidative stress                                      | 191 |
| 4.7.1.3. Effect of biofilm and motility                                    | 193 |
| 4.7.2. Is ppGpp a gene usher?                                              | 195 |
| 4.7.2.1. Effect of ppGpp and DksA on SPIs genes expression                 | 196 |
| 4.7.2.2. Effect of ppGpp and DksA on bacteriophages genes                  | 198 |
| 4.7.2.3. Effect of ppGpp and DksA on Salmonella plasmids                   | 200 |
| 4.7.2.3. Effect of ppGpp and DksA on <i>cob/pdu</i> operon                 | 202 |
| 4.7.3. Global effect of ppGpp and DksA                                     | 203 |
| 4.8. Epilogue: an overview of our contribution to the knowledge of the     |     |
| regulation through the secondary channel of the RNApol                     | 205 |
| 5. Conclusions                                                             | 209 |
| 6. Summary in Catalan                                                      | 215 |
| 7. Bibliography                                                            | 249 |
| 8. Supplementary table                                                     | 265 |



The biological concept of species had changed from the one defined by Gordon and Mihm, (1962): "a collection of strains that all share the same major properties but differ in one or more significant properties from other collection of strains"; to the one used nowadays: "the phylogenetic definition of a species generally would include strains with approximately 70% or greater DNA-DNA relatedness and with 5°C or less  $\Delta T_m$ " (Wayne *et al.*, 1987; Stackebrandt *et al.*, 2002). Genomic studies showed that a great genetic variation among bacterial species exists. Comparing genomes of several strains of the same species, geneticist created new terms to be able to rationalize all this diversity (**fig. 1**):

- Core-genome includes the common genes among different strains of a species.
- Pan-genome includes all the genes associated to a species, comprising both core-genome and variable genes, being the last ones genes which are in some but not all the strains.

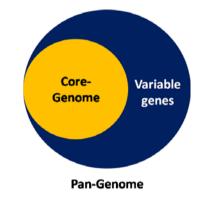
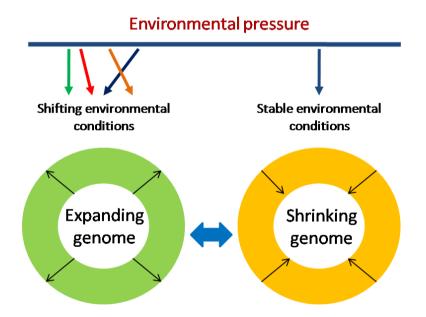




Figure 1: Scheme of a Pan-genome.

Most of the variable genes are clustered likewise on islands distributed among the genome (Mira *et al.*, 2010). While the core-genome contains genes essential to define a species, variable islands are considered to contain genes required for the adaptation of the different strains to specific habitat. This accessory or variable pool includes genes coding, among others, for antibiotic and heavy-metal resistances, bacteriocins, cell-wall components, nitrogen fixation, virulence, and many metabolic properties (Gogarten *et al.*, 2002). It has been suggested that environmental pressures are able to induce changes in the genome size (**fig. 2**). In general, it is considered that bacteria with largest

genomes can easily cope with a higher diversity of changing environments as they may have a larger metabolic and stress tolerance potential. On the other hand, bacteria adapted to live in a very specific and stable environment, such as obligatory intracellular bacteria, may suffer massive genome reductions (Ranea *et al.*, 2004; Dini-Andreote *et al.*, 2012).

It has been suggested (Mira *et al.*, 2010) that the main mechanisms responsible of this genomic plasticity are i) DNA duplication and subsequent sequence divergence (Pushker *et al.*, 2004) and ii) horizontal transfer of DNA sequences between different bacterial strains or species (Ochman *et al.*, 2000). Horizontal gene transfer (HGT) processes includes plasmid transmission by conjugation or natural transformation, and natural transduction of bacterial DNA packaged into bacteriophage capsids. Regarding evolution of bacterial patho-genes, transduction is considered the major HGT mechanism involved among transfer of virulence factors in bacteria (Boyd and Brüssow, 2002; Daubin and Ochman, 2004; Penadés *et al.*, 2014).

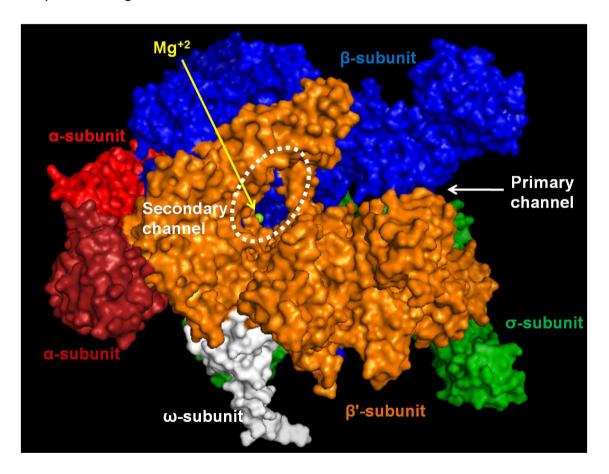


**Figure 2**: Effect of environmental pressure on genome size. Adapted from Dini-Andreote *et al.*, (2012).

The contribution of horizontally transferred genes to the non-core, variable genome fraction is vast, as indicated by the high proportion of mobile elements, phage-related genes, and pathogenicity islands present in the pan-genome of many studied bacteria (Mira *et al.*, 2010).

## **<u>1.1.</u>** "Of environment and genes": effect of environmental alterations on gene expression in bacteria.

Environmental pressure might produce some effect on genome size (**fig. 2**), but this is a slow process that requires a long time and many bacterial generations. However, bacteria have the ability to detect environmental variations and modify its genetic expression pattern in order to rapidly adapt to the changing conditions. This ability is crucial for survival of the bacteria during drastic changes in environmental conditions. This rapid adaptability is crucial among pathogenic bacteria since an infection can be understood as a process where bacteria need to adapt to continuous environmental alterations during its transit through the host organism. The different genes needed to successfully establishing an infection must be expressed co-ordinately, simultaneously and/or sequentially.


#### 1.1.1. Gene transcription, the key of the adaptative response

In the genes or cistrons, functional genetic units, independently of coding for proteins or non coding RNAs, the transcribed sequences are delineated by a region called promoter – where RNApol binds to initiate transcription – and a downstream sequence called a transcription terminator – where transcription ends (Krebs *et al.*, 2011). The sequence between the promoter and the terminator is transcribed to RNA, and in the case that codes for proteins, the sequence that specify the amino acids of the protein is denoted "Open Reading Frame" (ORF). All coding sequences are preceded by a Shine-Dalgarno sequence that is recognized by the ribosomes to start the translation of the RNA to protein. In bacteria, the basic expression unit is the operon (Jacob *et al.*, 1960), composed by a set of adjacent genes transcribed from a single promoter and subject to the same regulatory regime (Brown, 2010). Operons are termed monocistronic when contains a single cistron, bicistronic when encodes two cistrons and polycistronic operon when more than two cistrons are under the same promoter.

Gene expression is initiated with the transcription process, when the information coded in the DNA is transcribed to RNA by an enzymatic complex known as

RNA polymerase (RNApol). Different types of RNA products are produced by the RNApol during transcription:

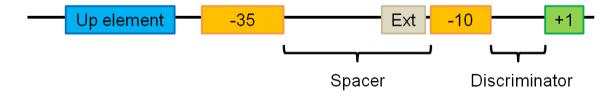
- Messenger RNA (mRNA), molecules that contains the information to synthesize proteins.
- Ribosomal RNA (rRNA), molecules that act as structural components of the ribosomes.
- Transfer RNA (tRNA), carriers of specific amino acids to the ribosome during protein synthesis.
- Small non-coding RNA (snRNA), molecules that are involved in gene expression regulation.



**Figure 3**: Three-dimensional structure of holoenzyme RNApol with its several subunits and Mg<sup>+2</sup> ions that correspond to the catalytic centre. The Primary and Secondary channels of the RNApol are indicated.

The basic unit (core) of RNApol is formed by 5 protein subunits (**fig. 3**): 2  $\alpha$ , 1  $\beta$ , 1  $\beta$ ' and 1  $\omega$  subunit, often indicated as  $\alpha_2\beta\beta'\omega$ . Subunit  $\alpha$  contains two domains: the N-terminal domain ( $\alpha$ NTD) provides the dimerization interface as well as the scaffold for core-enzyme assembly, whereas the C-terminal domain ( $\alpha$ CTD) binds to DNA. The  $\beta$  and  $\beta$ ' subunit are the catalytic subunits. Two Mg<sup>+2</sup> ions, known as cMG1 and cMG2, are responsible of RNA synthesis (Korzheva et al., 2000) coordinating amino acids from both subunits (Artsimovitch et al., 2004). The NTP substrate is bound to the two catalytic  $Ma^{+2}$  ions forming a perfect base pair with the template strand nucleotide and being incorporated to the nascent RNA. It has been described that the active site, contains 2 more Mg<sup>+2</sup> ions where ppGpp binds (pMG1 and pMG2, discussed more in detail below) (Artsimovitch et al., 2004). The  $\omega$  subunit, although not being directly involved in transcription, is essential for the proper binding between  $\beta$ ' and  $\alpha$ subunit. The three-dimensional structure of the RNApol (fig. 3) defines two spaces that play a relevant role during transcription and defined as primary and secondary channel. The holoenzyme needs the binding of a  $\sigma$  subunit to be able to recognise promoter sequences and initiate the transcription process (Haugen *et al.*, 2008). The  $\sigma$  subunit interacts with the subunits  $\beta$  and  $\beta$ ', located within the primary channel. E. coli contains seven different o factors divided in two families, i)  $\sigma^{70}$ -like family and ii)  $\sigma^{54}$ -like family (Ishihama, 2000; Österberg et al., 2011).

The members of the  $\sigma^{70}$ -like family are:


- $\sigma^{70}$  ( $\sigma^{D}$ ), involved in expression of most housekeeping genes.
- $\sigma^{38}$  ( $\sigma^{s}$ ), controls the expression of stationary phase genes and stress response genes.
- $\sigma^{32}$  ( $\sigma^{H}$ ), involved in expression of genes coding for heat shock proteins.
- σ<sup>24</sup> (σ<sup>E</sup>), involved in expression of genes whose product deal with misfolded proteins in the periplasm.
- $\sigma^{28}$  ( $\sigma^{F}$ ), controls the expression of flagella and chemotaxis genes.
- $\sigma^{19}$  ( $\sigma^{\text{Fecl}}$ ) controls the expression of *fec* operon (ferric-citrate transport).

While, in *E. coli*, the  $\sigma^{54}$ -like family only contains a single  $\sigma$  subunit:  $\sigma^{54}$  ( $\sigma^{N}$ ), that controls the expression of genes involved in nitrogen scavenging.

The different  $\sigma$  subunits recognise different promoters, therefore, variations in the  $\sigma$  subunit binding the holoenzyme, would produce variations in the genes

expression pattern. The promoter sequence may vary in complexity, since different functional boxes might be present (**fig. 4**).

Promoters recognized by the  $\sigma^{70}$ -like family contains two hexameric sequences, separated by a spacer, placed at 10 and 35 bp upstream of the transcription start point (+1), known as -10 and -35 boxes which are recognized by the  $\sigma$ subunit. The sequence of the spacer is not important, but the length is crucial to define the appropriate recognition of the promoter by different domains of the sigma subunit (Campbell et al., 2002; Murakami et al., 2002). Some promoters contain an extended -10 element, which is a motif of 3-4 bp immediately upstream of the -10 element that has been suggested to be important for those promoters that lack -35 or with a poor consensus -10 element (Mitchell et al., 2003; Hook-Barnard et al., 2006). Another functional element that can be present in some promoters is the Up element, a DNA sequence of about 20bp. located upstream of the -35 box. UP elements are widely distributed in bacterial promoter and are the site for interacting with the  $\alpha$ CTD of the RNApol, promoting efficient transcription (as revised in Haugen et al., 2008). The presence of the Up element promotes binding of the  $\alpha$  subunit of the RNApol to the DNA and greatly stimulating transcription. Another element is the discriminator that refers to the region between the positions -10 and +1 of one promoter. The bp composition of this region might be important for specific regulation of the promoter (see section 1.2.2.3) (Gummesson et al., 2013; Aseev et al., 2014).



**Figure 4**: Scheme of the promoter elements recognized by the  $\sigma^{70}$ -like family.

Promoters recognized by the  $\sigma^{54}$ -like family have a different structure and they are composed by two motifs (recognized by the  $\sigma$  subunit) placed at 12 and 24 bp upstream of the transcription start point (+1) (Österberg *et al.*, 2011). Considering that this family of  $\sigma$  subunits were not further studied in this thesis,

little more would be mentioned about them. From now on, we would refer to the  $\sigma^{70}$ -like family and the promoter sequences recognised for them.

Transcription is a cycle that could be divided into three major steps i) promoter binding and initiation, ii) elongation and iii) termination.

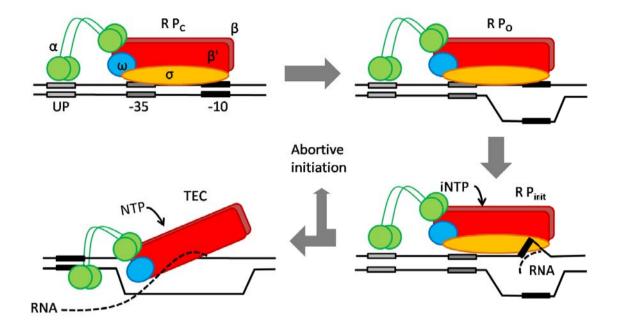



Figure 5: Transcription initiation process step by step (Browning and Busby, 2004; Haugen *et al.*, 2008).

During transcription initiation (fig. 5), RNApol binds the promoter forming the closed complex (fig. 5 RP<sub>c</sub>). In this complex, the DNA is still double stranded and the RNApol covers the DNA approximately from -55 to +1, relative to the transcription start site. Next, the open complex (fig. 5 RP<sub>0</sub>) is formed when the DNA strand are separated from -11 to +3, approximately, and the DNA enter into the primary channel (Haugen et al., 2008). In the case of holoenzymes binding the  $\sigma^{54}$  subunit are not able to form open complexes spontaneously and need the presence of assistant proteins (Österberg et al., 2011). Once the formation of the open complex occurs, NTP incorporation drives the transcription reaction forward. However, at most promoters, RNApol synthesizes short abortive products before transitioning to the elongation complex. During the cycles of abortive initiation, the leading edge of the nascent RNA molecule together with the active site of the enzyme move forward, but the contacts between the RNApol and the -35 hexamer remain intact. Both DNA strands in the vicinity of the -10 hexamer are extruded from the primary

channel onto the surface of the holoenzyme during this transition in a process that is called scrunching (**fig. 5 RP**<sub>init</sub>). It has been proposed that the energy stored in this scrunched intermediate is used to break the interactions between RNApol and the promoter, thereby allowing RNApol to begin the transition to the transcription elongation complex (**fig. 5 TEC**) (Haugen *et al.*, 2008).

Formation of the elongation complex involves the disruption of the contacts between the  $\sigma$  subunit and the core of the RNApol. However, complete detachment of the  $\sigma$  subunit is not obligatory for escaping from the promoter and occurs during the early stages of the elongation process. The detachment is a consequence of a decrease in the affinity of the  $\sigma$  subunit for RNApol (Mooney *et al.*, 2005; Reppas *et al.*, 2006; Pupov *et al.*, 2014). A partially attached  $\sigma$  subunit can cause elongation stalling by binding sequences that mimic -10-elements within DNA that is being transcribed (Murakami *et al.*, 2002; Nickels *et al.*, 2005; Pupov *et al.*, 2014).

The elongation complex (TEC) is much stable and processive as compared to the initiation complex, having a constant elongation rate (Guajardo and Sousa, 1997; Nudler *et al.*, 1997). During elongation, the RNApol-DNA complex can change between an active and inactive state, also called paused state. Not all the transcribing RNApol molecules are stop when a paused signal is encountered, a fraction of the RNApol may be to bypass it. How efficient is the paused signal may depend on several factors: the nucleotide sequence, the specific composition of the RNApol, etc (Landick, 2006). The overall elongation rate of the RNApol is determined by the intrinsic elongation rate and pauses occurring during this process (Bar-Nahum *et al.*, 2005).

During pausing, transcription is only temporarily stalled, and the polymerase will eventually resume elongation. Single-molecules studies of transcription at high temporal resolution revealed that, even at saturating NTP concentrations, bacterial RNApol pauses frequently (once every 100–200 bp) for durations of 1– 6 s on average (Adelman *et al.*, 2002; Neuman *et al.*, 2003). Pauses can be induced by certain DNA sequences, DNA lesions and mismatched nascent base pair resulting from a misincorporation event. There are two distinct classes of pausing signals depending on DNA sequences: hairpin-dependent (e.g. *his*  leader pause) and hairpin-independent pauses (e.g. *ops* pause) (Artsimovitch and Landick, 2000). These pauses if became longer-lived may cause rearrangements of RNApol that further slow the rate of pause escape, such as backtracking (Landick, 2006). In fact, it was observed than *ops* pauses are prone to produce backtracking, but not *his* pauses (Artsimovitch and Landick, 2000).

Backtracked RNApol would move backwards along DNA and RNA, producing a detachment of the RNA 3'-end from the active site and extruding it through the secondary channel. Backtracked RNA traps RNApol in an inactive conformation and prevents forward translocation and NTP binding (Martinez-Rucobo and Cramer, 2013). When these pausing occurs the elongation complex does not disassociate from the DNA. Therefore, stalled RNApol might promote conflicts between transcription and replication machinery due to physical collisions that has as a consequence events of DNA instability (Tehranchi *et al.*, 2010).

Pause and backtracking situations could be solved by several factors, such as NusG (Artsimovitch and Landick, 2000) or the Gre factors (GreA and GreB) (Sergei Borukhov *et al.*, 1993) or by the translation process (Dutta *et al.*, 2011). Interestingly, GreA is able to solve only *ops* pauses and backtracked RNApol (Artsimovitch and Landick, 2000).

Elongation continues until the RNApol encounters a termination signal. There are two different classes of terminators, i) the Rho-independent, also known as intrinsic terminator, and ii) the Rho-dependent (Henkin, 2000). The intrinsic terminator is composed of a G+C dyad symmetry element followed by an oligo(T) sequence, so that in RNA it appears as a stable RNA hairpin followed by a run of seven to nine U residues (Nudler, 1999). After TEC reaches the end of the T stretch, it pauses and become irreversibly inactivated due the stable RNA hairpin and finally it falls apart (Gusarov and Nudler, 1999). The Rho-dependent termination requires the binding of the Rho-factor to a *rut* site (<u>R</u>ho <u>ut</u>ilization) in the nascent mRNA that are 80nt (approximately) C-rich sequences without secondary structures (or weak) (reviewed by Peters *et al.*, (2011)). The binding of Rho to the mRNA is followed by the interaction with the RNApol, but

recent studies showed that Rho may need the presence of accessory proteins, such as NusG, to produce termination (Shashni *et al.*, 2014).

Similarly to the initiation process, elongation and termination are dynamic processes controlled at different levels. As discussed below, genetic regulation during transcription initiation has been highly studied, and several mechanisms of regulation described exist. However, the aim of this project mostly focused is to study some aspects of the regulation during transcription elongation and the effect of pausing over gene expression.

#### 1.1.2. Transcriptional regulation

Bacteria use different strategies to adapt to varying environmental conditions, allowing them to live in a wide range of niches. Unfavourable environmental conditions induce a stress response consisting of a characteristic change in the pattern of gene expression. This stress response helps to protect vital processes, to restore cellular homeostasis and increases the cellular resistance against subsequent stress challenges (Aertsen and Michiels, 2008). But sometimes it is better to run. To ensure survival to stress conditions, bacteria may move by "swimming" using their flagellum, to more favourable location (Mitchell and Kogure, 2006).

Changes in the environmental signals may be sensed by very diverse mechanisms. The cell can sense the presence of determined molecules such as carbohydrates or ions, in the medium by specific receptors (Forst and Roberts, 1994; Deutscher, 2008; Zhao *et al.*, 2008; Richet *et al.*, 2012); can also detect absence of pivotal components, such as amino acids (Magnusson *et al.*, 2005); or can detect the consequence of an alteration in the environment as the detection of denatured proteins in the periplasm due to either high temperatures or hyperosmotic stress (Bianchi and Baneyx, 1999; Ruiz and Silhavy, 2005). Those are some examples of mechanisms related with sensing environment and the response that may induce in the cell is also very diverse. The levels of either small non proteinaceous molecules (Kalia *et al.*, 2013) or proteins may be altered; or some proteins might be modified as a consequence of the detection of changes in the environment (Mascher *et al.*, 2006).

The response to environmental signals in transcription might be mediated by a vast number of regulatory factors which can be classified into two groups attending if they bind or not to the DNA.

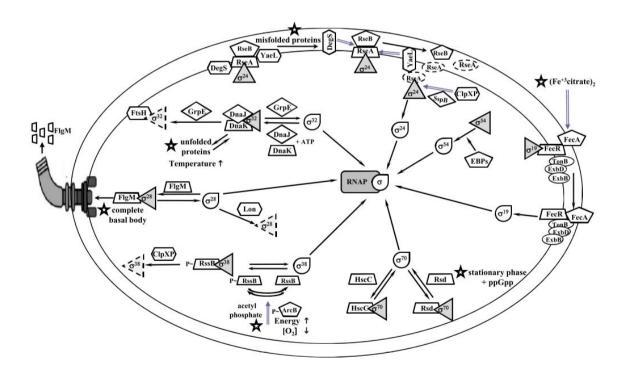
Factors directly interacting with the DNA.

• <u>1.1.2.1. Regulatory proteins</u>: Regulatory proteins could act as repressors or activators. These regulatory proteins restrict their effects to specific promoters by binding to specific DNA sequences that are near to or overlapping the promoter. Usually, activators bind near RNApol, affecting the transcription efficiency. Often after binding of the activator to the DNA, it establish contact with the  $\alpha$  subunit facilitating a change in the structure of the double stranded DNA of the promoter (Haugen *et al.*, 2008). Other class of activators might contact with the  $\sigma$  subunit promoting the recruitment of the RNApol to the promoter. Repressors usually prevent binding of RNApol either by occulting the promoter after binding to the vicinity of the –10 and –35 region or by competing for the binding to the UP element (Quinones *et al.*, 2006). Moreover, some repressors act as anti-activators, preventing the function of specific activators. Many promoters are controlled by two or more transcription factors, responding each factor to environmental signals; and producing a coordinated response (Browning and Busby, 2004; Haugen *et al.*, 2008).

• <u>1.1.2.2. Changes in  $\sigma$  subunits</u>: As mentioned in section 1.1.1, *E. coli* contains several  $\sigma$  subunits. The  $\sigma^{70}$  is responsible for expression from most of the housekeeping genes, expressed during exponential-phase growth. Other  $\sigma$  factors are required for the expression of groups of genes required for coordinated response to specific stresses or for the expression of genes functionally related. The different  $\sigma$  subunits compete for binding a limited supply of core RNApol. The output will depend on the concentration of the different  $\sigma$  subunits and its affinity for the core enzyme. This mechanism of regulation has been named as  $\sigma$  subunits competition. Although it has been postulated that the concentration of core enzyme remain constant, the concentration of each  $\sigma$  subunit is subject to variation depending on the cell growth conditions. The intracellular concentration of the  $\sigma^{70}$  subunit is higher in both exponential and stationary phases, as well as under various stress

conditions. In exponential-phase cells, two of the alternative  $\sigma$  subunits,  $\sigma^{N}$  and  $\sigma^{F}$ , are present in significant concentrations, but, the level of  $\sigma^{S}$  only becomes detectable in stationary phase of growth. Among the seven  $\sigma$  subunits from *E. coli*,  $\sigma^{70}$  has the highest affinity to the core enzyme. *In vitro* experiments has shown that the affinities of the other six  $\sigma$  subunits ranged downwards from  $\sigma^{70}$  to  $\sigma^{S}$ , which has the weakest binding activity (Ishihama, 2000). However, it has been shown *in vivo* that ppGpp is required for the subunits  $\sigma^{S}$ ,  $\sigma^{32}$ ,  $\sigma^{54}$  to bind to the core RNApol (Jishage *et al.*, 2002; Laurie *et al.*, 2003). There are other factors that might interfere in the competition of the different  $\sigma$  subunits with the RNApol. The affinity might be altered by the presence of certain molecules such as alarmones and the concentration of functional  $\sigma$  subunits might be importantly affected by the presence of anti-sigma and anti-anti-sigma factors (Alba and Gross, 2004; Magnusson *et al.*, 2005; Barembruch and Hengge, 2007).

<u>1.1.2.3. DNA topology</u>: The bacterial chromosome is a circular DNA, which is in a supercoiled conformation. In fact the supercoiling, as well as the interaction with several proteins, is necessary for the compaction of the bacterial genome to form the nucleoid. It has been suggested that the gene expression might depend on the topological state of the promoter prior to the RNApol binding and consequently affecting transcription initiation. Moreover, DNA topology could influence transcription elongation and termination. Topoisomerases and gyrases would reduce or increase the supercoiling of the DNA, but also the binding of different nucleoid-associated proteins could affect DNA topology. It has been observed that several factors could vary the amount of topoisomerases or gyrases, producing changes on the DNA topology and as a consequence to the gene expression (reviewed in Travers and Muskhelishvili, 2005).


*E. coli* contains several nucleoid-associated proteins such as Fis, IHF, H-NS, StpA or Dps. Although most of these proteins bind to DNA non-specifically, some bind with weak specificity occupying sites distributed throughout the chromosome. The binding of these proteins to the DNA, and the resulting folding of the bacterial chromosome, affects the distribution of RNApol between

promoters, influencing transcription, causing activation or repression, depending on the context of their binding sites (Browning and Busby, 2004).

• Regulators that not bind to DNA.

• <u>1.1.2.4. sRNA</u>: The major role for sRNA is to regulate gene expression at post-transcriptional level, affecting mRNA translation or stability. However, 6S RNA inhibits transcription by binding directly to the active site of RNApol, blocking the access to promoter DNA and being used as a template for transcription. This sRNA regulates some  $\sigma^{70}$ -dependent genes (Wassarman, 2007).

• <u>1.1.2.5. Anti-sigma factors</u>: An anti- $\sigma$  factor has the ability to form complex with a determined  $\sigma$  subunit and thereby inhibiting its function (Ishihama, 2000). Several anti-sigma factors had been described for the different  $\sigma$  subunits in *E. coli* (**fig. 6**). Two classes of anti-sigma factors were defined: i) the cytoplasmatic anti-sigma factors and ii) the inner-membrane-bound anti-sigma factors (Treviño-Quintanilla *et al.*, 2013).



**Figure 6**: Regulation of  $\sigma$  factors by anti-  $\sigma$  factors in *E. coli*. The forms in figure represent: tear ( $\sigma$  factor active form), solid triangle ( $\sigma$  factor inactive form), dashed triangle ( $\sigma$  factor degraded form), star (environmental signal that releases the  $\sigma$  factor), trapezoid (anti-  $\sigma$  factor), pentagon (anti-sigma factor sensor or modulator), solid ellipse (transducer signal complex), hexagon

(protease), rhombus (chaperone), dashed ellipse (any protein in degraded form), and rounded rectangle (RNApol core). Adapted from Treviño-Quintanilla *et al.*, (2013).

In *E. coli* anti-sigma subunits have been discussed for all the  $\sigma^{70}$ -like subunits. Next, I will briefly discus the mechanisms of action for the different anti-sigmas.

The subunit  $\sigma^{70}$  has two anti-sigma factors, Rsd and HscC, acting during stationary phase and heat shock, respectively (Treviño-Quintanilla *et al.*, 2013). It has been described that Rsd binds to  $\sigma^{70}$ , avoiding its association with the RNApol (Jishage and Ishihama, 1998; Ishihama, 2000). The amount of Rsd increases at stationary phase respect exponential phase, as well as its ability to bind to  $\sigma^{70}$  (Piper *et al.*, 2009). HscC forms a complex with  $\sigma^{70}$  and it has been shown that overexpression of HscC produces a decrease of  $\sigma^{70}$ -dependent activity. *In silico* studies suggested that *hscC* is under control of two promoters, a  $\sigma^{70}$  and a  $\sigma^{32}$ -dependent promoter, suggesting that its expression would increase during heat shock (reviewed in Treviño-Quintanilla *et al.*, (2013)).

RssB is an anti-sigma factor that plays a critical role in the control of cellular to  $\sigma^{S}$  levels in *E. coli* (**fig. 6**). When RssB is phosphorylated, it is able to bind to  $\sigma^{S}$  and promote its degradation by the protease ClpXP. It has been suggested that the two-component system ArcB/ArcA, monitoring both the oxygen and energy supplies, are the responsible of the phosphoylation of RssB. Once the cell enters in stationary phase,  $\sigma^{S}$  concentration increases above that of non-phosphorylated RssB, allowing  $\sigma^{S}$  to bind to the RNApol core (reviewed in Treviño-Quintanilla *et al.*, (2013)).

During optimal growth conditions, the chaperones DnaJ, DnaK and GrpE form a complex with  $\sigma^{32}$ , preventing its binding to the RNApol core, and promoting its degradation by the protease FtsH (**fig. 6**). But under heat shock conditions, the chaperones DnaJ, DnaK and GrpE would bind unfolded proteins, releasing  $\sigma^{32}$  and allowing its binding to the RNApol core (reviewed in Treviño-Quintanilla *et al.*, (2013)).

The alternative  $\sigma^{E}$ , essential in *E. coli* (Connolly *et al.*, 1997), is responsible for the response to envelope or extracytoplasmic stress after detection of unfolded proteins in the periplasm (Alba and Gross, 2004). Under no-stress conditions, the inner-membrane-bound anti-sigma factors RseA binds to  $\sigma^{E}$ , avoiding its

binding to the RNApol (**fig.6**). Unfolded proteins –accumulated during heat shock (Rouvière *et al.*, 1995), hyperosmotic stress (Bianchi and Baneyx, 1999) or other stresses – interact with the membrane protein DegS, activating its protease activity and causing degradation of RseA. The  $\sigma^{E}$  subunit will be liberated and able to interact with the RNApol and induce gene expression changes (Alba and Gross, 2004).

The anti-sigma factor FIgM binds to FliA ( $\sigma^{F}$ ) and prevents its association with the RNApol inhibiting transcription of several flagella genes (**fig. 6**). However, when the basal body and motor structure is formed, FlgM is secreted through the basal body of the flagella and  $\sigma^{F}$  get free to bind the RNApol and induce transcription of several flagella genes, such as *fliC*, coding for the main subunit of flagella (Chevance and Hughes, 2008).

The expression of *fecABCDE* (under the control of the subunit  $\sigma^{19}$ ) is activated during iron starvation with the presence of ferric citrate. The anti-sigma factor FecR, anchored in the cytoplasmic membrane, bind  $\sigma^{19}$  during normal conditions. The presence of ferric citrate is sensed by FecA that contact FecR, producing the liberation of  $\sigma^{19}$ .

The subunit  $\sigma^{54}$  does not have an anti-sigma factor, but it requires the presence of assistant proteins to form the open complexes, as previously mentioned.

<u>1.1.2.6. Alarmones</u>: Alarmones, or secondary messengers, are low molecular weight non-proteinaceous molecules that control and modify gene expression, affecting a vast range of genes. Environmental signals would produce changes on the amount of these secondary messengers by acting over the proteins responsible of its synthesis or degradation (Pesavento and Hengge, 2009; Kalia *et al.*, 2013).

In *E. coli* it has been described several alarmones, but the most important ones are cAMP, c-di-GMP and ppGpp. The levels of cAMP increases in absence of glucose, binding to CRP, and producing changes on the gene expression pattern (Deutscher, 2008). Several environmental factors stimulate the production of c-di-GMP that would affect the expression of several genes involved in motility and biofilm formation (Kalia *et al.*, 2013). The alarmone

ppGpp is produced during amino acid starvation and is able to produce its effect, mainly binding into the catalytic centre of the RNApol (Cashel *et al.*, 1996; Magnusson *et al.*, 2005). This alarmone will be more extensively described below.

• <u>1.1.2.7. Regulation through the secondary channel of the RNApol</u>: The structural study of the RNApol determined a space between the subunits  $\beta$  and  $\beta'$  – known as secondary channel (**fig. 3**) – that connects the cytoplasm with the catalytic centre, suggested initially as the entrance for nucleotides (Landick, 2005; Stepanova *et al.*, 2010). It has been described that the alamone ppGpp, as well as several proteins, such as GreA, GreB or DksA, enter inside the secondary channel and interact directly with the catalytic centre of the RNApol (Browning and Busby, 2004; Haugen *et al.*, 2008; Lamour *et al.*, 2008; Blankschien *et al.*, 2009). The swap between the different factors that bind to the secondary channel of the RNApol could produce changes in the expression pattern. This regulation would be more extensively studied during this thesis.

#### **1.2. Factors that bind into the secondary channel**

In *E. coli*, several factors, the alarmone ppGpp and several proteins, have the ability to interact into the secondary channel of the RNApol and consequently affecting its activity (**fig. 7**) (Browning and Busby, 2004; Haugen *et al.*, 2008; Lamour *et al.*, 2008; Blankschien *et al.*, 2009; Stepanova *et al.*, 2010). The proteins that bind into the secondary channel of the RNApol include homologous and unrelated low-molecular-weight proteins with similar spatial organization. The three-dimensional structure of those proteins is adapted to bind into the secondary channel of the RNApol, and a second domain that remains outside the secondary channel. These proteins are GreA, GreB (Sergei Borukhov *et al.*, 1993), DksA (Perederina *et al.*, 2004) and Rnk (Lamour *et al.*, 2008), in *E. coli*. These proteins are also detected in other Enterobacteria such as *Salmonella*.

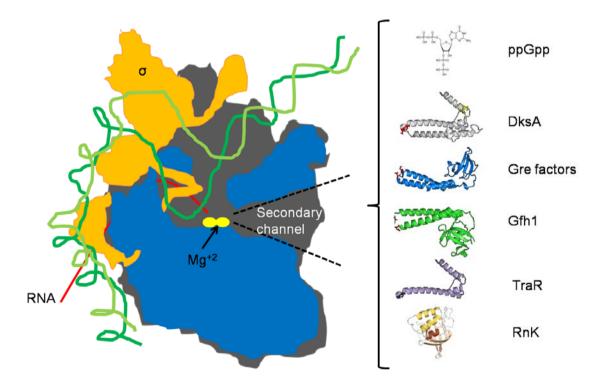
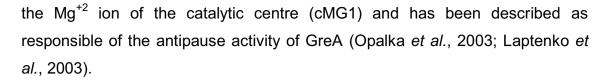
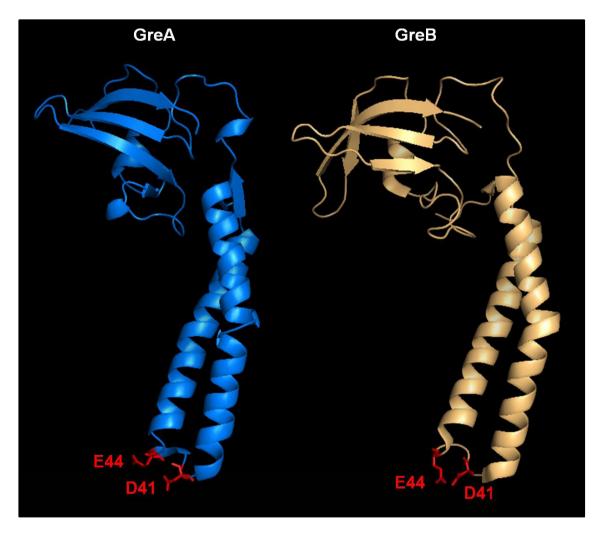



Figure 7: Factors that bind into the secondary channel of RNA polymerase. Adapted from (Haugen *et al.*, 2008; Lamour *et al.*, 2008; Blankschien *et al.*, 2009)

Moreover, it has been described the presence of proteins that bind to the secondary channel in some conjugative plasmids, such as F plasmid in *E. coli* or pSLT in *Salmonella*, the protein TraR (Blankschien *et al.*, 2009), as well as

the presence of similar proteins in other bacteria, such as Gfh1 of *Thermus thermophilus*. A section of this thesis is denoted to discuss the existing diversity of those proteins from a phylogenetic perspective.


The fact that several proteins can bind to the same target producing different effects suggest that there should be a competence between the different factors for binding the secondary channel of RNApol with consequences in the functionality of the holoenzyme. In the following sections, different factors interacting with the secondary channel of the RNApol are introduced.


#### 1.2.1. GreA, a transcription elongation factor

In *E. coli*, two proteins, GreA and GreB (**fig. 8**), interact with the secondary channel of RNApol suppressing arrest situation or pause during transcription that could cause premature termination (Laptenko *et al.*, 2003). GreA was described as a suppressor of the negative effect in the growth at high temperature produced by the RNApol mutation S522F at the  $\beta$  subunit in *E. coli* (Sparkowski and Das, 1991). Therefore, from the beginning its possible interaction with the RNApol was detected.

Moreover it has been described that a mutant lacking both proteins, GreA and GreB, is not able to grow at high temperature (42°C) (Trautinger and Lloyd, 2002), suggesting that these factors are essential for the transcription process under this conditions, due to its anti-pause effect.

GreA and GreB show a high structural homology among them, and also with DksA. GreA is a low-molecular-weight protein, 17.5 kDa (158 amino acids), with 2 domains: a N-terminal coiled-coil (CC) domain, that is formed by two antiparalel  $\alpha$ -helix linked by a turn; and a C-terminal globular domain that contains a  $\beta$ -barrel structure with an  $\alpha$ -helix (**fig. 8**). Both domains are linked by an interdomain flexible linker (Sparkowski and Das, 1990; Stebbins *et al.*, 1995). It has been determined that the coiled-coil domain enters inside the secondary channel of the RNApol, being responsible of the RNA cleavage and antipause activity, while the globular domain remains outside, being responsible of the binding of GreA to the RNApol (Koulich *et al.*, 1998). The coiled-coil domain contains two residues, D41 and E44 (**fig. 8**), that interact directly with





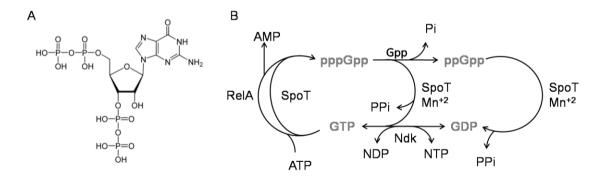
**Figure 8**: Structure of the Gre factors. GreA is indicated in blue and GreB in pale orange. The residues D41 and E44 are indicated in red.

Studying the charge distribution around the surface of GreA and GreB, a remarkably asymmetry was observed in both proteins. One face of the GreA protein is strongly acidic, whereas the opposite face is neutral. This asymmetry in the charge distribution is more dramatic in GreB: while one face of GreB is acidic, the opposite face is strongly basic (Koulich *et al.*, 1997). This basic area on GreB, not present in GreA, is hypothetically responsible for GreB affinity to the RNApol, as well as its activity (Kulish *et al.*, 2000).

The binding of GreA to the secondary channel restores backtracked RNApol, as described in section 1.1.1, by inducing the intrinsic endopyrophospholytic

activity of the RNApol to cause the hydrolytic removal of the 3'-proximal segment of the nascent RNA (Orlova *et al.*, 1995). It has been observed that GreA is able to solve hairpin-independent pauses (e.g. *ops* pause), but not those dependent of hairpin (e.g. *his* pause) (Artsimovitch and Landick, 2000). Although both Gre factors (GreA and GreB) had similar activity, and it has been observed that the absence of one factor could be substituted by the other, the cleavage produced by GreA and GreB is different. GreA-induced cleavage yields di- and trinucleotide products, whereas GreB stimulates the accumulation of excised products in a much wider size range (2–18 nucleotide long RNAs; (Sergei Borukhov *et al.*, 1993; Kulish *et al.*, 2000)). Moreover, Gre factors remove misincorporated nucleotides and thus may contribute to transcription proofreading and fidelity, by a cleavage reaction (Shaevitz *et al.*, 2003; Zenkin *et al.*, 2006).

In order to determine the effect of Gre factors on the physiology cell, several analysis have been performed showing that while cells lacking GreB are virtually indistinguishable from WT cells, *greA* mutants exhibit several growth defects, including sensitivity to salt and divalent metal ions (Susa *et al.*, 2006). Moreover, transcriptomic studies of double mutant *greA greB* compared with simple mutant *greB* and under conditions of overexpression of GreA, showed that GreA is required for the expression of several genes like ribosomal proteins or genes associated to cellular respiration and energy metabolism, suggesting that transcript cleavage by GreA contributes to optimal expression levels of those genes *in vivo* (Stepanova *et al.*, 2007). Moreover there are several genes related with metabolism and stress response that are down-regulated by GreA, most of them only under overexpression conditions. However GreA does not inhibit transcription from the corresponding promoters *in vitro*, suggesting that the observed inhibitory effect of GreA is indirect and may depend on additional factors (Stepanova *et al.*, 2007).


Apart of its role in RNA cleavage, it has been described that GreA has activity as chaperone. It has been shown that GreA is able to suppress the heatinduced aggregation of proteins and promotes reactivation of denatured proteins in *E coli*. Moreover, overexpression of GreA promotes survival during heat shock and oxidative stress (Li *et al.*, 2012). These data suggests that GreA

22

not only has a role on genetic expression controlling transcription elongation, but also at post-transcriptional processes, affecting protein stability.

#### 1.2.2. The alarmone ppGpp

Guanosine tetra- and penta-phosphate – known as (p)ppGpp – is a modified nucleotide that acts as alarmone in bacteria (**fig. 9A**). Although being discovered in *E. coli*, it is not restricted to Gram negative bacteria. It can be found in Gram positive, and even in the chloroplasts of plant cells (Braeken *et al.*, 2006; Atkinson *et al.*, 2011). RelA and SpoT are the enzymes involved in the turnover of ppGpp in *E. coli* (**fig. 9B**). The amount of ppGpp will fluctuate in response to several environmental signals. As discussed below in more detail, the RelA-mediated ppGpp synthesis is an ATP:GDP/(GTP) pyrophosphoryl group transfer of the  $\beta$ , $\gamma$ -phospates from the ATP donor to the ribose 3' hydroxyl group of the acceptor nucleotides (GDP or GTP). This reaction only uses dATP as a donor among the eight common ribo- and deoxyribonucleosides triphosphates, and as acceptor GTP/GDP or even ITP but not pyrimidine nucleotides, deoxypurine nucleotides, or ATP. According to the cellular pool of GTP / GDP and having in consideration that RelA had the same affinity for both nuclotides, pppGpp is the most likely product *in vivo* (Cashel *et al.*, 1996).



**Figure 9**: Structure, synthesis and degradation of ppGpp. A) Molecular structure of ppGpp. B) Synthesis and degradation of ppGpp. Adapted from Cashel *et al.*, (1996)

SpoT is a bifunctional enzyme (**fig.9 B**) possessing both (p)ppGpp 3'pyrophosphohydrolase activity (degradation) as well as 3'pyrophosphotransferase (synthesis) with GTP as acceptor, but it has higher activity as hydrolase than transferase. Its hydrolase activity requires  $Mn^{+2}$  and is further stimulated by  $Mg^{+2}$ . It has been described that *relA* and *spot*, present in γ- and β- proteobacteria, evolved via gene duplication of a bifunctional ancestral gene known as *rel* and found in many bacterial groups. These data suggest that *relA* had lost the hydrolase activity (Cashel *et al.*, 1996; Atkinson *et al.*, 2011). In *E. coli*, the double mutant  $\Delta relAspoT$  is denominated ppGpp<sup>0</sup>; indicating that it is not able to produce ppGpp under any condition.

There are other genes involved in the turnover of (p)ppGpp (**fig. 9 B**) such as *gpp* and *ndk*. Gpp is a pppGpp  $\gamma$ -phosphohydrolase, responsible of the degradation of pppGpp to ppGpp. Modifications on the activity of this enzyme would produce variations in the relative amount of pppGpp and ppGpp and it has been described that they could produce different effects in the cell, being more active ppGpp than pppGpp (Travers and Muskhelishvili, 2005; Mechold *et al.*, 2013). Ndk is a nucleoside diphosphate kinase that produces conversion of GDP to GTP and vice versa in order to regenerate the principal substrates for pppGpp synthesis (Cashel *et al.*, 1996).

It has been described that (p)ppGpp levels increases dramatically at stationary phase (**fig. 10**) and after that there is a decrease, reaching a steady-state plateau (Cashel, 1969). The peak of ppGpp coincides with the interphase between exponential and stationary phase. Experiments under amino acid starvation showed a simultaneous reduction of the amount of stable RNA (tRNA and rRNA).

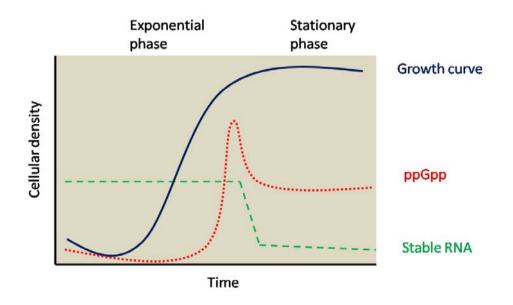
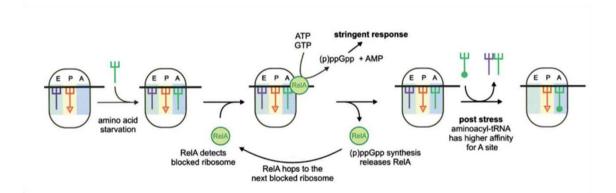




Figure 10: Effect of growth phase on the amount of (p)ppGpp (in red) and stable RNA (in green). Adapted from (Cashel, 1969; Ryals *et al.*, 1982)

This regulatory relationship between amino acid availability and stable RNA accumulation was termed stringent control. The amount of stable RNA could be restored in mutants termed "relaxed" (Neidhardt, 1964). Studies determining the amount of nucleotides during amino acid starvation showed a significant increase in the levels of ppGpp (Cashel, 1969) and that this increase of ppGpp was not observed in "relaxed" mutants. The relaxed mutants, were mutants in the *relA* gene, the synthetase of ppGpp under amino acid starvation. Moreover, ppGpp is produced not only in response to amino acid limitation but also in response to many different kinds of nutrient limitations and circumstances that cause growth arrest, such as stationary phase (Cashel *et al.*, 1996).

During amino acid starvation, uncharged tRNA placed in the ribosomal A-site produces a pause of translation with stalled ribosomes, stimulating RelA binding (Cashel *et al.*, 1996) (**fig. 11**).



**Figure 11**: Mechanism of RelA-mediated (p)ppGpp synthesis. Adapted from Wendrich *et al.*, (2002).

RelA interacts with the ribosomal protein L11 (coded for the gene *relC*) of the 70S subunit and this interaction induces (p)ppGpp synthesis simultaneously with its release from the ribosome. RelA "hops" to the next stalled ribosome, and the induction of (p)ppGpp synthesis is repeated. The intracellular high levels of (p)ppGpp will promote an intense change in the gene expression pattern, known as the stringent response (Wendrich *et al.*, 2002). Charged / uncharged tRNA ratios can be continuously sensed by the demands of the active population of mRNA codons for translation, and modification of this ratio would produce changes in the ppGpp levels. Recently it has been shown that the cell respond differently depending on the intracellular concentration of

ppGpp. Amino acid starvation produces an initial increase of ppGpp levels that would induce an early response to solve it by activating the Lrp regulon. If this early response is not able to solve the amino acid starvation, the amount of ppGpp would further increase and produce the stringent response (Traxler *et al.*, 2011).

The mechanism behind SpoT-dependent production of ppGpp and how SpoT senses starvation conditions is not well defined. The protein SpoT is able to bind CgtA that bind to 50S of ribosomes suggesting that SpoT, similarly to ReIA, is able to interact with ribosomes (Jiang *et al.*, 2007). Moreover, CgtA affects the ratio ppGpp / pppGpp in response to amino acid deprivation (Persky *et al.*, 2009). It has been suggested that uncharged tRNA inhibits ppGpp hydrolysis (Richter, 1980). Nevertheless, it appears that SpoT-mediated synthesis of ppGpp respond mostly to stresses others than amino acid starvation (Cashel *et al.*, 1996; Magnusson *et al.*, 2005).

The protein SpoT is able to sense fatty acid starvation and consequently activate the ppGpp production (Battesti and Bouveret, 2006; Potrykus and Cashel, 2008). In absence of fatty acids, the acyl carrier protein (ACP) binds to SpoT, activating the synthesis of ppGpp.

The alarmone ppGpp interact with the RNApol by binding within its active site, located into the secondary channel, between the  $\beta$  and  $\beta'$  subunits (**fig. 3**). As discussed above, the active site contains 4 Mg<sup>+2</sup> ions, two catalytic ions, (cMG1 and cMG2), and two ions that bind ppGpp (pMG1 and pMG2). In the interaction with the RNApol, three different zones of the ppGpp molecule can be differentiated: i) proximal diphosphate, respect to the distance of the catalytic centre, binding  $\beta$  and  $\beta'$  residues as well as pMG1, ii) the distal diphosphate that bind to  $\beta'$  residues and the pMG2 and iii) the guanosine base, enters into a cavity on the RNApol surface but this contact do not produce an specific recognition of the guanosine base or restrict its orientation, allowing that ppGpp could change its orientation (Artsimovitch *et al.*, 2004). It has been described that the binding of ppGpp to the RNApol produces conformational changes varying the stability of the open complex (**fig.5 RP**<sub>0</sub>) (Magnusson *et al.*, 2005; Potrykus and Cashel, 2008).

#### 1.2.2.1. The stringent response

The increase of ppGpp produces relevant changes in the gene expression pattern promoting the rearrangement of the expression profile to pass from actively growing cells (exponential phase) to cells that need to adapt and survive different environmental stress (stationary phase), known as stringent response (**fig. 12**). The alarmone ppGpp has a pleiotropic effect over transcription expression.

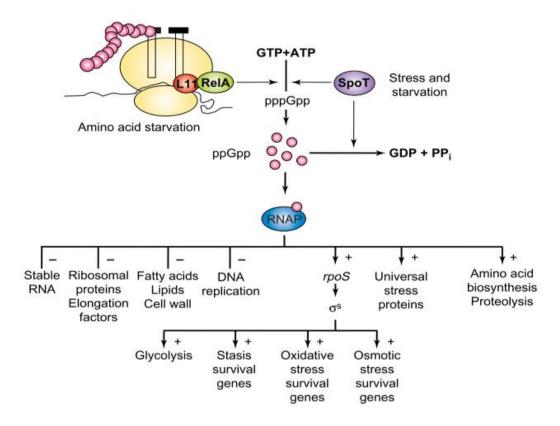



Figure 12:Scheme of the stringent response adapted from Magnusson et al., (2005)

During stringent response, there is a decrease of cellular functions related to bacterial growth while it stimulates genes related with survival to different stress situations. Apart from the stable RNA, ppGpp represses the synthesis of ribosomal proteins, elongation factors, fatty acids and lipids, cell wall production and DNA replication. Direct negative effects of ppGpp on promoters have been detected *in vitro* and several mechanisms for direct negative regulation by ppGpp have been suggested, such as the destabilization of the RNAP– promoter open complex. The rRNA promoters form intrinsically unstable open complexes with RNAP and are therefore thought to be specifically sensitive to

further destabilization mediated by ppGpp. However, an unstable open complex is not an absolute requirement for negative regulation by ppGpp because direct negative effects have also been detected on promoters that form apparently very stable open complexes (Magnusson *et al.*, 2005).

It has also been suggested that ppGpp could compete with the NTPs to bind to the active centre, inhibiting hence gene transcription (Jöres and Wagner, 2003). Moreover, *in vitro* experiments had suggested that ppGpp could have a negative effect over gene expression due delays during promoter escape process. Different possible mechanisms for negative regulation by ppGpp are not exclusive and might be working in concert to exert negative regulation.

The alarmone ppGpp may also act as positive regulator. The expression of a very huge set of genes related with amino acid biosynthesis, proteolysis, and resistance of different types of stress, is induced in a ppGpp-dependent manner upon growth arrest (fig. 12). It has been shown that ppGpp regulates the differential binding abilities of sigma factors to the core RNApol (Magnusson et al., 2005; Costanzo et al., 2008; Lemke et al., 2009; Gopalkrishnan et al., 2014). Apart of affecting the activity of the alternative sigma factors or its affinity for RNApol, it has been shown that ppGpp might affect the stability of some  $\sigma$ subunits. During cell proliferation,  $\sigma^{s}$  is synthesized but rapidly degraded by ClpXP protease, but  $\sigma^{s}$  become stabilized upon entry into stationary phase. probably when binds to RNApol (as described in section 1.1.2.5.). However, ClpXP does not directly recognize the protein; due it requires the binding of RssB. The alarmone ppGpp promotes  $\sigma^{S}$  protein stability by inducing expression of the anti-adaptor proteins IraP and IraD, which bind RssB (Bougdour and Gottesman, 2007; Merrikh et al., 2009). Although less is known about the mechanism for direct positive regulation by ppGpp than about the mechanism for negative regulation, it has been proposed that the destabilization of the open complex actually helps promoter-escape and transcription initiation from very stable promoters, such as the promoters present in several ppGppstimulated genes (Magnusson et al., 2005).

In addition to the proposed direct mechanisms for ppGpp action, other models suggest that ppGpp acts indirectly, perhaps through changes in the availability

of RNApol. During exponential phase, a major part of the RNApol transcribes operons that code for stable RNA (tRNA and rRNA). In optimal growth conditions, up to an 80% of the RNApol might be transcribing those genes (Neidhardt and Curtis, 1996). But at stationary phase, the levels of ppGpp would increase producing an inhibition of the expression of the stable RNA operons, liberating a huge amount of RNApol, that would transcribe other genes such as genes involved in amino acid biosynthesis (Magnusson *et al.*, 2005).

#### 1.2.2.2.Phenotype of the ppGpp-deficient mutants

As described before, RelA-mediated stringent response is induced by an increase in the level of uncharged tRNAs during amino acid starvation, and as a consequence ppGpp produces stimulates the expression of amino acid biosynthesis genes. Therefore, ppGpp<sup>0</sup> mutants are not able to grow on minimal media due to its incapacity to synthesize amino acids, becoming auxotrophic at minimal media (H Xiao *et al.*, 1991; Vinella *et al.*, 2012). Interestingly, suppressor mutants have been isolated, meaning ppGpp<sup>0</sup> mutants able to grow in minimal media, and the mutations mapped in the  $\beta$  and  $\beta$ ' subunit (Xu *et al.*, 2002; Murphy and Cashel, 2003; Harinarayanan *et al.*, 2008), in the vicinity of the secondary channel, suggesting that the binding of ppGpp to the RNApol produces conformational changes, as previously mentioned.

The effect of ppGpp over alternative  $\sigma$  subunits competition would produce different sensibility to several stress conditions due the lack of stimulation of several stress response genes, like *rpoE* regulon (Costanzo *et al.*, 2008; Gopalkrishnan *et al.*, 2014). Moreover it has been described that ppGpp is required for UV survival (McGlynn and Lloyd, 2000; Trautinger *et al.*, 2005).

Deficiency of ppGpp also produces an enlargement of bacterial cells, producing filamentation (Traxler *et al.*, 2008; Aberg *et al.*, 2009), possibly because of the involvement of ppGpp to cellular division affecting FtsZ (Navarro *et al.*, 1998; Magnusson *et al.*, 2005).

Due to its pleiotropic effect, the ppGpp deficiency of causes several phenotypes affecting different cellular functions (Cashel *et al.*, 1996; Magnusson *et al.*, 2005). It has been observed using transcriptomic studies that over 265 genes of

E. coli, distributed among a broad range of cellular functions, are significantly affected in a ppGpp deficient strain in cultures grown in rich medium (LB) (Aberg et al., 2009). However, transcriptomic studies performed during isoleucine starvation, showed that ppGpp regulates significantly (up to 2-fold) over 1400 genes (Traxler et al., 2008). Several studies has been performed in enterobacteria. Salmonella other such as enterica. usina RNAsea (Ramachandran et al., 2014) showing a vast effect of ppGpp over gene transcription (Pizarro-Cerdá and Tedin, 2004; Song et al., 2004; Thompson et al., 2006). Among the different cellular functions affected by ppGpp it has been shown that ppGpp, as an stress-related secondary messenger, deeply affects expression of virulence related genes. In fact, it has been described that ppGpp is essential for transcription of virulence factors in several pathogens (Dalebroux et al., 2010): Mycobacterium tuberculosis (Primm et al., 2000), Listeria monocytogenes (Taylor et al., 2002), Legionella pneumophila (Hammer and Swanson, 1999; Zusman et al., 2002), Vibrio cholera (Haralalka et al., 2003; Oh et al., 2014), Pseudomonas aeruginosa (Erickson et al., 2004), Campylobacter jejuni (Malde et al., 2014), Escherichia coli (Aberg et al., 2006; Aberg et al., 2008) or Salmonella enterica (Pizarro-Cerdá and Tedin, 2004).

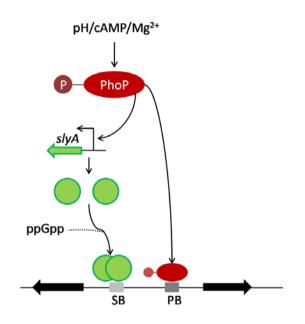
#### 1.2.2.3. Influence of the promoter discriminator in ppGpp-mediated regulation

It has been observed that the discriminator sequence of the promoters (sequence from -10 to +1, **fig. 4**) could be important for direct regulation by ppGpp (Gummesson *et al.*, 2013). It has been postulated that many genes which are repressed by ppGpp have a GC rich discriminator whereas many ppGpp-stimulated operons have an AT rich discriminator. The GC rich motif on the discriminator of P2-*rrnB* promoter is essential for ppGpp inhibition of rRNA promoter during amino acid starvation or stationary phase (Zacharias *et al.*, 1989). Similar results has been observed with the promoter of the operon *rpsB*-*tfs* (Aseev *et al.*, 2014). However, the AT rich motif on the discriminator of *his* promoter is required for ppGpp stimulation during amino acid starvation (Da Costa and Artz, 1997). Moreover, the promoters of the *usp* genes, encoding the universal stress proteins UspA, -C, -D, -E, -F, and -G, are strongly stimulated by ppGpp during stringent response. It has been found that the 5-bp AT-rich discriminator region immediately downstream from the PuspA-10 element is

required for positive control by ppGpp. Swapping the AT-rich PuspA discriminator for a GC-rich, produces a switch on the regulation by ppGpp, repressing PuspA (Gummesson *et al.*, 2013). These data suggest that direct negative and positive regulation produced by ppGpp depends on the discriminator sequence of the promoter.

The discriminator element defines the stability of the open complex. As mentioned in section 1.2.2.1., a proposed direct mechanism of ppGpp repressing transcription is by inducing collapse of instable open complexes. Therefore genes with a G-C discriminator are potential targets for ppGpp mediated repression. On the other hand, the presence of A-T rich discriminators makes the open complex extremely stable. In this case the presence of ppGpp might promote expression from this promoter by destabilizing the complex and inducing promoter escape.

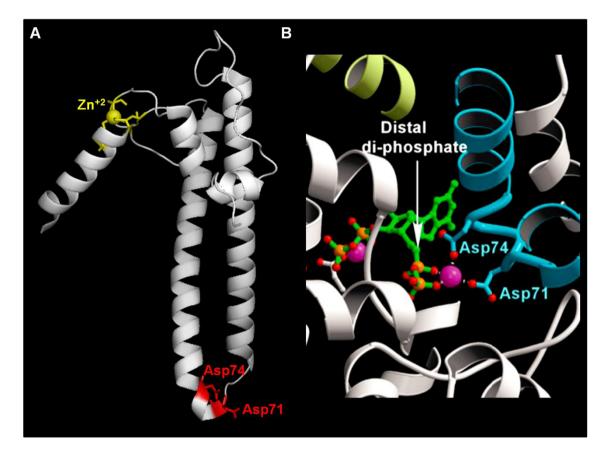
#### 1.2.2.4 ppGpp mediated mechanism of regulation not-related with the RNApol


Apart from binding to the RNApol, it has been suggested that ppGpp could affect other regulators by binding or interacting with them (Dalebroux and Swanson, 2012). Several examples of this kind of regulation has been described: Inhibition of DNA replication in *S. aureus* by DnaG (Rymer *et al.*, 2012; Maciąg-Dorszyńska *et al.*, 2013), acid tolerance in *E. coli* by Ldcl or virulence regulation in *S. enterica* Typhimurium by SlyA (Dalebroux and Swanson, 2012).

DNA replication is carried out by a dynamic, multi-protein complex known as the replisome. The protein DnaG is responsible for catalyzing primer synthesis during DNA replication. In *S. aureus* the replication is inhibited by ppGpp due to its binding to DnaG and blocking its primase activity (Rymer *et al.*, 2012). Similar results were obtained in *E. coli* (Maciąg-Dorszyńska *et al.*, 2013).

Cytoplasmic Ldcl (lysine decarboxylase, also known as CadA) of *E. coli* is induced in response to acid stress and is crucial for survival in low-pH environments. Ldcl increases the cytoplasmic pH by decarboxylation of L-lysine to cadaverine. It has been described that ppGpp bind to Ldcl, being important for enzyme activity. At mildly acidic conditions meaning an extracellular pH of

4–5, or a cytoplasmic pH of 6–7, ppGpp acts as an allosteric inhibitor of Ldcl. In extremely acidic conditions, Ldcl continues converting lysine to cadaverine despite the binding of ppGpp to ensure cell survival. (Kanjee *et al.*, 2011).


After phagocytosis, *S. enterica* serovar Typhimurium activates the twocomponent virulence regulatory system PhoPQ that would induce *slyA*. Moreover, SlyA is required to control the transcription of genes essential for virulence in *S. enterica* serovar Typhimurium (Fass and Groisman, 2009). SlyA requires ppGpp to dimerize and bind to the DNA (**fig. 13**) (Zhao *et al.*, 2008).



**Figure 13**: Scheme of the effect of ppGpp on the regulation of genes regulated by SlyA and PhoPQ system. Adapted from Zhao *et al.*, (2008)

#### 1.2.3. Protein DksA as a ppGpp co-regulator

In *E. coli,* as well as in *Salmonella,* DksA is a 17 kDa protein (151 amino acids) formed by several  $\alpha$ -helix structures. It can be divided in two domains: a globular domain (G) that is composed by the N- and C-terminal region and contains a canonical C4 Zinc-finger; and a coiled coil domain (CC) that consist of two long  $\alpha$  helices connected by a linker formed by an  $\alpha$ -helical turn (**fig. 14A**).



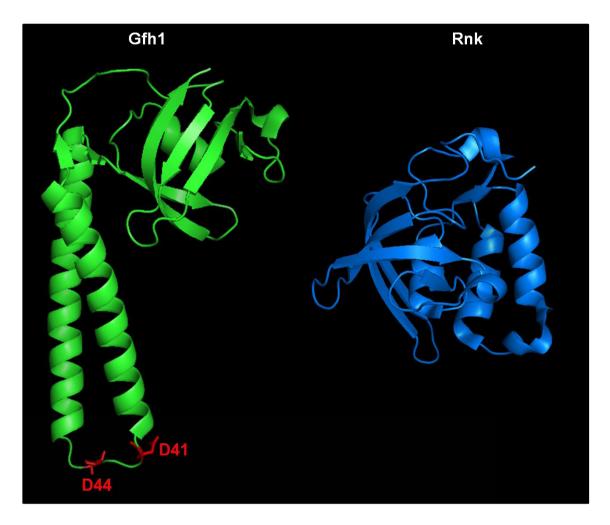
**Figure 14**: A) Structure of the protein DksA (in white) where the zinc-finger is shown in yellow, and the Asp 71 and 74 residues are shown in red. B) Close-up view of the complex in vicinity of the ppGpp binding site and catalytic centre. The RNApol is shown in white, DksA in cyan, ppGpp in green and Mg<sup>+2</sup> in magenta spheres. The putative coordination bonds of Asp71 and Asp74 of DksA with the Mg<sup>+2</sup> ion bound to the ppGpp distal phosphates are shown by white dashed lines (adapted from Perederina *et al.*, (2004)).

Structural studies, showed that DksA binds to the secondary channel of the RNApol (Perederina *et al.*, 2004). The globular domain stays outside the RNApol, interacting with the external surface of the secondary channel, presumably with the N-terminal coiled coil domain of the  $\beta$ ' subunit of the RNApol (Perederina *et al.*, 2004). The described interaction, anchor DksA to the RNApol and provide the proper orientation of the CC domain into the secondary channel. The CC domain enters inside the secondary channel. It contains two residues, Asp71 and Asp 74 (**fig. 14 B**), that directly bind to the Mg<sup>+2</sup> ion interacting with ppGpp (pMG2). These acidic residues are also conserved among GreA and GreB factors, corresponding to the D41 and E44, but they had a different orientation in DksA compared with GreA and GreB. Considering that DksA and GreA bind different Mg<sup>+2</sup> ions, DksA binds pMG2 whereas GreA and

GreB binds cMG1, it seems reasonable that DksA and the Gre factors, although interacting in the same place, had different activities (Perederina *et al.*, 2004; Vassylyeva *et al.*, 2007).

The binding of DksA into the secondary channel produces conformational changes in the RNApol, lowering the free energy required to pass intermediate or transition states during the open complex formation (RPo). Similarly to the strain ppGpp<sup>0</sup>, the *dksA* mutants are auxotrophic and unable to grow in minimal media. This phenotype allowed selection of spontaneous suppressor mutants (with recovered prototrophy). Interestingly most of the mutants that have been characterized, localize in the  $\beta$  and  $\beta$ ' subunits of the RNApol, next to the secondary channel (Rutherford *et al.*, 2009). Although it has been shown that the absence of DksA severely impaired growth in minimal media plates, after 3 days of incubation, a *dksA* deficient strain was able to grow in minimal media. Therefore the *dksA* mutant now is considered bradytroph (grow slowly) instead of auxotroph (Vinella *et al.*, 2012).

DksA was originally identified in E. coli as a multicopy suppressor of the temperature sensitivity of *dnaKJ* mutants (Kang and Craig, 1990). It has been shown that DksA represses rRNA expression by decreasing promoter gen complex lifetime. DksA amplify the effect of ppGpp in vitro. Moreover, it has been observed that rRNA promoter activity does not respond to changes in growth phase or to amino acid starvation in a dksA deficient strain (Paul et al., 2004). Taking in account that DksA, as well as ppGpp, interact with pMG2, it is suggested that DksA is required for the correct binding of ppGpp with pMG2, and vice versa (Perederina et al., 2004). Moreover, it has been suggested that Val73 of DksA could interact with ppGpp (Perederina et al., 2004). These data suggest that DksA might require the presence of the alarmone ppGpp to bind to the secondary channel. It has been suggested that DksA acts as a cofactor of ppGpp. Deletion of dksA also has a pleiotropic effect on gene expression, resulting in defects in cell division,  $\sigma^{s}$  expression, amino acid biosynthesis, quorum sensing, and virulence; highlighting its effect as a cofactor of ppGpp (Brown et al., 2002; Paul et al., 2004; Haugen et al., 2008). This role would suggest that either absence of ppGpp or DksA would have a similar effect for the cell. Thereby it was suggested that *dksA* mutants and ppGpp<sup>0</sup> strains should be phenotypically identical.


Recent data obtained by chromatin immunoprecipitation (CHIP) experiments showed that DksA was enriched not only at the promoter region but across the entire transcription unit (Zhang *et al.*, 2014), suggesting a possible role of DksA during elongation process. Moreover, it was suggested that DksA prevents collisions with replication fork possibly by destabilising elongation complexes (Trautinger *et al.*, 2005; Tehranchi *et al.*, 2010) or by inhibiting RNAP backward movement (Zhang *et al.*, 2014). However, one report suggested that, at least in vitro, DksA does not bind to backtracked or active elongation complexes (Furman, Tsodikov, *et al.*, 2013). Another study showed that DksA do not affect gene transcription during elongation and suggested that DksA, with ppGpp, increases the fidelity of RNA synthesis, and thus possibly prevents formation of misincorporated nucleotides during elongation complexes that could interfere with replication (Roghanian *et al.*, 2015).

#### 1.2.4. Other proteins that bind into the secondary channel of the RNApol

It has been also described other proteins that could bind into the secondary channel of the RNApol that are similar to GreA, such as Gfh1 in *Thermus aquaticus* or RnK in *E. coli* (Lamour *et al.*, 2008), or similar to DksA, such as TraR of the conjugative F plasmid or DksA2 in *Pseudomonas aeruginosa*.

Gfh1 from *Thermus aquaticus* has a highly structural homology to GreA. It has been described that it suffers conformational changes that modify its affinity for the secondary channel of the RNApol (**fig. 15**). The interdomain linker is quite flexible and could vary its orientation producing two conformations (one active and other inactive) responding to different pH (Lamour *et al.*, 2006; Laptenko *et al.*, 2006).

Despite having similar secondary structure with GreA, Rnk is a globular protein (**fig. 15**) that is able to bind to the secondary channel, blocking it and it has been suggested that acts as anti-Gre factor (Lamour *et al.*, 2008).



**Figure 15**: Structure of the Gfh1 of *Thermus aquaticus,* in green, and Rnk of *E. coli* in blue. The residues D41 and D44 are indicated in red.

It has been found proteins similar to DksA in several conjugative plasmids and bacteriophages (Blankschien *et al.*, 2009; Stepanova *et al.*, 2010). These proteins are smaller that DksA, but contains the zinc-finger and part of the CC domain with the Aspartic residues that interact with the Mg<sup>+2</sup> ion pMG2. These findings suggest that these mobile elements had acquired mechanisms to regulate transcription through interaction of those proteins with the secondary channel of the RNApol. Moreover it has been described in *Pseudomonas*, as well as in other bacteria, the presence of DksA-like proteins without zinc-finger, known as DksA2. This protein is related with Zn<sup>+2</sup> metabolism and Zn<sup>+2</sup> caption (Blaby-Haas *et al.*, 2011; Furman, Biswas, *et al.*, 2013). Despite not having the ability to bind Zn<sup>+2</sup>, due to the loss of 2 cysteines, DksA2 conserve the 2 acidic residues that interact with Mg<sup>+2</sup> of the RNApol (Furman, Biswas, *et al.*, 2013).

# **1.2.5.** Competition between the different factors that bind to the secondary channel of the RNApol

The presence of different proteins that can bind to the same target, the secondary channel of RNApol, suggests that there must be a competition between the different factors for the binding with the secondary channel of the RNApol.

The relative amount of the principal proteins that bind to the secondary channel of the RNApol of *E. coli* and its affinity was determined. It has been shown that DksA is the more abundant secondary channel interacting protein in the cell, followed by GreA (2-3-fold less than DksA), and GreB (10-fold less than DksA). The amount of Rnk is approximately equimolar with GreB (Rutherford *et al.*, 2007; Lamour *et al.*, 2008). The determination of the amount of the different proteins was performed in rich MOPS medium at different OD<sub>600nm</sub>, showing that the amount of DksA keeps constant at early-stationary phase, compared with exponential phase, but it suffers a decrease at late-stationary phase. The amount of GreA decreases at early-stationary phase, compared with exponential phase. Moreover, GreB and Rnk keep constant levels through the growth.

It has also been shown that DksA, GreB and Rnk had similar affinity, that is approximately 100-fold higher than GreA (Koulich *et al.*, 1997; Rutherford *et al.*, 2007; Lamour *et al.*, 2008). Rutherford *et al.* concludes that DksA is basically binding the RNApol and GreA is not able to compete for entering into the secondary channel.

Interesting results obtained in our research group suggested that competition at the level of the secondary channel might have a relevant impact in gene expression. Mutants lacking either DksA or ppGpp had different effect on the expression of different genes (Magnusson *et al.*, 2007; Aberg *et al.*, 2008; Aberg *et al.*, 2009). Some of these genes are *fimB* that codes for type 1 fimbriae, and *fliC*, coding for the main subunit of the flagella. It has been observed that in absence of ppGpp there is a decrease in the expression of these genes, whereas in absence of DksA it increases dramatically. Remarkably the increase in the expression of these genes observed in a *dksA* 

mutant, vanished in a *greA* mutant. We hypothesized that in absence of DksA, GreA could interact more efficiently with the secondary channel and increase the expression of these genes (Aberg *et al.*, 2008; Aberg *et al.*, 2009). This artificial switch between of DksA and GreA suggest that there could be a competition between the different proteins that bind the secondary channel under certain circumstances.

As previously mentioned (section 1.2.3.), it has been described that ppGpp<sup>0</sup> mutants are auxotrophic in minimal media (Hua Xiao *et al.*, 1991), but a *dksA* mutant is bradytroph (slow-growing). Interestingly, a double mutant *dksA greA* is not able to growth in minimal media, suggesting that GreA is essential for growth under amino acid starvation in absence of DksA. In fact the prototrophy of the double mutant *dksA greA* could be restored overexpressing GreA. In addition, the overexpression of GreA do not restores prototrophy in a ppGpp<sup>0</sup> strain, but in absence of DksA (ppGpp<sup>0</sup> *dksA*), overexpression of GreA could restore it. This fact suggests that in presence of DksA, in the ppGpp<sup>0</sup> strain, GreA is not present, GreA is able to bind to the secondary channel and restore prototrophy, but when DksA is not present, GreA is able to bind to the secondary channel and restore prototrophy (Vinella *et al.*, 2012).

Moreover it has been observed that there is a crosstalk between factors that bind to the secondary channel of the RNApol. It has been shown that GreA stimulates expression of *dksA*, and DksA stimulates expression *greB* (Vinella *et al.*, 2012). This crosstalk suggests that the binding of these factors to the secondary channels, would produce changes in the amount of the other factors, and therefore in the competence for the secondary channel of the RNApol.

It was recently described, using ChIP experiments, that DksA binds the RNApol during the whole process of transcription. In several genes, the ChIP-signal for DksA is the same that for RNApol, suggesting that all the RNApol is binding to DksA during all the transcription process for those genes. But in other genes – like the flagella genes – the ChIP signal of DksA is lower than RNApol (Zhang *et al.*, 2014). These data might suggest that for some of the genes, DksA might be important binding the RNApol, but there are other genes that the RNApol would be binding other proteins.

It has been recently shown (Henard *et al.*, 2014) that, in *Salmonella*, the C4 Zinc-finger domain of DksA is able to sense oxidative and nitrosative stress. They have shown that during oxidative stress the cysteines of the Zinc-finger are oxidised, releasing the  $Zn^{+2}$  ion and producing changes on the secondary structure of DksA. These conformational changes on DksA produce its dimerization and avoid its binding to the secondary channel of RNApol (Henard *et al.*, 2014). This finding strongly suggests that during these conditions, DksA does not bind to the secondary channel and it is replaced presumably by other factors. Taking in account these data and the fact that Gfh1 changes its conformation as a response to changes of pH (Lamour *et al.*, 2008), it has been suggested that different environmental conditions could produce conformational changes on the factors that bind to the secondary channel of RNApol, producing changes on its affinity, and as a result, changes on its competition.

### 1.3. The players

The bacteria used in this thesis, *Escherichia coli* and *Salmonella enterica* subsp. *enterica* serovar Typhimurium, are members of the family Enterobacteriaceae, which comprises Gram-negative, non-spore forming, oxidise-negative, rod-shaped bacterium that are often motile with peritrichous flagella.

**1.3.1.** *Escherichia coli* inhabit the large intestine of all humans and warmblooded animals. The comensal stains of *E. coli* comprise nearly a 1% of the total bacterial microbiota biomass in humans (Balows *et al.*, 1992). *E. coli* has been extensively used as indicator strain of faecal contamination in water and food. *E. coli* strains are classified by surface antigens in serogroups, based on 3 classes of antigens: O (LPS), K (surface polysaccharides) and H (flagella). The *E. coli* strains of the serotype K12 are comensal strains and they has been used as model organism in research on genetics and molecular biology because it grows very quickly on common used media under aerobic and anaerobic conditions and because are generally recognized as safe (GRAS)(Balows *et al.*, 1992).

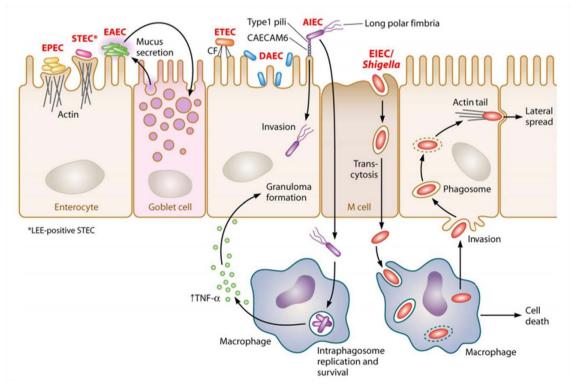
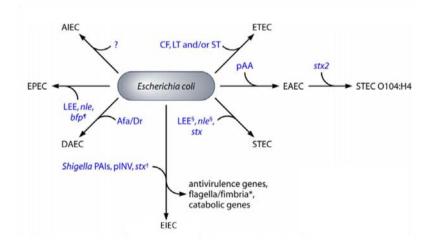
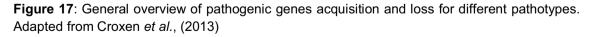





Figure 16: Adherence patterns of enteric *E. coli* pathotypes and its infection process. Adapted from Croxen *et al.*, (2013)

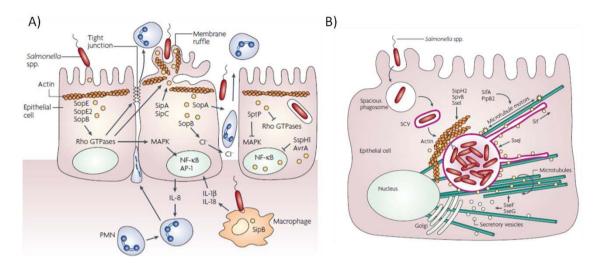
On the other hand, some *E. coli* strains are also important pathogens in humans and animals, producing mainly diarrheal diseases, but also extraintestinal infections, such as urinary tract infections or infections of the central nervous system (associated with neonatal meningitis). Diarrheagenic *E. coli* are classified in seven major pathotypes (EPEC, STEC, EIEC, EAEC, ETEC, DAEC and AIEC) which are characterized by the pathogenesis that causes (Croxen *et al.*, 2013) (**fig. 16**).

It has been proposed that different HGT events are the origin of the generation of the different *E. coli* pathotypes (**fig. 17**). Those events cause acquisition of several set of genes that confer different abilities and highlight the plasticity of its genome. A clear example of this plasticity is the recent outbreak in Germany at 2011 that sickened 4075 healthy individuals from 16 countries, with 50 deaths (World Health Organization, 2011). The *E. coli* strain responsible of the outbreak was an hybrid strain of EAEC and STEC (O104:H4), derived from a EAEC that has acquired the Shiga-like toxin encoded in a lambda-like bacteriophage, as well as several antibiotic resistance genes encoded in a plasmid and other virulence factors obtained from several *E. coli* strains and other Enterobacteria (Bloch *et al.*, 2012; Croxen *et al.*, 2013).





Some of these HGT events showed on **figure 17** have happened long time ago, but other events – like the responsible of the O104:H4 generation – are quite recent, highlighting the importance of HGT events on pathogenicity evolution.


MG1655 is a K12 *E. coli* strain that do not contain the F plasmid. At difference of other laboratory *E. coli*, MG1655 is a  $recA^+$  strain and it does not accumulate many mutations (Guyer *et al.*, 1981). Although MG1655 is not pathogenic, it is a comensal strain which, therefore, is proficient to efficiently colonize animal host.

**1.3.2.** Salmonella enterica subsp. enterica serovar Typhimurium is an enteric food-borne pathogen that infects both humans and animals. It produces gastroenteritis in humans and typhoid-like disease in mouse. For this reason it has been extensively used as a model to study host-pathogen interaction at the molecular level (Hansen-Wester and Hensel, 2001).

Salmonella's infection begins with the ingestion of organisms in contaminated food or water. Salmonella Typhimurium has an acid tolerance response (ATR) that provides an inducible pH-homeostatic function to maintain the intracellular pH within a physiological range and to promote survival to acid during the stomach transit. After entering the small intestine, Salmonella crosses the intestinal mucous layer and reaches the epithelium. It has been shown that Salmonella adhere preferentially to the M cells of the Peyer's patches, although invasion of normally non-phagocytic enterocytes can also occur. After adherence to apical surface (fig. 18 A), Salmonella induces a rearrangement of host's cytoskeleton, producing the engulfment of adhered bacteria in vesicles called Salmonella-containing vacuoles (SCVs). Salmonella avoids SCVs fusion with the lysosomes and produces a migration of those SCVs to a perinuclear position, to facilitate nutrients uptake and bacterial replication (fig. 18 B). A fraction of SCVs crosses the basolateral membrane and could re-infect epithelial cells or macrophages (fig. 18 A). When Salmonella enters into macrophages by phagocytosis, it is able to avoid the fusion of SCV with lysosomes, as well as it does in epithelial cells, and avoids its degradation. Salmonella could spread among the body by macrophages invasion, but Salmonella Typhimurim does not produce typhoid fever and body dissemination in humans (Haraga et al., 2008; Fàbrega and Vila, 2013).

There are different virulence factors that are required for this pathogenic process. These virulence factors consist on effectors proteins that interact with host cells proteins (**fig. 18**), adhesins, flagella and components of biofilm

formation. Many of the genes coding for virulence factors are located in highly conserved *Salmonella* pathogenicity islands (SPIs), bacteriophages and the plasmid pSLT (Fàbrega and Vila, 2013).



**Figure 18**: Biology of *Salmonella* infection pathway. A) SPI1 T3SS-induced changes on host cells producing bacterial endocytosis. B) SCV formation and induction of the SPI2 T3SS within host cells. Adapted from Haraga *et al.*, (2008)

*S. enterica* serovar Typhimurium contains 5 SPIs, as described in **Table 1**. The SPI1 and SPI2 code for proteins required for invasion of epithelial cells and survival within macrophages, respectively. Remarkably, each island, SPI1 and SPI2, codes for a type 3 secretion system (TTSS) which will be important in the translocation of different effector proteins from the cytoplasm of *Salmonella* directly to the host cell cytoplasm. Many, but not all, the effector proteins injected by those TSS are encoded in SPI-1 and SPI-2.

| Pathogenicity<br>island | Type secretion system encoded       | Functions                                                                                                                                                                                                                                                    |
|-------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPI-1                   | Type III secretion<br>system (T3SS) | Invasion of intestinal epithelium; development of SCV;<br>encodes effector proteins important for: actin<br>cytoskeleton rearrangements; membrane ruffling;<br>induces IL-8 and pathogen-elicited epithelial chemo-<br>attractant secretion. <b>Fig. 18A</b> |
| SPI-2                   | Type III secretion<br>system (T3SS) | Survival within phagocytic cells by inhibiting fusion<br>between lysosomes and SCVs; endocytic trafficking<br>inhibition, avoidance of NADPH oxidase-depenant<br>killing by macrophages; encodes effector proteins,                                          |

|       |                                | chaperone proteins and translocon proteins. Fig. 18B                                                           |
|-------|--------------------------------|----------------------------------------------------------------------------------------------------------------|
| SPI-3 |                                | Intramacrophage survival, encodes macrophage survival protein MgtC; encodes Mg <sup>+2</sup> transporter MgtB. |
| SPI-4 | Type I secretion system (T1SS) | Mediates adhesion to epithelial cells; encodes genes of non-fimbrial adhesion protein                          |
| SPI-5 |                                | Encodes protein effectors – secreted by T3SS of SPI-<br>1 or SPI-2.                                            |

**Table 1**: Features and functions of SPIs of Salmonella enterica serovar Typhimurium. Adaptedfrom Hurley et al., (2014)

Some of the effector proteins secreted by T3SS, either from SPI1 or SPI2 are encoded on plasmids (SpvB) or bacteriophages (SopE (**fig. 18 A**)) (Fàbrega and Vila, 2013). There are other virulence factors located in HGT elements such as Pef fimbriae, encoded on pSLT (Fàbrega and Vila, 2013), or SodC (superoxide [Cu,Zn]-dismutase, essential for intramacrophage survival and encoded in the bacteriophage *Gifsy-2* (Figueroa-Bossi *et al.*, 2001)). It has also been described that flagella, in addition to be under phase variation of two different flagellins (FliC and FljB), contains a variable zones susceptible of HGT events in order to provide *Salmonella* with a higher antigenic variability (Selander *et al.*, 1996).

The different virulence factors are required at different infection steps. In order to ensure the proper expression of in the appropriate moment, there is an intricate crosstalk between regulatory pathways (**fig. 19**). There are several global regulatory proteins involved in this crosstalk, as well as, specific regulatory proteins encoded in each virulence determinant (Fàbrega and Vila, 2013).

The strain SV5015 is a derivate from SL1344. This strain is auxotrophic for histidine, while the SV5015 is a  $his^+$  derivative, recovering the prototrophy.

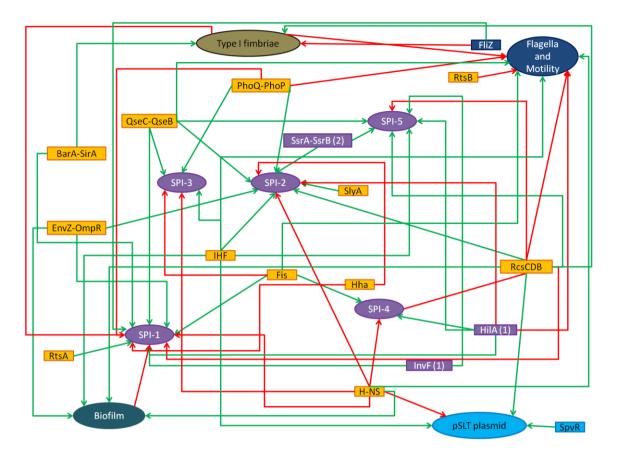
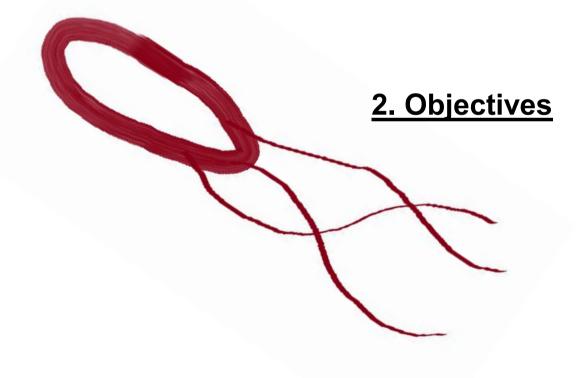




Figure 19: Cross-talk between the different virulence elements. Green arrows represent activators, while red ones are repressors. Squares are regulator proteins and ellipses are virulence factors. The squares coloured as the same colour than virulence elements, are encoded on those elements. In () is indicated the SPI were the regulatory proteins are encoded. Adapted from Fàbrega and Vila, (2013)

*Escherichia coli* and *Salmonella enterica* evolved from the same ancestor long time ago and both of them had acquired a huge arsenal of virulence elements by HGT processes (**fig. 17**), showing a huge plasticity of its genomes. Moreover, this foreign DNA had acquired complicated regulatory networks (**fig. 19**), in order to ensure its own survival and of the bacteria.



Previous studies in our research group suggest that, in *Escherichia coli*, ppGpp and DksA may have different effects in the expression regulation of some genes (Aberg *et al.*, 2009). These results let us to hypothesize that the observed differences between mutants deficient for DksA and ppGpp were due to changes in the proteins that bind to the secondary channel of the RNApol. Therefore, we suggest that a possible competence between those factors, DksA, GreA and GreB, exist. Simultaneously, it was postulated that the amount of DksA and its affinity for the RNApol was higher than the affinity and amount of GreA and GreB, being suggest by the authors that these competition was not possible (Rutherford *et al.*, 2007; Rutherford *et al.*, 2009). In this work we further explore the possible existence of a competition between factors interacting into the secondary channel of the RNApol and its impact in gene expression regulation. The two main objective of this thesis are specified below.

- Study the possible competition between different factors that bind to the secondary channel of the RNApol. In order to fulfil this objective, the following specific objectives were proposed:
  - A. To monitor greA expression under different conditions, to determine if changes in the amount of GreA could affect the possible competition between the different proteins that bind to the secondary channel of the RNApol.
  - B. To study the possible crosstalk between the factors that bind into the secondary channel of the RNApol.
  - C. To study the mechanisms of action of GreA in the modulation of expression of a target gene, *fliC*.
  - D. To determine the effect of overexpressing GreA on bacterial growth in several genetic backgrounds, in order to study the hierarchy between the different factors that bind to the RNApol.
  - E. To study the structure of the protein GreA, by determining which residues are important for the functionality of GreA and the interaction with the secondary channel of RNApol.
  - F. To determine how the different factors that bind to the secondary channel of the RNApol evolved from its ancestor. This phylogenetic

study would let us determine the evolutive pressure that produced the variability of factors that bind the secondary channel of the RNApol.

2. Determine the effect of these factors on mobile elements and HGT elements. The effect of ppGpp and DksA over the transcriptional profile of *Salmonella enterica* serovar Typhimurium, have been determined.

# 3. Materials and methods

## 3.1. Strains and plasmids:

| Name    | Observations                                             | Origen                       |
|---------|----------------------------------------------------------|------------------------------|
|         | Escherichia coli                                         |                              |
| MG1655  | F-, <i>ilvG</i> , <i>rph</i> 1                           | (Guyer <i>et al.</i> , 1981  |
| TE8114  | MG1655 <i>dksA::</i> Tc <sup>R</sup>                     | (Brown <i>et al.</i> , 2002  |
| CF11657 | MG1655 greA::Cm                                          | (Aberg <i>et al.</i> , 2009) |
| AAG101  | MG1655 dksA::Tc greA::Cm                                 | (Aberg <i>et al.</i> , 2009) |
| AAG93   | MG1655 ∆ <i>relA</i> ∆ <i>spoT</i> (ppGpp <sup>0</sup> ) | (Aberg <i>et al.</i> , 2006  |
| CF11663 | MG1655 greB::Km                                          | (Aberg <i>et al.</i> , 2009) |
| AAG1    | MG1655 <i>∆lacZ</i>                                      | (Aberg <i>et al.</i> , 2008) |
| JFV14   | AAG1 ∆ <i>relA ∆spoT dksA::</i> Tc <sup>R</sup>          | (Aberg <i>et al.</i> , 2009) |
| LFC1    | AAG1 attBgreA1                                           | This study                   |
| LFC2    | CLT254 attBgreA1                                         | This study                   |
| LFC3    | AAG1 attBgreA2                                           | This study                   |
| LFC4    | CLT254 attBgreA2                                         | This study                   |
| LFC28   | AAG1 greA+685                                            | This study                   |
| LFC29   | AAG1 greA+193                                            | This study                   |
| LFC5    | AAG1 attBgreA3                                           | This study                   |
| LFC6    | CLT254 attBgreA3                                         | This study                   |
| LFC7    | AAG1 <i>∆greA</i> ∆GraL attBgreA2                        | This study                   |
| LFC8    | AAG1 dksA::Tc attBgreA2                                  | This study                   |
| LFC9    | AAG1 ∆re/A ∆spoT attBgreA2                               | This study                   |
| LFC10   | AAG1 greA+685 <i>rpo</i> S::Tc                           | This study                   |
| LFC11   | AAG1 greA+685 hns::Tc                                    | This study                   |
| LFC12   | AAG1 greA+685 <i>lrp</i> ::Tc                            | This study                   |
| LFC13   | AAG1 greA+685 ∆ <i>hfq</i>                               | This study                   |
| LFC14   | AAG1 attBgreA2 ∆ <i>narL</i>                             | This study                   |
| LFC15   | AAG1 attBgreA2 ∆ompR                                     | This study                   |
| LFC16   | AAG1 attBgreA2 <i>∆metR</i>                              | This study                   |
| LFC17   | AAG1 attBgreA2 ∆argP                                     | This study                   |
| LFC18   | AAG1 attBgreA2 ∆ <i>cytR</i>                             | This study                   |
| LFC19   | AAG1 attBgreA2 ∆rcsA                                     | This study                   |
| LFC20   | AAG1 attBgreA2 ∆pdhR                                     | This study                   |
| LFC21   | AAG1 attBgreA2 ∆ <i>argR</i>                             | This study                   |
| LFC22   | AAG1 attBgreA2 ∆gadX                                     | This study                   |
| LFC23   | AAG1 attBgreA2 ∆ <i>dgsA</i>                             | This study                   |
| LFC24   | AAG1 attBgreA2 ∆fadR                                     | This study                   |
| LFC25   | AAG1 attBgreA2 ∆ <i>fis</i>                              | This study                   |
| LFC26   | AAG1 attBgreA2 ∆ <i>crp</i>                              | This study                   |
| LFC27   | AAG1 attBgreA1 ∆ <i>crp</i>                              | This study                   |
| LFC30   | AAG1 greA+3                                              | This study                   |
| LFC31   | AAG1 greA+5                                              | This study                   |

The strains and plasmids used on this study are listed below:

| LFC32   | AAG1 greA+101                                                                              | This study                        |
|---------|--------------------------------------------------------------------------------------------|-----------------------------------|
| PRG13   | AAG1 fliC::lacZ (+70)                                                                      | (Aberg <i>et al.</i> , 2009)      |
| PRG14   | AAG1 <i>fliC::lacZ</i> (+70) <i>dksA</i> ::Tc <sup>R</sup>                                 | (Aberg <i>et al.</i> , 2009)      |
| PRG15   | AAG1 <i>fliC::lacZ</i> (+70) <i>dksA</i> ::Tc <sup>R</sup> <i>greA</i> ::Cm <sup>R</sup>   | (Aberg <i>et al.</i> , 2009)      |
| PRG16   | AAG1 fliC::lacZ (+1210)                                                                    | (Aberg <i>et al.</i> , 2009)      |
| PRG17   | AAG1 <i>fliC::lacZ</i> (+1210) <i>dksA</i> ::Tc <sup>R</sup>                               | (Aberg <i>et al.</i> , 2009)      |
| PRG18   | AAG1 <i>fliC::lacZ</i> (+1210) <i>dksA</i> ::Tc <sup>R</sup> <i>greA</i> ::Cm <sup>R</sup> | (Aberg <i>et al.</i> , 2009)      |
| LFC33   | PRG13 <i>flgAM</i> ::Cm                                                                    | This study                        |
| LFC34   | PRG13 fliA::Cm                                                                             | This study                        |
| LFC35   | PRG14 <i>flgAM</i> ::Cm                                                                    | This study                        |
| LFC36   | PRG14 fliA::Cm                                                                             | This study                        |
| LFC37   | PRG16 <i>flgAM</i> ::Cm                                                                    | This study                        |
| LFC38   | PRG16 fliA::Cm                                                                             | This study                        |
| LFC39   | PRG17 <i>flgAM</i> ::Cm                                                                    | This study                        |
| LFC40   | PRG17 fliA::Cm                                                                             | This study                        |
| N4849   | MG1655 rpoB35                                                                              | (Trautinger <i>et al.</i> , 2005) |
| LFC41   | N4849 ∆ <i>lacZ fliC::lacZ</i> (+70)                                                       | This study                        |
| LFC42   | N4849 Δ <i>lacZ fliC::lacZ</i> (+70) <i>greA::</i> Cm                                      | This study                        |
| LFC43   | N4849 <i>∆lacZ fliC::lacZ</i> (+1210)                                                      | This study                        |
| LFC44   | N4849 ∆ <i>lacZ fliC::lacZ</i> (+1210) <i>greA::</i> Cm                                    | This study                        |
| LFC45   | MG1655 rpoB111 ΔlacZ fliC::lacZ (+70)                                                      | This study                        |
| LFC46   | MG1655 rpoB111 Δ <i>lacZ fliC::lacZ</i> (+70) greA::Cm                                     | This study                        |
| LFC47   | MG1655 rpoB111 Δ <i>lacZ fliC::lacZ</i> (+1210)                                            | This study                        |
| LFC48   | MG1655 rpoB111 Δ <i>lacZ fliC::lacZ</i> (+1210) <i>greA::</i> Cm                           | This study                        |
| LFC49   | N4849 <i>dksA</i> ::Tc                                                                     | This study                        |
| LFC50   | N4849 <i>greA</i> ::Cm                                                                     | This study                        |
| LFC51   | N4849 dksA::Tc greA::Cm                                                                    | This study                        |
| LFC52   | N4849 Δ <i>lacZ fliC::lacZ</i> (+1210) <i>dksA</i> ::Tc                                    | This study                        |
| LFC53   | N4849 ∆ <i>lacZ fliC::lacZ</i> (+1210) <i>dksA</i> ::Tc_greA::Cm                           | This study                        |
| LFC54   | AAG1 attBgreB                                                                              | This study                        |
| LFC55   | AAG1 attBgreB greA::Cm                                                                     | This study                        |
| LFC56   | AAG1 attBgreB ∆ <i>greB</i>                                                                | This study                        |
| LFC57   | AAG1 attBgreB dksA::Tc                                                                     | This study                        |
| LFC58   | AAG1 attBdksA                                                                              | This study                        |
| LFC59   | AAG1 attBdksA greA::Cm                                                                     | This study                        |
| LFC60   | AAG1 attBdksA dksA::Tc                                                                     | This study                        |
| LFC61   | AAG1 <i>fliC::lacZ</i> (+70) <i>greA</i> ::Cm <sup>R</sup>                                 | This study                        |
| LFC62   | AAG1 <i>fliC::lacZ</i> (+1210) <i>greA</i> ::Cm <sup>R</sup>                               | This study                        |
| CBP34   | MG1655 <i>crp</i> ::Tc <sup>R</sup>                                                        | C. Balsalobre                     |
| CMM2    | MG1655 <i>cyaA</i> ::Km <sup>R</sup>                                                       | (Müller <i>et al.</i> , 2009)     |
| TP1196  | MG1655 greA D41N                                                                           | (Poteete, 2011)                   |
| TP1204  | MG1655 greA D41A                                                                           | (Poteete, 2011)                   |
| TP1216  | MG1655 <i>greA</i> E44K                                                                    | (Poteete, 2011)                   |
| TP1260  | MG1655 <i>dksA</i> D71N D74N                                                               | (Poteete, 2011)                   |
|         | Salmonella enterica                                                                        |                                   |
| 01/5045 | Column and a contantia construction Truthing within Cl 4244 hist                           |                                   |

SV5015

Salmonella enteric serovar Typhimurium SL1344 his

J. Casadesus

| SV5015 ppGpp | SV5015 <i>∆relA ∆spoT</i>                                                 | This study                           |  |
|--------------|---------------------------------------------------------------------------|--------------------------------------|--|
| SV5015 dksA  | SV5015 ∆ <i>dksA</i>                                                      | This study                           |  |
| SV4522       | Δ <i>finO spvA</i> ::Km <sup>R</sup>                                      | (Camacho and<br>Casadesús, 2002)     |  |
| LFC63        | SV5015 <i>\DeltarelA \DeltaspoT finO</i> ::Km                             | This study                           |  |
| LFC64        | SV5015 ∆ <i>dksA finO</i> ::Km                                            | This study                           |  |
| WG49         | Salmonella enterica serovar Typhimurium WG49, F $^{\scriptscriptstyle +}$ | M. Muniesa                           |  |
| MA6247       | SL1344 Gifsy-1 <sup>-</sup> Gifsy-2 <sup>-</sup>                          | (Figueroa-Bossi and<br>Bossi, 1999)  |  |
| SV5015 pdu   | SV5015 pduAH::lacZ                                                        | S. Paytubi                           |  |
| LFC65        | SV5015 ppGpp <sup>0</sup> <i>pduAH</i> ::lacZ                             | This study                           |  |
| LFC66        | SV5015 dksA pduAH::lacZ                                                   | This study                           |  |
| TT1704       | A his -9533                                                               | (Torreblanca and<br>Casadesús, 1996) |  |
| Plasmids     |                                                                           |                                      |  |

| Name                          | Observations                                                                       | Origen                         |
|-------------------------------|------------------------------------------------------------------------------------|--------------------------------|
| pTrc99a                       | Cb/Ap <sup>R</sup> , lacl <sup>q</sup> , Ptrc expression vector                    | (Amann <i>et al.</i> , 1988)   |
| pDNL278                       | lacl <sup>q</sup> , <i>greA</i> under control of P <i>trc</i> on pTrc99a           | (Feng <i>et al.</i> , 1994)    |
| pGF296                        | greB under control of Ptrc on pTrc99a                                              | (Feng <i>et al.</i> , 1994)    |
| pZA4                          | Spec <sup>R</sup> , lacl <sup>q</sup> , pACYC derivative plasmids with p15A origin | Bernd Bukau                    |
| pKD3                          | bla FRT cat FRT PS1 PS2 oriR6K                                                     | (Datsenko and Wanner,<br>2000) |
| pKD4                          | bla FRT cat FRT PS1 PS2 oriR6K                                                     | (Datsenko and Wanner,<br>2000) |
| PKD46                         | <i>bla</i> P <sub>BAD</sub> <i>gam bet exo</i> pSC101 oriTS                        | (Datsenko and Wanner,<br>2000) |
| pCP20                         | <i>bla cat cl857</i> λP <sub>R</sub> <i>flp</i> pSC101 oriTS                       | (Datsenko and Wanner,<br>2000) |
| PKG136                        | <i>ahp</i> FRT <i>lacZY</i> <sup>+</sup> t <sub>his</sub> oriR6K                   | (Ellermeier et al., 2002)      |
| pKG137                        | <i>ahp</i> FRT <i>lacZY</i> <sup>+</sup> t <sub>his</sub> oriR6K                   | (Ellermeier et al., 2002)      |
| pRS551                        | <i>bla-kan-Tl₄</i> -EcoRI-SmaI-BamHI- <i>lacZ</i> *                                | (Simons <i>et al.</i> , 1987)  |
| pBR322                        | <i>ori<sub>P</sub></i> MB1 Ap <sup>R</sup> Tc <sup>R</sup>                         | (Bolivar <i>et al.</i> , 1977) |
| pBR-GreA                      | greA with its promoter cloned on pBR322                                            | This study                     |
| pBR-GreA D41A                 | greA D41A with its promoter cloned on pBR322                                       | This study                     |
| pBR-GreA E44K                 | greA E44K with its promoter cloned on pBR322                                       | This study                     |
| pBR-GraL                      | greA promoter cloned on pBR322                                                     | This study                     |
| pLC245                        | <i>rpoE</i> under control of P <i>trc</i> on pTrc99a                               | (Rhodius <i>et al.</i> , 2006) |
| pBA166                        | Chimerical ompC-YYF under control of Ptrc on pTrc99a                               | (Walsh <i>et al.</i> , 2003)   |
| pLG339                        | RK2 based low copy number plasmids                                                 | (Stoker <i>et al.</i> , 1982)  |
| pLG- <i>crp</i>               | pLG339 carrying crp under the crp promoter                                         | (Bell <i>et al.</i> , 1990)    |
| pLG- <i>crp</i> H159L         | pLG339 carrying crp H159L under the crp promoter                                   | (Bell <i>et al.</i> , 1990)    |
| pLG- <i>crp</i><br>H159L/K52N | pLG339 carrying crp H159L/K52N under the crp promoter                              | (Bell <i>et al</i> ., 1990)    |
| pLG- <i>crp</i> K21L          | pLG339 carrying crp K21L under the crp promoter                                    | (Bell <i>et al.</i> , 1990)    |
| pHM1883                       | pGB2 origin, Ptrc expression vector, Spec <sup>R</sup>                             | (Vinella <i>et al.</i> , 2012) |
| pHM1873                       | pGB2 origin, greA under control of Ptrc, Spec <sup>R</sup>                         | (Vinella et al., 2012          |
| pHM1854                       | pGB2 origin, greA D41A E44Y under control of Ptrc, $\text{Spec}^{R}$               | (Vinella <i>et al.</i> , 2012  |

### 3.2. Media and antibiotics

During this work, several media were used. Its composition and preparation is described below:

- LB-Lennox (Atlas and Parks, 1993): liquid rich medium used for bacterial growth. Composition: 10 g/L tryptone, 5 g/L yeast extract and 5 g/L NaCl (other concentrations of NaCl were used when indicated).
- LB agar: solid rich medium used for bacterial growth. Composition: LB with 15 g/L of bacteriological agar.
- LB top agar: semisolid rich medium used to obtain bacteriophages lysates or bacteriophage titration (section 3.7.2). Composition: LB with 6 g/L of bacteriological agar.
- Minimal medium M9 agar (as described in Vinella *et al.*, (2012)): solid minimal medium used to determine the amino acid auxotrophy of different strains. Composition: 1x M9 salts, 1 mM MgSO<sub>4</sub>, 0.1 mM CaCl<sub>2</sub>, 2 µM FeSO<sub>4</sub>, 10 µg/ml thiamine (vitamin B1), 0.2% (w/v) glucose and 15 g/L bacteriological agar.
- Salts M9 10x: salts solution used to prepare the minimal medium M9 agar. Composition: 90 g/L Na<sub>2</sub>HPO<sub>4</sub> heptahydrate, 30 g/L KH<sub>2</sub>PO<sub>4</sub>, 5 g/L NaCl and 10 g/L NH<sub>4</sub>Cl.
- SOB (Hanahan *et al.*, 1991): liquid medium used for SOC medium preparation and for gene inactivation protocol (section 3.8.1). Composition: 20 g/L tryptone, 5g/L yeast extract, 0.58 g/L NaCl, 0.18 g/L KCl and 20 mM of Mg<sup>+2</sup> solution (1M MgCl<sub>2</sub> and 1M MgSO<sub>4</sub>).
- SOC (Hanahan *et al.*, 1991): liquid medium used to recover cell after transformation of genetic material by electroporation (section 3.7.1.2). Composition: SOB with 20mM of glucose.
- EBU agar: solid medium used to identify pseudolysogens after P22 transduction (section 3.7.3). Composition: LB agar with 2.5 g/L glucose, 2.5 g/L KH<sub>2</sub>PO<sub>4</sub>, 0.0125 g/L, Evans Blue and 0.025 g/L fluorescein.
- Motility agar (Aberg *et al.*, 2009): solid medium to observe bacterial swimming (section 3.9.3). Composition: 10 g/L tryptone, 5g/L NaCl (other concentrations of NaCl were used when indicated) and 2.5 g/L bacteriologic agar (Difco).

- McConkey base agar: solid medium used to determine carbon source usage. Composition: 17 g/L peptone, 3 g/L protease peptone, 1.5 g/L bile salts Nº 3, 5 g/L NaCl, 0.03 g/L neutral red, 0.0001 g/L, crystal violet and 15 g/L agar.
- Minimal medium E: liquid medium used for pSLT conjugation (section 3.7.4).
   Composition: 1x E salts, 0.2% glucose.
- Salts E 50x: salts solution used to prepare the minimal medium E. Composition: 40 mM MgSO<sub>4</sub>, 0.47 M citric acid, 2.85 M K<sub>2</sub>HPO<sub>4</sub>, 0.85 M Na(NH<sub>4</sub>)HPO<sub>4</sub>.
- CFA: liquid medium used to determine biofilm formation (section 3.9.4). Composition: 10 g/L casaaminoacids, 1.5 g/L yeast extract, 50 mg/L MgSO<sub>4</sub> and 5 mg/L MnCl.
- CR agar: solid medium used to determine biofilm formation (section 3.9.4).
   Composition: 10 g/L tryptone, 5 g/L yeast extract, 40 μg/ml Congo Red, 20 μg/ml Coomassie brilliant blue G, and 15 g/L bacteriologic agar.

When it was required, the indicated antibiotics were added at the appropriate concentration, as follows: 50  $\mu$ g/ml ampicilin (Ap), 12.5  $\mu$ g/ml tetraciclin (Tc), 15  $\mu$ g/ml cloramphenicol (Cm), 25  $\mu$ g/ml kanamycin (Km) and 25  $\mu$ g/ml spectinomycin (Spec).

# 3.3. Oligonucleotides

The different oligonucleotids used on this work are listed below.

| Oligonucleotids         |                                               |  |  |  |  |  |  |
|-------------------------|-----------------------------------------------|--|--|--|--|--|--|
| Name                    | Name Sequence (from $5' \rightarrow 3'$ )     |  |  |  |  |  |  |
| Error-Prone PCR         |                                               |  |  |  |  |  |  |
| G11                     | CACTGCAGCAACATCTTGAGTATTGGG                   |  |  |  |  |  |  |
| G6                      | CAGAATTCATGCAAGCTATTCCGATGAC                  |  |  |  |  |  |  |
| One-step inactivation o | f chromosomal genes using PCR products        |  |  |  |  |  |  |
| G8                      | CAAGCTATTCCGATGACCTTACGCGGCGCTGAAAAATTACGCGT  |  |  |  |  |  |  |
|                         | GTAGGCTGGAGCTGCTTC                            |  |  |  |  |  |  |
| G9                      | GGCGAAGTAGAATTTGAAGTAATTAAGGTGGAATACCTGTAAGT  |  |  |  |  |  |  |
|                         | GTAGGCTGGAGCTGCTTC                            |  |  |  |  |  |  |
| G12                     | CATTTGCTGTGTAAAACGAGGGGTTTTCCGCAGGCAGGAGAGC   |  |  |  |  |  |  |
|                         | ATATGAATATCCTCCTTAGT                          |  |  |  |  |  |  |
| G10                     | TTACAGGTATTCCACCTTAATTACTTCAATTCTACTTCGCCCATA |  |  |  |  |  |  |
|                         | TGAATATCCTCCTTAGT                             |  |  |  |  |  |  |
| G3                      | AGTAAACGATGACCCTTCGGGAACTTCAGGTAAAATGCTATCGT  |  |  |  |  |  |  |
|                         | GTAGGCTGGAGCTGCTTC                            |  |  |  |  |  |  |
| G4                      | GACCCTTCGGGAACTTCAGGGTAAAATGACTATCAAAATGTGAA  |  |  |  |  |  |  |
|                         | TTGTGTAGGCTGGAGCCTGCTTC                       |  |  |  |  |  |  |
| G5                      | CTGGTCCCGGTAAGGAGTTATGCCGGGCAGGCCGAACAGCCG    |  |  |  |  |  |  |
|                         | GGTGTAGGCTGGAGCTGCTTC                         |  |  |  |  |  |  |
| Real Time qPCR          |                                               |  |  |  |  |  |  |
| zwf-RV                  | CCAAGATAGTGGTCGATACG                          |  |  |  |  |  |  |
| zwf-FW2                 | CACGCGTAGTCATGGAGAAA                          |  |  |  |  |  |  |
| fliC-RT8                | GCTATCGCATCTGTAGACAA                          |  |  |  |  |  |  |
| fliC-RT9                | GTAGTGGTGTTGTTCAGGTT                          |  |  |  |  |  |  |
| General PCR / sequence  | cing                                          |  |  |  |  |  |  |
| greApI1                 | CGTGTCGCTCAAGGCGCAC                           |  |  |  |  |  |  |
| greApl2                 | CGCGCTACTGCCGCCAGGC                           |  |  |  |  |  |  |
| G1                      | GAGAATTCGCGATCATGTTGTCCGAC                    |  |  |  |  |  |  |
| G2                      | CAGAATTCCATCAACTTTGCGGCCTG                    |  |  |  |  |  |  |
| G7                      | CAGGATCCCGTAAGGTCATCGGAATAGC                  |  |  |  |  |  |  |
| attB                    | GAGGTACCAGCGCGGTTTGATC                        |  |  |  |  |  |  |
| attP                    | TTTAATATATTGATATTTATATCATTTTACGTTTCTCGTTC     |  |  |  |  |  |  |
| λ-int                   | ACTCGTCGCGAACCGCTTTC                          |  |  |  |  |  |  |
| greAcr1                 | GGCAGGCAGCGCCATCTG                            |  |  |  |  |  |  |
| greAcr2                 | GGAAGCTATCGTGCGCG                             |  |  |  |  |  |  |
| B1                      | CAGAATCCCACCAGAATCTTGTAGTTC                   |  |  |  |  |  |  |
| B2                      | CAGGATCCCGCCAGAGATAATTAAGCTC                  |  |  |  |  |  |  |
| D1                      | CAGAATTCGGGTAGAAATTCTGGCTTAC                  |  |  |  |  |  |  |
| D2                      | CAGGATCCGAGAATACTCAGGGACGATG                  |  |  |  |  |  |  |
|                         |                                               |  |  |  |  |  |  |

# 3.4. DNA manipulation

# 3.4.1. Plasmidic DNA isolation

Plasmidic DNA was isolated using the commercial Kit QIAprep® Spin Miniprep Kip from QIAGEN. This kit is based on alkaline lysis method and a posterior recuperation of plasmidic DNA by affinity chromatography.

# 3.4.2. DNA fragments amplification by Polymerase Chain Reaction (PCR)

Two different commercial products were used to amplify DNA fragments by PCR. In both cases the manufacturer instructions were followed for the DNA amplification.

1. Accuzyme from Bioline, it is a thermostable DNA polymerase with proofreading activity. It was used to amplify DNA fragments for cloning or gene disruption.

2. Dream Taq Master Mix from Fermentas (Thermo Fisher) consist in a Taq polymerase – without proofreading activity – mixed with dNTP and an appropriate buffer, provided in a 2x solution. It was used to amplify DNA as a routine genotyping of bacterial strains.

For genotyping samples for PCR amplification from bacterial colonies were obtained by resuspending a colony in  $100\mu$ I of sterile ddH<sub>2</sub>O and heated to  $100^{\circ}$ C 5 minutes in order to break bacterial cells. For cloning purpose purified DNA was used as template.

The PCR reactions were performed using a basic program: denaturing at 94°C during 5 minutes, followed by 30 cycles of denaturing at 94°C during 30 seconds, annealing <u>at 55°C</u> during 30 seconds and extension at 72°C during <u>30</u> <u>seconds</u>. A final extension step at 72°C during 10 minutes was performed. The <u>Annealing temperature</u> and <u>Extension time</u> of the PCR cycle were modified in function of the primers and the expected size of the amplified fragment.

# 3.4.3. Error-prone PCR

This method to randomly mutagenize is based on the fact that Taq polymerase has not proofreading activity (Bossi and Figueroa-Bossi, 2007). Target genes were amplified using a PCR reaction with Taq polymerase from New England Biolabs, standard Taq Buffer (10mM Tris-HCl pH 9.0, 50mM KCl, 1.5mM MgCl<sub>2</sub>), 0.1% Triton X-100 and 0.2mg/ml BSA. The PCR amplification program is depicted in **figure 20**. During the first 10 cycles, the PCR reaction program (annealing temperature 64°C or 58°C) was characterized by a slow decrease from denaturing to annealing temperature (0.1°C/second). The following 15 cycles were characterized by having the regular quick temperature decrease between the denaturing and the annealing cycle.

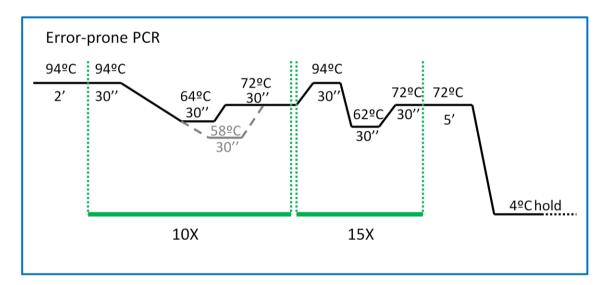



Figure 20: Scheme of the error prone PCR reaction programme.

#### 3.4.4. DNA fragments sequencing

DNA fragments were sequenced by Sanger method, based on synthesis and termination of DNA fragment using fluorescent labelled dideoxinucleotides. It has been used the BigDye® Terminator v3.1 Cycle Sequencing Kit from Applied Biosystems, using the instructions of the manufacturer. Samples were analyzed in an ABI Prism 3700 Genetic analyzer from Applied Biosystems, at the CCITUB, Centres Cientifics i Tecnologics de la Universitat de Barcelona.

# 3.4.5. DNA electrophoresis in agarose gels

DNA samples were analyzed by electrophoresis in horizontal agarose gels. The agarose gels were prepared with TBE 0.5 x buffer (45 mM Tris, 45 mM Boric acid, 1 mM EDTA pH 8.3). Agarose concentration depends on the expected length of the DNA fragment. For fragments shorter than 1 Kb were used 2% agarose gels, while for longer fragments were used 0.8% agarose gels.

Loading buffer 5x (0.25% bromophenol blue, 0.25% xylene cyanol, 60% glycerol, Tris 10mM, EDTA 1mM) was added to all samples.

Different DNA ladders were used:

- λDNA-HindIII (Fermentas) from 125 bp to 23.1 Kb .
- GeneRuler<sup>™</sup> 1Kb DNA Ladder (Fermentas) from 250 bp to 10 Kb.
- GeneRuler<sup>™</sup> 50pb DNA Ladder (Fermentas) from 50 bp to 1 Kb.

DNA electrophoresis gels were run in Mupid® EXu/One equipment at 100–135 volts00 in TBE 0.5 x and then stained with ethidium bromide in order to visualize the DNA using Gel  $Doc^{TM}$  XR system with Image Lab<sup>TM</sup> software.

#### 3.4.6. Gel band extraction

To extract and purify DNA from standard agarose gels in TBE buffer, the DNA bands were excised from the agarose gel and purified using QIAquick® gel extraction kit from QIAGEN.

# 3.5. RNA manipulation

#### 3.5.1. RNA isolation

Samples (1ml) of bacterial culture were taken and centrifuged in order to eliminate supernatant. Pellets were processed immediately or stored at -80°C. RNA of the samples was isolated with the kit SV total RNA isolation system from Promega following the manufacturer instructions. This kit produces the bacterial lysis with lysozyme and a posterior recuperation of the RNA with a membrane-based purification system. The RNA was stored at -80°C.

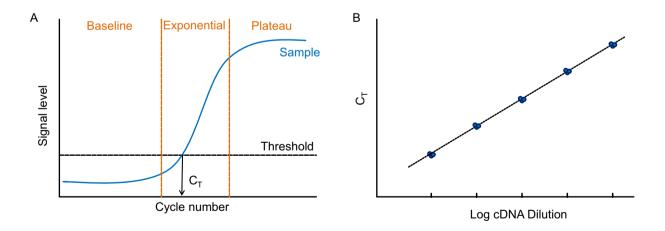
In order to eliminate any possible contamination with genomic DNA, an extra treatment with DNAsa Turbo from Ambion was performed: to the previously isolated RNA, 11  $\mu$ I of 10 x Turbo DNAsa buffer and 2  $\mu$ I of Turbo DNAsa were added and incubated at 37°C during 30 minutes. The DNAsa inactivation reagent (10  $\mu$ I) contains beads that would bind to the DNAsa and would inactivate the DNAsa. It was added and was incubated at room temperature for 5 minutes with occasional agitation. In order to eliminate the inactivation beads the solution was centrifuged at 10000 g and pellet was discarded (this step could be performed twice in order to ensure that all the inactivation beads are discarded). The supernatant was stored at -80°C.

Samples were analyzed with Bioanalyzer 2.100 from Agilent in order to verify that RNA is not degraded or contaminated with genomic DNA and quantified with NanoDrop Spectrophotometer ND-1000.

# 3.5.2. cDNA transcription

To obtain cDNA from the RNA, the kit transcription one-step RT-PCR from Roche was used. This kit is based on a retrotranscription step amplifying with random primers. Each reaction contains 2  $\mu$ l of the retrotranscriptase Buffer, 0.8  $\mu$ l dNTP, 2  $\mu$ l random primers, 1 $\mu$ l retrotranscriptase, 4.2  $\mu$ l water and 10  $\mu$ l RNA (0.1  $\mu$ g/ $\mu$ l). As a negative control, to rule out genomic DNA contamination, the same reaction without retrotranscriptase was used. The program used was: 10 minutes at 25°C, 120 minutes at 37°C, 5 minutes at 85°C and stored at - 20°C.

# 3.5.3. Real-Time qPCR


In order to design optimal primers for Real-time qPCR, the following rules were taken in account (Applied Biosystems by life technologies, 2011):

- 1. Amplicons (short segments of the target gene amplified) should be between 50 to 150 bp
- 2. The optimal primer length is 20 bases
- 3. GC content must be between 20-80% range
- 4. There must be fewer than four consecutive G residues

- 5. Keep the Tm between 58-60°C
- 6. The five nucleotides at the 3' end contain no more than two G and/or C bases.

In order to evaluate the efficiency of the used primers, qPCR reactions were performed with 5 serial dilutions of cDNA (1/10) and 3 technical replicates (Schmittgen and Livak, 2008). Each reaction contains: 10 µl SYBR Green PCR Master Mix, 1 µl of each primer (at 10 µM) and 8 µl of cDNA. SYBR Green is able to bind to double-stranded DNA producing fluorescent signal reflecting the amount of PCR product. The reactions were run in a Step One Real-Time PCR system by Applied Biosystems. The PCR program used was: initial denaturing at 95°C during 10 minutes, followed by 40 cycles of denaturing at 95°C during 10 minutes, followed by 40 cycles of denaturing at 95°C during the echnologies, 2011). To detect nonspecific amplifications the melting curve was determined. It consist in a temperature increment of 0.3°C/second from 60°C to 95°C and the signal corresponding to the presence of double-stranded DNA was plotted. The presence of a single peak (corresponding of the melting point of the double-stranded DNA) suggests specific amplification.

Data was collected and analyzed with Step One Software version 2.2.2 from life technologies, plotting the fluorescent signal detected at each cycle (**fig. 21A**).



**Figure 21**: Schematic results of a qPCR experiment. A) Representative amplification plot showing the signal threshold and  $C_T$ . B) Representative efficiency plot with 3 technical replicates for each of the 5 dilutions of the cDNA.

The fluorescent signal (also known as  $R_n$ ) increases at each cycle as well as the PCR product. As shown in **figure 21A** during the first cycles no increase of fluorescence is detected due the low amount of PCR product, phase known as baseline. After that the fluorescent signal increases exponentially since reaching a plateau, where the levels of fluorescent signal are saturated (**fig. 21A**). The detection threshold is automatically determined (or manually set) within the exponential region above the baseline. The cycle when the fluorescent signal of the samples crossed the threshold is denominated C<sub>T</sub> (**fig. 21A**) and it is related with the initial amount of cDNA. To calculate the efficiency of the primers used, the C<sub>T</sub> obtained for each sample was plotted against the log of the cDNA dilutions (**fig. 21B**). The slope of the line was determined and used to calculate the efficiency using the following equation: E= (10<sup>-1/a</sup>-1)100 where E is efficiency expressed in % and a is the slope of the line. It is acceptable an efficiency of 100% ± 10%.

To determine gene expression, the Real-Time qPCR data is presented relative to another gene, known as endogenous control (Schmittgen and Livak, 2008), that in our case was *zwf*, gene coding for glucose 6-P dehydrogenise. The primers used to amplify the target gene and the endogenous control must have similar efficiency. Data was analyzed with Step One Software version 2.2.2 from life technologies and relative expression between two conditions (A and B) was calculated as follows:

fold change =  $2^{-[(C_T Target A - C_T Endogenous A) - (C_T Target B - C_T Endogenous B)]}$ 

#### 3.5.4. Transcriptomic study

Tree independent cultures for each strain were grown in LB at 37°C up to an OD<sub>600nm</sub> of 2.0 and 1 ml aliquots were collected by duplicate to isolate RNA as described in section 3.5.1. Samples were analyzed by Bioanalyzer 2.100 from Agilent in order to verify that RNA is not degraded or contaminated with genomic DNA. Transcriptomic analysis was performed using a costume high-density DNA microarray (4x72K) prepared with Maskless Array Sinthesizer technology form NimbleGen. Our array covers 4735 ORF represented with seven selected probes for each ORF by duplicate, using the genome sequence

of *Salmonella enterica* serovar Typhimurium SL1344 provided by the Wellcome Trust Sanger Institute. The transcriptomic experiment was performed as recommended by NimbleGen standard protocol (Roche, 2010). Briefly, the total RNA was retrotranscribed to cDNA using the Invitrogen SuperScript doublestranded cDNA synthesis kit, labelled with Cy3 using NimbleGen one-colour DNA labelling kit and hybridized to probes of the array using the NimbleGen hybridization system. Scanning and data analysis was performed as indicated by Nimblegen standard protocol (Roche, 2010). The raw data was subjected to RMA (Robust Multi-array Analysis), quantile normalization and background correction as implemented in the NimbleScan software package.

RMA algorithm (Irizarry *et al.*, 2003) was used as quality control to prepare data for the analysis. The log2 expression shows no different average expression within groups either before or after normalization. The Principal Components Analysis showed no biases and no outlying chips. For the pairwise comparisons the moderated t-test statistics (Smyth, 2004) were computed, as implemented in the Bioconductor library *limma*. The annotation of probesets was done with the information provided for the Nimblegen custom array.

The transcriptomic experiment was carried out in the IRB (Institut de Recerca Biomedica) and the statistical analysis of the microarray data was performed by the Bioinformatics Units at CCiTUB (Centres Cientifics i Tecnologics de la Universitat de Barcelona).

Classification of the ORF of *Salmonella enterica* serovar Typhimurium SL1344 was performed according the functional classification of the ORF of *Salmonella enterica* serovar Typhimurium LT2 in the JCVI classification (Torrieri *et al.*, 2012). The relation between the genes of the strain SL1344 and the genes of the strain LT2 was performed according its annotation. In the cases that the relation was not clear, it was compared by blast between both species.

# 3.6. Protein manipulation

# 3.6.1. Protein electrophoresis in SDS polyacrilamide gels (SDS-PAGE)

These gels have 2 sections, the stacking part (upper part), that compact the sample proteins before entering to the resolving phase (lower part) where proteins are separated attending to its molecular weight.

The stacking phase contains a 5% of polyacrilamide (Acrilamide/Bis 30.8% T 2.6% C), staking buffer (0.375 M Tris and SDS 0.1% at pH 8.8), and to produce the polymerization of polyacrilamide, APS 10% (0.07% final concentration) and TEMED (0.2% final concentration) was added. The percentage of polyacrilamide of the resolving phase is variable (10%, 12.5% or 13.5%), depending on the size of the protein to study. The resolving phase also contains the resolving buffer (0.125 M Tris and SDS 0.1% at pH 6.8) and to produce the polymerization of polyacrilamide again APS 10% (0.05% final concentration) and TEMED (0.083% final concentration) was added.

Gels were run on Miniprotean II<sup>™</sup> equipment from Bio-Rad, the running buffer contains 25 mM Tris, 192 mM glycine and SDS 0.1%.

**Coomassie brilliant Blue staining**: Gels were incubated during 30 minutes with staining dye (0.5‰ Coomassie Brilliant Blue R-250, 10% Acetic Acid, 25% Isopropanol) at room temperature. To eliminate the dye excess, the gels were cleaned with 10% Acetic Acid.

#### 3.6.2. Protein immunodetection

For protein immunodetection, proteins were transferred from SDS-PAGE to a PVDF membrane using EBU-4000 equipment from CBS scientific. Before transferring, membranes were activated with methanol and equilibrated in transfer buffer (48 mM Tris, 39 mM glycine, 20% of methanol, 1.3 mM SDS). Polyacrilamide gels were equilibrated in transfer buffer for at least 10 minutes and placed on top of a PVDF membrane. Transfer was performed between 8 Whatman 3mm papers – 4 on top and 4 on bottom – wet with transfer buffer.

Proteins were transferred into the PVDF membrane applying 55 mA during 1 hour.

After the transfer, PVDF membranes were blocked on PBS-Tween (20 mM Tris, 136 mM NaCl, 0.1% Tween-20) with 5% skimmed milk as blocking agent at room temperature for 1 hour or overnight at 4°C. It was incubated with primary antibody diluted in PBS-Tween for 1 h at room temperature. Next, the membrane was incubated with secondary antibody conjugated with peroxydase diluted in PBS for 1 h at room temperature. The signal was detected with a chemiluminescent reaction, using ECL<sup>™</sup> Western Blotting from GE Healthcare, and detected by Molecular Imager ChemiDoc XRS System from BioRad.

The antibodies used were:

| Antibody           | Origen | Dilution | Reference / Source              |  |  |  |  |  |  |
|--------------------|--------|----------|---------------------------------|--|--|--|--|--|--|
| Primary antibody   |        |          |                                 |  |  |  |  |  |  |
| α-GreA             | mouse  | 1/5000   | Neoclone                        |  |  |  |  |  |  |
| α-RpoD             | mouse  | 1/5000   | Neoclone                        |  |  |  |  |  |  |
| α-FliA             | mouse  | 1/5000   | Neoclone                        |  |  |  |  |  |  |
| α-FliC             | rabbit | 1/2000   | (Majander <i>et al</i> ., 2005) |  |  |  |  |  |  |
| Secondary antibody |        |          |                                 |  |  |  |  |  |  |
| α-mouse            | Goat   | 1/5000   | Promega                         |  |  |  |  |  |  |
| α-rabbit           | Donkey | 1/20000  | GE Healthcare Life biosciences  |  |  |  |  |  |  |

# 3.7. Genetic transfer methods

#### 3.7.1. Bacterial transformation

Different methods were used to transform bacteria:

3.7.1.1. <u>Transformation by CaCl<sub>2</sub> treated competent cells</u>: First chemically induced competent cells were obtained. A bacterial culture was grown in LB medium to early exponential phase ( $OD_{600nm}$  0.2-0.3) and 10 ml were centrifuged at 3000 rpm during 10 minutes at 4°C and the pellet was resuspended in cold CaCl<sub>2</sub> (50 mM). Again, cell suspension was centrifuged and pellet was resuspended in cold CaCl<sub>2</sub>. Several cleaning cycles were done, reducing at each cycle the amount of CaCl<sub>2</sub> in order to concentrate the cells

reducing up to a final volume of 0.5 ml. This suspension was kept on ice for more than 30 minutes.

To transform, 100µl of competent cells and 1-10µl of DNA were mixed and kept on ice 30 minutes. Then, a heat shock was produced to introduce the DNA into the cells by incubating the mixture at 42°C during 45 seconds and then 2 minutes on ice. After that, 1 ml of LB were added and incubated at 37°C during 1 hour and then plated on LB plates with the suitable antibiotic.

3.7.1.2. <u>Transformation by electroporation</u>: A bacterial culture was grown in LB medium to exponential phase ( $OD_{600nm}$  of 0.6) and 10 ml were centrifuged at 3000 rpm during 10 minutes at 4°C and the pellet was resuspended in cold 10% glycerol solution. Several cleaning cycles with cold 10% glycerol solution were done, reducing at each cycle the amount of glycerol solution in order to concentrate the cells reducing up to a final volume of 0.5 ml. This suspension was kept on ice for more than 30 minutes.

To transform, 50 µl of electrocompetent cells and 2-5 µl of DNA were mixed. The mixture was placed in a 1 mm cubette pre-chilled on ice. The DNA was introduced into the cell by permeabilization of the membrane by an electric pulse using an Electroporator 2510 from Eppendorf®. After that, 1 ml of SOC was added immediately and samples were incubated at 37°C during 1 hour. Transformants were selected on LB plates with the suitable antibiotic.

3.7.1.3. <u>TSS transformation</u>: This rapid protocol to transform was useful with the *E. coli* but not with *Salmonella*. The competent cells were obtained from a bacterial culture grown in LB medium up to an  $OD_{600nm}$  of 0.3 - 0.8, chilled on ice for at least 10 minutes. An equal volume of 2x TSS buffer (8 g/L tryptone, 5 g/L yeast extract, 5 g/L NaCl, 0.2 g/L PEG 8000, 0.1 M MgSO<sub>4</sub>, 100 ml/L DMSO) ice cold was added. The samples were thoroughly mixed by vortex avoiding warm up the cells. The competent cells were kept on ice for 10 minutes to several hours.

To transform, 1 ml cells and 1  $\mu$ l of DNA were mixed, and let it stand on ice for another 30 minutes to several hours. If the selection was made by ampicilin, samples were spread on ampicilin containing plates immediately. When other

antibiotic was used, samples were incubated at 37°C for 1 hour and a half, before inoculating on LB plates with the suitable antibiotic.

#### 3.7.2. Transduction with bacteriophage P1vir in E. coli

Bacteriophage P1*vir* is a virulent derivate of the lysogenic phage P1. Transduction with this phage was used to introduce, by homologous recombination, mutations associated with an antibiotic resistance.

To obtain a P1*vir* lysate of the donor strain containing the mutation to transduce, a bacterial culture was grown in LB medium up to an OD<sub>600nm</sub> of 0.5. A 0.5 ml of the culture were mixed with existent P1*vir* phage stock and added to 3 ml of top agar supplemented with Cl<sub>2</sub>Ca 5 mM. To promote an efficient infection, several dilutions of the P1*vir* phage stock were tested. The bacterial-phage-top agar mix was spread on a LB plate and incubated at 37°C overnight. To recover the P1*vir* lysate, the top agar was recovered using 2 ml of fresh LB and mixed in a tube with 0.5 ml of chloroform. The tube was shaken vigorously to separate P1*vir* from top agar and then the mixture was centrifuged at 3500 rpm during 10 minutes. The supernatant – containing P1*vir* – was recovered in a new tube with 0.5 ml of chloroform and stored at 4°C.

The P1*vir* lysate were ultimately titrated. For this purpose, a culture of the indicator strain (AAG1) was grown in LB medium up to an  $OD_{600nm}$  of 0.8, centrifuged and resuspended with half-volume of absorption buffer (10 mM MgSO<sub>4</sub>, 5 mM Cl<sub>2</sub>Ca). Serial dilutions of the phage lysate on NaCl 0.15% were made, and 100 µl of each dilution were mixed with 100 µl of the indicator strain suspension. The mix was incubated at 37°C during 20 minutes, to promote phage absorption. Top agar (2 ml) was added and the mixture was spread on LB agar plates. After incubating the plates at 37°C the phage was titrated by counting the lytic plaques.

For transduction with P1*vir*, a culture of the recipient strain was grown in LB medium up to an  $OD_{600nm}$  of 0.4. A 10 ml aliquot of the culture was centrifuged at 3500 rpm during 10 minutes and the pellet was resuspended with 1 ml of LB. A 0.5 ml aliquot of this cellular suspension was mixed with 0.5 ml of different dilutions of the P1*vir* obtained and 0.5 ml of transduction buffer (15 mM Cl<sub>2</sub>Ca

and 30 mM MgSO<sub>4</sub>) and incubated at 37°C during 20 minutes. After that, samples were centrifuged and pellet resuspended in NaCl 0.15%. The mixtures were spread on LB plates with the suitable antibiotic and incubated at 37°C for transductants selection.

#### 3.7.3. Transduction with bacteriophage P22 in Salmonella

Bacteriophage P22 HT *int4* (Schmieger, 1972) was used to introduce mutations by homologous recombination in *Salmonella*. This bacteriophage contains two mutations – HT and *int* – in order to increase transduction rate.

To obtain P22 lysates of the donor strain containing the mutation to transduce, a bacterial culture was grown in LB medium up to an  $OD_{600nm}$  of 1.5. A 10 ml aliquot of the culture was mixed with 100 or 200 µl of existent P22 stock obtained in TT1704 strain and grown at 37°C for 4 hours. After 4 hours, the culture should be less turbid due the production lysis of infected cells. Aliquots of 10 ml were collected and 0.5 ml of chloroform was added. The tube was shaken vigorously to break the bacterial cells and centrifuged at 4000 rpm during 20 minutes to eliminate the cellular debris. Supernatant was collected in a new tube and stored at 4°C with 0.5 ml of chloroform.

The P22 lysate was titrated. Overnight cultures of TT1704 (200  $\mu$ l) was mixed with 100  $\mu$ l of serial dilutions of the obtained lysate in MgSO<sub>4</sub> 10mM. The mixtures were incubated at 37°C during 20 minutes. Top agar (3 ml) was added and the mixture was spread on LB plates and incubated overnight at 37°C.

For transduction with P22, an overnight culture of recipient strain (100  $\mu$ I) was mixed with 100  $\mu$ I of phage dilutions in MgSO<sub>4</sub> (10 mM) and incubated at 37°C during 1.5 hours. As negative control, 100  $\mu$ I of culture or phage were mixed with 100  $\mu$ I of LB. After incubation, the samples were centrifuged and pellets resuspended with LB, in order to eliminate bacteriophages. The mixture was spread on LB plates with the appropriate antibiotic. During this process, transductant cells could be re-infected by P22, pseudolysogens, integrated into the chromosome and becoming resistant to other P22 infection – it is not possible to transduce again. Transducants were plated on EBU in order to identify pseudolysogens. In colonies containing pseudolysogens, many cells are

lysated decreasing the pH of the medium and producing a colour change on the pH indicators, resulting in dark blue colonies. The "phage-free" cells will form light-coloured colonies while the pseudolysogens will remain blue.

#### 3.7.4. pSLT conjugation

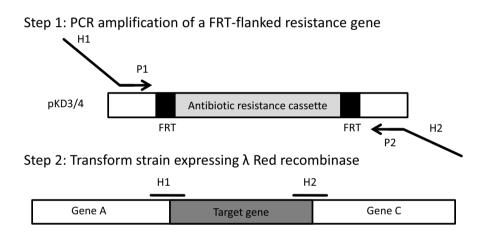
For pSLT conjugation, cultures of the donor and recipient strain were grown in 20 ml of Minimal media E + Casaaminoacids 0.3%. Medium was inoculated 1/50 using overnight cultures. The strains were grown at 37°C up to an  $OD_{600nm}$  of 0.7. Aliquots (5 ml) of each strain were collected, centrifuged at 6000 rpm for 5 minutes, supernatant was discarded and the pellet resuspended in 5 ml of MgSO<sub>4</sub> (10 mM). To conjugate, 500 µl of donor and 500 µl of recipient cells suspensions were mixed. As negative controls mixtures of either 500 µl of donor cells or 500 µl of recipient cells with 500 µl of MgSO<sub>4</sub> solution (10 mM) were performed.

The mixtures were centrifuged 30 seconds at 13000 rpm in order to eliminate the supernatant and resuspended softly with 50 µl of MgSO<sub>4</sub> and placed on a 0.45 nm pore-diameter cellulose filter on top of a LB agar plate at 37°C during 4 hours. Cellulose filters were collected and reused with 2 ml of MgSO<sub>4</sub> solution. Dilutions of the suspension were made and spread on LB agar plates with the appropriate antibiotic for transconjugants selection. Proper dilutions were also spread on LB agar plates containing the antibiotic required for the donor selection. Plates were incubated at 37°C and the number of transconjugants and donor cells was calculated after cfu determination. The conjugation rate (transconjugants / donor cells) was determined.

# <u>3.7.5. Transcriptional-fusion's insertion at the *attB* locus of the *E. coli* <u>chromosome</u></u>

To insert transcriptional *lacZ* fusions at the *attB* locus of the chromosome of *E. coli*, was used a method described by Simons *et al* (1987). First step is to clone the promoter region of interest in the plasmid pRS551, containing a reporter promoter-less *lacZ* gene. The promoter region was amplified by PCR adding an *Eco*RI and *Bam*HI restriction sites at each edge of the PCR-amplified fragment. The PCR products were cloned in pGEM-T Easy (Promega) vector. After

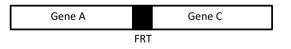
selecting an appropriate plasmid the containing promoter fragment was obtained after restriction with *Eco*R1 and *Bam*H1 and cloned in same restriction sites of pRS551.


The transcriptional fusions were transferred to the bacteriophage  $\lambda$ RS45 by homologous recombination in vivo. A culture of the strain containing the transcriptional fusion on pRS551 was grown in LB medium supplemented with maltose 0.2% at 37°C overnight. Infection with  $\lambda$ RS45 was performed by mixing 200  $\mu$ I of the bacterial culture with 100  $\mu$ I of  $\lambda$ RS45 phage and then incubated at 37°C during 20 minutes. Top agar (3 ml) was added to the mix, spread on a LB plate and incubated at 37°C during 7-8 hours. Since pRS551 contains sequences highly homologous to the  $\lambda$ RS45 phages, during infection would be expected that homologous recombination occurs resulting in the incorporation of pRS551 based plasmid in the  $\lambda$ RS45 phage. After infection, phage particles were recovered by adding 3 ml of TM buffer (50 mM Tris pH 7.5, 10 mM MqSO<sub>4</sub>) on the plates and then incubated at 4°C during 2 hours. Top agar and TM buffer were recovered and mixed together in a tube with 0.5 ml of chloroform. The tube was shaken vigorously to separate the phage from top agar and then centrifuged at 3500 rpm during 10 minutes. The supernatant was recovered in a new tube with 0.5 ml of chloroform and stored at 4°C

To obtain lysogenic cells carrying a  $\lambda$ RS45 derivative containing the pRS551 based vector as a prophage in the *attB* locus of the chromosome, a culture of the recipient strain was grown in LB supplemented with maltose 0.2% until stationary phase. A 200 µl aliquot of the culture was mixed with 100 µl of the phage previously obtained. After incubation at 37°C during 20 minutes to promote the absorption of the phage, the free phages were cleaned after centrifugation and discarding the supernatant. The cells were plated on LB plates with kanamycin and incubated at 37°C overnight. The lysogenic cells were genotyped by PCR – using the primers attB, attP and  $\lambda$ -int – to check that  $\lambda$ RS45-derived phage was inserted into the *attB* locus just once.

# 3.8. Bacterial mutagenesis methods

#### 3.8.1. One-step inactivation of chromosomal genes using PCR products


This method causes disruption of chromosomal genes based in  $\lambda$ Red based recombination. The first step is to amplify an antibiotic resistance gene flanked by FRT sites (Datsenko and Wanner, 2000) adding to each edge of the fragment an approximately 40 bp region which is fully homologous to the place in the chromosome were insertion is wanted. These homologous sequences promote recombination with the target locus in the chromosome by the Red recombinase. The antibiotic resistance gene could be removed afterwards by FLP recombinase acting on the flanking FRT sites (**fig. 22**).



Step 3: Select antibiotic-resistant transformants



Step 4: Eliminate resistance cassette using a FLP expression plasmid



**Figure 22**: Schematic steps of the methodology to inactivate chromosomal genes using PCR products. H1, H2 represent the homologous part of the primer to the target locus of the chromosome and P1 and P2 correspond at the homologous part of the primer to the plasmid pKD3 and pKD4 (described in the text).

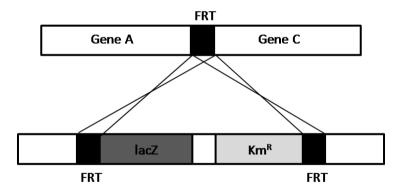
As mentioned above, the first step is the PCR amplification of the FRT-flanked resistance gene. Two different genes might be used, chloramphenicol and kanamycin resistance genes located in the plasmid pKD3 and pKD4

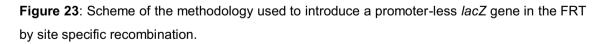
respectively. The primers used to do this amplification must have a 3'-end complementary to the plasmid, what is indicated P1 and P2 for the forward and reverse primers (**fig. 22**) and a 5'-end homolog to the target gene with an approximate length of 40nt, H1 and H2. The PCR fragment obtained will contain the antibiotic resistance cassette flanked by FRT sequences and the homologous zones to the target gene. Once obtained, the PCR mixture was digested with DpnI (1unit per 50µl of PCR mixture) to promote degradation of the template plasmid pKD3 and pKD4 that could be present in the PCR reaction. This step is required in order to avoid false positive during transformation (see below).

Next, the PCR fragment is transformed to the recipient strain expressing  $\lambda$  Red recombinase. To do that, plasmid pKD46 is introduced to the recipient strain of interest. The plasmid pKD46 is a thermosensible plasmid coding for  $\lambda$  Red recombinase, whose expression is under a L-arabinose inducible promoter. Red recombinase promotes recombination and inhibits exonuclease V, allowing lineal DNA fragments enters into the cell.

To transform the PCR amplified fragment, the target strain containing pKD46 was grown at 30°C in SOB medium supplemented with 10 mM L-arabinose and ampicillin 100  $\mu$ g/ml up to an OD<sub>600nm</sub> of 0.6. Those cells were electroporated with 1 – 10  $\mu$ g of the PCR-amplified fragment. After the electric pulse, cells were resuspended immediately with 1ml SOC medium and were incubated at 37°C during 1.5 – 3 hours. Half of the reaction was then spread on LB agar plates with the appropriate antibiotic (either Cm or Km depending if either pKD3 or pKD4 were used) at 37°C overnight.

The other half of the reaction was kept on the bench overnight and plated the next day. At 37°C Red recombinase produces the recombination of the homologue fragment with the target gene producing a gene disruption (**fig. 22**). Moreover the plasmid pKD46 get cured due to its thermo-sensibility. Colonies resistant to the antibiotic were checked by PCR.


If required the resistance cassette could be eliminated by using a FLP expressing plasmid. To do that, the mutant strain was transformed with plasmid


74

pCP20. This plasmid is thermosensible, resistant to ampicillin and codes a FLP recombinase. The FLP is expressed at 42°C. Transformants of pCP20 were selected on LB agar plates supplemented with ampicillin at 30°C overnight. After selection, the transformants were incubated in LB at 42°C during several hours and then plated on LB agar plates and incubated at 42°C in order to induce express FLP recombinase. The enzyme will promote site specific recombination in the FRT sites causing elimination of the resistance cassette flanked by FRT and simultaneously curing the pCP20 plasmid (**fig. 22**). To check the lost of the antibiotic resistance cassette, the colonies were streak on LB agar plates, LB agar ampicillin and LB agar chloramphenicol / kanamycin, depending on the cassette introduced. Those colonies that were not able to grow in the presence of antibiotic were PCR genotyped to demonstrate that has lost the antibiotic resistance cassette.

#### 3.8.2. lacZ genetic fusions constructed by FLP recombination

The previously described method to obtain chromosomal mutants might also used to create *lacZ* fusions within the site where insertion was made (Ellermeier *et al.*, 2002).





Once antibiotic free mutants were obtained, the process causes a genomic scarp, the presence of a FRT sequence in the site of initial insertion of the PCR-amplified fragment. To generate a *lacZ* fusion, those mutants with a FRT site were transformed with pCP20 and either pKG136 or pKG137. Those plasmids contain a promoter-less *lacZ* gene next to a kanamycin resistance cassette,

flanked with FRT sites. To use pKD136 or pKG137 depends in the orientation of the FRT site relative to the direction of transcription. These plasmids require  $\lambda pir$  protein to replicate, therefore, after transformation the clones resistant to kanamycin had the plasmid integrated in the FRT site (**fig. 23**).

# 3.9. Bacterial physiology studies

#### 3.9.1. Bacterial growth monitoring

Bacterial cultures were grown in Erlenmeyer culture flasks in a volume of medium (200 rpm), never higher to 1/5 of total volume of the flask, in constant agitation to produce a homogeneous aeration. Growth was monitored measuring the  $OD_{600nm}$  at different times with a Genesys 10S UV-Vis Spectrophotometer from Thermo scientific. Optical Density at 600 nm is proportional with the amount of bacteria in the culture and it is considered that an  $OD_{600nm}$  of 0.5 units corresponds to mid-log phase.

#### 3.9.2. β-galactosidase activity determination

When  $\beta$ -galactosidase was determined, 1 ml aliquots of the culture were collected and kept on ice until its analysis (always a period inferior to 24 hours). A 100 µl aliquot of each sample was mixed with 900 µl of Buffer Z (60 mM Na<sub>2</sub>HPO<sub>4</sub>, 40 mM NaH<sub>2</sub>PO<sub>4</sub>, 10 mM KCl, 1 mM MgSO<sub>4</sub> and 50 mM  $\beta$ -mercaptoethanol). Cells were lysated by adding 15 µl of toluene and vigorous shaking during 15 seconds. Toluene was eliminated by incubation at 37°C during 45 minutes. To detect  $\beta$ -galactosidase activity, 200 µl of ONPG (orthonitrophenyl- $\beta$ -galactoside) in Buffer Z at a concentration of 4 mg/ml were added and mixtures incubated at 28°C.  $\beta$ -galactosidase mediated hydrolysis of ONPG produces a yellow product, detectable with OD<sub>420nm</sub>. Reaction was stopped with 0.5 ml Na<sub>2</sub>CO<sub>3</sub> (1 M) when the reaction had an OD<sub>420nm</sub> between 0.3-0.9. The OD<sub>420nm</sub> and OD<sub>550</sub> were measured for each reaction. To calculate  $\beta$ -galactosidase activity, the following formula was used:

$$\beta - \text{Galactosidase activity (MU)} = \frac{1000 \times (\text{OD}_{420} - 1.75 \times \text{OD}_{550})}{\text{t} \times \text{v} \times \text{OD}_{600}}$$

Where:

MU: Miller Units

OD<sub>420nm</sub>: proportional to the ONPG hidrolysis.

OD<sub>550</sub>: measures cell debris.

OD<sub>600</sub>: measures culture biomass.

t: time between adding ONPG and the moment to stop the reaction (minutes).

v: volume of the culture used for the reaction (ml).

#### 3.9.3. Motility assay

Motility assay was performed as described in Aberg *et al.*, (2009). The motility agar – with 2 mM of a chemo-attractants or repellents – was plated on the bench (25 ml each plate) less than 18 hours before the experiment, in order to prevent excessive drying of the agar plates. When solidified, 5 µl of bacterial suspension were spotted on top of the agar surface, and incubated at the temperature and time indicated. After incubation time, the swimming movement of the colony was measured by monitoring the diameter of the colony size. Images were taken with Gel Doc<sup>™</sup> XR System with Image Lab<sup>™</sup> Software. To ensure statistical significance, four replicates were made.

# 3.9.4. Biofilm formation

The biofilm formation was measured with the ability to form macrocolonies with RDAR morphotype, and the ability to produce biofilm on a plastic surface.

The ability to form macrocolonies was determined using CR agar plates. The cells were grown in LB at 37°C up to an  $OD_{600nm}$  of 2.0. An aliquot (5 µl) of the bacterial suspension was spotted on CR agar plates and incubated at 28°C during 7 days. After that, the RDAR morphotype (red, dry and rough colonies) was determined.

The production of biofilm on plastic surface was performed as described by Aberg *et al.*, (2006). Briefly, 10  $\mu$ l of bacterial culture, grown in LB at 37°C up to an OD<sub>600nm</sub> of 2.0, was inoculated into 190  $\mu$ l of LB without NaCl. Cultures in wells of non-tissue culture treated U-bottom 96-wells plastic plate were incubated statically at 25°C for 48 hours. Thereafter the medium was discarded and the wells were washed with phosphate-buffered saline (PBS). The quantification of the attached bacteria was performed as follows: cells were fixed with 200  $\mu$ l of methanol during 15 minutes. After being emptied and dried,

the wells were stained with 200  $\mu$ l of crystal violet 2% during 5 minutes and the excess of staining was eliminated by placing the plate under running tap water. The dye adhered to the cells was resolubilised with 160  $\mu$ l of acetic acid 33% and the OD<sub>570nm</sub> was determined (Stepanovic *et al.*, 2000).

# 3.9.5. Haemolytic activity

The haemolytic activity was determined as described by Field *et al.*, (2008). Briefly, the strains were grown in LB at 37°C up to an OD<sub>600nm</sub> of 2.0 and an aliquot of 5 ml was centrifuged 15 minutes at 6000 rpm. The supernatant was collected, filtered through a 0.22  $\mu$ m pore-diameter filter and kept on ice. An aliquot (50  $\mu$ l) of different dilutions of the filtered supernatant were mixed with 50  $\mu$ l of defribrinated sheep blood in a 96-wells plate. Before use, the defribrinated sheep blood must be centrifuged at 3000 rpm during 5 minutes at 4°C and the blood cells resuspended with cold PBS in order to eliminate the broken ones. This process must be repeated as many times as required. The mixtures were incubated statically at 37°C during 2.5 hours. After that, 150  $\mu$ l of PBS were added and the plates were centrifuged 10 minutes at 2000 rpm. The haemoglobin of the supernatant was quantified measuring the optical density at 550 nm.

# 3.10. Microscopy techniques

#### 3.10.1. Optical microscopy

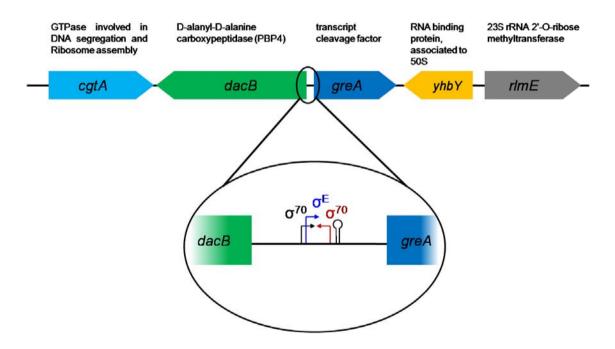
For cell observation by optical microscopy, a small part of a colony was resuspended in water, fixed on a microscope slide and stained with crystal violet for 6 minutes. After eliminating the excess of dye with water, samples were visualized with a Nikon ECLIPSE E600 optical microscope with 100x (immersion) objective and the images were taken with an OLYMPUS DP72 camera.

#### 3.10.2. Transmission electron microscopy (TEM)

The bacterial samples for TEM visualization were used in a saline (R 1/4) suspension. An aliquot (1 ml) of bacterial culture grown until desired OD<sub>600nm</sub>

was centrifuged 10 minutes at 6000rpm at room temperature. The cellular pellet was resuspended with filtered Ringer ¼, in order to avoid impurities. Samples were fixed on MESH 200 Carbon/Copper grids. Carbon/Copper grids must be activated with UV light in order to fix the sample to the Carbon surface. Samples were negatively stained with Uranyl acetate 2%, and visualized on a JEM1010 (JEOL Ltd, Tokio, Japan) Transmission Electron Microscope and the images were acquired by AnalySIS (Soft Imaging System GmbH, Münster, Germany).

# 3.11. Bioinformatics methods


Gene sequences used for the phylogenetic study were aligned with ClustalX (Thompson *et al.*, 1997). The phylogenetic trees of Maximum Likelihood (ML) (Felsenstein, 1981) were constructed by RAxML 7.0.3 (Stamatakis, 2014) – "Randomized Axelerated Maximum Likelihood", a program for sequential and parallel ML based inference– using a GTR (General Time Reversible) model of nucleotide substitution with a Gamma distribution of 4 discrete categories to rate heterogeneity (Yang, 1996). To test phylogeny tree, a boostrapt test was performed using 500 replications. The finale tree with the boostrapt was assembled with FigTree 1.3.1 (Rambaut, 2006).

Estimation of average codon-based evolutionary divergence over sequence pairs of target gene within groups was performed using the modified Nei-Gojobori (assumed transition/transversion bias = 2) model (Zhang *et al.*, 1998). The analysis involved 42 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 70 positions in the final dataset. Evolutionary analyses were conducted in MEGA5 (Tamura *et al.*, 2011).

# 4. Results and discussion

# 4.1. Study of greA expression

GreA is encoded in a monocistronic operon located in the chromosome of *E. coli.* The gene *greA* is flanked by other monocistronic genes, upstream by the gene *dacB* and downstream by the gene *yhbY*. Both, *dacB* and *yhbY* are orientated in the opposite direction as compared to *greA* (**fig. 24**). Interestingly, YhbY and CgtA, encoded in the gene upstream of *dacB*, are proteins that bind to the 50S subunit of the ribosome (Jiang *et al.*, 2006). The protein CgtA, as described in section 1.2.2., is responsible of the interaction of SpoT with the ribosome (Jiang *et al.*, 2007). SpoT, as early mentioned, is involved in the synthesis and maintenance of the cell wall (Kishida *et al.*, 2006). The gene organization around *greA* is common for all Enterobacteria.



**Figure 24**: Genomic context of the *greA* gene in *E. coli*. In the amplification (ellipse), the intergenic region between *greA* and *dacB* is shown. Black and blue arrows show the  $\sigma^{70}$ -dependent and  $\sigma^{E}$ -dependent promoters of *greA*, respectively. The red arrow shows a putative  $\sigma^{70}$ -dependent promoter of gene *dacB*, as predicted by Virtual Footprint (Münch *et al.*, 2005).

Two predicted *greA* promoter sequences are found in the intergenic region between *dacB* and *greA*, one  $\sigma^{70}$ -dependent promoter and one  $\sigma^{E}$ -dependent promoter. The possible effect of  $\sigma^{E}$  on *greA* expression was shown by overexpressing  $\sigma^{E}$  and transcriptomic studies and the  $\sigma^{E}$  promoter location was confirmed by 5' RACE (Rhodius *et al.*, 2006).

| 1 GGCGATCATG TTGTCCGACT TTTTCAGCAT AATCTTAAGC AGATCGTGCA GCGGGGCCGA                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| G1<br>61 CTGTTTACTG GCAACTACCG TTCCAGGTTC GTTAACCTGA GTCTGGCGCA GCAGTGTTCC                                                                                                                                                                                                                                                                                                                       |
| 841 ggggagttga gtaatgtact <u>catcaacatt tgcggcctg</u> a acactgaacg ctatacagct<br>$\overrightarrow{G2}$                                                                                                                                                                                                                                                                                           |
| 901 GGTCAATCCG ATGATAAATC TGGAAAATCG CATaatctcg cgctaacaac ctggaatcga                                                                                                                                                                                                                                                                                                                            |
| -350 <sup>70</sup> -350 <sup>E</sup><br>961 geogteatae taeggegeaa egeeetataa agtaaaeg <mark>at gaee</mark> etteg <b>g gaaett</b> eagg                                                                                                                                                                                                                                                            |
| $-10\sigma^{70} -10\sigma^{E} -10dacB \xrightarrow{G_3} \xrightarrow{G_4}$ 1021 gtaaaatgac tAtcaaaatg tgAattgtag ctgacctggg acttgtaccc gggtcggtat                                                                                                                                                                                                                                                |
| 1081 <b><u>tttttt</u></b> gctt ctggtcccgg taaggagtta tgccgggcag gccgaacagc cggggtgggt                                                                                                                                                                                                                                                                                                            |
| 1141 gaagacttgc cctatcagga atattcaaga ggtataacaa $G_{G}$                                                                                                                                                                                                                                                                                                                                         |
| 1201 CTTACGCGGC GCTGAAAAAT TACGCGAAGA GCTGGATTTT CTGAAATCTG TGCGCCGTCC                                                                                                                                                                                                                                                                                                                           |
| 1261 TGAAATCATT GCTGCTATCG CGGAAGCGCG TGAGCATGGC GACCTGAAAG AAAACGCCGA                                                                                                                                                                                                                                                                                                                           |
| 1321ATACCACGCAGCTCGTGAACAGCAGGGTTTCTGCGAAGGCCGTATTAAAGACATCGAAGC1381CAAGCTGTCGAACGCGCAGGTGATTGATGTCACCAAAATGCCCAACAATGGGCGCGTTAT1441TTTTGGTGCTACCGTAACGGTGCTGAATCTGGATTCTGACGAAGAACAGACTTATCGCAT1501CGTTGGCGATGACGAAGCTGACTTTAAACAAAACCTGATTTCTGTAAACTCGCCTATTGC1561TCGTGGCCTGATCGGCAAAGAAGAAGATGATGTTGTGGTCATCAAAACGCCGGGCGGCGA1621AGTAGAATTTGAAGTAATTAAGGTGGAATACCTGTAAgaattacccaatactcaagatgt |
| $\overrightarrow{G9} / \overrightarrow{G10}$                                                                                                                                                                                                                                                                                                                                                     |
| 1681 tgatgtattg taaagaaagg aaaa <b>aggccg ctatgcggcc ttttatcaac gaac</b> agagcg<br>1741 tggcattttg ctctcctgcc tgcggaaaac ccctcgtttt acacagcaaa tgtgtgtaac                                                                                                                                                                                                                                        |
| 1741 tggcattttg $CCCCCcgcc tgcggaaaac cccccgtttt acacagcaaa tgtgtgtaac \leqG121801 tttaggataa tcTTAGCGTG GCAGCGAGAT TTTACGTTCT TTAGTTGGGC GATAAAGCAC$                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                  |

**Figure 25**: Partial sequence of the *E. coli* genome, including the *greA* gene. In capital letters are indicated the coding sequences of *dacB* (in red), *greA* (in black) and *yhbY* (in green). The dotted line represents 721nt of *dacB*. The boxes -10 and -35 of the  $\sigma^{70}$  (in orange) and  $\sigma^{E}$  (in blue) *greA* promoters are indicated. The transcription initiation +1 for each promoter is indicated in capital letters in black. The early imprecise terminator is indicated in bold and underlined. The transcription terminator of the gene *greA*, predicted by RNAold (Naville *et al.*, 2014), is shown in dark blue in bold and underlined. The predicted -10 box of the putative promoter of *dacB* is indicated in purple. The sequences of the primers used either to produce different lacZ fusions

or to clone greA sequences into different vectors are indicated in grey and underlined by brackets. The name of the primer and the orientation is indicated.

Moreover, using primer extension and *in vitro* transcription assays (Potrykus *et al.*, 2010), it was experimentally demonstrated that *greA* expression is under control of two distinct promoters separated by 11nt: the  $\sigma^{70}$ -dependent and the  $\sigma^{E}$ -dependent promoters (**fig. 24 and 25**).

Between the *greA* promoters and the translation start, there is an imprecise transcription terminator, located 18 and 7 nucleotides downstream of  $+1\sigma^{70}$  and  $+1\sigma^{E}$ , respectively (**fig. 25**), that produces an array of short transcripts – known as GraL. Transcriptomic studies suggest that overexpression of GraL might alter the expression of some genes in *E. coli* (Potrykus *et al.*, 2010).

Very little is known about the regulation of *greA* expression. In order to gain knowledge in the *greA* expression regulation, different transcriptional and translational fusions of the *greA* promoter region with the *lacZ* reporter gene were constructed. These fusions are listed in **Table 5**, divided into two categories, I and II, depending on the methodology used to construct them.

|    | Name      | Upstream<br>sequence | Position of <i>lac</i> insertion | Primers | $P\sigma^{70}$ | Pσ <sup>E</sup> | GraL | ORF | Туре |
|----|-----------|----------------------|----------------------------------|---------|----------------|-----------------|------|-----|------|
| I  | greA +3   | ∞                    | +3                               | G3-G9   | +              | -               | -    | -   | Т    |
|    | greA +101 | ∞                    | +101                             | G5-G9   | +              | +               | +    | -   | Т    |
|    | greA +193 | ∞                    | +193                             | G8-G9   | +              | +               | +    | -   | Т    |
|    | greA +685 | ø                    | +685                             | G10-G12 | +              | +               | +    | +   | Т    |
| 11 | attBgreA1 | -171                 | +175                             | G2-G7   | +              | +               | +    | -   | Т    |
|    | attBgreA2 | -1030                | +175                             | G1-G7   | +              | +               | +    | -   | Т    |
|    | attBgreA3 | -1030                | +175                             | G1-G7   | +              | +               | +    | -   | t    |

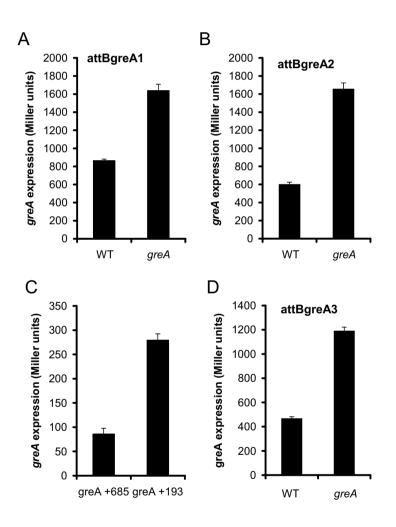
**Table 5**: List of *greA-lacZ* fusions constructed. It is shown the position of the different fusions, as well as the elements that contain. The position of *lac* insertion is determined from the +1 of  $\sigma^{70}$ . The type of fusion could be transcriptional (T) or translational (t), as indicated. The primers used to construct the *lacZ* fusions, are shown. The two subgroups of *lacZ* fusions, I and II, are defined as discussed in the text.

The *lacZ* fusions of the category I were constructed by insertion of a *lacZ* promoter-less gene into the desired chromosome location following allele replacement (Datsenko and Wanner, 2000; Ellermeier *et al.*, 2002). As described in section 3.8, for gene replacement purposes by homologous

recombination, a DNA fragment containing an antibiotic resistance gene, flanked by sequences homologous to *greA*, was PCR-amplified. The primers used containing the homologous zones to *greA*, are shown in **figure 25** and **table 5**.

The *lacZ* fusions of the category II, were constructed by cloning the promoter sequences within vectors, generating transcriptional and translational fusions with a *lacZ* promoter-less gene. Next, the plasmid was transferred into the *attB* locus of the *E. coli* chromosome (Simons *et al.*, 1987), as described in section 3.7.5. The primers used are shown in **figure 25** and **table 5**.

The different *greA-lacZ* fusions generated have specific characteristics as described in **table 5**.


#### 4.1.1. Autoregulation: Effect of GreA over its own expression

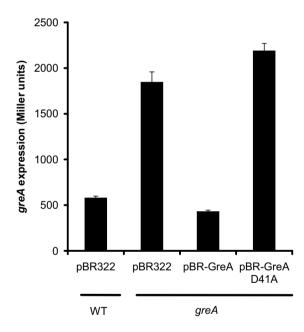
Many regulators are autoregulated, meaning that are able to control its own transcriptional expression (Thieffry *et al.*, 1998). While the positive autoregulation amplify the response to a signal, the negative autoregulation reduce background noise and produces a quicker response to environmental factors (Becskei and Serrano, 2000; Rosenfeld *et al.*, 2002). The possible autoregulation of GreA was explored (**fig. 26**).

To perform transcriptional studies of *greA* expression, the fusions attBgreA1 and attBgreA2 were transduced to a *lacZ* derivative of MG1655, the strain AAG1 (referred as WT) and to its *greA* counterpart CLT254 strain, (referred as *greA*). The *greA* expression in the different genetic background was monitored in cultures grown in LB at 37°C up to early-stationary phase ( $OD_{600nm}$  of 1.5). When using the attBgreA1 fusion (**fig. 26A**), containing a short promoter sequence (-171), a clear increase (2-fold) in the transcriptional expression was detected in the *greA* mutant strain indicating that *greA* expression is negatively autoregulated, since GreA seems to repress its own expression.

Considering that promoters might contain regulatory elements in extended upstream regions of the -35 and -10 sequences, same experiments were performed using the fusion attBgreA2 that contains a larger promoter region than attBgreA1 (-1030). As expected, similar results were obtained (**fig. 26B**),

the *greA* expression increases in the *greA* mutant strain, as compared to WT. With the extended promoter region fusion, the increase detected was higher (up to 2.5-fold) than with the shorter promoter fusion. Transcriptional *greA* expression in a *greA*<sup>+</sup> and *greA*<sup>-</sup> background was also tested using *lacZ* fusions in the native genomic context of *greA* by using the greA+685 and greA+193 constructs (**table 5**). As could be observed in **figure 26C**, the expression from greA+193 fusion (*greA*<sup>-</sup> background) is up to 3-fold higher than from greA+685 (*greA*<sup>+</sup> background), showing similar results as the obtained with the attBgreA1 and attBgreA2 fusions (**fig. 26A and 26B**). Moreover, a translational fusion was also used (**fig. 26D**), obtaining similar results.



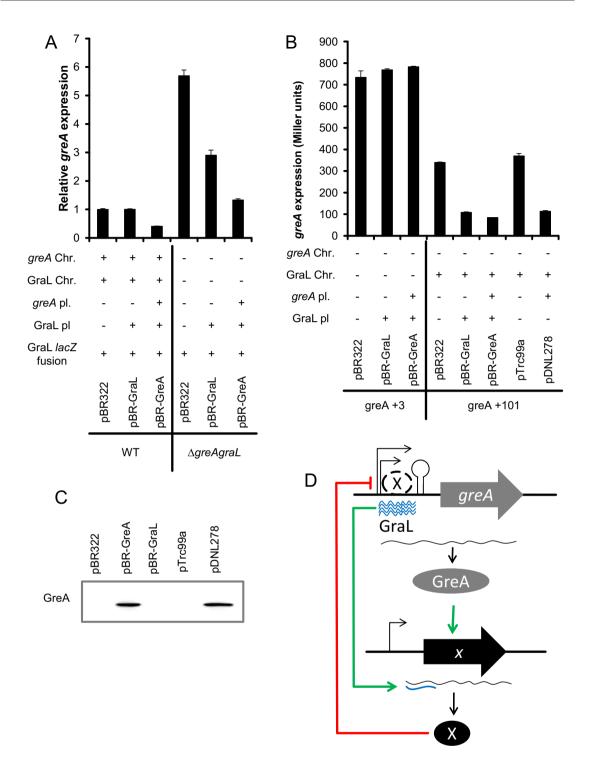

**Figure 26:** Expression of *greA* in AAG1 (WT) and CLT254 (*greA*) in cultures grown in LB at 37°C up to an OD<sub>600nm</sub> of 1.5. Different *lacZ* fusions were assessed: attBgreA1 (A), attBgreA2 (B), greA +685/+193 (C) and attBgreA3 (D). Average and standard deviation of  $\beta$ -galactosidase activity determined from three independent cultures are shown.

Altogether, these data clearly indicate that *greA* expression is autoregulated. GreA represses its own expression presumably to guarantee that GreA levels in the cell do not increase over a specific threshold. As previously mentioned, GreA might compete with other proteins, maintaining a narrow equilibrium, for interacting with the secondary channel of the RNApol. In such scenario, such negative autoregulatory loop might play a very significant role since a very strong increase of GreA could cause that it would be occupying the secondary channel of most of the holoenzyme complexes in the cell, somehow causing alterations in the equilibrium with all the other proteins that could also interact with the secondary channel of the RNApol. In fact, it would be shown in chapter 4.4. that very high levels of GreA in the cell have a deleterious effect for the cell growth, clearly indicating that maintaining a proper expression of *greA* is pivotal for the physiology of the cell.

The autoregulation of GreA was published by Potrykus *et al.*, in 2010, they performed transcriptional studies of *greA* expression similar to those shown in **figure 26**. They determined the expression of *greA* with a *lacZ* fusion similar to attBgreA1 in presence and absence of GreA. They also observe an increase of *greA* expression in absence of GreA (3-fold higher), suggesting that *greA* expression is subject to autorepression.

To further characterize the autoregulatory loop, the greA gene was cloned in pBR322 to determine if it complements the greA mutation regarding the autoregulation. The greA D41A allele was also used. The amino acid D41 is essential for GreA antipause activity and, consequently, the greA D41A allele is defective in rescuing paused complexes of the RNApol (Opalka et al., 2003; Laptenko et al., 2003). To clone the alleles, the greA genes with its own promoters were amplified by PCR using the primers G1 and G11 from MG1655 and TP1204 (greA D41A), respectively. The resulting plasmids pBR-GreA and pBR-GreA D41A, as well as pBR322 as a control, were transformed into the strain LFC4 (CLT254 attBgreA2). The expression of greA was determined in cultures grown in LB at 37°C up to early-stationary phase (OD<sub>600nm</sub>of 1.5) of the strains LFC3 (AAG1 attBgreA2) pBR322 and LFC4 carrying either pBR322, pBR-GreA or pBR-GreA D41A (fig. 27). As previously shown (fig. 26), the absence of GreA (LFC4/pBR322) increases the expression of greA as compared to WT strain. When plasmid pBR-GreA was introduced, a significant decrease in the expression of greA to the levels of the WT strain was observed,

indicating that pBR-GreA complement the chromosomal deficiency of *greA*. Interestingly, when the plasmid pBR-GreA D41A was introduced, it was observed that this allele is not able to complement GreA deficiency, showing a high expression of *greA* (**fig. 27**). These data indicates that antipause activity is required for autoregulation of GreA. Somehow, it means that the ability to solve paused transcription elongation complexes (TEC) would reduce the expression of *greA*. While it is easily understandable that solving paused TEC may increase gene expression, it is difficult to explain how antipause activity can decrease gene expression. To explain it, we hypothesized that GreA may affect *greA* expression indirectly by activating an unknown factor that would repress *greA* expression. This hypothesis is in agreement with previous results from Potrykus *et al.*, (2010), where they were unable to detect GreA autoregulation when performing *in vitro* transcription experiments, indicating that additional factors were necessary to observe the autoregulation phenomenon *in vitro*.




**Figure 27**: Complementation of  $\Delta greA$  mutation *in trans*. LFC3 pBR322 and LFC4 carrying pBR322, pBR-GreA or pBR-GreA D41A were grown in LB at 37°C up to an OD<sub>600nm</sub> of 1.5 and  $\beta$ -galactosidase activity was determined. Average and standard deviation of  $\beta$ -galactosidase activity determination from three independent cultures are shown.

The greA gene encodes at least two regulatory elements, the protein GreA and a set of small RNAs, known as GraL that might play a role in gene expression regulation (Potrykus *et al.*, 2010). To elucidate the effect of GraL on greA autoregulation, we obtained a GraL GreA deficient strain ( $\Delta$ greAgraL) by gene

replacement, using the primers G4 and G9 and we transduced the fusion attBgreA2 into this strain to generate LFC7 (AAG1 ∆greAgraL attBgreA2). A partial sequence of the greA gene with its own promoter was cloned in pBR322, allowing production of GraL but not the protein GreA. The greA cloned fragment was amplified from MG1655 with primers G1 and G7, and cloned into pBR322. The plasmids pBR322, pBR-GreA and pBR-GraL were transformed into LFC3 and LFC7. The resulting strains were grown in LB at 37°C up to an OD<sub>600nm</sub> of 1.5 and β-galactosidase activity was determined (fig.28A). The plasmid pBR-GraL did not produce any effect over greA expression in a WT strain. Remarkably, the presence of pBR-GreA produces a decrease (2-fold) on greA expression in the WT strain, indicating that increasing the levels of GreA within the cell has consequences in the gene expression profile. In the mutant strain for GreA and GraL, greA expression is 5-fold higher than in WT suggesting that GraL represses greA expression as well as GreA. Both factors affect negatively the expression of greA in an additive effect. The plasmid pBR-GraL produces a decrease of greA expression in the mutant  $\triangle$  greAgraL, but greA expression is still 3-fold higher than in WT (fig. 28A). However, in the mutant  $\triangle greAgraL$ , pBR-GreA (that produces both GreA and GraL) reduces the expression of greA almost to the WT expression levels.

These data shows that GraL and GreA produce an additive effect over *greA* expression. Among different possible regulatory models that may explain the observed results, the data may suggest that both, GreA and GraL, might stimulate the expression of an unknown factor that would repress the expression *greA* expression. It should be mentioned that the strain  $\Delta$ *greAgraL* is not completely deficient in GraL since the *lacZ* fusion attBgreA2 is presumably proficient in GraL production. Transcriptomic studies performed during GraL overexpression (Potrykus *et al.*, 2010) showed that GraL has an effect over gene expression, but no effect over *greA* was detected. They predict that GraL could interact with the mRNA of *yhiY*, gene located downstream of *greA* (**fig. 24**).



**Figure 28**: Effect of GreA and GraL over *greA* expression.. A) Effect of pBR322, pBR-GreA and pBR-GraL into LFC3 and LFC7. B) Effect of pBR322, pBR-GreA and pBR-GraL into LFC30 (greA+3) and the effect of pBR322, pBR-GreA, pBR-GraL, pTrc99a and pDNL278 into LFC32 (greA+101). C) The presence of GreA was determined in the strain LFC32 carrying the plasmids pBR322, pBR-GreA, pBR-GraL, pTrc99a and pDNL278 by Western blot using antibodies against GreA. In A, B and C, cultures were grown in LB at 37°C up to an OD<sub>600nm</sub> of 1.5 D) Hypothetical model of the autoregulation of *greA* and the effect of GraL on it. Average and standard deviation of  $\beta$ -galactosidase activity determination from three independent cultures are shown.

To further dissect the effect of GreA and GraL in the autoregulation of *greA*, we constructed several *lacZ* fusions by gene disruption: greA+3 and greA+101 carrying different genetic elements found in the promoter region. As defined on **table 5**, greA+3 is fused at the transcription start of the  $\sigma^{70}$  promoter and greA+101 is fused downstream the terminator located within the *greA* 5' UTR, as observed in **figure 25**.

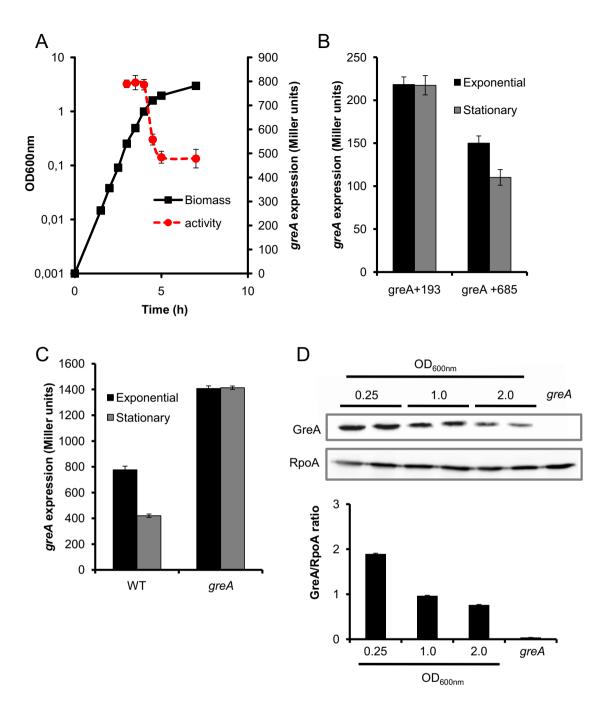
The strains LFC30 (greA+3) and LFC32 (greA+101) were transformed with the plasmids pBR322, pBR-GreA and pBR-GraL, and the  $\beta$ -galactosidase activity was measured in cultures grown in LB at 37°C up to an OD<sub>600nm</sub> of 1.5 (fig. 28B). Comparing the expression of greA+3 with greA +101 (with pBR322), we could observe that the expression from greA+3 was much higher than for greA+101. These results are consistent with a role in the autorepression of greA by the GraL transcripts, since greA+3 lacks GraL whereas greA+101 produce the GraL. Interestingly, the presence of pBR-GraL and pBR-GreA causes further induction on greA expression with the fusion carrying the GraL sequences (+101) whereas the fusion +3 was fully insensitive to either the presence of GraL and GreA. These results suggest that the autoregulation does not occur at the level of transcription initiation. The fusion responding to antirepression by GraL and GreA (+101) is GraL proficient and therefore it contains the partial terminator present within the greA promoter. Our results suggest that autoregulation occurs independently of the  $\sigma^{70}$ -dependent promoter and it requires the sequence between +1 of  $\sigma^{70}$  and the end of the partial terminator. In a work by Potrykus et al. (2010), they determined using *lacZ* fusions that contain either the  $\sigma^{70}$ -dependent promoter or both  $\sigma^{70}$  and  $\sigma^{E}$ promoters, but lacking GraL, that the expression was higher than when using a *lacZ* fusion carrying all the regulatory elements,  $\sigma^{70}$ ,  $\sigma^{E}$  and GraL. These results suggest that the presence and expression of the GraL sequences had a negative impact on greA expression. Similarly to what we observe with our greA+3 fusion, in Potrykus et al. (2010) the lacZ fusions containing the greA promoters, but not GraL, did not respond to the presence of GreA

Our data suggest that the presence of the sequence between +3 and +101 was required for GraL, as well as GreA, to produce its effect on the expression of *greA*.

Using the +101 fusion similar effect on greA expression was observed when carrying either pBR-GraL or pBR-GreA. Having in consideration that pBR-GreA code for both GraL and GreA, we design experiments to determine whether GreA is autoregulating *greA* expression or it is only GraL the crucial regulatory factor. The plasmid pDNL278, a pTrc99a derivative carrying the greA coding sequence under the control of a P<sub>tac</sub> promoter that expresses GreA but not GraL, was transformed into the strain LFC32 (greA+101) and the greA transcriptional expression was monitored after growing in LB at 37°C up to an OD<sub>600nm</sub> of 1.5 (**fig.28B**). As a control, strain carrying the cloning vector pTrc99a was also used. The presence of plasmid pDNL278, as well as pBR-GraL and pBR-GreA, causes a drop in the expression of greA using the fusion greA+101. These data suggest that GreA is carrying repression of the greA transcriptional expression and it might be requiring the presence of the sequence present in the regulatory region between +3 and +101 to produce its autoregulatory effect. As a control, the expression of the GreA protein in the different strains was monitored by Western blot (Fig. 28C). As expected, GreA is produced in the strains with pBR-GreA and pDNL278.

This autoregulation might be required to keep GreA and GraL levels controlled and maintaining the steady-state level of these regulation and the appropriate expression pattern in the different conditions. As mentioned before, the overexpression of GreA and GraL causes several effects in the gene expression profile (Stepanova *et al.*, 2007; Potrykus *et al.*, 2010). Therefore, systems to tightly regulate those factors may be pivotal to do not cause negative effects on the fitness of the bacterial cell. Changes in the amount of GreA would produce alterations in the competition for the secondary channel of the RNApol, while an increase on GraL would produce the binding of this sRNA to complementary mRNA and as a consequence, changes on the gene expression pattern affecting transcription elongation and post-transcriptional processes respectively.

While the mechanism is already not well understood, we have determined that the antipause activity of GreA is required (**fig. 27**). Considering that it is difficult to understand how antipause activity may be responsible of direct gene repression, and that *in vitro* experiments suggest that GreA negative effect on

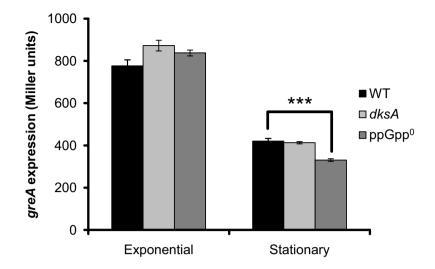

its own gene expression requires additional factors (Potrykus *et al.*, 2010). An indirect model was hypothesized (**fig. 28D**). GreA would stimulate the expression of an unknown factor (X), requiring GreA antipause activity. Moreover GraL might be required to stabilize the mRNA of the unknown factor, increasing its protein levels. The X factor could bind into the promoter of *greA*, between the sequences +3 and +101, repressing the expression of *greA* or could act at the post-transcriptional step by interacting with the mRNA of *greA*. This model is a reductionist view of the possible mechanism that may cause the observed autoregulation.

#### 4.1.2. Expression of greA through the growth curve

Under laboratory conditions and using discontinuous cultures, a typical bacterial growth curve allows definition of distinctive growth phases: lag, exponential, stationary and death phases. The transition between the different growth phases produces extensive changes on the gene expression pattern of the bacterial cells. Special attention has been done in the adaptation of actively growing cells (exponential phase cultures) when they encounter harsh conditions causing slow down the growth and entering in an adaptative mode for survival (stationary phase). In the interphase between exponential and stationary phase, important rearrangements in the gene expression pattern occurs promoted, at least in part, by the binding of ppGpp to the RNApol. The expression levels of several regulators changes during the transition of exponential to stationary phase.

Expression of *greA* was monitored during growth of the LFC3 (attBgreA2 fusion) strain in LB at 37°C after inoculation from plate at an initial OD<sub>600nm</sub> of 0.001 (**fig. 29A**). The expression of *greA* was determined after the first 3 hours. A characteristic *greA* expression profile was detected. The expression of *greA* decreases (nearly 2 fold) in the transition between exponential and stationary phase, showing that *greA* expression depends on the growth phase.

Transcriptional *greA* expression at exponential ( $OD_{600nm}$  of 0.5) and earlystationary phase ( $OD_{600nm}$  of 1.5) was also tested using *lacZ* fusion in the genomic context of *greA* by using the fusions greA+685 and greA+193 (**fig. 29B**).



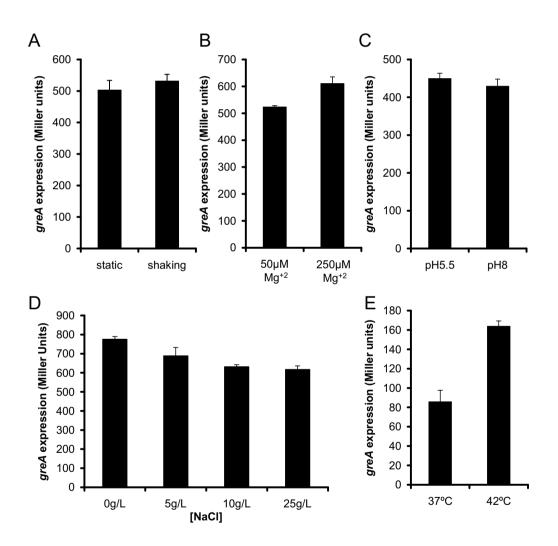

**Figure 29**: Effect of growth phase on *greA* expression. A) Transcriptional expression of *greA* at different time points of the growth curve in cultures of the strain LFC3 (AAG1 attBgreA2) grown in LB at 37°C. B) Expression of *greA* in cultures of the strains LFC29 (greA+193) and LFC28 (greA+685) grown in LB at 37°C up to an OD<sub>600nm</sub> of 0.5 (exponential phase) and 1.5 (early stationary phase). C) Expression of *greA* in cultures grown of the strains LFC3 (AAG1 attBgreA2) ant LFC4 (CLT254 attBgreA2) in LB at 37°C up to an OD<sub>600nm</sub> of 0.5 (exponential phase) and 1.5 (early stationary phase). D) Western Blot using antibodies against GreA and RpoA (RNApol  $\alpha$  subunit) in cultures grown of the strain MG1655 and CF11657 (*greA*) in LB at 37°C at different points of growth phase (OD<sub>600nm</sub> of 0.25, 1.0 and 2.0). The ratio GreA/RpoA was determined. Average and standard deviation of  $\beta$ -galactosidase activity determination from three independent cultures are shown.

A drop in *greA* expression was observed in stationary phase when using fusion +685 (*greA*<sup>+</sup> background). Interestingly, when using the fusion greA+193 (*greA*<sup>-</sup> background) a drop in *greA* expression in stationary phase was not detected, suggesting that the GreA autoregulatory loop is required for the growth phase dependent control. To corroborate this, the *greA* expression using the attBgreA2 fusion in presence and absence of GreA was determined. With this purpose, LFC3 and LFC4 strains were grown in LB at 37°C up to an OD<sub>600nm</sub> of either 0.5 (exponential phase) or 1.5 (early-stationary phase). Similar results as the obtained with fusions greA+685 and greA+193 were observed (**fig. 29C**): a 2-fold decrease on *greA* expression in presence of GreA, but not in its absence. Somehow, the presence of GreA is required to repress the expression of *greA* at stationary phase. These results also suggest that the stationary phase induced down-regulation of *greA* does not requires GraL.

To corroborate the transcriptional studies, the amount of GreA present in the cell was detected at different points of the bacterial growth phase ( $OD_{600nm}$  of 0.25, 1.0 and 2.0) by Western blot, using specific antibodies against GreA (**fig. 29D**). As a loading control the  $\alpha$  subunit of the RNApol (RpoA) was used, since expression is constant during the growth curve. Consistent with transcriptional data, the amount of GreA decreases 2 fold at stationary phase ( $OD_{600nm}$  of 1.0 and  $OD_{600nm}$  of 2.0) as compared with exponential phase ( $OD_{600nm}$  of 0.25).

A decrease in the amount of GreA during stationary phase might indicate that the binding of GreA to the secondary channel of the RNApol is not required in stationary phase cells. A decrease in the amount of GreA may facilitate the binding of other factors to the secondary channel. DksA, protein that also interact with the secondary channel of the RNApol acting as a cofactor of ppGpp (as discussed previously in 1.2.3.), is crucial for the adaptation of the bacteria to the stationary phase. Conversely a decrease in the amount of GreA, might facilitate the required interaction of DksA with the RNApol for the proper adaptation of the bacteria to the new conditions.




**Figure 30**: Effect of ppGpp and DksA on *greA* transcriptional expression at exponential and stationary phase of growth. Expression of *greA* in cultures strains LFC3 (WT), LFC9 (ppGpp) and LFC8 (dksA) grown in LB at 37°C up to an OD<sub>600nm</sub> of 0.5 (exponential phase) and OD<sub>600nm</sub> of 1.5 (early stationary phase). \*\*\* means p-Value < 0.001. Average and standard deviation of  $\beta$ -galactosidase activity determination from three independent cultures are shown.

The effect on the expression of *greA* of ppGpp and DksA, main responsible of the gene expression changes produced during entry into stationary phase, was determined. Transcriptional studies, using *lacZ* fusions, were performed (**fig. 30**). The strains LFC3 (WT) and its derivatives LFC9 ( $\Delta$ relA  $\Delta$ spoT, referred as ppGpp<sup>0</sup>) and LFC8 (*dksA*), all carrying the attBgreA2 fusion, were grown in LB at 37°C. The *greA* transcriptional expression was monitored in samples at OD<sub>600nm</sub> of 0.5 (exponential phase) and 1.5 (early-stationary phase).

The data (**fig. 30**) indicate that DksA and ppGpp do not have any relevant effect on the growth phase dependent regulation of *greA* expression. A modest decrease in the expression of *greA* in absence of ppGpp was observed at stationary phase. With the results obtained we might hypothesized that the drop of *greA* expression in stationary phase is GreA-dependent and might be indirect by the same unknown factor responsible of the autoregulation of *greA* expression (as discussed in **fig. 28D**). Somehow, this factor might increase its expression in stationary phase, causing a concomitant reduction in the expression of *greA*.

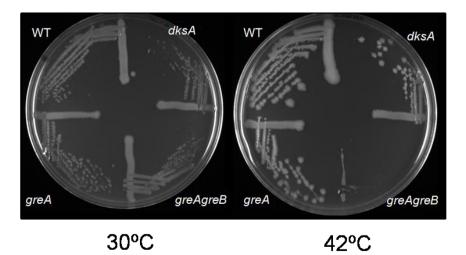
## 4.1.3. Effect of changes in diverse environmental parameters in the greA expression

Bacteria are used to adapt to changing conditions in the living environment to survive. Bacteria have mechanisms to vary gene expression as a response of several environmental changes sensed by the cell, (described in section 1.1) (Aertsen and Michiels, 2008). Transcriptional studies were performed using *lacZ* fusions, testing the effect of several environmental conditions such as oxygen and magnesium availability, pH, osmolarity and temperature on *greA* expression.



**Figure 31**: Effect of environmental factors on *greA* transcriptional expression. A) Expression of *greA* in cultures of the strain LFC3 (attBgreA2) grown at 37°C overnight in LB with different aeration conditions. B) Expression of *greA* in cultures of the strain LFC3 grown in LB with different concentrations on MgSO<sub>4</sub> / MgCl<sub>2</sub> up to an OD<sub>600nm</sub> of 1.5. C) Expression in cultures of *greA* of the strain LFC3 grown in LB buffered at either pH5.5 or pH8 at 37°C up to an OD<sub>600nm</sub> of 1.5. D) Expression of *greA* in cultures of the strain LFC3 grown in LB with different concentrations of NaCl at 37°C up to an OD<sub>600nm</sub> of 1.5. E) Expression of *greA* in cultures of

the strain LFC28 (greA+685) grown in LB at either 37°C or 42°C up to an OD<sub>600nm</sub> of 1.5. Average and standard deviation of  $\beta$ -galactosidase activity determination from three independent cultures are shown.


Oxygen availability: *E. coli* is a facultative anaerobic organism, being able to grow in either presence or absence of O<sub>2</sub>. Variations in the level of O<sub>2</sub> produce relevant changes in the gene expression pattern of *E. coli*. To determine the effect of O<sub>2</sub> over *greA* expression, the strain LFC3 (attBgreA2 fusion) was grown at 37°C under conditions of high and low concentration of O<sub>2</sub>. The conditions of high concentration of O<sub>2</sub> was achieved by culturing bacteria in 100ml culture flasks with 20ml of LB in constant shaking (200 rpm), producing a proper aeration of the culture.

By contrast, conditions of low  $O_2$  concentration were achieved by growing the bacteria in 12ml sealed tubes with 10ml of LB on static. Under those conditions a decreasing gradient of oxygen within the tube will be generated by the bacterial growth, being very low  $O_2$  concentration in the bottom of the tube (**fig. 31A**). As could be observed in **figure 31A**, there is no effect of aeration in *greA* expression in LB at 37°C, suggesting that the amount of GreA do not depend on the availability of  $O_2$ .

- Magnesium availability: Low magnesium and mildly acidic pH are sensed in the periplasm by the two-component system PhoQ-PhoP (Park and Groisman, 2014). In order to determine the effect of this system on *greA* expression, the effect of presence of Mg<sup>+2</sup> in the media was determined after growing the stain LFC3 (attBgreA2 fusion) in LB with either 50 μM or 250 μM of Mg<sup>+2</sup> salts (Montero *et al.*, 2009) (fig. 31B). No differences were observed on *greA* expression as a response to Mg<sup>+2</sup> concentrations under these conditions tested.
- pH: It has been described that overexpression of GreA stimulates the expression of gadE and gadA genes (Vinella et al., 2012), that are involved in the glutamate-dependent acid response (gad system). The gadE gene product is the transcriptional regulator of the gadABC operon induced by acid and salt shock. To determine the effect of pH on greA expression, the strain LFC3 was grown in LB buffered at either pH 5.5 with MES 100mM or pH 8 with MOPS 100mM at 37°C up to an OD<sub>600nm</sub> of 1.5 and β-galactosidase activity was

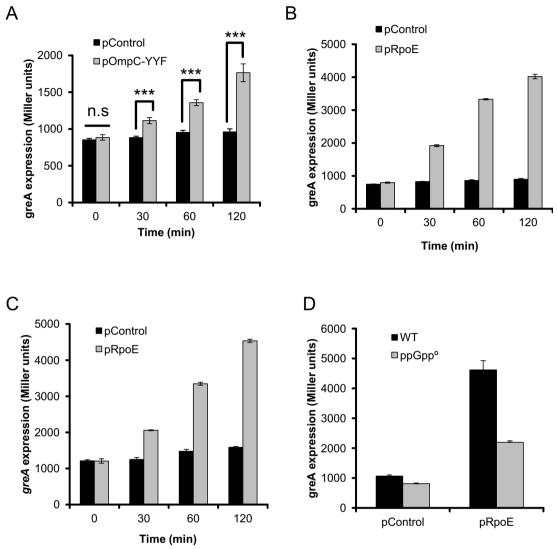
monitored (**figure 31C**). No effect on *greA* expression was observed at the different pH tested.

- Osmolarity: It has been described that GreA is involved in salt stress response in *Sinorhizobium meliloti* and *Rhizobium tropic* (Nogales *et al.*, 2002; Wei *et al.*, 2004). For this reason, the effect of media osmolarity on *greA* expression was determined by growing the strain LFC3 at 37°C in LB with 0, 5, 10 and 25 g/l of NaCl up to an OD<sub>600nm</sub> 1.5, and β-galactosidase activity was measured (fig. 31D). The osmolarity of the media does not affect *greA* expression.
- **Temperature**: The environmental temperature affects gene expression. Both, high and low temperatures would produce rearrangements in the gene expression pattern to adapt to this situations (Inouye and Phadtare, 2004; Guisbert *et al.*, 2008). The expression of *greA* at high temperature (42°C) was determined in the strain LFC28 (greA+685) was grown in LB at 37°C and 42°C up to an OD<sub>600nm</sub> of 1.5 (**fig. 31E**). The expression of *greA* increases at high temperature, suggesting that the GreA protein might be required at higher concentrations during the heat shock response. To corroborate this hypothesis, it was monitored the growth of MG1655 strain and its derivative strains deficient in *dksA*, *greA* and *greAgreB* on LB plates at 30°C and 42°C after 18 hours incubation (**fig. 32**).



**Figure 32**: Effect of high temperature in bacterial growth of MG1655 strain and its derivative mutant strains *dksA*, *greA* and *greAgreB*, grown on LB agar plates at the indicated temperatures.

As shown in **figure 32**, in absence of GreA and GreB, bacteria are not able to grow at 42°C, showing the essentiality of these factors for the adaptation of the bacteria to high temperatures. This effect was suggested by Baharoglu *et al.*, (2010), where they show how mutations in the RNApol that prevent pausing are able to survive at 42°C in absence of GreA and GreB, suggesting that paused TEC might be lethal in this condition. The alternative  $\sigma^{E}$  subunit is activated by unfolded proteins in the periplasm affected by different stress conditions, such as heat shock (Alba and Gross, 2004). Taking in consideration the presence of a  $\sigma^{E}$ -dependent promoter in the *greA* gene and that *greA* expression increases at 42°C, we decided to study more in detail the effect of  $\sigma^{E}$  on *greA* expression.


### <u>4.1.3.1. Effect of the $\sigma^{E}$ subunit of the RNApol on greA expression</u>

The alternative  $\sigma^{E}$ , as previously described in section 1.1.2.2, is responsible of the extracytoplasmic stress response. Unfolded proteins –mainly outer membrane proteins (OMP) (Walsh *et al.*, 2003) – interact with the membrane protein DegS (**fig.32**), activating its protease activity and producing degradation, among others, of RseA – the anti-sigma factor that binds to  $\sigma^{E}$  – releasing  $\sigma^{E}$  (Alba and Gross, 2004).

In studies performed by Walsh *et al.* (2003), was shown that the C-terminal of unfolded OMP, such as OmpC, activate DegS. They generate chimerical proteins fusing the C-terminal (50 amino acids) of OmpC to the N-terminal *pelB* leader sequence and modifying the last 3 amino acids of OmpC in order to generate the so called OmpC-YYF. The gene *pelB* codes for a pectate lyase (Lei *et al.*, 1987) that contains a leader sequence that has been extensively used to target chimerical peptide fragment to the periplasm and allow proteolytic removal of the signal sequence (Singh *et al.*, 2013). Walsh *et al.* (2003) demonstrate that overexpressing OmpC-YYF causes an efficient activation of the  $\sigma^{E}$  pathway.

To determine the effect of  $\sigma^{E}$  on *greA* expression, we decided to induce extracytoplasmic stress response by overexpression of OmpC-YYF with the IPTG-inducible plasmid pBA166 (Walsh *et al.*, 2003). The plasmid pBA166 (referred as pOmpC-YYF) and pTrc99a (referred as pControl) were transformed

into LFC3 and the resulting strains were grown in LB at  $30^{\circ}$ C up to an OD<sub>600nm</sub> of 0.1. Overexpression of OmpC-YFF was induced by addition of IPTG (1 mM).



**Figure 33**: Effect of  $\sigma^{E}$  on *greA* transcriptional expression. A) Expression of *greA* in cultures of the strain LFC3 (AAG1 attBgreA2) grown in LB at 30°C up to an OD<sub>600nm</sub> of 0.1. At this point, *ompC*-YYF was induced with 1 mM of IPTG and samples were analyzed at different time points as indicated in the X axis. \*\*\* means p-value < 0.001 B) Expression of *greA* in cultures of the strain LFC3 carrying either pTcr99a or pLC249 grown in LB at 30°C up to an OD<sub>600nm</sub> of 0.1. At this point, *rpoE* was induced with 1 mM of IPTG and samples were analyzed at different time points as indicated in the X axis. C) Expression of *greA* in cultures of the strain LFC4 (CLT245 attBgreA2) grown in LB at 30°C up to an OD<sub>600nm</sub> of 0.1. At this point, *rpoE* was induced with 1 mM of IPTG and Samples were analyzed at different time points as indicated in the X axis. C) Expression of *greA* in cultures of the strain LFC4 (CLT245 attBgreA2) grown in LB at 30°C up to an OD<sub>600nm</sub> of 0.1. At this point, *rpoE* was induced with 1 mM of IPTG and LFC9 grown in LB at 30°C up to an OD<sub>600nm</sub> of 0.1. At this point, *rpoE* was induced with 1 mM of IPTG and samples were analyzed at different time points as indicated in the X axis. D) Expression of *greA* in cultures of the strain LFC3 and LFC9 grown in LB at 30°C up to an OD<sub>600nm</sub> of 0.1. At this point, *rpoE* was induced with 1 mM of IPTG and samples were analyzed at different time points as indicated in the X axis. Average and standard deviation of  $\beta$ -galactosidase activity determination from three independent cultures are shown.

Samples were taken at 30, 60 and 120 minutes after induction to monitor *greA* expression by measuring  $\beta$ -galactosidase activity (**figure 33A**). The induction of

extracytoplasmic stress, by accumulation of unfolded chimerical OmpC-YFF, produces a significant (p-value < 0.001) induction of *greA* expression. After 30min of induction, a clear increase of *greA* expression was observed, and after 120min of the induction, a 2-fold increase in the expression of *greA* was detected.

To further corroborate that *greA* expression is responsive to changes in the levels of functional  $\sigma^{E}$  subunit, the effect of overexpression of  $\sigma^{E}$  on *greA* expression was determined. To do that, LFC3 strain was transformed with the plasmid pLC245 (pRpoE) and pTrc99a (pControl). The resulting strains were grown in LB at 30°C up to an OD<sub>600nm</sub> of 0.1 and the overexpression the  $\sigma^{E}$  subunit was induced with IPTG (1 mM). Samples were taken at 30, 60 and 120 minutes after induction to monitor *greA* expression (**fig. 33B**).

A dramatic induction of *greA* was detected (**fig. 33B**). After 30min a 2-fold increase in *greA* expression was detected, and after 120min the expression of *greA* was up to 4 times higher that the non-induced culture. Our data shows that *greA* is induced by the extracytoplasmic stress, due the presence of a  $\sigma^{E}$ -dependent promoter, and this mechanism might be the responsible of the increase of *greA* expression observed at high temperature (**fig. 31E**). When *E. coli* suffer a heat shock, unfolded proteins are generated in the periplasm that would promote the degradation of the anti-sigma factor RseA, releasing  $\sigma^{E}$  and allowing it to form complex with the RNApol. Finally the holoenzyme would activate the  $\sigma^{E}$ -dependent promoters, among them *greA*.

Considering that GreA represses the expression of *greA* being responsible of the decrease of its own expression in stationary phase, whether GreA is required for the activation of *greA* by  $\sigma^{E}$  was established (**fig. 33C**). The plasmids pLC245 (pRpoE) and pTrc99a (pControl) were transformed into the *greA* deficient strain LFC4 (*greA* attBgreA2). The resulting strains were grown in LB at 30°C up to an OD<sub>600nm</sub> of 0.1 and the overexpression of the  $\sigma^{E}$  subunit was induced by addition of IPTG (1 mM). Samples were taken at 30, 60 and 120 minutes after induction to monitor *greA* transcriptional expression. Similar results as previously observed in the WT strain were detected (compare **fig.33C** and **fig. 33B**), the expression of *greA* increases up to 2 fold after 30 minutes of

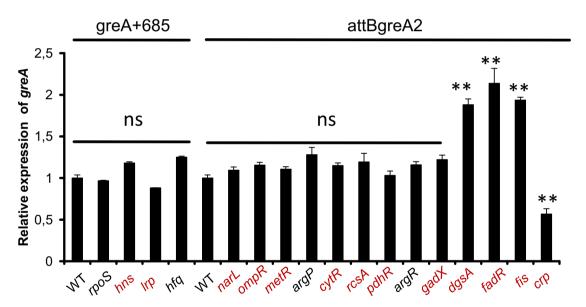
induction, and a 3.5-fold increase after 120 minutes, suggesting that GreA is not required for the activation of *greA* by  $\sigma^{E}$ .

It has been suggested that ppGpp (as described in 1.2.2.1) acts in the sigma factors competition (Magnusson et al., 2005), and, as previously described, ppGpp is necessary for  $\sigma^{E}$  activity (Costanzo *et al.*, 2008). For this reason, the effect of ppGpp over the induction of greA by  $\sigma^{E}$  was monitored (**fig. 33D**). The plasmids pLC245 (pRpoE) and pTrc99a (pControl) were transformed into the ppGpp deficient strain LFC9 (attBgreA2 fusion). The resulting strains and the proficient ppGpp strain LFC3 carrying the same plasmids, were grown in LB at 30°C up to an OD<sub>600nm</sub> of 0.1 and the overexpression of the  $\sigma^{E}$  subunit was induced by the addition of IPTG (1 mM). Samples were taken at 60 minutes after induction to measure  $\beta$ -galactosidase activity. As previously described, the overexpression of  $\sigma^{E}$  increases the expression of greA. However, in absence of ppGpp (strain LFC9), the induction of *areA* by  $\sigma^{E}$  overexpression was 2-fold lower than in the presence of ppGpp (LFC3), showing that ppGpp affects greA expression by affecting  $\sigma^{E}$  activity. It is remarkable that only a partial reduction was observed in a ppGpp<sup>0</sup> strain. Costanzo et al. (2008) observed a complete lost of  $\sigma^{E}$ -dependent activation of the *rpoH* promoter in absence of ppGpp.

These data show that GreA is required during extracytoplasmic stress and adaptation of bacteria to high temperature, probably its ability to restore paused transcription elongation complexes (TEC) would be necessary for the response to this stress, as it has been suggested previously (**fig. 32** (Baharoglu *et al.*, 2010)). Another possible explanation to the  $\sigma^{E}$  dependency of *greA* expression is the recent finding that GreA seems to act as a chaperone (Li *et al.*, 2012). Considering that main part of the target genes of  $\sigma^{E}$  are chaperones, it might suggest that GreA could be required as a response to extracytoplasmic stress, acting as a chaperone.

#### 4.1.4. In silico analysis of the promoter region of greA gene

With the aim to determine which factors could control the expression of *greA*, *in silico* analysis searching for putative binding sites in the promoter sequence of global regulators were performed (**fig. 34**). This prediction was developed with the online software Virtual Footprint (Münch *et al.*, 2005) that identify putative


binding sites depending on the consensus sequence and described patterns. The whole sequence used to produce the fusion attBgreA2 (**table 5** and **fig. 25**) was used to search for putative binding sites for global regulators upstream and downstream of *greA* promoter.

| 1<br>61           |                                    | TTGTCCGACT<br>GCAACTACCG               |                             |                          |              |                                      |
|-------------------|------------------------------------|----------------------------------------|-----------------------------|--------------------------|--------------|--------------------------------------|
| 121<br>181        | TCCATCCTGC                         | ATACCCGCCT<br>ACGGCAAAAG               | CCAACGGGAG                  | CGGCTCAGAA               | CGTTGTGGCA   | GGCATCCCGT                           |
| 241<br>301<br>361 | AGAACCACGG                         | CGGTTCAGGT<br>GGGAGGGTGC<br>GCCATATCAC | GTACCTGGCT                  | GAACATCGTA               | ACGGGGTAAT   | AAGATGCCAC                           |
| 421               | GCGGTCAACT                         | ATGGCGGCGG                             | CAGGCGGAGC                  | GCTAAAGCAT               | TGTGTCATGT   | CATTCCATGG                           |
| 481               | ccagcc <mark>gggg</mark><br>Lrp    | GCTTTATCGT<br>HN-S                     | <b>G</b> GCTGGCGAA          | AATGGAGGTA               | TCTATCAACA   | CATTGCCATC                           |
| 541               | •                                  | ACGCCAGATT                             | TTTTCAAAGT                  | CGCGACCA <b>TA</b>       |              | сстдасдттт<br><b>RP (1)</b>          |
| 601               | TAACGTCGGA                         | TCGGCACCAA                             | ATCGCGCCAC                  | TAAGTCACCC               |              |                                      |
| 661               | ATTGCCTTTG                         | GTTTCAAGCG                             | tcgtggtaaa<br><b>RcsA</b>   | acgaaaatcg<br>DgsA       | GGGCCGAGTT   | GAATCAACGC                           |
| 721               | CGCCAGCGCA (                       | GTAATCACTT                             |                             |                          | GCCATCTGCT ( | GACTGTGGTA                           |
| 781               | ATCAATAGCG                         | GGGGCCGACG                             | CGCCGACTTT                  | TTGCACCATC               | AGGGCAAGGT   | TGGCACCAGC                           |
| 841               | GGGGAGTTGA                         | gtaatg <u>tact</u><br><u>Na</u>        |                             | <b>TGCG</b> GCCTGA       | ACACTGAACG   | CTATACAGCT<br>FadR                   |
| 901               | gg <u>tcaatc</u> cg<br><u>PdhR</u> | ATGATAAATC                             | TGGAAAATCG                  |                          |              | ctggaatcga<br><b>35σ<sup>E</sup></b> |
| 961               | gccgtcatac<br>-10σ <sup>70</sup>   | tacggcgcaa                             | cgccctataa                  | agtaaac <mark>gat</mark> | gacccttcgg   | gaacttcagg                           |
| 1021              | gtaaaatgac<br>GadX                 | t <b>Atcaaaa</b> tg                    | tg <b>A</b> attgta <u>g</u> | ctgacctggg               | acttgtaccc   | gggtcggtat                           |
| 1081              | <u>tttttt</u> gctt                 | ctggtcccgg                             | taaggagtta                  | tgccgggcag               | gccgaacagc   | cggggtgggt                           |
|                   | gaagacttgc                         |                                        |                             |                          |              |                                      |
| 1201              | CTTACGCGGC                         | GCT GAAAAAT<br>MetR                    | tacgcgaaga<br>Fis           | GCTGGATTTT               | CTGAAATCTG   | TGCGCCGTCC                           |
| 1261              | TGAAATCATT                         | GCTGCTATCG                             | CGGAAGCGCG                  | TGAGCATGGC               | GACCTGAAAG   | AAAACGCCGA                           |
| -                 | ATACCACGCA                         |                                        |                             |                          |              |                                      |
|                   | CAAGCTGTCG<br>TTTTGGTGCT           |                                        |                             |                          |              |                                      |
|                   | CGTTGGCGAT                         |                                        |                             |                          |              |                                      |
|                   | TCGTGGCCTG                         |                                        |                             |                          |              |                                      |
| 1621              | AGTAGAATTT                         | GAAGTAATTA                             | AGGTGGAATA                  | <b>CCTGTAA</b> gaa       | ttacccaata   | ctcaagatgt                           |

**Figure 34**: Partial sequence of the *E. coli* genome, including the *greA* gene. In capital letters are indicated the coding sequences of *dacB* (in grey) and *greA* (in black). The boxes -10 and -35 of the  $\sigma^{70}$  (in orange) and  $\sigma^{E}$  (in blue) *greA* promoters are indicated. The transcription initiation +1 for each promoter is indicated in capital letters in black. The early imprecise terminator is indicated in bold and underlined. The putative binding sites are indicated in different colours or underlined.

Several putative binding sites for global regulators were detected (**fig. 34**). Some of them are located upstream of the defined promoter, overlapping the *dacB* coding sequence, while others are detected between the promoter and the *greA* coding sequence. One of them, a binding site for GadX was detected overlapping the -10 box of the  $\sigma^{70}$ -dependent promoter of *greA*. The expression of *greA* was determined in mutants defective for the different proteins with a predicted binding site in the *greA* promoter. Moreover, the effect of mutants for other global regulators with a relevant role in the control of gene expression in *E. coli* was also monitored.

The *greA* expression in the different mutant strains was monitored using the *lacZ* fusion in the *greA* gene attBgreA2 and greA+685. The resulting strains were grown in LB at 37°C up to an  $OD_{600nm}$  of 1.5 and the *greA* transcriptional expression was measured (**fig. 35**).

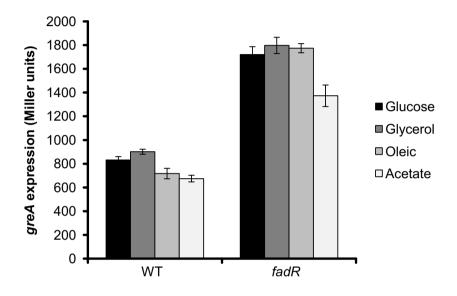


**Figure 35:** Effect of different global regulators on *greA* expression. The strains LFC28, LFC10, LFC11, LFC12, LFC13, LFC3, LFC14, LFC15, LFC16, LFC17, LFC18, LFC19, LFC20, LFC21, LFC22, LFC23, LFC24, LFC25 and LFC26 (in the same order than in the figure) were grown in LB at 37°C up to an OD<sub>600nm</sub> of 1.5, and the β-galactosidase activity was measured. ns means no significant. \*\* means p-value < 0.01. The global regulators predicted to bind to *greA* promoter are labelled in red. Average and standard deviation of β-galactosidase activity determination from three independent cultures are shown.

Our results indicate that under the experimental conditions tested, most of the regulators do not affect the expression of *greA*. In absence of DgsA, FadR and Fis, the expression of *greA* increases, suggesting that the expression of *greA* is directly or indirectly repressed by this factors. Moreover, in absence of CRP,

there is a decrease in the expression of *greA*, suggesting that CRP somehow activates the expression of *greA*.

Fis is a structural protein involved in the organization of the nucleoid, involved in DNA topology and DNA compaction (as previously mentioned in section 1.1.2.3). Moreover, Fis affects the expression of several genes in *E. coli*. The regulation mechanism widely accepted is that Fis influences transcription by modulating the level of DNA supercoiling in the cell, hiding the promoter region and avoiding that the RNApol could bind it (Cho *et al.*, 2008). Considering the putative binding site of Fis (**fig. 34**) it might be this mechanism how Fis affect *greA* expression.


DgsA (also known as Mlc) and CRP are involved in the regulation of glucose metabolism, and FadR is involved in fatty acid metabolism. We would study more in detail the effect of these proteins on *greA* expression.

#### 4.1.4.1. Effect of FadR on greA expression

The FadR protein has a dual role in fatty acid metabolism. It acts as a repressor of the  $\beta$ -oxidation pathway (*fad* operon) and as activator of the unsaturated fatty acid biosynthetic genes (*fab* operon). FadR bind to the DNA repressing or stimulating genes, depending on the position of its DNA binding site respect the -35 and -10 boxes. The FadR regulator binds long chain fatty acids, producing the release from the DNA and changing the gene expression pattern (Feng and Cronan, 2009; My *et al.*, 2013).

It has been observed that in genes stimulated by FadR, its binding site localized few nucleotides upstream of, or partially overlapping, the -35 box of the promoter (My *et al.*, 2013). In the promoters repressed by FadR, it is observed that its binding site overlaps with -10 box or the transcription start site (Feng and Cronan, 2012). Some genes, such as *fadD* or *fadL*, contain 2 FadR-binding sites. In the case of *fadD*, one binding site is located at the position -120 and the other overlapping -10 box (Feng and Cronan, 2012). In the case of *greA*, the putative FadR-binding site is located 130 nucleotides upstream of the transcription start site of the  $\sigma^{70}$ -dependent promoter.

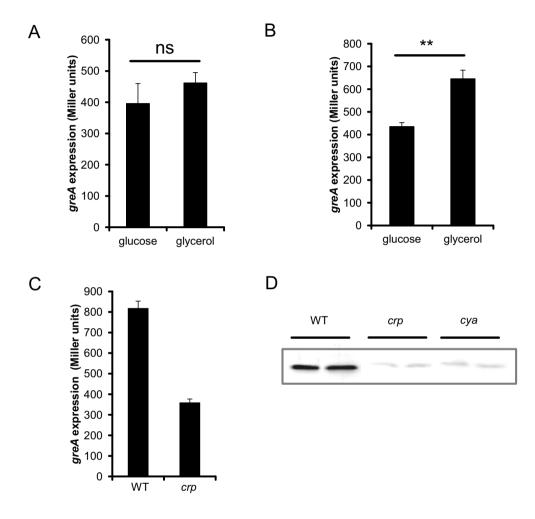
In absence of FadR, an increase in the *greA* expression was detected. If the *greA* expression would be physiologically related with the fatty acid metabolism, one would expect that in absence of fatty acids, FadR might bind the promoter of *greA* and repress its expression. On the other hand, in presence of fatty acids (oleic acid) we would expect a derepression of *greA* expression similar to the observed in absence of FadR, as observed in the gene *fadD* (Feng and Cronan, 2012).



**Figure 36**: Effect of FadR in *greA* transcriptional expression. The strains LFC3 and LFC24 were grown in cultures in LB with 0.2% of the different compounds as indicated at 37°C up to an  $OD_{600nm}$  of 1.5. Average and standard deviation of  $\beta$ -galactosidase activity determination from three independent cultures are shown.

The strain LFC3 and LFC24 were grown in minimal media M9 supplemented with 0.2% casaaminoacids (vitamin-free) and 0.2% of glucose, glycerol, oleic acid or acetate (as described by My et al. (2013)). Cultures were grown at 37°C up to an OD<sub>600nm</sub> of 1.5 and the *greA* transcriptional expression was determined (**fig. 36**). Unexpectedly, any effect was observed by the presence of oleic acid in the expression of *greA*. All the genes that has been described to be regulated by FadR, are regulated by long chain fatty acids such as oleic acid (Feng and Cronan, 2009; Feng and Cronan, 2012; My *et al.*, 2013), suggesting that the effect of FadR in *greA* could be an artefact.

#### 4.1.4.2. Effect of CRP and DgsA on greA expression


Carbon catabolite repression allows bacteria, when they are exposed to more than one carbohydrate, to discriminate which carbon source should be assimilated preferentially. This phenomenon was initially described as diauxic growth (Monod, 1949). CRP is the transcriptional regulator responsible together with other factors of this phenomenon. CRP is a homodimer that requires the alarmone cAMP to bind to DNA and modulates gene expression (Popovych et al., 2009). In E. coli the presence or absence of glucose could vary the amount of cAMP in the cell; in absence of glucose, the adenylate cyclase (CyaA) is activated by the phosphorylated EIIB of the PTS system (Deutscher, 2008) and produces an increase in the intracellular cAMP levels. In contrast, when glucose is present, the transported glucose is phosphorylated to glucose-6P from EIIB, causing that the levels of phosphorylated EIIB are very low and consequently no activation of the adenylate cyclase occurs. The protein DgsA, also known as MIc, represses gene expression by binding the promoter region of the target genes in absence of glucose. When glucose is present in the media, DgsA release its DNA binding site and binds to the dephosphorylated EIIB. Then, CRP and DgsA (Mlc) act as activator and repressor, respectively, in absence of glucose.

The crosstalk between DgsA and CRP might be important for the tight regulation of *greA* expression, as discussed more in detail below.

We decided to study more in detail the effect of the presence or absence of glucose on the expression of *greA*. The expression of *greA* was determined from the strain LFC3 grown in LB with either 0.2% of glucose or 0.4% of glycerol at 37°C up to an  $OD_{600nm}$  of 1.5 (**fig. 37A**).

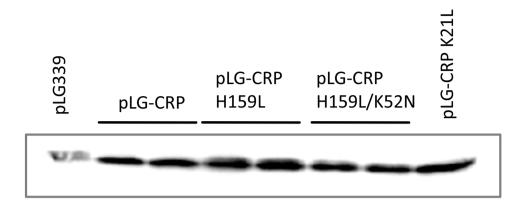
No significant effect on *greA* expression was observed by the presence of glucose in LB (**fig. 37A**). However, performing the same experiment in M9 with glucose or glycerol (**fig. 37B**) it was shown a significantly increase of the *greA* expression in presence of glycerol as compared with medium with glucose. Although, it is difficult to predict the effect of the glucose on *greA* expression, attending that both, an activator (CRP) and a repressor (DgsA), responsive to glucose, were found to be involved in *greA* expression regulation. The increase observed in presence of glycerol it is consistent with a CRP mediated regulation

of *greA* expression. The expression of *greA* would be stimulated and repressed at the same time by the complex cAMP-CRP and DgsA, suggesting that DgsA would modulate the CRP-dependent activation of *greA*. There are several examples of genes regulated by CRP and DgsA, such as *malX* or *malT* (Decker *et al.*, 1998; Plumbridge, 1998).



**Figure 37**: Effect of CRP on *greA* expression. A) Expression of *greA* in LFC3 cultures grown in LB supplemented with either 0.2% of glucose or 0.4% glycerol at 37°C up to an  $OD_{600nm}$  of 1.5. B) Expression of *greA* in LFC3 cultures grown in minimal media M9 supplemented with either 0.2% of glucose or 0.4% glycerol at 37°C up to an  $OD_{600nm}$  of 1.5. C) Expression of *greA* in LFC1 and LFC27 cultures grown in LB at 37°C up to an  $OD_{600nm}$  of 1.5. D) Western blot against GreA in whole cell extracts of cultures of the strains MG1655 and its mutants *crp* and *cya* grown in LB at 37°C up to an  $OD_{600nm}$  of 1.5. ns means no significant. \*\* means p-value < 0.01. Average and standard deviation of  $\beta$ -galactosidase activity determination from three independent cultures are shown.

The *in silico* studies (**fig. 34**) showed 2 possible CRP binding sites, one far upstream of the transcription start site (CRP1, position -464), and another between the transcription start site and the coding sequence (CRP2, position


+119). The *lacZ* fusion used to determine the effect of *crp* (**fig. 35**) contains both CRP sites. Considering the different *lacZ* fusions in *greA* that we constructed (**table 5** and **figure 28**) we observed that the fusion attBgreA1 only contains CRP2. It was determined the expression of *greA* in the strain LFC1 (WT, attBgreA1 fusion) and LFC27 (*crp*, attBgreA1 fusion) in cultures grown in LB at 37°C up to an OD<sub>600nm</sub> of 1.5 (**fig. 37C**). Using the attBgreA1 *greA-lacZ* fusion a decrease in the *greA* expression was detected in absence of CRP, suggesting that the binding site CRP2 is promoting the binding of CRP.

The effect of cAMP-CRP on the levels of GreA protein was determined by immunodetection using specific antibodies against GreA. The strain MG1655 and its mutants *crp* and *cya* were grown in LB at 37°C up to an OD<sub>600nm</sub> of 1.5 and the levels of GreA were determined in whole cell extracts (**fig. 37D**). In absence of either CRP or cAMP, the amount of GreA decreases dramatically. According to our model, in absence of CRP the expression of *greA* decreases.

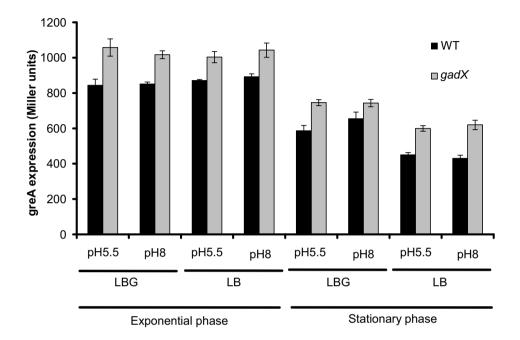
It has been described that CRP might bind to specific DNA sites and contact with the α subunit of the RNApol. CRP-dependent promoters can be grouped on three classes depending on the interaction of CRP with the RNApol. Class I requires only one CRP-cAMP complex and has a single DNA binding site, located upstream of the UP element that recognise the RNApol. Class II requires only a CRP-cAMP complex and has a single DNA binding site, overlapping the UP element. Class III could require more than one CRP-cAMP complex that could bind such as class I and/or II, as well as it requires other global regulators (Busby and Ebright, 1999).

In order to further characterize the role of CRP in the control of *greA* expression, we perform complementation experiments with different *crp* alleles to elucidate what kind of CRP binding site is required for *greA* regulation. Plasmids derived from pLG339 carrying different CRP alleles: WT CRP, CRP H159L (this allele is not able to contact the  $\alpha$  subunit of the RNApol), CRP H159L/K52N (is not able to bind class I promoters) and CRP K21L (is not able to bind class II promoters) (Bell *et al.*, 1990; Williams *et al.*, 1991; Busby and Ebright, 1999) were used. These plasmids were transformed into MG1655 *crp* and the resulting strains were grown in LB at 37°C up to an OD<sub>600nm</sub> of 1.5 to

determine the amount of GreA by Western blot using specific antibodies against GreA (**fig. 38**).



**Figure 38**: Complementation of *crp* mutation with different alleles of CRP by Western blot. MG1655 *crp* with the plasmids pLG339, pLG339/CRP, pLG339/CRP H159L, pLG339/CRP H159339L/K52N or pLG339/CRP K21L were grown in LB at 37°C up to an OD<sub>600nm</sub> of 1.5 and the amount of GreA was determined by Western blot with the antibodies against GreA.


As it can be seen, all alleles tested were able to complement *crp* mutation as well as WT CRP. This would mean that the effect of CRP over *greA* expression is not dependent of binding with the  $\alpha$  subunit of RNApol. These results suggest that the regulation mediated by CRP is through a mechanism independent of contact with the RNApol, suggesting it requires a class III CRP-dependent promoter. Whether the binding site is functional or the effect of CRP is indirect needs to be elucidated.

#### 4.1.4.3. Effect of GadX on greA expression

As mentioned earlier, a putative binding site for GadX was found overlapping the -10 and -35 of the  $\sigma^{70}$  promoter. The protein GadX activates the expression of *gadE* at low pH, and it is involved on the glutamate-dependent acid response (*gad* system). It has been previously described that GreA regulates the expression of *gadE* and *gadA* (Vinella *et al.*, 2012). Although it was not observed any effect on the expression of *greA* by *gadX* mutation, further studies have been performed.

The effect of GadX in the expression of *greA* in LB supplemented with glucose at different pH as described by Sayed *et al.*, (2007) was determined. The strains

LFC3 (WT, attBgreA2 fusion) and LFC22 (*gadX*, attBgreA2) were grown in LB and LBG (LB with 0.4% of glucose) buffered at either pH 5.5 with MES 100mM or pH 8 with MOPS 100mM at 37°C up to an  $OD_{600nm}$  of either 0.5 (exponential phase) or 1.5 (early stationary phase) and *greA* transcriptional expression was monitored (**fig. 39**)



**Figure 39**: Effect of GadX on the expression of *greA*. The strains LFC3 (WT) and LFC22 (*gadX*) were grown in LB and LBG at pH5.5 and pH8 up to an  $OD_{600nm}$  of 0.5 and 1.5. Average and standard deviation of  $\beta$ -galactosidase activity determination from three independent cultures are shown.

It was observed a slight increase of *greA* expression in absence of GadX in all conditions tested, but the substantial increase that it would be expected attending to the presence of a functional binding site of GadX in the promoter region of *greA* (overlapping the -10 box of the  $\sigma^{70}$ -dependent promoter) was not observed (**fig. 39**).

# 4.2. Crosstalk between the factors that bind to the secondary channel of the RNApol

When complex regulatory networks have been studied, it has been noticed that often a crosstalk among regulators that are involved in the same regulatory pathway exists. There are several examples of crosstalk within pathways that control expression of virulence/colonisation factors (Babu *et al.*, 2011; Mouslim and Hughes, 2014). Considering that a possible competence between different factors (GreA, GreB and DksA) for binding to the secondary channel of the RNApol, studies have been performed to establish whether a crosstalk between those factors exists. In the section 4.1.2, it was described that DksA and ppGpp do not affect the expression of *greA*. However, the GreA effect in the expression of *greB* and *dksA*, and the possible cross-regulation between the different factors remained unknown. Parallel to our study, two more groups performed similar experiments in order to determine this possible crosstalk and to study the expression of the different factors that bind to the secondary channel (Chandrangsu *et al.*, 2011; Vinella *et al.*, 2012). Therefore, in this section I am describing our data and comparing it with the published data.

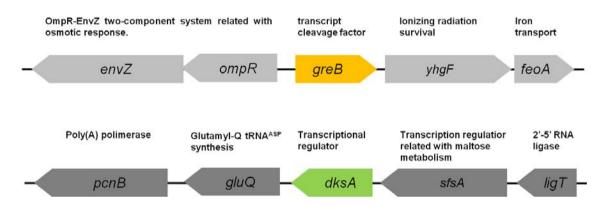


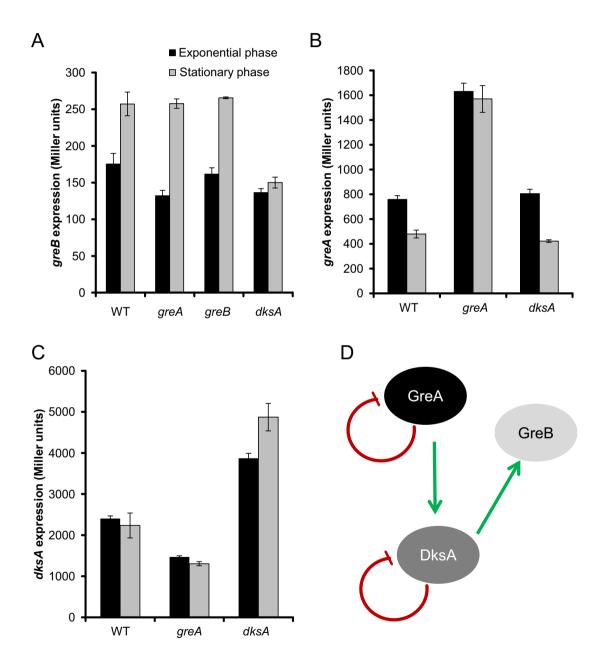

Figure 40: Genomic context of the greB and dksA genes in E. coli.

The genomic location of *greA* was shown in **figure** 24. The genes *greB* and *dksA* are monocistronic operons located in the chromosome of *E. coli* (**fig. 40**). The *greB* gene is flanked upstream by the bicistronic operon ompR-envZ that codes for a two-component system responsible of the osmotic response (Mizuno and Mizushima, 1990), and downstream by the gene *yhgF* that is related with survival to ionizing radiation (Byrne *et al.*, 2014). The gene *dksA* is flanked upstream by the gene *sfsA* that codes for a transcription regulator

related with maltose metabolism (Takeda *et al.*, 2001), and downstream by the gene *gluQ* that codes for the glutamyl-Q tRNA<sup>ASP</sup> synthetase (Campanacci *et al.*, 2004).

| А                                                         |                                                                                                              |                                                                                                                                                  |                                                                                                                                                |                                                                                                                                                               |                                                                                                                                          |                                                                                                                            |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 1                                                         | TCTGCATTAG                                                                                                   | CGACGCTTCG                                                                                                                                       | AACCTGGAAG                                                                                                                                     | CCTTGTTCGG                                                                                                                                                    | TGAGATAACG                                                                                                                               | TTCCAGCAGC                                                                                                                 |
|                                                           |                                                                                                              |                                                                                                                                                  |                                                                                                                                                | BÍ                                                                                                                                                            |                                                                                                                                          |                                                                                                                            |
| 61                                                        | $GCACGCAGGC \rightarrow$                                                                                     | GCATGTCGTC                                                                                                                                       | ATCGACCACC                                                                                                                                     | AGAATCTTGT                                                                                                                                                    | AGTTCTCTTG                                                                                                                               | CATtgtttgt                                                                                                                 |
|                                                           | Vinella_B1                                                                                                   |                                                                                                                                                  |                                                                                                                                                |                                                                                                                                                               |                                                                                                                                          |                                                                                                                            |
| 121                                                       | actcccaaag                                                                                                   | gttcgcaaca                                                                                                                                       | atttgtaagc                                                                                                                                     | gtgtattctt                                                                                                                                                    | aaaaaagctc                                                                                                                               | acgttcgtca                                                                                                                 |
| 181                                                       | ccagctaaat                                                                                                   |                                                                                                                                                  | tttcagccta                                                                                                                                     | aattgttaca                                                                                                                                                    | aagcatatta                                                                                                                               | aacagcagct                                                                                                                 |
|                                                           | -10g                                                                                                         | réB                                                                                                                                              |                                                                                                                                                |                                                                                                                                                               | -10 <i>gré</i> Ł                                                                                                                         | 3                                                                                                                          |
| 241                                                       | taagta <b>taca</b>                                                                                           | <b>at</b> ttattcgg                                                                                                                               | cgaaacatta                                                                                                                                     | ttgattctgt                                                                                                                                                    | tga <b>tatgat</b> c                                                                                                                      | acgttatacc                                                                                                                 |
|                                                           |                                                                                                              |                                                                                                                                                  |                                                                                                                                                |                                                                                                                                                               |                                                                                                                                          |                                                                                                                            |
| 301                                                       | caatgtgcgc                                                                                                   | attatcaaac                                                                                                                                       | agacaaaggg                                                                                                                                     | aatcaacgag                                                                                                                                                    | ATGAAAACGC                                                                                                                               | CCCTGGTTAC                                                                                                                 |
|                                                           | Vin                                                                                                          | iella_B1                                                                                                                                         |                                                                                                                                                |                                                                                                                                                               |                                                                                                                                          |                                                                                                                            |
| 361                                                       | CCGGGAAGGG                                                                                                   | TATGAAAAAC                                                                                                                                       | TCAAACAAGA                                                                                                                                     | GCTTAATTAT                                                                                                                                                    | CTCTGGCGTG                                                                                                                               | AAGAACGCCC                                                                                                                 |
|                                                           |                                                                                                              |                                                                                                                                                  |                                                                                                                                                |                                                                                                                                                               | ←<br>B2                                                                                                                                  |                                                                                                                            |
|                                                           |                                                                                                              | <b>3333300000</b>                                                                                                                                | CCTCCCCCCC                                                                                                                                     |                                                                                                                                                               | GACCGCAGCG                                                                                                                               | ААААТССТСА                                                                                                                 |
| 421                                                       | GGAGGTCACA                                                                                                   | AAAAAGGIGA                                                                                                                                       | cerdddeede                                                                                                                                     | ANGICIGGGC                                                                                                                                                    |                                                                                                                                          |                                                                                                                            |
|                                                           | CTATCAGTAT                                                                                                   |                                                                                                                                                  |                                                                                                                                                |                                                                                                                                                               |                                                                                                                                          |                                                                                                                            |
|                                                           |                                                                                                              |                                                                                                                                                  |                                                                                                                                                |                                                                                                                                                               |                                                                                                                                          |                                                                                                                            |
| 481                                                       |                                                                                                              |                                                                                                                                                  |                                                                                                                                                |                                                                                                                                                               |                                                                                                                                          |                                                                                                                            |
| 481<br>B                                                  | CTATCAGTAT                                                                                                   | AATAAAAAGC                                                                                                                                       | GTCTGCGTGA                                                                                                                                     | AATCGACCGT                                                                                                                                                    | CGCGTGCGCT                                                                                                                               | ATCTCACTAA                                                                                                                 |
| <b>481</b><br><b>B</b><br>1                               |                                                                                                              | <b>AATAAAAAGC</b><br>ATGAGCGTAG                                                                                                                  | <b>GTCTGCGTGA</b><br>CGGCTGAAGG                                                                                                                | <b>AATCGACCGT</b><br>CCAGCGTGCG                                                                                                                               | <b>CGCGTGCGCT</b><br>GTTATCTTTT                                                                                                          | <b>ATCTCACTAA</b><br>TCGCCGTGCT                                                                                            |
| <b>481</b><br><b>B</b><br>1                               | <b>CTATCAGTAT</b><br>TCGGGAGTTG                                                                              | <b>AATAAAAAGC</b><br>ATGAGCGTAG                                                                                                                  | <b>GTCTGCGTGA</b><br>CGGCTGAAGG                                                                                                                | <b>AATCGACCGT</b><br>CCAGCGTGCG                                                                                                                               | <b>CGCGTGCGCT</b><br>GTTATCTTTT                                                                                                          | <b>ATCTCACTAA</b><br>TCGCCGTGCT                                                                                            |
| <b>481</b><br><b>B</b><br>1<br>61                         | <b>CTATCAGTAT</b><br>TCGGGAGTTG                                                                              | <b>AATAAAAAGC</b><br>ATGAGCGTAG<br>ATTACACGGT                                                                                                    | <b>GTCTGCGTGA</b><br>CGGCTGAAGG<br>TTTCACCCGC                                                                                                  | AATCGACCGT<br>CCAGCGTGCG<br>GCGCCACATC                                                                                                                        | <b>CGCGTGCGCT</b><br>GTTATCTTTT<br>GATGAGAAAT                                                                                            | <b>ATCTCACTAA</b><br>TCGCCGTGCT<br>ACGCGCAACT                                                                              |
| <b>481</b><br><b>B</b><br>1<br>61                         | <b>CTATCAGTAT</b><br>TCGGGAGTTG<br>GCATTCAGCC                                                                | <b>AATAAAAAGC</b><br>ATGAGCGTAG<br>ATTACACGGT                                                                                                    | <b>GTCTGCGTGA</b><br>CGGCTGAAGG<br>TTTCACCCGC                                                                                                  | AATCGACCGT<br>CCAGCGTGCG<br>GCGCCACATC                                                                                                                        | <b>CGCGTGCGCT</b><br>GTTATCTTTT<br>GATGAGAAAT                                                                                            | ATCTCACTAA<br>TCGCCGTGCT<br>ACGCCGCAACT<br>AAATTTCTGC                                                                      |
| <b>481</b><br><b>B</b><br>1<br>61<br>121                  | <b>CTATCAGTAT</b><br>TCGGGAGTTG<br>GCATTCAGCC                                                                | AATAAAAAGC<br>ATGAGCGTAG<br>ATTACACGGT<br>GCTCAACAGA                                                                                             | GTCTGCGTGA<br>CGGCTGAAGG<br>TTTCACCCGC<br>GGGGGGTAGA                                                                                           | AATCGACCGT<br>CCAGCGTGCG<br>GCGCCACATC<br>AATTCTGGCT<br>D1                                                                                                    | CGCGTGCGCT<br>GTTATCTTTT<br>GATGAGAAAT<br>TACAAAGCGG<br>Vinella_D1                                                                       | ATCTCACTAA<br>TCGCCGTGCT<br>ACGCGCAACT<br>AAATTTCTGC                                                                       |
| <b>481</b><br><b>B</b><br>1<br>121<br>181                 | <b>CTATCAGTAT</b><br>TCGGGAGTTG<br>GCATTCAGCC<br>ATTGTCAGAA                                                  | AATAAAAAGC<br>ATGAGCGTAG<br>ATTACACGGT<br>GCTCAACAGA<br>GCTCTTAAAA                                                                               | GTCTGCGTGA<br>CGGCTGAAGG<br>TTTCACCCGC<br>GGGGGGGTAGA<br>AATCACTGCC                                                                            | AATCGACCGT<br>CCAGCGTGCG<br>GCGCCACATC<br>AATTCTGGCT<br>D1<br>GGTTACATTG                                                                                      | CGCGTGCGCT<br>GTTATCTTTT<br>GATGAGAAAT<br>TACAAAGCGG<br>Vinella_D1<br>TAGTAAagta                                                         | ATCTCACTAA<br>TCGCCGTGCT<br>ACGCGCAACT<br>AAATTTCTGC<br>agtaactggt                                                         |
| <b>481</b><br><b>B</b><br>1<br>121<br>181                 | <b>CTATCAGTAT</b><br>TCGGGAGTTG<br>GCATTCAGCC<br>ATTGTCAGAA<br>TGAAGGCATG                                    | AATAAAAAGC<br>ATGAGCGTAG<br>ATTACACGGT<br>GCTCAACAGA<br>GCTCTTAAAA                                                                               | GTCTGCGTGA<br>CGGCTGAAGG<br>TTTCACCCGC<br>GGGGGGGTAGA<br>AATCACTGCC<br>tgcgcaaata<br>→                                                         | AATCGACCGT<br>CCAGCGTGCG<br>GCGCCACATC<br>AATTCTGGCT<br>D1<br>GGTTACATTG<br>cgcttttcct                                                                        | CGCGTGCGCT<br>GTTATCTTTT<br>GATGAGAAAT<br>TACAAAGCGG<br>Vinella_D1<br>TAGTAAagta<br>cacacagttg                                           | ATCTCACTAA<br>TCGCCGTGCT<br>ACGCGCAACT<br>AAATTTCTGC<br>agtaactggt                                                         |
| <b>481</b><br><b>B</b><br>121<br>121<br>181<br>241        | <b>CTATCAGTAT</b><br>TCGGGAGTTG<br>GCATTCAGCC<br>ATTGTCAGAA<br>TGAAGGCATG                                    | AATAAAAAGC<br>ATGAGCGTAG<br>ATTACACGGT<br>GCTCCAACAGA<br>GCTCTTAAAA<br>tctggtcgcg<br>-350 <sup>70</sup>                                          | GTCTGCGTGA<br>CGGCTGAAGG<br>TTTCACCCGC<br>GGGGGGGTAGA<br>AATCACTGCC<br>tgcgcaaata<br>→<br>G-D1                                                 | AATCGACCGT<br>CCAGCGTGCG<br>GCGCCACATC<br>AATTCTGGCT<br>D1<br>GGTTACATTG<br>cgcttttcct<br>-100 <sup>70</sup>                                                  | CGCGTGCGCT<br>GTTATCTTTT<br>GATGAGAAAT<br>TACAAAGCGG<br>Vinella_D1<br>TAGTAAagta<br>cacacagttg<br>+1                                     | ATCTCACTAA<br>TCGCCGTGCT<br>ACGCGCAACT<br>AAATTTCTGC<br>agtaactggt<br>tcaagtgtta                                           |
| <b>481</b><br><b>B</b><br>121<br>121<br>181<br>241<br>301 | CTATCAGTAT<br>TCGGGAGTTG<br>GCATTCAGCC<br>ATTGTCAGAA<br>TGAAGGCATG<br>taatttacat<br>cgtttagata               | AATAAAAAGC<br>ATGAGCGTAG<br>ATTACACGGT<br>GCTCAACAGA<br>GCTCTTAAAA<br>tctggtcgcg<br>attgctatcc                                                   | GTCTGCGTGA<br>CGGCTGAAGG<br>TTTCACCCGC<br>GGGGGGGTAGA<br>AATCACTGCC<br>tgcgcaaata<br>G-D1<br>ggaaaagcat                                        | AATCGACCGT<br>CCAGCGTGCG<br>GCGCCACATC<br>AATTCTGGCT<br>$\overrightarrow{D1}$<br>GGTTACATTG<br>cgcttttcct<br>$-10\sigma^{70}$<br>ctgctattta                   | CGCGTGCGCT<br>GTTATCTTTT<br>GATGAGAAAT<br>TACAAAGCGG<br>Vinella_D1<br>TAGTAAagta<br>cacacagttg<br>+1<br>tagcggcCtc                       | ATCTCACTAA<br>TCGCCGTGCT<br>ACGCGCAACT<br>AAATTTCTGC<br>agtaactggt<br>tcaagtgtta<br>atttttcccc                             |
| <b>481</b><br><b>B</b><br>121<br>121<br>181<br>241<br>301 | CTATCAGTAT<br>TCGGGAGTTG<br>GCATTCAGCC<br>ATTGTCAGAA<br>TGAAGGCATG<br>taatttacat                             | AATAAAAAGC<br>ATGAGCGTAG<br>ATTACACGGT<br>GCTCCAACAGA<br>GCTCTTAAAA<br>tctggtcgcg<br>attgctatcc<br>gatcgatagt                                    | GTCTGCGTGA<br>CGGCTGAAGG<br>TTTCACCCGC<br>GGGGGGGTAGA<br>AATCACTGCC<br>tgcgcaaata<br>G-D1<br>ggaaaagcat<br>gcgtgttaag                          | AATCGACCGT<br>CCAGCGTGCG<br>GCGCCACATC<br>AATTCTGGCT<br>OI<br>GGTTACATTG<br>cgcttttcct<br>ctgctatta<br>gagaagcaac                                             | CGCGTGCGCT<br>GTTATCTTTT<br>GATGAGAAAT<br>TACAAAGCGG<br>Vinella_D1<br>TAGTAAagta<br>cacacagttg<br>+1<br>tagcggcCtc                       | ATCTCACTAA<br>TCGCCGTGCT<br>ACGCGCAACT<br>AAATTTCTGC<br>agtaactggt<br>tcaagtgtta<br>atttttcccc                             |
| 481<br>B<br>1<br>121<br>181<br>241<br>301<br>361          | CTATCAGTAT<br>CCGGGAGTTG<br>GCATTCAGCC<br>ATTGTCAGAA<br>TGAAGGCATG<br>taatttacat<br>cgtttagata<br>cgaacatggg | AATAAAAAGC<br>ATGAGCGTAG<br>ATTACACGGT<br>GCTCAACAGA<br>GCTCTTAAAA<br>tctggtcgcg<br>atcggtcgcg<br>attgctatcc<br>gatcgatagt                       | GTCTGCGTGA<br>CGGCTGAAGG<br>TTTCACCCGC<br>GGGGGGTAGA<br>AATCACTGCC<br>tgcgcaaata<br>G-D1<br>ggaaaagcat<br>gcgtgttaag<br>Vinella                | AATCGACCGT<br>CCAGCGTGCG<br>GCGCCACATC<br>AATTCTGGCT<br>GGTTACATTG<br>CGCTTACATTG<br>cgcttttcct<br>-100 <sup>70</sup><br>ctgctattta<br>gagaagcaac<br>D2       | CGCGTGCGCT<br>GTTATCTTTT<br>GATGAGAAAT<br>TACAAAGCGG<br>Vinella_D1<br>TAGTAAagta<br>cacacagttg<br>tagcggcCtc<br>ATGCAAGAAG               | ATCTCACTAA<br>TCGCCGTGCT<br>ACGCGCAACT<br>AAATTTCTGC<br>agtaactggt<br>tcaagtgtta<br>atttttcccc<br>GGCAAAACCG               |
| 481<br>B<br>1<br>121<br>181<br>241<br>301<br>361          | CTATCAGTAT<br>TCGGGAGTTG<br>GCATTCAGCC<br>ATTGTCAGAA<br>TGAAGGCATG<br>taatttacat<br>cgtttagata               | AATAAAAAGC<br>ATGAGCGTAG<br>ATTACACGGT<br>GCTCAACAGA<br>GCTCTTAAAA<br>tctggtcgcg<br>atcggtcgcg<br>attgctatcc<br>gatcgatagt<br>G-D2<br>TCCCTGAGTA | GTCTGCGTGA<br>CGGCTGAAGG<br>TTTCACCCGC<br>GGGGGGTAGA<br>AATCACTGCC<br>tgcgcaaata<br>G-D1<br>ggaaaagcat<br>gcgtgttaag<br>Vinella                | AATCGACCGT<br>CCAGCGTGCG<br>GCGCCACATC<br>AATTCTGGCT<br>GGTTACATTG<br>CGCTTACATTG<br>cgcttttcct<br>-100 <sup>70</sup><br>ctgctattta<br>gagaagcaac<br>D2       | CGCGTGCGCT<br>GTTATCTTTT<br>GATGAGAAAT<br>TACAAAGCGG<br>Vinella_D1<br>TAGTAAagta<br>cacacagttg<br>tagcggcCtc<br>ATGCAAGAAG               | ATCTCACTAA<br>TCGCCGTGCT<br>ACGCGCAACT<br>AAATTTCTGC<br>agtaactggt<br>tcaagtgtta<br>atttttcccc<br>GGCAAAACCG               |
| 481<br>B<br>11<br>121<br>181<br>241<br>301<br>361<br>421  | CTATCAGTAT<br>CCGGGAGTTG<br>GCATTCAGCC<br>ATTGTCAGAA<br>TGAAGGCATG<br>taatttacat<br>cgtttagata<br>cgaacatggg | AATAAAAAGC<br>ATGAGCGTAG<br>ATTACACGGT<br>GCTCAACAGA<br>GCTCTTAAAA<br>tctggtcgcg<br>atcggtcgcg<br>gatcgatagt<br>G-D2<br>TCCCTGAGTA               | GTCTGCGTGA<br>CGGCTGAAGG<br>TTTCACCCGC<br>GGGGGGGTAGA<br>AATCACTGCC<br>tgcgcaaata<br>G-D1<br>ggaaaagcat<br>gcgtgttaag<br>Vinella<br>TTCTCGCCAT | AATCGACCGT<br>CCAGCGTGCG<br>GCGCCACATC<br>AATTCTGGCT<br>D1<br>GGTTACATTG<br>cgcttttcct<br>-100 <sup>70</sup><br>ctgctattta<br>gagaagcaac<br>D2<br>CGCTGGGGGTG | CGCGTGCGCT<br>GTTATCTTTT<br>GATGAGAAAT<br>TACAAAGCGG<br>Vinella_D1<br>TAGTAAagta<br>cacacagttg<br>tagcggcCtc<br>ATGCAAGAAG<br>GAACCATATC | ATCTCACTAA<br>TCGCCGTGCT<br>ACGCGCAACT<br>AAATTTCTGC<br>agtaactggt<br>tcaagtgtta<br>atttttcccc<br>GGCAAAACCG<br>AGGAGAAGCC |

**Figure 41**: Partial sequences of the *E. coli* genome, including the *greB* (A) and *dksA* (B) genes. In capital letters are indicated the coding sequences of the different genes: *ompR* and *sfsA* (in grey, A and B respectively), *greB* (in red, A) and *dksA* (in green, B). The predicted -10 boxes of the putative promoters of *greB* are indicated in purple (Münch *et al.*, 2005). The boxes -10 and - 35 of the  $\sigma^{70}$  (in orange) of *dksA* promoter are indicated and its transcription initiation +1 is


indicated in capital letters in black. The sequence of the primers used to produce the different *lacZ* fusions used in this study are indicated in grey and underlining by brackets, as well as those primers used by Vinella et al. (2012) and Chandrangsu *et al.* (2011). The name of the primer and the orientation is indicated.

While the promoter of *greB* has not been experimentally identified, the promoter of *dksA* was located in the intergenic region between *dksA* and *sfsA* (**fig. 41B**) by primer extension (Chandrangsu *et al.*, 2011). Moreover, overlapping the *sfsA* coding sequence, weak promoters were also located that seem to control *dksA* expression to some extent, since its absence causes a reduction of a 23% of the gene expression (Chandrangsu *et al.*, 2012).

In the previous section, the expression of *greA* using several *lacZ* fusions was determined. Therefore transcriptional fusions of the *greB* and *dksA* 5' intergenic regions with the *lacZ* reporter gene were constructed using the primers shown in **figure 41**. The intergenic region of *greB* (323bp) was PCR-amplified with the primers B1 and B2 (**fig. 41A**), while the intergenic region of *dksA* (303bp) was amplified with the primers D1 and D2 (**fig. 41B**). These sequences were cloned within vector pRS551 generating transcriptional fusions. Finally, generated fusions, attBgreB (from -255 to +68 respect the translation start site) and attBdksA (from -205 to +98 respect the transcriptional start site), were subsequently transfer to the *attB* locus of the *E. coli* chromosome as indicated in section 3.7.5 (Simons *et al.*, 1987). To determine the expression of *greA*, the fusion attBgreA2 (**fig. 25**) was used.

The expression of *greB* was determined in WT and *greA*, *dksA* and *greB* derivative mutants in cultures grown in LB at 37°C up to an OD<sub>600nm</sub> of 0.5 (exponential phase) and 2.0 (early-stationary phase) (**fig. 42A**). The expression of *greB* increases (1.5-fold) at stationary phase respect to exponential phase. While no effect was observed by GreA and GreB, in absence of DksA the induction of *greB* at stationary phase do not occur, suggesting that the induction of *greB* expression at stationary phase depends on DksA and presumably on its cofactor ppGpp (**fig. 42A**). Similar experiments were performed by Vinella *et al.* (2012), amplifying the *greB-ompR* intergenic region with the primers Vinella\_B1 and Vinella\_B2 (**fig. 41A**) and cloning this DNA fragment into pRS415, a pRS551derivative plasmid that not contains the kanamycin resistance cassette located upstream of the *lacZ* gene (Simons *et al.*, 1987). The results obtained

when they look at *greB* transcriptional expression in cultures grown in LB at  $37^{\circ}$ C up to an OD<sub>600nm</sub> of 0.4 (exponential phase) and 2.0 (early-stationary phase), were similar to ours since also stationary phase induction was detected (**fig. 42A**), but, instead a 1.5-fold induction at stationary phase, they observe a much higher induction, about 10 fold. The observed differences could be caused by the sequences fused to the *lacZ* gene; in our case it contained a larger sequence than in Vinella *et al.* (2012).



**Figure 42**: Crosstalk between the different proteins that bind to the secondary channel. A) Expression of *greB* determined using the *lacZ* fusion attBgreB in the strains LFC54 (WT), LFC55 (*greA*), LFC56 (*greB*) and LFC57 (*dksA*) grown in LB at 37°C up to an OD<sub>600nm</sub> of 0.5 and 2.0. B) Expression of *greA* determined using the *lacZ* fusion attBgreA2 in the strains LFC3

(WT), LFC4 (*greA*) and LFC8 (*dksA*) grown in LB at 37°C up to an OD<sub>600nm</sub> of 0.5 and 2.0. C) Expression of *dksA* determined using the *lacZ* fusion attBdksA in the strains LFC58 (WT), LFC59 (*greA*) and LFC60 (*dksA*) grown in LB at 37°C up to an OD<sub>600nm</sub> of 0.5 and 2.0. D) Model of the crosstalk hypothesized. Average and standard deviation of  $\beta$ -galactosidase activity determination from three independent cultures are shown.

Moreover they observe that this induction requires DksA (as observed in the **figure 42A**) and ppGpp. These data suggest that in stationary phase ppGpp and DksA induce *greB* expression, modifying the interplay between the proteins that bind to the secondary channel.

The expression of greA was determined with the strain LFC3 (attBgreA2, referred as WT) and its derivative mutants in greA and dksA in cultures grown in LB at 37°C up to an OD<sub>600nm</sub> of 0.5 and 2.0 (fig. 42B). As described in the previous section, the expression of greA decreases in stationary phase, but it is not dependent of DksA. Moreover the expression of greA increases in absence of GreA (fig. 42B). Surprisingly, while we observe an increase of greA expression in absence of GreA in both growth phases (exponential and stationary phase), the results obtained by Vinella et al. (2012) shows autoregulation of greA only in stationary phase. Moreover they do not observe differences in greA expression between exponential and stationary phase, whereas we did (fig. 42B and section 4.1.2). As well as observed by greB, these divergences could be due the different *lacZ* fusions used, in our case we have used attBgreA2 that fuses a larger sequence (from -1030 to +175) than in Vinella et al. (2012) that they fused a sequence from -91 to +135 respect the transcription start site. Our data (fig. 29) showing that the levels of GreA protein was downregulated in stationary phase, strongly corroborate the transcriptional data obtained with the attBgreA2 fusion.

It is interesting that while the expression of *greA* decreases in stationary phase, the expression of GreB increases (**fig. 42A** and **B**). These data may suggest an exchange between GreA and GreB to bind into the secondary channel of the RNApol. In exponential phase, where the cells are dividing in a maximal rate, GreA might be the encharged protein to release RNApol pauses by binding to the secondary channel, but in stationary phase the amount of GreA decreases and it might be substituted by GreB. Although both factors (GreA and GreB) are able to solve paused RNApol, the RNA cleavage produced is different (S

Borukhov *et al.*, 1993). This exchange of factors might suggest that the genes expressed during exponential and stationary phase might require different mechanisms of solving pauses, or it is simply an evolutive response to the decrease of GreA in stationary phase, in order to keep a mechanism to solve paused RNApol.

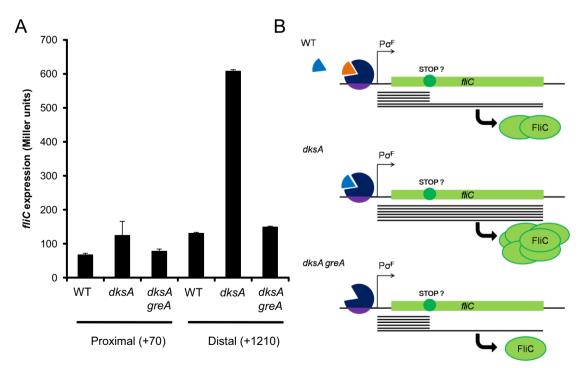
The expression of *dksA* was determined with the fusion attBdksA in WT and *greA* and *dksA* derivative mutants in cultures grown in LB at 37°C up to an OD<sub>600nm</sub> of 0.5 and 2.0 (**fig. 42C**). No differences of expression were observed at different growth phases (exponential *vs.* early-stationary phase). The expression of *dksA* decreases in absence of GreA (1.5 fold), suggesting that GreA is required for the proper expression of *dksA*. In absence of DksA, the expression of *dksA* increases (1.5 fold), suggesting that *dksA* autoregulates its own expression, as well as GreA does. This autoregulation was described by Chandrangsu *et al.* (2011), performing similar experiments by amplifying the *dksA-sfsA* intergenic region with the primers G\_D1 and G\_D2 (**fig. 41B**) and cloning this DNA fragment into pRS551 (Simons *et al.*, 1987). The transcriptional studies of the expression of *dksA* increases up to 2-fold (Chandrangsu *et al.*, 2011).

Although Chandrangsu *et al.* (2011) showed that the expression of *dksA* decreases up to 5 times in late-stationary phase ( $OD_{600nm}$  of 5.0). However, we do not observe any significant difference in the expression of *dksA* between exponential ( $OD_{600nm}$  of 0.5) and stationary phase ( $OD_{600nm}$  of 2.0). It was described by western blot, that the amount of DksA decreases (2 fold) at late-stationary phase ( $OD_{600nm}$  of 5.6) but not at early-stationary phase ( $OD_{600nm}$  of 2.1) (Rutherford *et al.*, 2007). These results at protein level are consistent with the transcriptional studies, while at early-stationary phase none effect was observed (**fig. 42C**), at late-stationary phase it decreases (Chandrangsu *et al.*, 2011).

A similar experiment was also performed by Vinella *et al.* (2012), using a lacZ fusion obtained by PCR-amplification of the *dksA-sfsA* intergenic region with the

primers Vinella\_D1 and Vinella\_D2 (**fig. 41B**) and posterior cloning of this DNA fragment into pRS415 (Simons *et al.*, 1987). They obtained similar results as observed in **figure 42C** and the ones described by Chandrangsu *et al.* (2011), showing that GreA stimulates the *dksA* expression, as well as the autoregulation of *dksA*. Surprisingly, when monitoring the expression of *dksA* in cultures grown in LB at 37°C up to an  $OD_{600nm}$  of 0.4 (exponential phase) and 2.0 (early-stationary phase), they observed a 2-fold increase of the expression of *dksA* in early-stationary phase respect to exponential phase. These results are in discrepancy on the results observed in **figure 42C** or the results previously published by Chandrangsu *et al.* (2011), as well as the data shown by Rutherford *et al.* (2007). These discrepancies may be consequence for the different *dksA-lacZ* fusions used for these experiments.

Although further studies would be required, all these data show a crossregulation between the different factors that bind to the secondary channel of the RNApol (**fig. 42D**). GreA and DksA are able to repress its own gene expression in order to modulate the amount of these proteins. GreA stimulates the expression of *dksA*, and DksA stimulates the expression of *greB* during stationary phase. This cross-regulation would keep the equilibrium between these factors. Small changes of one of these proteins (GreA, GreB or DksA) could produce changes on the amount of the other proteins in order to keep the equilibrium or to change it completely. Changes in this equilibrium would change the gene expression pattern. Attending to the discrepancies in the data obtained by several research groups regarding the transcriptional expression of those factors using *lacZ* fusions, methodologies based in mRNA quantification (qPCR) and protein immunodetection would be required for proper dissection of the existing crosstalk.


## 4.3. Effect of the interplay between factors that bind to the RNApol on flagella genes expression in *E. coli*

In our research group we performed, some years ago, transcriptomic studies to determine the effect of ppGpp and DksA in E. coli (Aberg et al., 2009). It was found that similar amount of genes were significantly affected (fold-change of ±2) by ppGpp (265 genes) and DksA (311 genes). Up to 30% (95 genes) of these genes were significantly affected by both factors. Surprisingly, 36 of the 95 genes were differentially regulated: 4 genes were up-regulated in absence of ppGpp and down-regulated in absence of DksA, and 32 genes in the other way around (Aberg et al., 2009). The opposite gene regulation by ppGpp and DksA was previously described for the *fim* operon, coding for the type-1 fimbriae. It was shown that fimB expression was upregulated in a dksA mutant and downregulated in a ppGpp<sup>0</sup> mutant. The increase of *fimB* expression in absence of DksA depends on GreA and GreB (Aberg et al., 2008). These data suggested that in absence of DksA, the secondary channel of the RNApol is free to accept GreA and GreB, allowing them to interact more efficiently and causing alterations in the gene transcription profile. A major part of the genes differently regulated by ppGpp and DksA in E. coli codes for proteins involved in motility, flagella genes and chemotaxis (Aberg et al., 2009).

Flagella biosynthesis and chemotaxis genes are distributed in 18 operons transcribed following a strict hierarchy. These genes are classified, depending on its temporally expression, into three promoter classes: early, middle and late operons (Chevance and Hughes, 2008). The early operon *flhDC* is expressed first and is under control of a  $\sigma^{70}$ -dependent promoter. FlhD and FlhC produces an hexameric complex (FlhD4C2) that is essential for the expression of middle genes (Wang *et al.*, 2006). Middle genes contain structural genes of the basal body and motor structure, complex known as HBB, and the genes *fliA* and *flgM*, that code for the alternative subunit  $\sigma^{F}$  (essential for late operons transcription) and its anti-sigma factor, respectively. As described previously in section 1.1.2.5, the anti-sigma factor FlgM bind to FliA, preventing its association with the RNApol and inhibiting the late genes transcription (Treviño-Quintanilla *et al.*, 2013). When HBB structure is formed, FlgM is secreted through the basal body

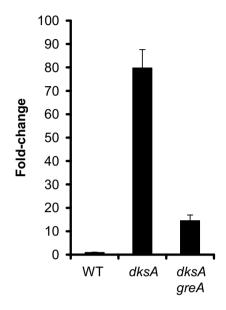
and  $\sigma^{F}$  is free to bind to the RNApol and induce transcription of the late genes, such as *fliC*, that encodes the main subunit of the flagella filament (Chevance and Hughes, 2008).

The transcriptomic study referred above (Aberg *et al.*, 2009) showed that in absence of DksA the expression of *fliC* increases 37 fold, while it decreases 2 fold in absence of ppGpp. In order to determine whether the divergences between the effect of ppGpp and DksA depends of GreA, as described by *fimB* (Aberg *et al.*, 2008), transcriptional studies, using *lacZ* fusions to *fliC*, were performed. Using a distal *lacZ* fusion with *fliC*, located at +1210 of the transcriptional start site, the expression of *fliC* increases up to 4 times in absence of DksA (**fig. 43A**). However, in a strain deficient for DksA and GreA, similar expression levels as in WT strain were observed, suggesting that the increase of *fliC* in absence of DksA strictly depends on the presence of GreA, as previously described by *fimB* (Aberg *et al.*, 2008). Remarkably when using a proximal *lacZ* fusion with *fliC* (located at +70 of the transcription start site) surprising results were obtained (**fig. 43A**): the increase of *fliC* expression in absence of DksA was not observed.



**Figure 43**: Effect of DksA on expression of *fliC*. A) Expression of *fliC* using the proximal (+70) and distal (+1210) *lacZ* fusions. The strains PRG13 (AAG1 *fliC*<sub>+70</sub>::*lacZ*) and PRG16 (AAG1 *fliC*<sub>+1210</sub>::*lacZ*) and its derivative mutant strains for *dksA* (PRG14 and PRG17, respectively) and for *dksA greA* (PRG15 and PRG18, respectively), were grown in LB at 37°C up to an OD<sub>600nm</sub> of

1.5 and  $\beta$ -galactosidase activity was determined. Average and standard deviation of  $\beta$ -galactosidase activity determination from three independent cultures are shown. B) Hypothetical model to explain the effect of GreA and DksA over *fliC* expression. Orange triangle represents DksA while blue triangle represents GreA.

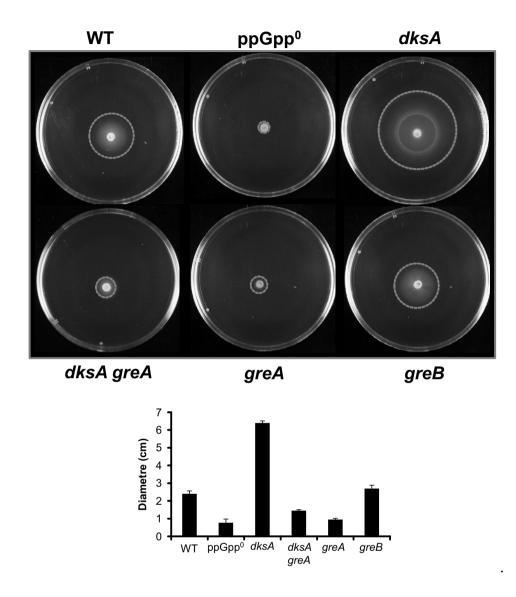

To explain the differences observed between the proximal and distal fusion, we hypothesized (**fig. 43 B**) that within the *fliC* gene a transcriptional pause zone might exist, between the position +70 and +1210. To alleviate the transcriptional pause, GreA will interact with the RNApol. Our model suggests that this pause zone is not efficiently solved by the RNApol in normal conditions. However, in absence of DksA, GreA is able to bind to the secondary channel of the RNApol, solving the pause situation and, as a consequence, increasing the expression of *fliC*. Consistent with a requirement of GreA for the expression of *fliC,* in absence of both factors, RNApol is not able to solve the pause efficiently and produces low amount of *fliC.* 

## 4.3.1. Effect of the factors that bind into the secondary channel of the RNApol on *fliC* expression

To further corroborate the effect of DksA on *fliC* expression, Real Time qPCR experiments were performed to corroborate it. The strains MG1655 (as WT) and its mutant *dksA* and *dksA* greA were grown in LB at 37°C up to an OD<sub>600nm</sub> of 1.5 and the total RNA was isolated as indicated in section 3.5.1. The expression of *fliC* was determined by qPCR with SYBR Green using the primers fliC-RT8 and fliC-RT9. The primers zwf-FW2 and zwf-RV were used to detect the expression of the *zwf* gene, coding for glucose 6-P deshydrogenase, as endogenous control. Data was collected and its normalization was performed as described in section 3.5.3. The fold-change value after normalization, relative to the WT strain, is represented in **figure 44**.

As previously observed in **figure 43A**, the expression of *fliC* (**fig. 44**) increases dramatically in absence of DksA (up to 80-fold), but in absence of both factors (DksA and GreA) the induction of *fliC* expression by the *dksA* mutation is importantly abolished, since it decrease more than 5 fold. However, the expression of *fliC* in a *dksA greA* mutant is 14 times higher than in a WT strain. This increase on the expression of *fliC* in the *dksA greA* mutant could be explained as a possible effect of DksA during transcription initiation, affecting

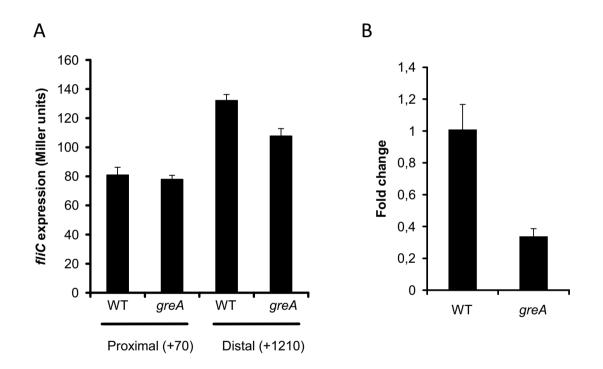
the expression of either *fliA* or *flhDC*, but it is not observed with the *lacZ* fusions. It is important to highlight that qPCR is a more sensitive technique than transcriptional fusions.




**Figure 44**: Effect of *dksA* and *dksAgreA* mutation on expression of *fliC* by qPCR. The strains MG1655 (WT), TE8114 (*dksA*) and AAG101 (*dksA greA*) were grown in LB at 37°C up to an OD<sub>600nm</sub> of 1.5 and total RNA was isolated. The expression of *fliC* was determined by qPCR with SYBR Green using the primers fliC-RT8/fliC-RT9. Amplification of the gene *zwf* mRNA with the primers zwf-FW2/zwf-RV was used as endogenous control.

Since *fliC* codes for the main subunit of the flagellum, variations on the expression of *fliC* might be associated with variations on motility. In fact, it was shown by Aberg *et al.*, (2009) that the DksA and ppGpp affects motility. Therefore, we decided to determine the effect of the different factors that bind to RNApol on bacterial motility. The motility was determined (**fig. 45**) as described in section 3.9.3, using motility agar plates with a 0.25% of agar allowing swimming of bacteria (Aberg *et al.*, 2009) to promote detection of motility, 2mM of maltose as chemo-attractant was added. Plates were incubated at 30°C during 12 hours. The strain MG1655, TE8114 (referred as *dksA*), AAG93 (referred as ppGpp<sup>0</sup>), AAG101 (referred as *dksA greA*), CF11657 (referred as *greA*) and CF11663 (referred as *greB*) were assessed.

When comparing with the phenotype of the WT strain (**fig. 45**) we might conclude that the mutant  $ppGpp^{0}$  is no-motile and the mutant deficient in *dksA* 


is hypermotile, as it would be expected considering the expression of *fliC* in these mutants (Aberg *et al.*, 2009).



**Figure 45**: Effect of the different factors that bind to RNApol in *E. coli* motility. The different strains were inoculated on motility agar plates supplemented with maltose 2mM as chemo-attractant and incubated at 30°C during 12 hours. The strains used are MG1655 (referred as WT), TE8114 (referred as dksA), AAG93 (referred as ppGpp<sup>0</sup>), AAG101 (referred as *dksA greA*), CF11657 (referred as *greA*) and CF11663 (referred as *greB*).

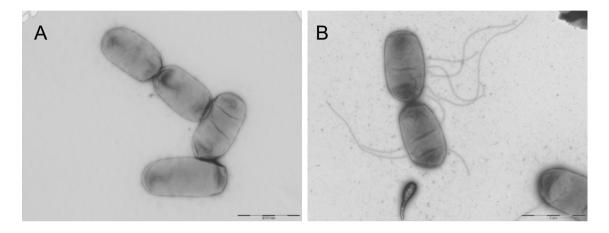
Moreover, in the strain *dksA greA* the motility decreases dramatically, being even less motile than the WT strain. The motility results are in agreement with the transcription data shown in **figure 43**, but in disagreement with the qPCR data (**fig. 44**). The discrepancies between  $\beta$ -galactosidase activity and qPCR were explained due the higher sensitivity of qPCR, but it does not explain the discrepancies with motility assay.

The effect of GreA and GreB on motility was also determined. The mutant *greA* was nearly no-motile, whereas the mutant *greB* has the same motility than WT. These data indicate that GreA is required for motility in *E. coli* even in presence of DksA whereas GreB does not seem to have any effect. It has been postulated, according to its protein amount and affinity to the secondary channel of the RNApol, that GreA is not able to compete with DksA to bind the RNApol (Rutherford *et al.*, 2007). However, it has been shown, at least in vitro, that DksA does not bind to backtracked elongation complexes (Furman, Tsodikov, *et al.*, 2013), suggesting that in this conditions, the possible conformational changes produced on the RNApol during backtracking, would promote at least practically the substitution between GreA and DksA.



**Figure 46**: Effect of GreA on the expression of *fliC*. A) The strains PRG13 (AAG1 *fliC::lacZ* (+70)) and PRG16 (AAG1 *fliC::lacZ* (+1210)) and its derivative mutant strains for *greA* (LFC61 and LFC62, respectively), were grown in LB at 37°C up to an OD<sub>600nm</sub> of 1.5 and  $\beta$ -galactosidase activity was measured. Average and standard deviation of  $\beta$ -galactosidase activity determination from three independent cultures are shown. B) The strains MG1655 (WT) and CF11657 (*greA*) were grown in LB at 37°C up to an OD<sub>600nm</sub> of 1.5 and total RNA was isolated. The expression of *fliC* was determined by qPCR with SYBR Green using the primers fliC-RT8/fliC-RT9. Amplification of the gene *zwf* mRNA with the primers zwf-FW2/zwf-RV was used as endogenous control.

Since the motility assay indicates that GreA is required for motility (**fig. 45**), the effect of GreA on the transcriptional expression of *fliC* was determined. The

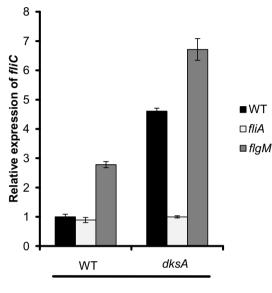

strain PRG13 and PRG16 carrying the proximal (+70) and distal (+1210) *fliC::lacZ* fusions and the corresponding *greA* mutant derivative strain were grown in LB at 37°C up to an  $OD_{600nm}$  of 1.5 (**fig. 46A**) and *fliC* expression was monitored.

It was not possible to detect any effect of GreA on the *fliC* transcriptional expression under the experimental conditions used (**fig. 46A**), neither using the proximal *lacZ* fusion nor the distal fusion. A slight decrease in absence of GreA with the distal fusion was observed. For this reason we decided to determine the effect of GreA by qPCR. The strain MG1655 (referred as WT) and CF11657 (referred as greA) were grown in LB at 37°C up to an  $OD_{600nm}$  of 1.5 and the total RNA was isolated as indicated in section 3.5.1. The expression of *fliC* was determined by qPCR with SYBR Green using the primers fliC-RT8 and fliC-RT9 the primers zwf-FW2 and zwf-RV were used to detect the expression of the *zwf* gene as endogenous control. The fold-change value after normalization, relative to the WT strain, is represented in **figure 46B**.

The expression of *fliC* (**fig. 46B**) suffers a 3-fold decrease in absence of GreA, suggesting that the expression of *fliC* is activated by GreA, even in presence of DksA. According to our model (**fig. 43B**), GreA might be required for efficient transcription of *fliC*. As previously mentioned, paused RNApol might change its affinity from DksA to GreA, for this reason in absence of GreA the RNApol is not able to solve the pause and, therefore, the expression of *fliC* decreases.

The differences observed between the  $\beta$ -galactosidase study (**fig. 46A**) and the qPCR (**fig. 46B**) could be due the basal background of the *lacZ* fusion. If we do not observe a decrease on the  $\beta$ -galactosidase activity in absence of GreA, would be because it is the minimal activity that we can detect with this fusion. However, the results obtained with qPCR, *lacZ* fusions and the phenotypic studies (motility plates) are not in full agreement. We should have in consideration whether the culture conditions used are the more appropriated for those studies. Evidently the strength of the results regarding the effect of *greA* on motility is the phenotypic assay, GreA is required for motility in both, presence and absence of DksA. This clear result is not fully explained with the data obtained by both, qPCR and *lacZ* fusions. The discrepancies might be

result of the differences in culture, on solid media for phenotypic studies and liquid for transcriptional studies. Our data (**fig. 47**) indicates that when MG1655 strain grew in liquid media the degree of flagellation is very low. Therefore, if growth in LB is not permissive conditions for flagella expression that can explain that we cannot efficiently detect the effect of *greA* in the *fliC* expression from liquid cultures (*lacZ* fusions assays). Nonetheless, the *lacZ* fusion has been very useful to study the interplay of DksA and GreA on *fliC* expression.




**Figure 47**: Observation of flagella in cultures grown in liquid and solid media. A) The strain MG1655 in cultures grown in LB at 37°C up to an  $OD_{600nm}$  of 2.0 was observed at TEM. B) The strain MG1655 was grown on motility agar plates supplemented with maltose 2mM incubated at 30°C during 12 hours. Bacterial growth was removed from the agar surface and gently mixed with 3 ml of filtered Ringer 1/4 and observed at TEM. Scale bar: 2 µm.

### 4.3.2. Effect of GreA, DksA and ppGpp on the regulatory pathway of flagella

In the previous section, it has been discussed that GreA, DksA and ppGpp affects *fliC* expression. However, considering the complexity of the regulatory cascade that control expression of flagella genes, we decided to determine if those regulatory factors are affecting the expression of the flagella at different levels. It has been described that in absence of DksA, the expression of *flhDC*, master regulator of the flagella biosynthesis, and *fliA*, alternative  $\sigma$  factor required for flagella genes transcription, increases in rich MOPS media (Lemke *et al.*, 2009). Moreover, in absence of DksA, increases the secretion on FlgM, the anti-sigma factor (Guo *et al.*, 2014), suggesting that the absence of DksA might, by these effects, increases the expression of the flagella operons.

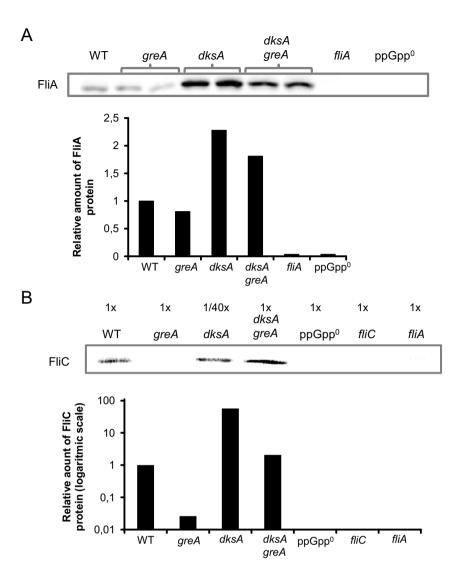
It was determined the role of FliA or FlgM in the regulation of *fliC* expression mediated by DksA using the proximal and distal *lacZ* fusion (+1210) (**fig. 48**). The strains PRG16 (WT) and PRG17 (*dksA*) with its derivative mutant strains for *flgM* (LFC37 and LFC39) and *fliA* (LFC38 and LFC40), were grown in LB at  $37^{\circ}$ C up to an OD<sub>600nm</sub> of 1.5 and the transcriptional expression of *fliC* was determined.



Distal (+1210)

**Figure 48**: Expression of *fliC* in the strains PRG16 (WT) and PRG17 (*dksA*) with its derivative mutant strains for *flgM* (LFC37 and LFC39) and for *fliA* (LFC38 and LFC40), were grown in LB at 37°C up to an OD<sub>600nm</sub> of 1.5. The *fliC* expression of the different strains was expressed in relative values, being 1.0 the value in Miller units for the strain PRG16 (WT). Average and standard deviation of  $\beta$ -galactosidase activity determination from three independent cultures are shown.

As previously described, *dksA* mutation causes a *fliC* induction. However, the absence of FliA suppresses the *fliC* expression in all strains (**fig. 48**). This result is the expected attending that the expression of *fliC* is strongly dependent of  $\sigma^{F}$ . Interestingly, the expression of the WT strain is similar than the expression in absence of *fliA*, suggesting that under this culture conditions, the expression levels of *fliC* is very low, as previously discussed.


As expected by the role of FlgM as anti-sigma factor for FliA, the absence of FlgM (**fig. 48**) causes an increase in the *fliC* expression in the DksA proficient strain (2.8 fold). Similar behaviour has been observed by Ding *et al.*, (2009) in

*Yersinia pseudotuberculosis*. Interestingly, in absence of DksA, the effect of *flgM* mutation is less pronounced, a 2.1-fold increase was observed.

Transcriptomic studies showed an increase in the expression of the flagella operons (Aberg *et al.*, 2009) in the *dksA* mutant strain. Among them, those that codes for FlgM and the basal body which might promote secretion of FlgM in the medium (Guo *et al.*, 2014). As a consequence, there is more FliA available that could interact with the RNApol and increase the expression of *fliC* at transcription initiation level. Additionally, the absence of DksA would produce the interaction of GreA into the secondary channel of the RNApol and increasing the expression of *fliC* at transcription level. Our data suggest that *fliC* is affected by the *dksA* mutation at two different levels, a first level during transcription initiation by its regulatory cascade and during transcription elongation.

The effect of DksA, ppGpp and GreA in the amount of FliA and FliC was determined by immunodetection (**fig. 49**). The amount of FliA on MG1655 and in its derivative mutant *greA*, *dksA*, *dksA greA*, *relAspoT* (ppGpp<sup>0</sup>) and *fliA* (as a negative control) was determined in cultures grown in LB at 37°C up to an  $OD_{600nm}$  of 1.5 (**fig. 49A**). In absence of ppGpp, FliA is no detectable, whereas in absence of DksA, the amount of FliA increases over 2-fold. Those results are consistent with a previous report (Aberg *et al.*, 2009). Remarkably *greA* mutation does not have a significant effect on the expression of *fliA* since the amount of FliA does not decrease by the absence of GreA neither in a *dksA*<sup>+</sup> nor in a *dksA*<sup>-</sup> strain.

Regarding the levels of FliC (**fig. 49B**), in absence of ppGpp no expression of FliC was observed, as well as in the control strains *fliC* and *fliA*. However, in absence of DksA, as observed in transcriptional studies, a very huge increase in the amount of FliC was detected (57-fold). This increase depends on the presence of GreA since in a *dksA greA* strain the amount of FliC was only 2-fold compared to the WT strain. The levels of FliC in absence of GreA, are really low, nearly inexistent (**fig. 49B**).



**Figure 49**: Effect of the factors that bind the secondary channel on the cellular levels of FliA and FliC. A) Western blot using monoclonal antibodies against FliA. The strains MG1655 (WT), CF11657 (*greA*), TE8114 (dksA), AAG101 (*dksA greA*), AAG93 (ppGpp<sup>0</sup>) and XX (*fliA*) were grown in LB at 37°C up to an OD<sub>600nm</sub> of 1.5. Whole cell extracts were analyzed in a 12.5% SDS-PAGE, transferred onto PVDF membrane and immunodetection performed as described (section 3.6.2). The chemiluminiscence signal was visualized using a Chemidoc XRS System from BioRad. B) Western blot using polyclonal antibodies against FliC. The strains MG1655 (WT), CF11657 (*greA*), TE8114 (dksA), AAG101 (*dksA greA*), AAG93 (ppGpp<sup>0</sup>), XY (*fliC*) and XX (*fliA*) were analyzed as in A.

The fact that the amount of FliA in a *dksA* strain is nearly the same than in a *dksA greA* strain but the FliC levels are really different, suggests that as proposed above, *dksA* mutation affect *fliC* expression at two different levels, by its role affecting *fliA* expression and directly affecting *fliC* expression. These results together with the fact that the effect of the *dksA* mutation is only observed in distal *lacZ* fusions suggest that the effect is not at the level of

transcription initiation, which seems to be strictly dependent on FliA. Our results are in agreement with a possible role of GreA in the transcription elongation of *fliC*. That might explain how a 60-fold increase on FliC (**fig. 49B**) was observed in absence of DksA, having only a 2-fold increase of the FliA levels (**fig. 49A**). Moreover, this 60-fold increase is dependent on the presence of GreA, since the FliC level decreases 30 fold in the *dksAgreA* strain as compared to the *dksA* strain. We also had observed that in absence of ppGpp there is no expression of *fliC*, suggesting that ppGpp is required also for the expression of FliC, as previously described (Aberg *et al.*, 2009). We hypothesized a regulatory network that controls flagella expression from the secondary channel of RNApol which is depicted in **figure 50**.

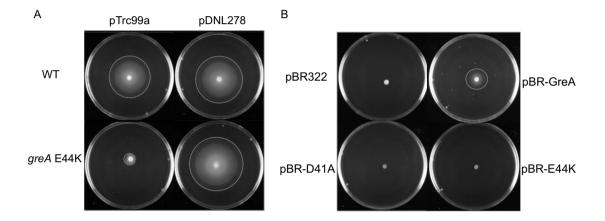



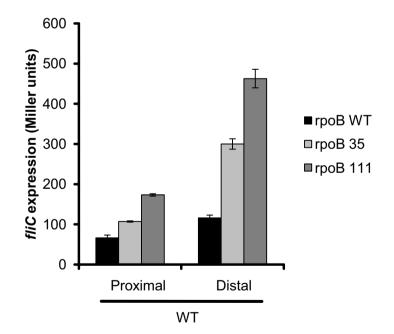

Figure 50: Scheme of the effect of ppGpp, DksA and GreA over flagella pathway.

The expression of the flagella genes is sequential and highly regulated (Chevance and Hughes, 2008). According to our data DksA represses the expression of the alternative sigma factor, FliA, as could be observed on **figure 49A**, while ppGpp is required for its expression (**fig. 49A**). How this differential regulation occurs, being independent of GreA is unknown. This effect over *fliA* could be direct on its expression, or indirect by affecting *flhD* and *flhC* expression, coding for the major regulator of the flagella expression (Lemke *et al.*, 2009). In fact, the transcriptomic studies performed in Aberg *et al.* (2009) showed that ppGpp and DksA affects the expression of *flhD* and *flhC*. Moreover GreA plays a critical role in the control of *fliC* expression which seems to be independent of  $\sigma^{F}$  levels supporting a possible role of GreA in the control of *fliC* transcription elongation.

## 4.3.3. Effect of possible pausing sequences on the expression of fliC

The main activity described for GreA is to solve pauses during transcription elongation by producing a cleavage of the nascent RNA (Laptenko *et al.*, 2003). Considering that GreA is essential for motility (**fig. 46**), we decided to determine how GreA mediated antipause activity affects *fliC* expression. First, we decided to test if the amino acids responsible of antipause activity (D41 and E44) are required for the motility (**fig. 51**). The motility of the strain MG1655 (WT) and TP1216 (*greA* E44K) with the plasmids pTrc99a, as a control, and pDNL278 (encodes *greA*) was determined (**fig. 51A**).



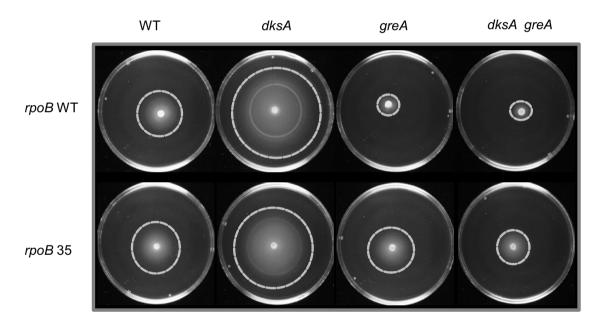

**Figure 51**: Effect of GreA antipause activity on motility. A) The strain MG1655 (WT) and TP1216 (*greA* E44K) carrying the plasmids pTrc99a (control) and pDNL278 (GreA<sup>WT</sup>) were grown on motility agar plates supplemented with maltose 2m M as chemo-attractant at 30°C during 12 hours. B) The strain CF11657 (*greA*) carrying the plasmids pBR322 (control), pBR-GreA, pBR-D41A (encodes *greA* D41A) and pBR-E44K (encodes *greA* E44K) were grown on motility agar plates supplemented with maltose 2 mM as chemo-attractant at 30°C during 12 hours.

The strain containing the E44K *greA* allele in the chromosome is no motile (**fig. 51A**). Moreover, this mutation could be complemented *in trans* by GreA<sup>WT</sup> since it become motile when using the plasmid pDNL278. These results clearly suggest that the antipause activity of GreA during transcription elongation is required for motility.

Moreover, experiments were performed to determine the effect of mutations in the catalytic amino acid D41 and E44 in motility. The motility of the strain CF11657 (*greA*) carrying pBR322 (as a control), pBR-GreA, pBR-GreA D41A or pBR-GreA E44K (**fig. 51B**) was monitored. In absence of GreA, strain carrying plasmid pBR322, no movement was observed, but the introduction of WT *greA* 

(pBR-GreA) *in trans*, restores the cellular motility. However, the introduction of *greA* D41A or *greA* E44K alleles did not restores motility, corroborating that the antipause activity of GreA is required for the motility in *E. coli*. Our data highlight the idea that *fliC* contains a sequence located between the proximal (+70) and distal (+1210) *lacZ* fusion that produces a pause of transcription elongation and GreA is required to solve it.

To further establish that regulation at the transcriptional elongation of *fliC* exists, experiments with *rpoB* alleles were performed. It has been described that several mutations in the *rpoB* gene, coding for  $\beta$  subunit of the RNApol, that affect the sensibility of the RNApol to pause during transcription causing increase or reduction in the pausing rate (I. Artsimovitch and Landick, 2000; Trautinger *et al.*, 2005; Tehranchi *et al.*, 2010). The effect of two *rpoB* alleles that reduce transcriptional pauses on *fliC* expression was monitored. Both, the rpoB35 (*rpoB* H1244Q) and the rpoB111 (*rpoB* P564L) alleles decrease the rate of pausing during transcription elongation as described by Trautinger *et al.*, (2005) and Tehranchi *et al.*, (2010), respectively.




**Figure 52**: Effect of *rpoB* 35 and *rpoB* 111 alleles on *fliC* expression using the proximal (+70) and distal (+1210) *lacZ* fusion. The rpoB<sup>WT</sup> strains PRG13 and PRG16, proximal and distal fusion respectively, together with their derivative mutants *rpoB*35 (LFC41, LFC42, LFC43 and LFC44) and *rpoB*111 (LFC45, LFC46, LFC47 and LFC48) were grown in LB at 37°C up to an  $OD_{600nm}$  of 1.5. Average and standard deviation of  $\beta$ -galactosidase activity determination from three independent cultures are shown.

The expression of *fliC*, using the proximal and distal *lacZ* fusion, in the rpoB35 and rpoB111 mutants, was determined (**fig. 52**).

Both alleles, rpoB35 and rpoB111, causes an increase in *fliC* expression (**fig. 52**), which is much more evident when using the distal *fliC* fusion, 2.5 and 4 fold respect  $rpoB^{WT}$  respectively, as compared with the proximal fusion, 1.5 and 2.5 fold respect  $rpoB^{WT}$  respectively. This results indicates that *fliC* expression is sensitive to the ratio of pausing.

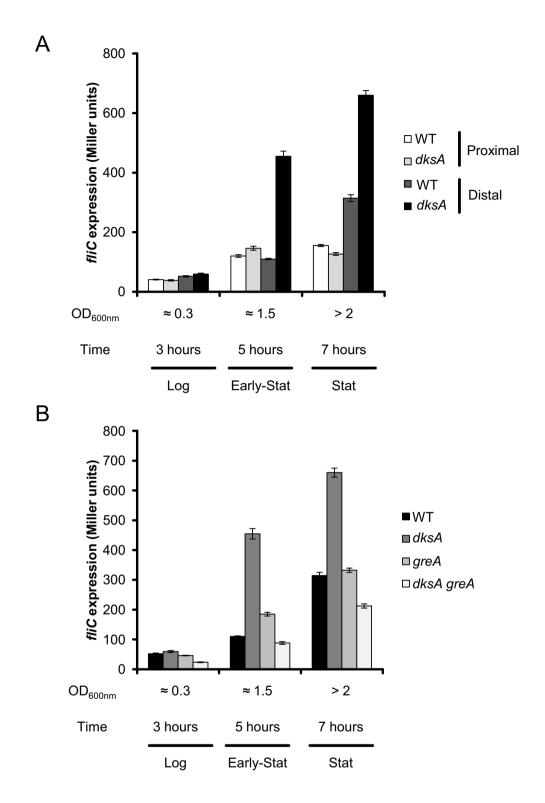
We decided to determine how the *rpoB*35 allele affects the regulation of *fliC* by the different factors that bind to the secondary channel. The motility of strains containing either *rpoB* WT or *rpoB*35 alleles and their derivatives *greA*, *dksA* and *dksA greA* mutants was determined (**fig. 53**).



**Figure 53**: A) The strains MG1655 (WT), CF11657 (*greA*), TE8114 (dksA), AAG101 (*dksA greA*) and its derivative *rpoB*35 mutants (N4849 and LFC49, LFC50 and LFC51, respectively) were grown on motility agar plates supplemented with maltose 2 mM as chemo-attractant at 30°C during 12 hours.

The *rpoB*35 had no effect in the motility of MG1655 or in the *dksA* mutant. However, in absence of GreA (in the *greA* and *dksA greA* strain), the motility in the rpoB35 was recovered to levels similar to WT. These data is consistent with the hypothesis that GreA is required for *fliC* expression, and consequently for motility, by promoting efficient transcription elongation of *fliC*. In absence of GreA, with the WT *rpoB* allele, the RNApol would not be able to pass through them, decreasing *fliC* expression (**fig. 46B**) and motility (**fig. 53**).

# 4.3.4. Effect of changes in environmental parameters in the expression of <u>fliC</u>


Cellular motility and chemotaxis may play an important role on survival of bacteria in the environment promoting movement towards favourable conditions or avoiding detrimental environments (Soutourina and Bertin, 2003). It has been described that flagella synthesis is inhibited by high temperature, osmolarity or extreme pH as well as by other environmental factors (Li *et al.*, 1993; Soutourina and Bertin, 2003). It has also been observed that flagella genes vary its expression through the growth phase, being inhibited at exponential phase, and reaching its maximum expression at early-stationary phase (Dudin *et al.*, 2014).

The effect of mutations in the factors that bind to the secondary channel of RNApol on motility through the growth curve or osmolarity variations has been studied.

### 4.3.4.1. Expression of *fliC* through the growth phase

To determine the effect of the factors that bind to the secondary channel on *fliC* expression at different points of the growth phase, *fliC* transcription was monitored at different time points of the growth phase: exponential phase (log), early-stationary phase (Early-Stat) and stationary phase (Stat). First, the expression of *fliC* was determined using the proximal (+70) and distal (+1210) *lacZ* fusions at the different time points in presence and absence of DksA in cultures grown in LB at 37°C (**fig. 54A**).

The expression of *fliC* increases at stationary phase (**fig. 54A**). Interestingly the induction rate differs among the *lacZ* fusions used. With the proximal fusion, a 3.8-fold induction was detected, when comparing between log and stat cultures. However, this induction ratio for the distal fusion was 6-fold. These results suggest that *fliC* expression is stimulated at stat phase in a manner independent of transcription elongation (proximal fusion data) and also suggest that regulation at the level of transcription elongation might be involved in the growth phase regulation of flagella biosynthesis.



**Figure 54**: Expression of *fliC* at different points of the growth phase. A) Strains with either the proximal (+70) or the distal (+1210) fusion were grown in LB at 37°C and samples were taken at different points of the growth curve (Log, Early-Stat, and Stat) to measure the  $\beta$ -galactosidase activity. The *dksA*<sup>+</sup> derivates (PRG13 and PRG16) and *dksA*<sup>-</sup> derivatives (PRG14 and PRG17) were used. B) The *fliC* expression using the distal fusion was monitored in strains PRG16 (WT), PRG17 (*dksA*), LFC62 (*greA*) and PRG18 (*dksA greA*) grown in LB at 37°C and samples were taken at different points of the growth curve (Log, Early-Stat, and Stat) to measure the  $\beta$ -galactosidase activity. In both A and B, cultures were inoculated from plate an initial OD<sub>600nm</sub> of

0.001. Average and standard deviation of  $\beta$ -galactosidase activity determination from three independent cultures are shown.

In the *dksA* mutant strain, no differences as compared to WT was observed with the proximal fusion. However, with the distal fusion the induction of *fliC* at stat phase is higher in the *dksA* strain (11-fold) as compared to WT (6-fold). In fact, it could be observed that in exponential phase, *dksA* mutation has nearly no effect on the expression of *fliC*, but on early stationary phase the expression of *fliC* in a *dksA* mutant increases dramatically. Our data shows that the expression of *fliC* increases on stationary phase, which is higher in a *dksA* mutant, and the induction more pronounced when the distal *lacZ* fusion was used, indicating that pausing might be involved in the fine-tuning of *fliC* expression.

The effect of greA and dksA mutations on fliC expression, using the distal fusion, through the growth curve was also determined. For this reason the strain PRG16 and its mutant derivatives dksA, greA, and dksA greA were grown in LB at 37°C (fig. 54B). At early stationary phase, the expression of fliC increases dramatically in the dksA strain whereas such increase is not observed in the dksA greA strain. Interestingly, at late-stationary phase a significant induction of fliC expression was detected even in absence of GreA. Considering that the expression of greA decreases at stationary phase (as described in section 4.1.2), but the expression of greB increases (as described in section 4.2), someone could suggest that the increase of *fliC* observed with the distal fusion at stationary phase could be produced by interaction of GreB into the secondary channel of the RNApol instead of GreA, but, as shown in figure 45, GreB has no effect on bacterial motility in E. coli. These data might suggest that, even the amount of GreA is lower in exponential phase than in stationary phase, it would be enough to compete for the secondary channel of the RNApol on these conditions.

### 4.3.4.2. Effect of osmolarity on the expression of fliC

The effect of increasing concentrations of NaCl in the culture media on *fliC* expression was determined by using the strain PRG16 (distal fusion) and its derivative mutants *dksA* and *dksA* greA (**fig. 55A**).

It could be observed in **figure 55A** that the effect of *dksA* mutation over *fliC* expression is completely dependent on the osmolarity of the media. At 5 g/L NaCl the expression of *fliC* in absence of DksA is nearly 4-fold higher the expression of WT and at 0 g/L the expression of *fliC* in absence of DksA is even higher (nearly 6-fold respect WT). Surprisingly, at 10 g/L there is no effect of DksA on *fliC* expression. Moreover, in absence of both factors (DksA and GreA), the expression of *fliC* is restored to WT levels at the different osmolarities. Altogether, these results suggest that in absence of DksA, GreA bind to the RNApol, increasing the expression of *fliC* and this effect is dependent on osmolarity.

We also determined the effect of osmolarity over motility WT and DksA deficient strain (**fig. 55B**). At high osmolarity (10 and 25 g/L NaCl), there is a clear reduction in the motility of both strains (WT and *dksA*). Taking in account that GreA is essential for motility, even in presence of DksA (**fig. 46**), and that its activity could be dependent on osmolarity (**fig. 55A and C**), it is not surprising that osmolarity – via GreA – could affect motility, even in presence of DksA

Having in consideration our results, one could hypothesize that the effect of osmolarity on motility may be due changes on GreA amount at different osmolarities. The amount of GreA was determined by Western blot of the strain MG1655 and its derivative *dksA* mutant grown in LB with different concentrations of NaCI. The results indicate that the amount of GreA is constant at these conditions (**fig. 55B**). This fact make us hypothesize that it could be due changes on GreA activity.

The strain PRG18 (*dksA greA*) was transformed with plasmid pDNL278 (encodes *greA* under a P<sub>tac</sub> promoter) and pTrc99a as a control, and the resulting strains were grown in LB with different NaCl concentrations (0, 5 and 10 g/L) at 37°C up to an OD<sub>600nm</sub> of 1.5 and samples for measuring  $\beta$ -galactosidase activity were taken (**fig. 55D**). The complementation *in trans* of the deficiency in GreA increases the expression of *fliC* at 0 and 5 g/L NaCl. However, at 10g/L we observe only a slightly increase on the expression of *fliC*. The amount of GreA produced was also determined by western blot (**fig. 55E**) at the same conditions tested.

139

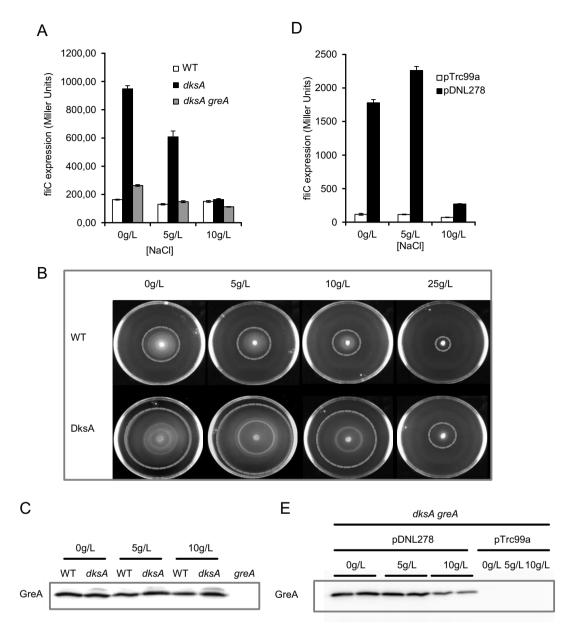
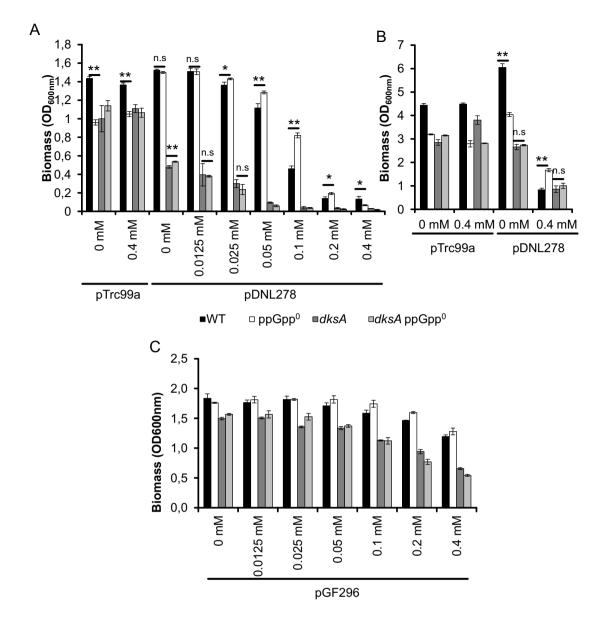



Figure 55: Effect of osmolarity over fliC expression and motility. A) The strain PRG16 (WT), PRG17 (dksA) and PRG18 (dksA greA) were grown in LB with different concentrations of NaCl (0, 5 and 10 g/L) at 37°C up to an OD<sub>600nm</sub> of 1.5, *fliC* expression was monitored by  $\beta$ galactosidase activity determination. B) The strains MG1655 (WT), and TE8114 (dksA) were grown on motility agar plates with different concentrations of NaCl (0, 5, 10 and 25 g/L) supplemented with maltose 2 mM as chemo-attractant at 30°C during 12 hours. C) Western blot using monoclonal antibodies against GreA. The strains MG1655 (WT), TE8114 (dksA) and CF11657 (greA) were grown in LB with different concentrations of NaCI (0, 5 and 10 g/L) at 37°C up to an OD<sub>600nm</sub> of 1.5. Whole cell extracts were analyzed in a 13.5% SDS-PAGE, transferred onto PVDF membrane and immunodetection performed as described (section 3.6.2). The chemiluminiscence signal was visualized using a Chemidoc XRS System from BioRad. D) PRG18 (dksA greA) carrying the plasmids pTrc99a (control) and pDNL278 (encodes greA) were grown in LB with different concentrations of NaCl (0, 5 and 10 g/L) at 37°C up to an  $OD_{600nm}$  of 1.5. *fliC* expression was monitored by  $\beta$ -galactosidase activity determination. E) Western blot using monoclonal antibodies against GreA. The strain AAG101 (dksA greA) carrying the plasmid pDNL278 (encodes greA) and pTrc99a were grown in LB with different concentrations of NaCI (0, 5 and 10 g/L) at 37°C up to an OD<sub>600nm</sub> of 1.5 were analyzed as in C.

Average and standard deviation of  $\beta$ -galactosidase activity determination from three independent cultures are shown.

It was observed that at 10g/L there is a decrease on the basal expression of pDNL278, suggesting that Ptac promoter is dependent of media osmolarity, but this decrease does not seem to be the main responsible of the decrease of *fliC* expression since level are higher than in not overexpressing strain. We could propose that either the binding affinity of GreA to the secondary channel of the RNApol, the vacancy of the secondary channel of the RNApol in a *dksA* mutant or GreA activity, depends on the external osmolarity of the media It has been described that Gfh1 from *Thermus thermophilus* suffer conformational changes at different pH (Laptenko *et al.*, 2006). It is feasible that GreA could suffer also conformational changes at different osmolarities attending its ability to alter gene expression output.

Another possible explanation would be that at high osmolarity (10 g/L) there is some repressor of *fliC* expression that can abolish the superproduction caused by *dksA* mutation.


# 4.4. Effect of GreA overexpression on bacterial growth

It has been described (as previously discussed in section 1.2.5) that DksA is more abundant than GreA and GreB in *E. coli*. It has been estimated that DksA amount is up to 2 and 10 times higher than GreA and GreB, respectively. DksA and GreB have nearly the same affinity for the RNApol whereas GreA has lower affinity than the other factors (Rutherford *et al.*, 2007). Interestingly, as we have observed in section 4.1, *greA* expression could vary at different conditions such as during extracytoplasmic stress or stationary phase, suggesting that GreA levels variations could produce changes in the proteins that bind the secondary channel of the RNApol. Moreover, our results also suggest that external environmental parameters, such as the osmolarity, could alter the affinity of GreA for the RNApol. Finally, the autoregulation of *greA* and the crosstalk between DksA, GreB and GreA, highlights the possible competition between the different factors to bind the secondary channel of the RNApol.

In order to determine the hierarchy of the different factors that bind to the secondary channel of the RNApol and to observe the displacement of one factor by another, we decided to overexpress GreA and GreB on different genetic backgrounds, and observe its effect on the cell physiology. It has been described that overexpressing GreA causes a deleterious effect in the growth of *E. coli* in LB (Potrykus *et al.*, 2006). Therefore, we would like to determine the effect of overexpressing of GreA and GreB in presence or absence of DksA and ppGpp.

To overexpress GreA and GreB, we used plasmids derivates of pTrc99a, where the *greA* and *greB* genes were cloned under the IPTG inducible promoter Ptac resulting pDNL278 (GreA) and pGF296 (GreB) (Fengs *et al.*, 1994).

First, the plasmid pDNL278 and pTrc99a were transformed to MG1655 (WT), AAG93 (ppGpp<sup>0</sup>), TE8114 (dksA) and JFV14 (ppGpp<sup>0</sup> dksA) strain and the resultant strains were grown in LB at 30°C for 12 (**fig. 56A**) and 24 (**fig. 56B**) hours with increasing concentrations of IPTG, from 0 to 0.4 mM. The OD<sub>600nm</sub> of the cultures after incubation was measured.



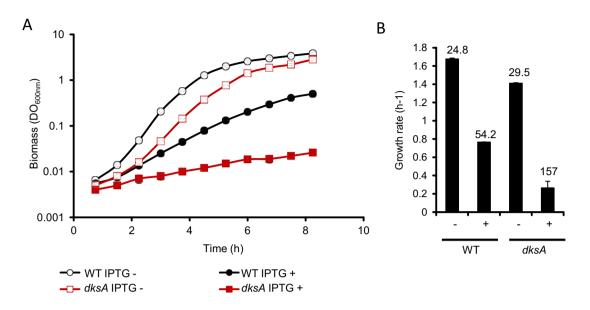
**Figure 56**: Effect of overexpression of the Gre factors using increasing concentrations of IPTG in different bacterial backgrounds. A and B) The strains MG1655 (WT), AAG93 (ppGpp<sup>0</sup>), TE8114 (*dksA*) and JFV14 (ppGpp<sup>0</sup> *dksA*) transformed with pTrc99A (control) and pDNL278 (*greA*) were grown in LB at 30°C and the OD<sub>600nm</sub> was measured after 12 (A) and 24 (B) hours of growing, respectively. Cultures were inoculated from plate to an initial OD<sub>600nm</sub> of 0.001. Significant changes had been shown (**n.s.**: no significant, \*: pValue < 0.05, \*\*: pValue < 0.01). C) The strains MG1655 (WT), AAG93 (ppGpp<sup>0</sup>), TE8114 (*dksA*) and JFV14 (ppGpp<sup>0</sup> *dksA*) transformed with pGF296 (contains *greB*) were grown in LB at 30°C and the OD<sub>600nm</sub> was measured after 12 hours. Cultures were inoculated from plate with to an initial OD<sub>600nm</sub> was

The overexpression of GreA causes a negative effect on growth in *E. coli* as shown by the decrease when increasing the amount of IPTG in the  $OD_{600nm}$  after 12 (**fig. 56A**) and 24 (**fig. 56B**) hours. After 12 hours of growth (**fig. 56A**) the WT strain with pDNL278 strain suffers a reduction in the final  $OD_{600nm}$  at 0.05 mM of IPTG and higher concentrations. An 11-fold reduction in the final

OD<sub>600nm</sub> was observed between cultures with 0 mM and 0.4 mM of IPTG in WT strain with pDNL278, while no effect was observed in cultures of WT strain carrying the control vector pTrc99a (fig. 56A). Considering that the WT strain is proficient in the expression of DksA, these results suggest that GreA when overexpresses might be able to move DksA from the secondary channel of the RNApol, forcing to increase the concentration of the complex RNApol-GreA up to levels that cause a deleterious effect to the cell physiology. Interestingly, the effect of the presence of pDNL278 is much more drastic when the cell is deficient in DksA (dksA mutant strain). The negative effect of overexpressing GreA is observed at a concentration of 0.025 mM of IPTG in the dksA strain with pDNL278, with a 17-fold decrease of its growth comparing the OD<sub>600nm</sub> between 0 mM and 0.4 mM. Moreover, the highest OD<sub>600nm</sub> reached by dksA strain with pDNL278 in absence of IPTG is significantly lower than the same strain with pTrc99a (2 fold), indicating that the basal expression of greA from the multicopy plasmid pDNL278 has a negative effect on growth when the bacteria lack DksA. Comparing the maximum OD<sub>600nm</sub> that reach the dksA strain with pTrc99a and pDNL278 at 0.4 mM of IPTG (fig. 56A) a 37-fold decrease of bacterial growth was observed (compared to the 11-fold decrease of WT strain). These results may indicate that in absence of DksA the interaction between RNApol and GreA is promoted and consequently the deleterious effect due to GreA overexpression is enhanced.

It is remarkable that when growth was monitored in a ppGpp deficient strain, the effect observed is lighter than for WT strain. At 0.1 mM, for example, bacterial growth of the ppGpp<sup>0</sup> strain is nearly 2-fold higher than in a WT strain (**fig. 56A**). This effect could be also observed after 24 hours of growth (**fig. 56B**) where the WT strain suffers a 7-fold decrease comparing 0 and 0.4 mM of IPTG, while ppGpp<sup>0</sup> suffers only a 2.5-fold decrease. The lack of DksA seems to be epistatic over ppGpp (Brown *et al.*, 2002). These results suggest that ppGpp may be required for efficient interaction of GreA with the secondary channel of the RNApol, and that the presence of the modified nucleotide might interfere in the proposed competence between the Gre factors and DksA.

The  $OD_{600nm}$  of the WT strain compared with the ppGpp<sup>0</sup> strain carrying the control plasmid is higher (**fig. 56A**). Surprisingly, the same strains carrying

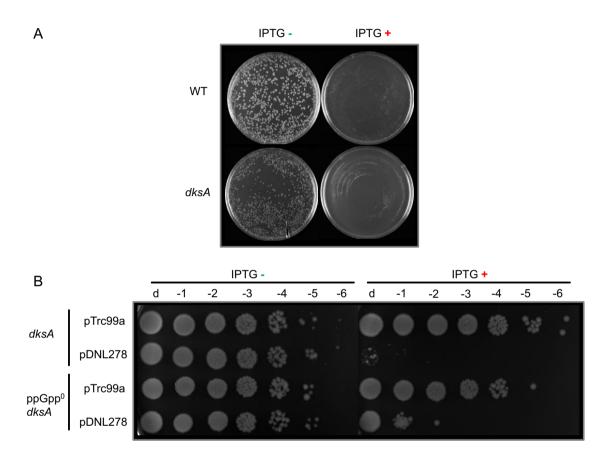

pDNL278, in absence of IPTG, reach the same  $OD_{600nm}$  after 12 hours of growth (**fig. 56A**). After 24 hours (**fig. 56B**) we observe that ppGpp<sup>0</sup> strain had lower  $OD_{600nm}$  than WT with pTrc99a and pDNL278 at 0 mM of IPTG, but had higher  $OD_{600nm}$  than WT at 0.4 mM of IPTG the ppGpp<sup>0</sup>. These data might suggest that the absence of ppGpp is a disadvantage for the cell. However, tolerable extra copies of *greA*, basal expression of pDNL278, would recover, somehow, the ability to grow to WT ratios.

The effect of overexpression of GreB was determined using pGF296 (*greB* cloned under the IPTG inducible promoter Ptac) in WT, ppGpp<sup>0</sup>, *dksA* and ppGpp<sup>0</sup> *dksA* strain, similarly as described for GreA overexpressing assay (**fig. 56C**). When overexpressing GreB, a similar behaviour was observed as when overexpressing GreA. However, the deleterious effect in growth is weaker than for GreA. The overexpression of GreB is less toxic than the overexpression of GreA. At the highest concentration of IPTG, the WT strain, carrying pGF296, suffers a 1.5-fold reduction of final OD<sub>600nm</sub> compared with the cultures without IPTG. In absence of DksA, the effect of the overexpression of GreB is higher, a 2.3-fold decrease in the final OD<sub>600nm</sub> was observed, suggesting that GreB had to compete for binding to the secondary channel with DksA as well as with GreA. No significant effect by ppGpp deficiency was observed either in *dksA*<sup>+</sup> or *dksA*<sup>-</sup> strains.

To study more in detail the competence between GreA and DksA, and its effect on bacterial growth, it has been determined the effect of overexpression of GreA on the growth curve using the WT and *dksA* strains. For this purpose, the MG1655 (WT) and TE8114 (*dksA*) strains carrying the plasmid pDNL278 (overexpression of GreA) were grown in LB in the absence or presence of IPTG (0.2 mM) at 37°C and the OD<sub>600nm</sub> of the cultures was measured every 45 minutes. The cultures were inoculated from plate to an initial OD<sub>600nm</sub> of 0.001.

Both strains, WT and *dksA*, suffers a negative effect when overexpressing GreA (**fig. 57A**), and this effect was higher in a *dksA* strain that in WT, as has been previously shown (**fig. 56A**). Bacterial growth is reduced in WT strain, when IPTG was added, growing slower than without IPTG. This effect is also

observed in a *dksA* strain, but much more dramatic. In fact, the *dksA* strain showed very slow growth during the first 6-10 hours.

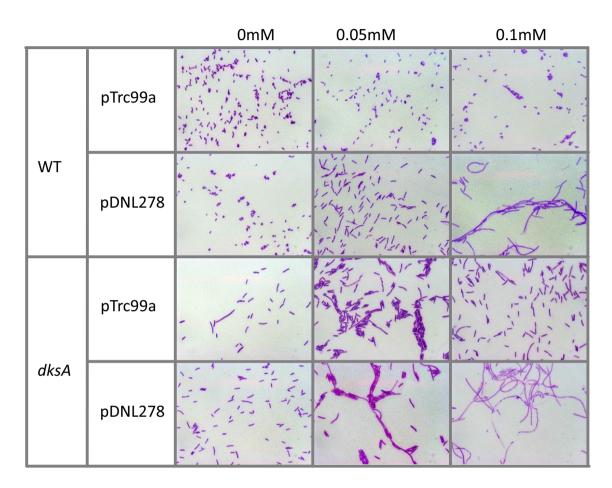



**Figure 57**: Effect of overexpressing GreA in bacterial growth. A) The strains MG1655 (WT) and TE8114 (*dksA*) transformed with pDNL278 were grown in LB with either 0.2 mM of IPTG (referred as +) or without IPTG (referred as -) at 37°C. The OD<sub>600nm</sub> was measured every 45 minutes. Cultures were inoculated from plate to an initial OD<sub>600nm</sub> of 0.001. The growth rate and generation time of the different strains were calculated (B). The generation time is indicated in minutes over the bars.

The overexpression of GreA (**fig. 57 B**) produces a decrease in the growth rate of 2- and 7-fold in WT and *dksA* strain, respectively. As a consequence, the generation time of the *dksA* mutant was 157 minutes (2.6 hours) with IPTG, while in absence of IPTG was 29.5 minutes.

The negative effect of the overexpression of *greA* is not only observed in liquid media, it also could be observed on LB plates. There is an evident inhibitory effect on colonies formation during overexpression conditions (**fig. 58A**). The addition of IPTG (0.2 mM) in LB plates inhibits the formation of colonies in WT and *dksA* strain. The inhibitory effect was determined more in detail with LB cultures of the strain TE8114 (*dksA*) and JFV14 (ppGpp<sup>0</sup> *dksA*) which were serially diluted (1/10 dilutions) and dropped (2 µl of each dilution) on LB agar plates with IPTG 0.2 mM and without (**fig. 58B**). Plates were incubated for 12 hours at 37°C. No differences were observed in absence of IPTG, since all the cultures had similar amount of bacteria. However, in presence of IPTG the survival of *dksA* and ppGpp<sup>0</sup> *dksA* deficient strain carrying pDNL278 decreases

drastically. Tiny translucent heterogeneous colonies were observed in the highest concentration (d) in the *dksA* pDNL278 strain with IPTG. The presence of heterogeneous colonies, translucent small and pale big colonies, suggests the apparition of suppressor mutations tha counteract the negative effect of overexpressing *greA*.




**Figure 58**: Effect of overexpressing GreA over colonies formation. A) The strain MG1655 (WT) and TE8114 (*dksA*) carrying either pTrc99a or pDNL278 plasmid on LB agar plates with IPTG 0.2 mM and without. B) The strain TE8114 (*dksA*) and JFV14 (ppGpp<sup>0</sup> *dksA*), were grown in LB several hours, serially diluted (1/10 dilutions) and dropped (2 µl of each dilution) on LB agar plates with IPTG 0.2 mM and without IPTG. The following dilutions were dropped: direct (d) and serial dilutions 1/10 from the culture up to a dilution 1/10<sup>6</sup> (from -1 to -6).

In the strain ppGpp<sup>0</sup> *dksA* (**fig. 58B**), colonies were observed in dilution -1 (1 colony in -2), suggesting that the absence of ppGpp makes bacteria less sensitive to overexpression of *greA*, as previously suggested. Moreover, colony heterogeneity was not observed, suggesting that in those conditions is more difficult to produce suppressor mutations.

We observed a negative effect of overexpressing GreA on bacterial growth in liquid as well as on solid media, for this reason we decided to observe the effect

of overexpression of GreA at the cellular level (**fig. 59**). WT and *dksA* strain with the pTrc99a and pDNL278 were grown on LB plates at 37°C with different concentrations of IPTG (0, 0.05 and 0.1 mM), stained with crystal violet and observed by optical microscopy.

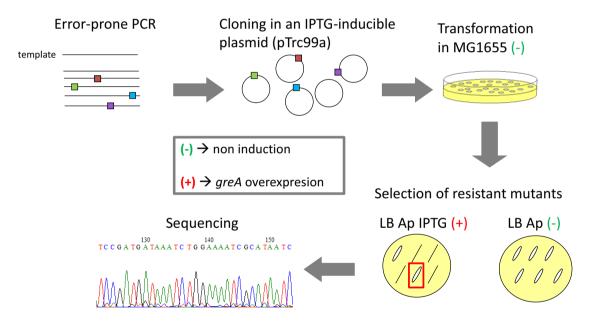


**Figure 59**: Effect of GreA overexpression over cell shape. The strain MG1655 (WT) and TE8114 (*dksA*) carrying either pTrc99a (control plasmid) or pDNL278 (contains *greA*) were grown on LB plates with 0, 0.05 and 0.1 mM of IPTG at 37°C during 16-18 hours. Several colonies were resuspended in water, fixed on a microscope slide and stained with crystal violet. The samples were observed with 100x objective.

The overexpression of GreA in a WT strain produces an enlargement of the cell producing cellular filaments which is clearly detected at 0.1 mM. The absence of DksA (at 0 mM of IPTG) produces an enlargement of cells as compared to WT similar to the observed by  $ppGpp^0$  (Magnusson *et al.*, 2005; Aberg *et al.*, 2009). This filamentation induced by *dksA* mutation has been previously described by Magnusson *et al.*, (2007). During overexpression conditions in the *dksA* strain, an important enlargement of the cells was observed at lower concentrations of inductor than in the WT strain. This enlargement could be produced by a deficit

on cellular division. Interestingly, transcriptomic studies (Stepanova *et al.*, 2007) indicate that overexpressing *greA* causes repression on *ftsN* expression. FtsN is a crucial factor during cellular division. The depletion of *ftsN* produces cell filamentation and eventual death, but the lack of FtsN did not affect DNA synthesis and nucleoid segregation (Dai *et al.*, 1993).

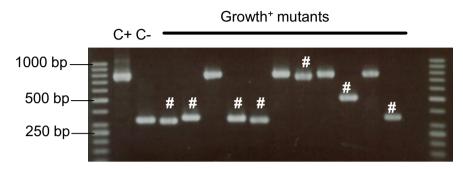
Overexpression of GreA may cause an increase on the amount of RNApol-GreA complex in the cell, causing an enlargement of the cell, perhaps by a decrease of FtsN – protein essential for the localization of the Z-ring during cellular division process (Busiek and Margolin, 2014). As mentioned above, the lack of *ftsN* produces cell filamentation and eventual death (Dai *et al.*, 1993), that is a similar effect that we observe under GreA overexpression conditions. This cellular effect produces a negative effect on the bacterial growth on liquid media and an effect on colonial size on plate. Moreover, this effect is higher in absence of DksA – or appears earlier – suggesting that GreA is able to compete directly with DksA for the secondary channel. In absence of DksA, GreA is able to interact more easily with the secondary channel and produces cell filamentation that could be observed by optical microscopy.


## 4.5. Structural study of the protein GreA

The protein Gfh1, as mentioned in section 1.2.4, is a protein from Thermus aquaticus that has a highly structural homology to GreA. It has been described that it is susceptible to suffers conformational changes which are pH-induced that modify its affinity for the secondary channel of the RNApol (Lamour et al., 2006; Laptenko et al., 2006). Studies performed with the crystallized complex RNApol-Gfh1 from Thermus thermophilus showed that the coiled-coil domain enters inside the secondary channel of the RNApol, while hydrophobic residues of the globular domain interact with the external edge of the secondary channel, binding to the surface of the RNApol. Moreover it is shown that the entrance of the secondary channel is expanded by the binding of Gfh1, due to conformational changes in the RNApol, suggesting that this expansion of the secondary channel is required to allow the entrance of Gfh1 (Tagami et al., 2010). GreB contains hydrophobic residues in an equivalent position than Gfh1, but GreA no. Although, it is suggested that those amino acids could be involved in the binding of GreA to the RNApol, there is no clear knowledge on the residues involved in the functional interaction of GreA with the RNApol. In order to determine structural aspects that may be relevant for the interaction of GreA with the secondary channel of the RNApol, we decided to perform a random mutagenesis to select mutants that had lost the functionality of GreA or its ability to bind the secondary channel of the RNApol.

Considering that *greA* overexpression produces a negative effect on bacterial growth, as indicated by a significant reduction of the colonies size, we decided to use this phenotype to isolate GreA mutants with altered functionality or affinity to the RNApol. We rationalize that if overexpressing GreA<sup>WT</sup> causes a negative effect on bacterial growth in a dose dependent manner and no colonies would form under high concentrations of the inductor (IPTG), when overexpressing no-functional GreA alleles or with a reduced affinity to the RNApol, those clones would have mild effects on cell physiology and colonies will be formed.

The experimental strategy used is depicted in **figure 60**. First, a library of mutants in *greA* by Error-prone PCR was obtained. As described in section


3.4.3, this method is based in using PCR amplification conditions that promote nucleotide misincorporations, leading to protein changes, by the Taq polymerase that lack proof-reading activity. The gene *greA* was amplified by Error-Prone PCR using different temperatures of annealing in order to ensure missense mutations (64°C and 58°C) with primers G6 and G11 (**fig.25**, section 4.1). As a control, *greA* was amplified with a normal PCR protocol. Then, the library of random mutants was cloned into pTrc99a, under an IPTG-inducible promoter, and transformed into MG1655 and TE8114 (*dksA*) in absence of IPTG. In order to select those mutants that were able to grow under *greA* overexpressing conditions, the resulting clones were striked on LB plates with either IPTG 0.2mM or without IPTG. Finally, the mutants (growth<sup>+</sup>) were genotyped by PCR and sequenced.



**Figure 60**: Scheme of the random mutagenesis experiment by error-prone PCR. The coloured squares represent nucleotide mutations. It is indicated the conditions of no-induction (-) and induction of *greA* overexpression (+) conditions.

The PCR genotyping of the mutants let us to distinguish between mutations deletions, insertion and missense mutations by using the primers greApl1 and greApl2, located flanking the MCS of the plasmid pTrc99a. The MCS of the plasmids of the growth<sup>+</sup> mutants, as well as from pDNL278 (positive control, C+) and pTrc99a (negative control, C-), was PCR-amplified and visualized in a 2% agarose gel as indicated in section 3.4.5. The plasmid pDNL278 (GreA<sup>WT</sup>) produces a band of 760 bp, while the plasmid pTrc99a produces a band of 350

bp. Significant insertions or deletions would be detected by changes in the size of the electrophoresis band. In the **figure 61**, it is shown an example of the genotyping of some of the selected mutants. Those mutants that present important deletions are labelled with a #.



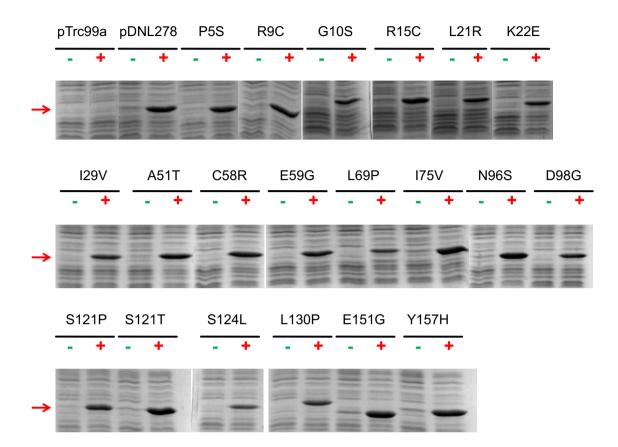
**Figure 61**: Genotyping of some selected mutants. The MCS was amplified by PCR using the primers greApl1 and greApl2, and the fragments were analyzed in a 2% agarose gel. Fragments labelled of # contain deletions.

Up to 484 clones obtained after transformation of pTrc99a-*greA* library. From those two kinds of growth<sup>+</sup> mutants were selected: resistant and intermediate-resistant mutants. From the 484 clones obtained, 84 were resistant mutants (17% of the clones) and 15 intermediate-resistant mutants (3% of the clones). All the mutants were characterized and classified according to the type of mutation (**table 6**).

|              |                       | WT     |      | dksA |      |      |    |
|--------------|-----------------------|--------|------|------|------|------|----|
|              |                       | Normal | 58°C | 64°C | 58°C | 64°C |    |
|              | Deletions             | 8      | 24   | 21   | 4    | 2    |    |
| Resistants   | Insertion             | 4      | 3    | 1    | 0    | 0    | 84 |
|              | Missense              | 0      | 10   | 6    | 1    | 0    |    |
| Intermediate | Deletions             | 0      | 1    | 0    | 0    | 0    |    |
|              | Insertion             | 0      | 1    | 0    | 0    | 0    |    |
|              | Missense              | 2      | 6    | 2    | 0    | 0    | 15 |
|              | No changes            | 0      | 1    | 1    | 0    | 0    |    |
|              | Promoter              | 0      | 0    | 1    | 0    | 0    |    |
|              | % of missense mutants |        |      |      |      |      |    |

**Table 6**: Numbers of resistant and intermediate mutants are distributed by the characteristics of its mutations. It is indicated the number of mutants that carries deletions, insertions, missense mutations, mutations in the promoter or that not contains any mutation either in the *greA* coding sequence or in its promoter (No changes). The 58°C and 64°C are the annealing temperature used. Normal refers that it has been used a normal PCR protocol.

We have selected resistant mutants in both WT and *dksA* strains but the selection of missense mutations was more efficient in presence of DksA than in its absence. Perhaps when looking at WT (with *dksA*) mutations that affect affinity to interact with the RNApol, will easily be selected, since the presence of DksA with a GreA<sup>Mut</sup> with low affinity will provide growth<sup>+</sup> mutants.


From the 99 resistant and intermediate-resistant clones, 27 contain missense mutations that produce changes in the amino acidic sequence, changing 20 different amino acids of the protein GreA (a 12.6% of its sequence). From the 27 clones, 7 carry repeated mutations and were not considered for the forthcoming study.

It is important to highlight that the mutants that contain deletions and insertions were not produced by the Error prone PCR experiment; they must be produced during natural selection of mutants due a strong selective pressure produced by the overexpression of GreA. This outcome of this selective pressure was also observed by the appearance of resistant mutants using plasmids carrying fragments obtained by normal PCR (referred as Normal in **table 6**).

None of the resistant mutants obtained in the normal PCR, contains missense mutations (except 2 intermediate-resistant mutants), instead they contain deletions and insertions. We also obtained some mutations that affected the IPTG inducible promoter, while others did not present mutations either in the *greA* gene or in its promoter (referred as no changes). While no changes are observed in *greA*, these clones would have chromosomal mutations conferring ability to survive *greA* overexpression. Those mutants are of great interest since may provide interesting information regarding how *greA* overexpression causes a deleterious effect in bacterial growth. Further studies will be required.

Before further characterization of the 20 selected mutants, it was corroborated that overproduction of the mutant protein take place (**fig. 62**). Cultures carrying the plasmid pTrc99a (control plasmid), pDNL278 (GreA<sup>WT</sup>) and the pTrc-greA<sup>Mut</sup> plasmids were induced, or not, with IPTG, in order to determine that the mutations produced did not affect the production of GreA (**fig. 62**). None of the mutations produce important effects in the amount of GreA produced,

suggesting that the mutations alter its functionality or affinity for the RNApol, but not its production.



**Figure 62**: GreA production of the plasmids pTrc-greA<sup>mut</sup>. The strain MG1655 carrying the plasmids pTrc99a (control), pDNL278 (GreA<sup>WT</sup>) and the different pTrc-greA<sup>mut</sup> were grown in LB at 37°C up to an OD<sub>600nm</sub> of 0.1 and the production of GreA was induced with 0.2mM of IPTG (+) or not induced (-) during 3 hours. Whole cell extracts were analyzed in a 12.5% SDS-PAGE stained with coomassie brilliant blue. Red arrow indicates the position of GreA.

The different mutants obtained were localized in both domains (**fig. 63**), the coiled-coil domain that would enter inside the secondary channel of the RNApol, and also in the globular domain, that would remain outside. It is also interesting to highlight that none of the mutants obtained are located in the described catalytic centre of GreA (D41 and E44). Somehow it seems that these two amino acids maybe are not responsible of the negative effect on the bacterial growth produced by overexpressing *greA*. Moreover, the fact that several mutations were localized in the globular domain, might suggest that it would be more important than previous thought for the functionality of GreA or it affinity for the RNApol.

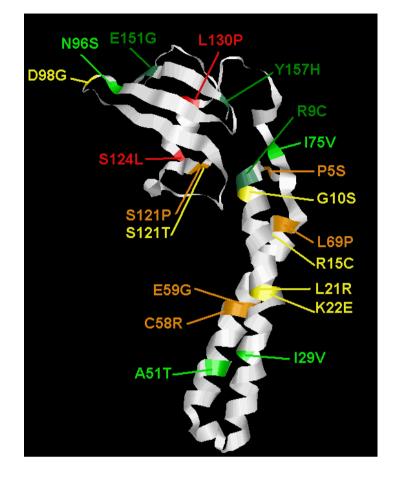
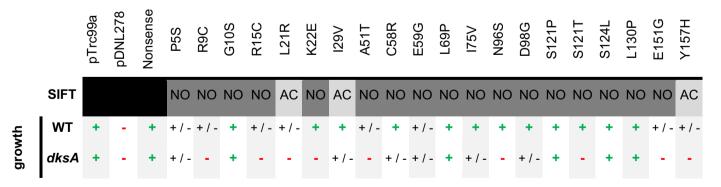




Figure 63: Distribution of the different mutations in GreA 3D structure.

To determine the effect of the different mutation in the function of *greA* the software (SIFT), a program that predicts whether amino acid substitutions affect the protein function, was used (Ng and Henikoff, 2003). As it is shown on the **table 7**, nearly all the mutations are predicted to be non-acceptable (NO), except for 3 mutations that are predicted as tolerable (AC).



**Table 7**: Prediction of the tolerance of the different mutations by SIFT software and the effect of overexpression of the different *greA* alleles on MG1655 (WT) and TE8114 (*dksA*) strains on LB plates supplemented with 0.2 mM IPTG (described in the text).

We hypothesize that these mutants are able to growth under overexpressing conditions because the mutations have effect on:

- The functionality of the GreA protein
- The ability to bind to the secondary channel of RNApol, either because affect:
  - Affinity to the secondary channel.
  - Ability to compete with other proteins that bind to the secondary channel of the RNApol.

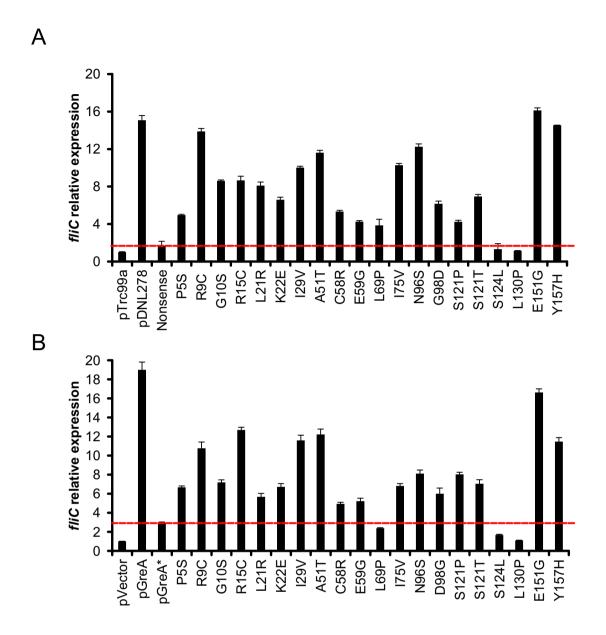
In order to know if the ability of these mutants to compete with DksA for the secondary channel is affected, the different plasmids pTrc-greA<sup>mut</sup> were transformed into MG1655 (WT) and TE8114 *dksA* (*dksA*) and plated on LB and LB IPTG 0.2 mM. The results shown in **table 7**, indicate the ability to grow, scored as follows:

- Positive (+), when in presence of IPTG there are colonies and its size was similar than in absence of IPTG.
- Negative (-), when in presence of IPTG no colonies were detected.
- Intermediate (+ / -), when in presence of IPTG there were colonies but its growth was affected, producing smaller colonies than without IPTG.

Those mutants that are positive in presence and absence of DksA, such as G10S, L69P, S121P, S124L and L130P, are mutants that either GreA is not active or it does not bind to the RNApol. By contra, those mutants that produce a negative effect on bacterial growth in absence of DksA but not to the same extent in the WT strain, such as R9C, R15C, L21R, K22E, A51T, N96S, S121T, E151G and Y157H would have a lower affinity to the RNApol or lower ability to compete with DksA.

To further elucidate the effect of the different mutations, two phenotypes associated to GreA were monitored: i) Antipause effect on *fliC* transcriptional expression and ii) Prototrophy recovery in *dksA* / ppGpp<sup>0</sup> strains.

These phenotypes would help us to predict the effect of the different mutations in the GreA protein and perhaps to identify relevant amino acids for the functionality and affinity of GreA.


## 4.5.1. Antipause effect on fliC

As previously described in section 4.3.1, GreA stimulates the expression of *fliC* during transcription elongation and its effect is higher in absence of DksA. To evaluate the effect of the different mutation on the functionality of GreA and its antipause activity we decided to use this phenotype.

In absence of DksA the expression of *fliC* increases (4-fold) compared with the WT strain, but in a *dksA greA* deficient strain the expression of *fliC* decreases, to the WT expression levels (Aberg *et al.*, 2009). To determine the activity of the different mutants, the strain deficient in *dksA* and *greA* with the *fliC* distal fusion (PRG18) was transformed with pTrc99a (Control), pDNL278 (GreA<sup>WT</sup>) and the 20 missense mutants (pTrc-GreA<sup>Mut</sup>). Moreover, the nonsense mutant was used as a control. The resulting strains were grown in LB at 37°C up to an OD<sub>600nm</sub> of 1.5 and the β-galactosidase activity was measured (**fig. 64A**). It was observed that GreA overexpression was not required to induce *fliC* expression. Therefore, the effect on *fliC* of the basal expression from these plasmids was tested in cultures not induced.

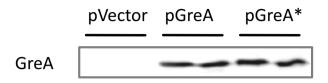
In absence of both factors (DksA and GreA) with the pTrc99a plasmid *fliC* expression is low (as previously shown in section 4.3). When GreA was introduced *in trans* (pDNL278) *fliC* expression increases (15-fold) compared with pTrc99a (**fig. 64A**). The effect of the different mutants was also determined.

The GreA<sup>Mut</sup> produce different effects on *fliC* expression levels indicating variations in their activity. If GreA<sup>Mut</sup> has similar antipause activity than GreA<sup>WT</sup>, we would expect high expression levels of *fliC*, but if the GreA<sup>Mut</sup> had lost the antipause activity we would expect low levels of *fliC* (as with pTrc99a). The nonsense mutant had the same activity than the strain with pTrc99a, suggesting that the presence of not functional proteins (or truncated in this case) would not affect the expression of *fliC*, validating our experimental model. The antipause activity could be expressed as a percentage, considering the *fliC* expression detected for the strain carrying the pDNL278 (GreA<sup>WT</sup>) as 100% antipause activity and calculating the corresponding percentage shown by the strains carrying the different GreA<sup>Mut</sup>.



**Figure 64**: Effect of the different GreA<sup>Mut</sup> on the expression of *fliC*. A) Expression of *fliC* in cultures of the strain PRG18 (*dksA greA fliC::lacZ* distal) carrying the plasmids pTrc99a (Control), pDNL278 (GreA<sup>WT</sup>) and the 20 different pTrc-GreA<sup>Mut</sup>. Cultures were grown in LB at 37°C up to an OD<sub>600nm</sub> of 1.5. B) Expression of *fliC* in cultures of PRG18 carrying the plasmids pHM1883 (pVector), pHM1873 (pGreA), pHM1854 (pGreA\*) and the 20 different pHM-GreA<sup>Mut</sup>. Cultures were grown in LB at 37°C up to an OD<sub>600nm</sub> of 1.5. At OD<sub>600nm</sub> of 0.1 the cultures were induced with 0.1 mM of IPTG. The *fliC* expression of the different strains was expressed in relative values, being 1.0 the value in Miller units for pTrc99a (A) or pVector (B). Average and standard deviation of β-galactosidase activity determination from three independent cultures are shown. The red line indicates the threshold where it is considered that the mutants had lost the antipause activity.

While several mutants had intermediate antipause activities (**fig. 64A**), the mutants S124L and L130P, localized in the  $\alpha$ -helix of the globular domain (**fig. 63**), produced the same levels of *fliC* expression than pTrc99a, with an antipause activity of the 2.22% and 1.01% respectively. These data suggest


that the  $\alpha$ -helix of the globular domain is essential for the antipause activity of GreA. Surprisingly, the mutants R9C, E151G and Y157H produce similar *fliC* expression levels as GreA<sup>WT</sup> (pDNL278), and therefore they have barely normal antipause activities (91.61%, 107.52% and 96.16% respectively). Although the mutants R9C and E151G were predicted not acceptable by SIFT, they have normal antipause activities, suggesting that while the software could give a prediction, it may not be accurate.

In Vinella *et al.*, (2012), the gene *greA*, as well as the allele *greA* D41A E44Y, was cloned in a low-copy number plasmid (pHM1883) under a  $P_{tac}$  promoter in order to overexpress *greA*, but without producing the negative effect on the bacterial growth observed. Therefore we decided to use the same system to observe the effect of the overexpression of our mutants on the expression of *fliC* (**fig. 64B**). The different *greA* alleles were cloned into pHM1883 (referred as pVector) and the resulting plasmids were transformed into the strain pRG18 (*dksA greA fliC::lacZ* distal) as well as the plasmid pHM1883 (pVector), pHM1873 (containing *greA*, referred as pGreA) and pHM1854 (containing *greA* D41A E44Y, referred as pGreA\*). The resulting strains were grown in LB at 37°C up to an OD<sub>600nm</sub> of 0.1 and were induced with 0.1 mM of IPTG, continued growing up to an OD<sub>600nm</sub> of 1.5 and the β-galactosidase activity was measured (**fig. 64B**).

As observed with the pTrc99a system (**fig. 64A**), the expression of *fliC* in presence of pVector is low, while in presence of pGreA it suffers a 19-fold increase (**fig. 64B**). The allele GreA D41A E44Y (pGreA\*), described to have no antipause activity, shows a similar effect on *fliC* expression as observed by pVector, highlighting that the antipause effect is required for the expression of *fliC*, as suggested in the section 4.3.3.

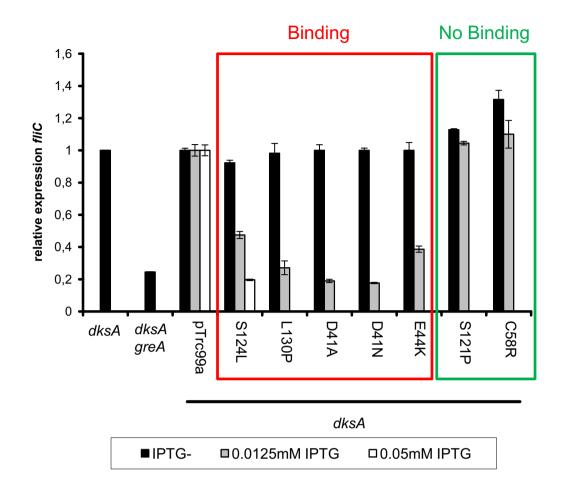
In order to determine that the effect of pGreA\* on *fliC* expression is due to the antipause activity, and it is not a problem with the overexpression system, the amount of GreA D41A E44Y was monitored. The strain AAG101 (*dksA greA*) with the plasmids pVector, pGreA and pGreA\* were grown in LB at 37°C up to an OD<sub>600nm</sub> of 0.1 and *greA* expression was induced with 0.1 mM of IPTG, and

growth was followed up to an  $OD_{600nm}$  of 1.5. Whole cell extracts were analyzed by Western blot using monoclonal antibodies against GreA (**fig. 65**).



**Figure 65**: The strain AAG101 (*dksA greA*) carrying either pHM1883 (pVector), pHM1873 (pGreA) or pHM1854 (pGreA\*) plasmid were grown in LB at 37°C up to an  $OD_{600nm}$  of 0.1, overexpression was induced with 0.1 mM of IPTG, and growth was followed up to an  $OD_{600nm}$  of 1.5. Whole cell extracts were analyzed in a 13.5% SDS-PAGE, transferred onto PVDF membrane, and immunodetection performed as described in section X with monoclonal antibodies against GreA. The chemiluminiscence signal was visualized using a Chemidoc from Bio-Rad.

In a *dksAgreA* strain with the pVector plasmid, no GreA was detected as expected. In the whole cell extract from the strain carrying the plasmids pGreA and pGreA\*, the same amount of GreA was detected, suggesting that the differences observed on *fliC* expression were due GreA activity and not to its quantity (**fig. 65**).


When the *fliC* expression of the different GreA<sup>Mut</sup>, using both overexpression systems (**fig. 64A** and **B**) was compared, similar results were observed. However, the mutant R15C increases the *fliC* expression with the pHM system (**fig. 64B**) showing that it requires its overexpression to increase the expression of *fliC*, suggesting that its affinity for the secondary channel of the RNApol could be affected. However it has been observed that the overexpression of GreA\* produces a negative effect on bacterial growth (even with the low-copy number plasmid), suggesting that the antipause activity is not required for the negative effect.

Some of the mutants able to grow in either presence or absence of DksA, +/+ in **table 7**, such as L69P, S124L and L130P show lowest antipause activities, with a *fliC* expression below the threshold (**fig. 64B**) indicating that the lack of GreA activity allow bacterial growth. G10S and S121P also are able to grow in presence and absence of DksA, but their antipause activity is higher than the others. Considering that the results were obtained under overexpressing conditions, increasing the relative amount of the complex RNApol-GreA, it might

suggest that these mutants, G10S and S121P, had its affinity for the RNApol affected. If that would be the case, GreAG10S and GreAS121P could not efficiently interact with the RNApol, even in absence of DksA, not causing a deleterious effect on growth. However, as indicated with pTrc99a derivative plasmids (**fig. 64A**), the mutants with an intermediate resistance in presence of DksA but sensitive in absence of DksA (+/-/- in **table 7**) had the highest antipause activity, suggesting that perhaps its ability to compete with DksA might be affected.

We performed an experimental approach to determine the ability of binding of some of the mutants. Our approach is based in the fact that in a *dksA* mutant, the expression of *fliC* increases due the binding of GreA into the secondary channel of the RNApol. If the GreA<sup>Mut</sup> are able to bind to the RNApol but are not functional, under overexpression conditions, it would compete with the chromosomal GreA for binding the RNApol, and as a consequence would produce a decrease in *fliC* expression. However, if the GreA<sup>Mut</sup> is not able to bind to the secondary channel, under overexpression conditions it could not compete with the chromosomal GreA and the expression conditions it could not vary.

As we used the pTrc99a derivative plasmids, the overexpression of some of the mutants would produce a negative effect on the bacterial growth. Only the mutants C58R, S121P, S124L and L130P were tested. As a control the mutants D41A, D41N and E44K were also tested as a control of a protein without antipause activity but able to bind to the secondary channel of the RNApol (Opalka *et al.*, 2003; Laptenko *et al.*, 2003). To do that, the strain PRG17 (*dksA*, distal fusion) carrying the plasmid pTrc99a and the mentioned pTrc-GreA<sup>Mut</sup> were grown in LB supplemented with either 0 or 0.0125 mM of IPTG. For the mutant S124L an additional concentration of IPTG was used, 0.05 mM. Cultures were grown at 37°C up to an OD<sub>600nm</sub> of 1.5 and *fliC* expression was monitored (**fig. 66**). As a control, *fliC* expression was also monitored form the strain PRG17 (*dksA*) and PRG18 (*dksA greA*).



**Figure 66**: The strain PRG17 (*dksA*, distal fusion) carrying the plasmid pTrc99a and pTrc-GreA<sup>Mut</sup>, with the indicated alleles were grown in LB supplemented with either 0, 0.0125 or 0.05 mM of IPTG as indicated. Cultures were grown at 37°C up to an OD<sub>600nm</sub> of 1.5 and the expression of *fliC* was monitored by β-galactosidase determination. The *fliC* expression of the different strains was expressed in relative values, being 1.0 the value in Miller units for the strain PRG17 (*dksA*). Average and standard deviation of β-galactosidase activity determination from three independent cultures are shown.

The overexpression of D41A, D41N and E44K *greA* alleles in a *dksA* mutant strain (**fig. 66**), proteins without antipause activity that bind to the RNApol, produces a decrease of the expression of *fliC* similar to the observed in a *dksAgreA* mutant which presumably corroborate that the experimental approach might be useful to characterize the different GreA alleles. The overexpression of the mutant S124L and L130P also produces a decrease on the expression of *fliC*, suggesting that these mutants are able to bind to the RNApol but they are not functional. However, the overexpression of *fliC* suggesting that these mutants are not able to bind to the RNApol. This functional assay may be useful to determine possible alterations in the ability of GreA for the RNApol.

Unfortunately those experiments were not continued with the other mutants due to two main problems: i) some of the mutants had a deleterious effect in strains deficient in *dksA*, as the strain used for this study, and ii) the lack of a control, a protein able to bind into the secondary channel and being functional, that in this case it should be GreA and it is known that overexpressing *greA* produces a negative effect in bacterial growth.

## 4.5.2. Prototrophy recuperation in *dksA* / ppGpp<sup>0</sup> strains

The alarmone ppGpp is required for induction of genes coding for amino acid biosynthesis during stringent response (Cashel *et al.*, 1996; Magnusson *et al.*, 2005). Consequently ppGpp deficient strains (ppGpp<sup>0</sup>) are not able to grow in minimal media (M9 glucose) in absence of amino acids clearly indicating that are auxotrophic (H Xiao *et al.*, 1991; Vinella *et al.*, 2012). The DksA protein, defined as a cofactor of ppGpp, stimulates also the amino acid biosynthesis operons expression (Haugen *et al.*, 2008). DksA is also required for proper bacterial growth in minimal media without amino acids (Brown *et al.*, 2002). However, in a report by Vinella *et al.* (2012), it was discussed that the strain deficient in DksA instead of being auxotrophic, as the ppGpp<sup>0</sup> strain, it is able to grow after 72 hours at 37°C in minimal media and it was suggested to be slow-growing bradytroph. In this report it was also shown that the *greA* mutation completely abolished the growth of the *dksA* strain, being the double mutant *dksA greA* auxotrophic in minimal media M9.

Moreover, it has been shown that the overexpression of GreA, using the lowcopy number pHM system, is able to restore the prototrophy of the *dksA greA* deficient strain, but also of the *dksA* ppGpp<sup>0</sup> and the *dksA greA* ppGpp<sup>0</sup> strains, suggesting that GreA may promote expression from the amino acid biosynthesis genes under certain conditions. It was also described (Vinella *et al.*, 2012) that the overexpression of GreA D41A E44Y (GreA\*) is able to restore the prototrophy in a dksA ppGpp<sup>0</sup> deficient strain, suggesting that the antipause activity of GreA was not required for this phenotype. With these results the authors concluded that GreA is able to restore prototrophy by having somehow a role during transcription initiation (Vinella *et al.*, 2012). Therefore we decided to use this phenotype to determine the activity at transcription initiation of the different GreA<sup>Mut</sup> obtained.

First, the effect of overexpressing *greA* and *greA*\*, by using plasmid pHM1873 and pHM1854, was determined in the strains MG1655 (WT), TE8114 (*dksA*), CF11657 (*greA*) and AAG101 (*dksA greA*) on M9 glucose plates with and without IPTG (0.1 mM). The diameter was measured after 3-days incubation at 37°C (**table 8**).

| mm      |       | WT  | dksA | greA | dksA<br>greA |
|---------|-------|-----|------|------|--------------|
| pVector | -IPTG | 2   | 0    | 2,05 | 0            |
|         | +IPTG | 2   | 0    | 2,05 | 0            |
| pGreA   | -IPTG | 2   | 1    | 2    | 0,5          |
|         | +IPTG | 3,5 | 2,2  | 3    | 1,75         |
| pGreA*  | -IPTG | 3,5 | 1,2  | 2,8  | 0            |
|         | +IPTG | 0   | 0    | 0    | 0            |

**Table 8**: Effect of multicopy *greA* and *greA*<sup>\*</sup> on the colony size of bacterial growing on M9 plates. The strains MG1655 (WT), AAG93 (ppGpp<sup>0</sup>), TE8114 (*dksA*), CF11657 (*greA*) and AAG101 (*dksA greA*) carrying the plasmid pHM1883 (pVector), pHM1873 (pGreA) and pHM1854 (pGreA<sup>\*</sup>) were grown on LB plates supplemented with 25  $\mu$ g/ml spectinomycin. Cell suspensions in 10 mM MgSO<sub>4</sub> were plated on M9 glucose plates with (+) of without (-) IPTG (0.1 mM). Colony diameter was measured after 3-day incubation at 37°C on plates containing less than 100 colonies.

As described by Vinella *et al.* (2012), the overexpression of *greA* is able to restore the prototrophy in the mutant strain *dksA greA* (**table 8**). Surprisingly, it is observed that the *dksA* deficient strain was auxotrophic on M9 instead of bradytrophic as described by Vinella *et al.* (2012). However the overexpression of GreA is able to restore the prototrophy (**table 8**). Deficient strain in GreA did not show any growth alteration on M9 glucose plates. When GreA\* was overexpressed an unexpected negative effect was observed. In presence and absence of GreA (WT and *greA* strain) no colonies were observed in presence of IPTG, suggesting that the overexpression of the GreA\* would not allow the growth on M9 plates, or it is toxic. In absence of DksA, the presence of pGreA\* (without IPTG) is able to restore the prototrophy, but the addition of IPTG, as observed in a WT and *greA* strains, inhibits the bacterial growth. Those results

might indicate that overexpression of GreA\* is able to exchange from RNApol-GreA<sup>WT</sup> to RNApol-GreA\* and under these conditions, growth cannot be restored. Our results clearly indicate that antipausing activity is required for recovering prototrophy by the *dksA* strain. Consistent with this, in absence of *greA* and *dksA*, pGreA\* is not able to recover the auxotrophy caused, as could be observed in **table 8**. Again, our results differs form those of Vinella *et al.* (2012). Our data clearly indicate that to restore auxotrophy in a *dksA* deficient strain, it is required the antipause activity since the *dksAgreA* strain can grow on M9 plates when pGreA is present but not with pGreA\*. These discrepancies among the results observed between Vinella *et al.* (2012) and our data, is only possible to be explained by differences in the preparation of the M9 plates, since the pGreA\* plasmid is the same and the apparently also the bacterial strain.

The ability of the different GreA<sup>Mut</sup> to restore the prototrophy at different backgrounds was tested. The strain MG1655 (WT), TE8114 (*dksA*) and AAG101 (*dksA greA*) carrying pHM1883 (pVector), pHM1873 (pGreA), pHM1854 (pGreA\*) and the different pHM-greA<sup>Mut</sup> were grown on M9 glucose plates with and without IPTG (0.1 mM). The colony diameter was measured after 3-day incubations at 37°C. The average and standard deviation of the diameter of 10 colonies of two independent cultures is shown in the **table 9**. Also the antipause activity, measured according the *fliC* expression (**fig. 64**), is indicated.

It is observed that the overexpression of the different GreA<sup>Mut</sup> in the WT strain on M9 glucose plates did not produce any effect on the growth (**table 9**). Surprisingly, when the WT strain carrying pGreA\* was plated on M9 with IPTG a decrease of the viability of the strain was observed. This result, in agreement with our results (**table 8**), indicate that GreA antipause activity is important for prototrophy. Moreover, is suggest that somehow the overexpression of our GreA<sup>Mut</sup> is not as toxic as GreA\* or they kept enough antipause activity to survive on M9 glucose media.

The mutants S124L and L130P, mutants with low antipause activity (2.22% and 1.01%), were not able to restore the prototrophy in both *dksA* and *dksA* greA

strains (**table 9**, in orange), suggesting that had lost the activity associated to GreA. The fact that the phenotype is observed in absence of *dksA*, but not in WT, might indicate that those mutants although able to bind to RNApol, the affinity might be affected or that overexpression does not reach similar levels of protein that with GreA\*.

| mn        | ı       | pVector    | pGreA | pGreA* | P5S         | R9C         | G10S        | R15C        | L21R        | K22E        | 129V            | A51T        | C58R        | E59G        | L69P   | 175V           | N96S        | D98G            | S121P              | S121T       | S124L | L130P | E151G             | Y157H       |
|-----------|---------|------------|-------|--------|-------------|-------------|-------------|-------------|-------------|-------------|-----------------|-------------|-------------|-------------|--------|----------------|-------------|-----------------|--------------------|-------------|-------|-------|-------------------|-------------|
| Antipause | acuvity | pu         | pu    | pu     | 28,05%      | 91,61%      | 54,06%      | 54,41%      | 50,48%      | 39,68%      | 64,11%          | 75,45%      | 30,84%      | 23,11%      | 20,35% | 65,90%         | 79,91%      | 36,64%          | 22,96%             | 42,17%      | 2,22% | 1,01% | 107,52%           | 96,16%      |
| WT        | -       | 2,05 ± 0,1 | 2,00  | 2,00   | 2,00        | 2,00        | 2,00        | 2,00        | 2,00        | 2,00        | 2,00            | 2,00        | 2,00        | 2,00        | 2,00   | 2,00           | 2,00        | 2,00            | 2,00               | 2,00        | 2,00  | 2,00  | 2,00              | 2,00        |
| >         | +       | 2,00 ± 0,1 | 2,00  | 0      | 2,00        | 2,00        | 2,00        | 2,00        | 2,00        | 2,00        | 2,00            | 2,00        | 2,00        | 2,00        | 2,00   | 2,00           | 2,00        | 2,00            | 2,00               | 2,00        | 2,00  | 2,00  | 2,00              | 2,00        |
| A<br>sA   | -       | 0          | 1.00  | 1.00   | 0           | 0           | 0,1±0       | 0           | 0           | 0           | 0,2±0           | 0           | 0           | 0           | 0      | 0              | 0,2±0       | $0,35 \pm 0,15$ | 0                  | 0           | 0     | 0     | $0, 19 \pm 0, 03$ | 0,1±0       |
| dksA      | +       | 0          | 2,00  | 0      | 0           | 1,2 ± 0     | 0,77 ± 0,13 | 1,45 ± 0,11 | $0,5 \pm 0$ | 0,46 ± 0,16 | $1,5 \pm 0$     | 0,45 ± 0,15 | 0,2±0       | 0           | 0      | 1 ± 0          | $1,5 \pm 0$ | 0,85 ± 0,15     | 0                  | 0,36 ± 0,11 | 0     | 0     | 1,34 ± 0,06       | 1,5±0       |
| greA      | -       | 0          | 0.5   | 0      | 0,55±0,09   | 1,68 ± 0,17 | 1,45 ± 0,08 | 1,43 ± 0,13 | 0           | 0,45 ± 0,13 | $1,5 \pm 0,05$  | 0           | 0           | 0           | 0      | 1,37 ± 0,09    | 0,48 ± 0,2  | 0               | 0                  | 0           | 0     | 0     | 1,55 ± 0,09       | 0,59 ± 0,11 |
| dksA greA | +       | 0          | 1.75  | 0      | 1,70 ± 0,06 | 1,48 ± 0,04 | 1,57 ± 0,11 | 1,33 ± 0,08 | 1,85 ± 0,18 | 1,93 ± 0,17 | $1,51 \pm 0,03$ | 1,95 ± 0,07 | 1,99 ± 0,15 | 1,87 ± 0,14 | 0      | $1,5 \pm 0,06$ | 1,54 ± 0,12 | 1,51 ± 0,02     | <b>1,81 ± 0,12</b> | 2,03 ± 0,09 | 0     | 0     | 1 ± 0,07          | 1,53 ± 0,07 |

**Table 9**: Effect in the colony size of the different pHM-greA<sup>Mut</sup> on strains MG1655 (WT), TE8114 (*dksA*), AAG101 (*dksA greA*), on M9 plates. The strains were grown on LB plates supplemented with 25 µg/ml spectinomycin. Bacterial cell suspensions in 10 mM MgSO<sub>4</sub> were plated on M9 glucose plates with (+) of without (-) IPTG 0.1mM. Colony diameters were measured after 3-day incubations at 37°C on plates containing less than 100 colonies. Average and standard deviation of the diameter of 10 colonies of two independent cultures is shown. The antipause activity (measured according the *fliC* expression) is indicated. The antipause activity, measured according the *fliC* expression (**fig. 64**), is indicated. Colours are defined in the text.

As shown in **figure 66** these mutants are seem to be able to bind to the RNApol, suggesting that its functionality is affected. Moreover, these mutants had lost any negative effect on the bacterial growth in presence or absence of DksA (**table 7**). Due both mutants were located in the  $\alpha$ -helix of the globular domain (**fig. 68A**), we could suggest that this  $\alpha$ -helix is essential for GreA functionality.

As previously observed in **figure 64A**, the antipause activity of the mutants R9C, E151G and Y157H was similar to GreA<sup>WT</sup> (a 91.61%, 107.52% and 96.16% respectively). Moreover, they were able to restore prototrophy of the *dksAgreA* strain as did GreA<sup>WT</sup>, and in a DksA deficient strain when they were overexpressed (**table 9**, in green). Considering that these mutant had an intermediate resistance when were overexpressed in the WT strain, and a negative effect in the *dksA* strain (**table 7**), it might be suggested that these mutants could have affected the ability and to compete with DksA to interact with the secondary channel.

The mutants L21R, A51T, C58R, E59G, D98G, S121P and S121T were able to restore the prototrophy in a *dksA greA* mutant in presence of IPTG but not in its absence (**table 9**, in blue), suggesting that its affinity for the secondary channel of the RNApol could be importantly affected. Moreover in a *dksA* deficient strain the mutant E59G and S121P are not able to restore the prototrophy even under overexpression conditions, suggesting that these GreA alleles are not able to interact with the secondary channel when chromosomic *greA* is present. The mutants L21R, A51T, C58R and S121L had low ability to restore the prototrophy of the *dksA* deficient strain under overexpression conditions.

While the mutation I75V is a conservative mutation (isoleucina and valine are both hydrophobic amino acids with a similar structure), it had lost a 34.1% of its antipause activity (**fig. 64A**). It was able to recover the prototrophy of the *dksA greA* strain (in presence and absence of IPTG) but only it was able to recover the prototrophy of the *dksA* strain in presence of IPTG (**table 9**).

### 4.5.3. Possible effect of the different mutations on the structure of GreA

Based in the existing three-dimensional models and the structure described for the interaction of Gfh1 with the RNApol of *Thermus thermophilus*, we have performed a highly speculative model of the effect of the different mutations on the structure of GreA.



**Figure 68**: Distribution of some of the mutations identified in the 3D structure of GreA. A) Distribution of the hydrophobic amino acids I75, P5 and F88 (in orange) and the amino acid L130 and S124 (in red) in the structure of GreA. B) Distribution of amino acids K22, R26 and E66 in the coiled-coil domain of GreA.

There are several mutated amino acids (L21R, I29V, A51T, C58R, N96S and Y157H) with a predicted low solvent accessibility (Rost *et al.*, 2004), indicating that are buried into the structure and are considered the core of the protein. Changes on protein core amino acids could cause structural changes. Structural changes are also expected when mutations causing alterations of small amino acids, such as glycine (G10S, E59G, and E151G), are involved, since any other amino acid will not fit in a place of a glycine. Moreover, it is considered (Nilsson *et al.*, 1998) that introducing a proline (P) in a  $\alpha$ -helix or  $\beta$ -barrel, disrupts the structure since proline is a cyclic amino acid that causes rigid structures. For this reason, L69P, S121P and L130P mutants are also presumably causing structural changes. The amino acid S124 forms part of an  $\alpha$ -helix in the globular domain and changing it for a leucine (S124L) would not fit on this helix (**fig. 68A**). As mentioned above, the disruption of this  $\alpha$ -helix in the

globular domain would produce important affectations in the functionality of GreA.

The amino acid P5, I75 and F88 forms a hydrophobic interaction, which presumably might affect the distance between the globular and coiled-coil domain (**fig. 68A**). The mutants P5S and I75V might affect this hydrophobic interaction and produce changes in the orientation of the globular domain. As previously described in 1.2.4, Gfh1 suffers conformational changes in a pH-dependent manner that produces a re-orientation of the globular domain allowing its interaction with the secondary channel (Laptenko *et al.*, 2006). As previously mentioned, the mutation I75V, being a conservative mutation, had lost a 34.1% of its antipause activity (**fig. 64A**) and it was able to recover the prototrophy of the *dksA greA* strain, in presence and absence of IPTG. However, it was able to recover the prototrophy of the globular **9**), suggesting that changes in this amino acid, may change the orientation of the globular domain, decreasing its affinity for the RNApol.

The amino acid K22 (basic) interacts with E66 (acid). In the mutant K22E the basic amino acid has been exchanged by an acid, that may produce a repulsion of E66 and an interaction with R26 (another basic residue), producing a twist on the  $\alpha$ -helix (**fig. 68B**). According to its antipause activity (39.68%) and ability to restore prototrophy in the mutant strain *dksA greA* but in the *dksA* strain only is able to restore it in presence of IPTG, suggesting that this mutation would produce a reduction of the affinity for the secondary channel of the RNApol.

All these data shows that GreA is a very flexible protein. Although many mutations are theoretically structural and would cause important alterations in the structure, the resulting proteins are still active. Moreover, some of these mutations has been predicted as non acceptable by SIFT software, highlighting the plasticity or flexibility of this protein. Somehow this flexibility might indicate the presence of possible conformational changes. Possible conformational changes in GreA is consistent with our results indicating that the effect of GreA on *fliC* expression is osmolarity dependent although osmolarity does not cause any alteration on *greA* transcription (**fig. 31D**) or GreA cellular content (**fig. 55**).

Our study on the distribution of synonymous and non synonymous mutations in the different domains of GreA indicates that conformation may play a very pivotal role in GreA functionality.

We have defined that some mutants had partially lost antipause activity, but it does not mean that these amino acids are required for the antipause activity *per se*. These mutations would produce changes on the orientation of the amino acids D41 and E44, defined as responsible of the antipause effect, avoiding its proper binding with the cMG1 of the active centre of the RNApol. Also, as previously suggested, the lost of antipause activity, would be also associated with a non efficient binding of GreA into the secondary channel of the RNApol.

Further studies must be performed to determine the exact effect of the different mutations on the functionality or affinity of GreA. However, this study gives a initial approach of important structures of the protein GreA that has not been noticed before, as the  $\alpha$ -helix on the globular domain.

# **<u>4.6. Phylogenetic analysis of the distribution of factors that</u>** <u>bind to the secondary channel of the RNApol</u>

Escherichia coli contains several proteins that bind into the secondary channel of the RNApol: GreA, GreB, DksA and Rnk (Sergei Borukhov et al., 1993; Perederina et al., 2004; Lamour et al., 2008). In other species, other proteins could interact with the secondary channel of the RNApol such as Gfh1 in Thermus aquaticus (Lamour et al., 2006) or DksA2 in Pseudomonas aeruginosa, similar to DksA but without C4 zinc-finger, (Furman, Biswas, et al., 2013) have been described. Moreover, genetic elements such as plasmids and bacteriophages may carry also genes coding for secondary channel interacting proteins. It has been described that the conjugative F plasmid of E. coli and the pSLT plasmid of Salmonella enterica, code for TraR, protein able to bind into the secondary channel of the RNApol (Blankschien et al., 2009). Several proteins homologous to TraR have been indentified in bacteriophages and prophages, such as Ybil in *E. coli*. These data suggest that several genetic elements had acquired genes coding for proteins that could interact with the secondary channel of the RNApol in order to modify the gene expression pattern of the recipient cells.

In order to analyse the variability between the proteins that bind into the secondary channel of the RNApol, we have performed a phylogenetic study of those factors, trying to determine the origins of this diversity as well as the distribution of these proteins in bacteria. Finally we decided to study the nucleotidic variability of GreA, in order to determine if the presence of other proteins that bind into the secondary channel of the RNApol could produce any evolutive pressure over GreA structure.

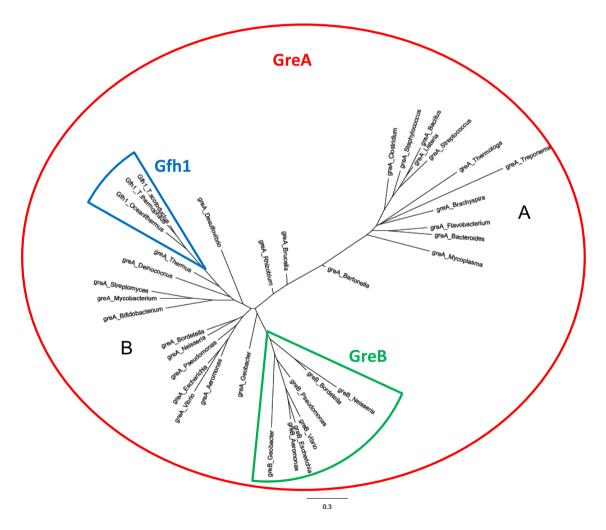
Among the factors described to bind to the secondary channel, two main families could be distinguished depending on its structure: those proteins similar to DksA and those similar to GreA. On one hand, the DksA family contains proteins formed by several  $\alpha$ -helixes divided into a globular domain, containing the N and C-terminal regions and the coiled-coil domain. In the globular domain, DksA contains a C4 zinc-finger motif, where a Zn<sup>+2</sup> binds 4 cysteins (Perederina *et al.*, 2004). Several proteins from bacteriophages, such as P2p38 of the P2

phage, or conjugative plasmids, such as TraR of pSLT or F plasmid, contain the C4 zinc-finger motif and a structure similar to DksA. Moreover it has been described another set of proteins that, although share a similar structure to DksA, they lack the C4 zinc-finger motif, such as PA5536 of *Pseudomonas aeruginosa*, also known as DksA2 (Blaby-Haas *et al.*, 2011).

On the other hand, the GreA family contains, apart from GreA, GreB, Gfh1 and Rnk. The proteins of this family had a highly similar structure among them, with a N-terminal coiled-coil domain similar to DksA and a C-terminal globular domain formed by a  $\beta$ -barrel and an  $\alpha$ -helix structure. Moreover none of the members of the GreA family contains C4-zinc finger.

Both families had a similar spatial organization but their protein sequences share no homology, as could be observed in **table 10** where DksA share low identity and similarity with GreA.

|      | GreA          | GreB          | Gfh1          | Rnk          | DksA |
|------|---------------|---------------|---------------|--------------|------|
| GreA |               |               |               |              |      |
| GreB | 34.4% (56.9%) |               |               |              |      |
| Gfh1 | 23.6% (47.2%) | 25.9% (45.1%) |               |              |      |
| Rnk  | 13.6% (25.4%) | 11.9% (23.8%) | 18.2% (29.4%) |              |      |
| DksA | 7.2% (24.5%)  | 8.4% (23.5%)  | 8.5% (20.6%)  | 8.4% (25.0%) |      |


**Table 10**: Identity and Similarity (indicated in parentheses) between the protein sequences of GreA, GreB, Rnk of *E. coli* and Gfh1 of *Thermus aquaticus*, using the software developed by Stothard, (2000).

# 4.6.1. Study of the GreA family

GreA and GreB are really similar proteins, not only in amino acidic sequence, sharing over 55% of similarity (**table 10**), but also in structure and function (Sergei Borukhov *et al.*, 1993; Stebbins *et al.*, 1995; Kulish *et al.*, 2000). Something similar has been observed for Gfh1 of *Thermus aquaticus* that has been described to be able to bind to the RNApol (Lamour *et al.*, 2006; Tagami *et al.*, 2010). The amino acid sequences of Gfh1 with GreA and GreB was also compared (**table 10**) and the percentages are quite similar to those for GreA and GreB. But comparing the protein Rnk with the other family members, low

similarity and identity values were observed between them (**table 10**). In fact, it has similar values as observed for DksA. However it has been described that Rnk has a similar structure to GreA and GreB, as well as ability to bind to the RNApol (Lamour *et al.*, 2008), it seems that Rnk had suffered a higher evolution or it is not phylogenetically related to GreA, forming its own family of factors.

To determine the relation between GreA, GreB and Gfh1, a ML phylogenetic tree with the sequences of *greA*, *greB* and *gfh1* was performed. The nucleotide sequences of *greA*, *greB* and *gfh1* of several species distributed in the different bacterial phyla, 27 sequences of *greA*, 7 of *greB*, and 3 of *gfh1* were used (**fig.69**). The Maximum Likelihood (ML) tree was constructed as described in section 3.11.



**Figure 69**: Radial unrooted phylogenetic tree of the gene *greA* (27 sequences of species that contains GreA), *greB* (7 sequences) and *gfh1* (3 sequences).

It is expected that if there is no relation between the different genes, *greA*, *greB* and *gfh1*, separated clades for long branches would be observed. But if they are related, the branches between the different proteins would be shorter. In the **figure 69** two main clades are observed: a first clade (A) with *greA* of *Firmicutes*, *Bacteriodetes*, and *Tenericutes*; and a second clade (B) with *greA* of *Proteobacteria*, *Deinococcus-Thermus* and *Actinobacteria*, as well as *greB* and *gfh1*. Interestingly, nearly all the *greA* sequences of species that only contains GreA (except *Actinobacteria*) are located in the clade A, while the *greA* sequences of the species that contains more proteins that bind into the secondary channel of the RNApol are located in the clade B. These data suggest that the presence of other proteins that could compete with GreA for binding into the secondary channel of the RNApol, such as GreB or Gfh1, might promote some evolutive pressure on *greA*, evolving in a different way that it would do without competition (discussed more in detail below).

The sequences of *greB* and *gfh1* form a defined clade, respectively, with a long branch and a sudden blooming. This clade structure is typical from duplication events as could be observed in different examples (Howarth and Donoghue, 2006; Warren *et al.*, 2008; Braasch and Salzburger, 2009; Atkinson *et al.*, 2011). Interestingly, the sequences of *greB* are related with the *greA gene* of *Geobacter bemidjiensis*; and the sequences of *gfh1* are related with the *greA gene* of *Geobacter bemidjiensis*; and the sequences of *greA*, probably as a response to different cell necessities or environmental stress. Remarkably, the branches that separate *greB* and *gfh1* from *greA* are smaller than the branch that separates the A clade from the B, suggesting that these duplications are quite recent.

Focussing on GreB, it was observed that only *Proteobacteria* contains GreB, suggesting that it would appear after the division of this phyla from the others. However, not all the members of *Proteobacteria* contain GreB. GreB is not present in *Bartonella*, *Brucella* and *Desulfovibrio*. These data let us to propose two different hypotheses to explain this distribution of GreB among *Proteobacteria* (**fig. 70**).

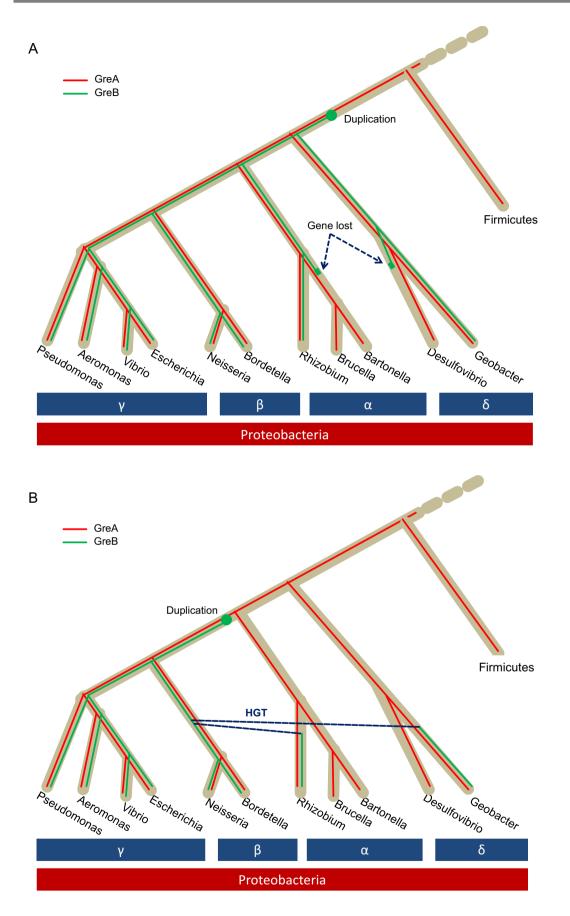
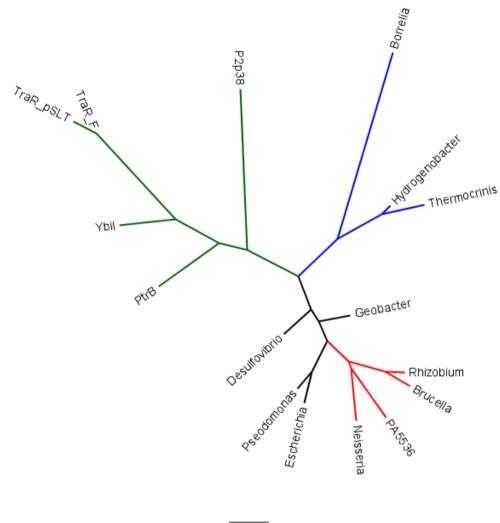



Figure 70: Two possible models of how GreB appeared among the *Proteobacteria* genome.

We may suggest that the duplication event that formed GreB took place after separation of Proteobacteria from other phyla, such as *Firmicutes*. After that, it took place a gene lost process in *Desulfovibrio* and in the common ancestor of *Bartonella* and *Brucella* (**fig. 70A**). Another possible explanation could be that the duplication event that formed GreB took place after separation of  $\alpha$  and  $\gamma\beta$  ancestor. *Rhizobium* and *Geobacter*, acquired GreB by HGT events (**fig. 70B**).

Taking in account that HGT events are less common than gene lost (Mira *et al.*, 2001), and that there are not clear evidences of HGT events related to GreB, it seems more reasonable to accept the first hypothesis (**fig. 70A**). Moreover, as could be observed on **figure 69**, all GreB sequences analyzed are highly related with GreA of *Geobacter*, giving support to our hypothesis.


# 4.6.2. Study of the DksA family

As previously mentioned, the DksA family contains several proteins from bacteriophages, such as P2p38; or conjugative plasmids, such as TraR, as well as other proteins like Ybil or PtrB in pseudomonas that contain the C4 zinc-finger motif. Also this family contains a set of proteins without the C4 zinc-finger, such as DksA2 (PA5536).

When distributing the different members of the DksA family (**fig. 71**) in a ML phylogenetical tree, it could be observed that those sequences from genes coded in mobile elements, such as plasmids (TraR) or bacteriophages (P2p38), as well as *ptrB* and *ybil*, forms a clade separated from the rest of sequences,(**fig. 71**, in green). The proteins coded for these genes are smaller than DksA, and are composed by  $\alpha$ -helices and a C4 zinc-finger domain.

A second clade containing the genes that code for DksA and DksA2 genes was detected (**fig. 71**, in black and red, respectively). The genes that code for DksA2 forms a clade (**fig. 71**, in red) that emerges from the clade that contains both factors, suggesting that DksA2 evolved from DksA by substitution of two cysteins from the 4 needed to bind  $Zn^{+2}$ .

A third clade (**fig. 71**, in blue) was observed, containing a DksA-like protein of *Hydrogenobacter thermophilus, Thermocrinis albus* (both sequences from the phyla Aquificae) and *Borrelia garinii* (from the phyla *Spirochaetes*).



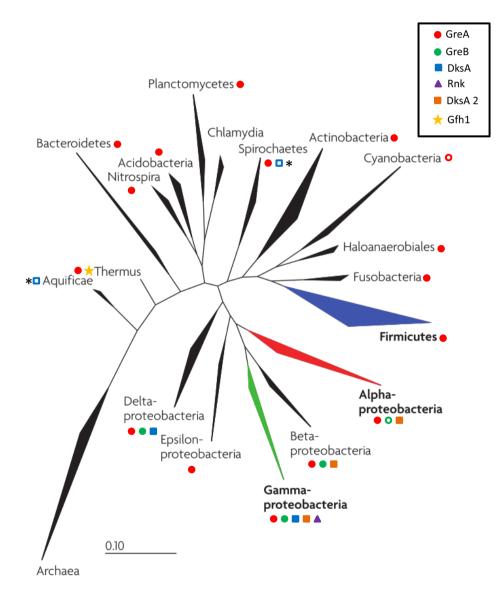
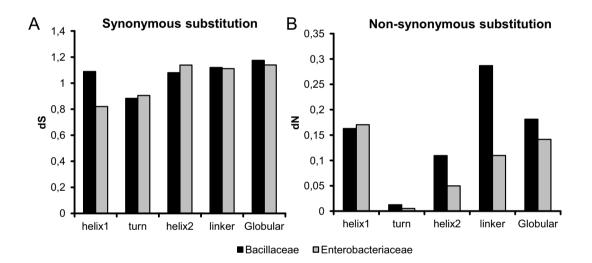

0.3

Figure 71: Phylogenetical ML tree of the different genes of the DksA family.

This DksA-like protein contains the C4 zinc-finger, but it is 30 amino acids smaller than the DksA of *E. coli*. The DksA-like of *H. thermophilus* has an identity of 27.64% and a similarity of 40.53% respect to the DksA of *E. coli* (the DksA-like protein of *H. thermophilus* and *T. albus* are highly homologous, with an identity of 76.86% and a similarity of 85.95%). Studying in detail the genomic contexts of this protein in *T. albus*, it was observed that the DksA-like protein is coded in a 32Kb-sequence flanked by two truncated genes, suggesting that could be encoded in a mobile element or a prophage. Comparing the DksA-like protein of *B. garinii* with DksA of *E. coli*, low identity and similarity was detected (18.54% and 34.44% respectively) These data suggest that the DksA-like protein detected in *B. garinii* as well as in *T. albus* and *H. thermophilus* is homolog to *E. coli* DksA but they cannot be considered as orthologs.

# 4.6.3. Distribution of the different factors that bind into the secondary channel of the RNApol in bacteria

It has been shown that there is a huge diversity of factors that bind the secondary channel of the RNApol among bacteria. Therefore, it was decided to determine its distribution in bacteria. For this purpose, the presence or absence of the members of either GreA or DksA family was determined by Blast of the protein sequence in the different phyla. The presence of these factors is shown over a phylogenetic tree of bacteria (**fig. 4**). The distribution of proteins presents on bacteriophages or plasmids (such as TraR) were not taken in consideration.




**Figure 72**: Distribution of the different factors that bind to the secondary channel of the RNApol over the phylogenetic tree of eubacteria adapted from Kearns, 2010. Open symbols mean than the factor is not present all the members of the phyla. The open square with an \* correspond to DksA-like proteins.

When the presence or absence of the different proteins that bind to the secondary channel of the RNApol (fig. 72) was determined, it was shown that GreA is widely spread among bacteria – present in all phyla except Aquificae, Chlamydia and some Cyanobacteria. It has been observed the presence of GreA in some species of Cyanobacteria, such as Mastigocoleus testarum or Scytonema millei, but not in other species, such as Nostoc punctiforme or Cyanothece sp. We could theorize that GreA was present in all bacteria and then these phyla suffered a loss of GreA. Interestingly, GreA is nearly the only protein described to bind to the secondary channel of RNApol in most bacteria, except in proteobacteria, where a huge range of proteins that binds to the RNApol has been described. These data let us propose that GreA is an ancestral gene, and genes coding for other proteins interacting with the secondary channel appeared by duplication or convergent evolution as a response to several conditions or stresses. An example of this evolution is Gfh1 of the Deinococcus-Thermus phyla, a protein similar to GreA with capacity to suffer conformational changes by sensing differences in the pH of the medium (as previously discussed in 1.2.4). Gfh1 appears in this phyla, as well as GreB appears in proteobacteria, by gene duplication, as previously discussed.

#### 4.6.4. Phylogenetic analysis of the structure of GreA

As discussed above, the competition of GreA with the different factors that bind into the secondary channel of the RNApol might promote some pressure on *greA* generating a diversity that would have not been seen in a situation with no competition. It has been determined that Gfh1 changes its affinity for the RNApol due to changes on the orientation of the globular domain as a response to differences of pH, and it has been proposed that something similar, induced conformational changes, may also occurs for GreA in order to bind into the secondary channel of the RNApol. The coiled-coil domain of GreA enters into the secondary channel of the RNApol. This domain is formed by two helix linked by a turn. It is in this turn where the catalytic residues D41 and E44 are located. Attending to the data derived from Gfh1, we hypothesize that changes on the flexibility of the linker that connected both, coiled-coil and globular domains would affect the possible conformational changes. If the linker domain plays an important role in these conformational switches and consequently for the competition between factors, the linker would be positively selected or preserved in the species that contains several factors that bind into the secondary channel, compared with species that only contains GreA. The amount of synonymous and non-synonymous substitution has been determined within a group of bacteria that contains a huge variability of factors (Enterobacteriaceae) and a group where GreA has no competitors for its interaction with the RNApol (Bacillaceae). Synonymous substitutions do not produce changes in the protein sequence, while non-synonymous substitutions produce missense mutations. Therefore the sequence of the gene *greA* of 16 species of Bacillaceae and 26 species of Enterobacteriaceae was aligned with ClustalX and the rate of synonymous and non-synonymous was determined (**fig. 73**) for the different structural domains defined (helix1, turn, helix2, linker and globular) with MEGA5 software (Tamura *et al.*, 2011).



**Figure 73**: Estimation of average codon-based evolutionary divergence over sequence pairs of *greA* within the Bacillaceae and Enterobacteriaceae is shown. A) The number of synonymous substitutions per synonymous site (dS) from averaging over all sequence pairs within each group is shown. B) The number of non-synonymous substitutions per non-synonymous site (dN) from averaging over all sequence pairs of *greA* within groups is shown.

The rate of synonymous substitutions (dS, **fig. 73A**) is similar between both families in all the zones. Moreover, the dS is around 1, suggesting it occurs in nearly all the predicted sites that could suffer a synonymous substitution. Interestingly, determining the rate of non-synonymous substitutions (dN, **fig. 73B**), it is observed that the turn has a really small dN in both families, suggesting that this domain is highly conserved due the presence of the

residues D41 and E44, responsible of the GreA antipause activity. While in the helix1 and the globular domain both families had a similar dN, in the linker the dN 2.5 fold higher than Enterobacteriaceae. of Bacillaceae is In Enterobacteriaceae, where a higher amount of proteins that bind into the secondary channel is found, the linker domain is more conserved than in Bacillaceae, where only GreA is found. It was also observed that the helix2 suffer differences in the amount of non-synonymous substitutions when comparing between bacterial groups, suggesting that the evolution of helix2 it is also influenced by the pressure produced for the presence of other factors that bind into the secondary channel. This let us suggest that the presence of a competition between the different factors that bind into the secondary channel in the Enterobacteriaceae family, directed the evolution of the gene greA in order to conserve its ability to efficiently interact with the RNApol and consequently having ability to compete for the binding with the secondary channel. Moreover, the conservation of the linker that bind the coiled-coil and the globular domain of GreA, highlights the possibility that GreA could suffer conformational changes in order to compete for the secondary channel of the RNApol.

# <u>4.7. Effect of ppGpp and DksA in the gene expression profile of</u> <u>Salmonella</u>

In our group, the finding that GreA may play a crucial role in the control of the expression of colonization factors in E. coli (strain MG1655), such as type 1 fimbriae and flagella, was found when studying the effect of ppGpp and DksA deficiencies in the gene expression profile. The finding of genes that were differentially expressed, being importantly upregulated in the dksA mutant strain, and downregulated in the ppGpp<sup>0</sup> strain, let us to predict that the upregulated genes in absence of DksA rather than be result of a role of DksA as a repressor, was consequence that in the absence of DksA, the no occupancy of the secondary channel of the RNApol might promote binding of another proteins which will be inducing the expression of those specific genes. Consistent with this model, the upregulation in a *dksA* mutant was abolished in the absence of GreA. Having in consideration that in E. coli the two genetic elements found to be sensitive to the interplay of proteins interacting with the secondary channel of the RNApol were colonization factors, we decided to perform studies to determine, using pathogenic bacteria, the impact in the global expression profile of the interplay among secondary channel interacting factors. The model organism chosen to perform those studies was Salmonella enterica serovar Typhimurium. Similarly to the studies performed in E. coli, the effect of ppGpp and DksA on the gene expression pattern of Salmonella was determined. Little is known about the effect of DksA on gene expression regulation in Salmonella. However, it has been described, using transcriptomic approaches, that ppGpp stimulates the expression of the virulence genes encoded in SPI1 and SPI2 (Thompson et al., 2006), and by RNA-seq that ppGpp plays an important role modulating the stationary phase gene expression pattern (Ramachandran et al., 2014). In the latest work it was shown that during late-stationary phase, the alarmone ppGpp represses (more than 4fold) 511 transcriptions start sites (TSS) and stimulates 96 TSS (more than 4fold).

In this work, transcriptomic studies have been used to determine the role of ppGpp and DksA in the expression pattern of *Salmonella enterica* serovar

Thypimurium SV5015 strain grown in LB at 37°C up to early-stationary phase (OD<sub>600nm</sub> of 2.0). The microarray used was a costume DNA microarray engineered by NimbleGen, containing probes for the chromosomal genes and for the genes from the different plasmids that carry the strain SV5015, pSLT, pCol1B and pSRF1010. It was considered that the genes significantly affected are those with a fold change between 3 and -3. Comparing mutant strains with WT strain, genes with a fold-change inferior to -3 are down-regulated in WT and consequently are genes that are directly or indirectly stimulated by the corresponding factor. On the other hand, genes with a fold-change higher than 3 are up-regulated and consequently are genes that are direct. The amount of genes down-regulated and up-regulated by ppGpp and DksA is indicated in the **table 11**.

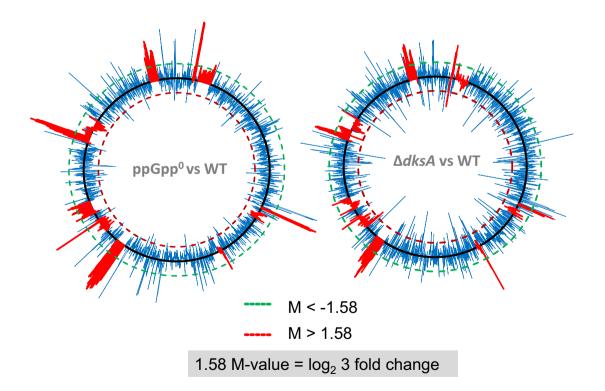

|                    | ppGpp⁰    | dksA       |                         |
|--------------------|-----------|------------|-------------------------|
| Down-regulated (%) | 286 (6)   | 258 (5.5)  | -<br>SV5015 genes: 4735 |
| Up-regulated (%)   | 109 (2.3) | 252 (5.3)  | 0 V 00 10 genes. 4700   |
| Total (%)          | 395 (8.3) | 510 (10.8) |                         |

 Table 11: Distribution of genes affected by ppGpp and DksA. In parenthesis is indicated the percentage of genes affected.

As described on **Table 11**, similar amount of genes were affected by ppGpp (8.3%) and DksA (10.8%). In a ppGpp deficient strain, 72% of the genes affected are down-regulated, highlighting a general stimulating role of ppGpp. These results differed from the ones described by Ramachandran *et al.*, (2014), while they describes ppGpp as a repressor, we showed that it acts as stimulator. Both experiments were performed in LB, but at different growth curve phases: our experiment was performed at early-stationary phase, while their experiment was performed at late-stationary phase. It has been described that the response of bacteria to ppGpp in discontinuous cultures become more drastic through the time (Traxler *et al.*, 2011). The concentration of ppGpp increases gradually and the effect of the gene expression pattern become more and more drastic. Therefore, the difference between Ramachandran *et al.*, (2014) data and our data may be explained for the differences in the physiological stat of the cultures. When looking in a *dksA* deficient strain, the same amount of genes was up-regulated as well as down-regulated.

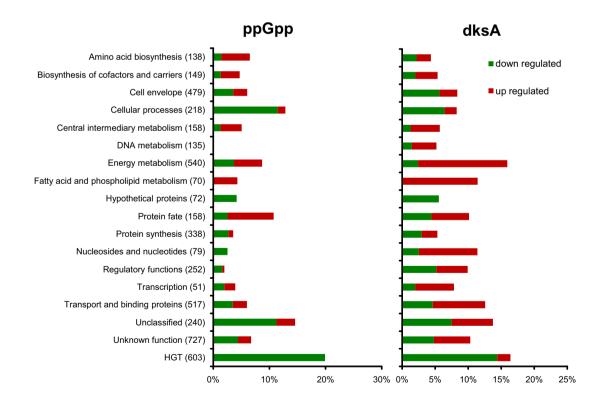
Comparing these results with the ones obtained in *E. coli* (Aberg *et al.*, 2009), the amount of genes affected by ppGpp in *Salmonella* and *E. coli* were 395 and 265, respectively, while in absence of DksA, in *Salmonella* and in *E. coli* were 510 and 311, respectively. The main difference was observed in the amount of genes that were stimulated by DksA (258 in *Salmonella vs.* 81 in *E. coli*), suggesting that the stimulatory effect of DksA would be more important in *Salmonella* than in *E. coli*.

In order to determine if the affected genes were distributed uniformly among the whole chromosome or in clusters, the M-value (log<sub>2</sub> fold change) of all the chromosomal genes were represented in a circular chromosomal diagram as shown in **figure 74**. We could observe that ppGpp and DksA affect genes spread throughout the chromosome, highlighting that these factors are global regulators of *Salmonella* as well as in *E. coli*. Nevertheless, discrete accumulation of genes affected either by ppGpp and DksA were detected (**fig. 74**), those clusters of genes that are stimulated by ppGpp and DksA (**fig. 74** in orange), are HGT genes, such as Pathogenesis islands, bacteriophages, and the operon *cob/pdu*.



**Figure 74** M-value (log<sub>2</sub> fold-change) of each gene from *Salmonella* genome. Dashed lines show the significance threshold. HGT genes are shown in red.

In this work, we considered HGT genes those genes present in plasmids, pathogenicity islands, bacteriophages and the operon *cob/pdu*, making a total of 603 genes. Consequently the amount of core genome genes is 4132. When the amount of genes affected by ppGpp and DksA were distributed according if they are HGT or core genome (**table 12**). The results indicate that the alarmone ppGpp and DksA affect both genes considered as HGT and core genome (**table 12**). When considering the genes of the core genome, ppGpp stimulates 4% of the genes and it represses a 2.6% indicating a more important role as stimulating gene expression than repressing.


|             |                    | ррGрр      | dksA      | Nº of genes |
|-------------|--------------------|------------|-----------|-------------|
|             | Down-regulated (%) | 166 (4)    | 171 (4.1) |             |
| Core genome | Up-regulated (%)   | 109 (2.6)  | 240 (5.8) | 4132        |
|             | Total (%)          | 275 (6.6)  | 411 (9.9) |             |
|             | Down-regulated (%) | 120 (19.9) | 87 (14.4) |             |
| HGT         | Up-regulated (%)   | 0          | 12 (2)    | 603         |
|             | Total (%)          | 120 (19.9) | 99 (16.4) |             |

**Table 12**: Amount of genes affected by ppGpp and DksA belonging to either the core genome or the HGT DNA. In parenthesis the percentage of the genes affected is shown.

Under the experimental conditions used, ppGpp stimulates the expression of up to 20% of HGT genes. All HGT genes affected by ppGpp are down-regulated, meaning that ppGpp is a regulatory molecule required for the expression of most HGT genes. These data let us suggest that ppGpp may act as a trigger factor for the expression of the expression of HGT genes in *Salmonella*. It was observed that DksA stimulates 4.1% of the core genome genes and it represses 5.8%. In contrast to what it was observed for ppGpp, DksA represses more genes that stimulates. DksA has also an important role in modulating the expression of HGT genes, since it affects a 16.4% of the HGT genes. Despite being mostly a stimulator factor like ppGpp, most probably acting simultaneously, it represses 12 of the 99 HGT genes affected by DksA (**table 12**).

#### 4.7.1. Effect of ppGpp and DksA in core genome gene expression

The alarmone ppGpp and its cofactor DksA are master regulators in *Escherichia coli*, responsible of the stringent response – a very significant rearrangement of the gene expression profile during stress situations (Cashel *et al.*, 1996; Magnusson *et al.*, 2005). As described in section 1.2.2.1, during stringent response, ppGpp together with DksA represses stable RNA and ribosomal proteins, elongation factors, fatty acids and lipids synthesis, cell wall synthesis, and DNA replication. By contra, it stimulates universal stress proteins, amino acid biosynthesis, proteolysis and activation of the *rpoS* regulon, including glycolysis, stasis survival, oxidative and osmotic stress survival genes (Cashel *et al.*, 1996; Magnusson *et al.*, 2005). The effect on gene expression of ppGpp and DksA has been mostly studied when stringent response is elicited by amino acid starvation. Those growth conditions are different from the experimental conditions used in this report. We grew bacteria in a rich complex media, LB, containing a high concentration of peptides, up to the interphase between exponential and stationary phase.



**Figure 75**: Distribution of the ORF affected by ppGpp and DksA in different functional categories according the JCVI distribution (Torrieri *et al.*, 2012). The down-regulated genes are shown in green and the up-regulated genes are shown in red.

In order to determine the effect of ppGpp and DksA in the expression of core genome genes, the ORFs with expression altered more than threefold were distributed into different functional groups (**supplementary table**) and presented as percentages of the total number of ORFs represented in the DNA microarray (**fig. 75**). Functional classification was performed according the functional classification of the ORF of *Salmonella enterica* serovar Typhimurium LT2 in the JCVI classification (Torrieri *et al.*, 2012).

The genes affected by ppGpp and DksA are distributed among the different functional groups. The functional groups with a higher amount of genes affected correspond to HGT category, being the genes mainly stimulated by both ppGpp and DksA.

Apart of the HGT genes, the functional classes with higher percentage of genes stimulated by ppGpp (**fig. 75**) are cellular processes (11%). Most genes affected are involved in motility and chemotaxis, biofilm formation and survival, among others (**supplementary table**). The group of unclassified genes contains a high number of genes stimulated (11%) that correspond to secreted proteins involved in virulence of *Salmonella*, among others.

By contra, the categories with higher percentage of genes repressed by ppGpp (**fig. 75**) are: i) protein fate (8%) that involve several chaperones such as *dnaK* or *ibpB* and proteases such as *lon* or *clpB*, indicating that protein turnover might be affected; ii) amino acid biosynthesis (5%) that will be further discussed below; and energy metabolism (5%), involving several cytochrome and the respiratory nitrate reductase chain (**supplementary table**). However, any gene of the category of genes related with DNA metabolism was affected by ppGpp neither repressing nor stimulating.

When observing at the categories with a higher percentage of genes affected by DksA (**fig. 75**). The categories that are stimulated by DksA in a higher percentage of genes are i) cell envelope (6%), stimulating different types of fimbriae such as type 1, curly or *saf* fimbriae; ii) cellular processes (6%), stimulating multidrug resistant proteins, and genes that are important for the response to oxidative stress; and iii) unclassified proteins (8%) (**supplementary table**). However, the categories repressed by DksA are energy metabolism

(14%), fatty acid and phospholipids metabolism (11%) and nucleotides biosynthesis (9%) such as the operon *pyrBI* or the gene *ndk*.

Comparing the effect of ppGpp and DksA (**fig. 75**), apparently similar behaviour was observed with both factors, as observed a similar pattern in amino acid biosynthesis, cellular intermediary metabolism and protein fate. However, there are other categories which are differently regulated by ppGpp and DksA, such as DNA metabolism that while none of the genes are affected by ppGpp, some operons such as *pyrBI* are repressed by DksA (**supplementary table**). Other functional categories with a differential regulation pattern for ppGpp and DksA comprise energy metabolism, where significantly more genes are repressed by DksA than by ppGpp; or regulatory functions, where few genes are stimulated by ppGpp (2%), whereas DksA affect in the expression of a higher number of genes of regulatory proteins (10%).

Comparing the functional categories affected by ppGpp and DksA in *E. coli* and *Salmonella* (Aberg *et al.*, 2009), some similarities were observed. In both species, the most stimulated categories by ppGpp are cellular processes and energy metabolism. However, an important divergence between *Salmonella* and *E. coli* in the effect of ppGpp and DksA in the category of cellular processes was observed. In *E. coli* the genes of this category, that were stimulated by ppGpp and repressed by DksA (Aberg *et al.*, 2009). Those were genes involved in motility and chemotaxis (Aberg *et al.*, 2009). However, in *Salmonella* the genes involved in motility and chemotaxis, as discussed more in detail below, are not differentially regulated by ppGpp and DksA as observed in *E. coli*.

Considering that the alarmone ppGpp is responsible of the stringent response during amino acid starvation, it would be expected an effect of ppGpp on amino acid biosynthetic genes. However, as the bacteria were grown in a rich media (LB) which contains high concentration of amino acids and peptides, no induction of amino acid biosynthesis would be expected. In *Salmonella*, our data indicate that ppGpp stimulates the *opp* and *dpp* operon, coding for oligo-dipeptid transporters (Pearce *et al.*, 1992; Wu and Mandrand-Berthelot, 1995), and the *sfbABC* operon coding for a methionine ABC-transporter (Pattery *et al.*, 1999), as can be seen in **supplementary table**. In general the expression of

metabolites transporters is increased, for peptides and amino acids, as the oligopeptid and amino acid transporters, previously mentioned, as well as sugar transporters such as maltose, melobiose or fructose. This increase on the amount of transporters was also observed in *E. coli* (Aberg *et al.*, 2009).

The biosynthetic pathways of Valine and Leucine (*ilvNB* operon) were upregulated in absence of ppGpp in *Salmonella* (**fig. 75**). The expression of *ilvNB* is attenuated by a leader peptide (*ivbL*) that senses Valine or Leucine (Friden *et al.*, 1982). Taking in account that i) no effect was observed in the expression of the peptide leader by ppGpp and ii) ppGpp stimulates amino acids intaking from the medium, it is feasible that the ppGpp effect on the *ilvNB* operon is not direct. It might be the collateral effect due to the induced amino acids intake.

It has been described that both ppGpp and DksA represses stable RNA in *E. coli* (Cashel *et al.*, 1996; Paul *et al.*, 2004; Magnusson *et al.*, 2005). While we do not observe any effect on ribosomal proteins such as *rplQ* or *rplR*, as observed in *E. coli* by Traxler *et al.* (2008), a ppGpp-mediated repression on *rbfA*, essential for 16S processing (Bylund *et al.*, 1998) was observed in *Salmonella*. Moreover, a repression of several proteins involved on the modification of some nucleosides located in the D and T arms of tRNA, such as *trmH* and *truB*, was detected (protein synthesis in **fig. 75, supplementary table**). These modifications are necessary for the stability of tRNA, especially at high temperature, as well as the translation of certain codons (Urbonavicius *et al.*, 2002).

As shown in **figure 75** the metabolism of fatty acid is repressed by ppGpp, as well as by DksA. The genes responsible of fatty acid degradation *fadAB* (Yang *et al.*, 1990) are repressed by both factors. DksA also repress other genes related with the degradation of fatty acid, such as *fadH* and *caiA*. Our data suggest that ppGpp promotes the accumulation of fatty acid, while in *E. coli* (Magnusson *et al.*, 2005) it was shown that ppGpp represses fatty acid biosynthesis. Once again these discrepancies could be explained due that our results were obtained in rich media.

In *E. coli* it has been described that ppGpp stimulates the RpoS ( $\sigma^{S}$ ) regulon (Traxler *et al.*, 2008). In fact it has been suggested that ppGpp is able to

modulate the competition between the alternative  $\sigma$  subunits to bind to the core of the RNApol (Magnusson *et al.*, 2005). The alternative  $\sigma^{s}$  subunit promotes expression of genes involved in survival and adaptation to several stress conditions. In *Salmonella*, no effect was detected on the *rpoS* expression (**supplementary table**) but in the expression of RpoS dependent genes. The alarmone ppGpp stimulates the expression of genes such as *katE* and *katN*, involved in oxidative stress (Mishra and Imlay, 2012), *qtxAB* coding for the cytochrome D ubiquinol oxidase (Borisov *et al.*, 2011) and several genes coding for unknown proteins such as *ymdF*, *yciG* or *ygaO*.

It has been described that ppGpp is required for dimerization of SIVA (as discussed in section 1.2.2.4). SlyA involved in the PhoP-PhoQ regulation and it has been shown that some of the genes regulated by ppGpp are pag genes, "PhoP/PhoQ activated genes". PhoP/PhoQ is a two components system which responds to different environmental signals including low-Mg<sup>+2</sup>, acidic pH and cAMP (Zhao et al., 2008). PhoP-PhoQ controls the expression of a large number of genes expressed during intracellular infection of macrophages and genes involved in apoptosis delay after Salmonella infection (Guiney and Fierer, 2011). SlyA, which expression is stimulated by PhoP-PhoQ, binds to the promoter of the target genes after forming a dimmer. No effect was observed in the expression of *slyA* by ppGpp or DksA (**supplementary table**), but when looking at the genes of the SIvA regulon it was determined that 16 of the 26 genes stimulated by SIvA (Zhao et al., 2008) are stimulated by ppGpp while 2 of the 8 genes repressed by SlyA, are repressed by ppGpp. A similar effect was observed when looking at the effect of DksA. These data suggests that ppGpp and DksA are necessary for the stimulation of the SlyA regulon.

Several phenotypes presumably associated to genes whose expression is significantly altered in ppGpp or DksA have been further studied.

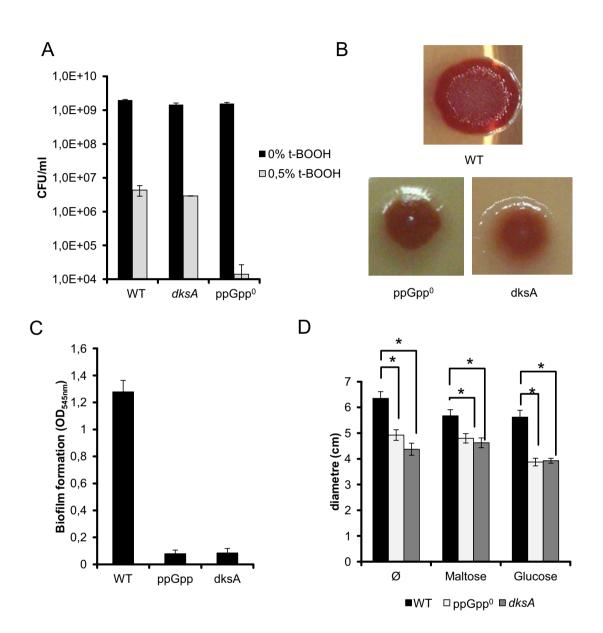
#### 4.7.1.1. Response to low temperature

The expression of the *cspB* gene is down-regulated in absence of ppGpp but it is not affected by DksA (**supplementary table**). CspB is required for the response to low temperatures, also known as cold shock (Lee *et al.*, 1994; Ivancic *et al.*, 2013). The effect of ppGpp and *dksA* deficiency in the ability to

grow at low temperatures was used. The strain SV5015, and its derivative mutant dksA and  $ppGpp^0$  were grown in LB at 37°C and 20°C and its growth rate and generation time was determined. While at 37°C the three strains (WT, dksA and  $ppGpp^0$ ) had the same generation time (23, 25 and 26 minutes, respectively), at 20°C the generation time of the  $ppGpp^0$  strain (108 min) is significantly higher than in WT or dksA (87 and 90 minutes respectively). These data are consistent with a role of ppGpp in the stimulation of cpsB expression.

#### 4.7.1.2. Response to oxidative stress

The effect of ppGpp and DksA on the response to oxidative stress was determined (**fig. 76A**). The strains SV5015 (WT) and its derivative mutants  $ppGpp^{0}$  and *dksA* were grown in LB at 37°C up to an  $OD_{600nm}$  of 2.0 and treated with 0 and 0.5% of t-BOOH, an oxidizing agent (Yoon *et al.*, 2002), during 1 hour at 37°C. After the oxidative stress induction, the viable count was determined (**fig. 76A**).


The treatment with 0.5% of t-BOOH causes a decrease in the cell viability (**fig. 76A**). The strains deficient in DksA and ppGpp were more sensitive to the oxidative stress than the WT strain. The ppGpp deficient strain suffers a dramatic reduction of survival to oxidative stress compared with both WT and *dksA* strains. Those results may be explained by the expression level of several genes involved in the oxidative stress.

| Gene  | ppGpp vs. WT | dksA vs. WT |
|-------|--------------|-------------|
| katE  | -3,08        | 1.48        |
| katN  | -2,93        | -1,43       |
| uspB  | -2,10        | -1,26       |
| uspA  | -2,11        | 1,26        |
| ahpC  | -2,04        | -2,47       |
| sodC1 | -2,38        | -1,21       |
| sodC  | -2,36        | -1,18       |

 Table 13: Effect of ppGpp and DksA on different genes related with oxidative stress response.

Genes, such as *katE*, *ahpC* (Mishra and Imlay, 2012), *sodC* (Rushing and Slauch, 2011) and the *usp* genes (Seifart Gomes *et al.*, 2011), involved in

oxidative stress response, are stimulated by ppGpp. While ppGpp stimulates all the genes listed in **table 13**, DksA stimulates *ahpC*.



**Figure 76**: Effect of ppGpp and DksA on several phenotypes in *Salmonella enterica* serovar Typhimurium SV5015. A) Effect of ppGpp and DksA on the response to oxidative stress. The strain SV5015 and its derivatives ppGpp<sup>0</sup> and *dksA* were grown in LB at 37°C up to an OD<sub>600nm</sub> of 2.0 and treated during 60 minutes with t-BOOH at a final concentration of either 0 or 0.5%. After the treatment, the cfu/ml on LB plates was determined. B) The strain SV5015 and its derivative ppGpp<sup>0</sup> and *dksA* were grown on CFA-CR plates at 28°C. After 7 days the R-DAR morphotype was observed. C) The strain SV5015 and its derivatives ppGpp<sup>0</sup> and *dksA* were grown in CFA at 25°C during 48 hours, and the biofilm formation was determined as described in Aberg *et al.*, (2006). D) The strain SV5015 and its derivatives ppGpp<sup>0</sup> and *dksA* were grown on motility agar plates without chemo-attractants (Ø) or supplemented with either maltose or glucose at a final concentration of 2mM as chemo-attractant. Plates were incubated at 37°C during 5 hours. \* means p-Value < 0.01.

These differences could be the reason to explain that the ppGpp<sup>0</sup> strain is more sensitive to oxidative stress than the *dksA* strain (**fig. 76A**). It is also important to highlight that while initially was considered the significance threshold at 3 / -3, perhaps it is excessive when looking a specific gene. As it is observed, 2-fold differences in the expression of some genes may have significant effect in the physiology of the cell (**table 13**).

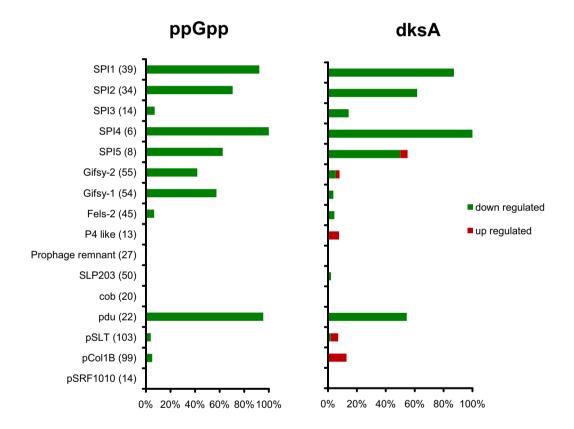
## 4.7.1.3. Effect of biofilm and motility

In *Salmonella*, several core genome genes code for proteins that are involved in cellular functions that may be pivotal for the ability of *Salmonella* to cause infection. Genes involved in the synthesis of flagella and therefore in the bacterial motility and genes involved in biofilm formation may have a significant impact in the ability to colonize and cause clinical infections, respectively. The effect of ppGpp and DksA in the ability to form biofilm and the motility was determined.

One of the main structures involves in the biofilm formation in *Salmonella* are curlied fimbriae, also known as curli, and cellulose. Although other factors such as the flagella are involved (Serra *et al.*, 2013). As could be observed in **table 14** the expression of the different genes related with the curli synthesis are down-regulated in both  $ppGpp^0$  and *dksA* strains. Interestingly, while some genes seem to be stimulated by both factors, such as *csgF*, other genes are only stimulated by one of the factors, such as *csgG* or *csgA*.

| Gene | ppGpp vs. WT | dksA vs. WT |
|------|--------------|-------------|
| csgG | -1,23        | -2,40       |
| csgF | -2,42        | -3,23       |
| csgE | -2,05        | -2,07       |
| csgD | -2,40        | -2,72       |
| csgB | 1,06         | -1,03       |
| csgA | -3,50        | -1,69       |
| csgC | -1,27        | -1,24       |

**Table 14**: Effect of ppGpp and DksA on the different genes coding for curli.


To study the effect of ppGpp and DksA on biofilm formation, the RDAR phenotype of the strain SV5015 (WT) and the derivatives ppGpp<sup>0</sup> and *dksA* was

determined (fig. 76B). Colonies grown for several days on agar surfaces can adopt elaborate a three-dimension complex that have been termed as RDAR phenotype, since are red, dry and rough colonies in CFA-CR plates. The RDAR phenotype is indicative of production of curli and cellulose (Simm et al., 2014). After 7 days at 28°C, SV5015 is able to produce RDAR colonies (fig. 76B) showing that it is able to produce biofilm factors in these conditions. However, the strain deficient in ppGpp and DksA are not able to produce R-DAR colonies. Moreover the ability to form biofilm in plastic surfaces was determined (fig. 76C) as described in Aberg et al. (2006). The formation of biofilm after 48h in CFA at 25°C decreases dramatically in absence of DksA and ppGpp, suggesting that both factors are essential for the formation of biofilm under these conditions. It is important to mention that the transcriptomic study was performed in LB at 37°C while the biofilm assay were performed in CFA (medium with low amount of salt) at 25°C/28°C. This could be the reason why we do not detect such important effect of ppGpp and DksA on the transcription of the different genes related with biofilm formation, while we observe a clear effect in the phenotype at low temperature.

The flagella genes are divided in different operons with an important hierarchy. We had also shown (section 4.3) that ppGpp stimulates the expression of flagella genes in E. coli. In Salmonella, several flagella and chemotaxis genes are stimulated by ppGpp, such as the master regulator *flhDC*, as well as phase-2 flagellin (fljB) and chemotaxis genes (supplementary table). In E. coli the expression of flagella genes were increased in absence of DksA presumably due the binding of GreA into the secondary channel of the RNApol (Aberg et al., 2009). In Salmonella this effect is observed in few genes, such as fliE, flgA, trg or aer. In absence of DksA a down-regulation of some genes involved in chemotaxis, such as cheR or genes involved on the basal body formation fliPQR, was observed. The motility of the strain SV5015 and the derivative mutant ppGpp<sup>0</sup> and *dksA* strain on motility plates without chemo-attractants or with either maltose or glucose (2 mM) was monitored at 37 (fig. 76D). The motility of the strain ppGpp<sup>0</sup> and *dksA* decreases compared with the WT strain. Therefore the control of flagella genes in Salmonella differ from E. coli regarding the effect of dksA mutation.

# 4.7.2. Is ppGpp a gene usher?

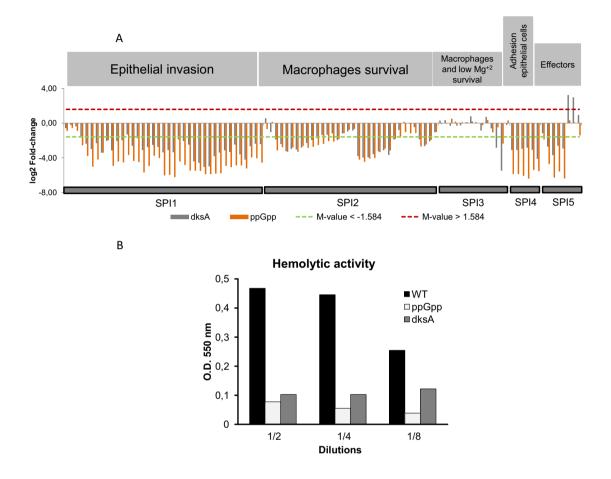
Focusing on the effect of ppGpp and DksA on HGT, we could observe that both factors act as activators of HGT. There are no genes repressed by ppGpp and only 12 of 99 HGT genes were repressed by DksA. Being a 12% of the *Salmonella* genome, HGT represent a 42% of the genes stimulated by ppGpp and 34% by DksA. HGT genes were classified, depending of its origin, in the following categories (**figure 77**): SPI (from 1 to 5), phages (Gifsy1 and 2, Fels-2, P4-like, remnant inactive prophage and SLP203), genomic islands (*cob, pdu*) and plasmids (pSLT, pCol1B and pSRF1010).



**Figure 77**: Distribution of the HGT genes affected by ppGpp and DksA in different categories, depending on its origin (SPIs, plasmids, phages or genomic islands).

As seen in **figure 77**, the factors ppGpp and DksA strongly stimulates the genes present in the pathogenicity islands, as well as the *pdu* operon (**fig. 77**). The alarmone ppGpp stimulates also genes from bacteriophages and plasmids, although to a much lower extent. It is remarkable that several genes are repressed by DksA, genes encoded in bacteriophages, plasmids and the SPI5.

These data strongly suggest that ppGpp stimulates genes acquired by horizontal gene transfer. We could consider an infection as a process where bacteria need to adapt to continuous environmental alterations during its transit through the host organism. Therefore the virulence genes could be understood as a response to these environmental changes that, as other stress response genes, are under the control of ppGpp and DksA.


It is astonishing that genes present in several genetic elements such as plasmids, SPIs or bacteriophages carry modules that allow regulation by chromosomal-encoded regulatory mechanisms to control its expression and ensure its proper expression at the correct moment. Those modules may have been organized during evolution to avoid that the mobile genes could cause a deleterious effect in the fitness of bacterial cells.

Further studies have been performed in the effect of ppGpp and DksA on HGT genes.

#### 4.7.2.1. Effect of ppGpp and DksA on SPIs genes expression

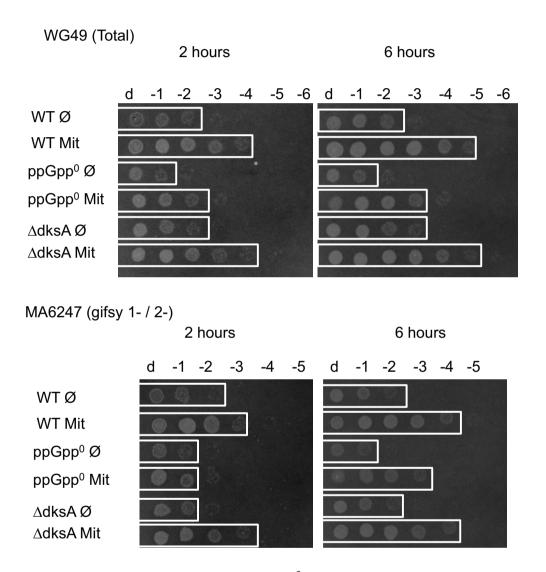
It has been described that ppGpp is required for the stimulation of genes encoded in SPI1 and SPI2 (Thompson *et al.*, 2006). Our results showed that ppGpp is required for the expression of most genes encoded in the SPIs except SPI3 (**fig. 78A**). Moreover, a clear effect of DksA is also observed in the expression of most of the genes present in SPI1, 2, 4 and 5

Although ppGpp and DksA affects similarly the SPI's genes (**fig. 78A**), there is a higher effect on SPI1, 4 and 5 in absence of ppGpp than in absence of DksA. Both factors regulates same amount of genes but in absence of ppGpp the expression of these genes is down-regulated to a higher extent than in absence of DksA. Considering that these SPIs are related with epithelial invasion, we might suggest that ppGpp could have more effect on modulation of epithelial invasion than DksA. It was observed that both factors, ppGpp and DksA, regulates in a similar way the SPI2, involved in macrophages survival. On the other hand, DksA stimulates the gene *mgtC* (**fig. 78A**) that is encoded in the SPI3. The *mgtCB* is important for *Salmonella* pathogenesis, being required for the growth and replication within macrophages (Fàbrega and Vila, 2013). Regarding SPI5 a differential effect of both factors was detected, DksA represses some genes whereas ppGpp does not and from some genes, ppGpp mediated stimulation was detected. Due the requirement of SPI encoded factors in different steps during infection by *Salmonella*. Our data indicates that ppGpp and DksA are pivotal regulators during different phases of the infection.



**Figure 78**: Effect of ppGpp and DksA on the expression of genes encoded in the SPIs. A) M-value in the expression level of the different genes in strains deficient for either of ppGpp or DksA as compared to WT. The 3 / -3 threshold is indicated with dashed lines. B) Haemolytic activity of the strains SV5015 and its derivative ppGpp<sup>0</sup> and *dksA* mutants, measured as described in section 3.9.5.

Our data suggest that ppGpp and DksA are required for expression of cellular invasion and intracellular survival genes. To corroborate that the haemolytic activity of cell-free supernatants from cultures of the SV5015 strain and its ppGpp<sup>0</sup> and *dksA* derivatives was determined. The haemolytic activity is related with the production of the translocator proteins SipB, SipC and SipD proteins, a pore-forming complex that is encoded in the SPI1 and corregulated with the majority of genes encoded in this pathogenicity island (Miki *et al.*, 2004; Field *et al.*, 2008). Different dilutions of cell-free supernatants obtained from cultures of


the different strain grown in LB at 37°C up to an  $OD_{600nm}$  2.0, were mixed with an aliquot of sheep erythrocytes suspension, and the haemolytic activity was determined measuring the  $OD_{550nm}$  after incubation at 37°C for 2.5 hours (**fig. 78B**). In absence of ppGpp and DksA, the haemolytic activity associated to SipBCD, decreases dramatically, suggesting that these factors are essential for its expression and consequently for cellular invasion.

#### 4.7.2.2. Effect of ppGpp and DksA on bacteriophages genes

It has been described that *Salmonella* contains 5 presumably active bacteriophages: Gifsy 1 and 2 ( $\lambda$ -phage like), SopE $\Phi$  (Fels2), P4-like phage and SLP203 (P22-like), and a remnant inactive prophage (Figueroa-Bossi *et al.*, 2001). Transcriptional data shows that ppGpp stimulates a 42% and 57% of the genes of Gifsy 2 and 1 (respectively) phages, as well as a 7% of the SopE $\Phi$  (**fig. 77**). However, DksA has a different role; it has a poor effect on these bacteriophages and a repressive effect on P4-like phage genes (**fig. 77**). Among the phage genes affected by ppGpp are some that are essential for the virulence of *Salmonella*, such as *sopE* or *sodC1*, and also genes required for the bacteriophage replication, as *recE* that codes for an exodeoxyribonuclease or genes that codes for proteins of the capside as the minor tail protein U.

For this reason we studied the ability of the strains deficient in *dksA* and ppGpp to produce bacteriophages during inducing and non-inducing conditions. The lytic cycle of bacteriophages is induced by mitomycin C addition to the culture, mitomycin C is a DNA damage agent that trigger the SOS response (Mirold *et al.*, 1999). The strains SV5015 and its derivative ppGpp<sup>0</sup> and *dksA* mutant were grown in LB at 37°C up to an OD<sub>600nm</sub> of 0.1. Then, cultures were split in two and one of them was induced with 50 µg/ml of mitomycin C, and continuing incubation for either 2 or 6 hours. Phage particles were detected by titration on top agar using two different indicator strains after 18 hours at 37°C. The strain WG49, used to detect F<sup>+</sup>-specific RNA coliphages in water samples (Rhodes and Kator, 1991), whereas the strain MA6247 is used to detect the bacteriophages Gifsy1 and Gifsy 2 (Figueroa-Bossi and Bossi, 1999). The results are shown in the **figure 79**. It is remarkable that SV5015 (WT) is able to produce bacteriophages during its growth in LB at 37°C up to stationary phase

even in the absence of mitomycin. The amount of phages produced increases significantly by mitomycin C addition. In absence of ppGpp, there is a decrease in the bacteriophage production under induction and non-induction conditions, showing that ppGpp is necessary for appropriated bacteriophage production (**fig. 79**). While in absence of DksA there is no effect on the bacteriophage production, as compared to the WT strain.



**Figure 79**: The strains SV5015 and the ppGpp<sup>0</sup> and *dksA* derivative mutants were grown in LB at 37°C up to an  $OD_{600nm}$  of 0.1 and then induced with 50 µg/ml of mitomycin C (Mit) and incubated during 2 and 6 hours. As control, cultures with no addition of mitomycin C (Ø) were used. Then, supernatant, containing the bacteriophages released, were diluted and dropped on top agar plates containing different indicator strains (WG49 and MA6247) at 37°C during 18 hours.

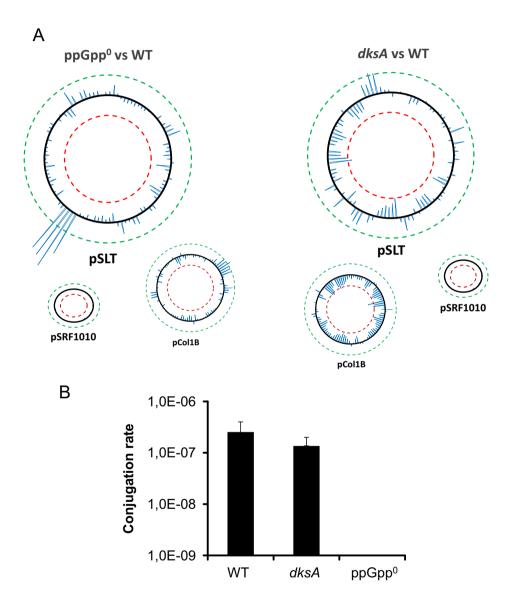
These results (**fig. 79**) are consistent with the transcriptomic data showing that ppGpp affects expression of bacteriophages genes. Suggesting that ppGpp could be important for the movement of genes by natural transduction, where

the DNA is enclosed into capsids and transferred into a new host cell (Penadés *et al.*, 2014).

# 4.7.2.3. Effect of ppGpp and DksA on Salmonella plasmids

*Salmonella* strain SV5015 contains 3 plasmids: pSLT, pCol1B and pSRF100. While DksA and ppGpp produces non effect on the expression of genes present in pCol1B and pSRF100, ppGpp stimulates the expression of genes from pSLT plasmid (**fig. 80A** and **supplementary table**)

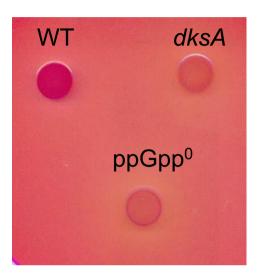
The genes stimulated by ppGpp in pSLT plasmid are the *spvABCD* operon. SpvB and SpvC are effectors proteins secreted by the TTSS from SPI2. SpvB contains an ADP-ribosyltransferase domain that prevents actin polymerization whereas SpvC has phosphothreonine lyase activity and has been shown to inhibit MAP kinase signalling. The exact mechanism of how these effectors enhance virulence is still unclear, but it has been shown that SpvB exhibits a cytotoxic effect on host cells and is required for late apoptosis of infected macrophages (Gotoh *et al.*, 2003; Guiney and Fierer, 2011).


The *spvABCD* is under the control of a  $\sigma^{S}$  promoter that is stimulated by SpvR. The alarmone ppGpp produced no effect on *spvR* indicating that the effect of ppGpp on *spvABCD* is independent of SpvR, either direct by affecting *spvABC* transcription initiation or indirect due to its effect on  $\sigma^{S}$  regulon(Gotoh *et al.*, 2003).

In absence of ppGpp and DksA the expression of the gene *traD* is downregulated. TraD is an hexameric ATPase that forms the cytoplasmic face of the conjugative pore required for pSLT conjugation (Lu *et al.*, 2008), suggesting that both factors could affect the conjugation of pSLT plasmid in *Salmonella*. To determine the role of ppGpp and DksA on pSLT transfer, a conjugation experiment using a pSLT derepressed variant, a *finO* mutant, was used (Camacho and Casadesús, 2002). As a donor the strain SV4522 (WT) and its derivative ppGpp<sup>0</sup> and *dksA* mutants were used (**fig. 80B**).

In absence of ppGpp the conjugation rate decreases dramatically and no transconjugants were obtained, suggesting that ppGpp is crucial for pSLT

conjugation (**fig. 80B**). Surprisingly, in absence of DksA similar conjugation rate was observed as for the WT strain.


Our data shows that ppGpp is able to induce virulence factors encoded in the pSLT plasmid, and that it is required for its conjugation. Considering that ppGpp also stimulates bacteriophages production, it might be suggested that this alarmone is required for HGT mobilization or it is able to stimulate it.

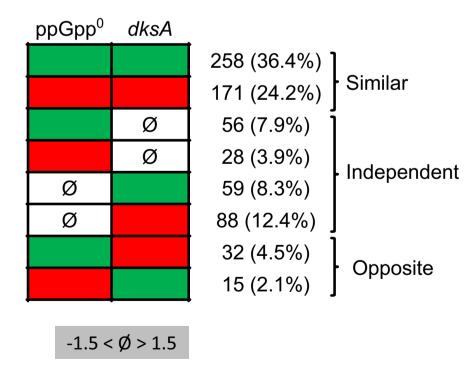


**Figure 80**: Effect of ppGpp and DksA on genes encoded in *Salmonella* plasmids. A) Representation of the M-value ( $\log_2$  fold-change) for each gene of the *Salmonella* plasmids. Dashed lines show the significance threshold (M-value < -1.58 in green and M-value > 1.58 in red). B) Conjugation rate of the strain the strain SV4522 (WT), LFC64 (*dksA*) and LFC63 (ppGpp<sup>0</sup>). The conjugation assay was performed as described in section 3.7.4.

### 4.7.2.4. Effect of ppGpp and DksA on cob/pdu operon

The *cob* and *pdu* operons are two divergent operons considered HGT that codes for proteins responsible of cobalamin (vitamin B12) synthesis and propanediol degradation (Roth *et al.*, 1996). It has been shown that the pdu operon is important for the *Salmonella* survival into macrophages (Klumpp and Fuchs, 2007).




**Figure 81**: Effect of ppGpp and DksA on *pdu* operon in *Salmonella* Typhimurium. A) Degradation of 1,2-Propanediol by the strain SV5015 and its ppGpp and *dksA* derivative mutants in McConkey supplemented with 0.5% of 1,2-propanediol and 150 nM of vitamin B12 (Goudeau *et al.*, 2013).

As observed in **figure 77** and **supplementary table**, ppGpp and DksA stimulates a major part of the genes that forms the *pdu* operon. To further study the effect of ppGpp and DksA on the *pdu* operon expression, the ability of the SV5015 (WT) as well as the ppGpp<sup>0</sup> and *dksA* mutant strains to use 1,2-propanediol as a carbon source in presence of vitamin B12 was tested. The three strains were inoculated on McConkey plates supplemented with 0.5% of 1,2-propanediol and 150 nM of Vitamin B12 and incubated at 37°C during 18 hours (**fig. 81**). The WT strain is able to use the propanediol as a carbon source and produces an acidification of the media, producing red colonies. But the strains deficient in ppGpp and DksA were not able to use the propanediol and, consequently, produce white colonies.

# 4.7.3. Global effect of ppGpp and DksA.

Despite of being described as cofactors, ppGpp and DksA in *E. coli*, it was described that both factors could have similar, independent and opposite effects in gene expression (Magnusson *et al.*, 2007; Aberg *et al.*, 2009). However, it was observed that the opposite effect of DksA and ppGpp on the expression of the flagella and fimbriae genes was dependent of the presence of GreA (Aberg *et al.*, 2008; Aberg *et al.*, 2009).

In this report, we considered significantly affected those genes with a foldchange between 3 and -3, but this would produce a bias. An example of that would be the gene *fruB*, in absence of ppGpp it has a fold-change of -11.58, but in absence of DksA, the fold-change is only of -2.71. With the 3 / -3 threshold, we would classify this gene as independently regulated by ppGpp, whereas it is being stimulated by both factors. For this reason we have considered genes with a fold-change between -1.5 and 1.5. Then, *fruB* is regulated similarly by ppGpp and DksA, but *fucP* (ppGpp<sup>0</sup> -3.82, *dksA* 1.27) it is only regulated by ppGpp. The results are shown in **figure 82**.



**Figure 82**: Amount of genes that are regulated in a similar, independent and opposite way between ppGpp and DksA.

From the genes affected by ppGpp and DksA (**fig. 82**), a 61% of the genes are regulated in a similar way by ppGpp and DksA (stimulated and repressed). However a 32% of the genes are affected by one of these factors and not affected by the other factor. Finally, only a 7% of the genes affected by ppGpp and DksA are affected in an opposite way in *Salmonella*. Some of the genes oppositely affected by ppGpp and DksA, are genes from the maltose degradation operon (*malM*, *E*, *F*, *K*), as well as other sugar transporters. But also include the gene that codes for the porine *ompF*, the H-NS-like protein StpA, or the small heat shock protein IbpB. Further studies will be required for determine whether in *Salmonella*, the differential role of ppGpp and DksA might also be a consequence of the vacancy of the secondary channel of the RNApol generated in a *dksA* mutant, and therefore results of promoted interaction by other proteins such as GreA, as it has been proposed in *E. coli*.

# 4.8. Epilogue: an overview of our contribution to the knowledge of the regulation through the secondary channel of the RNApol

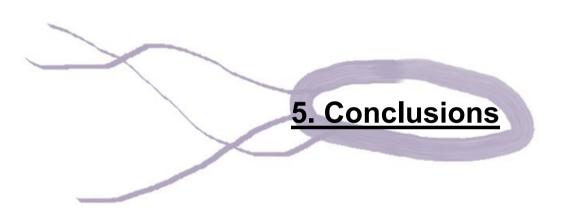
A previous discovery in our research group, indicating that the phenotype of ppGpp and DksA deficiencies were not always identical (Aberg et al., 2009), let us to show that the occupancy degree of the secondary channel of the RNApol may have significant impact in the expression pattern in E. coli. The data obtained clearly indicate that up-regulation of some specific genes that occurs in absence of DksA, was the result of the vacancy of the secondary channel generated in a *dksA* strain rather than being the result of DksA having a direct repressor effect. We suggested that in the absence of DksA, the interactions of other proteins, such as GreA, are promoted and responsible of the upregulation observed. This phenomenon, GreA-dependent up-regulation detected in a dksA strain, was detected for type 1 fimbriae and flagella expression in *E. coli*, and indicates that a competence for the occupancy of the secondary channel of the RNApol might exist (Aberg et al., 2008 and 2009). Studies based in the amount of these proteins and its affinity for the RNApol, suggested that most of the RNApol molecules will be forming complex with DksA (Rutherford et al., 2007), unless other factors with ability to interact in the same site of the RNApol, such as GreA and GreB, increases its expression and/or affinity under certain conditions.

In this work we try to obtain new insights in the possible interplay between the proteins that can interact with the secondary channel of the RNApol. Phylogenetic studies performed showed that GreA is the secondary channel interacting protein more broadly distributed among bacteria, clearly indicating the crucial role of this protein in transcription. Our data indicate that the ability of GreA to resume paused RNApol-DNA complexes is pivotal for proper gene expression and, consequently, for the physiology of the cell. GreA promotes expression of many different genes often associated with complexes cellular processes, such as fimbriation and motility in *E. coli*, and protein secretion and virulence in *Salmonella*. To trigger those processes, importantly stimulated by GreA, requires a significant part of the energetic and metabolic assets of the cell. Perhaps that is one of the reasons why overexpressing GreA and,

presumably, causing an artificial increase in the relative concentration of RNApol-GreA, causes a serious deleterious effect in bacterial fitness. Interestingly, this negative effect is importantly enhanced if the cell lacks the GreA-competitor DksA. However it cannot be ruled out that specific effect of GreA on *ftsN* expression may contribute to the deleterious effect in growth. An attractive model from an evolutionary point of view is that DksA appears in the bacterial evolution to act as an anti-GreA protein to allow a tight regulation of gene expression, especially of genes that requires ppGpp for its transcription. We have seen several examples of genes, coding for complex processes that are regulated by ppGpp at the level of transcription initiation and are also stimulated at the transcription elongation level by GreA. High expression of those genes in wrong conditions may compromise bacterial viability due to the important energetic burden. Therefore, having a protein that may counteract the stimulatory role of GreA may be a benefit for the bacterial cell.

Interestingly, it exist an interplay among secondary channel interacting factors. GreA levels seem to be inversely related with the ppGpp-DksA system. GreA contents drops in the interphase between logarithmic and stationary phase, exactly the physiological condition that trigger the production of ppGpp in the cell. The growth phase drop in GreA is concomitant with an increase in the GreB levels, promoted by DksA. The studies performed demonstrate that GreA amount in the cells is very tightly regulated and several mechanisms exist to control the amount of GreA in the cell, such as autoregulation (Potrykus *et al.*, 2010), presence of two promoters responding to different sigma subunits and a possible control by the metabolic sensor CRP/cAMP.

Recently it has been described that GreA may act as a chaperone by avoiding miss folding of proteins after high temperatures stress (Li *et al.*, 2012). Interestingly, the only condition found to importantly increase GreA is when the  $\sigma^{E}$  regulon is activated, which normally occurs as a response to unfolded proteins present in the periplasm due to some stress conditions, such as heat shock or hyperosmotic stress. Whether some of the GreA-induced protein under  $\sigma^{E}$  inducing conditions plays a role as a chaperone remains undercover.


In addition to changes in the amount of the protein, factors altering the affinity to the RNApol may play a crucial role in the competition for binding into the secondary channel of the RNApol. In this context, the data indicating that the conformation of the protein Gfh1 of Thermus thermophilus may vary in a pH dependent manner between two different states (active/inactive), it is the first example among those proteins that conformational switches may be relevant for its activity. GreA activity might also be dependent on conformational switches. The finding that the effect of GreA on *fliC* expression was dependent in external osmolarity but independent of a regulation of greA expression, as monitored by transcriptional studies and immunodetection, suggest that osmolarity could affect the activity of GreA, perhaps through conformational changes. Characterization of amino acids that are important for the functionality or affinity of GreA to the RNApol indicates that the  $\alpha$ -helix of the globular domain is essential for the functionality of GreA. Mutations in S124 or L130 disrupt this helix and as a consequence eliminate the functionality of GreA. Moreover, changes that might affect the linker (such as I75V or P5S) could cause changes on the conformation of the protein GreA, and as a consequence, reducing its affinity. Moreover, phylogenetical studies had shown that the linker might be important for the competition between factors that bind into the secondary channel.

Considering that the competition between GreA and DksA was described during the study of *fliC* (Aberg *et al.*, 2009), the effect of the factors that bind into the secondary channel of the RNApol was determined. The *fliC* upregulation detected in a *dksA* mutant is strictly dependent on the presence of GreA. The data shown suggest that GreA may be regulating transcriptional elongation of *fliC* since: i) the antipause activity of GreA is required for the expression of *fliC*, ii) the effect of GreA mutations is more evident with a distal *fliC::lacZ* fusions (+1210) that with a proximal (+70). Most probably both, DksA and GreA, are required for *fliC* expression but act at different levels in the regulatory cascade of flagella expression regulation.

In fact it has been shown that GreA is required for the expression of *fliC* and motility, even in presence of DksA. These data suggest that under physiological conditions, GreA is able to substitute DksA in some cases. It has been

described that DksA does not bind to backtracked elongation complexes (Furman, Tsodikov, *et al.*, 2013). When the RNApol get paused, it changes its affinity for DksA, avoiding its binding, and allowing the interaction of GreA with the secondary channel of the RNApol. It has been observed that the presence of ppGpp seem to be required for the proper binding of GreA to the secondary channel, since ppGpp deficient strains suffer less toxic effect during overexpression conditions. Perhaps the increased affinity of GreA by the presence of ppGpp allows that the lower content of GreA in stationary phase has not a negative impact in transcription elongation of GreA regulated genes.

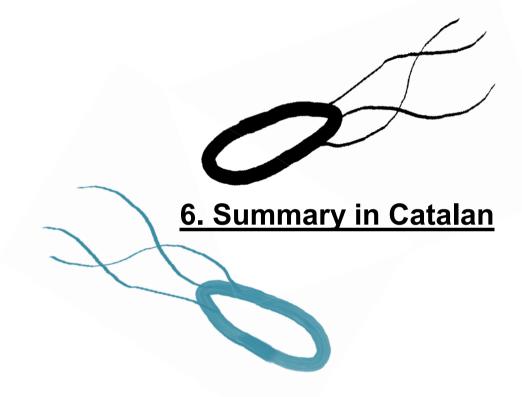
In order to determine the impact of the competition among the factors that bind to the secondary channel of the RNApol in the global expression profile of pathogenic bacteria, we performed a transcriptomic study of the effect of ppGpp and DksA in *Salmonella enterica* serovar Typhimurim. As observed in *E. coli*, both factors had global effect on the expression of gene expression. We observe that both factors, ppGpp and DksA, had an important regulatory role of gene expression of several virulence factors, but also controlling the mobilization of some genetic elements such as plasmids or bacteriophages. These data suggest that ppGpp and DksA, as well as other factors that could be comprised in these genetic elements, could promote the acquisition of HGT DNA in order to obtain an evolutive benefice.



In this project different aspects of the interaction between the proteins that bind into the secondary channel of the RNApol were studied in order to determine a possible competence between them. To do that, the expression of *greA* at different conditions has been described. Changes in the amount of protein would affect the equilibrium between the different factors that bind to the secondary channel, and produce changes in the interplay between factors. Moreover, the cross regulation between the different proteins that bind into the secondary channel has been studied.

In our research group, it has been described that the interplay between factors could control the expression of several genes, such as those coding for type1 fimibriae (Aberg *et al.*, 2008) and flagella (Aberg *et al.*, 2009). In this project, we have determined the effect that the competition of these proteins for binding into the secondary channel would produce in a target gene (*fliC*).

Structural and phylogenetic studies of the protein GreA were used to further study the competition of the different factors that bind into the secondary channel, as well as the GreA domains relevant for this competition. Moreover, these studies let us to identify important amino acids for the functionality of GreA and its binding to the secondary channel.


Finally, transcriptomic studies in *Salmonella enterica* serovar Typhimurium were used to determine the effect of the different factors that bind into the secondary channel of the RNApol in the gene expression pattern.

The specific conclusions derived from this work are indicated as follows:

- 1. GreA autorepresses its own expression.
- 2. The autoregulation of *greA* requires the antipause activity of GreA, and the sequence localized between +3 and +101, respect to the transcriptional start site.
- GraL, a short array of sRNA produced by an imprecise terminator localized between the greA promoter and the coding sequence, is involved in the autorepression of greA.

- 4. The expression of *greA* decreases at stationary phase. This effect requires the presence of GreA.
- 5. High temperature (42°C) stimulates the expression of greA.
- 6. Overexpression of *rpoE* or production of an extracytoplasmic stress with unfolded proteins, increases the *greA* expression.
- 7. Variation in either oxygen or magnesium availability, pH or osmilarity, do not produce changes in the *greA* expression.
- 8. The regulatory complex cAMP-CRP regulates the expression of greA.
- 9. A crosstalk between GreA, GreB and DksA exist. GreA stimulates *dksA* expression, while DksA stimulates *greB* expression at stationary phase.
- 10. GreA and DksA affect the expression of *fliC* at transcription elongation and initiation level respectively.
- 11. The antipause activity of GreA is required for the expression of *fliC*.
- 12. Overexpressing GreA and presumably increasing the relative amount of the complex RNApol-GreA causes a deleterious effect to the cell physiology.
- 13. The alarmone ppGpp might be required for the interaction of GreA with the secondary channel of the RNApol.
- 14. The α-helix of the globular domain of GreA is essential for GreA functionality.
- 15. Mutations that would affect the linker that bind both domains of GreA, such as I75V and P5S, might produce hypothetical changes in the conformation of GreA.
- 16. The mutants L21R, A51T, C58G, D98G, S121P and S121L might have its affinity for the RNApol affected.
- 17. The mutants R9C, E151G and Y157H might not be able to compete with DksA for binding to the secondary channel.

- 18. The variability of factors that bind into the secondary channel appeared by gene duplication events.
- 19. All bacteria contain *greA*, except phyla *Aquificae*, *Chlamydia* and some members of *Cyanobacteria*.
- 20. A major diversity of factors is observed in proteobacteria than in the rest of Bacteria.
- 21. The presence of other factors that bind to the secondary channel of the RNApol, such as DksA or GreB, produced an evolutive pressure to conserve several structural features of GreA.
- 22. The alarmone ppGpp and DksA are global regulators of the gene expression in *Salmonella*.
- 23. The alarmone ppGpp and DksA stimulates the expression of several genes, ppGpp stimulates up to 4% of core genome genes and up to 19.9% of HGT. DksA stimulates up to 4% of core genome genes and 14.4% of the HGT.
- 24. The genes encoded in SPI 1, 2, 4 and 5 are stimulated by ppGpp and DksA.
- 25. The haemolytic activity, associated to effector proteins encoded in SPI1, is affected in mutants defective in ppGpp and *dksA*, suggesting that both factors might be important during cellular invasion.
- 26. The alarmone ppGpp and DksA stimulates gene expression of virulence factors encoded in bacteriophages and plasmids.
- 27. Mobilization of bacteriophages and conjugative plasmids is stimulated for ppGpp.
- 28. The alarmone ppGpp and DksA similarly regulate up to 61% of the affected genes.
- 29. Up to 7% of the affected genes for ppGpp and DksA, had an opposite behaviour between both factors.



# **Introducció**

Les espècies bacterianes, tot i tenir un seguit de gens comuns entre les diferents soques, que les defineixen com a espècie (denominat "core-genome"), contenen una gran varietat de gens, específics de soca, i que els hi confereixen habilitats que permeten a cada soca adaptar-se a entorns específics (**fig. 1**). El conjunt de gens del "core-genome" i els gens variables, formen el que es coneix com a "Pan-genome" (Mira *et al.*, 2010). Els gens variables, que tendeixen a estar localitzats en illes gèniques, poden ser transferits per processos de transferència gènica horitzontal (HGT) a altres soques o espècies, mitjançant processos de conjugació, transformació natural o transducció. De fet s'ha observat que la transducció és considerada el principal mecanisme de transferència horitzontal de gens a bacteris (Boyd and Brüssow, 2002; Mira *et al.*, 2010; Penadés *et al.*, 2014).

S'ha vist que el medi ambient pot produir alguns canvis a la mida del genoma bacterià (**fig. 2**) però són mecanismes d'adaptació a llarg termini (Ranea *et al.*, 2004; Dini-Andreote *et al.*, 2012). Els bacteris tenen diferents mecanismes a curt termini d'adaptació al medi que permeten detectar els canvis ambientals i variar la seva expressió gènica, produint una resposta a les condicions del medi.

L'expressió gènica s'inicia amb el procés de transcripció durant el qual la informació continguda a l'ADN és transcrita a ARN. Aquest procés és dut a terme per un complex enzimàtic anomenat ARN polimerasa (ARNpol) on, en procariotes, la seva unitat bàsica (*core* o nucli) està formada per 5 subunitats proteiques: 2 subunitats  $\alpha$ , una  $\beta$ , una  $\beta'$  i una  $\omega$  ( $\alpha_2\beta\beta'\omega$ ). S'ha determinat dos canals entre les diferents subunitats: el canal primari, per on entra l'ADN i es desenvolupa la transcripció, i el canal secundari, que comunica el medi exterior amb el centre catalític de l'ARNpol. Tot i així, aquest holoenzim necessita la unió d'una subunitat  $\sigma$  per ser capaç de reconèixer una seqüència promotora i iniciar la transcripció (Haugen *et al.*, 2008). *Escherichia coli* conté 7 subunitats  $\sigma$  alternatives que controlen l'expressió gènica de diferents subunitats pel nucli de l'ARNpol determinarà l'expressió dels diferents gens que controlen. Per tant,

modificacions en aquesta competència produïda per altres factors, com alarmones o factors anti-sigma (**fig. 6**), provocarien variacions en l'expressió gènica.

La transcripció és un procés cíclic que es pot dividir en tres etapes: i) unió al promotor i iniciació, ii) elongació i iii) terminació.

Durant el primer pas, l'ARNpol s'uneix al promotor gràcies al reconeixement de la subunitat  $\sigma$ , s'obre la doble cadena d'ADN, l'introdueix dins el canal primari de l'ARNpol i comença la incorporació del nucleòtids (**fig. 5**). A molts promotors, l'ARNpol sintetitza fragments curts degut a cicles d'iniciació abortiva, on s'inicia i es finalitza prematurament la transcripció degut a que la subunitat  $\sigma$  no es desenganxa del promotor. Quan l'ARNpol aconsegueix desenganxar-se del promotor es produeix l'elongació de la transcripció (Browning and Busby, 2004; Haugen *et al.*, 2008).

Durant l'elongació de la transcripció, la subunitat  $\sigma$  es desenganxa del nucli de l'ARNpol. Durant aquesta etapa l'ARNpol pot variar entre un estat actiu i pausat. Les pauses durant l'elongació de la transcripció poden ser induïdes per determinades seqüències d'ADN, lesions o incorporació de bases errònies durant la transcripció. Si les pauses s'allarguen es poden produir alteracions de l'ARNpol, com ara el "backtracking", on l'ARNpol retrocedeix sobre de l'ADN i l'ARN es desenganxa del centre actiu, entrant dins del canal secundari de l'ARNpol (Artsimovitch and Landick, 2000; Landick, 2006). Els estats de pausa i el backtracking poden ser solucionats per diferents factors, com NusG o els factors Gre (GreA i GreB) o pel procés de traducció (Borukhov *et al.*, 1993; Artsimovitch and Landick, 2000; Dutta *et al.*, 2011). L'elongació de la transcripció continua fins que l'ARNpol detecta un senyal de terminació, que pot ser dependent o independent de la proteïna Rho (Henkin, 2000).

La transcripció gènica pot ser regulada tant a inici de la transcripció com durant l'elongació i la terminació. Diferents factors poden regular l'expressió gènica interactuant directament amb l'ADN o no. Alguns d'aquests factors són proteïnes reguladores que s'uniran a la regió promotora i contactaran directament amb l'ARNpol, activant-la o inhibint-la; diferents subunitats sigma

que competiran entre elles per unir-se al *cor*e de l'ARNpol, així com la presència de factors anti-sigma que alteraran aquesta competència; la topologia de l'ADN, que pot amagar la zona promotora, impedint així el reconeixement per part de l'ARNpol; alarmones, molècules petites d'origen no proteic que interaccionen amb proteïnes alterant la seva funcionalitat; o factors que interaccionen amb el canal secundari de l'ARNpol (Browning and Busby, 2004; Travers and Muskhelishvili, 2005; Haugen *et al.*, 2008; Kalia *et al.*, 2013; Treviño-Quintanilla *et al.*, 2013).

#### Factors que interaccionen amb el canal secundari de l'ARNpol

A *Escherichia coli*, diferents factors, l'alarmona ppGpp i diferents proteïnes, tenen l'habilitat d'interactuar amb el canal secundari de l'ARNpol afectant la seva activitat (**fig. 7**). Les proteïnes que interaccionen amb el canal secundari de l'ARNpol són proteïnes de baix pes molecular que comparteixen una organització espacial similar. Aquestes proteïnes tenen un domini que entra dins del canal secundari, interactuant amb el centre actiu, i un segon domini que es queda fora del canal secundari. A *E. coli*, així com en altres enterobacteris, aquestes proteïnes són GreA, GreB, DksA i Rnk (Borukhov *et al.*, 1993; Perederina *et al.*, 2004; Lamour *et al.*, 2008). A més, s'ha descrit altres proteïnes capaç d'unir-se al canal secundari de l'ARNpol en alguns plàsmids conjugatius, com el plàsmid F d'*E. coli* o pSLT a *Salmonella* (Blankschien *et al.*, 2009), o en altres especies com ara la proteïna Gfh1 de *Thermus thermophilus*.

El fet que diferents proteïnes s'uneixin a la mateixa diana produint diferents efectes suggereix que hi ha d'haver una competència entre els diferents factors que s'uneixen al canal secundari de l'ARNpol afectant la funcionalitat de l'holoenzim.

#### El factor transcripcional GreA

A *E. coli*, els factors Gre, GreA i GreB, interaccionen amb el canal secundari de l'ARNpol i suprimeixen les situacions de pausa o backtracking durant el procés de transcripció (Laptenko *et al.*, 2003). GreA va ser descrit com a supressor de l'efecte negatiu produït a alta temperatura en el mutant S522F de la subunitat  $\beta$ 

de l'ARNpol a *E. coli.* És una proteïna de 158 aminoàcids (17.5 kDa) dividits a parts iguals en dos dominis (**fig. 8**): el domini N-terminal està format per un domini *coiled-coil* i el domini C-terminal, unit al N-terminal per un *loop*, és d'estructura globular (Sparkowski and Das, 1991; Stebbins *et al.*, 1995). S'ha determinat que és el domini *coiled-coil* el que entra dins del canal secundari de l'ARNpol on dos residus acídics (D41 i E44) són capaços d'interaccionar amb el centre catalític de l'ARNpol. La interacció d'aquests dos residus amb el centre catalític de l'ARNpol és necessari per a solucionar situacions de pausa. Així doncs, quan l'ARNpol s'atura, GreA indueix l'activitat ribonucleolítica intrínseca de l'ARNpol. Els residus D41 i E44 estan molt conservats en tots els factors Gre i en DksA, tot i que a DksA estan orientats de forma diferent als dels factors Gre (Perederina *et al.*, 2004; Vassylyeva *et al.*, 2007).

A part de la seva activitat antipausa, s'ha descrit que GreA té una certa activitat com a xaperona. S'ha vist que GreA és capaç de suprimir l'agregació de proteïnes induïda per calor i que promou la reactivació de proteïnes desnaturalitzades en *E. coli*. A més, la seva sobreexpressió confereix una major capacitat de supervivència a un xoc tèrmic o un estrés oxidatiu (Li *et al.*, 2012).

S'ha vist que GreB, amb una elevada homologia estructural i funcional amb GreA (**fig. 8**), conté una zona amb càrrega bàsica que es creu que li permet unir-se a la part externa del canal secundari de l'ARNpol, tot i així, no s'ha localitzat aquesta cavitat a GreA (Kulish *et al.*, 2000). A més, encara no es coneix com és exactament la unió entre GreA i l'ARNpol.

# L'alarmona ppGpp

L'alarmona (p)ppGpp, tetra- o penta-fosfat de guanosina, és un nucleòtid modificat que actua com a alarmona o senyal d'estrès bacterià (Cashel *et al.*, 1996). Inicialment es va descriure que la seva síntesi s'induïa com a resposta a la manca d'aminoàcids produint una baixada en la quantitat de ARN estable (**fig. 10**) (Cashel, 1969). Posteriorment s'ha vist que ppGpp té un important efecte sobre l'expressió gènica, anomenada resposta estricta (Cashel *et al.*, 1996; Magnusson *et al.*, 2005). L'alarmona ppGpp, descoberta a *Escherichia* 

*coli,* no està restringida a Gram-negatius, sinó que també es troba a Grampositius i a cloroplasts de les cèl·lules vegetals (Braeken *et al.*, 2006; Atkinson *et al.*, 2011). La resposta estricta, en *E. coli*, consisteix en la inhibició de la síntesi de l'ARN estable (ARNt i ARNr) i de diferents gens relacionats amb el creixement bacterià, mentre que es produeix una inducció dels gens que codifiquen per les vies biosintètiques d'aminoàcids i de resposta a diferents situacions d'estrés. La síntesi de ppGpp està catalitzada per RelA i SpoT. RelA és la principal proteïna productora de ppGpp, responent a la manca d'aminoàcids, en canvi, SpoT es una proteïna bifuncional capaç de sintetitzar ppGpp com a resposta a altres condicions d'estrès i de degradar-lo (Cashel *et al.*, 1996).

S'ha descrit que ppGpp interacciona amb el centre catalític de l'ARNpol desestabilitzant el complex entre l'ARNpol i el promotor, produint així el seu efecte sobre l'expressió gènica. Tot i així, s'ha vist que ppGpp interfereix en la competència entre subunitats  $\sigma$ , o pot interaccionar amb altres proteïnes afectant la seva activitat, així com SlyA.

A *E. coli*, el doble mutant  $\triangle relAspoT$  és considerat ppGpp<sup>0</sup>, és a dir, incapaç de sintetitzar ppGpp sota cap condició. Aquestes soques han perdut la capacitat de créixer en medi mínim degut a la incapacitat de sintetitzar aminoàcids que tenen (Xiao *et al.*, 1991).

#### La proteïna DksA, un co-regulador de ppGpp

DksA és una proteïna de 151 aminoàcids (17 kDa) que conté un domini *coiled-coil*, dues α-hèlix antiparal·leles unides per un gir, i un domini en dits de zinc del tipus C4 (**fig. 14**). S'ha vist que DksA potencia tant l'efecte repressor de ppGpp sobre els promotors dels ARNr, com també l'efecte estimulador d'aquest sobre els promotors dels operons de biosíntesi d'alguns aminoàcids, suggerint que ppGpp i DksA són cofactors (Paul *et al.*, 2004). Degut al seu efecte sobre l'expressió del gens responsables de la biosíntesis d'aminoàcids, s'ha vist que l'absència de DksA afecta el creixement en plaques de medi mínim, tot i així, després de 3 dies d'incubació es va veure que certes soques deficients en *dksA* eren capaces de créixer en medi mínim M9. Per aquest motiu es

considera que els mutants *dksA* són bradítrofs, en comptes de auxòtrofs (Vinella *et al.*, 2012). S'ha determinat que DksA s'uneix al centre catalític de l'ARNpol, conjuntament amb ppGpp. Tot i així, DksA, per si sol, és incapaç d'unir-s'hi correctament (Perederina *et al.*, 2004).

Estudis realitzats al nostre grup han demostrat que els mutants  $ppGpp^0$  i els  $\Delta dksA$  tenen comportaments diferents, l'un respecte de l'altre, en l'expressió de diferents gens, relacionats amb la colonització i la virulència a *E. coli*. Es considera que de forma habitual DksA està unit a l'ARNpol impedint la unió d'altres proteïnes al canal secundari (Rutherford *et al.*, 2007), en canvi en absència de DksA, el canal secundari queda lliure perquè hi puguin accedir altres proteïnes, com ara GreA, i alterar l'expressió del gen estudiat. Aquest fet ens va permetre explicar algunes de les diferències observades entre els mutants ppGpp<sup>o</sup> i *dksA* (Aberg *et al.*, 2009). A més s'ha descrit que DksA no s'uneix a l'ARNpol en situacions de pausa o backtracking, suggerint que sota aquestes condicions hi pot haver un canvi en les proteïnes que interaccionen amb el canal secundari.

# Altres possibles factors que interaccionen amb l'ARNpol

Atenent a l'homologia estructural entre GreA i GreB, també s'han descrit en *E. coli* diferents proteïnes que potencialment interaccionen amb el canal secundari de l'ARNpol: DksA, Rnk, TraR, Ybil, etc (Perederina *et al.*, 2004; Lamour *et al.*, 2008; Blankschien *et al.*, 2009). Tenint en compte la quantitat relativa dels factors que interaccionen amb l'ARNpol i la seva afinitat per aquesta, com s'ha comentat abans, s'ha suggerit que en condicions normals la majoria de l'ARNpol es troba formant complex amb DksA i no amb els altres factors (Rutherford *et al.*, 2007). Tot i així, alguns estudis publicats indiquen que els factors Gre podrien patir canvis conformacionals atenent a diferents paràmetres ambientals i conseqüentment alterar l'afinitat relativa d'aquests factors pel canal secundari de l'ARNpol. S'ha vist que Gfh1, factor homoleg a GreA *Thermus thermophilus*, pateix un canvi conformacional com a resposta a canvis en el pH (de 6.5 a 7), sempre dins el rang fisiològic (Laptenko *et al.*, 2006).

Aquests descobriments suggereixen que el canal secundari de l'ARNpol podria actuar com a diana de múltiples interaccions proteiques que suposadament causarien alteracions en l'activitat de l'ARNpol. Dins d'aquest marc, s'ha determinat que l'expressió de GreA està regulada per la presència de  $\sigma^{E}$ , subunitat  $\sigma$  responsable de la resposta a l'estrès per xoc tèrmic. Això ens fa pensar que possiblement hi hagi una regulació a nivell del canal secundari de les respostes als canvis ambientals. El fet que proteïnes com TraR dels plàsmids conjugatius o algunes proteïnes fàgiques puguin interaccionar amb el canal secundari de l'ARNpol, ens planteja una qüestió evolutiva, on aquests elements mòbils haurien adquirit proteïnes amb capacitat de "segrestar" l'ARNpolimerasa pel seu propi ús. Per tant, l'estudi de la interacció de proteïnes reguladores que interaccionen en el canal secundari de l'ARNpol podria revelar l'existència d'un nivell de regulació de l'expressió gènica crucial i desconegut fins el moment.

#### Organismes model utilitzats

Les soques bacterianes utilitzades en aquesta tesi, *Escherichia coli* MG1655 i *Salmonella enterica* subsp. *enterica* serovar Typhimurium SV5015, són membres de la família de les Enterobacteriaceae, que comprenen bacils Gramnegatius, no esporulats, oxidasa positius, sovint mòtils amb flagels perítrics.

**Escherichia coli** viu a l'intestí d'humans i animals de sang calenta. Les soques K12, incloent-hi la soca MG1655, han estat extensivament utilitzades en investigació degut a que s'han reconegut com a segures (GRAS). Tot i així algunes soques d'*E. coli* són també importants patògens humans, podent produir diarrees, infeccions del tracte urinari o del sistema nerviós central. Es creu que diferents processos de transferència horitzontal gènica són l'origen de la generació de diferents soques patògenes d'*E. coli*. Aquests processos causen adquisició de diferents gens que els hi confereixen diferents habilitats (Balows *et al.*, 1992; Croxen *et al.*, 2013). Alguns d'aquests processos són força recents, com és el cas de la soca O104:H4, que va causar un brot de gastroenteritis a Alemanya al 2011 (World Health Organization, 2011; Bloch *et al.*, 2012), indicant la importància que té la transferència de gens en la patogènesi d'*Escherichia coli*.

Salmonella enterica enterica serovar Typhimurium és un patogen de contagi fecal-oral, que produeix gastroenteritis en humans. Salmonella té una tolerància a l'àcid que li permet travessar l'estomac, arribar a l'intestí i creuar la mucosa intestinal. Salmonella s'uneix a la superfície apical de la cèl·lula hoste de l'epiteli intestinal, provocant una alteració del citoesquelet d'actina i promovent la seva entrada en vesícules (fig. 18A). Després, Salmonella evita que les vesícules es fusionin amb els lisosomes (fig. 18B). Salmonella pot creuar la membrana basolateral i infectar altres cèl·lules epitelials i macròfags. Diferents factors de virulència són necessaris per a la infecció de Salmonella, molts d'ells es troben localitzats en illes de patogenicitat, bacteriòfags i el plàsmid pSLT. Els diferents factors de virulència són requerits a diferents moments, per tant, hi ha una regulació creuada entre els diferents factors per assegurar la correcta expressió dels diferents factors en el moment correcte (Haraga *et al.*, 2008; Fàbrega and Vila, 2013).

#### **Objectius**

Estudis previs realitzats en el nostre grup de recerca mostren que ppGpp i DksA poden tenir diferents efectes a la regulació de l'expressió gènica a *Escherichia coli* (Aberg *et al.*, 2009). Aquests resultats ens van permetre hipotetitzar que les diferències observades entre mutants deficients per DksA i ppGpp eren degudes a canvis a les proteïnes que s'uneixen al canal secundari de l'ARNpol, suggerint una possible competència entre aquests factors: DksA, GreA o GreB. De forma simultània, altres grups sostenien que degut a la quantitat i afinitat de DksA respecte les altres proteïnes, tal competència no seria possible (Rutherford *et al.*, 2007; Rutherford *et al.*, 2009). En aquest estudi pretenem explorar la possible existència de la competència entre els factors que interaccionen amb el canal secundari de l'ARNpol i el seu impacte a la regulació de l'expressió gènica. Els dos objectius d'aquesta tesi són:

1. Estudi de la possible competència entre els diferents factors que s'uneixen al canal secundari de l'ARNpol. Per dur-ho a terme es vol monitoritzar l'expressió de *greA* a diferents condicions, així com determinar la possible regulació creuada entre els diferents factors que interaccionen amb l'ARNpol. També es pretén estudiar el mecanisme d'acció de GreA modulant l'expressió d'un gen diana, *fliC*. Per estudiar els aspectes estructurals de la competència entre els diferents factors, es pretén determinar l'efecte de la sobreexpressió de GreA sobre el creixement bacterià, així com fer mutagènesi a l'atzar que ens permeti determinar aminoàcids importants per a la interacció de GreA amb l'ARNpol i la funcionalitat de GreA. Finalment un estudi filogenètic ens permetrà avaluar l'evolució d'aquests factors, tal com la pressió evolutiva produïda per la variabilitat dels factors que s'uneixen al canal secundari de l'ARNpol, exercida sobre determinades estructures de la proteïna GreA.

2. Determinar l'efecte d'aquests factors d'elements mòbils i HGT. Per dur-ho a terme volem determinar l'efecte de ppGpp i DksA sobre el perfil transcripcional de *Salmonella enterica* serovar Typhimurium.

## Resultats i discussió

#### Estudi de l'expressió de greA

S'han identificat 2 promotors que controlen l'expressió de *greA*: un  $\sigma^{70}$ depenent i un  $\sigma^{E}$ -depenent (**fig. 25**). Entre aquests i l'inici de transcripció s'ha descrit l'existència d'un terminador parcial que produeix un seguit de petits transcrits amb capacitat reguladora anomenat GraL (Potrykus *et al.*, 2010). Per tal de monitoritzar l'expressió de *greA*, s'han obtingut diferents fusions entre els promotors de *greA* i el gen *lacZ* (**taula 5**).

Hem pogut determinar que GreA autoregula la seva pròpia expressió. En absència de GreA augmenta l'expressió de *greA* (**fig. 26**). Aquesta autorepressió de GreA requereix l'activitat antipausa de GreA, ja que al complementar un mutant deficient en *greA* amb la proteïna GreA D41A, mutant sense activitat antipausa (Opalka *et al.*, 2003), no es recuperen els nivells d'expressió de la soca WT, a diferencia del que passa al complementar amb la proteïna GreA WT (**fig. 27**).

Per una altra banda hem vist que GraL és capaç de produir també un efecte autoregulador sobre l'expressió de *greA* (**fig. 28A**). A més, mitjançant fusions fetes a l'inici de transcripció del promotor  $\sigma^{70}$ -depenent (+3), hem pogut observar que ni GreA ni GraL són capaç de reduir l'expressió de *greA* en una soca *greA*<sup>-</sup>. Aquestes dades semblen indicar que l'autoregulació és independent de l'inici de transcripció del promotor depenent de  $\sigma^{70}$ -depenent. Per una altra banda, utilitzant una fusió que conté els dos promotors i el terminador (+101), i que per tant produeix GraL, recuperem l'autoregulació de *greA* (**fig. 28B**). Estudis similars duts a terme per Potrykus *et al.* (2010) mostren que l'autoregulació de *greA* no es duu a terme a nivell d'inici de transcripció, ja que no observen autoregulació mitjançant fusions transcripcionals amb l'inici de transcripció del promotor depenent de suggereixen que la seqüència compresa entre +3 i +101 és requerida per l'autoregulació.

Considerant que difícilment l'activitat antipausa pugui reprimir l'expressió gènica, hem hipotetitzat que podria ser un efecte indirecte. GreA, mitjançant la seva activitat antipausa permet l'expressió d'un factor desconegut (X) que

reprimiria l'expressió de *greA*. A més, GraL podria ser requerit per l'estabilitat del seu ARN missatger, la qual cosa, també estaria augmentant la seva expressió i com a conseqüència, reprimint *greA* (**fig. 28D**). Aquesta factor X podria necessitar la presència de la seqüència compresa entre +3 i +101 per inhibir l'expressió de *greA*. Tot i així hi ha altres possibles models que podrien explicar aquests resultats, com ara que GreA i GraL estiguessin estimulant de forma paral·lela diferents factors que puguin reprimir l'expressió de *greA*.

Per una altra banda hem vist que l'expressió de *greA* disminueix a fase estacionària, respecte a fase exponencial. Aquest efecte a nivell de la corba de creixement requereix també de la presència de GreA (**fig. 29**). És a dir, GreA produeix una reducció de l'expressió de *greA* a fase estacionària, possiblement per evitar la seva acumulació o per afavorir la interacció d'altres factors amb el canal secundari de l'ARNpol.

També s'ha determinat l'efecte de diferents factors ambientals sobre l'expressió de *greA*, com ara la disponibilitat d'oxigen i de magnesi, pH, osmolaritat i temperatura (**fig. 31**). Hem pogut determinar que només la temperatura, més concretament l'alta temperatura, té un efecte sobre l'expressió de *greA*, produint un augment de l'expressió de *greA*. Considerant que *greA* conté un promotor depenent de  $\sigma^{E}$  que és responsable de la resposta a l'estrès extracitoplasmàtic, produït per proteïnes mal plegades al periplasma degut a altes temperatures o a un xoc hiperosmòtic, decidim comprovar quin efecte té l'activació d'aquesta via sobre l'expressió de *greA*. Veiem que tant la sobreexpressió de  $\sigma^{E}$  com la seva activació sobreexpressant proteïnes quimèriques incapaces de plegar-se correctament al periplasma, produeixen una forta inducció de *greA* (**fig. 33**). Aquestes dades suggereixen que GreA és requerit a la cèl·lula en aquestes condicions, tant sigui pel seu paper antipausa, com el possible paper com a xaperona (Li *et al.*, 2012).

Per una altra banda hem dut a terme un anàlisi *in silico* de possibles llocs d'unió de diferents reguladors globals a la regió promotora de *greA* (**fig. 34**). Veiem possibles llocs d'unió de reguladors globals, dels quals només Fis, FadR, DgsA i Crp, semblen tenir un efecte sobre l'expressió de *greA* (**fig. 35**).

227

Degut al seu paper en el manteniment del nucleoide, Fis pot interferir en l'expressió de *greA* degut a un superenrrotllament de la zona, que impedeixi la unió de l'ARNpol a la zona promotora.

FadR esta implicat en el metabolisme dels àcids grassos. S'ha vist que FadR reprimeix l'expressió de *greA* (**fig. 35**) igual que s'ha determinat per a l'operó *fad*, responsable de la degradació d'àcids grassos. S'ha observat que FadR reconeix la presència de diferents àcids grassos, com l'àcid oleic, i en aquestes condicions es desenganxa de l'ADN alliberant el promotor. Per aquest motiu en gens reprimits per FadR, després de l'addició d'àcid oleic, es produeix una desrepressió del gen. Un efecte similar esperaríem veure per el gen *greA*, però l'addició d'àcid oleic no produeix cap efecte sobre l'expressió de *greA* (**fig. 37**). El fet que no detectem una resposta a alteracions fisiològiques de la regulació depenent de FadR, suggereix que els resultats obtinguts en el mutant *fadR*, podrien ser deguts a un efecte pleiotròpic o indirecte sobre l'expressió de *greA*.

Per una altra banda hem vist que mentre CRP estimula l'expressió de *greA*, DgsA la reprimeix. Curiosament ambdós reguladors s'unirien l'ADN, produint el seu efecte en absència de Glucosa en el mateix temps, produint un efecte contradictori. Tot i això, aquesta distribució s'ha observat en altres gens com *malT* o *ptsG* (Plumbridge, 2002). Veiem que en absència de glucosa l'expressió de *greA* augmenta respecte en presència de glucosa (**fig 38B**), tot i això no és un efecte molt dràstic, suggerint una modulació per part de DgsA. A més, experiments de complementació d'una soca deficient per *crp*, mostren que proteïnes CRP incapaces de contactar amb l'ARNpol (CRP H159L) poden recuperar l'expressió de *greA* en absència de *crp* (**fig. 39**), indicant que no es produeix un contacte directe de l'ARNpol amb CRP, i que podria ser una regulació directa o indirecta sobre l'expressió de *greA* a través d'un promotor CRP depenent de tipus 3.

#### Regulació creuada entre factors

Fusions *lacZ* similars a les que es van fer per *greA*, es van fer també per *greB* i *dksA* (**fig. 41**). Aquestes fusions ens han permès determinar que tant *greA*, com *dksA* autoregulen la seva expressió. A més, hem vist que existeix una

regulació creuada entre aquests factors, on GreA estimula l'expressió de *dksA*. DksA estimula l'expressió de *greB* (**fig. 42**). Estudiant l'expressió dels diferents factors a diferents punts de la corba de creixement, hem pogut determinar que, com s'ha mencionat anteriorment, mentre que l'expressió de *greA* disminueix a fase estacionària (OD<sub>600nm</sub> 2.0), l'expressió de *greB* augmenta, suggerint un intercanvi en les proteïnes que interaccionen en el canal secundari de l'ARNpol. Aquestes diferències d'expressió podrien variar l'equilibri entre les proteïnes que interaccionen amb el canal secundari de l'ARNpol. Aquest augment de l'expressió de *greB* és depenent de DksA.

Altres grups d'investigació (Chandrangsu et al., 2011; Vinella et al., 2012) han fet experiments similars, obtenint resultats similars en alguns aspectes, mentre que en altres obtenim resultats discrepants. Vinella et al. observa, igual que nosaltres, que GreA estimula l'expressió de dksA, així com que DksA estimula greB durant fase estacionària. Ells també l'expressió de observen l'autoregulació de greA i de dksA. De fet l'autoregulació de dksA, també és observada per Chandrangsu et al. (2011). En canvi, mentre nosaltres no veiem un efecte a diferents punts de la corba de creixement sobre l'expressió de dksA, a Chandrangsu et al. (2011) observen una disminució de l'expressió de dksA a fase estacionària tardana, respecte fase estacionària. Per una altra banda, Vinella et al. (2012) observen un augment de l'expressió de dksA a fase estacionària. Les diferències descrites poden ser degudes a les diferents fusions utilitzades als diversos estudis. Estudis fent servir tècniques de detecció de l'ARN missatger i de immunodetecció de proteïnes serien necessaris per caracteritzar apropiadament la regulació creuada entre els diferents gens.

# Efecte de la competència entre els factors que interaccionen amb l'ARNpol sobre l'expressió gènica del flagel a *E. coli*.

En el nostre grup de recerca, mitjançant estudis transcriptòmics, hem determinat l'efecte de ppGpp i DksA en *E. coli* (Aberg *et al.*, 2009). Es va observar que ppGpp i DksA regulen de forma oposada diferents gens, alguns d'ells relacionats amb la motilitat, com ara *fliC* (Aberg *et al.*, 2009). En absència de ppGpp, l'expressió de *fliC* disminueix, mentre que en absència de DksA, augmenta. Aquest augment de l'expressió de *fliC* en absència de DksA depèn

de la presència de GreA, la qual cosa ens va fer hipotetitzar una possible competència entre DksA i GreA per la unió amb el canal secundari de l'ARNpol. En absència de DksA, GreA s'uneix a l'ARNpol i estimula l'expressió de *fliC*. Aquests resultats van ser corroborats mitjançant estudis transcripcionals utilitzant una fusió distal (+1210) del gen *fliC* amb *lacZ* (**fig. 43A**). De forma interessant, quan es va utilitzar una fusió proximal (+70) no s'observa cap augment en l'expressió de *fliC* en absència de DksA (**fig. 43A**). Per explicar aquestes diferències entre la fusió distal i proximal, es va hipotetitzar que el gen *fliC* contenia una zona de pausa transcripcional, entre la posició +70 i +1210. GreA seria requerida per poder alliberar l'ARNpol de la seqüència de pausa. Per tant, en absència de DksA la interacció entre l'ARNpol i GreA es veu clarament afavorida, augmentant així l'expressió de *fliC* (**fig. 43B**).

L'efecte produït per l'absència de DksA també s'observa en la motilitat d'*E. coli* (**fig. 45**). La soca deficient en *dksA* té una motilitat major que la soca WT, mentre que en la soca *dksA greA* és pràcticament no mòtil. A més, la soca deficient en *greA* és no mòtil, indicant que GreA és necessari per la motilitat d'*E. coli*.

Experiments de qPCR mostren que GreA estimula l'expressió de fliC (fig. 46B). Aquesta dada indica que GreA, fins i tot en presència de DksA, pot unir-se a l'ARNpol. Curiosament, aquest efecte no el veiem mitjançant les fusions lacZ (fig. 46A). Podem suposar que les diferències entre els experiments de qPCR i d'activitat  $\beta$ -galactosidasa són degudes a que l'activitat basal de la fusió lacZ és similar a l'expressió de la soca WT i per tant no veiem la disminució deguda a l'absència de GreA. Veiem una discrepància entre els resultats obtinguts per qPCR, fusions transcripcionals i estudis fenotípics, plaques de motilitat. Hem de tenir en compte que les condicions de cultiu en els diferents experiments, mentre que en els experiments fenotípics s'ha utilitzat un medi sòlid, per els experiments transcripcionals hem utilitzat un medi líquid. Observacions en el microscopi electrònic de transferència (fig. 47) indiquen que quan creixem MG1655 en medi líquid, la seva flagel·lació és molt baixa, fins i tot inexistent, en comparació amb el creixement en medi sòlid. Per tant, el creixement en medi líquid seria una condició no permissiva per l'expressió del flagel, fet que explicaria les discrepàncies en la observació de l'expressió de fliC. Tot i així, les

fusions transcripcionals ens han estat de gran utilitat per estudiar l'efecte de la competència entre DksA i GreA sobre l'expressió de *fliC*.

L'expressió dels gens del flagel està altament jerarquitzada i controlada (Chevance and Hughes, 2008). El complex FlhDC activa l'expressió dels gens que codifiquen pel cos basal del flagel i per la subunitat  $\sigma^{F}$ , FliA, que és necessària per expressar els gens responsables de formar el motor, quimioreceptors i el filament, *fliC* entre ells. Degut a aquesta jerarquia vam decidir determinar l'efecte que tenen els factors que interaccionen amb el canal secundari de l'ARNpol sobre els nivells de FliA i FliC mitjançant Western blot (**fig. 49**).

Veiem que GreA no produeix cap efecte sobre els nivells de FliA, indicant que l'efecte de GreA observat sobre l'expressió de *fliC* no es produeix a nivell d'inici de transcripció (**fig. 49A**). En canvi veiem que en absència de *dksA*, hi ha un augment (2 cops) dels nivells de FliA. Aquest augment també s'observa en el doble mutant *dksA greA* 

Al determinar els nivells de FliC, veiem que en absència de DksA hi ha un augment de 57 vegades respecte a WT, que torna als nivells de la soca WT en el doble mutant *dksA greA* (**fig. 49B**). A més, en absència de GreA, els nivells de *fliC* disminueixen dramàticament (38 vegades). Atenent als resultats derivats de l'ús de les fusions distal i proximal i de les dades derivades de la immunodetecció de FliC i FliA, podem deduir que l'efecte de GreA és a nivell d'elongació de la transcripció, mentre que DksA actua a nivell d'inici de transcripció, afectant els nivells de la subunitat  $\sigma^{F}$ .

Considerant que GreA és essencial per a l'expressió de *fliC* i que l'activitat principal descrita per GreA és la de resoldre situacions de pausa o backtracking durant l'elongació de la transcripció (Laptenko *et al.*, 2003), vam decidir determinar l'efecte de l'activitat antipausa sobre l'expressió de *fliC*. Per fer-ho vam determinar si les mutacions en els residus D41 i E44 (Opalka *et al.*, 2003), necessaris per l'activitat antipausa de GreA (**fig. 51**), eren també necessàries per l'expressió de *fliC*. Utilitzant una soca que conté una mutació puntual en *greA*, produint un al·lel GreA E44K, veiem que aquesta soca no és mòtil. La

motilitat de la soca que conté GreA E44K es recupera quan afegim GreA<sup>WT</sup>, (**fig. 51A**). A més, també vam determinar la capacitat dels al·lels GreA D41A, D41N i E44K de recuperar la motilitat d'una soca *greA* (**fig. 51B**). Veiem que cap dels mutants sense activitat antipausa és capaç de recuperar la motilitat de la soca deficient per *greA*.

Per una altra banda vam determinar tant l'expressió de *fliC* com la motilitat de soques que contenen mutacions a la subunitat  $\beta$  de l'ARNpol, amb la capacitat de reduir la taxa de pausa: rpoB35 i rpoB111. Amb la fusió distal del gen *fliC* (+1210), veiem que tant el mutant rpoB35 com rpoB111 augmenten l'expressió de *fliC* (**fig. 52**). Aquesta inducció és menor amb la fusió proximal, suggerint que l'expressió de *fliC* és sensible a la taxa de pausa.

Per una altra banda, quan mirem la motilitat de soques amb l'al·lel rpoB35, comparat amb el al·lel rpoB<sup>WT</sup>, veiem que en absència de *greA* no hi ha una reducció de la motilitat amb el mutant rpoB35, a diferència de la reducció que s'observa amb l'al·lel rpoB<sup>WT</sup> (**fig. 53**). Aquests resultats indiquen que en absència de GreA, l'ARNpol no es capaç de passar de forma eficient per les possibles zones de pausa presents en *fliC* i per tant ni s'expressa *fliC* ni la soca és mòtil. En canvi, en un mutant rpoB35, degut a que l'ARNpol no es para a les zones de pausa, GreA ja no és necessari per la motilitat, així doncs, observem que aquesta soca és tant mòtil com la soca WT.

Per una altra banda hem vist que certs factors ambientals, com els diferents estats en què es troba el cultiu bacterià durant de creixement (**fig. 54**) o l'osmolaritat (**fig. 55**), juguen un paper important en l'expressió de *fliC*, i hem volgut determinar quin paper té GreA i DksA en aquesta regulació.

Veiem que a fase estacionària hi ha un augment de l'expressió de *fliC* (**fig. 54**). Per una banda veiem que aquesta inducció no és tant pronunciada quan utilitzem la fusió proximal, en comptes de la fusió distal. Per l'altra banda, veiem que a fase exponencial ( $OD_{600nm} 0.3$ ) no s'observen diferències entre una soca WT i *dksA*, en canvi a fase estacionària si que s'observa.

Veiem que l'efecte de DksA sobre l'expressió de *fliC* depèn de l'osmolaritat (**fig. 55A**), però l'expressió de GreA no (**fig. 55C**). Aquests resultats podrien suggerir

que GreA pot patir canvis conformacionals com a resposta a elevada osmolaritat, i en conseqüència alterar l'expressió de gens que són dependents de GreA.

#### Efecte de la sobreexpressió de GreA sobre el creixement bacterià

Hem pogut determinar que la sobreexpressió de *greA* produeix un efecte negatiu sobre el creixement bacterià. Veiem una disminució en el creixement en cultiu en líquid (**fig. 56**), així com una disminució en la capacitat de formar colònies en cultius en sòlid (**fig. 58**). Veiem que en absència de DksA, l'efecte negatiu de la sobreexpressió de *greA* és major, presumiblement degut a que la deficiència de DksA deixa lliure el canal secundari i GreA pot interaccionar molt més eficientment amb l'ARNpol (**fig. 56** i **fig. 57**). Per una altra banda veiem que en absència de ppGpp la sobreexpressió de *greA* produeix un efecte negatiu menor, suggerint que d'alguna manera ppGpp és necessari per la correcte unió de GreA a l'ARNpol.

També hem determinat que la sobreexpressió de *greB* produeix un efecte negatiu sobre el creixement bacterià. Tot i així, aquest efecte negatiu és molt menys dramàtic que el produït per GreA. Aquest efecte negatiu podria ser l'explicació biològica tant de l'autoregulació de GreA, com la seva regulació durant la corba de creixement.

Per estudiar més a fons l'efecte negatiu produït per a la sobreexpressió de *greA* sobre el creixement bacterià, hem determinat l'efecte que té sobre la morfologia cel·lular. Hem vist un allargament de les cèl·lules en forma de filaments (**fig. 59**). Aquesta filamentació pot ser deguda a un efecte de GreA sobre el gen *ftsN*, gen essencial per la correcte divisió cel·lular. Mutants deficients en *ftsN*, produeixen llargs filaments com els que nosaltres observem. Per una altra banda s'ha determinat, mitjançant estudis transcriptòmics (Stepanova *et al.,* 2007), que GreA pot reprimir l'expressió de *ftsN*. Aquests resultats ens permeten suggerir que la sobreexpressió de GreA podria produir una filamentació similar a la observada en absència de *ftsN*, degut a una forta repressió d'aquest gen deguda a GreA.

#### Estudi estructural de la proteïna GreA

Aprofitant l'efecte negatiu de la sobreexpressió de *greA* sobre el creixement bacterià, hem dut a terme una mutagènesi a l'atzar per determinar quins aminoàcids són important per a la funcionalitat de GreA, així com per a la seva unió a l'ARNpol i la competència entre factors.

Vam obtenir una llibreria de mutants puntuals en GreA mitjançant Error-prone PCR. Aquest mètode es basa en el fet que la Taq polimerasa no conté capacitat de corregir errors. De manera que es va amplificar *greA* en condicions subòbtimes amb l'objectiu que la Taq polimerasa cometi el màxim d'errors possibles. La col·lecció de mutants va ser clonada en el plàsmid pTrc99a, sota el control d'un promotor induïble per IPTG, i els plàsmids resultants es van transformar sobre una soca WT i una DksA. Finalment es van seleccionar aquells mutants que podien créixer en condicions de sobreexpressió de *greA* (**fig. 60**).

Els clons resistents van ser genotipats i seqüenciats per determinar la naturalesa de la mutació. El 27.5% dels mutants resistents a la sobreexpressió de *greA* contenen mutacions puntuals a la seqüència codificant, i com a conseqüència, produint canvis en la seqüència proteica.

Mirant la distribució dels mutants sobre la proteïna GreA veiem que es troben repartits entre els dos dominis de la proteïna, indicant així que tots dos dominis participen en l'activitat o són necessaris per l'afinitat de GreA a l'ARNpol.

Si els mutants són capaços de créixer en condicions de sobreexpressió de *greA* podria ser degut a que les diferents mutacions afectarien:

- la funcionalitat de GreA
- la unió de GreA a l'ARNpol, degut a canvis en:
  - o l'afinitat pel canal secundari de l'ARNpol
  - l'habilitat per competir amb altres factors que s'uneixen al canal secundari de l'ARNpol

Per determinar l'efecte que tenen aquests mutants en la capacitat de competir amb DksA pel canal secundari de l'ARNpol, hem determinat l'efecte de la sobreexpressió d'aquests mutants en presència o absència de DksA (**taula 7**). Per valorar el creixement de les diferents soques es va fer de la següent manera:

- es consideren positius (+) quan en presència d'IPTG trobem colònies d'un mida similar a les observades sense IPTG.
- es consideren negatius (-) quan en presència d'IPTG no es detecten colònies.
- es consideren resistents intermedis (+/-) quan en presència d'IPTG hi ha colònies però el seu creixement es veu afectat.

Aquells mutants positius tant en presència com en absència d'IPTG, com G10S, L69P, S121P, S124L i L130P, són mutants on GreA pot haver perdut la seva activitat o la seva capacitat d'unió a l'ARNpol. Per una altra banda, aquells mutants que produeixen un efecte negatiu sobre el creixement bacterià únicament en absència de DksA, com R9C, R15C, L21R, K22E, A51T, N96S, S121T, E151G i Y157H, poden tenir afectada la seva afinitat per l'ARNpol o una menor capacitat de competir amb DksA.

Per estudiar més en detall l'efecte què tenen els diferents mutants, hem estudiat dos fenotips associats a GreA: i) Efecte de l'activitat antipausa sobre l'expressió de *fliC*, ii) Capacitat de recuperar la prototròfia en soques deficients en *dksA* i ppGpp.

i) Com s'ha comentat abans, l'activitat antipausa de GreA és necessària per a l'expressió de *fliC*. Per aquest motiu hem decidit mirar quin efecte tenen els diferents mutants tenen sobre l'expressió de *fliC* i així determinar fins a quin punt la seva activitat antipausa està afectada. Així doncs, vam introduir els diferents GreA<sup>Mut</sup> a una soca deficient per *dksA greA*. Com ja s'ha comentat anteriorment, l'expressió de *fliC* en una soca *dksA* és molt elevada, comparada amb la soca WT. En canvi el doble mutant *dksA greA* té una expressió més reduïda, similar a la que s'observa a WT. Per aquest motiu, si en una soca *dksA greA* introduïm una proteïna GreA similar a la que s'observaria en un mutant *dksA*. En canvi, si introduïm una proteïna

GreA que no té activitat antipausa, l'expressió de *fliC* no variaria. Veiem, doncs que els diferents mutants tenen diferents nivells d'expressió de *fliC*, i per tant, tenen diferents activitats antipausa (**fig. 64**).

Veiem que els mutants S124L i L130P, que formen part de l'hèlix α del domini globular, no tenen pràcticament activitat antipausa. Cal destacar que els dos mutants eren capaços de créixer en condicions de sobreexpressió tant en presencia com en absència de DksA. En canvi, els mutants R9C, E151G i Y157H produeixen un efecte similar que la proteïna GreA<sup>WT</sup>, indicant que tenen conservada l'activitat antipausa. A més aquests mutants tenien una capacitat intermedia de créixer en presencia de DksA i eren incapaços de créixer en la seva absència.

Vam dur a terme una aproximació experimental per determinar la capacitat d'unió de determinats mutants puntuals. Aquest experiment es basa en la capacitat dels GreA<sup>Mut</sup> de desplacar la proteïna GreA cromosòmica. Al sobreexpressar una proteïna GreA<sup>Mut</sup> en una soca deficient per DksA, si el mutant és capac d'unir a l'ARNpol, però no es funcional, la seva sobreexpressió permetria desplaçar GreA de l'ARNpol i disminuir l'expressió de fliC, produint un efecte similar a la doble mutació dksA greA. Per contra, si el GreA<sup>Mut</sup> no es capaç d'unir-se a l'ARNpol, la sobreexpressió d'aquesta proteïna no produirà cap efecte en l'expressió de fliC. Vam determinar la capacitat d'unió dels mutants C58R, S121P, S124L i L130P, així com dels mutants D41A, D41N i E44K. Tal com s'havia descrit (Opalka et al., 2003), els nostres resultats (fig. 66) mostren que D41A, D41N i E44K, s'uneixen a l'ARNpol, però no són funcionals ja que no tenen activitat antipausa. Una cosa semblant veiem amb els mutants S124L i L130P. En canvi amb els mutants S121P i C58R, veiem que la seva sobreexpressió no produeix cap efecte sobre l'expressió de fliC, indicant que no són capaços d'unir-se a l'ARNpol.

ii) S'ha descrit que la soca deficient per ppGpp és auxotròfica en medi mínim M9, en canvi una soca deficient per *dksA* és braditròfica, és a dir, creix molt lentament (Vinella *et al.*, 2012). A més s'ha vist que el doble mutant *dksA greA* és auxotròfic, indicant que la capacitat de créixer del mutant *dksA* és degut a la presencia de GreA. La sobreexpressió de *greA* és capaç de recuperar la prototròfia a soques deficients per *dksA greA*, però també a la soca *dksA* ppGpp<sup>0</sup> (Vinella *et al.*, 2012). Cal destacar que mentre que a Vinella *et al.* (2012) s'observa que una soca deficient en *dksA* és braditròfica, nosaltres veiem que és auxotròfica (**taula 8**).

Hem determinat la capacitat dels diferents mutants de recuperar la prototròfia al ser sobreexpressats en una soca deficient en *dksA* i en una soca *dksA greA* (**taula 9**). Veiem que els mutants S124L i L130P no tenen l'habilitat de restaurar la prototròfia ni a la soca *dksA*, ni a la soca *dksA greA*. Tenint en compte que tampoc mostraven activitat antipausa, podem deduir que són mutants que han perdut completament la seva funcionalitat. Al estar els dos localitzats a la hèlix del domini globular, ens ha permès deduir que aquesta hèlix és important per la funcionalitat de GreA.

Per una altra banda els mutants R9C, E151G i Y157H amb una activitat antipausa similar a la WT, són capaços de recuperar la prototròfia a la soca *dksA greA*, però a la soca *dksA* només és capaç de fer-ho en condicions de sobreexpressió. Aquestes dades ens permeten suggerir que aquest mutants tenen afectada l'habilitat de competir amb DksA per unir-se al canal secundari de l'ARNpol.

Els mutants L21R, A51T, C58R, E59G, D98G, S121P i S121T són capaços de recuperar la prototròfia en una soca *dksA greA* només en condicions de sobreexpressió, indicant que la seva afinitat per l'ARNpol podria estar afectada.

Anàlisi filogenètic de la distribució dels factors que s'uneixen al canal secundari de l'ARNpol

*Escherichia coli* conté diferents proteïnes amb capacitat d'unir-se al canal secundari de l'ARNpol, com ara GreA, GreB, DksA i RnK (Borukhov *et al.*, 1993; Perederina *et al.*, 2004; Lamour *et al.*, 2008). Tot i així trobem altres proteïnes amb aquesta capacitat en altres organismes, com ara Gfh1 a *Thermus thermophilus* (Lamour *et al.*, 2006) o DksA2 a *Pseudomonas aeruginosa* (Blaby-Haas *et al.*, 2011; Furman *et al.*, 2013); o en elements genètics com bacteriòfags i plàsmids (Blankschien *et al.*, 2009).

Dins d'aquesta diversitat hem observat dues famílies principals. La família DksA, que conté proteïnes formades per hèlix α repartides entre un domini globular i un domini "coiled-coil", que és la part que entra dins l'ARNpol. En el domini globular acostumen a tenir un estructura de dits de Zinc tipus C4 (Perederina *et al.*, 2004).

La família GreA conté, a part d'ella mateixa, GreB, Gfh1 i RnK. Les proteïnes d'aquesta família tenen una similaritat estructural molt elevada entre elles, amb un domini N-terminal "coiled-coil" similar a DksA i amb un domini C-terminal globular format per lamina plegada  $\beta$  i una hèlix  $\alpha$ .

Les dues famílies, tot i tenir una organització espacial similar, no tenen homologia a nivell de seqüència, com s'observa a la **taula 10**. A més, cap dels membre de la família GreA conté una estructura en dits de Zinc.

Estudiant més en detall la família GreA (**fig. 69**), mitjançant arbres filogenètics de Maximum Likelihood (ML), podem proposar que tant Gfh1 i GreB han aparegut per duplicació de *greA* i posterior diferenciació. Per una altra banda, veiem que RnK esta més allunyat filogenèticament de la resta de membres de la família (**taula 10**).

Si estudiem més en detall la família DksA amb arbres filogenètics de ML (**fig. 71**) observem un clade format per els membres de la família codificats en plàsmids, bacteriòfags i pseudofags. Per una altra banda veiem un segon clade que correspon a DksA, des d'on hi surt una branca corresponent a DksA2, suggerint que DksA2 va evolucionar de DksA perdent el dit de zinc. S'observa un tercer clade que engloba proteïnes similar a DksA presents a *Borrelia garinii, Hydrogenobacter thermophilus* i *Thermocrinis albus*.

Si determinem la distribució de les diferents proteïnes que interaccionen amb el canal secundari de l'ARNpol entre els diferents bacteris, veiem que tots els fílums, excepte Aquificae, Chlamydia i alguns grups de Cyanobacteria, contenen GreA (**fig. 72**), indicant que GreA podria ser la proteïna ancestral de les altres proteïnes de la seva família. A més, l'existència d'una varietat de factors es troba concentrada a Proteobacteria ja que els altres fílums només contenen GreA, excepte alguns membres de Spirochaetes i el filum Thermus.

Hem analitzat la diversitat nucleotídica a diferents parts de la proteïna GreA mitjançant comparant la quantitat de mutacions no sinònimes, mutacions que provoquen canvis en la seqüència proteica, que es detecten entre un grup amb una alta diversitat de factors que interaccionen amb el canal secundari de l'ARNpol (Enterobacteriaceae) i un grup que només conté GreA (Bacillaceae). Veiem que no hi ha diferències en el nombre de mutacions no sinònimes en el domini globular i pràcticament en tot el domini fibril·lar, però si en el linker entre els dos dominis (**fig. 73**). Veiem que en Enterobacteriaceae el linker esta més conservat que en Bacillaceae. La presència d'altres proteïnes que poden interaccionar amb el canal secundari de l'ARNpol ha fet que aquesta estructura es conservés per mantenir la seva capacitat de competir per unir-se a l'ARNpol. A més aquesta pressió podria indicar que GreA podria patir canvis conformacionals en determinades condicions.

## <u>Efecte de ppGpp i DksA en el perfil d'expressió gènica a Salmonella enterica</u> <u>serovar Typhimurium</u>

En el nostre grup de recerca, vam determinar que GreA era important per l'expressió de factors de colonització en *E. coli*, al detectar discrepàncies observades entre el perfil d'expressió gènica de soques deficients en DksA i ppGpp. Al trobar gens regulats de forma diferencial entre ppGpp i DksA, vam hipotetitzar que això era degut a que en absència de DksA s'alterava la competència i equilibri entre els factors que interaccionen amb el canal secundari de l'ARNpol. Tenint en compte que els elements sensibles a la competència d'aquests factors en *E. coli* estaven relacionats amb la colonització, vam decidir fer un estudi similar en un bacteri patogen. El model utilitzat és *Salmonella enterica* serovar Typhimurium. Tot i que poc es coneix

sobre l'efecte de DksA a *Salmonella*, s'ha determinat que ppGpp té un important efecte sobre l'expressió de gens codificats en les illes de patogenicitat SPI1 i SPI2 (Thompson *et al.*, 2006).

Hem determinat el patró d'expressió de la soca SV5015 de Salmonella enterica serovar Typhimurium en cultius en LB a 37°C crescuts fins a fase estacionària (OD<sub>600nm</sub> 2.0) utilitzant un microarray de NimbleGen que conté sondes per gens cromosòmics i de diferents plàsmids que es troben a la soca SV5015, pSLT, pCol1B i pSRF1010. Considerant significativament afectats aquells gens amb un *fold-change* superior a 3 i inferior a -3, hem determinat que tant ppGpp com DksA regulen una quantitat similar de gens, un 8.3% i 10.8%, respectivament (**taula 11**). Mentre que ppGpp sembla tenir un paper més aviat activador, la proteïna DksA sembla activar un nombre similar de gens dels que reprimeix.

Per una altra banda, al determinar l'efecte de ppGpp i DksA, diferenciant entre gens que corresponen al *core* genoma i gens obtinguts per processos de HGT (**taula 12**), veiem que, sota les condicions experimentals utilitzades, ppGpp estimula l'expressió de fins a un 20% dels gens HGT. Tots els gens HGT afectats per ppGpp són estimulats per aquest, indicant que ppGpp és una molècula reguladora per a l'expressió de molts gens obtinguts per processos de HGT. DksA té un efecte similar al de ppGpp sobre els gens obtinguts per processor sobre els gens del *core* genoma més important que ppGpp.

Es van distribuir els gens afectats per ppGpp i DksA en diferents categories funcionals (**fig. 75**) i veiem que els dos factors, majoritàriament, estimulen gens corresponents a HGT. Per una altra banda, ppGpp estimula l'expressió de gens englobats a la categoria funcional de processos cel·lulars, i gens presents a la categoria de sense classificar, que engloba alguns factors important per la virulència de *Salmonella*. En canvi, ppGpp reprimeix l'expressió de gens presents a la categoria de destí proteic, biosíntesis d'aminoàcids i metabolisme energètic. El fet que ppGpp no estimuli, i que reprimeixi alguns gens responsables de la biosíntesi d'aminoàcids, és consistent amb el fet que els cultius es van fer créixer en medi ric i que la síntesi d'aminoàcids en aquest medi es trobarà reprimida ja que és més senzill agafar els aminoàcids del medi.

Consistent amb això, detectem que ppGpp estimula l'expressió de gens que codifiquen per transportadors d'oligopèptids i aminoàcids.

Quan estudiem els gens afectats per DksA (**fig. 75**), veiem que la majoria dels gens estimulats per DksA, pertanyen a la categoria d'embolcall cel·lular, processos cel·lulars i proteïnes sense classificar. Per una altra banda, l'expressió dels gens reprimits per DksA es troben englobats per les categories de metabolisme energètic, biosíntesis d'àcids grassos i la d'àcids nucleics.

Quan comparem les categories on trobem gens afectats per ppGpp i DksA (**fig. 75**) veiem un comportament similar en determinades categories, com biosíntesis d'aminoàcid, metabolisme cel·lular intermedi i destí de proteïnes. Tot i així hi ha gens que estan diferencialment regulats entre ppGpp i DksA, que pertanyen a les categories de metabolisme de l'ADN, metabolisme energètic i funcions regulatòries.

Diferents fenotips, presumiblement associats a gens que la seva expressió està afectada per ppGpp i DksA, van ser estudiats (**fig. 76**). Veiem que ppGpp té una supervivència al fred i a l'estrés oxidatiu més baixa que la soca WT, degut a que ppGpp estimula l'expressió de *cspB* i diferents gens necessaris per la resposta a l'estrés oxidatiu (**taula 13**). A més veiem que tant ppGpp com DksA són necessaris per la formació de biofilm i la motilitat.

Quan mirem a la distribució dels gens afectats per ppGpp i DksA corresponents a HGT, veiem que els dos factors estimulen gens presents en illes de patogenicitat, plàsmids, bacteriòfags i l'operó *pdu* (**fig. 78**).

Els dos factors estimulen gens de les mateixes illes aproximadament, afectant la majoria dels gens de les SPI 1, 2, 4 i 5 (**fig. 79**). La SPI3 és la menys afectada de les illes. Tot i així DksA estimula fortament el gen *mtgC* present a la SPI3. Aquest gen és important per la patogenicitat de *Salmonella*.

Els dos factors estimulen gens responsables de la invasió cel·lular codificats en les illes de patogenicitat. La producció de proteïnes efectores, SipBCD de la SPI1, requerides per la invasió cel·lular es pot observar determinant l'activitat hemolítica de sobrenedants lliures de cèl·lules (**fig. 79B**). En absència de

ppGpp i DksA, hi ha una disminució de l'activitat hemolítica, suggerint que ppGpp i DksA poden ser factors important per la producció dels efectors SipBDC i com a conseqüència en la invasió cel·lular.

Salmonella conté diferents bacteriòfags incorporats en el seu genoma, alguns d'ells codifiquen per factors de virulència com SopE i GtgB. Veiem que tant DksA com ppGpp estimulen aquests gens. A més, ppGpp estimula gens associats a la replicació d'aquests fags, suggerint que ppGpp podria tenir un paper en la mobilització de bacteriòfags. Per això hem determinat la producció de bacteriòfags en condicions d'inducció amb mitomicina C, o sense, en soques deficients per ppGpp o DksA. Mentre que no veiem diferències en la producció de bacteriòfags, tant en condicions de inducció com sense (**fig. 80**). Aquestes dades suggereixen que ppGpp podria ser important pel moviment de gens per transducció natural, on ADN codificant per factors de virulència podria ser englobat dins de partícules víriques i transferides en un nou hoste (Penadés *et al.*, 2014).

Un efecte similar l'observem al plàsmid conjugatiu pSLT, sent l'únic plàsmid que conté gens afectats per ppGpp i DksA (**fig. 81A**). L'alarmona ppGpp, però no DksA, estimula l'expressió de l'operó *spvABCD* que és essencial per la reestructuració del citoesquelet d'actina de la cèl·lula hoste, i per tant en el procés d'invasió cel·lular. A més veiem que l'expressió del gen *traD*, essencial per la conjugació de pSLT (Lu *et al.*, 2008) es troba estimulat per ppGpp, indicant que ppGpp pot tenir un efecte sobre la conjugació bacteriana. Per això vam determinar la taxa de conjugació en absència de ppGpp i DksA. Mentre DksA sembla tenir cap paper en la conjugació de pSLT, ppGpp és crucial per la conjugació (**fig. 81B**).

Considerant l'efecte de ppGpp sobre la producció de fags i la conjugació, podem proposar que ppGpp és un factor important per la disseminació de gens HGT.

Finalment, si comparem l'efecte entre ppGpp i DksA, veiem que el 51% i el 62% dels gens afectats per ppGpp i DksA, respectivament, estan afectats de

forma individual. Aquest dades s'obtenen quan utilitzem un llindar de significança de 3 / -3 i per tant estan esbiaixades. Un exemple d'això el trobaríem en el gen *fruB*, on en absència de ppGpp té una expressió amb un *fold-change* de -11.58, però en absència de DksA el *fold-change* és de -2.71. Amb el llinda de significança a -3 classificaríem aquest gen com un cas de regulació independent per ppGpp, quan en realitat esta sent estimulat per els dos factors. Per això hem considerat que no hi ha cap efecte sobre l'expressió gènica amb un fold change entre -1.5 i 1.5. De manera que *fruB* estaria regulat de forma similar per ppGpp.

Així doncs quan mirem als gens afectats per ppGpp i DksA (**fig. 83**), veiem que el 61% dels gens afectats estan regulats de forma similar entre ppGpp i DksA, tant estimulats com reprimits. Un 32% dels gens és afectat per un dels factors però no per l'altre, produint un efecte independent. I un 7% dels gens (47 gens) són afectats per ppGpp i DksA de forma oposada a *Salmonella*. Alguns d'aquests gens són gens de l'operó de degradació de Maltosa (*malMEFK*), així com d'altres transportadors de carbohidrats. A més també inclou algunes porines com *ompF*, la proteïna associada al nucleoide StpA o la chaperona lbpB.

Tot i així més estudis serien necessaris per determina si a *Salmonella*, el paper diferencial observat entre ppGpp i DksA pot ser produït també per la competència per el canal secundari de l'ARNpol, com s'ha vist en *Escherichia coli*.

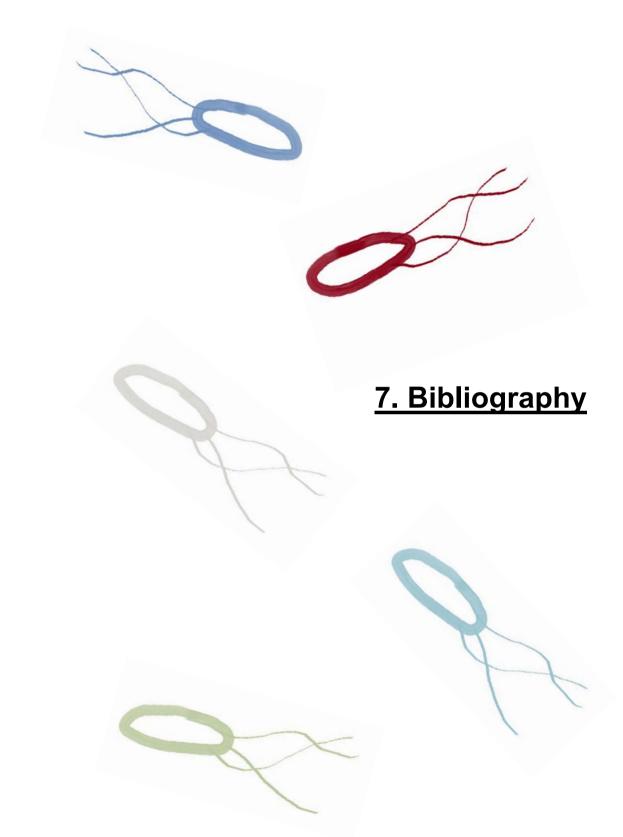
## **Conclusions**

En aquest projecte hem estudiat diferents aspectes de la competència entre les proteïnes que interaccionen amb el canal secundari de l'ARNpol. Canvis en l'expressió gènica d'aquests factors produirien canvis en l'equilibri entre aquestes proteïnes per unir-se al canal secundari de l'ARNpol. Per aquest motiu, hem estudiat a fons l'expressió de *greA* així com la regulació creuada entre els factors que interaccionen amb el canal secundari.

Hem determinat que la competència entre proteïnes que interaccionen amb el canal secundari pot produir un efecte sobre l'expressió de determinats gens, com ara *fliC*.

Així com hem dut a terme un estudi estructural i filogenètic de la proteïna GreA per estudiar més a fons la competència entre els diferents factors que s'uneixen dins el canal secundari, així com quins són els dominis importants per a la competència. A més hem determinat quins aminoàcids són important per a la funcionalitat de GreA.

Finalment, estudis transcripcionals a *Salmonella enterica* serovar Typhimurium s'han dut a terme per determinar l'efecte dels diferents factors que s'uneixen a l'ARNpol sobre elements mòbils i l'expressió de gens considerats HGT.


Les conclusions d'aquest treball són:

- 1. GreA autoreprimeix la seva expressió.
- 2. L'autoregulació de *greA* requereix l'activitat antipausa de GreA i la seqüència localitzada entre +3 i +101, respecte a l'inici de transcripció.
- 3. GraL està implicat en l'autoregulació de greA.
- 4. L'expressió de *greA* disminueix a fase estacionària. Aquest efecte requereix la presència de GreA.
- 5. Una alta temperatura (42°C) estimula l'expressió de greA.

- 6. Sobreexpressió de *rpoE* o producció d'un estrés extracitoplasmatic amb proteïnes mal plegades, incrementa l'expressió de *greA*.
- 7. Variacions en la disponibilitat d'oxigen o magnesi, pH o osmolaritat no produeixen cap efecte sobre l'expressió de *greA* a *E.* coli.
- 8. El complex regulatori cAMP-CRP regula l'expressió de greA.
- 9. Existeix una regulació creuada entre GreA, GreB i DksA. GreA estimula l'expressió de *dksA*, mentre que DksA estimula l'expressió de *greB* a fase estacionària.
- 10. GreA i DksA afecten l'expressió de *fliC* a nivells d'elongació i iniciació de la transcripció, respectivament.
- 11. L'activitat antipausa de GreA és necessària per l'expressió de fliC.
- 12. Sobreexpressió de *greA* i el presumible increment de la quantitat relativa del complex ARNpol-GreA causa un efecte negatiu sobre la fisiologia cel·lular.
- 13. L'alarmona ppGpp podria ser necessària per la interacció de GreA amb el canal secundari de l'ARNpol.
- 14. L'hèlix α del domini globular de GreA és essencial per la funcionalitat de GreA.
- 15. Mutacions que puguin tenir un efecte sobre el linker que uneix els dos dominis de GreA, com I75V o P5S, podrien produir canvis hipotètics en la conformació de GreA.
- 16. Els mutants L21R, A51T, C58G, D98G, S121P i S121T poden tenir l'afinitat per l'ARNpol afectada.
- 17. Els mutants R9C, E151G i Y157H poden tenir afectada la capacitat de competir amb DksA per unir-se al canal secundari de l'ARNpol.

- 18. Estudis filogenètics ens han dut a concloure que la variabilitat de factors que s'uneixen al canal secundari de l'ARNpol ha aparegut per duplicació gènica.
- 19. Tot els bacteris tenen *greA*, excepte els filums *Aquificae*, *Chlamydia*, i alguns membres de *Cyanobacteria*.
- 20. A proteobacteries hi ha una major diversitat de factors que s'uneixen a l'ARNpol que a altres grups bacterians.
- 21.La presència d'altres factors que s'uneixen al canal secundari de l'ARNpol, com ara DksA o GreB, produeixen una pressió evolutiva per preservar determinades estructures de GreA.
- 22. L'alarmona ppGpp i DksA són reguladors globals de l'expressió gènica a Salmonella enterica serovar Typhimurium.
- 23. L'alarmona ppGpp i DksA estimulen l'expressió d'un gran nombre de gens, ppGpp estimula un 4% dels gens del *core genome* i fins a un 19.9% dels gens HGT i DksA estimula un 4% de gens del *core* i 14.4% de HGT.
- 24. L'alarmona ppGpp i DksA estimulen l'expressió de gens de les SPIs, sent la SPI3 la menys afectada de les illes.
- 25. L'activitat hemolítica associada a proteïnes efectores de la SPI1 es troba afectada en mutants deficients per ppGpp i *dksA*, suggerint que aquests factors podrien ser importants per a la invasió cel·lular.
- 26. L'alarmona ppGpp i DksA estimulen l'expressió de factors de virulència presents en bacteriòfags i plàsmids.
- 27.La mobilització de bacteriòfags i plàsmids conjugatius és estimulada per ppGpp.
- 28. L'alarmona ppGpp i DksA regulen de forma similar el 61% dels gens afectats.

29. El 7% dels gens afectats per ppGpp i DksA, mostra un comportament oposat entre els dos factors.



- Aberg, A., Fernández-Vázquez, J., Cabrer-Panes, J.D., Sánchez, A., and Balsalobre, C. (2009) Similar and divergent effects of ppGpp and DksA deficiencies on transcription in *Escherichia coli. J Bacteriol* **191**: 3226–36.
- Aberg, A., Shingler, V., and Balsalobre, C. (2006) (p)ppGpp regulates type 1 fimbriation of *Escherichia coli* by modulating the expression of the site-specific recombinase FimB. *Mol Microbiol* **60**: 1520–33.
- Aberg, A., Shingler, V., and Balsalobre, C. (2008) Regulation of the *fimB* promoter: a case of differential regulation by ppGpp and DksA in vivo. *Mol Microbiol* **67**: 1223–41.
- Adelman, K., Porta, A. La, Santangelo, T.J., Lis, J.T., Roberts, J.W., and Wang, M.D. (2002) Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior. *Proc Natl Acad Sci U S A* **99**: 13538–43.
- Aertsen, A., and Michiels, C.W. (2008) Stress and How Bacteria Cope with Death and Survival. .
- Alba, B.M., and Gross, C.A. (2004) Regulation of the *Escherichia coli* sigma-dependent envelope stress response. *Mol Microbiol* **52**: 613–9.
- Amann, E., Ochs, B., and Abel, K.J. (1988) Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in *Escherichia coli*. *Gene* **69**: 301–15.
- Applied Biosystems by life technologies (2011) SYBR® Green PCR Master Mix and SYBR® Green RT-PCR Reagents Kit. .
- Artsimovitch, I., and Landick, R. (2000) Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. *Proc Natl Acad Sci U S A* 97: 7090–5.
- Artsimovitch, I., and Landick, R. (2000) Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. *Proc Natl Acad Sci* 97: 7090– 7095.
- Artsimovitch, I., Patlan, V., Sekine, S., Vassylyeva, M.N., Hosaka, T., Ochi, K., *et al.* (2004) Structural Basis for Transcription Regulation by Alarmone ppGpp. *Cell* **117**: 299– 310.
- Aseev, L. V, Koledinskaya, L.S., and Boni, I. V (2014) Dissecting the Extended "-10" *Escherichia coli rpsB* Promoter Activity and Regulation in vivo. *Biochem Biokhimiia* 79: 776–84.
- Atkinson, G.C., Tenson, T., and Hauryliuk, V. (2011) The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. *PLoS One* **6**: e23479.
- Atlas, R.M., and Parks, L.C. (1993) *Handbook of microbiological media*. CRC Press, Boca Raton [Fla.] [etc.] :
- Babu, M., Díaz-Mejía, J.J., Vlasblom, J., Gagarinova, A., Phanse, S., Graham, C., *et al.* (2011) Genetic interaction maps in *Escherichia coli* reveal functional crosstalk among cell envelope biogenesis pathways. *PLoS Genet* **7**: e1002377.
- Baharoglu, Z., Lestini, R., Duigou, S., and Michel, B. (2010) RNA polymerase mutations that facilitate replication progression in the *rep uvrD recF* mutant lacking two accessory replicative helicases. *Mol Microbiol* **77**: 324–36.
- Balows, A., Trüper, H.G., Dworkin, M., Harder, W., and Schleifer, K.-H. (1992) Escherichia coli. In The Prokaryotes: A handbook on the biology of bacteria: ecophysiology, isolation, identifiaction and aplications. Springer-Verlag New York Inc., pp. 2696–2736.
- Barembruch, C., and Hengge, R. (2007) Cellular levels and activity of the flagellar sigma factor FliA of *Escherichia coli* are controlled by FlgM-modulated proteolysis. *Mol Microbiol* **65**: 76–89.
- Bar-Nahum, G., Epshtein, V., Ruckenstein, A.E., Rafikov, R., Mustaev, A., and Nudler, E. (2005) A ratchet mechanism of transcription elongation and its control. *Cell* 120: 183–93.
- Battesti, A., and Bouveret, E. (2006) Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism. *Mol Microbiol* 62: 1048–63.
- Becskei, A., and Serrano, L. (2000) Engineering stability in gene networks by autoregulation. *Nature* **405**: 590–3.

- Bell, A., Gaston, K., Williams, R., Chapman, K., Kolb, A., Buc, H., *et al.* (1990) Mutations that alter the ability of the *Escherichia coli* cyclic AMP receptor protein to activate transcription. *Nucleic Acids Res* **18**: 7243–50.
- Bianchi, A.A., and Baneyx, F. (1999) Hyperosmotic shock induces the sigma32 and sigmaE stress regulons of *Escherichia coli*. *Mol Microbiol* **34**: 1029–38.
- Blaby-Haas, C.E., Furman, R., Rodionov, D. a, Artsimovitch, I., and Crécy-Lagard, V. de (2011) Role of a Zn-independent DksA in Zn homeostasis and stringent response. *Mol Microbiol* **79**: 700–15.
- Blankschien, M.D., Potrykus, K., Grace, E., Choudhary, A., Vinella, D., Cashel, M., and Herman, C. (2009) TraR, a homolog of a RNAP secondary channel interactor, modulates transcription. *PLoS Genet* **5**: e1000345.
- Bloch, S.K., Felczykowska, A., and Nejman-Faleńczyk, B. (2012) *Escherichia coli* O104:H4 outbreak--have we learnt a lesson from it? *Acta Biochim Pol* **59**: 483–8.
- Bolivar, F., Rodriguez, R.L., Greene, P.J., Betlach, M.C., Heyneker, H.L., Boyer, H.W., *et al.* (1977) Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. *Gene* **2**: 95–113.
- Borisov, V.B., Gennis, R.B., Hemp, J., and Verkhovsky, M.I. (2011) The cytochrome bd respiratory oxygen reductases. *Biochim Biophys Acta* **1807**: 1398–413.
- Borukhov, S., Sagitov, V., and Goldfarb, A. (1993) Transcript cleavage factors from E. coli. *Cell* **72**: 459–466.
- Bossi, L., and Figueroa-Bossi, N. (2007) A small RNA downregulates LamB maltoporin in Salmonella. *Mol Microbiol* **65**: 799–810.
- Bougdour, A., and Gottesman, S. (2007) ppGpp regulation of RpoS degradation via anti-adaptor protein IraP. *Proc Natl Acad Sci U S A* **104**: 12896–901.
- Boyd, E.F., and Brüssow, H. (2002) Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. *Trends Microbiol* **10**: 521–9.
- Braasch, I., and Salzburger, W. (2009) In ovo omnia: diversification by duplication in fish and other vertebrates. *J Biol* **8**: 25.
- Braeken, K., Moris, M., Daniels, R., Vanderleyden, J., and Michiels, J. (2006) New horizons for (p)ppGpp in bacterial and plant physiology. *Trends Microbiol* **14**: 45–54.
- Brown, L., Gentry, D., Elliott, T., and Cashel, M. (2002) DksA affects ppGpp induction of RpoS at a translational level. *J Bacteriol* **184**: 4455–65.
- Brown, T.A. (2010) *Gene cloning and DNA analysis : an introduction*. Wiley-Blackwell, Oxford :
- Browning, D.F., and Busby, S.J. (2004) The regulation of bacterial transcription initiation. *Nat Rev Microbiol* **2**: 57–65.
- Busby, S., and Ebright, R.H. (1999) Transcription activation by catabolite activator protein (CAP). *J Mol Biol* **293**: 199–213.
- Busiek, K.K., and Margolin, W. (2014) A role for FtsA in SPOR-independent localization of the essential *Escherichia coli* cell division protein FtsN. *Mol Microbiol* **92**: 1212–26.
- Bylund, G.O., Wipemo, L.C., Lundberg, L.A., and Wikström, P.M. (1998) RimM and RbfA are essential for efficient processing of 16S rRNA in *Escherichia coli*. *J Bacteriol* 180: 73–82.
- Byrne, R.T., Chen, S.H., Wood, E.A., Cabot, E.L., and Cox, M.M. (2014) *Escherichia coli* genes and pathways involved in surviving extreme exposure to ionizing radiation. *J Bacteriol* **196**: 3534–45.
- Camacho, E.M., and Casadesús, J. (2002) Conjugal transfer of the virulence plasmid of *Salmonella enterica* is regulated by the leucine-responsive regulatory protein and DNA adenine methylation. *Mol Microbiol* **44**: 1589–1598.
- Campanacci, V., Dubois, D.Y., Becker, H.D., Kern, D., Spinelli, S., Valencia, C., *et al.* (2004) The *Escherichia coli* YadB gene product reveals a novel aminoacyl-tRNA synthetase like activity. *J Mol Biol* **337**: 273–83.
- Campbell, E.A., Muzzin, O., Chlenov, M., Sun, J.L., Olson, C.A., Weinman, O., *et al.* (2002) Structure of the bacterial RNA polymerase promoter specificity sigma subunit. *Mol Cell* **9**: 527–39.
- Cashel, M. (1969) The control of ribonucleic acid synthesis in *Escherichia coli*. IV. Relevance of unusual phosphorylated compounds from amino acid-starved stringent strains. *J Biol Chem* **244**: 3133–41.

- Cashel, M., Gentry, D., Hernandez, V., and Vinella, D. (1996) The stringent Response. In *Escherichia coli and Salmonella: cellular and molecular biology*. ASM Press, Wastington, D.C. : pp. 1458–1489.
- Chandrangsu, P., Lemke, J.J., and Gourse, R.L. (2011) The *dksA* promoter is negatively feedback regulated by DksA and ppGpp. *Mol Microbiol* 80: 1337–48.
- Chandrangsu, P., Wang, L., Choi, S.H., and Gourse, R.L. (2012) Suppression of a dnaKJ deletion by multicopy *dksA* results from non-feedback-regulated transcripts that originate upstream of the major *dksA* promoter. *J Bacteriol* **194**: 1437–46.
- Chevance, F.F. V, and Hughes, K.T. (2008) Coordinating assembly of a bacterial macromolecular machine. *Nat Rev Microbiol* **6**: 455–65.
- Cho, B.-K., Knight, E.M., Barrett, C.L., and Palsson, B.Ø. (2008) Genome-wide analysis of Fis binding in *Escherichia coli* indicates a causative role for A-/AT-tracts. *Genome Res* 18: 900–10.
- Connolly, L., Pen, A.D.E.L.A.S., and Gross, C.A. (1997) E Is an Essential Sigma Factor in *Escherichia coli. J Bacteriol* **179**: 6862–6864.
- Costa, X.J. Da, and Artz, S.W. (1997) Mutations that render the promoter of the histidine operon of Salmonella typhimurium insensitive to nutrient-rich medium repression and amino acid downshift. *J Bacteriol* **179**: 5211–7.
- Costanzo, A., Nicoloff, H., Barchinger, S.E., Banta, A.B., Gourse, R.L., and Ades, S.E. (2008) ppGpp and DksA likely regulate the activity of the extracytoplasmic stress factor sigmaE in *Escherichia coli* by both direct and indirect mechanisms. *Mol Microbiol* 67: 619–32.
- Croxen, M.A., Law, R.J., Scholz, R., Keeney, K.M., Wlodarska, M., and Finlay, B.B. (2013) Recent advances in understanding enteric pathogenic *Escherichia coli*. *Clin Microbiol Rev* 26: 822–80.
- Dai, K., Xu, Y., and Lutkenhaus, J. (1993) Cloning and characterization of ftsN, an essential cell division gene in *Escherichia coli* isolated as a multicopy suppressor of ftsA12(Ts). *J Bacteriol* 175: 3790–3797.
- Dalebroux, Z.D., Svensson, S.L., Gaynor, E.C., and Swanson, M.S. (2010) ppGpp conjures bacterial virulence. *Microbiol Mol Biol Rev* **74**: 171–99.
- Dalebroux, Z.D., and Swanson, M.S. (2012) ppGpp: magic beyond RNA polymerase. *Nat Rev Microbiol* **10**: 203–12.
- Datsenko, K.A., and Wanner, B.L. (2000) One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *Proc Natl Acad Sci U S A* **97**: 6640–5.
- Daubin, V., and Ochman, H. (2004) Bacterial genomes as new gene homes: the genealogy of ORFans in E. coli. *Genome Res* **14**: 1036–42.
- Decker, K., Plumbridge, J., and Boos, W. (1998) Negative transcriptional regulation of a positive regulator: the expression of malT, encoding the transcriptional activator of the maltose regulon of *Escherichia coli*, is negatively controlled by MIc. *Mol Microbiol* 27: 381–90.
- Deutscher, J. (2008) The mechanisms of carbon catabolite repression in bacteria. *Curr Opin Microbiol* **11**: 87–93.
- Ding, L., Wang, Y., Hu, Y., Atkinson, S., Williams, P., and Chen, S. (2009) Functional characterization of FIgM in the regulation of flagellar synthesis and motility in Yersinia pseudotuberculosis. *Microbiology* **155**: 1890–900.
- Dini-Andreote, F., Andreote, F.D., Araújo, W.L., Trevors, J.T., and Elsas, J.D. van (2012) Bacterial genomes: habitat specificity and uncharted organisms. *Microb Ecol* 64: 1–7.
- Dudin, O., Geiselmann, J., Ogasawara, H., Ishihama, A., and Lacour, S. (2014) Repression of flagellar genes in exponential phase by CsgD and CpxR, two crucial modulators of *Escherichia coli* biofilm formation. *J Bacteriol* **196**: 707–15.
- Dutta, D., Shatalin, K., Epshtein, V., Gottesman, M.E., and Nudler, E. (2011) Linking RNA polymerase backtracking to genome instability in E. coli. *Cell* **146**: 533–43.
- Ellermeier, C.D., Janakiraman, A., and Slauch, J.M. (2002) Construction of targeted single copy lac fusions using lambda Red and FLP-mediated site-specific recombination in bacteria. *Gene* **290**: 153–61.
- Erickson, D.L., Lines, J.L., Pesci, E.C., Venturi, V., and Storey, D.G. (2004) Pseudomonas aeruginosa relA contributes to virulence in Drosophila melanogaster. *Infect Immun* **72**: 5638–45.

- Fàbrega, A., and Vila, J. (2013) *Salmonella enterica* serovar Typhimurium skills to succeed in the host: virulence and regulation. *Clin Microbiol Rev* **26**: 308–41.
- Fass, E., and Groisman, E.A. (2009) Control of Salmonella pathogenicity island-2 gene expression. *Curr Opin Microbiol* **12**: 199–204.
- Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. *J Mol Evol* **17**: 368–76.
- Feng, G.H., Lee, D.N., Wang, D., Chan, C.L., and Landick, R. (1994) GreA-induced transcript cleavage in transcription complexes containing *Escherichia coli* RNA polymerase is controlled by multiple factors, including nascent transcript location and structure. *J Biol Chem* **269**: 22282–94.
- Feng, Y., and Cronan, J.E. (2009) A new member of the *Escherichia coli* fad regulon: transcriptional regulation of fadM (ybaW). *J Bacteriol* **191**: 6320–8.
- Feng, Y., and Cronan, J.E. (2012) Crosstalk of *Escherichia coli* FadR with global regulators in expression of fatty acid transport genes. *PLoS One* **7**: e46275.
- Fengs, G., Lee, D.N., Wangs, D., Chans, C.L., and Landickall, R. (1994) GreA-induced Transcript Cleavage in Transcription *Escherichia coli* RNA Polymerase Is Complexes Containing Controlled by Multiple Factors, Including Nascent Transcript Location and Structure \*. *J Biol Chem* 22282–22294.
- Field, T.R., Layton, A.N., Bispham, J., Stevens, M.P., and Galyov, E.E. (2008) Identification of novel genes and pathways affecting Salmonella type III secretion system 1 using a contact-dependent hemolysis assay. *J Bacteriol* **190**: 3393–8.
- Figueroa-Bossi, N., and Bossi, L. (1999) Inducible prophages contribute to Salmonella virulence in mice. *Mol Microbiol* **33**: 167–176.
- Figueroa-Bossi, N., Uzzau, S., Maloriol, D., and Bossi, L. (2001) Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella. *Mol Microbiol* **39**: 260–71.
- Forst, S.A., and Roberts, D.L. (1994) Signal transduction by the EnvZ-OmpR phosphotransfer system in bacteria. *Res Microbiol* **145**: 363–73.
- Friden, P., Newman, T., and Freundlich, M. (1982) Nucleotide sequence of the ilvB promoter-regulatory region: a biosynthetic operon controlled by attenuation and cyclic AMP. *Proc Natl Acad Sci U S A* **79**: 6156–60.
- Furman, R., Biswas, T., Danhart, E.M., Foster, M.P., Tsodikov, O. V, and Artsimovitch, I. (2013) DksA2, a zinc-independent structural analog of the transcription factor DksA. *FEBS Lett* **587**: 614–9.
- Furman, R., Tsodikov, O. V, Wolf, Y.I., and Artsimovitch, I. (2013) An insertion in the catalytic trigger loop gates the secondary channel of RNA polymerase. *J Mol Biol* **425**: 82–93.
- Gogarten, J.P., Doolittle, W.F., and Lawrence, J.G. (2002) Prokaryotic evolution in light of gene transfer. *Mol Biol Evol* **19**: 2226–38.
- Gopalkrishnan, S., Nicoloff, H., and Ades, S.E. (2014) Co-ordinated regulation of the extracytoplasmic stress factor, sigmaE, with other *Escherichia coli* sigma factors by (p)ppGpp and DksA may be achieved by specific regulation of individual holoenzymes. *Mol Microbiol* **93**: 479–93.
- Gordon, R.E., and Mihm, J.M. (1962) The Type Species of the Genus Nocardia. J Gen Microbiol 27: 1–10.
- Gotoh, H., Okada, N., Kim, Y.G., Shiraishi, K., Hirami, N., Haneda, T., *et al.* (2003) Extracellular secretion of the virulence plasmid-encoded ADP-ribosyltransferase SpvB in Salmonella. *Microb Pathog* **34**: 227–38.
- Goudeau, D.M., Parker, C.T., Zhou, Y., Sela, S., Kroupitski, Y., and Brandl, M.T. (2013) The salmonella transcriptome in lettuce and cilantro soft rot reveals a niche overlap with the animal host intestine. *Appl Environ Microbiol* **79**: 250–62.
- Guajardo, R., and Sousa, R. (1997) A model for the mechanism of polymerase translocation. *J Mol Biol* **265**: 8–19.
- Guiney, D.G., and Fierer, J. (2011) The Role of the spv Genes in Salmonella Pathogenesis. *Front Microbiol* **2**: 129.
- Guisbert, E., Yura, T., Rhodius, V.A., and Gross, C.A. (2008) Convergence of molecular, modeling, and systems approaches for an understanding of the *Escherichia coli* heat shock response. *Microbiol Mol Biol Rev* **72**: 545–54.

- Gummesson, B., Lovmar, M., and Nyström, T. (2013) A proximal promoter element required for positive transcriptional control by guanosine tetraphosphate and DksA protein during the stringent response. *J Biol Chem* 288: 21055–64.
- Guo, S., Alshamy, I., Hughes, K.T., and Chevance, F.F. V (2014) Analysis of factors that affect FlgM-dependent type III secretion for protein purification with *Salmonella enterica* serovar Typhimurium. *J Bacteriol* **196**: 2333–47.
- Gusarov, I., and Nudler, E. (1999) The Mechanism of Intrinsic Transcription Termination. *Mol Cell* **3**: 495–504.
- Guyer, M.S., Reed, R.R., Steitz, J.A., and Low, K.B. (1981) Identification of a sexfactor-affinity site in E. coli as gamma delta. *Cold Spring Harb Symp Quant Biol* **45 Pt 1**: 135–40.
- Hammer, B.K., and Swanson, M.S. (1999) Co-ordination of Legionella pneumophila virulence with entry into stationary phase by ppGpp. *Mol Microbiol* **33**: 721–731.
- Hanahan, D., Jessee, J., and Bloom, F.R. (1991) Plasmid transformation of *Escherichia coli* and other bacteria. *Methods Enzymol* **204**: 63–113.
- Hansen-Wester, I., and Hensel, M. (2001) Salmonella pathogenicity islands encoding type III secretion systems. *Microbes Infect* **3**: 549–59.
- Haraga, A., Ohlson, M.B., and Miller, S.I. (2008) Salmonellae interplay with host cells. *Nat Rev Microbiol* **6**: 53–66.
- Haralalka, S., Nandi, S., and Bhadra, R.K. (2003) Mutation in the relA Gene of Vibrio cholerae Affects In Vitro and In Vivo Expression of Virulence Factors. *J Bacteriol* 185: 4672–4682.
- Harinarayanan, R., Murphy, H., and Cashel, M. (2008) Synthetic growth phenotypes of *Escherichia coli* lacking ppGpp and transketolase A (tktA) are due to ppGpp-mediated transcriptional regulation of tktB. *Mol Microbiol* **69**: 882–94.
- Haugen, S.P., Ross, W., and Gourse, R.L. (2008) Advances in bacterial promoter recognition and its control by factors that do not bind DNA. *Nat Rev Microbiol* 6: 507– 19.
- Henard, C.A., Tapscott, T., Crawford, M.A., Husain, M., Doulias, P.-T., Porwollik, S., *et al.* (2014) The 4-cysteine zinc-finger motif of the RNA polymerase regulator DksA serves as a thiol switch for sensing oxidative and nitrosative stress. *Mol Microbiol* **91**: 790–804.
- Henkin, T.M. (2000) Transcription termination control in bacteria. *Curr Opin Microbiol* **3**: 149–153.
- Hook-Barnard, I., Johnson, X.B., and Hinton, D.M. (2006) *Escherichia coli* RNA polymerase recognition of a sigma70-dependent promoter requiring a -35 DNA element and an extended -10 TGn motif. *J Bacteriol* **188**: 8352–9.
- Howarth, D.G., and Donoghue, M.J. (2006) Phylogenetic analysis of the "ECE" (CYC/TB1) clade reveals duplications predating the core eudicots. *Proc Natl Acad Sci U* S A 103: 9101–6.
- Hurley, D., McCusker, M.P., Fanning, Sã©., and Martins, M. (2014) Salmonella–Host Interactions Modulation of the Host Innate Immune System. *Front Immunol* **5**: 481.
- Inouye, M., and Phadtare, S. (2004) Cold shock response and adaptation at near-freezing temperature in microorganisms. *Sci STKE* **2004**: pe26.
- Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U., and Speed, T.P. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. *Biostatistics* 4: 249–64.
- Ishihama, A. (2000) Functional modulation of *Escherichia coli* RNA polymerase. *Annu Rev Microbiol* **54**: 499–518.
- Ivancic, T., Jamnik, P., and Stopar, D. (2013) Cold shock CspA and CspB protein production during periodic temperature cycling in *Escherichia coli. BMC Res Notes* **6**: 248.
- Jacob, F., Perrin, D., Sanchez, C., and Monod, J. (1960) [Operon: a group of genes with the expression coordinated by an operator]. *C R Hebd Seances Acad Sci* 250: 1727–9.
- Jiang, M., Datta, K., Walker, A., Strahler, J., Bagamasbad, P., Andrews, P.C., and Maddock, J.R. (2006) The *Escherichia coli* GTPase CgtAE is involved in late steps of large ribosome assembly. *J Bacteriol* **188**: 6757–70.

- Jiang, M., Sullivan, S.M., Wout, P.K., and Maddock, J.R. (2007) G-protein control of the ribosome-associated stress response protein SpoT. *J Bacteriol* **189**: 6140–7.
- Jishage, M., and Ishihama, A. (1998) A stationary phase protein in *Escherichia coli* with binding activity to the major sigma subunit of RNA polymerase. *Proc Natl Acad Sci U S A* **95**: 4953–8.
- Jishage, M., Kvint, K., Shingler, V., and Nyström, T. (2002) Regulation of sigma factor competition by the alarmone ppGpp. *Genes Dev* **16**: 1260–70.
- Jöres, L., and Wagner, R. (2003) Essential steps in the ppGpp-dependent regulation of bacterial ribosomal RNA promoters can be explained by substrate competition. *J Biol Chem* **278**: 16834–43.
- Kalia, D., Merey, G., Nakayama, S., Zheng, Y., Zhou, J., Luo, Y., *et al.* (2013) Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. *Chem Soc Rev* **42**: 305–41.
- Kang, P.J., and Craig, E.A. (1990) Identification and characterization of a new *Escherichia coli* gene that is a dosage-dependent suppressor of a dnaK deletion mutation. *J Bacteriol* **172**: 2055–64.
- Kanjee, U., Gutsche, I., Alexopoulos, E., Zhao, B., Bakkouri, M. El, Thibault, G., *et al.* (2011) Linkage between the bacterial acid stress and stringent responses: the structure of the inducible lysine decarboxylase. *EMBO J* **30**: 931–44.
- Kearns, D.B. (2010) A field guide to bacterial swarming motility. *Nat Rev Microbiol* 8: 634–44.
- Kishida, H., Unzai, S., Roper, D.I., Lloyd, A., Park, S.-Y., and Tame, J.R.H. (2006) Crystal structure of penicillin binding protein 4 (dacB) from *Escherichia coli*, both in the native form and covalently linked to various antibiotics. *Biochemistry* **45**: 783–92.
- Klumpp, J., and Fuchs, T.M. (2007) Identification of novel genes in genomic islands that contribute to Salmonella typhimurium replication in macrophages. *Microbiology* **153**: 1207–20.
- Korzheva, N., Mustaev, A., Kozlov, M., Malhotra, A., Nikiforov, V., Goldfarb, A., and Darst, S.A. (2000) A Structural Model of Transcription Elongation. *Science (80-)* 289: 619–625.
- Koulich, D., Nikiforov, V., and Borukhov, S. (1998) Distinct functions of N and Cterminal domains of GreA, an *Escherichia coli* transcript cleavage factor. *J Mol Biol* 276: 379–89.
- Koulich, D., Orlova, M., Malhotra, a., Sali, a., Darst, S. a., and Borukhov, S. (1997) Domain Organization of *Escherichia coli* Transcript Cleavage Factors GreA and GreB. *J Biol Chem* **272**: 7201–7210.
- Krebs, J.E., Goldstein, E.S., Kilpatrick, S.T., and Lewin, B. (2011) *Lewin's genes X*. Jones and Bartlett Publishers, Sudbury :
- Kulish, D., Lee, J., Lomakin, I., Nowicka, B., Das, A., Darst, S., *et al.* (2000) The functional role of basic patch, a structural element of *Escherichia coli* transcript cleavage factors GreA and GreB. *J Biol Chem* **275**: 12789–98.
- Lamour, V., Hogan, B.P., Erie, D.A., and Darst, S.A. (2006) Crystal structure of Thermus aquaticus Gfh1, a Gre-factor paralog that inhibits rather than stimulates transcript cleavage. *J Mol Biol* **356**: 179–88.
- Lamour, V., Rutherford, S.T., Kuznedelov, K., Ramagopal, U. a, Gourse, R.L., Severinov, K., and Darst, S. a (2008) Crystal structure of *Escherichia coli* Rnk, a new RNA polymerase-interacting protein. *J Mol Biol* **383**: 367–79.
- Landick, R. (2005) NTP-entry routes in multi-subunit RNA polymerases. *Trends Biochem Sci* **30**: 651–4.
- Landick, R. (2006) The regulatory roles and mechanism of transcriptional pausing. *Biochem Soc Trans* **34**: 1062–6.
- Laptenko, O., Kim, S.-S., Lee, J., Starodubtseva, M., Cava, F., Berenguer, J., *et al.* (2006) pH-dependent conformational switch activates the inhibitor of transcription elongation. *EMBO J* 25: 2131–41.
- Laptenko, O., Lee, J., Lomakin, I., and Borukhov, S. (2003) Transcript cleavage factors GreA and GreB act as transient catalytic components of RNA polymerase. *EMBO J* **22**: 6322–34.

- Laurie, A.D., Bernardo, L.M.D., Sze, C.C., Skarfstad, E., Szalewska-Palasz, A., Nyström, T., and Shingler, V. (2003) The role of the alarmone (p)ppGpp in sigma N competition for core RNA polymerase. *J Biol Chem* 278: 1494–503.
- Lee, S.J., Xie, A., Jiang, W., Etchegaray, J.P., Jones, P.G., and Inouye, M. (1994) Family of the major cold-shock protein, CspA (CS7.4), of *Escherichia coli*, whose members show a high sequence similarity with the eukaryotic Y-box binding proteins. *Mol Microbiol* **11**: 833–9.
- Lei, S.P., Lin, H.C., Wang, S.S., Callaway, J., and Wilcox, G. (1987) Characterization of the Erwinia carotovora pelB gene and its product pectate lyase. *J Bacteriol* 169: 4379– 83.
- Lemke, J.J., Durfee, T., and Gourse, R.L. (2009) DksA and ppGpp directly regulate transcription of the *Escherichia coli* flagellar cascade. *Mol Microbiol* **74**: 1368–79.
- Li, C., Louise, C.J., Shi, W., and Adler, J. (1993) Adverse conditions which cause lack of flagella in *Escherichia coli. J Bacteriol* **175**: 2229–35.
- Li, K., Jiang, T., Yu, B., Wang, L., Gao, C., Ma, C., *et al.* (2012) Transcription elongation factor GreA has functional chaperone activity. *PLoS One* **7**: e47521.
- Lu, J., Wong, J.J.W., Edwards, R.A., Manchak, J., Frost, L.S., and Glover, J.N.M. (2008) Structural basis of specific TraD-TraM recognition during F plasmid-mediated bacterial conjugation. *Mol Microbiol* **70**: 89–99.
- Maciąg-Dorszyńska, M., Szalewska-Pałasz, A., and Węgrzyn, G. (2013) Different effects of ppGpp on *Escherichia coli* DNA replication in vivo and in vitro. *FEBS Open Bio* 3: 161–4.
- Magnusson, L.U., Farewell, A., and Nyström, T. (2005) ppGpp: a global regulator in *Escherichia coli. Trends Microbiol* **13**: 236–42.
- Magnusson, L.U., Gummesson, B., Joksimović, P., Farewell, A., and Nyström, T. (2007) Identical, independent, and opposing roles of ppGpp and DksA in *Escherichia coli*. *J Bacteriol* **189**: 5193–202.
- Majander, K., Anton, L., Antikainen, J., Lång, H., Brummer, M., Korhonen, T.K., and Westerlund-Wikström, B. (2005) Extracellular secretion of polypeptides using a modified *Escherichia coli* flagellar secretion apparatus. *Nat Biotechnol* **23**: 475–81.
- Malde, A., Gangaiah, D., Chandrashekhar, K., Pina-Mimbela, R., Torrelles, J.B., and Rajashekara, G. (2014) Functional characterization of exopolyphosphatase/guanosine pentaphosphate phosphohydrolase (PPX/GPPA) of Campylobacter jejuni. *Virulence* 5: 521–33.
- Martinez-Rucobo, F.W., and Cramer, P. (2013) Structural basis of transcription elongation. *Biochim Biophys Acta* **1829**: 9–19.
- Mascher, T., Helmann, J.D., and Unden, G. (2006) Stimulus perception in bacterial signal-transducing histidine kinases. *Microbiol Mol Biol Rev* **70**: 910–38.
- McGlynn, P., and Lloyd, R.G. (2000) Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression. *Cell* **101**: 35–45.
- Mechold, U., Potrykus, K., Murphy, H., Murakami, K.S., and Cashel, M. (2013) Differential regulation by ppGpp versus pppGpp in *Escherichia coli*. *Nucleic Acids Res* 41: 6175–89.
- Merrikh, H., Ferrazzoli, A.E., and Lovett, S.T. (2009) Growth phase and (p)ppGpp control of IraD, a regulator of RpoS stability, in *Escherichia coli*. *J Bacteriol* **191**: 7436–46.
- Miki, T., Okada, N., Shimada, Y., and Danbara, H. (2004) Characterization of Salmonella pathogenicity island 1 type III secretion-dependent hemolytic activity in *Salmonella enterica* serovar Typhimurium. *Microb Pathog* **37**: 65–72.
- Mira, A., Martín Cuadrado, A.B., D'Auria, G., and Rodríguez Valera, F. (2010) The bacterial pan-genome: a new paradigm in microbiology. *Int Microbiol Off J Spanish Soc Microbiol* **13**: 45–57.
- Mira, A., Ochman, H., and Moran, N.A. (2001) Deletional bias and the evolution of bacterial genomes. *Trends Genet* 17: 589–96.
- Mirold, S., Rabsch, W., Rohde, M., Stender, S., Tschäpe, H., Rüssmann, H., *et al.* (1999) Isolation of a temperate bacteriophage encoding the type III effector protein SopE from an epidemic Salmonella typhimurium strain. *Proc Natl Acad Sci U S A* 96: 9845–50.

- Mishra, S., and Imlay, J. (2012) Why do bacteria use so many enzymes to scavenge hydrogen peroxide? *Arch Biochem Biophys* **525**: 145–60.
- Mitchell, J.E., Zheng, D., Busby, S.J.W., and Minchin, S.D. (2003) Identification and analysis of "extended -10" promoters in *Escherichia coli*. *Nucleic Acids Res* 31: 4689– 95.
- Mitchell, J.G., and Kogure, K. (2006) Bacterial motility: links to the environment and a driving force for microbial physics. *FEMS Microbiol Ecol* **55**: 3–16.
- Mizuno, T., and Mizushima, S. (1990) Signal transduction and gene regulation through the phosphorylation of two regulatory components: the molecular basis for the osmotic regulation of the porin genes. *Mol Microbiol* **4**: 1077–82.
- Monod, J. (1949) The Growth of Bacterial Cultures. Annu Rev Microbiol 3: 371–394.
- Montero, M., Eydallin, G., Viale, A.M., Almagro, G., Muñoz, F.J., Rahimpour, M., *et al.* (2009) *Escherichia coli* glycogen metabolism is controlled by the PhoP-PhoQ regulatory system at submillimolar environmental Mg2+ concentrations, and is highly interconnected with a wide variety of cellular processes. *Biochem J* 424: 129–41.
- Mooney, R.A., Darst, S.A., and Landick, R. (2005) Sigma and RNA polymerase: an onagain, off-again relationship? *Mol Cell* 20: 335–45.
- Mouslim, C., and Hughes, K.T. (2014) The effect of cell growth phase on the regulatory cross-talk between flagellar and Spi1 virulence gene expression. *PLoS Pathog* **10**: e1003987.
- Müller, C.M., Aberg, A., Straseviçiene, J., Emody, L., Uhlin, B.E., and Balsalobre, C. (2009) Type 1 fimbriae, a colonization factor of uropathogenic *Escherichia coli*, are controlled by the metabolic sensor CRP-cAMP. *PLoS Pathog* **5**: e1000303.
- Münch, R., Hiller, K., Grote, A., Scheer, M., Klein, J., Schobert, M., and Jahn, D. (2005) Virtual Footprint and PRODORIC: an integrative framework for regulon prediction in prokaryotes. *Bioinformatics* **21**: 4187–9.
- Murakami, K.S., Masuda, S., Campbell, E.A., Muzzin, O., and Darst, S.A. (2002) Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. *Science* **296**: 1285–90.
- Murphy, H., and Cashel, M. (2003) Isolation of RNA polymerase suppressors of a (p)ppGpp deficiency. *Methods Enzymol* **371**: 596–601.
- My, L., Rekoske, B., Lemke, J.J., Viala, J.P., Gourse, R.L., and Bouveret, E. (2013) Transcription of the *Escherichia coli* fatty acid synthesis operon fabHDG is directly activated by FadR and inhibited by ppGpp. *J Bacteriol* **195**: 3784–95.
- Navarro, F., Robin, A., D'Ari, R., and Joseleau-Petit, D. (1998) Analysis of the effect of ppGpp on the ftsQAZ operon in *Escherichia coli*. *Mol Microbiol* **29**: 815–23.
- Naville, M., Ghuillot-Gaudeffroy, A., Marchais, A., and Gautheret, D. (2014) ARNold: A web tool for the prediction of Rho-independent transcription terminators. *RNA Biol* 8: 11–13.
- Neidhardt, F.C. (1964) The regulation RNA synthesis in bacteria. *Prog Nucleic Acid Res Mol Biol* **3**: 145–81.
- Neidhardt, F.C., and Curtis, R. (1996) *Escherichia coli and salmonella : cellular and molecular biology*. ASM Press, Wastington, D.C. :
- Neuman, K.C., Abbondanzieri, E.A., Landick, R., Gelles, J., and Block, S.M. (2003) Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. *Cell* 115: 437–47.
- Ng, P.C., and Henikoff, S. (2003) SIFT: Predicting amino acid changes that affect protein function. *Nucleic Acids Res* **31**: 3812–4.
- Nickels, B.E., Garrity, S.J., Mekler, V., Minakhin, L., Severinov, K., Ebright, R.H., and Hochschild, A. (2005) The interaction between sigma70 and the beta-flap of *Escherichia coli* RNA polymerase inhibits extension of nascent RNA during early elongation. *Proc Natl Acad Sci U S A* **102**: 4488–93.
- Nilsson, I., Sääf, A., Whitley, P., Gafvelin, G., Waller, C., and Heijne, G. von (1998) Proline-induced disruption of a transmembrane alpha-helix in its natural environment. *J Mol Biol* **284**: 1165–75.
- Nogales, J., Campos, R., BenAbdelkhalek, H., Olivares, J., Lluch, C., and Sanjuan, J. (2002) Rhizobium tropici genes involved in free-living salt tolerance are required for the establishment of efficient nitrogen-fixing symbiosis with Phaseolus vulgaris. *Mol Plant Microbe Interact* 15: 225–32.

- Nudler, E. (1999) Transcription elongation: structural basis and mechanisms. *J Mol Biol* 288: 1–12.
- Nudler, E., Mustaev, A., Lukhtanov, E., and Goldfarb, A. (1997) The RNA-DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase. *Cell* **89**: 33–41.
- Ochman, H., Lawrence, J.G., and Groisman, E.A. (2000) Lateral gene transfer and the nature of bacterial innovation. *Nature* **405**: 299–304.
- Oh, Y.T., Park, Y., Yoon, M.Y., Bari, W., Go, J., Min, K.B., *et al.* (2014) Cholera toxin production during anaerobic trimethylamine N-oxide respiration is mediated by stringent response in *Vibrio cholerae*. *J Biol Chem* **289**: 13232–42.
- Opalka, N., Chlenov, M., Chacon, P., Rice, W.J., Wriggers, W., and Darst, S. a (2003) Structure and function of the transcription elongation factor GreB bound to bacterial RNA polymerase. *Cell* **114**: 335–45.
- Orlova, M., Newlands, J., Das, A., Goldfarb, A., and Borukhov, S. (1995) Intrinsic transcript cleavage activity of RNA polymerase. *Proc Natl Acad Sci U S A* 92: 4596– 600.
- Österberg, S., Peso-Santos, T. del, and Shingler, V. (2011) Regulation of alternative sigma factor use. *Annu Rev Microbiol* **65**: 37–55.
- Park, S.-Y., and Groisman, E.A. (2014) Signal-specific temporal response by the Salmonella PhoP/PhoQ regulatory system. *Mol Microbiol* **91**: 135–44.
- Pattery, T., Hernalsteens, J.P., and Greve, H. De (1999) Identification and molecular characterization of a novel Salmonella enteritidis pathogenicity islet encoding an ABC transporter. *Mol Microbiol* **33**: 791–805.
- Paul, B.J., Barker, M.M., Ross, W., Schneider, D.A., Webb, C., Foster, J.W., and Gourse, R.L. (2004) DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. *Cell* 118: 311–22.
- Pearce, S.R., Mimmack, M.L., Gallagher, M.P., Gileadi, U., Hyde, S.C., and Higgins, C.F. (1992) Membrane topology of the integral membrane components, OppB and OppC, of the oligopeptide permease of Salmonella typhimurium. *Mol Microbiol* 6: 47– 57.
- Penadés, J.R., Chen, J., Quiles-Puchalt, N., Carpena, N., and Novick, R.P. (2014) Bacteriophage-mediated spread of bacterial virulence genes. *Curr Opin Microbiol* 23C: 171–178.
- Perederina, A., Svetlov, V., Vassylyeva, M.N., Tahirov, T.H., Yokoyama, S., Artsimovitch, I., and Vassylyev, D.G. (2004) Regulation through the secondary channel--structural framework for ppGpp-DksA synergism during transcription. *Cell* **118**: 297– 309.
- Persky, N.S., Ferullo, D.J., Cooper, D.L., Moore, H.R., and Lovett, S.T. (2009) The ObgE/CgtA GTPase influences the stringent response to amino acid starvation in *Escherichia coli. Mol Microbiol* **73**: 253–66.
- Pesavento, C., and Hengge, R. (2009) Bacterial nucleotide-based second messengers. *Curr Opin Microbiol* **12**: 170–6.
- Peters, J.M., Vangeloff, A.D., and Landick, R. (2011) Bacterial transcription terminators: the RNA 3'-end chronicles. *J Mol Biol* **412**: 793–813.
- Piper, S.E., Mitchell, J.E., Lee, D.J., and Busby, S.J.W. (2009) A global view of *Escherichia coli* Rsd protein and its interactions. *Mol Biosyst* **5**: 1943–7.
- Pizarro-Cerdá, J., and Tedin, K. (2004) The bacterial signal molecule, ppGpp, regulates Salmonella virulence gene expression. *Mol Microbiol* **52**: 1827–44.
- Plumbridge, J. (1998) Control of the expression of the manXYZ operon in *Escherichia coli*: Mlc is a negative regulator of the mannose PTS. *Mol Microbiol* **27**: 369–80.
- Popovych, N., Tzeng, S.-R., Tonelli, M., Ebright, R.H., and Kalodimos, C.G. (2009) Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. *Proc Natl Acad Sci U S A* **106**: 6927–32.
- Poteete, A.R. (2011) Recombination phenotypes of *Escherichia coli greA* mutants. *BMC Mol Biol* **12**: 12.
- Potrykus, K., and Cashel, M. (2008) (p)ppGpp: still magical? *Annu Rev Microbiol* **62**: 35–51.

- Potrykus, K., Murphy, H., Chen, X., Epstein, J.A., and Cashel, M. (2010) Imprecise transcription termination within *Escherichia coli greA* leader gives rise to an array of short transcripts, GraL. *Nucleic Acids Res* **38**: 1636–51.
- Potrykus, K., Vinella, D., Murphy, H., Szalewska-Palasz, A., D'Ari, R., and Cashel, M. (2006) Antagonistic regulation of *Escherichia coli* ribosomal RNA rrnB P1 promoter activity by GreA and DksA. *J Biol Chem* 281: 15238–48.
- Primm, T.P., Andersen, S.J., Mizrahi, V., Avarbock, D., Rubin, H., and Barry, C.E. (2000) The Stringent Response of Mycobacterium tuberculosis Is Required for Long-Term Survival. *J Bacteriol* 182: 4889–4898.
- Pupov, D., Kuzin, I., Bass, I., and Kulbachinskiy, A. (2014) Distinct functions of the RNA polymerase σ subunit region 3.2 in RNA priming and promoter escape. *Nucleic Acids Res* 42: 4494–504.
- Pushker, R., Mira, A., and Rodríguez-Valera, F. (2004) Comparative genomics of genefamily size in closely related bacteria. *Genome Biol* **5**: R27.
- Quinones, M., Kimsey, H.H., Ross, W., Gourse, R.L., and Waldor, M.K. (2006) LexA represses CTXphi transcription by blocking access of the alpha C-terminal domain of RNA polymerase to promoter DNA. *J Biol Chem* **281**: 39407–12.
- Ramachandran, V.K., Shearer, N., and Thompson, A. (2014) The primary transcriptome of *Salmonella enterica* Serovar Typhimurium and its dependence on ppGpp during late stationary phase. *PLoS One* **9**: e92690.
- Rambaut, A. (2006) FigTree. .
- Ranea, J.A.G., Buchan, D.W.A., Thornton, J.M., and Orengo, C.A. (2004) Evolution of protein superfamilies and bacterial genome size. *J Mol Biol* **336**: 871–87.
- Reppas, N.B., Wade, J.T., Church, G.M., and Struhl, K. (2006) The transition between transcriptional initiation and elongation in E. coli is highly variable and often rate limiting. *Mol Cell* **24**: 747–57.
- Rhodes, M.W., and Kator, H.I. (1991) Use of Salmonella typhimurium WG49 to enumerate male-specific coliphages in an estuary and watershed subject to nonpoint pollution. *Water Res* **25**: 1315–1323.
- Rhodius, V. a, Suh, W.C., Nonaka, G., West, J., and Gross, C.A. (2006) Conserved and variable functions of the sigmaE stress response in related genomes. *PLoS Biol* **4**: e2.
- Richet, E., Davidson, A.L., and Joly, N. (2012) The ABC transporter MalFGK(2) sequesters the MalT transcription factor at the membrane in the absence of cognate substrate. *Mol Microbiol* **85**: 632–47.
- Richter, D. (1980) Uncharged tRNA inhibits guanosine 3',5'-bis (diphosphate) 3'pyrophosphohydrolase [ppGppase], the spoT gene product, from *Escherichia coli. Mol Gen Genet* **178**: 325–7.
- Roche, N. (2010) NimbleGen Arrays User 's Guide. .
- Roghanian, M., Zenkin, N., and Yuzenkova, Y. (2015) Bacterial global regulators DksA/ppGpp increase fidelity of transcription. *Nucleic Acids Res* **43**: 1529–36.
- Rosenfeld, N., Elowitz, M.B., and Alon, U. (2002) Negative autoregulation speeds the response times of transcription networks. *J Mol Biol* **323**: 785–93.
- Rost, B., Yachdav, G., and Liu, J. (2004) The PredictProtein server. Nucleic Acids Res 32: W321–6.
- Roth, J.R., Lawrence, J.G., and Bobik, T.A. (1996) Cobalamin (coenzyme B12): synthesis and biological significance. *Annu Rev Microbiol* **50**: 137–81.
- Rouvière, P.E., Las Peñas, A. De, Mecsas, J., Lu, C.Z., Rudd, K.E., and Gross, C.A. (1995) rpoE, the gene encoding the second heat-shock sigma factor, sigma E, in *Escherichia coli. EMBO J* 14: 1032–42.
- Ruiz, N., and Silhavy, T.J. (2005) Sensing external stress: watchdogs of the *Escherichia coli* cell envelope. *Curr Opin Microbiol* **8**: 122–6.
- Rushing, M.D., and Slauch, J.M. (2011) Either periplasmic tethering or protease resistance is sufficient to allow a SodC to protect *Salmonella enterica* serovar Typhimurium from phagocytic superoxide. *Mol Microbiol* **82**: 952–63.
- Rutherford, S.T., Lemke, J.J., Vrentas, C.E., Gaal, T., Ross, W., and Gourse, R.L. (2007) Effects of DksA, GreA, and GreB on transcription initiation: insights into the mechanisms of factors that bind in the secondary channel of RNA polymerase. *J Mol Biol* 366: 1243–57.

- Rutherford, S.T., Villers, C.L., Lee, J.-H., Ross, W., and Gourse, R.L. (2009) Allosteric control of *Escherichia coli* rRNA promoter complexes by DksA. *Genes Dev* 23: 236–48.
- Ryals, J., Little, R., and Bremer, H. (1982) Control of rRNA and tRNA syntheses in *Escherichia coli* by guanosine tetraphosphate. *J Bacteriol* **151**: 1261–8.
- Rymer, R.U., Solorio, F.A., Tehranchi, A.K., Chu, C., Corn, J.E., Keck, J.L., *et al.* (2012) Binding mechanism of metal NTP substrates and stringent-response alarmones to bacterial DnaG-type primases. *Structure* 20: 1478–89.
- Sayed, A.K., Odom, C., and Foster, J.W. (2007) The *Escherichia coli* AraC-family regulators GadX and GadW activate gadE, the central activator of glutamate-dependent acid resistance. *Microbiology* **153**: 2584–92.
- Schmieger, H. (1972) Phage P22-mutants with increased or decreased transduction abilities. *Mol Gen Genet* **119**: 75–88.
- Schmittgen, T.D., and Livak, K.J. (2008) Analyzing real-time PCR data by the comparative C(T) method. *Nat Protoc* **3**: 1101–8.
- Seifart Gomes, C., Izar, B., Pazan, F., Mohamed, W., Mraheil, M.A., Mukherjee, K., *et al.* (2011) Universal stress proteins are important for oxidative and acid stress resistance and growth of Listeria monocytogenes EGD-e in vitro and in vivo. *PLoS One* **6**: e24965.
- Selander, R., Li, J., and Nelson, K. (1996) Evolutionary Genetics of Salmonella enterica. In Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Wastington, D.C.: pp. 2691–2703.
- Serra, D.O., Richter, A.M., Klauck, G., Mika, F., and Hengge, R. (2013) Microanatomy at Cellular Resolution and Spatial Order of Physiological Differentiation in a Bacterial Biofilm. 4: 1–12.
- Shaevitz, J.W., Abbondanzieri, E.A., Landick, R., and Block, S.M. (2003) Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. *Nature* 426: 684–7.
- Shashni, R., Qayyum, M.Z., Vishalini, V., Dey, D., and Sen, R. (2014) Redundancy of primary RNA-binding functions of the bacterial transcription terminator Rho. *Nucleic Acids Res* 42: 9677–90.
- Simm, R., Ahmad, I., Rhen, M., Guyon, S. Le, and Römling, U. (2014) Regulation of biofilm formation in *Salmonella enterica* serovar Typhimurium.
- Simons, R.W., Houman, F., and Kleckner, N. (1987) Improved singel multicopy lacbased cloning vectors for protein and operon fusions. *Gene* **53**: 85–96.
- Singh, P., Sharma, L., Kulothungan, S.R., Adkar, B. V, Prajapati, R.S., Ali, P.S.S., *et al.* (2013) Effect of signal peptide on stability and folding of *Escherichia coli* thioredoxin. *PLoS One* **8**: e63442.
- Smyth, G.K. (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. *Stat Appl Genet Mol Biol* **3**: Article3.
- Song, M., Kim, H.-J., Kim, E.Y., Shin, M., Lee, H.C., Hong, Y., *et al.* (2004) ppGppdependent stationary phase induction of genes on Salmonella pathogenicity island 1. *J Biol Chem* **279**: 34183–90.
- Soutourina, O.A., and Bertin, P.N. (2003) Regulation cascade of flagellar expression in Gram-negative bacteria. *FEMS Microbiol Rev* **27**: 505–523.
- Sparkowski, J., and Das, A. (1990) The nucleotide sequence of *greA*, a suppressor gene that restores growth of an *Escherichia coli* RNA polymerase mutant at high temperature. *Nucleic Acids Res* **18**: 6443.
- Sparkowski, J., and Das, A. (1991) Location of a new gene, *greA*, on the *Escherichia coli* chromosome. *J Bacteriol* **173**: 5256–7.
- Stackebrandt, E., Frederiksen, W., Garrity, G.M., Grimont, P.A.D., Kämpfer, P., Maiden, M.C.J., *et al.* (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. *Int J Syst Evol Microbiol* **52**: 1043–7.
- Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and postanalysis of large phylogenies. *Bioinformatics* **30**: 1312–3.
- Stebbins, C.E., Borukhov, S., Orlova, M., Polyakov, A., Goldfarb, A., and Darst, S.A. (1995) Crystal structure of the GreA transcript cleavage factor from *Escherichia coli*. *Nature* **373**: 636–40.

- Stepanova, E., Lee, J., Ozerova, M., Semenova, E., Datsenko, K., Wanner, B.L., *et al.* (2007) Analysis of promoter targets for *Escherichia coli* transcription elongation factor GreA in vivo and in vitro. *J Bacteriol* 189: 8772–85.
- Stepanova, E. V., Shevelev, a. B., Borukhov, S.I., and Severinov, K. V. (2010) Mechanisms of action of RNA polymerase-binding transcription factors that do not bind to DNA. *Biophysics (Oxf)* **54**: 555–568.
- Stepanovic, S., Vukovic, D., Dakic, I., Savic, B., and Svabic-Vlahovic, M. (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. *J Microbiol Methods* **40**: 175–9.
- Stoker, N.G., Fairweather, N.F., and Spratt, B.G. (1982) Versatile low-copy-number plasmid vectors for cloning in *Escherichia coli. Gene* **18**: 335–41.
- Stothard, P. (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. *Biotechniques* **28**: 1102, 1104.
- Susa, M., Kubori, T., and Shimamoto, N. (2006) A pathway branching in transcription initiation in *Escherichia coli. Mol Microbiol* **59**: 1807–17.
- Tagami, S., Sekine, S.-I., Kumarevel, T., Hino, N., Murayama, Y., Kamegamori, S., *et al.* (2010) Crystal structure of bacterial RNA polymerase bound with a transcription inhibitor protein. *Nature* **468**: 978–82.
- Takeda, K., Akimoto, C., and Kawamukai, M. (2001) Effects of the *Escherichia coli* sfsA gene on mal genes expression and a DNA binding activity of SfsA. *Biosci Biotechnol Biochem* **65**: 213–7.
- Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Mol Biol Evol* **28**: 2731–9.
- Taylor, C.M., Beresford, M., Epton, H.A.S., Sigee, D.C., Shama, G., Andrew, P.W., and Roberts, I.S. (2002) Listeria monocytogenes relA and hpt Mutants Are Impaired in Surface-Attached Growth and Virulence. *J Bacteriol* **184**: 621–628.
- Tehranchi, A.K., Blankschien, M.D., Zhang, Y., Halliday, J. a, Srivatsan, A., Peng, J., *et al.* (2010) The transcription factor DksA prevents conflicts between DNA replication and transcription machinery. *Cell* **141**: 595–605.
- Thieffry, D., Huerta, A.M., Pérez-Rueda, E., and Collado-Vides, J. (1998) From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in *Escherichia coli. Bioessays* **20**: 433–40.
- Thompson, A., Rolfe, M.D., Lucchini, S., Schwerk, P., Hinton, J.C.D., and Tedin, K. (2006) The bacterial signal molecule, ppGpp, mediates the environmental regulation of both the invasion and intracellular virulence gene programs of Salmonella. *J Biol Chem* 281: 30112–21.
- Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. (1997) The CLUSTAL\_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Res* **25**: 4876–82.
- Torreblanca, J., and Casadesús, J. (1996) DNA adenine methylase mutants of Salmonella typhimurium and a novel dam-regulated locus. *Genetics* **144**: 15–26.
- Torrieri, R., Oliveira, F.S., Oliveira, G., and Coimbra, R.S. (2012) Automatic assignment of prokaryotic genes to functional categories using literature profiling. *PLoS One* **7**: e47436.
- Trautinger, B.W., Jaktaji, R.P., Rusakova, E., and Lloyd, R.G. (2005) RNA polymerase modulators and DNA repair activities resolve conflicts between DNA replication and transcription. *Mol Cell* **19**: 247–58.
- Trautinger, B.W., and Lloyd, R.G. (2002) Modulation of DNA repair by mutations flanking the DNA channel through RNA polymerase. *EMBO J* **21**: 6944–53.
- Travers, A., and Muskhelishvili, G. (2005) DNA supercoiling a global transcriptional regulator for enterobacterial growth? *Nat Rev Microbiol* **3**: 157–69.
- Traxler, M.F., Summers, S.M., Nguyen, H.-T., Zacharia, V.M., Hightower, G.A., Smith, J.T., and Conway, T. (2008) The global, ppGpp-mediated stringent response to amino acid starvation in *Escherichia coli. Mol Microbiol* **68**: 1128–48.
- Traxler, M.F., Zacharia, V.M., Marquardt, S., Summers, S.M., Nguyen, H.-T., Stark, S.E., and Conway, T. (2011) Discretely calibrated regulatory loops controlled by ppGpp partition gene induction across the "feast to famine" gradient in *Escherichia coli. Mol Microbiol* **79**: 830–45.

- Treviño-Quintanilla, L.G., Freyre-González, J.A., and Martínez-Flores, I. (2013) Anti-Sigma Factors in E. coli: Common Regulatory Mechanisms Controlling Sigma Factors Availability. *Curr Genomics* **14**: 378–87.
- Urbonavicius, J., Durand, J.M.B., and Björk, G.R. (2002) Three modifications in the D and T arms of tRNA influence translation in *Escherichia coli* and expression of virulence genes in Shigella flexneri. *J Bacteriol* **184**: 5348–57.
- Vassylyeva, M.N., Svetlov, V., Dearborn, A.D., Klyuyev, S., Artsimovitch, I., and Vassylyev, D.G. (2007) The carboxy-terminal coiled-coil of the RNA polymerase beta'-subunit is the main binding site for Gre factors. *EMBO Rep* **8**: 1038–43.
- Vinella, D., Potrykus, K., Murphy, H., and Cashel, M. (2012) Effects on growth by changes of the balance between GreA, GreB, and DksA suggest mutual competition and functional redundancy in *Escherichia coli*. *J Bacteriol* **194**: 261–73.
- Walsh, N.P., Alba, B.M., Bose, B., Gross, C.A., Sauer, R.T., and Francisco, S. (2003) OMP Peptide Signals Initiate the Envelope-Stress Response by Activating DegS Protease via Relief of Inhibition Mediated by Its PDZ Domain. *Cell* **113**: 61–71.
- Wang, S., Fleming, R.T., Westbrook, E.M., Matsumura, P., and McKay, D.B. (2006) Structure of the *Escherichia coli* FlhDC complex, a prokaryotic heteromeric regulator of transcription. *J Mol Biol* **355**: 798–808.
- Warren, W.C., Hillier, L.W., Marshall Graves, J.A., Birney, E., Ponting, C.P., Grützner, F., *et al.* (2008) Genome analysis of the platypus reveals unique signatures of evolution. *Nature* **453**: 175–83.
- Wassarman, K.M. (2007) 6S RNA: a small RNA regulator of transcription. *Curr Opin Microbiol* **10**: 164–8.
- Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., *et al.* (1987) Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. *Int J Syst Bacteriol* **37**: 463–464.
- Wei, W., Jiang, J., Li, X., Wang, L., and Yang, S.S. (2004) Isolation of salt-sensitive mutants from Sinorhizobium meliloti and characterization of genes involved in salt tolerance. *Lett Appl Microbiol* **39**: 278–83.
- Wendrich, T.M., Blaha, G., Wilson, D.N., Marahiel, M.A., and Nierhaus, K.H. (2002) Dissection of the Mechanism for the Stringent Factor RelA. *Mol Cell* **10**: 779–788.
- Williams, R., Bell, A., Sims, G., and Busby, S. (1991) The role of two surface exposed loops in transcription activation by the *Escherichia coli* CRP and FNR proteins. *Nucleic Acids Res* **19**: 6705–12.
- World Health Organization (2011) Outbreaks of E. coli O104:H4 infection: update 30. .
- Wu, L.F., and Mandrand-Berthelot, M.A. (1995) A family of homologous substratebinding proteins with a broad range of substrate specificity and dissimilar biological functions. *Biochimie* **77**: 744–50.
- Xiao, H., Kalman, M., Ikehara, K., Zemel, S., Glaser, G., and Cashel, M. (1991) Residual guanosine 3',5'-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. *J Biol Chem* **266**: 5980–90.
- Xiao, H., Kalman, M., Ikeharaz, K., Zemelb, S., and Glaserll, G. (1991) Residual Guanosine 3', 5' -Bispyrophosphate Synthetic Activity of reZA Null Mutants Can Be Eliminated by spoT Null Mutations \*. *J Biol Chem* 5980–5990.
- Xu, J., Tozawa, Y., Lai, C., Hayashi, H., and Ochi, K. (2002) A rifampicin resistance mutation in the rpoB gene confers ppGpp-independent antibiotic production in Streptomyces coelicolor A3(2). *Mol Genet Genomics* **268**: 179–89.
- Yang, S.Y., Yang, X.Y., Healy-Louie, G., Schulz, H., and Elzinga, M. (1990) Nucleotide sequence of the fadA gene. Primary structure of 3-ketoacyl-coenzyme A thiolase from *Escherichia coli* and the structural organization of the fadAB operon. *J Biol Chem* **265**: 10424–9.
- Yang, Z. (1996) Among-site rate variation and its impact on phylogenetic analyses. *Trends Ecol Evol* **11**: 367–72.
- Yoon, S.J., Park, J.E., Yang, J.-H., and Park, J.-W. (2002) OxyR regulon controls lipid peroxidation-mediated oxidative stress in *Escherichia coli*. *J Biochem Mol Biol* **35**: 297–301.
- Zacharias, M., Göringer, H.U., and Wagner, R. (1989) Influence of the GCGC discriminator motif introduced into the ribosomal RNA P2- and tac promoter on growth-rate control and stringent sensitivity. *EMBO J* **8**: 3357–63.

- Zenkin, N., Yuzenkova, Y., and Severinov, K. (2006) Transcript-assisted transcriptional proofreading. *Science* **313**: 518–20.
- Zhang, J., Rosenberg, H.F., and Nei, M. (1998) Positive Darwinian selection after gene duplication in primate ribonuclease genes. *Proc Natl Acad Sci* **95**: 3708–3713.
- Zhang, Y., Mooney, R.A., Grass, J.A., Sivaramakrishnan, P., Herman, C., Landick, R., and Wang, J.D. (2014) DksA guards elongating RNA polymerase against ribosome-stalling-induced arrest. *Mol Cell* **53**: 766–78.
- Zhao, G., Weatherspoon, N., Kong, W., Curtiss, R., and Shi, Y. (2008) A dual-signal regulatory circuit activates transcription of a set of divergent operons in Salmonella typhimurium. *Proc Natl Acad Sci U S A* **105**: 20924–9.
- Zusman, T., Gal-Mor, O., and Segal, G. (2002) Characterization of a Legionella pneumophila relA Insertion Mutant and Roles of RelA and RpoS in Virulence Gene Expression. *J Bacteriol* **184**: 67–75.

## 8. Supplementary table

In light grey are indicated those genes with a fold-change lower than -3 and a p-value lower than 0.05, being stimulated by ppGpp or DksA.

In **dark grey** are indicated those genes with a fold-change higher than +3 and a p-value lower than 0.05, being repressed by ppGpp or DksA.

| ID                      | gene  | Description                                                                 | ppGpp vs WT | dksA vs<br>WT |  |
|-------------------------|-------|-----------------------------------------------------------------------------|-------------|---------------|--|
| Amino acid biosynthesis |       |                                                                             |             |               |  |
| SL0001                  | thrL  | Hypothetical Protein SL0001                                                 | -1,28       | 1,19          |  |
| SL0002                  | thrA  | Bifunctional aspartokinase/homoserine dehydrogenase 1                       | -1,26       | -1,66         |  |
| SL0003                  | thrB  | Homoserine kinase                                                           | -1,26       | -1,49         |  |
| SL0004                  | thrC  | Threonine synthase                                                          | -1,26       | -1,94         |  |
| SL0019                  | -     | Hypothetical                                                                | 1,41        | 1,16          |  |
| SL0065                  | dapB  | Dihydrodipicolinate reductase                                               | 1,95        | -1,86         |  |
| SL0110                  | leuD  | 3-isopropylmalate dehydratase small subunit 1                               | -1,13       | -1,16         |  |
| SL0111                  | leuC  | 3-isopropylmalate dehydratase large subunit 1                               | -1,30       | 1,11          |  |
| SL0112                  | leuB  | 3-isopropylmalate dehydrogenase                                             | -1,27       | -1,13         |  |
| SL0113                  | leuA  | 2-isopropylmalate synthase                                                  | -1,94       | -1,84         |  |
| SL0114                  | leuL  | leu operon leader peptide                                                   | -1,13       | -1,09         |  |
| SL0115                  | leuO  | Probable HTH-type transcriptional regulator leuO                            | 1,05        | -2,06         |  |
| SL0116                  | ilvl  | Acetolactate synthase isozyme 3 large subunit                               | -1,13       | -1,28         |  |
| SL0117                  | ilvH  | Acetolactate synthase isozyme 3 small subunit                               | 1,12        | -1,59         |  |
| SL0214                  | dapD  | 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-<br>succinyltransferase      | -1,19       | -1,11         |  |
| SL0215                  | glnD  | [Protein-PII] uridylyltransferase                                           | 1,54        | 1,14          |  |
| SL0317                  | proB  | Glutamate 5-kinase                                                          | 2,30        | 1,14          |  |
| SL0318                  | proA  | Gamma-glutamyl phosphate reductase                                          | 1,64        | 1,15          |  |
| SL0324                  | leuC2 | 3-isopropylmalate dehydratase large subunit 2                               | -1,49       | 1,01          |  |
| SL0325                  | leuD2 | 3-isopropylmalate dehydratase small subunit 2                               | -1,30       | -1,25         |  |
| SL0381                  | proC  | Pyrroline-5-carboxylate reductase                                           | 1,05        | 1,05          |  |
| SL0383                  | aroL  | Shikimate kinase 2                                                          | 1,32        | -1,36         |  |
| SL0385                  | aroM  | Protein AroM                                                                | -1,16       | 1,60          |  |
| SL0452                  | cysM  | Cysteine synthase B                                                         | 1,42        | 1,40          |  |
| SL0511                  | gip   | Hydroxypyruvate isomerase                                                   | 4,14        | 1,80          |  |
| SL0560                  | frlB  | Fructosamine deglycase frlB                                                 | -1,00       | 2,15          |  |
| SL0662                  | asnB  | Asparagine synthetase B [glutamine-hydrolyzing]                             | -2,13       | 1,57          |  |
| SL0737                  | aroG  | Phospho-2-dehydro-3-deoxyheptonate aldolase, Phe-sensitive                  | -1,62       | -1,21         |  |
| SL0804                  | glnP  | Glutamine transport system permease protein glnP                            | 3,15        | -1,35         |  |
| SL0914                  | serC  | Phosphoserine aminotransferase                                              | -1,69       | -1,66         |  |
| SL0915                  | aroA  | 3-phosphoshikimate 1-carboxyvinyltransferase                                | -1,65       | -2,16         |  |
| SL0935                  | aspC  | Aspartate aminotransferase                                                  | -1,05       | -1,52         |  |
| SL1040                  | hpaG  | 4-hydroxyphenylacetate degradation bifunctional                             | 1,58        | 2,59          |  |
| SL1058                  | wrbA  | isomerase/decarboxylase<br>Flavoprotein wrbA                                | -1,03       | 1,12          |  |
| SL1038<br>SL1234        | gdhA  | NADP-specific glutamate dehydrogenase                                       | -1,54       | -1,15         |  |
| SL1234<br>SL1238        | astC  | Succinylornithine transaminase                                              | 3,11        | 12,92         |  |
| SL1280                  | aroH  | Phospho-2-dehydro-3-deoxyheptonate aldolase, Trp-sensitive                  | -1,09       | -1,81         |  |
| SL1292                  | aroD  | 3-dehydroquinate dehydratase                                                | -1,09       | -1,22         |  |
| SL1293                  | ydiB  | Quinate/shikimate dehydrogenase                                             | 1,21        | -1,04         |  |
| SL1293                  | ydiB  | Quinate/shikimate dehydrogenase                                             | 1,21        | -1,04         |  |
| SL1654                  | trpE  | Anthranilate synthase component 1                                           | 1,51        | -1,20         |  |
| SL1656                  | trpC  | Tryptophan biosynthesis protein trpCF                                       | -1,18       | -1,43         |  |
| SL1657                  | trpB  | Tryptophan synthase beta chain                                              | -1,78       | 1,00          |  |
| SL1658                  | trpA  | Tryptophan synthase alpha chain                                             | -1,55       | -1,09         |  |
| SL1723                  | gdhA  | Glutamate dehydrogenase                                                     | 5,38        | 6,36          |  |
| SL1754                  | yeaB  | putative NTP pyrophosphohydrolase                                           | 1,44        | -1,68         |  |
| SL1779                  | yebU  | Ribosomal RNA small subunit methyltransferase F                             | 1,12        | -1,34         |  |
| SL2047                  | yeeZ  | Protein yeeZ                                                                | -1,06       | 1,33          |  |
| SL2048                  | hisG  | ATP phosphoribosyltransferase                                               | -1,12       | -2,01         |  |
| SL2049                  | hisD  | Histidinol dehydrogenase                                                    | -1,09       | -1,50         |  |
| SL2050                  | hisC  | Histidinol-phosphate aminotransferase                                       | 1,00        | -1,08         |  |
|                         |       | 1-(5-phosphoribosyl)-5-[(5-                                                 |             |               |  |
| SL2053                  | hisA  | phosphoribosylamino)methylideneamino] imidazole-4-<br>carboxamide isomerase | 1,29        | 1,00          |  |
| SL2054                  | hisF  | Imidazole glycerol phosphate synthase subunit hisF                          | 1,24        | 1,14          |  |
| SL2055                  | hisl  | Histidine biosynthesis bifunctional protein hislE                           | 1,08        | 1,06          |  |
| SL2091                  | wcaB  | Putative colanic acid biosynthesis acetyltransferase wcaB                   | 2,10        | 1,25          |  |

| SL2163           | yeiT | Uncharacterized oxidoreductase yeiT                        | -1,96 | -1,06 |
|------------------|------|------------------------------------------------------------|-------|-------|
| SL2174           | serB | Phosphoserine phosphatase                                  | 1,35  | 1,89  |
| SL2174           | serB | Phosphoserine phosphatase                                  | 1,35  | 1,89  |
| SL2300           | yfbQ | Uncharacterized aminotransferase yfbQ                      | -1,60 | -1,59 |
| SL2300           | yfcD | Uncharacterized Nudix hydrolase yfcD                       | 1,27  | 1,16  |
|                  | •    |                                                            |       |       |
| SL2329           | lysA | Diaminopimelate decarboxylase                              | 2,14  | -1,20 |
| SL2338           | usg  | USG-1 protein                                              | 1,77  | -2,22 |
| SL2353           | aroC | Chorismate synthase                                        | 1,18  | 1,92  |
| SL2392           | cysZ | Protein cysZ homolog                                       | 1,58  | -2,07 |
| SL2393           | cysK | Cysteine synthase A                                        | 1,18  | -1,38 |
| SL2393           | cysK | Cysteine synthase A                                        | 1,18  | -1,38 |
| SL2403           | cysM | Cysteine synthase B                                        | -1,00 | -2,01 |
| SL2446           | dapE | Succinyl-diaminopimelate desuccinylase                     | 1,05  | 1,29  |
| SL2452           | dapA | Dihydrodipicolinate synthase                               | 1,19  | -2,77 |
| SL2517           | glyA | Serine hydroxymethyltransferase 1                          | 1,49  | 1,49  |
| SL2625           | pheA | P-protein                                                  | -1,22 | 1,40  |
| SL2627           | tyrA | T-protein                                                  | 1,50  | -1,23 |
| SL2628           | aroF | Phospho-2-dehydro-3-deoxyheptonate aldolase, Tyr-sensitive | 1,12  | -1,80 |
| SL2970           | argA | Amino-acid acetyltransferase                               | 2,00  | 1,17  |
| SL2982           | rppH | RNA pyrophosphohydrolase                                   | -1,12 | -1,45 |
| SL2991           | lysA | Diaminopimelate decarboxylase                              | -1,01 | -4,95 |
| SL2991<br>SL2992 |      |                                                            |       |       |
|                  | lysR | Transcriptional activator protein lysR                     | 1,21  | -1,29 |
| SL2993           | ygeA | Uncharacterized protein ygeA                               | -1,10 | -1,04 |
| SL3038           | serA | D-3-phosphoglycerate dehydrogenase                         | -2,34 | -1,42 |
| SL3135           | metC | Cystathionine beta-lyase                                   | -1,28 | 1,63  |
| SL3165           | -    | Arylsulfotransferase                                       | -1,53 | 1,45  |
| SL3166           | dsbA | Thiol:disulfide interchange protein dsbA                   | -1,55 | 1,18  |
| SL3191           | patA | Putrescine aminotransferase                                | -3,25 | -2,21 |
| SL3193           | rlmG | Ribosomal RNA large subunit methyltransferase G            | -1,58 | 2,09  |
| SL3262           | argG | Argininosuccinate synthase                                 | 1,96  | -4,12 |
| SL3303           | glťD | Glutamate synthase [NADPH] small chain                     | 1,01  | 1,49  |
| SL3332           | argR | Arginine repressor                                         | 1,37  | 1,65  |
| SL3368           | aroE | Shikimate dehydrogenase                                    | -1,67 | -1,57 |
| SL3435           | argD | Acetylornithine/succinyldiaminopimelate aminotransferase   | 1,01  | 1,18  |
| SL3453           | aroB | 3-dehydroquinate synthase                                  | 1,21  | -1,66 |
| SL3454           | aroK | Shikimate kinase 1                                         | 1,13  | -1,19 |
| SL3498           | ilvD | Dihydroxy-acid dehydratase                                 | -1,33 | 2,01  |
| SL3498<br>SL3498 | ilvD | Dihydroxy-acid dehydratase                                 |       | 2,01  |
|                  |      |                                                            | -1,33 |       |
| SL3499           | yjhH | Uncharacterized protein yjhH                               | -1,09 | 1,20  |
| SL3506           | asd  | Aspartate-semialdehyde dehydrogenase                       | 1,05  | 1,19  |
| SL3558           | yhiQ | UPF0341 protein yhiQ                                       | -1,03 | -1,62 |
| SL3566           | frlB | Fructosamine deglycase frlB                                | 3,57  | 25,25 |
| SL3630           | avtA | Valinepyruvate aminotransferase                            | 1,53  | 1,06  |
| SL3665           | cysE | Serine acetyltransferase                                   | 1,26  | -1,09 |
| SL3761           | ilvN | Acetolactate synthase isozyme 1 small subunit              | 3,09  | 2,70  |
| SL3762           | ilvB | Acetolactate synthase isozyme 1 large subunit              | 3,62  | 3,33  |
| SL3826           | ydiB | Shikimate 5-dehydrogenase-like protein HI_0607             | 1,25  | 1,66  |
| SL3826           | ydiB | Shikimate 5-dehydrogenase-like protein HI_0607             | 1,25  | 1,66  |
| SL3844           | asnA | Aspartateammonia ligase                                    | -2,19 | 1,11  |
| SL3861           | ilvG | Acetolactate synthase isozyme 2 large subunit              | -1,31 | 1,88  |
| SL3862           | ilvM | Acetolactate synthase isozyme 2 small subunit              | -1,06 | 2,57  |
| SL3863           | ilvE | Branched-chain-amino-acid aminotransferase                 | -1,40 | 1,12  |
| SL3864           | ilvD | Dihydroxy-acid dehydratase                                 | -1,21 | -1,51 |
| SL3864           | ilvD |                                                            |       |       |
|                  |      | Dihydroxy-acid dehydratase                                 | -1,21 | -1,51 |
| SL3865           | ilvA | Threonine dehydratase biosynthetic                         | -1,12 | -1,45 |
| SL3869           | ilvC | Ketol-acid reductoisomerase                                | -2,90 | -1,30 |
| SL3901           | dapF | Diaminopimelate epimerase                                  | 1,02  | -1,69 |
| SL3918           | metR | HTH-type transcriptional regulator metR                    | -1,19 | 1,31  |
| SL3919           | metE | 5-methyltetrahydropteroyltriglutamatehomocysteine          | -1,31 | 1,37  |
|                  |      | methyltransferase                                          |       |       |
| SL3928           | tatB | Sec-independent protein translocase protein tatB homolog   | 1,57  | 1,74  |
| SL3945           | dsbA | Thiol:disulfide interchange protein dsbA                   | -1,51 | -1,17 |
| SL3954           | glnA | Glutamine synthetase                                       | 1,22  | -3,78 |
| SL3969           | yihU | Uncharacterized oxidoreductase yihU                        | 1,56  | 1,52  |
| SL4047           | -    | Arylsulfate Sulfotransferase                               | -1,04 | 1,64  |
| SL4049           | metB | Cystathionine gamma-synthase                               | 1,47  | -1,48 |
| SL4050           | metL | Bifunctional aspartokinase/homoserine dehydrogenase 2      | 1,97  | -1,19 |
|                  |      |                                                            |       |       |

| SL4055           | metF         | 5,10-methylenetetrahydrofolate reductase                           | -3,04        | 1,08          |
|------------------|--------------|--------------------------------------------------------------------|--------------|---------------|
| SL4070           | argE         | Acetylornithine deacetylase                                        | -2,16        | -1,92         |
| SL4071           | argC         | N-acetyl-gamma-glutamyl-phosphate reductase                        | 1,30         | -2,98         |
| SL4072           | argB         | Acetylglutamate kinase                                             | 1,68         | -1,20         |
| SL4073           | argH         | Argininosuccinate lyase                                            | 1,66         | -1,31         |
| SL4078           | trmA         | tRNA (uracil-5-)-methyltransferase                                 | 1,50         | 2,16          |
| SL4117           | metA         | Homoserine O-succinyltransferase                                   | -2,06        | 2,19          |
| SL4123           | metH         | Methionine synthase                                                | -1,20        | -1,33         |
| SL4184           | tyrB         | Aromatic-amino-acid aminotransferase                               | -1,02        | -1,32         |
| SL4393           | argR         | Arginine repressor                                                 | -1,76        | 1,94          |
| SL4399           | argl         | Ornithine carbamoyltransferase                                     | 1,76         | -1,09         |
| SL4430           | yjhP         | Uncharacterized protein yjhP                                       | 1,09         | 2,13          |
| SL4441           | ygeA         | Uncharacterized protein in pnIA 3'region                           | -1,44        | 1,79          |
| SL4471           | frlB         | Fructosamine deglycase frlB                                        | 1,08         | 1,19          |
| SL4505           | serB         | Phosphoserine phosphatase                                          | 1,51         | 1,66          |
| SL4505           | serB         | Phosphoserine phosphatase                                          | 1,51         | 1,66          |
| SL4510           | trpR         | Trp operon repressor                                               | 1,82         | 1,68          |
|                  | Bio          | synthesis of cofactors, prosthetic groups,                         |              |               |
| SL0008           | mog          | Molybdopterin adenylyltransferase                                  | 1,77         | 1,61          |
| SL0046           | ribF         | Riboflavin biosynthesis protein ribF                               | 1,61         | -1,13         |
| SL0050           | lytB         | 4-hydroxy-3-methylbut-2-enyl diphosphate reductase                 | 1,90         | -1,75         |
| SL0088           | folA         | Dihydrofolate reductase                                            | -1,10        | 2,00          |
| SL0092           | pdxA         | 4-hydroxythreonine-4-phosphate dehydrogenase 1                     | 2,44         | -2,15         |
| SL0140           | coaE         | Dephospho-CoA kinase                                               | 1,47         | 1,54          |
| SL0145           | nadC         | Nicotinate-nucleotide pyrophosphorylase [carboxylating]            | 1,58         | 1,06          |
| SL0164           | pdxA2        | 4-hydroxythreonine-4-phosphate dehydrogenase 2                     | 1,61         | 1,30          |
| SL0181           | panD         | Aspartate 1-decarboxylase                                          | 2,86         | 1,64          |
| SL0182           | panC         | Pantothenate synthetase                                            | 2,51         | 2,67          |
| SL0183           | panB         | 3-methyl-2-oxobutanoate hydroxymethyltransferase                   | 2,45         | 4,25          |
| SL0184           | folK         | 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine                  | -1,11        | -1,01         |
|                  |              | pyrophosphokinase                                                  |              |               |
| SL0203           | hemL         | Glutamate-1-semialdehyde 2,1-aminomutase                           | 1,88         | 1,38          |
| SL0221           | dxr          | 1-deoxy-D-xylulose 5-phosphate reductoisomerase                    | 1,49         | -2,79         |
| SL0222           | uppS         | Undecaprenyl pyrophosphate synthase                                | 1,19         | -1,39         |
| SL0367           | hemB         | Delta-aminolevulinic acid dehydratase                              | 1,19         | -1,50         |
| SL0410           | ribD         | Riboflavin biosynthesis protein ribD                               | 1,70         | -1,19         |
| SL0411<br>SL0413 | ribH<br>thiL | 6,7-dimethyl-8-ribityllumazine synthase                            | 1,51         | 1,50          |
| SL0413<br>SL0416 | dxs          | Thiamine-monophosphate kinase                                      | 1,53<br>1,33 | 1,33<br>-2,15 |
| SL0418<br>SL0417 | ispA         | 1-deoxy-D-xylulose-5-phosphate synthase<br>Geranyltranstransferase | 2,05         | -2,15         |
| SL0417<br>SL0427 | thiJ         | Protein thij                                                       | 1,41         | 1,09          |
| SL0427<br>SL0428 | panE         | 2-dehydropantoate 2-reductase                                      | 1,49         | 1,61          |
| SL0433           | cyoE         | Protoheme IX farnesyltransferase                                   | 2,05         | 4,16          |
| SL0482           | hemH         | Ferrochelatase                                                     | -1,97        | -9,75         |
| SL0535           | folD         | Bifunctional protein folD                                          | 1,46         | -1,38         |
| SL0576           | entF         | Enterobactin synthase component F                                  | 1,45         | -1,28         |
| SL0583           | entC         | Isochorismate synthase entC                                        | 1,42         | 1,37          |
| SL0584           | entE         | Enterobactin synthase component E                                  | 1,83         | 1,50          |
| SL0585           | entB         | Isochorismatase                                                    | 1,59         | 2,00          |
| SL0586           | entA         | 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase                    | 1,71         | 2,19          |
| SL0621           | lipA         | Lipoyl synthase                                                    | 1,12         | -1,34         |
| SL0632           | cobD         | Threonine-phosphate decarboxylase                                  | 3,20         | 3,16          |
| SL0633           | nadD         | Probable nicotinate-nucleotide adenylyltransferase                 | 1,54         | -1,31         |
| SL0733           | nadA         | Quinolinate synthase A                                             | -2,81        | -4,30         |
| SL0743           | oadG2        | Oxaloacetate decarboxylase gamma chain                             | -1,01        | -1,27         |
| SL0770           | bioA         | Adenosylmethionine-8-amino-7-oxononanoate aminotransferase         | 1,91         | 1,20          |
| SL0771           | bioB         | Biotin synthase                                                    | 2,86         | 2,72          |
| SL0772           | bioF         | 8-amino-7-oxononanoate synthase                                    | 1,86         | 1,52          |
| SL0773           | bioC         | Biotin synthesis protein BioC                                      | 1,62         | 1,36          |
| SL0774           | bioD         | Dethiobiotin synthetase                                            | 1,60         | 1,39          |
| SL0778           | moaA         | Molybdenum cofactor biosynthesis protein A                         | 2,77         | -1,13         |
| SL0779           | moaB         | Molybdenum cofactor biosynthesis protein B                         | 1,28         | 1,64          |
| SL0780           | moaC         | Molybdenum cofactor biosynthesis protein C                         | 2,00         | 1,60          |
| SL0781           | moaD         | Molybdopterin synthase sulfur carrier subunit                      | 2,49         | 1,48          |
| SL0782           | moaE         | Molybdopterin synthase catalytic subunit                           | 3,06         | 1,72          |
| SL0821           | moeB         | Sulfur carrier protein moaD adenylyltransferase                    | 1,36         | 1,15          |
| SL0822           | moeA         | Molybdopterin molybdenumtransferase                                | 1,57         | 1,01          |
|                  |              |                                                                    |              |               |

| SL0941           | pncB  | Nicotinate phosphoribosyltransferase                           | -1,19 | -1,64 |
|------------------|-------|----------------------------------------------------------------|-------|-------|
| SL1102           | grxB  | Glutaredoxin-2                                                 | -1,70 | -1,03 |
| SL1114           | flgE  | Flagellar hook protein flgE                                    | -1,32 | 1,36  |
| SL1120           | flgK  | Flagellar hook-associated protein 1                            | -2,64 | -1,28 |
| SL1135           | pabC  | Aminodeoxychorismate lyase                                     | 1,42  | -1,40 |
| SL1158           | cobB  | NAD-dependent deacetylase                                      | 1,34  | -1,03 |
| SL1245           | nadE  | NH(3)-dependent NAD(+) synthetase                              | -1,25 | -1,78 |
| SL1308           | sufE  | Cysteine desulfuration protein sufE                            | -1,18 | -1,54 |
| SL1358           | ribE  | Riboflavin synthase alpha chain                                | -1,24 | 1,14  |
| SL1330           |       |                                                                |       |       |
|                  | pdxH  | Pyridoxine/pyridoxamine 5'-phosphate oxidase                   | 1,22  | -1,71 |
| SL1382           | pdxY  | Pyridoxamine kinase                                            | 1,99  | -1,48 |
| SL1528           | ydcW  | Gamma-aminobutyraldehyde dehydrogenase                         | -1,22 | 2,46  |
| SL1643           | ribA  | GTP cyclohydrolase-2                                           | 1,68  | -1,04 |
| SL1650           | btuR  | Cob(I)yrinic acid a,c-diamide adenosyltransferase              | 2,08  | 4,35  |
| SL1703           | hemK  | Protein methyltransferase hemK                                 | 2,91  | -2,68 |
| SL1705           | hemA  | Glutamyl-tRNA reductase                                        | 1,45  | -1,07 |
| SL1707           | ispE  | 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase              | 1,19  | -1,23 |
| SL1753           | pabB  | Para-aminobenzoate synthase component 1                        | 1,35  | -1,42 |
| SL1779           | yebU  | Ribosomal RNA small subunit methyltransferase F                | 1,12  | -1,34 |
| SL1859           | flhC  | Flagellar transcriptional activator flhC                       | -3,91 | -1,47 |
| SL1864           | thiJ  | Protein thiJ                                                   | 1,99  | -1,24 |
| SL1882           | dcyD  | D-cysteine desulfhydrase                                       | -1,68 | -1,47 |
| SL2123           | thiD  | Hydroxymethylpyrimidine/phosphomethylpyrimidine kinase         | -1,43 | -1,64 |
| SL2124           | thiM  | Hydroxyethylthiazole kinase                                    | 1,05  | -2,07 |
| SL2170           | folE  | GTP cyclohydrolase 1                                           | -1,34 | -5,82 |
| SL2189           | yeiR  | Uncharacterized protein yeiR                                   | -1,12 | -1,01 |
| SL2245           | ubiG  | 3-demethylubiquinone-9 3-methyltransferase                     | -1,29 | -1,55 |
| SL2265           | ais   | Lipopolysaccharide core heptose(II)-phosphate phosphatase      | -3,11 | -1,91 |
| SL2274           | menE  | 2-succinylbenzoateCoA ligase                                   | 2,57  | -2,05 |
| SL2275           | menC  | o-succinylbenzoate synthase                                    | 2,69  | -1,83 |
| SL2276           | menB  | Naphthoate synthase                                            | 3,61  |       |
|                  | menb  | 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate |       | -1,40 |
| SL2278           | menD  | synthase                                                       | 3,11  | 1,13  |
| SL2309           | dxs   | Putative transketolase C-terminal section                      | -1,29 | -1,23 |
| SL2325           | ubiX  | 3-octaprenyl-4-hydroxybenzoate carboxy-lyase                   | 1,02  | -1,08 |
| SL2325<br>SL2325 | ubiX  | 3-octaprenyl-4-hydroxybenzoate carboxy-lyase                   | 1,02  | -1,08 |
| SL2323<br>SL2334 | folC  | Bifunctional protein folC                                      | 2,32  |       |
| SL2334<br>SL2339 |       | Erythronate-4-phosphate dehydrogenase                          |       | -1,01 |
|                  | pdxB  | Pyridoxine kinase                                              | 1,58  | -2,47 |
| SL2398           | pdxK  | ,                                                              | 1,29  | -1,38 |
| SL2414           | hemF  | Coproporphyrinogen-III oxidase, aerobic                        | 1,30  | 1,19  |
| SL2505           | iscS  | Cysteine desulfurase                                           | 1,25  | -1,91 |
| SL2517           | glyA  | Serine hydroxymethyltransferase 1                              | 1,49  | 1,49  |
| SL2535           | panE  | Putative 2-dehydropantoate 2-reductase                         | -1,84 | -1,22 |
| SL2540           | pdxJ  | Pyridoxine 5'-phosphate synthase                               | 1,40  | -1,50 |
| SL2605           | nadB  | L-aspartate oxidase                                            | -1,40 | -1,35 |
| SL2803           | gshA  | Glutamatecysteine ligase                                       | 1,38  | -1,45 |
| SL2900           | pad1  | Probable aromatic acid decarboxylase                           | 1,33  | -1,05 |
| SL2908           | ispF  | 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase          | 2,06  | 1,25  |
| SL2909           | ispD  | 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase       | 1,78  | 1,15  |
| SL2928           | queD  | 6-carboxy-5,6,7,8-tetrahydropterin synthase                    | -1,09 | 2,64  |
| SL2965           | ygdK  | Uncharacterized sufE-like protein ygdK                         | 1,58  | -1,47 |
| SL3033           | ubiH  | 2-octaprenyl-6-methoxyphenol hydroxylase                       | 1,39  | -1,55 |
| SL3037           | ygfA  | Uncharacterized protein ygfA                                   | -1,28 | 1,34  |
| SL3046           | epd   | D-erythrose-4-phosphate dehydrogenase                          | 1,44  | -1,22 |
| SL3070           | gshB  | Glutathione synthetase                                         | 1,37  | -1,17 |
|                  | -     | Oxygen-independent coproporphyrinogen-III oxidase-like protein |       |       |
| SL3079           | yggW  | yggW                                                           | 1,93  | -1,62 |
| SL3168           | ribB  | 3,4-dihydroxy-2-butanone 4-phosphate synthase                  | -1,49 | -1,98 |
| SL3179           | folB  | Dihydroneopterin aldolase                                      | 1,77  | 2,08  |
| SL3193           | rlmG  | Ribosomal RNA large subunit methyltransferase G                | -1,58 | 2,09  |
| SL3266           | folP  | Dihydropteroate synthase                                       | 1,31  | -1,88 |
| SL3277           | ispB  | Octaprenyl-diphosphate synthase                                | 1,49  | 1,51  |
| SL3299           | elbB  | Enhancing lycopene biosynthesis protein 2                      | -1,46 | 1,64  |
| SL3325           | oadG2 | Oxaloacetate decarboxylase gamma chain 2                       | -1,02 | -1,21 |
|                  |       | Para-aminobenzoate synthase glutamine amidotransferase         |       |       |
| SL3436           | pabA  | component II                                                   | -1,01 | 1,28  |
| SL3444           | cysG  | Siroheme synthase                                              | 3,55  | 1,81  |
| SL3476           | bioH  | Carboxylesterase BioH                                          | 1,74  | 1,15  |
|                  |       |                                                                | ,     | , -   |

| SL3517                                                                                                                                                                                                                                                                               | ggt                                                                                                                                                                                                          | Gamma-glutamyltranspeptidase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1,26                                                                                                                                                                                                                                  | -2,95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SL3558                                                                                                                                                                                                                                                                               | yhiQ                                                                                                                                                                                                         | UPF0341 protein yhiQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1,03                                                                                                                                                                                                                                  | -1,62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SL3562                                                                                                                                                                                                                                                                               | gor                                                                                                                                                                                                          | Glutathione reductase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1,02                                                                                                                                                                                                                                  | -1,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SL3610                                                                                                                                                                                                                                                                               | bisC                                                                                                                                                                                                         | Biotin sulfoxide reductase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,29                                                                                                                                                                                                                                   | -1,37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SL3668                                                                                                                                                                                                                                                                               | grxC                                                                                                                                                                                                         | Glutaredoxin-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,23                                                                                                                                                                                                                                   | 1,35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SL3691                                                                                                                                                                                                                                                                               | coaD                                                                                                                                                                                                         | Phosphopantetheine adenylyltransferase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,88                                                                                                                                                                                                                                   | 2,22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SL3696                                                                                                                                                                                                                                                                               | coaBC                                                                                                                                                                                                        | Coenzyme A biosynthesis bifunctional protein coaBC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,76                                                                                                                                                                                                                                   | 1,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SL3875                                                                                                                                                                                                                                                                               | trxA                                                                                                                                                                                                         | Thioredoxin-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1,03                                                                                                                                                                                                                                  | -1,05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SL3891                                                                                                                                                                                                                                                                               | hemX                                                                                                                                                                                                         | Putative uroporphyrinogen-III C-methyltransferase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,27                                                                                                                                                                                                                                   | -1,66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SL3892                                                                                                                                                                                                                                                                               | hemD                                                                                                                                                                                                         | Uroporphyrinogen-III synthase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,57                                                                                                                                                                                                                                   | -1,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SL3893                                                                                                                                                                                                                                                                               | hemC                                                                                                                                                                                                         | Porphobilinogen deaminase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,81                                                                                                                                                                                                                                   | -1,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SL3893<br>SL3924                                                                                                                                                                                                                                                                     | ubiE                                                                                                                                                                                                         | Ubiquinone/menaquinone biosynthesis methyltransferase ubiE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                        | -1,20<br>1,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,56                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SL3926                                                                                                                                                                                                                                                                               | aarF                                                                                                                                                                                                         | ubiquinone biosynthesis protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,60                                                                                                                                                                                                                                   | -1,28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SL3940                                                                                                                                                                                                                                                                               | hemG                                                                                                                                                                                                         | Protoporphyrinogen oxidase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,11                                                                                                                                                                                                                                   | 1,31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SL3941                                                                                                                                                                                                                                                                               | mobB                                                                                                                                                                                                         | Molybdopterin-guanine dinucleotide biosynthesis protein B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,62                                                                                                                                                                                                                                   | 1,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SL3942                                                                                                                                                                                                                                                                               | mobA                                                                                                                                                                                                         | Molybdopterin-guanine dinucleotide biosynthesis protein A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,34                                                                                                                                                                                                                                   | 1,64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SL3951                                                                                                                                                                                                                                                                               | hemN                                                                                                                                                                                                         | Oxygen-independent coproporphyrinogen-III oxidase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,33                                                                                                                                                                                                                                   | 1,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SL3951                                                                                                                                                                                                                                                                               | hemN                                                                                                                                                                                                         | Oxygen-independent coproporphyrinogen-III oxidase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,33                                                                                                                                                                                                                                   | 1,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SL3958                                                                                                                                                                                                                                                                               | hemN                                                                                                                                                                                                         | Oxygen-independent coproporphyrinogen-III oxidase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1,47                                                                                                                                                                                                                                  | -1,53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SL3958                                                                                                                                                                                                                                                                               | hemN                                                                                                                                                                                                         | Oxygen-independent coproporphyrinogen-III oxidase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1,47                                                                                                                                                                                                                                  | -1,53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SL3969                                                                                                                                                                                                                                                                               | yihU                                                                                                                                                                                                         | Uncharacterized oxidoreductase yihU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,56                                                                                                                                                                                                                                   | 1,52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SL4038                                                                                                                                                                                                                                                                               | rraA                                                                                                                                                                                                         | Regulator of ribonuclease activity A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,35                                                                                                                                                                                                                                   | -1,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SL4039                                                                                                                                                                                                                                                                               | menA                                                                                                                                                                                                         | 1,4-dihydroxy-2-naphthoate octaprenyltransferase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,18                                                                                                                                                                                                                                   | -2,05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SL4078                                                                                                                                                                                                                                                                               | trmA                                                                                                                                                                                                         | tRNA (uracil-5-)-methyltransferase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,50                                                                                                                                                                                                                                   | 2,16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SL4082                                                                                                                                                                                                                                                                               | birA                                                                                                                                                                                                         | Bifunctional protein BirA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,63                                                                                                                                                                                                                                   | -1,23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SL4083                                                                                                                                                                                                                                                                               | coaA                                                                                                                                                                                                         | Pantothenate kinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,98                                                                                                                                                                                                                                   | 1,97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SL4098                                                                                                                                                                                                                                                                               | thiH                                                                                                                                                                                                         | Dehydroglycine synthase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1,06                                                                                                                                                                                                                                  | 1,93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SL4099                                                                                                                                                                                                                                                                               | thiG                                                                                                                                                                                                         | Thiazole synthase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1,18                                                                                                                                                                                                                                  | 2,29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SL4100                                                                                                                                                                                                                                                                               | thiS                                                                                                                                                                                                         | Sulfur carrier protein ThiS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,11                                                                                                                                                                                                                                   | 2,18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SL4101                                                                                                                                                                                                                                                                               | thiF                                                                                                                                                                                                         | Sulfur carrier protein ThiS adenylyltransferase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,20                                                                                                                                                                                                                                   | 2,18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SL4102                                                                                                                                                                                                                                                                               | thiE                                                                                                                                                                                                         | Thiamine-phosphate pyrophosphorylase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,17                                                                                                                                                                                                                                   | 1,73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SL4103                                                                                                                                                                                                                                                                               | thiC                                                                                                                                                                                                         | Phosphomethylpyrimidine synthase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1,07                                                                                                                                                                                                                                  | 1,64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SL4106                                                                                                                                                                                                                                                                               | hemE                                                                                                                                                                                                         | Uroporphyrinogen decarboxylase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,09                                                                                                                                                                                                                                   | -1,03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SL4166                                                                                                                                                                                                                                                                               | malE                                                                                                                                                                                                         | Maltose-binding periplasmic protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2,38                                                                                                                                                                                                                                  | 3,45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SL4166<br>SL4170                                                                                                                                                                                                                                                                     | malE<br>ubiC                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                              | Maltose-binding periplasmic protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2,38                                                                                                                                                                                                                                  | 3,45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SL4170                                                                                                                                                                                                                                                                               | ubiC                                                                                                                                                                                                         | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2,38<br>-1,18                                                                                                                                                                                                                         | 3,45<br>1,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SL4170<br>SL4171                                                                                                                                                                                                                                                                     | ubiC<br>ubiA                                                                                                                                                                                                 | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -2,38<br>-1,18<br>1,13                                                                                                                                                                                                                 | 3,45<br>1,11<br>1,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SL4170<br>SL4171<br>SL4430                                                                                                                                                                                                                                                           | ubiC<br>ubiA<br>yjhP                                                                                                                                                                                         | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase<br>Uncharacterized protein yjhP<br><b>Cell envelope</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2,38<br>-1,18<br>1,13<br>1,09                                                                                                                                                                                                         | 3,45<br>1,11<br>1,17<br>2,13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SL4170<br>SL4171<br>SL4430<br>SL0012                                                                                                                                                                                                                                                 | ubiC<br>ubiA<br>yjhP<br>dnaK                                                                                                                                                                                 | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase<br>Uncharacterized protein yjhP<br><b>Cell envelope</b><br>Chaperone protein dnaK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2,38<br>-1,18<br>1,13<br>1,09<br>4,03                                                                                                                                                                                                 | 3,45<br>1,11<br>1,17<br>2,13<br>1,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SL4170<br>SL4171<br>SL4430<br>SL0012<br>SL0020                                                                                                                                                                                                                                       | ubiC<br>ubiA<br>yjhP<br>dnaK<br>yaiV                                                                                                                                                                         | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase<br>Uncharacterized protein yjhP<br><b>Cell envelope</b><br>Chaperone protein dnaK<br>Uncharacterized protein yaiV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2,38<br>-1,18<br>1,13<br>1,09<br>4,03<br>-1,40                                                                                                                                                                                        | 3,45<br>1,11<br>1,17<br>2,13<br>1,12<br>-1,59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SL4170<br>SL4171<br>SL4430<br>SL0012<br>SL0020<br>SL0020                                                                                                                                                                                                                             | ubiC<br>ubiA<br>yjhP<br>dnaK<br>yaiV<br>yaiV                                                                                                                                                                 | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase<br>Uncharacterized protein yjhP<br><b>Cell envelope</b><br>Chaperone protein dnaK<br>Uncharacterized protein yaiV<br>Uncharacterized protein yaiV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2,38<br>-1,18<br>1,13<br>1,09<br>4,03<br>-1,40<br>-1,40                                                                                                                                                                               | 3,45<br>1,11<br>1,17<br>2,13<br>1,12<br>-1,59<br>-1,59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SL4170<br>SL4171<br>SL4430<br>SL0012<br>SL0020<br>SL0020<br>SL0021                                                                                                                                                                                                                   | ubiC<br>ubiA<br>yjhP<br>dnaK<br>yaiV<br>yaiV<br>yaiV<br>bcfA                                                                                                                                                 | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase<br>Uncharacterized protein yjhP<br><b>Cell envelope</b><br>Chaperone protein dnaK<br>Uncharacterized protein yaiV<br>Uncharacterized protein yaiV<br>Type-1 fimbrial protein, C chain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2,38<br>-1,18<br>1,13<br>1,09<br>4,03<br>-1,40<br>-1,40<br>-1,28                                                                                                                                                                      | 3,45<br>1,11<br>1,17<br>2,13<br>1,12<br>-1,59<br>-1,59<br>-2,80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SL4170<br>SL4171<br>SL4430<br>SL0012<br>SL0020<br>SL0020<br>SL0021<br>SL0022                                                                                                                                                                                                         | ubiC<br>ubiA<br>yjhP<br>dnaK<br>yaiV<br>yaiV<br>bcfA<br>bcfB                                                                                                                                                 | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase<br>Uncharacterized protein yjhP<br><b>Cell envelope</b><br>Chaperone protein dnaK<br>Uncharacterized protein yaiV<br>Uncharacterized protein yaiV<br>Type-1 fimbrial protein, C chain<br>Chaperone protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -2,38<br>-1,18<br>1,13<br>1,09<br>4,03<br>-1,40<br>-1,40<br>-1,28<br>-1,04                                                                                                                                                             | 3,45<br>1,11<br>1,17<br>2,13<br>1,12<br>-1,59<br>-1,59<br>-2,80<br>-2,61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SL4170<br>SL4171<br>SL4430<br>SL0012<br>SL0020<br>SL0020<br>SL0021<br>SL0022<br>SL0023                                                                                                                                                                                               | ubiC<br>ubiA<br>yjhP<br>dnaK<br>yaiV<br>yaiV<br>bcfA<br>bcfB<br>bcfC                                                                                                                                         | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase<br>Uncharacterized protein yjhP<br><b>Cell envelope</b><br>Chaperone protein dnaK<br>Uncharacterized protein yaiV<br>Uncharacterized protein yaiV<br>Uncharacterized protein, aiV<br>Type-1 fimbrial protein, C chain<br>Chaperone protein<br>fimbrial usher protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2,38<br>-1,18<br>1,13<br>1,09<br>4,03<br>-1,40<br>-1,40<br>-1,28<br>-1,04<br>1,03                                                                                                                                                     | 3,45<br>1,11<br>1,17<br>2,13<br>1,12<br>-1,59<br>-1,59<br>-2,80<br>-2,61<br>-1,04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SL4170<br>SL4171<br>SL4430<br>SL0012<br>SL0020<br>SL0020<br>SL0021<br>SL0022                                                                                                                                                                                                         | ubiC<br>ubiA<br>yjhP<br>dnaK<br>yaiV<br>yaiV<br>bcfA<br>bcfB<br>bcfC<br>bcfD                                                                                                                                 | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase<br>Uncharacterized protein yjhP<br><b>Cell envelope</b><br>Chaperone protein dnaK<br>Uncharacterized protein yaiV<br>Uncharacterized protein yaiV<br>Uncharacterized protein, aiV<br>Type-1 fimbrial protein, C chain<br>Chaperone protein<br>fimbrial usher protein<br>fimbrial subunit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2,38<br>-1,18<br>1,13<br>1,09<br>4,03<br>-1,40<br>-1,40<br>-1,28<br>-1,04<br>1,03<br>1,09                                                                                                                                             | 3,45<br>1,11<br>1,17<br>2,13<br>1,12<br>-1,59<br>-1,59<br>-2,80<br>-2,61<br>-1,04<br>1,84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SL4170<br>SL4171<br>SL4430<br>SL0012<br>SL0020<br>SL0020<br>SL0021<br>SL0022<br>SL0023<br>SL0024<br>SL0025                                                                                                                                                                           | ubiC<br>ubiA<br>yjhP<br>dnaK<br>yaiV<br>yaiV<br>bcfA<br>bcfB<br>bcfC<br>bcfD<br>bcfE                                                                                                                         | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase<br>Uncharacterized protein yjhP<br><b>Cell envelope</b><br>Chaperone protein dnaK<br>Uncharacterized protein yaiV<br>Uncharacterized protein yaiV<br>Uncharacterized protein, aiV<br>Type-1 fimbrial protein, C chain<br>Chaperone protein<br>fimbrial usher protein<br>fimbrial subunit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2,38<br>-1,18<br>1,13<br>1,09<br>4,03<br>-1,40<br>-1,40<br>-1,28<br>-1,04<br>1,03<br>1,09<br>-1,30                                                                                                                                    | 3,45<br>1,11<br>1,17<br>2,13<br>1,12<br>-1,59<br>-1,59<br>-2,80<br>-2,61<br>-1,04<br>1,84<br>1,03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SL4170<br>SL4171<br>SL4430<br>SL0012<br>SL0020<br>SL0020<br>SL0021<br>SL0022<br>SL0023<br>SL0024<br>SL0025<br>SL0026                                                                                                                                                                 | ubiC<br>ubiA<br>yjhP<br>dnaK<br>yaiV<br>yaiV<br>bcfA<br>bcfB<br>bcfC<br>bcfD<br>bcfE<br>bcfF                                                                                                                 | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase<br>Uncharacterized protein yjhP<br><b>Cell envelope</b><br>Chaperone protein dnaK<br>Uncharacterized protein yaiV<br>Uncharacterized protein yaiV<br>Uncharacterized protein, aiV<br>Type-1 fimbrial protein, C chain<br>Chaperone protein<br>fimbrial usher protein<br>fimbrial subunit<br>fimbrial subunit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2,38<br>-1,18<br>1,13<br>1,09<br>4,03<br>-1,40<br>-1,40<br>-1,28<br>-1,04<br>1,03<br>1,09<br>-1,30<br>1,17                                                                                                                            | 3,45<br>1,11<br>1,17<br>2,13<br>1,12<br>-1,59<br>-1,59<br>-2,80<br>-2,61<br>-1,04<br>1,84<br>1,03<br>-1,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SL4170<br>SL4171<br>SL4430<br>SL0012<br>SL0020<br>SL0020<br>SL0021<br>SL0022<br>SL0023<br>SL0024<br>SL0025<br>SL0026<br>SL0027                                                                                                                                                       | ubiC<br>ubiA<br>yjhP<br>dnaK<br>yaiV<br>yaiV<br>bcfA<br>bcfB<br>bcfC<br>bcfD<br>bcfE<br>bcfF<br>bcfG                                                                                                         | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase<br>Uncharacterized protein yjhP<br><b>Cell envelope</b><br>Chaperone protein dnaK<br>Uncharacterized protein yaiV<br>Uncharacterized protein yaiV<br>Uncharacterized protein, aiV<br>Type-1 fimbrial protein, C chain<br>Chaperone protein<br>fimbrial usher protein<br>fimbrial subunit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2,38<br>-1,18<br>1,13<br>1,09<br>4,03<br>-1,40<br>-1,40<br>-1,28<br>-1,04<br>1,03<br>1,09<br>-1,30<br>1,17<br>1,06                                                                                                                    | 3,45<br>1,11<br>1,17<br>2,13<br>1,12<br>-1,59<br>-1,59<br>-2,80<br>-2,61<br>-1,04<br>1,84<br>1,03<br>-1,02<br>-1,04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SL4170<br>SL4171<br>SL4430<br>SL0012<br>SL0020<br>SL0020<br>SL0021<br>SL0022<br>SL0023<br>SL0024<br>SL0025<br>SL0026<br>SL0027<br>SL0035                                                                                                                                             | ubiC<br>ubiA<br>yjhP<br>dnaK<br>yaiV<br>yaiV<br>bcfA<br>bcfB<br>bcfC<br>bcfD<br>bcfE<br>bcfF<br>bcfG<br>yfeN                                                                                                 | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase<br>Uncharacterized protein yjhP<br><b>Cell envelope</b><br>Chaperone protein dnaK<br>Uncharacterized protein yaiV<br>Uncharacterized protein yaiV<br>Uncharacterized protein, C chain<br>Chaperone protein<br>fimbrial protein, C chain<br>Chaperone protein<br>fimbrial usher protein<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial chaperone<br>Uncharacterized protein yfeN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -2,38<br>-1,18<br>1,13<br>1,09<br>4,03<br>-1,40<br>-1,40<br>-1,28<br>-1,04<br>1,03<br>1,09<br>-1,30<br>1,17<br>1,06<br>1,02                                                                                                            | 3,45<br>1,11<br>1,17<br>2,13<br>1,12<br>-1,59<br>-1,59<br>-2,80<br>-2,61<br>-1,04<br>1,84<br>1,03<br>-1,02<br>-1,04<br>1,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SL4170<br>SL4171<br>SL4430<br>SL0012<br>SL0020<br>SL0020<br>SL0021<br>SL0022<br>SL0023<br>SL0024<br>SL0025<br>SL0026<br>SL0027                                                                                                                                                       | ubiC<br>ubiA<br>yjhP<br>dnaK<br>yaiV<br>yaiV<br>bcfA<br>bcfB<br>bcfC<br>bcfD<br>bcfE<br>bcfF<br>bcfG                                                                                                         | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase<br>Uncharacterized protein yjhP<br><b>Cell envelope</b><br>Chaperone protein dnaK<br>Uncharacterized protein yaiV<br>Uncharacterized protein yaiV<br>Uncharacterized protein, aiV<br>Type-1 fimbrial protein, C chain<br>Chaperone protein<br>fimbrial usher protein<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2,38<br>-1,18<br>1,13<br>1,09<br>4,03<br>-1,40<br>-1,40<br>-1,28<br>-1,04<br>1,03<br>1,09<br>-1,30<br>1,17<br>1,06                                                                                                                    | 3,45<br>1,11<br>1,17<br>2,13<br>1,12<br>-1,59<br>-1,59<br>-2,80<br>-2,61<br>-1,04<br>1,84<br>1,03<br>-1,02<br>-1,04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SL4170<br>SL4171<br>SL4430<br>SL0012<br>SL0020<br>SL0020<br>SL0021<br>SL0022<br>SL0023<br>SL0024<br>SL0025<br>SL0026<br>SL0027<br>SL0035                                                                                                                                             | ubiC<br>ubiA<br>yjhP<br>dnaK<br>yaiV<br>yaiV<br>bcfA<br>bcfB<br>bcfC<br>bcfD<br>bcfE<br>bcfF<br>bcfG<br>yfeN                                                                                                 | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase<br>Uncharacterized protein yjhP<br><b>Cell envelope</b><br>Chaperone protein dnaK<br>Uncharacterized protein yaiV<br>Uncharacterized protein yaiV<br>Type-1 fimbrial protein, C chain<br>Chaperone protein<br>fimbrial usher protein<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial chaperone<br>Uncharacterized protein yfeN<br>Probable 2-(5"-triphosphoribosyl)-3'-dephosphocoenzyme-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -2,38<br>-1,18<br>1,13<br>1,09<br>4,03<br>-1,40<br>-1,40<br>-1,28<br>-1,04<br>1,03<br>1,09<br>-1,30<br>1,17<br>1,06<br>1,02                                                                                                            | 3,45<br>1,11<br>1,17<br>2,13<br>1,12<br>-1,59<br>-1,59<br>-2,80<br>-2,61<br>-1,04<br>1,84<br>1,03<br>-1,02<br>-1,04<br>1,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SL4170<br>SL4171<br>SL4430<br>SL0012<br>SL0020<br>SL0020<br>SL0021<br>SL0022<br>SL0023<br>SL0024<br>SL0025<br>SL0026<br>SL0027<br>SL0035<br>SL0064                                                                                                                                   | ubiC<br>ubiA<br>yjhP<br>dnaK<br>yaiV<br>yaiV<br>bcfA<br>bcfB<br>bcfC<br>bcfD<br>bcfE<br>bcfF<br>bcfG<br>yfeN<br>citG1                                                                                        | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase<br>Uncharacterized protein yjhP<br>Cell envelope<br>Chaperone protein dnaK<br>Uncharacterized protein yaiV<br>Uncharacterized protein yaiV<br>Type-1 fimbrial protein, C chain<br>Chaperone protein<br>fimbrial usher protein<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial chaperone<br>Uncharacterized protein yfeN<br>Probable 2-(5"-triphosphoribosyl)-3'-dephosphocoenzyme-A<br>synthase 1<br>Peptidoglycan synthase ftsl<br>Peptidoglycan synthase ftsl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2,38<br>-1,18<br>1,13<br>1,09<br>4,03<br>-1,40<br>-1,40<br>-1,28<br>-1,04<br>1,03<br>1,09<br>-1,30<br>1,17<br>1,06<br>1,02<br>1,01                                                                                                    | 3,45<br>1,11<br>1,17<br>2,13<br>1,12<br>-1,59<br>-1,59<br>-2,80<br>-2,61<br>-1,04<br>1,84<br>1,03<br>-1,02<br>-1,04<br>1,12<br>2,86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SL4170<br>SL4171<br>SL4430<br>SL0020<br>SL0020<br>SL0021<br>SL0022<br>SL0023<br>SL0024<br>SL0025<br>SL0026<br>SL0027<br>SL0035<br>SL0064<br>SL0122<br>SL0122                                                                                                                         | ubiC<br>ubiA<br>yjhP<br>dnaK<br>yaiV<br>yaiV<br>bcfA<br>bcfB<br>bcfC<br>bcfB<br>bcfC<br>bcfD<br>bcfE<br>bcfF<br>bcfG<br>yfeN<br>citG1<br>ftsl<br>ftsl                                                        | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase<br>Uncharacterized protein yjhP<br>Cell envelope<br>Chaperone protein dnaK<br>Uncharacterized protein yaiV<br>Uncharacterized protein yaiV<br>Type-1 fimbrial protein, C chain<br>Chaperone protein<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial chaperone<br>Uncharacterized protein yfeN<br>Probable 2-(5"-triphosphoribosyl)-3'-dephosphocoenzyme-A<br>synthase 1<br>Peptidoglycan synthase ftsl<br>Peptidoglycan synthase ftsl<br>UDP-N-acetylmuramoyl-L-alanyl-D-glutamate2,6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -2,38<br>-1,18<br>1,13<br>1,09<br>4,03<br>-1,40<br>-1,40<br>-1,28<br>-1,04<br>1,03<br>1,09<br>-1,30<br>1,17<br>1,06<br>1,02<br>1,01<br>1,37<br>1,37                                                                                    | 3,45<br>1,11<br>1,17<br>2,13<br>1,12<br>-1,59<br>-1,59<br>-2,80<br>-2,61<br>-1,04<br>1,84<br>1,03<br>-1,02<br>-1,04<br>1,84<br>1,03<br>-1,02<br>-1,04<br>1,12<br>2,86<br>-1,64<br>-1,64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SL4170<br>SL4171<br>SL4430<br>SL0022<br>SL0020<br>SL0020<br>SL0021<br>SL0022<br>SL0023<br>SL0024<br>SL0025<br>SL0026<br>SL0027<br>SL0035<br>SL0064<br>SL0122<br>SL0122<br>SL0123                                                                                                     | ubiC<br>ubiA<br>yjhP<br>dnaK<br>yaiV<br>yaiV<br>bcfA<br>bcfB<br>bcfC<br>bcfD<br>bcfE<br>bcfG<br>yfeN<br>citG1<br>ftsI<br>ftsI<br>ftsI<br>murE                                                                | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase<br>Uncharacterized protein yjhP<br>Cell envelope<br>Chaperone protein dnaK<br>Uncharacterized protein yaiV<br>Uncharacterized protein yaiV<br>Type-1 fimbrial protein, C chain<br>Chaperone protein<br>fimbrial usher protein<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial chaperone<br>Uncharacterized protein yfeN<br>Probable 2-(5"-triphosphoribosyl)-3'-dephosphocoenzyme-A<br>synthase 1<br>Peptidoglycan synthase ftsl<br>Peptidoglycan synthase ftsl<br>UDP-N-acetylmuramoyl-L-alanyl-D-glutamate2,6-<br>diaminopimelate ligase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2,38<br>-1,18<br>1,13<br>1,09<br>4,03<br>-1,40<br>-1,40<br>-1,28<br>-1,04<br>1,03<br>1,09<br>-1,30<br>1,17<br>1,06<br>1,02<br>1,01<br>1,37<br>1,37<br>1,37<br>1,26                                                                    | $\begin{array}{r} 3,45\\ 1,11\\ 1,17\\ 2,13\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SL4170<br>SL4171<br>SL4430<br>SL0012<br>SL0020<br>SL0020<br>SL0021<br>SL0022<br>SL0023<br>SL0024<br>SL0025<br>SL0026<br>SL0027<br>SL0035<br>SL0064<br>SL0122<br>SL0122<br>SL0123<br>SL0124                                                                                           | ubiC<br>ubiA<br>yjhP<br>dnaK<br>yaiV<br>yaiV<br>bcfA<br>bcfB<br>bcfC<br>bcfD<br>bcfE<br>bcfG<br>yfeN<br>citG1<br>ftsI<br>ftsI<br>ftsI<br>murE<br>murF                                                        | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase<br>Uncharacterized protein yjhP<br>Call envelope<br>Chaperone protein dnaK<br>Uncharacterized protein yaiV<br>Uncharacterized protein yaiV<br>Type-1 fimbrial protein, C chain<br>Chaperone protein<br>fimbrial usher protein<br>fimbrial subunit<br>fimbrial subunit<br>fimbri | -2,38<br>-1,18<br>1,13<br>1,09<br>4,03<br>-1,40<br>-1,40<br>-1,28<br>-1,04<br>1,03<br>1,09<br>-1,30<br>1,17<br>1,06<br>1,02<br>1,01<br>1,37<br>1,37<br>1,37<br>1,37<br>1,26<br>1,10                                                    | $\begin{array}{r} 3,45\\ 1,11\\ 1,17\\ 2,13\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SL4170<br>SL4171<br>SL4430<br>SL0012<br>SL0020<br>SL0020<br>SL0021<br>SL0022<br>SL0023<br>SL0024<br>SL0025<br>SL0026<br>SL0027<br>SL0035<br>SL0064<br>SL0122<br>SL0122<br>SL0123<br>SL0124<br>SL0125                                                                                 | ubiC<br>ubiA<br>yjhP<br>dnaK<br>yaiV<br>yaiV<br>bcfA<br>bcfB<br>bcfC<br>bcfD<br>bcfE<br>bcfG<br>yfeN<br>citG1<br>ftsI<br>ftsI<br>ftsI<br>murE<br>murF<br>mraY                                                | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase<br>Uncharacterized protein yjhP<br>Call envelope<br>Chaperone protein dnaK<br>Uncharacterized protein yaiV<br>Uncharacterized protein yaiV<br>Type-1 fimbrial protein, C chain<br>Chaperone protein<br>fimbrial usher protein<br>fimbrial subunit<br>fimbrial subunit<br>fimbri | -2,38<br>-1,18<br>1,13<br>1,09<br>4,03<br>-1,40<br>-1,40<br>-1,28<br>-1,04<br>1,03<br>1,09<br>-1,30<br>1,17<br>1,06<br>1,02<br>1,01<br>1,37<br>1,37<br>1,37<br>1,37<br>1,26<br>1,10<br>1,50                                            | $\begin{array}{r} 3,45\\ 1,11\\ 1,17\\ 2,13\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SL4170<br>SL4171<br>SL4430<br>SL0012<br>SL0020<br>SL0020<br>SL0021<br>SL0022<br>SL0023<br>SL0024<br>SL0025<br>SL0026<br>SL0027<br>SL0035<br>SL0064<br>SL0122<br>SL0122<br>SL0123<br>SL0124                                                                                           | ubiC<br>ubiA<br>yjhP<br>dnaK<br>yaiV<br>yaiV<br>bcfA<br>bcfB<br>bcfC<br>bcfD<br>bcfE<br>bcfG<br>yfeN<br>citG1<br>ftsI<br>ftsI<br>ftsI<br>murE<br>murF                                                        | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase<br>Uncharacterized protein yjhP<br>Chaperone protein dnaK<br>Uncharacterized protein yaiV<br>Uncharacterized protein yaiV<br>Type-1 fimbrial protein, C chain<br>Chaperone protein<br>fimbrial usher protein<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial chaperone<br>Uncharacterized protein yfeN<br>Probable 2-(5"-triphosphoribosyl)-3'-dephosphocoenzyme-A<br>synthase 1<br>Peptidoglycan synthase ftsI<br>Peptidoglycan synthase ftsI<br>UDP-N-acetylmuramoyl-L-alanyl-D-glutamate2,6-<br>diaminopimelate ligase<br>UDP-N-acetylmuramoyl-pentapeptide-transferase<br>UDP-N-acetylmuramoylalanineD-glutamate ligase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{r} -2,38\\ -1,18\\ 1,13\\ 1,09\\ \hline \\ 4,03\\ -1,40\\ -1,40\\ -1,28\\ -1,04\\ 1,03\\ 1,09\\ -1,30\\ 1,09\\ -1,30\\ 1,17\\ 1,06\\ 1,02\\ 1,01\\ 1,37\\ 1,26\\ 1,01\\ 1,37\\ 1,26\\ 1,10\\ 1,50\\ 1,91\\ \end{array}$ | 3,45<br>1,11<br>1,17<br>2,13<br>1,12<br>-1,59<br>-2,80<br>-2,61<br>-1,04<br>1,84<br>1,03<br>-1,02<br>-1,04<br>1,12<br>2,86<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>-1,48<br>- |
| SL4170<br>SL4171<br>SL4430<br>SL0012<br>SL0020<br>SL0020<br>SL0021<br>SL0022<br>SL0023<br>SL0024<br>SL0025<br>SL0026<br>SL0027<br>SL0035<br>SL0064<br>SL0122<br>SL0122<br>SL0123<br>SL0124<br>SL0125                                                                                 | ubiC<br>ubiA<br>yjhP<br>dnaK<br>yaiV<br>yaiV<br>bcfA<br>bcfB<br>bcfC<br>bcfD<br>bcfE<br>bcfG<br>yfeN<br>citG1<br>ftsI<br>ftsI<br>ftsI<br>murE<br>murF<br>mraY                                                | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase<br>Uncharacterized protein yjhP<br>Chaperone protein dnaK<br>Uncharacterized protein yaiV<br>Uncharacterized protein yaiV<br>Type-1 fimbrial protein, C chain<br>Chaperone protein<br>fimbrial usher protein<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial chaperone<br>Uncharacterized protein yfeN<br>Probable 2-(5"-triphosphoribosyl)-3'-dephosphocoenzyme-A<br>synthase 1<br>Peptidoglycan synthase ftsl<br>UDP-N-acetylmuramoyl-L-alanyl-D-glutamate2,6-<br>diaminopimelate ligase<br>UDP-N-acetylmuramoyl-pentapeptide-transferase<br>UDP-N-acetylmuramoyl-pentapeptide-transferase<br>UDP-N-acetylmuramoylalanineD-glutamate ligase<br>UDP-N-acetylglucosamineN-acetylmuramyl-(pentapeptide)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2,38<br>-1,18<br>1,13<br>1,09<br>4,03<br>-1,40<br>-1,40<br>-1,28<br>-1,04<br>1,03<br>1,09<br>-1,30<br>1,17<br>1,06<br>1,02<br>1,01<br>1,37<br>1,37<br>1,37<br>1,37<br>1,26<br>1,10<br>1,50                                            | $\begin{array}{r} 3,45\\ 1,11\\ 1,17\\ 2,13\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SL4170<br>SL4171<br>SL4430<br>SL0020<br>SL0020<br>SL0020<br>SL0021<br>SL0022<br>SL0023<br>SL0024<br>SL0025<br>SL0026<br>SL0027<br>SL0035<br>SL0064<br>SL0122<br>SL0122<br>SL0122<br>SL0123<br>SL0124<br>SL0125<br>SL0126<br>SL0128                                                   | ubiC<br>ubiA<br>yjhP<br>dnaK<br>yaiV<br>yaiV<br>bcfA<br>bcfB<br>bcfC<br>bcfD<br>bcfE<br>bcfG<br>yfeN<br>citG1<br>ftsI<br>ftsI<br>ftsI<br>murE<br>murF<br>mraY<br>murD<br>murG                                | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase<br>Uncharacterized protein yjhP<br>Chaperone protein dnaK<br>Uncharacterized protein yaiV<br>Uncharacterized protein yaiV<br>Type-1 fimbrial protein, C chain<br>Chaperone protein<br>fimbrial usher protein<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial chaperone<br>Uncharacterized protein yfeN<br>Probable 2-(5"-triphosphoribosyl)-3'-dephosphocoenzyme-A<br>synthase 1<br>Peptidoglycan synthase ftsl<br>UDP-N-acetylmuramoyl-L-alanyl-D-glutamate2,6-<br>diaminopimelate ligase<br>UDP-N-acetylmuramoyl-tripeptideD-alanyl-D-alanine ligase<br>Phospho-N-acetylmuramoyl-pentapeptide-transferase<br>UDP-N-acetylmuramoylalanineD-glutamate ligase<br>UDP-N-acetylglucosamineN-acetylglucosamine transferase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2,38<br>-1,18<br>1,13<br>1,09<br>4,03<br>-1,40<br>-1,40<br>-1,28<br>-1,04<br>1,03<br>1,09<br>-1,30<br>1,17<br>1,06<br>1,02<br>1,01<br>1,37<br>1,37<br>1,37<br>1,37<br>1,26<br>1,10<br>1,50<br>1,91<br>1,82                            | $\begin{array}{c} 3,45\\ 1,11\\ 1,17\\ 2,13\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SL4170<br>SL4171<br>SL4430<br>SL0020<br>SL0020<br>SL0020<br>SL0021<br>SL0022<br>SL0023<br>SL0024<br>SL0025<br>SL0026<br>SL0027<br>SL0035<br>SL0064<br>SL0122<br>SL0122<br>SL0122<br>SL0123<br>SL0124<br>SL0125<br>SL0128<br>SL0129                                                   | ubiC<br>ubiA<br>yjhP<br>dnaK<br>yaiV<br>yaiV<br>bcfA<br>bcfB<br>bcfC<br>bcfD<br>bcfE<br>bcfG<br>yfeN<br>citG1<br>ftsI<br>ftsI<br>ftsI<br>murE<br>murF<br>mraY<br>murD<br>murG<br>murC                        | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase<br>Uncharacterized protein yjhP<br>Chaperone protein dnaK<br>Uncharacterized protein yaiV<br>Uncharacterized protein yaiV<br>Type-1 fimbrial protein, C chain<br>Chaperone protein<br>fimbrial usher protein<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial chaperone<br>Uncharacterized protein yfeN<br>Probable 2-(5"-triphosphoribosyl)-3'-dephosphocoenzyme-A<br>synthase 1<br>Peptidoglycan synthase ftsl<br>Peptidoglycan synthase ftsl<br>UDP-N-acetylmuramoyl-L-alanyl-D-glutamate2,6-<br>diaminopimelate ligase<br>UDP-N-acetylmuramoyl-pentapeptide-transferase<br>UDP-N-acetylmuramoyl-pentapeptide-transferase<br>UDP-N-acetylglucosamineN-acetylmuramyl-(pentapeptide)<br>pyrophosphoryl-undecaprenol N-acetylglucosamine transferase<br>UDP-N-acetylmuramoteL-alanine ligase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -2,38<br>-1,18<br>1,13<br>1,09<br>4,03<br>-1,40<br>-1,40<br>-1,28<br>-1,04<br>1,03<br>1,09<br>-1,30<br>1,17<br>1,06<br>1,02<br>1,01<br>1,37<br>1,37<br>1,37<br>1,26<br>1,10<br>1,50<br>1,91<br>1,82<br>1,35                            | $\begin{array}{r} 3,45\\ 1,11\\ 1,17\\ 2,13\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SL4170<br>SL4171<br>SL4430<br>SL0020<br>SL0020<br>SL0020<br>SL0021<br>SL0022<br>SL0023<br>SL0024<br>SL0025<br>SL0026<br>SL0027<br>SL0035<br>SL0064<br>SL0122<br>SL0122<br>SL0122<br>SL0123<br>SL0124<br>SL0125<br>SL0126<br>SL0128<br>SL0129<br>SL0130                               | ubiC<br>ubiA<br>yjhP<br>dnaK<br>yaiV<br>yaiV<br>bcfA<br>bcfB<br>bcfC<br>bcfD<br>bcfE<br>bcfG<br>yfeN<br>citG1<br>ftsI<br>ftsI<br>ftsI<br>murE<br>murF<br>mraY<br>murD<br>murG<br>dulB                        | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase<br>Uncharacterized protein yjhP<br>Chaperone protein dnaK<br>Uncharacterized protein yaiV<br>Uncharacterized protein yaiV<br>Type-1 fimbrial protein, C chain<br>Chaperone protein<br>fimbrial usher protein<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial chaperone<br>Uncharacterized protein yfeN<br>Probable 2-(5"-triphosphoribosyl)-3'-dephosphocoenzyme-A<br>synthase 1<br>Peptidoglycan synthase ftsl<br>Peptidoglycan synthase ftsl<br>UDP-N-acetylmuramoyl-L-alanyl-D-glutamate2,6-<br>diaminopimelate ligase<br>UDP-N-acetylmuramoyl-pentapeptide-transferase<br>UDP-N-acetylmuramoyl-pentapeptide-transferase<br>UDP-N-acetylmuramoyl-pentapeptide-transferase<br>UDP-N-acetylglucosamineN-acetylglucosamine transferase<br>UDP-N-acetylmuramoteL-alanine ligase<br>D-alanineD-alanine ligase B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{r} -2,38\\ -1,18\\ 1,13\\ 1,09\\ \hline \end{array}$                                                                                                                                                                    | $\begin{array}{r} 3,45\\ 1,11\\ 1,17\\ 2,13\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SL4170<br>SL4171<br>SL4430<br>SL0020<br>SL0020<br>SL0020<br>SL0021<br>SL0022<br>SL0023<br>SL0024<br>SL0025<br>SL0026<br>SL0027<br>SL0035<br>SL0064<br>SL0122<br>SL0122<br>SL0122<br>SL0123<br>SL0124<br>SL0125<br>SL0126<br>SL0128<br>SL0128<br>SL0129<br>SL0130<br>SL0134           | ubiC<br>ubiA<br>yjhP<br>dnaK<br>yaiV<br>yaiV<br>bcfA<br>bcfB<br>bcfC<br>bcfD<br>bcfE<br>bcfF<br>bcfG<br>yfeN<br>citG1<br>ftsI<br>ftsI<br>ftsI<br>ftsI<br>murE<br>murF<br>mraY<br>murD<br>murG<br>duB<br>lpxC | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase<br>Uncharacterized protein yjhP<br>Chaperone protein dnaK<br>Uncharacterized protein yaiV<br>Uncharacterized protein yaiV<br>Type-1 fimbrial protein, C chain<br>Chaperone protein<br>fimbrial usher protein<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial chaperone<br>Uncharacterized protein yfeN<br>Probable 2-(5"-triphosphoribosyl)-3'-dephosphocoenzyme-A<br>synthase 1<br>Peptidoglycan synthase ftsI<br>Peptidoglycan synthase ftsI<br>UDP-N-acetylmuramoyl-L-alanyl-D-glutamate2,6-<br>diaminopimelate ligase<br>UDP-N-acetylmuramoyl-pentapeptide-transferase<br>UDP-N-acetylmuramoyl-pentapeptide-transferase<br>UDP-N-acetylmuramoyl-pentapeptide-transferase<br>UDP-N-acetylglucosamineN-acetylglucosamine transferase<br>UDP-N-acetylmuramoyl-undecaprenol N-acetylglucosamine transferase<br>UDP-N-acetylmuramateL-alanine ligase<br>D-alanineD-glatanine ligase<br>UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{r} -2,38\\ -1,18\\ 1,13\\ 1,09\\ \end{array}$                                                                                                                                                                           | $\begin{array}{r} 3,45\\ 1,11\\ 1,17\\ 2,13\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SL4170<br>SL4171<br>SL4430<br>SL0020<br>SL0020<br>SL0020<br>SL0021<br>SL0022<br>SL0023<br>SL0024<br>SL0025<br>SL0026<br>SL0027<br>SL0035<br>SL0064<br>SL0122<br>SL0122<br>SL0122<br>SL0123<br>SL0124<br>SL0125<br>SL0126<br>SL0128<br>SL0128<br>SL0129<br>SL0130<br>SL0134<br>SL0142 | ubiC<br>ubiA<br>yjhP<br>dnaK<br>yaiV<br>yaiV<br>bcfA<br>bcfB<br>bcfC<br>bcfD<br>bcfE<br>bcfG<br>yfeN<br>citG1<br>ftsI<br>ftsI<br>ftsI<br>ftsI<br>murE<br>murF<br>mraY<br>murD<br>murG<br>duB<br>lpxC<br>hofC | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase<br>Uncharacterized protein yjhP<br><b>Cell envelope</b><br>Chaperone protein dnaK<br>Uncharacterized protein yaiV<br>Uncharacterized protein yaiV<br>Uncharacterized protein yaiV<br>Type-1 fimbrial protein, C chain<br>Chaperone protein<br>fimbrial usher protein<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial chaperone<br>Uncharacterized protein yfeN<br>Probable 2-(5"-triphosphoribosyl)-3'-dephosphocoenzyme-A<br>synthase 1<br>Peptidoglycan synthase ftsl<br>UDP-N-acetylmuramoyl-L-alanyl-D-glutamate2,6-<br>diaminopimelate ligase<br>UDP-N-acetylmuramoyl-tripeptideD-alanyl-D-alanine ligase<br>Phospho-N-acetylmuramoyl-pentapeptide-transferase<br>UDP-N-acetylglucosamineD-glutamate ligase<br>UDP-N-acetylglucosamineN-acetylglucosamine transferase<br>UDP-N-acetylmuramoyl-alanine ligase<br>DD-N-acetylmuramotyl-netapetide-transferase<br>UDP-N-acetylmuramotyl-netapetide-transferase<br>UDP-N-acetylmuramotyl-netapetide-transferase<br>UDP-N-acetylmuramotyl-netapetide-transferase<br>UDP-N-acetylmuramotyl-netapetide-transferase<br>UDP-N-acetylmuramotylanineD-glutamate ligase<br>UDP-N-acetylmuramotyl-netapetide-transferase<br>UDP-N-acetylmuramotyl-netapetide-transferase<br>UDP-N-acetylmuramotyl-netapetide-transferase<br>UDP-N-acetylmuramotyl-netapetide-transferase<br>UDP-N-acetylmuramotyl-netapetide-transferase<br>UDP-N-acetylmuramotyl-netapetide-transferase<br>UDP-N-acetylmuramotyl-netapetide-transferase<br>UDP-N-acetylmuramateL-alanine ligase<br>P-alanineD-alanine ligase B<br>UDP-N-acetylmuramotyl-netapetide-transferase<br>Protein transport protein hofC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{r} -2,38\\ -1,18\\ 1,13\\ 1,09\\ \end{array}$                                                                                                                                                                           | 3,45<br>1,11<br>1,17<br>2,13<br>1,12<br>-1,59<br>-2,80<br>-2,61<br>-1,04<br>1,84<br>1,03<br>-1,02<br>-1,04<br>1,12<br>2,86<br>-1,64<br>-1,64<br>-1,64<br>-1,64<br>-1,69<br>-2,03<br>-2,12<br>-1,48<br>-1,57<br>-1,64<br>-1,57<br>-1,64<br>-1,57<br>-1,64<br>-1,45<br>-1,76<br>1,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SL4170<br>SL4171<br>SL4430<br>SL0020<br>SL0020<br>SL0020<br>SL0021<br>SL0022<br>SL0023<br>SL0024<br>SL0025<br>SL0026<br>SL0027<br>SL0035<br>SL0064<br>SL0122<br>SL0122<br>SL0122<br>SL0123<br>SL0124<br>SL0125<br>SL0128<br>SL0128<br>SL0128<br>SL0129<br>SL0130<br>SL0134<br>SL0143 | ubiC<br>ubiA<br>yjhP<br>dnaK<br>yaiV<br>yaiV<br>bcfA<br>bcfB<br>bcfC<br>bcfD<br>bcfE<br>bcfF<br>bcfG<br>yfeN<br>citG1<br>ftsI<br>ftsI<br>ftsI<br>ftsI<br>murE<br>murF<br>mraY<br>murD<br>murG<br>duB<br>lpxC | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase<br>Uncharacterized protein yjhP<br><b>Cell envelope</b><br>Chaperone protein dnaK<br>Uncharacterized protein yaiV<br>Uncharacterized protein yaiV<br>Uncharacterized protein yaiV<br>Type-1 fimbrial protein, C chain<br>Chaperone protein<br>fimbrial usher protein<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial chaperone<br>Uncharacterized protein yfeN<br>Probable 2-(5"-triphosphoribosyl)-3'-dephosphocoenzyme-A<br>synthase 1<br>Peptidoglycan synthase ftsl<br>UDP-N-acetylmuramoyl-L-alanyl-D-glutamate2,6-<br>diaminopimelate ligase<br>UDP-N-acetylmuramoyl-tripeptideD-alanyl-D-alanine ligase<br>Phospho-N-acetylmuramoyl-pentapeptide-transferase<br>UDP-N-acetylglucosamineD-glutamate ligase<br>UDP-N-acetylglucosamineN-acetylglucosamine transferase<br>UDP-N-acetylmuramoylanineD-glutamate ligase<br>UDP-N-acetylmuramoyl-alanine ligase<br>UDP-N-acetylglucosamineN-acetylglucosamine transferase<br>UDP-N-acetylmuramateL-alanine ligase<br>P-alanineD-alanine ligase B<br>UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase<br>Protein transport protein hofC<br>Protein transport protein hofB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{r} -2,38\\ -1,18\\ 1,13\\ 1,09\\ \end{array}$                                                                                                                                                                           | $\begin{array}{c} 3,45\\ 1,11\\ 1,17\\ 2,13\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SL4170<br>SL4171<br>SL4430<br>SL0020<br>SL0020<br>SL0020<br>SL0021<br>SL0022<br>SL0023<br>SL0024<br>SL0025<br>SL0026<br>SL0027<br>SL0035<br>SL0064<br>SL0122<br>SL0122<br>SL0122<br>SL0123<br>SL0124<br>SL0125<br>SL0126<br>SL0128<br>SL0128<br>SL0129<br>SL0130<br>SL0134<br>SL0142 | ubiC<br>ubiA<br>yjhP<br>dnaK<br>yaiV<br>yaiV<br>bcfA<br>bcfB<br>bcfC<br>bcfD<br>bcfE<br>bcfG<br>yfeN<br>citG1<br>ftsI<br>ftsI<br>ftsI<br>ftsI<br>murE<br>murF<br>mraY<br>murD<br>murG<br>duB<br>lpxC<br>hofC | Maltose-binding periplasmic protein<br>Chorismatepyruvate lyase<br>4-hydroxybenzoate octaprenyltransferase<br>Uncharacterized protein yjhP<br><b>Cell envelope</b><br>Chaperone protein dnaK<br>Uncharacterized protein yaiV<br>Uncharacterized protein yaiV<br>Uncharacterized protein yaiV<br>Type-1 fimbrial protein, C chain<br>Chaperone protein<br>fimbrial usher protein<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial subunit<br>fimbrial chaperone<br>Uncharacterized protein yfeN<br>Probable 2-(5"-triphosphoribosyl)-3'-dephosphocoenzyme-A<br>synthase 1<br>Peptidoglycan synthase ftsl<br>UDP-N-acetylmuramoyl-L-alanyl-D-glutamate2,6-<br>diaminopimelate ligase<br>UDP-N-acetylmuramoyl-tripeptideD-alanyl-D-alanine ligase<br>Phospho-N-acetylmuramoyl-pentapeptide-transferase<br>UDP-N-acetylglucosamineD-glutamate ligase<br>UDP-N-acetylglucosamineN-acetylglucosamine transferase<br>UDP-N-acetylmuramoyl-alanine ligase<br>DD-N-acetylmuramotyl-netapetide-transferase<br>UDP-N-acetylmuramotyl-netapetide-transferase<br>UDP-N-acetylmuramotyl-netapetide-transferase<br>UDP-N-acetylmuramotyl-netapetide-transferase<br>UDP-N-acetylmuramotyl-netapetide-transferase<br>UDP-N-acetylmuramotylanineD-glutamate ligase<br>UDP-N-acetylmuramotyl-netapetide-transferase<br>UDP-N-acetylmuramotyl-netapetide-transferase<br>UDP-N-acetylmuramotyl-netapetide-transferase<br>UDP-N-acetylmuramotyl-netapetide-transferase<br>UDP-N-acetylmuramotyl-netapetide-transferase<br>UDP-N-acetylmuramotyl-netapetide-transferase<br>UDP-N-acetylmuramotyl-netapetide-transferase<br>UDP-N-acetylmuramateL-alanine ligase<br>P-alanineD-alanine ligase B<br>UDP-N-acetylmuramotyl-netapetide-transferase<br>Protein transport protein hofC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{r} -2,38\\ -1,18\\ 1,13\\ 1,09\\ \end{array}$                                                                                                                                                                           | $\begin{array}{c} 3,45\\ 1,11\\ 1,17\\ 2,13\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| SL0158           | yacH | Uncharacterized protein yacH                                   | 1,27  | 1,95   |
|------------------|------|----------------------------------------------------------------|-------|--------|
| SL0163           | ygbK | Uncharacterized protein HI_1011                                | 1,75  | 1,59   |
| SL0163           | ygbK | Uncharacterized protein HI 1011                                | 1,75  | 1,59   |
| SL0177           | stiB | fimbrial usher protein                                         | -1,23 | -1,53  |
| SL0191           | mrcB | Penicillin-binding protein 1B                                  | 2,60  | -1,65  |
| SL0191           | fhuA | Ferrichrome-iron receptor                                      | -1,35 | -2,43  |
| SL0192<br>SL0196 | stfA | •                                                              |       |        |
|                  |      | Fimbria A protein                                              | 1,51  | -1,80  |
| SL0199           | stfE | minor fimbrial subunit StfE                                    | 1,29  | -1,13  |
| SL0200           | stfF | minor fimbrial subunit stfF                                    | 1,31  | 1,01   |
| SL0201           | stfG | putative minor fimbrial subunit                                | 1,32  | 1,26   |
| SL0207           | btuF | Vitamin B12-binding protein                                    | 1,83  | 1,02   |
| SL0225           | yaeT | Outer membrane protein assembly factor yaeT                    | 1,69  | -1,44  |
| SL0226           | ompH | outer membrane protein OmpH                                    | 1,77  | -1,09  |
| SL0227           | lpxD | UDP-3-O-[3-hydroxymyristoyl] glucosamine N-acyltransferase     | 1,55  | -1,41  |
| SL0229           | lpxA | Acyl-[acyl-carrier-protein]UDP-N-acetylglucosamine O-          | 1,52  | -1,72  |
|                  | -    | acyltransferase                                                |       |        |
| SL0230           | lpxВ | Lipid-A-disaccharide synthase                                  | 1,77  | -2,62  |
| SL0245           | rcsF | Protein rcsF                                                   | 1,41  | -1,57  |
| SL0246           | yaeC | D-methionine-binding lipoprotein                               | -1,52 | 1,29   |
| SL0275           | sciN | Hypothetical                                                   | 1,65  | -1,60  |
| SL0277           | sciP | putative outer membrane protein, OmpA family                   | 1,40  | 1,04   |
| SL0278           | sciQ | putative membrane protein, virulence associated protein        | 1,24  | -1,28  |
| SL0295           | safA | atypical fimbria lipoprotein                                   | -2,66 | -3,63  |
| SL0296           | safB | atypical fimbria chaperone                                     | -1,48 | -1,76  |
| SL0297           | safC | atypical fimbria outer membrane usher                          | -1,03 | 1,23   |
| SL0298           | safD | fimbrial structural subunit                                    | 1,32  | 1,60   |
| SL0306           | gmhA | Phosphoheptose isomerase                                       | 1,38  | 1,04   |
| SL0315           | crl  | Sigma factor-binding protein crl                               | 1,22  | 1,46   |
| SL0313           | -    | secreted protein                                               | 1,13  |        |
|                  |      | •                                                              |       | 1,10   |
| SL0331           | stbE | fimbrial chaperone protein                                     | -1,27 | -1,36  |
| SL0332           | stbD | putative fimbrial protein                                      | -1,28 | -1,13  |
| SL0333           | stbC | outer membrane fimbrial usher protein                          | -1,30 | -1,14  |
| SL0334           | stbB | fimbrial chaperone protein                                     | -1,07 | -1,11  |
| SL0335           | stbA | F17 fimbrial protein                                           | 1,12  | -1,13  |
| SL0336           | -    | Transmembrane Regulator                                        | -1,45 | -4,37  |
| SL0343           | -    | Hypothetical                                                   | -1,61 | -2,49  |
| SL0344           | yjel | Uncharacterized protein yjel                                   | 1,36  | 2,68   |
| SL0369           | yaiV | putative inner membrane protein                                | -2,01 | -3,52  |
| SL0369           | yaiV | putative inner membrane protein                                | -2,01 | -3,52  |
| SL0370           | ampH | Penicillin-binding protein AmpH                                | 1,13  | 1,58   |
| SL0373           | yaiY | Inner membrane protein yaiY                                    | -1,35 | -2,72  |
| SL0375           | ddlA | D-alanineD-alanine ligase A                                    | 1,27  | 1,04   |
| SL0376           | -    | Extensin Family Protein                                        | -1,37 | 1,68   |
| SL0406           | yajD | Uncharacterized protein yajD                                   | -1,15 | -1,30  |
| SL0419           | thil | tRNA sulfurtransferase                                         | 1,52  | -1,15  |
| SL0413<br>SL0431 | ybeT |                                                                |       |        |
|                  |      | Hypothetical                                                   | 1,42  | -1,10  |
| SL0432           | ybeT | Hypothetical                                                   | 1,22  | 1,53   |
| SL0438           | ampG | Protein AmpG                                                   | 1,46  | 1,69   |
| SL0440           | bolA | Protein BolA                                                   | -1,18 | 1,01   |
| SL0459           | ybaY | Uncharacterized lipoprotein ybaY                               | -1,53 | -1,05  |
| SL0469           | acrA | Acriflavine resistance protein A                               | 1,43  | -2,11  |
| SL0501           | ybbP | Uncharacterized ABC transporter permease ybbP                  | 1,04  | -2,41  |
| SL0502           | -    | Outer Membrane Protein                                         | 2,97  | 4,41   |
| SL0503           | sfbA | D-methionine-binding lipoprotein                               | -3,44 | -1,67  |
| SL0506           | ybbB | putative ATPase (similar to E. coli putative capsule anchoring | 1,97  | 1,54   |
| 320300           | yood | protein)                                                       |       | 1,04   |
| SL0531           | -    | Hypothetical                                                   | 1,18  | -1,51  |
| SL0532           | -    | Hypothetical                                                   | -1,28 | -1,76  |
| SL0536           | fimA | Fimbrial subunit type 1                                        | -4,60 | -6,11  |
| SL0538           | fimC | Chaperone protein fimC                                         | -3,07 | -12,54 |
| SL0547           | -    | Hypothetical                                                   | 1,97  | -1,35  |
|                  |      | Bactoprenol glucosyl transferase homolog from prophage CPS-    |       |        |
| SL0548           | yfdH | 53                                                             | 1,83  | -1,23  |
| SL0549           | atr^ | Bactoprenol-linked glucose translocase homolog from prophage   | 1,31  | -1,27  |
| 010049           | gtrA | CPS-53                                                         |       |        |
| SL0560           | frlB | Fructosamine deglycase frlB                                    | -1,00 | 2,15   |
| SL0625           | dacA | D-alanyl-D-alanine carboxypeptidase dacA                       | 1,93  | -2,01  |
| SL0626           | rlpA | Rare lipoprotein A                                             | 1,34  | -1,06  |
|                  | -    |                                                                |       |        |

| SL0628 | mrdA  | Penicillin-binding protein 2                                 | 1,72   | 1,03  |
|--------|-------|--------------------------------------------------------------|--------|-------|
| SL0628 | mrdA  | Penicillin-binding protein 2                                 | 1,72   | 1,03  |
|        |       |                                                              |        |       |
| SL0630 | ybeB  | Uncharacterized protein ybeB                                 | 1,39   | 2,09  |
| SL0635 | rlpB  | Rare lipoprotein B                                           | 1,45   | -1,73 |
| SL0644 | ybeS  | putative molecular chaperone, DnaJ family                    | -1,06  | 1,72  |
| SL0647 | ybeV  | putative molecular chaperone, DnaJ family                    | 1,34   | 1,25  |
| SL0656 | corC  | Magnesium and cobalt efflux protein corC                     | 2,01   | -1,23 |
| SL0661 | -     | Hypothetical                                                 | 1,82   | 1,06  |
| SL0700 | rfbD  | Probable UDP-galactopyranose mutase                          | 1,83   | 1,07  |
| SL0701 | rfbD  | Probable UDP-galactopyranose mutase                          | 1,61   | -1,01 |
|        |       | 6 I.V                                                        |        |       |
| SL0702 | -     | Glycosyltransferase                                          | 1,36   | -1,00 |
| SL0703 | -     | Glycosyltransferase                                          | 1,61   | 1,26  |
| SL0704 | rfbD  | O-antigen export system permease protein rfbD                | 1,32   | 1,03  |
| SL0705 | rfbE  | O-antigen export system ATP-binding protein rfbE             | 1,43   | 1,01  |
| SL0706 | glfT2 | UDP-galactofuranosyl transferase GlfT2                       | 1,37   | 1,01  |
| SL0707 | J _   | Hypothetical                                                 | 1,44   | 1,04  |
| SL0724 | ybgT  | Uncharacterized protein ybgT                                 | -1,15  | 1,02  |
| SL0725 |       | Uncharacterized protein ybgE                                 | -1,32  | -1,56 |
|        | ybgE  |                                                              |        |       |
| SL0729 | tolA  | Protein tolA                                                 | 1,85   | -2,07 |
| SL0731 | pal   | Peptidoglycan-associated lipoprotein                         | 1,58   | 1,47  |
| SL0754 | -     | Hypothetical                                                 | 1,01   | -1,16 |
| SL0757 | ybhT  | Uncharacterized protein ybhT                                 | 1,95   | -1,31 |
| SL0784 | ybhM  | Uncharacterized protein ybhM                                 | -1,22  | -1,16 |
| SL0785 | -     | Inner Membrane Protein                                       | -1,09  | -1,38 |
| SL0786 | _     | Inner Membrane Protein                                       | -1,07  | -1,34 |
| SL0790 | ybhQ  | Inner membrane protein ybhQ                                  | 2,48   | 4,45  |
|        | •     |                                                              |        |       |
| SL0798 | ybiB  | Uncharacterized protein ybiB                                 | 1,33   | -1,05 |
| SL0809 | ybiP  | Putative phosphoethanolamine transferase ybiP                | 1,03   | 2,66  |
| SL0814 | -     | Hypothetical                                                 | 1,11   | 1,24  |
| SL0839 | dacC  | D-alanyl-D-alanine carboxypeptidase dacC                     | -1,10  | 2,10  |
| SL0847 | ybjM  | Inner membrane protein ybjM                                  | 1,01   | -1,51 |
| SL0858 | ybjO  | Inner membrane protein ybjO                                  | 1,48   | -1,65 |
| SL0868 | ybjP  | Uncharacterized lipoprotein ybjP                             | -1,06  | 1,24  |
| SL0877 | ybjE  | Uncharacterized protein ybjE                                 | -1,10  | 1,00  |
|        |       |                                                              |        |       |
| SL0922 | lpxK  | Tetraacyldisaccharide 4'-kinase                              | 1,72   | -1,68 |
| SL0924 | ycaR  | UPF0434 protein CKO_02153                                    | 1,90   | 1,31  |
| SL0925 | kdsB  | 3-deoxy-manno-octulosonate cytidylyltransferase              | 2,14   | -1,15 |
| SL0932 | ycbB  | Probable L,D-transpeptidase YcbB                             | 1,22   | -1,33 |
| SL0936 | ompF  | Outer membrane protein F                                     | -6,32  | 3,64  |
| SL1010 | ompA  | Outer membrane protein A                                     | -1,04  | 1,04  |
| SL1011 | sulA  | Cell division inhibitor sulA                                 | 1,50   | 1,70  |
| SL1019 | yccV  | putative inner membrane protein                              | 1,27   | 2,36  |
|        | · · · |                                                              | 4.04   | 4.40  |
| SL1021 | ybcL  | UPF0098 protein ybcL                                         | 1,64   | 1,18  |
| SL1069 | yiiY  | Uncharacterized protein yiiY                                 | -2,24  | 1,10  |
| SL1075 | ycdZ  | Inner membrane protein ycdZ                                  | 1,31   | -2,34 |
| SL1077 | csgF  | Curli production assembly/transport component csgF           | -2,42  | -3,23 |
| SL1089 | yceK  | Uncharacterized protein yceK                                 | -1,26  | 4,06  |
| SL1092 | htrB  | Lipid A biosynthesis lauroyl acyltransferase                 | 1,70   | -1,30 |
| SL1096 | yceO  | Hypothetical                                                 | 1,03   | -1,89 |
| SL1108 | flgN  | Flagella synthesis protein flgN                              | -1,74  | 1,40  |
| SL1109 | flgM  | Negative regulator of flagellin synthesis                    | -1,43  | 1,80  |
|        |       |                                                              |        |       |
| SL1113 | flgD  | Basal-body rod modification protein flgD                     | -1,14  | 1,37  |
| SL1115 | flgF  | Flagellar basal-body rod protein flgF                        | -1,07  | 1,35  |
| SL1119 | flgJ  | Peptidoglycan hydrolase flgJ                                 | 1,07   | -1,12 |
| SL1124 | yiaF  | Uncharacterized protein yiaF                                 | 2,09   | 6,82  |
| SL1124 | yiaF  | Uncharacterized protein yiaF                                 | 2,09   | 6,82  |
| SL1144 | ycfM  | Uncharacterized protein ycfM                                 | 1,15   | -1,03 |
| SL1149 | ycfJ  | Uncharacterized protein ycfJ                                 | 1,18   | -2,72 |
| SL1179 | envF  | Probable lipoprotein envF                                    | -1,17  | -2,72 |
|        |       |                                                              |        |       |
| SL1181 | envE  | Probable lipoprotein envE                                    | -1,18  | -4,06 |
| SL1190 |       | Outer Membrane Lipoprotein                                   | 3,27   | 1,45  |
| SL1192 | dppB  | Putative peptide transport system permease protein BMEII0209 | 5,39   | 3,41  |
| SL1196 | ynal  | Uncharacterized mscS family protein aq_812                   | 1,12   | -1,03 |
| SL1196 | ynal  | Uncharacterized mscS family protein aq_812                   | 1,12   | -1,03 |
| SL1263 | _     | Hypothetical                                                 | -44,07 | -8,24 |
| SL1264 | _     | DNA/RNA Non-Specific Endonuclease                            | -5,94  | -5,85 |
| SL1277 | nlpC  | Probable lipoprotein nlpC                                    | 1,15   | 1,09  |
| ~_!_!! | pO    |                                                              | 1,10   | 1,00  |
|        |       |                                                              |        |       |

| SL1282           | ydiA  | Putative phosphotransferase CKO_01727                    | -1,41 | -1,56 |
|------------------|-------|----------------------------------------------------------|-------|-------|
| SL1364           | ydhO  | Uncharacterized protein ydhO                             | 1,35  | -1,45 |
| SL1375           | ydhl  | Uncharacterized protein ydhl                             | 1,20  | 1,46  |
| SL1404           | ompN  | Outer membrane protein N                                 | 1,28  | 1,99  |
| SL1431           | ynfC  | UPF0257 lipoprotein ynfC                                 | 1,02  | 1,02  |
| SL1458           | ymo   | Hypothetical                                             | -1,75 | -1,85 |
| SL1458<br>SL1459 | -<br> | •••                                                      | 6,93  | 1,54  |
|                  | ompC  | Outer membrane protein C                                 |       |       |
| SL1459           | ompC  | Outer membrane protein C                                 | 6,93  | 1,54  |
| SL1489           | treY  | Maltooligosyl trehalose synthase                         | -1,04 | 2,33  |
| SL1490           | treZ  | Malto-oligosyltrehalose trehalohydrolase                 | -1,69 | 1,49  |
| SL1491           | -     | Hypothetical                                             | 1,01  | 1,16  |
| SL1516           | ygdR  | Uncharacterized lipoprotein ygdR                         | 1,92  | 1,01  |
| SL1524           | srfA  | putative virulence effector protein                      | 1,09  | -1,08 |
| SL1525           | srfB  | Virulence Protein SrfB                                   | 1,58  | 1,72  |
| SL1527           | ydcX  | Uncharacterized protein ydcX                             | 1,48  | 1,76  |
| SL1537           | ydcL  | Uncharacterized lipoprotein ydcL                         | -1,14 | 1,33  |
| SL1562           | -     | Hypothetical                                             | -1,79 | -2,75 |
| SL1567           | -     | Hypothetical                                             | -1,96 | -1,83 |
| SL1579           | ydbJ  | Uncharacterized protein ydbJ                             | -1,02 | 1,06  |
| SL1593           | ynaJ  | Uncharacterized protein ynaJ                             | -1,97 | 1,33  |
| SL1594           | ynal  | MscS family inner membrane protein ynal                  | -1,07 | -2,22 |
| SL1594<br>SL1594 | •     |                                                          |       | -2,22 |
|                  | ynal  | MscS family inner membrane protein ynal                  | -1,07 |       |
| SL1598           | -     | Hypothetical                                             | 1,20  | 1,14  |
| SL1603           | ygdR  | Outer Membrane Lipoprotein                               | -1,11 | -1,21 |
| SL1628           | steC  | Secreted effector kinase steC                            | -1,55 | -2,01 |
| SL1640           | yciM  | Uncharacterized protein yciM                             | 1,09  | -2,47 |
| SL1641           | yciS  | Inner membrane protein yciS                              | -1,11 | -2,01 |
| SL1663           | ompW  | Outer membrane protein W                                 | 1,01  | 2,05  |
| SL1678           | -     | Hypothetical                                             | -2,02 | 1,26  |
| SL1683           | galU  | UTPglucose-1-phosphate uridylyltransferase               | 1,37  | -1,10 |
| SL1697           | ychN  | Protein ychN                                             | -1,02 | -1,46 |
| SL1700           | kdsA  | 2-dehydro-3-deoxyphosphooctonate aldolase                | 1,67  | 1,03  |
| SL1710           | ychH  | Uncharacterized protein ychH                             | -1,07 | 2,43  |
| SL1726           | ycgR  | Flagellar brake protein YcgR                             | -2,93 | -2,06 |
| SL1727           | emtA  | Endo-type membrane-bound lytic murein transglycosylase A | 1,24  | 1,76  |
| SL1730           | dadX  | Alanine racemase, catabolic                              | 1,04  | 1,36  |
| SL1735           | dsbB  | Disulfide bond formation protein B                       | 1,37  | -1,02 |
| SL1733<br>SL1748 |       | Uncharacterized lipoprotein yeaY                         | 1,85  | -1,28 |
|                  | yeaY  |                                                          |       | •     |
| SL1757           | yoaE  | UPF0053 inner membrane protein yoaE                      | 1,12  | 1,63  |
| SL1765           | ftsl  | Peptidoglycan synthase ftsl                              | 1,45  | -1,02 |
| SL1765           | ftsl  | Peptidoglycan synthase ftsl                              | 1,45  | -1,02 |
| SL1769           | mgrB  | Protein mgrB                                             | -1,80 | -2,85 |
| SL1783           | -     | Hypothetical                                             | -3,09 | -3,53 |
| SL1794           | -     | Hypothetical                                             | -5,53 | -8,02 |
| SL1795           | -     | Hypothetical                                             | -5,06 | -6,18 |
| SL1810           | holE  | DNA polymerase III subunit theta                         | 1,19  | 4,58  |
| SL1845           | mrdA  | Penicillin-binding protein 2                             | 2,44  | -1,09 |
| SL1845           | mrdA  | Penicillin-binding protein 2                             | 2,44  | -1,09 |
| SL1860           | flhD  | Transcriptional activator FlhD                           | -3,42 | -1,05 |
| SL1873           | -     | NLP/P60 Protein                                          | -3,11 | -2,20 |
| SL1874           | -     | Hypothetical                                             | -2,61 | -2,98 |
| SL1911           | rcsA  | Colanic acid capsular biosynthesis activation protein A  | -1,32 | -3,43 |
| SL1915           | yedQ  | Cellulose synthesis regulatory protein                   | -1,09 | 1,54  |
| SL1917           | yedd  | Inner membrane protein yedl                              | 1,63  | -1,51 |
| SL1917<br>SL1922 |       |                                                          | 1,20  |       |
|                  | yedR  | Inner membrane protein yedR                              |       | -6,03 |
| SL1923           | ompS1 | Outer membrane protein S1                                | -1,54 | 1,14  |
| SL2036           | yeeA  | Inner membrane protein yeeA                              | 1,34  | 1,36  |
| SL2038           | dacD  | D-alanyl-D-alanine carboxypeptidase dacD                 | 1,29  | -1,60 |
| SL2039           | phsC  | Thiosulfate reductase cytochrome B subunit               | -1,67 | 1,42  |
| SL2056           | wzzB  | Chain length determinant protein                         | -1,22 | -2,36 |
| SL2059           | rfbP  | Undecaprenyl-phosphate galactose phosphotransferase      | 2,06  | 1,34  |
| SL2061           | rfbM  | Mannose-1-phosphate guanylyltransferase rfbM             | 2,13  | 1,24  |
| SL2062           | rfbN  | O antigen biosynthesis rhamnosyltransferase rfbN         | 2,11  | 1,18  |
| SL2064           | rfbV  | O antigen biosynthesis abequosyltransferase rfbV         | 2,29  | 1,28  |
| SL2065           | rfbX  | Putative O-antigen transporter                           | 4,46  | 1,63  |
| SL2066           | rfbJ  | CDP-abequose synthase                                    | 2,39  | 1,84  |
| SL2067           | rfbH  | Lipopolysaccharide biosynthesis protein rfbH             | 1,45  | 1,22  |
|                  | 1011  |                                                          | 1,10  | • ,   |

| SL2068           | rfbG | CDP-glucose 4,6-dehydratase                                  | 1,67  | 1,16  |
|------------------|------|--------------------------------------------------------------|-------|-------|
| SL2070           | rfbl | Protein rfbl                                                 | 2,76  | -1,13 |
| SL2071           | rfbC | dTDP-4-dehydrorhamnose 3,5-epimerase                         | 2,33  | -1,06 |
| SL2072           | rfbA | TDP-glucose pyrophosphorylase                                | 2,38  | -1,25 |
| SL2072           | rfbD | dTDP-4-dehydrorhamnose reductase                             | 1,92  | -1,47 |
|                  |      |                                                              |       |       |
| SL2074           | rfbB | dTDP-glucose 4,6-dehydratase                                 | 2,04  | -1,61 |
| SL2076           | wcaM | Colanic acid biosynthesis protein wcaM                       | 1,17  | 1,14  |
| SL2077           | wcaL | Putative colanic acid biosynthesis glycosyltransferase wcaL  | 1,80  | 1,78  |
| SL2080           | wcaJ | Putative colanic biosynthesis UDP-glucose lipid carrier      | 1,42  | -1,44 |
|                  | _    | transferase                                                  |       |       |
| SL2082           | manC | Mannose-1-phosphate guanylyltransferase manC                 | 1,46  | -1,25 |
| SL2083           | wcal | Putative colanic acid biosynthesis glycosyl transferase wcal | 2,23  | -1,06 |
| SL2084           | nudD | GDP-mannose mannosyl hydrolase                               | 2,56  | -1,13 |
| SL2085           | fcl  | GDP-L-fucose synthase                                        | 1,63  | -1,33 |
| SL2086           | gmd  | GDP-mannose 4,6-dehydratase                                  | 1,48  | -1,41 |
| SL2088           | wcaE | Putative colanic acid biosynthesis glycosyl transferase wcaE | -1,41 | -2,85 |
| SL2090           | wcaC | Putative colanic acid biosynthesis glycosyl transferase wcaC | 1,35  | 1,01  |
| SL2092           | wcaA | Putative colanic acid biosynthesis glycosyl transferase wcaA | 1,95  | 1,44  |
| SL2095           | wza  | Putative polysaccharide export protein wza                   | 1,35  | -2,73 |
| SL2097           | asmA | Protein AsmA                                                 | 1,25  | -1,13 |
| SL2110           | -    | Hypothetical                                                 | -1,12 | -1,67 |
| SL2110           | _    | Hypothetical                                                 | 1,09  | -1,28 |
| SL2115           | _    | Hypothetical                                                 | -3,69 | -5,31 |
| SL2115<br>SL2126 |      |                                                              |       |       |
|                  | yehA | Uncharacterized protein yehA                                 | -1,11 | -1,42 |
| SL2127           | yehB | Uncharacterized outer membrane usher protein yehB            | 1,12  | -1,87 |
| SL2128           | yehC | Uncharacterized fimbrial chaperone yehC                      | -2,61 | -2,64 |
| SL2146           | pbpG | D-alanyl-D-alanine endopeptidase                             | 1,91  | -1,66 |
| SL2161           | sanA | Protein sanA                                                 | -1,04 | 1,05  |
| SL2162           | yeiS | Uncharacterized protein yeiS                                 | 1,56  | 1,28  |
| SL2176           | cirA | Colicin I receptor                                           | -2,00 | 1,03  |
| SL2185           | ykgH | Hypothetical                                                 | 1,33  | 1,18  |
| SL2191           | spr  | Lipoprotein spr                                              | 1,64  | -1,01 |
| SL2202           | -    | Hypothetical                                                 | 1,62  | 1,16  |
| SL2208           | yrhL | Putative peptidoglycan O-acetyltransferase yrhL              | -1,32 | -1,39 |
| SL2210           | -    | Hypothetical                                                 | -1,37 | -1,27 |
| SL2221           | -    | Conserved Hypothetical Protein                               | -1,08 | -1,97 |
| SL2236           | apbE | Thiamine biosynthesis lipoprotein ApbE                       | 1,58  | 1,47  |
| SL2237           | ompC | Outer membrane protein C                                     | 1,02  | 1,06  |
| SL2237           | ompC | Outer membrane protein C                                     | 1,02  | 1,06  |
|                  | -    | Undecaprenyl-phosphate 4-deoxy-4-formamido-L-arabinose       |       |       |
| SL2267           | arnC | transferase                                                  | -2,24 | -3,30 |
| SL2272           | arnF | Probable 4-amino-4-deoxy-L-arabinose-phosphoundecaprenol     | -1,15 | -1,77 |
| 32272            | ann  | flippase subunit ArnF                                        |       | -1,77 |
| SL2280           | elaB | Protein elaB                                                 | -1,07 | 2,11  |
| SL2308           | yfcC | Uncharacterized protein yfcC                                 | 4,61  | 1,20  |
| SL2308           | yfcC | Uncharacterized protein yfcC                                 | 4,61  | 1,20  |
| SL2346           | -    | Uncharacterized 24.3 kDa protein                             | 3,59  | 1,59  |
| SL2350           | yfcM | Uncharacterized protein yfcM                                 | 2,39  | 1,80  |
| SL2352           | mepA | Penicillin-insensitive murein endopeptidase                  | 1,44  | 1,66  |
| SL2361           | vacJ | Probable phospholipid-binding lipoprotein mlaA               | -1,01 | 1,06  |
| SL2369           | ddg  | Protein ddg                                                  | -1,91 | -4,29 |
| SL2386           | yfeN | Uncharacterized protein yfeN                                 | -1,93 | -1,06 |
| SL2386           | yfeN | Uncharacterized protein yfeN                                 | -1,93 | -1,06 |
| SL2413           | amiA | Probable N-acetylmuramoyl-L-alanine amidase AmiA             | 1,48  | -1,23 |
| SL2415           | ypfK | Uncharacterized protein ypfK                                 | 2,22  | -1,02 |
|                  |      |                                                              |       | -3,86 |
| SL2451           | nlpB | Lipoprotein 34                                               | 1,21  | -     |
| SL2457           | yfgC | TPR repeat-containing protein yfgC                           | 1,37  | -1,46 |
| SL2467           | -    | Hypothetical                                                 | -1,28 | -1,21 |
| SL2468           | yfgG | Uncharacterized protein yfgG                                 | -1,38 | -1,21 |
| SL2475           | ratB | Invasin                                                      | 1,41  | 1,01  |
| SL2477           | ratA | Invasin                                                      | -1,14 | -1,33 |
| SL2478           | sinl | Outer Membrane Protein                                       | -1,08 | 1,52  |
| SL2479           | sinH | Intimin                                                      | -1,23 | 1,08  |
| SL2483           | yfgM | UPF0070 protein yfgM                                         | 1,39  | -1,61 |
| SL2485           | ispG | 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase         | 1,12  | 1,01  |
| SL2486           | rodZ | Cytoskeleton protein rodZ                                    | 1,31  | -1,90 |
| SL2493           | pbpC | Penicillin-binding protein 1C                                | 1,68  | -1,15 |
| SL2513           | -    | Putative nickel/cobalt efflux system HI_1248                 | 1,21  | -1,13 |
|                  |      |                                                              |       |       |

| SL2606           | yfiC   | tRNA (adenine-N(6)-)-methyltransferase                     | 1,50  | 1,68  |
|------------------|--------|------------------------------------------------------------|-------|-------|
| SL2617           | yfiM   | Uncharacterized protein yfiM                               | 1,39  | 1,02  |
| SL2623           | yfiO   | UPF0169 lipoprotein yfiO                                   | 2,08  | -1,55 |
| SL2737           | yrbE   | Uncharacterized oxidoreductase yrbE                        | -1,68 | -1,02 |
| SL2745           | -      | Hypothetical                                               | 1,09  | -1,23 |
| SL2746           | -      | Hypothetical                                               | 1,00  | 1,09  |
| SL2740<br>SL2756 |        |                                                            | -7,31 | -1,25 |
| SL2730<br>SL2784 | fljB   | Phase 2 flagellin                                          |       |       |
|                  | ygaW   | Uncharacterized protein ygaW                               | -1,33 | -2,45 |
| SL2786           | ygaM   | Uncharacterized protein ygaM                               | -1,36 | 1,46  |
| SL2801           |        | Glycoporin                                                 | 1,04  | -1,12 |
| SL2804           | yqaA   | Inner membrane protein yqaA                                | 1,40  | -1,82 |
| SL2811           | mltB   | Membrane-bound lytic murein transglycosylase B             | -1,00 | -1,65 |
| SL2893           | rffG   | Uncharacterized protein HI_1014                            | 1,19  | 1,08  |
| SL2896           | ygbK   | Uncharacterized protein ygbK                               | 1,91  | -1,12 |
| SL2896           | ygbK   | Uncharacterized protein ygbK                               | 1,91  | -1,12 |
| SL2904           | nlpD   | Lipoprotein nlpD                                           | 1,57  | -1,47 |
| SL2904           | nlpD   | Lipoprotein nlpD                                           | 1,57  | -1,47 |
| SL2911           | ygbE   | Inner membrane protein ygbE                                | 1,40  | -1,56 |
| SL2916           | ygbF   | Uncharacterized protein ygbF                               | -1,83 | -1,82 |
| SL2961           | ygdD   | UPF0382 inner membrane protein ygdD                        | 1,25  | -1,63 |
| SL2968           | mltA   | Membrane-bound lytic murein transglycosylase A             | 1,88  | -1,95 |
| SL2969           | amiC   |                                                            | 1,30  |       |
| SL2909<br>SL2985 |        | N-acetylmuramoyl-L-alanine amidase AmiC                    |       | -1,17 |
|                  | ygdR   | Uncharacterized lipoprotein ygdR                           | 1,04  | 1,00  |
| SL2999           | -      | Hypothetical                                               | -1,22 | -2,31 |
| SL3005           | -      | Hypothetical                                               | -1,72 | -2,17 |
| SL3011           | -      | Uncharacterized protein HI_0947                            | 1,67  | -1,65 |
| SL3011           | -      | Uncharacterized protein HI_0947                            | 1,67  | -1,65 |
| SL3013           | -      | Hypothetical                                               | -1,84 | -1,84 |
| SL3014           | ygeR   | Uncharacterized lipoprotein ygeR                           | 1,10  | -1,00 |
| SL3019           | dsbC   | Thiol:disulfide interchange protein dsbC                   | 1,46  | 1,36  |
| SL3022           | ygfX   | Uncharacterized protein ygfX                               | 1,12  | 1,57  |
| SL3028           | -      | Hypothetical                                               | -1,39 | -1,01 |
| SL3043           | mscS   | Small-conductance mechanosensitive channel                 | -1,39 | -1,24 |
| SL3047           | glmU   | Bifunctional protein glmU                                  | 2,76  | 17,73 |
| SL3055           | yisY   | AB hydrolase superfamily protein yisY                      | -1,80 | -1,63 |
| SL3087           | mltC   | Membrane-bound lytic murein transglycosylase C             | 1,02  | -1,19 |
| SL3007<br>SL3090 |        | Uncharacterized protein yqgA                               | 1,56  | -2,59 |
|                  | yqgA   |                                                            |       |       |
| SL3136           | yghB   | Inner membrane protein yghB                                | 1,22  | -1,11 |
| SL3167           | dsbB   | Putative protein-disulfide oxidoreductase                  | -1,46 | 1,04  |
| SL3171           | yqiJ   | Inner membrane protein yqiJ                                | 1,20  | 1,52  |
| SL3172           | yqiK   | Inner membrane protein yqiK                                | 1,18  | -1,12 |
| SL3173           | rfaE   | ADP-heptose synthase                                       | 1,44  | 1,50  |
| SL3202           | yqjE   | Inner membrane protein yqjE                                | -1,80 | -1,42 |
| SL3203           | yqjK   | Uncharacterized protein yqjK                               | -1,92 | -1,61 |
| SL3206           | yhaH   | Inner membrane protein yhaH                                | -1,12 | 1,17  |
| SL3237           | yraM   | Uncharacterized protein yraM                               | 1,85  | -1,31 |
| SL3239           | diaA   | DnaA initiator-associating protein diaA                    | 1,41  | 1,10  |
| SL3265           | glmM   | Phosphoglucosamine mutase                                  | 2,06  | 1,23  |
| SL3272           | dacB   | D-alanyl-D-alanine carboxypeptidase dacB                   | 1,46  | -1,34 |
| SL3279           | murA   | UDP-N-acetylglucosamine 1-carboxyvinyltransferase          | 1,60  | -1,18 |
| SL3289           | IptC   | Lipopolysaccharide export system protein lptC              | 1,31  | -1,48 |
| SL3203<br>SL3298 |        |                                                            |       |       |
|                  | mtgA   | Monofunctional biosynthetic peptidoglycan transglycosylase | -1,28 | 1,32  |
| SL3310           | nanT1  | Putative sialic acid transporter 1                         | -1,92 | -1,89 |
| SL3311           | nanA   | N-acetylneuraminate lyase                                  | 1,40  | -1,38 |
| SL3322           | citG1  | Probable 2-(5"-triphosphoribosyl)-3'-dephosphocoenzyme-A   | 1,03  | 1,67  |
|                  |        | synthase 1                                                 |       |       |
| SL3344           | mreD   | Rod shape-determining protein mreD                         | 1,88  | 1,82  |
| SL3345           | mreC   | Rod shape-determining protein mreC                         | 1,69  | -1,82 |
| SL3351           | yedZ   | Sulfoxide reductase heme-binding subunit yedZ              | 1,09  | -1,11 |
| SL3363           | acrE   | Acriflavine resistance protein E                           | 1,40  | -1,37 |
| SL3365           | yhdV   | Uncharacterized protein yhdV                               | 1,38  | 1,01  |
| SL3432           | yhfA   | Protein yhfA                                               | 1,22  | 1,61  |
| SL3447           | yhfL   | Uncharacterized protein yhfL                               | 1,48  | 1,21  |
| SL3455           | hofQ   | Protein transport protein hofQ                             | 1,55  | 1,25  |
| SL3457           | yrfB   | Uncharacterized protein yrfB                               | -1,08 | 1,41  |
| SL3460           | mrcA   | Penicillin-binding protein 1A                              | 1,57  | -2,07 |
| SL3466           | yhgE   | Uncharacterized protein yhgE                               | 1,46  | -1,33 |
|                  | J. '9- |                                                            | .,    | .,50  |

| SL3468           | envZ         | Osmolarity sensor protein envZ                            | 1,91   | -1,63 |
|------------------|--------------|-----------------------------------------------------------|--------|-------|
| SL3494           | ybbD         | Hypothetical                                              | -1,56  | 1,42  |
| SL3506           | asd          | Aspartate-semialdehyde dehydrogenase                      | 1,05   | 1,19  |
| SL3515           | asu          |                                                           |        |       |
|                  | -            | Hypothetical                                              | -11,74 | -1,62 |
| SL3539           | yhhM         | Uncharacterized protein yhhM                              | 1,50   | 1,67  |
| SL3540           | yhhN         | Uncharacterized membrane protein yhhN                     | -1,11  | -3,96 |
| SL3566           | frlB         | Fructosamine deglycase frlB                               | 3,57   | 25,25 |
| SL3569           | -            | Hypothetical                                              | -2,87  | 2,47  |
| SL3581           | bcsC         | Cellulose synthase operon protein C                       | 1,16   | -1,20 |
| SL3584           | bcsA         | Cellulose synthase catalytic subunit [UDP-forming]        | 1,02   | -1,63 |
| SL3588           | yhjT         | Uncharacterized protein yhjT                              | -1,56  | -1,30 |
| SL3595           | dppB         | Dipeptide transport system permease protein dppB          | -8,43  | -7,97 |
| SL3605           | lpfB         | Chaperone protein lpfB                                    | 1,09   | -1,55 |
| SL3603<br>SL3611 | •            | Inner membrane lipoprotein yiaD                           |        |       |
|                  | yiaD         |                                                           | 1,63   | -1,62 |
| SL3613           | yiaF         | Uncharacterized protein yiaF                              | 1,15   | 1,32  |
| SL3613           | yiaF         | Uncharacterized protein yiaF                              | 1,15   | 1,32  |
| SL3624           | yiaB         | Hypothetical                                              | -1,64  | -1,50 |
| SL3656           | yadA         | Adhesin yadA                                              | 1,08   | 1,65  |
| SL3676           | hldD         | ADP-L-glycero-D-manno-heptose-6-epimerase                 | 1,17   | 1,27  |
| SL3677           | rfaF         | ADP-heptoseLPS heptosyltransferase 2                      | 1,34   | -1,24 |
| SL3678           | rfaC         | Lipopolysaccharide heptosyltransferase 1                  | 1,15   | -1,52 |
| SL3680           | waaK         | Lipopolysaccharide 1,2-N-acetylglucosaminetransferase     | 1,42   | -1,61 |
| SL3681           | rfaZ         | Lipopolysaccharide core biosynthesis protein rfaZ         | 2,29   | -1,25 |
| SL3682           | rfaY         | Lipopolysaccharide core heptose(II) kinase rfaY           | 3,15   | -1,06 |
|                  |              |                                                           |        |       |
| SL3683           | rfaJ         | Lipopolysaccharide 1,2-glucosyltransferase                | 3,80   | -1,11 |
| SL3684           | rfal         | Lipopolysaccharide 1,3-galactosyltransferase              | 2,70   | -1,09 |
| SL3685           | rfaB         | Lipopolysaccharide 1,6-galactosyltransferase              | 2,71   | -1,29 |
| SL3686           | yibR         | Uncharacterized protein yibR                              | 4,10   | -1,17 |
| SL3687           | rfaP         | Lipopolysaccharide core heptose(I) kinase rfaP            | 1,55   | -1,36 |
| SL3688           | rfaG         | Lipopolysaccharide core biosynthesis protein rfaG         | 1,30   | -2,10 |
| SL3689           | rfaQ         | Lipopolysaccharide core heptosyltransferase rfaQ          | 1,15   | -2,41 |
| SL3690           | waaA         | 3-deoxy-D-manno-octulosonic-acid transferase              | 2,10   | 3,06  |
| SL3752           | yicN         | Uncharacterized protein yicN                              | 1,10   | 3,22  |
| SL3765           | -            | Hypothetical                                              | 1,28   | -1,04 |
| SL3703<br>SL3772 |              | Inner membrane protein yidG                               |        |       |
|                  | yidG         |                                                           | -1,00  | 1,17  |
| SL3773           | yidH         | Inner membrane protein yidH                               | 1,51   | 1,29  |
| SL3777           | yidQ         | Uncharacterized protein yidQ                              | -1,08  | 2,30  |
| SL3788           | torA         | Trimethylamine-N-oxide reductase                          | 1,09   | -1,20 |
| SL3809           | oxaA         | Inner membrane protein oxaA                               | 1,47   | -1,06 |
| SL3812           | -            | Inner Membrane Protein                                    | -1,32  | 1,15  |
| SL3829           | glmU         | Bifunctional protein glmU                                 | 1,52   | 1,19  |
| SL3871           | -            | Inner Membrane Protein                                    | 1,52   | 3,48  |
| 01.0077          |              | Undecaprenyl-phosphate alpha-N-acetylglucosaminyl 1-      |        |       |
| SL3877           | wecA         | phosphate transferase                                     | -1,22  | -2,01 |
| SL3878           | wzzE         | Lipopolysaccharide biosynthesis protein wzzE              | 1,05   | -1,67 |
| SL3879           | wecB         | UDP-N-acetylglucosamine 2-epimerase                       | 1,32   | -2,08 |
| SL3880           | wecC         | UDP-N-acetyl-D-mannosamine dehydrogenase                  | 1,45   | -1,71 |
| SL3881           | rffG         | dTDP-glucose 4,6-dehydratase 2                            | 1,63   | -1,54 |
| SL3883           | rffC         | Lipopolysaccharide biosynthesis protein rffC              | 1,80   | -1,54 |
| SL3884           | rffA         | Lipopolysaccharide biosynthesis protein rffA              | 1,58   | -1,19 |
|                  |              |                                                           |        |       |
| SL3888           | wecG         | Probable UDP-N-acetyl-D-mannosaminuronic acid transferase | 1,53   | -1,48 |
| SL3895           | -            | Inner Membrane Protein                                    | 1,01   | -1,34 |
| SL3896           | -            | Hypothetical                                              | 1,23   | -1,10 |
| SL3899           | -            | Hypothetical                                              | 1,01   | -1,55 |
| SL3900           | yifL         | Uncharacterized lipoprotein yifL                          | 1,50   | -1,44 |
| SL3923           | rmuC         | DNA recombination protein rmuC                            | 1,96   | 1,68  |
| SL3957           | -            | Hypothetical                                              | -1,26  | -1,50 |
| SL3969           | yihU         | Uncharacterized oxidoreductase yihU                       | 1,56   | 1,52  |
| SL3989           | -            | Hypothetical                                              | -1,56  | -3,77 |
| SL4000           | yiiY         | Uncharacterized protein yiiY                              | 1,07   | 1,25  |
| SL4000<br>SL4006 | y i i i<br>_ | Hypothetical                                              | 1,97   | 1,90  |
| SL4000<br>SL4028 | -<br>IsrG    |                                                           |        |       |
|                  |              | Autoinducer 2-degrading protein IsrG                      | -2,15  | -1,91 |
| SL4032           | yiiR         | Uncharacterized protein yiiR                              | -1,21  | -1,22 |
| SL4046           | -            |                                                           | -1,04  | 1,24  |
| SL4051           | mscS         | Small-conductance mechanosensitive channel                | -1,14  | -1,48 |
| SL4052           | -            | Hypothetical                                              | -1,08  | -1,06 |
| SL4075           | sthA         | Soluble pyridine nucleotide transhydrogenase              | 1,10   | 1,28  |
|                  |              |                                                           |        |       |

| SL4077           | yijD         | Inner membrane protein yijD                                                | 1,61           | 1,37           |
|------------------|--------------|----------------------------------------------------------------------------|----------------|----------------|
| SL4080           | murl         | Glutamate racemase                                                         | 1,50           | 1,03           |
| SL4081           | murB         | UDP-N-acetylenolpyruvoylglucosamine reductase                              | 1,42           | -1,23          |
| SL4094           | -            | Inner Membrane Protein                                                     | 1,76           | -1,17          |
| SL4110           | yjaH         | Uncharacterized protein yjaH                                               | 1,04           | -1,12          |
| SL4159           | yjbF         | Uncharacterized lipoprotein yjbF                                           | -1,53          | -3,86          |
| SL4178           | -<br>olr     | Hypothetical                                                               | 1,26           | 1,36           |
| SL4183<br>SL4188 | alr<br>-     | Alanine racemase, biosynthetic<br>Hypothetical                             | 1,66<br>1,51   | 1,74<br>-2,63  |
| SL4189           | -            | Lipoprotein                                                                | 1,28           | -2,55          |
| SL4207           | cidA         | Holin-like protein cidA                                                    | -1,56          | -9,77          |
| SL4208           | ywbG         | Uncharacterized protein ywbG                                               | -2,01          | -15,23         |
| SL4230           | eptA         | Phosphoethanolamine transferase eptA                                       | -1,43          | -4,20          |
| SL4247           | yjiK         | Uncharacterized protein yjiK                                               | -50,35         | -15,24         |
| SL4267           | groL         | 60 kDa chaperonin                                                          | 2,17           | 1,42           |
| SL4268           | yjel         | Uncharacterized protein yjel                                               | -1,30          | 1,28           |
| SL4276           | blc          | Outer membrane lipoprotein blc                                             | -1,26          | 1,05           |
| SL4283           | yjeO         | Inner membrane protein yjeO                                                | 2,11           | -1,20          |
| SL4292           | amiB         | N-acetylmuramoyl-L-alanine amidase AmiB                                    | 1,44           | 1,29           |
| SL4307<br>SL4312 | yjfL<br>bsmA | UPF0719 inner membrane protein yjfL<br>Lipoprotein BsmA                    | -1,14<br>2,05  | -2,12<br>8,24  |
| SL4312<br>SL4322 | yjfY         | Uncharacterized protein yjfY                                               | 1,28           | -1,28          |
| SL4333           | ytfF         | Inner membrane protein ytfF                                                | 1,09           | 1,39           |
| SL4342           | ytfM         | Uncharacterized protein ytfM                                               | 1,43           | -1,33          |
|                  | -            | UDP-N-acetylmuramate:L-alanyl-gamma-D-glutamyl-meso-                       |                |                |
| SL4349           | mpl          | diaminopimelate ligase                                                     | 1,57           | 1,00           |
| SL4363           | yrbE         | Uncharacterized oxidoreductase yrbE                                        | -1,08          | 1,10           |
| SL4373           | -            | Hypothetical                                                               | -1,54          | 1,73           |
| SL4374           | -            | Hypothetical                                                               | -1,53          | 1,62           |
| SL4394<br>SL4394 | yfcC<br>vfcC | Uncharacterized protein HI_0594                                            | -2,15<br>-2,15 | 1,70           |
| SL4394<br>SL4402 | yfcC<br>ytgA | Uncharacterized protein HI_0594<br>Uncharacterized protein ytgA            | -2,15          | 1,70<br>1,05   |
| SL4402<br>SL4404 | yjgN         | Inner membrane protein yigN                                                | 1,55           | -1,18          |
| SL4427           | -            | Hypothetical                                                               | 1,46           | 1,54           |
| SL4433           | -            | Hypothetical                                                               | -1,63          | -1,34          |
| SL4435           | -            | Hypothetical                                                               | -2,76          | -2,20          |
| SL4445           | yjiH         | Uncharacterized protein yjiH                                               | -2,10          | 1,37           |
| SL4448           | mdtM         | Multidrug resistance protein mdtM                                          | 1,79           | 1,48           |
| SL4453           | -            | Hypothetical                                                               | -1,14          | -1,19          |
| SL4459           | -            | Hypothetical                                                               | 1,18           | 2,24           |
| SL4471           | frlB         | Fructosamine deglycase frlB                                                | 1,08           | 1,19           |
| SL4473           | yjjA         | Uncharacterized protein yjjA                                               | 1,17           | -1,32          |
| SL4476<br>SL4477 | yjjB<br>viiD | UPF0442 protein CKO_03436                                                  | 1,35           | -1,39          |
| SL4477<br>SL4483 | yjjP<br>yjjZ | Inner membrane protein yjjP<br>Uncharacterized protein yjjZ                | 1,67<br>-3,01  | -1,17<br>-1,68 |
| SL4403<br>SL4498 | y]]∠<br>_    | Hypothetical                                                               | 1,03           | -1,13          |
| SL4499           | yhcD         | Uncharacterized outer membrane usher protein yhcD                          | -1,39          | -1,01          |
| SL4501           | yhcF         | Uncharacterized protein yhcF                                               | -1,98          | -1,19          |
| SL4502           | yhcF         | Uncharacterized protein yhcF                                               | -2,18          | 1,13           |
| SL4503           | IpIA         | Lipoate-protein ligase A                                                   | 1,35           | 1,53           |
| SL4504           | smp          | Protein smp                                                                | 2,02           | -1,12          |
| SL4509           | slt          | Soluble lytic murein transglycosylase                                      | 1,68           | 1,38           |
| SL4518           | sthE         | Adhesin                                                                    | -1,15          | -1,53          |
| SL4519           | fimG         | Hypothetical                                                               | -1,16          | -1,47          |
| SL4521           | fimC         | Chaperone protein fimC                                                     | 1,21           | -1,80          |
| SL4522<br>SL4523 | ydeS<br>yaiV | Uncharacterized fimbrial-like protein ydeS<br>Uncharacterized protein yaiV | 1,56           | -1,32<br>-1,63 |
| SL4523<br>SL4523 | yaiV         | Uncharacterized protein yaiV                                               | -1,09<br>-1.09 | -1,63          |
| 024020           | yarv         | Cellular processes                                                         | 1,00           | 1,00           |
| SI 0010          | hta A        |                                                                            | 1,44           | 1,14           |
| SL0010<br>SL0089 | htgA<br>apaH | UPF0174 protein yaaW<br>Bis(5'-nucleosyl)-tetraphosphatase, symmetrical    | 1,44           | -1,43          |
| SL0089<br>SL0091 | apan<br>ksgA | dimethyladenosine transferase                                              | 1,02           | -1,45          |
| SL0091<br>SL0094 | imp          | organic solvent tolerance protein                                          | 1,67           | -1,57          |
| SL0121           | ftsL         | Cell division protein ftsL                                                 | -1,15          | -1,22          |
| SL0127           | ftsW         | Cell division protein ftsW                                                 | 1,89           | -1,63          |
| SL0131           | ftsQ         | Cell division protein ftsQ                                                 | 1,20           | -1,44          |
| SL0132           | ftsA         | Cell division protein ftsA                                                 | 1,19           | -2,09          |
|                  |              |                                                                            |                |                |

| SL0133           | ftsZ         | Cell division protein ftsZ                                  | -1,17  | -1,20  |
|------------------|--------------|-------------------------------------------------------------|--------|--------|
| SL0142           | hofC         | Protein transport protein hofC                              | 1,73   | 1,33   |
| SL0146           | ampD         | 1,6-anhydro-N-acetylmuramyl-L-alanine amidase AmpD          | 1,01   | -1,10  |
| SL0169           | cueO         | Blue copper oxidase cueO                                    | -1,05  | 1,47   |
| SL0237           | mesJ         | cell cycle protein MesJ                                     | 1,42   | 1,12   |
| SL0237<br>SL0326 |              |                                                             |        |        |
|                  | yisK         | putative fumarylacetoacetate (faa) hydrolase                | -1,15  | -1,39  |
| SL0327           | dehH1        | Haloacetate dehalogenase H-1                                | -1,51  | 1,03   |
| SL0346           | bepE         | Efflux pump membrane transporter BepE                       | 2,06   | 1,87   |
| SL0347           | mtrC         | Membrane fusion protein mtrC                                | 1,24   | 1,74   |
| SL0377           | mdtG         | Multidrug resistance protein mdtG                           | 1,26   | -3,46  |
| SL0397           | ahpC         | Probable peroxiredoxin                                      | -2,04  | -2,47  |
| SL0406           | yajD         | Uncharacterized protein yajD                                | -1,15  | -1,30  |
| SL0475           | ybaN         | Inner membrane protein ybaN                                 | -1,11  | -1,42  |
| SL0486           | fsr          | Fosmidomycin resistance protein                             | 1,50   | -1,41  |
| SL0555           | -            | Hypothetical                                                | -1,83  | 1,07   |
| SL0596           | ahpC         | Alkyl hydroperoxide reductase subunit C                     | -1,38  | -3,65  |
| SL0597           | ahpF         | Alkyl hydroperoxide reductase subunit F                     | -1,21  | -3,53  |
| SL0617           | cspE         | Cold shock-like protein cspE                                | 1,14   | -3,51  |
| SL0627           | mrdB         | Rod shape-determining protein rodA                          | 1,92   | 1,80   |
| SL0630           | ybeB         | Uncharacterized protein ybeB                                | 1,39   | 2,09   |
| SL0658           | ybeZ         | PhoH-like protein                                           | 2,34   | -1,61  |
| SL0702           | ,            | Glycosyltransferase                                         | 1,36   | -1,00  |
| SL0702           | _            | Hypothetical                                                | 1,48   | -1,09  |
| SL0763           |              |                                                             | 1,33   |        |
|                  | ybhC         | Putative acyl-CoA thioester hydrolase ybhC                  |        | 2,76   |
| SL0798           | ybiB         | Uncharacterized protein ybiB                                | 1,33   | -1,05  |
| SL0815           | ybiV2        | putative hydrolase                                          | -1,42  | -1,28  |
| SL0838           | yliJ         | Uncharacterized GST-like protein yliJ                       | -1,69  | -1,34  |
| SL0842           | mdfA         | Multidrug translocase mdfA                                  | 1,44   | 1,32   |
| SL0870           | amiD         | N-acetylmuramoyl-L-alanine amidase AmiD                     | 1,33   | -1,45  |
| SL0882           | cspD         | Cold shock-like protein cspD                                | -1,33  | 1,25   |
| SL0898           | ftsK         | DNA translocase ftsK                                        | 1,68   | -1,12  |
| SL0920           | ycal         | Uncharacterized protein ycal                                | 1,40   | 1,16   |
| SL0929           | mukF         | Chromosome partition protein mukF                           | 1,93   | 1,08   |
| SL0931           | mukB         | Chromosome partition protein mukB                           | 2,63   | 1,51   |
| SL1080           | csgB         | Minor curlin subunit                                        | 1,06   | -1,03  |
| SL1081           | csgA         | Major curlin subunit                                        | -3,50  | -1,69  |
| SL1087           | mdoG         | Glucans biosynthesis protein G                              | 1,41   | -1,63  |
| SL1088           | mdoH         | Glucans biosynthesis glucosyltransferase H                  | 1,63   | -2,05  |
| SL1000           | mdtG         | Multidrug resistance protein mdtG                           | 1,49   | -1,45  |
| SL1106           | mviM         | Virulence factor mviM                                       | -1,05  | 1,42   |
|                  |              | Flagellar basal-body rod protein flgB                       |        |        |
| SL1111           | flgB<br>flaC |                                                             | -1,16  | 1,03   |
| SL1112           | flgC         | Flagellar basal-body rod protein flgC                       | -1,15  | 1,04   |
| SL1114           | flgE         | Flagellar hook protein flgE                                 | -1,32  | 1,36   |
| SL1116           | flgG         | Flagellar basal-body rod protein flgG                       | -1,01  | 1,32   |
| SL1117           | flgH         | Flagellar L-ring protein                                    | 1,13   | 1,14   |
| SL1118           | flgl         | Flagellar P-ring protein                                    | 1,00   | -1,27  |
| SL1120           | flgK         | Flagellar hook-associated protein 1                         | -2,64  | -1,28  |
| SL1121           | flgL         | Flagellar hook-associated protein 3                         | -2,92  | -1,05  |
| SL1126           | yceF         | Maf-like protein yceF 1                                     | 1,12   | 1,43   |
| SL1146           | nagZ         | Beta-hexosaminidase                                         | 1,38   | -1,28  |
| SL1171           | hflD         | High frequency lysogenization protein hflD                  | 1,74   | -1,06  |
| SL1184           | pagC         | Virulence membrane protein pagC                             | -16,89 | -15,69 |
| SL1199           | aadA         | Streptomycin 3"-adenylyltransferase                         | -1,94  | -1,56  |
| SL1200           | -            | Response Regulator                                          | -2,08  | -2,24  |
| SL1206           | yeaR         | Uncharacterized protein yeaR                                | 2,14   | -1,21  |
| SL1253           | katE         | Catalase HPII                                               | -3,08  | 1,48   |
| SL1363           | sodB         | Superoxide dismutase [Fe]                                   | -1,84  | 1,26   |
| SL1372           | sodC         | Superoxide dismutase [Cu-Zn] 2                              | -2,36  | -1,18  |
| SL1372<br>SL1372 | sodC         | Superoxide dismutase [Cu-Zn] 2                              | -2,30  | -1,18  |
|                  |              |                                                             |        |        |
| SL1376           | slyA         | Transcriptional regulator slyA                              | -1,84  | -1,30  |
| SL1383           | gst          | Glutathione S-transferase                                   | -1,62  | -1,21  |
| SL1441           | ydfG         | NADP-dependent L-serine/L-allo-threonine dehydrogenase ydfG | -1,24  | 1,01   |
| SL1446           | ydeE         | Uncharacterized MFS-type transporter ydeE                   | -2,20  | -1,51  |
| SL1474           | tetA         | Tetracycline resistance protein, class G                    | 1,40   | 1,45   |
| SL1493           | osmC         | Peroxiredoxin osmC                                          | -2,07  | 1,07   |
| SL1538           | tehB         | Tellurite resistance protein tehB                           | 1,06   | -1,29  |
| SL1549           | aacA7        | Aminoglycoside N(6')-acetyltransferase type 1               | -1,74  | -1,68  |
|                  |              |                                                             |        |        |

| SL1552           | mdoD         | Glucans biosynthesis protein D                                    | 1,67              | 2,20           |
|------------------|--------------|-------------------------------------------------------------------|-------------------|----------------|
| SL1553           | pnbA         | Para-nitrobenzyl esterase                                         | 1,81              | 4,58           |
| SL1556           | trg          | Methyl-accepting chemotaxis protein III                           | -3,49             | 2,66           |
| SL1578           | hslJ         | Heat shock protein hslJ                                           | 1,29              | -3,39          |
| SL1588           | tap          | Methyl-accepting chemotaxis protein IV                            | -3,74             | -1,27          |
| SL1597           | tpx          | Probable thiol peroxidase                                         | -1,29             | 1,07           |
| SL1612           | tpx          | Probable thiol peroxidase                                         | 1,68              | 1,73           |
| SL1616           | pspE         | Thiosulfate sulfurtransferase PspE                                | -1,47             | 1,93           |
| SL1617           | pspD         | Phage shock protein D                                             | -5,24             | -2,68          |
| SL1618           | pspC         | Phage shock protein C                                             | -6,34             | -2,89          |
| SL1619           | pspB         | Phage shock protein B                                             | -7,27             | -3,81          |
| SL1621           | pspF         | Psp operon transcriptional activator                              | 1,45              | 1,80           |
| SL1637           | osmB         | Osmotically-inducible lipoprotein B                               | -1,54             | -6,38          |
| SL1666           | ispZ         | Probable intracellular septation protein                          | 1,73              | -1,76          |
| SL1696           | ychO         | Uncharacterized protein ychO                                      | -1,00             | -1,48          |
| SL1697           | ychN         | Protein ychN                                                      | -1,02             | -1,46          |
| SL1724           | treA         | Periplasmic trehalase                                             | -1,34             | 2,08           |
| SL1736           | yeaR         | Uncharacterized protein yeaR                                      | 1,29              | 1,19           |
| SL1742           | minC         | Probable septum site-determining protein minC                     | -1,57             | -1,72          |
| SL1743           | minD         | Septum site-determining protein minD                              | -1,24             | 1,16           |
| SL1744           | minE         | Cell division topological specificity factor                      | 1,10              | 1,30           |
| SL1766           | cspC         | Cold shock-like protein cspC                                      | -1,23             | -1,15          |
| SL1772           | yebQ         | Uncharacterized transporter yebQ                                  | 1,49              | -3,40          |
| SL1773           | htpX         | Probable protease htpX homolog                                    | 1,88              | 1,05           |
| SL1823           | msbB         | Lipid A biosynthesis (KDO)2-(lauroyl)-lipid IVA acyltransferase 1 | 1,16              | 1,02           |
| SL1842           | cutC         | Copper homeostasis protein cutC                                   | 2,98              | 1,78           |
| SL1848           | flhA         | Flagellar biosynthesis protein flhA                               |                   |                |
| SL1848<br>SL1849 | flhB         | Flagellar biosynthetic protein flhB                               | -1,40<br>-1,60    | -1,59          |
| SL1849<br>SL1851 |              | Chemotaxis protein cheY                                           |                   | -1,79          |
| SL 100 1         | cheY         | Chemotaxis protein che regulator protein-glutamate                | -2,73             | -1,54          |
| SL1852           | cheB         | methylesterase                                                    | -3,70             | -1,80          |
| SL1853           | cheR         | Chemotaxis protein methyltransferase                              | -4,57             | -2,09          |
| SL1854           | tar          | Methyl-accepting chemotaxis protein II                            | -3,28             | -1,26          |
| SL1857           | motB         | Motility protein B                                                | -2,75             | -1,45          |
| SL1859           | flhC         | Flagellar transcriptional activator flhC                          | -3,91             | -1,47          |
| SL1861           | uspC         | Universal stress protein C                                        | -1,42             | 3,43           |
| SL1862           | otsA         | Alpha,alpha-trehalose-phosphate synthase [UDP-forming]            | -1,13             | -1,40          |
| SL1863           | otsB         | Trehalose-phosphate phosphatase                                   | -1,12             | -1,35          |
| SL1879           | sdiA         | Regulatory protein sdiA                                           | -3,69             | -1,66          |
| SL1889           | fliD         | Flagellar hook-associated protein 2                               | -2,82             | 1,13           |
| SL1890           | fliS         | Flagellar protein fliS                                            | -3,15             | 1,03           |
| SL1897           | fliE         | Flagellar hook-basal body complex protein fliE                    | -3,50             | 2,08           |
| SL1898           | fliF         | Flagellar M-ring protein                                          | -2,01             | -1,61          |
| SL1899           | fliG         | Flagellar motor switch protein FliG                               | -1,87             | 1,08           |
| SL1900           | fliH         | Flagellar assembly protein fliH                                   | -1,67             | 1,39           |
| SL1900<br>SL1901 | flil         | Flagellum-specific ATP synthase                                   | -1,25             | 1,11           |
| SL1901<br>SL1902 | fliJ         | Flagellar fliJ protein                                            | -1,23             |                |
| SL1902<br>SL1903 | fliK         | Flagellar hook-length control protein                             | -2,16             | 2,18<br>1,21   |
| SL1905           |              | Flagellar motor switch protein FliM                               |                   |                |
| SL1903<br>SL1908 | fliM<br>fliP | Flagellar biosynthetic protein fliP                               | -1,55<br>-1,43    | -1,18<br>-2,07 |
| SL1908<br>SL1909 |              | ÷ · ·                                                             |                   |                |
| SL1909<br>SL1910 | fliQ         | Flagellar biosynthetic protein FliQ                               | -1,37             | -2,37          |
|                  | fliR         | Flagellar biosynthetic protein fliR                               | -1,33             | -2,53          |
| SL1924           | cspB         | Cold shock-like protein cspB                                      | -3,12             | -1,96          |
| SL2065           | rfbX         | Putative O-antigen transporter                                    | 4,46              | 1,63           |
| SL2087           | wcaF         | Putative colanic acid biosynthesis acetyltransferase wcaF         | -1,03             | -3,34          |
| SL2103           | mdtA         | Multidrug resistance protein mdtA                                 | 1,10              | -2,86          |
| SL2129           | yehD         | Uncharacterized protein yehD                                      | -2,70             | -1,96          |
| SL2198           | bcr          | Bicyclomycin resistance protein                                   | 1,25              | -1,81          |
| SL2211           | ycfK         | Uncharacterized protein ycfK                                      | 1,03              | 1,26           |
| SL2214           | pifA         | KAP P-Loop Domain-Containing Protein                              | 1,48              | 8,00           |
| SL2220           | -            | Homolog Of Virulence Protein MsgA                                 | -1,29             | -2,57          |
| SL2265           | ais          | Lipopolysaccharide core heptose(II)-phosphate phosphatase         | -3,11             | -1,91          |
| SL2266           | arnB         | UDP-4-amino-4-deoxy-L-arabinoseoxoglutarate                       | -2,25             | -3,45          |
| SL2283           | cheV         | aminotransferase<br>Chemotaxis protein cheV                       | -5,49             | -1,51          |
| SL2265<br>SL2318 | yfcG         | Uncharacterized GST-like protein yfcG                             | -1,16             | -1,73          |
| SL2318<br>SL2319 | yfcH         | Epimerase family protein yfcH                                     | -1,10             | -1,12          |
| SL2319<br>SL2370 | yfdZ         | Uncharacterized aminotransferase yfdZ                             | -1,84             | 1,09           |
| 012010           | yiuz         |                                                                   | т, <del>,</del> , | 1,00           |

| SL2391           | zipA  | Cell division protein zipA homolog                       | 1,17   | -1,41 |
|------------------|-------|----------------------------------------------------------|--------|-------|
| SL2412           | ypeA  | Acetyltransferase ypeA                                   | 1,44   | -1,08 |
| SL2441           | yfeW  | UPF0214 protein yfeW                                     | -1,39  | -1,48 |
| SL2458           | yfgD  | Uncharacterized protein yfgD                             | 1,21   | -1,01 |
| SL2474           | shdA  | host colonisation factor (ShdA)                          | 1,27   | 1,13  |
| SL2495           | sseA  | 3-mercaptopyruvate sulfurtransferase                     | -1,09  | 1,29  |
| SL2542           | era   | GTP-binding protein era homolog                          | 1,35   | -2,06 |
| SL2542<br>SL2606 | yfiC  | tRNA (adenine-N(6)-)-methyltransferase                   | 1,50   | 1,68  |
| SL2600<br>SL2652 | •     |                                                          |        |       |
|                  | corB  | putative membrane protein                                | 1,24   | -1,42 |
| SL2788           | ydfG  | Uncharacterized protein ydfG                             | 1,25   | 1,74  |
| SL2796           | proX  | Glycine betaine-binding periplasmic protein              | -1,42  | -1,51 |
| SL2802           | luxS  | S-ribosylhomocysteine lyase                              | 1,11   | -1,09 |
| SL2899           | slyA  | Transcriptional regulator                                | 1,28   | 1,50  |
| SL2906           | surE  | Multifunctional protein surE                             | 2,52   | -1,18 |
| SL2929           | -     | Uncharacterized protein MJ0301                           | -1,33  | 2,67  |
| SL2937           | relA  | GTP pyrophosphokinase                                    | 0,00   | -2,14 |
| SL3025           | yqfA  | UPF0073 inner membrane protein yqfA                      | -1,07  | 2,36  |
| SL3032           | visC  | Protein visC                                             | 1,03   | -2,07 |
| SL3051           | cbiO  | Cobalt import ATP-binding protein CbiO                   | 3,87   | 4,26  |
| SL3074           | yggR  | Uncharacterized protein yggR                             | 1,27   | 2,50  |
| SL3076           | yggT  | Uncharacterized protein yggT                             | 1,78   | -1,16 |
| SL3102           | puuB  | Gamma-glutamylputrescine oxidoreductase                  | -1,14  | -1,01 |
| SL3112           | bdIA  | Biofilm dispersion protein BdIA                          | -19,64 | -3,42 |
| SL3126           | tse   | Methyl-accepting chemotaxis serine transducer            | -3,70  | -1,18 |
| SL3153           | mdaB  | Modulator of drug activity B                             | 1,53   | 2,03  |
| SL3178           | bacA  | Undecaprenyl-diphosphatase                               | 1,18   | -1,37 |
| SL3189           | cheM  | methyl-accepting chemotaxis protein II                   | -4,93  | -1,05 |
| SL3189<br>SL3240 | yraP  | Uncharacterized protein yraP                             | 1,21   | 1,22  |
|                  |       |                                                          |        |       |
| SL3254           | nlpl  | Lipoprotein nlpl                                         | 1,08   | -1,88 |
| SL3268           | ftsH  | Cell division protease ftsH                              | 1,02   | -2,69 |
| SL3313           | sspB  | Stringent starvation protein B                           | 1,24   | -1,04 |
| SL3337           | aaeA  | p-hydroxybenzoic acid efflux pump subunit AaeA           | 1,29   | -1,48 |
| SL3342           | rng   | Ribonuclease G                                           | 1,24   | -1,25 |
| SL3343           | yceF2 | Maf-like protein yceF 2                                  | 1,32   | -1,58 |
| SL3346           | mreB  | Rod shape-determining protein mreB                       | 1,43   | -1,42 |
| SL3377           | mscL  | Large-conductance mechanosensitive channel               | -1,42  | 1,86  |
| SL3433           | crp   | Catabolite gene activator                                | 1,47   | 1,06  |
| SL3437           | fic   | Probable adenosine monophosphate-protein transferase fic | 1,05   | 2,20  |
| SL3452           | damX  | Protein damX                                             | 1,72   | -1,17 |
| SL3463           | yrfG  | Uncharacterized protein yrfG                             | 1,16   | 1,39  |
| SL3535           | ftsE  | Cell division ATP-binding protein ftsE                   | 1,39   | -1,47 |
| SL3536           | ftsY  | Cell division protein ftsY                               | 1,63   | -1,49 |
| SL3542           | tcp   | Methyl-accepting chemotaxis citrate transducer           | -3,33  | -1,91 |
| SL3555           | uspB  | Universal stress protein B                               | -2,10  | -1,26 |
| SL3556           | uspA  | Universal stress protein A                               | -2,11  | 1,26  |
| SL3562           | gor   | Glutathione reductase                                    | -1,02  | -1,33 |
| SL3568           | treF  | Cytoplasmic trehalase                                    | -1,96  | -2,00 |
| SL3615           | cspA  | Cold shock protein cspA                                  | 2,01   | -1,04 |
| SL3617           | -     | GCN5-Related N-Acetyltransferase                         | 1,12   | 1,18  |
| SL3635           |       | Hypothetical                                             | 1,08   | 1,19  |
| SL3649           | yibF  | Uncharacterized GST-like protein yibF                    | -1,40  | 1,99  |
| SL3669           | •     |                                                          |        |       |
|                  | yibN  | Uncharacterized protein yibN                             | 1,34   | 1,50  |
| SL3708           | spoT  | Guanosine-3',5'-bis(diphosphate) 3'-pyrophosphohydrolase | 0,00   | -1,03 |
| SL3775           | ibpB  | Small heat shock protein ibpB                            | 6,11   | -2,20 |
| SL3786           | yhjA  | Probable cytochrome c peroxidase                         | -2,21  | -3,11 |
| SL3903           | xerC  | Tyrosine recombinase xerC                                | -1,13  | -2,77 |
| SL3904           | yigB  | Uncharacterized protein yigB                             | 1,02   | -2,88 |
| SL3921           | ysgA  | Putative carboxymethylenebutenolidase                    | -1,91  | 1,10  |
| SL3975           | yiiD  | Uncharacterized protein yiiD                             | 1,05   | -1,01 |
| SL4004           | sodA  | Superoxide dismutase [Mn]                                | 1,46   | 2,11  |
| SL4056           | katG1 | Catalase-peroxidase 1                                    | -1,70  | -2,70 |
| SL4116           | yjaB  | Uncharacterized N-acetyltransferase yjaB                 | 1,08   | -1,01 |
| SL4202           | soxR  | Redox-sensitive transcriptional activator soxR           | 1,08   | -1,18 |
| SL4203           | yfcG  | Glutathione S-Transferase                                | -2,27  | -1,35 |
| SL4248           | -     | Hypothetical                                             | -26,42 | -8,48 |
| SL4254           | -     | GCN5-Related N-Acetyltransferase                         | -1,57  | -1,67 |
| SL4261           | cutA  | Divalent-cation tolerance protein cutA                   | -1,46  | -1,23 |
|                  |       |                                                          |        |       |

| SL4340           | ytfL           | UPF0053 inner membrane protein ytfL                                                        | 1,31           | -1,82          |
|------------------|----------------|--------------------------------------------------------------------------------------------|----------------|----------------|
| SL4368           | pmbA           | Protein pmbA                                                                               | 1,34           | -1,02          |
| SL4386           | treR           | HTH-type transcriptional regulator treR                                                    | 1,38           | -1,50          |
| SL4403           | ујgМ           | Uncharacterized N-acetyltransferase yjgM                                                   | -1,09          | -1,11          |
| SL4425           | -              | Hypothetical                                                                               | 1,96           | 1,16           |
| SL4448           | mdtM           | Multidrug resistance protein mdtM                                                          | 1,79           | 1,48           |
| SL4464           | tsr            | Methyl-accepting chemotaxis protein I                                                      | -1,57          | -1,30          |
| SL4489           | osmY           | Osmotically-inducible protein Y                                                            | -1,07          | 1,09           |
| SL4491           | yjj∨           | Uncharacterized deoxyribonuclease yjjV                                                     | 1,72           | 1,33           |
| SL4517           | creD           | Inner membrane protein creD                                                                | 1,38           | 1,05           |
|                  |                | Central intermediary metabolism                                                            |                |                |
| SL0033           | -              | Arylsulfotransferase                                                                       | -2,43          | -1,09          |
| SL0036           | betC           | Choline-sulfatase                                                                          | 1,28           | 1,70           |
| SL0037           | aslB           | Anaerobic sulfatase-maturating enzyme homolog AslB                                         | 1,43           | 1,17           |
| SL0039<br>SL0069 | -<br>caiF      | Arylsulfate Sulfotransferase                                                               | -1,21          | -1,45          |
| SL0009<br>SL0070 | caiE           | Transcriptional activatory protein caiF<br>Carnitine operon protein caiE                   | -1,82<br>-1,15 | -1,12<br>-1,11 |
| SL0072           | caiC           | Probable crotonobetaine/carnitine-CoA ligase                                               | -1,22          | -1,38          |
| SL0073           | caiB           | Crotonobetainyl-CoA:carnitine CoA-transferase                                              | -1,01          | 1,38           |
| SL0075           | caiT           | L-carnitine/gamma-butyrobetaine antiporter                                                 | 1,60           | 9,31           |
| SL0084           | yidJ           | Sulfatase                                                                                  | -1,43          | -1,58          |
| SL0166           | speD           | S-adenosylmethionine decarboxylase proenzyme                                               | 1,39           | -1,01          |
| SL0167           | speE           | Spermidine synthase                                                                        | 1,23           | 1,17           |
| SL0172           | yadF           | Carbonic anhydrase 2                                                                       | 1,13           | -1,06          |
| SL0208           | mtnN           | 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase                                 | 1,81           | 1,41           |
| SL0209           | dgt            | Deoxyguanosinetriphosphate triphosphohydrolase                                             | -1,43          | 1,12           |
| SL0250           | yafB           | 2,5-diketo-D-gluconic acid reductase B                                                     | 1,10           | 1,67           |
| SL0304           | yafV           | UPF0012 hydrolase yafV                                                                     | -1,32          | -1,50          |
| SL0305<br>SL0379 | fadE<br>psiF   | Acyl-coenzyme A dehydrogenase<br>Phosphate starvation-inducible protein psiF               | 2,52<br>-2,72  | 3,82           |
|                  |                | Putative 2-aminoethylphosphonate transport system permease                                 |                | -1,84          |
| SL0420           | phnV           | protein phnV                                                                               | 1,33           | -1,14          |
| SL0421           | phnU           | Putative 2-aminoethylphosphonate transport system permease                                 | 1,63           | 1,04           |
| 020421           | pinio          | protein phnU                                                                               | 1,00           | 1,04           |
| SL0422           | phnT           | Putative 2-aminoethylphosphonate import ATP-binding protein<br>phnT                        | 1,37           | -1,70          |
| SL0423           | phnS           | Putative 2-aminoethylphosphonate-binding periplasmic protein                               | 1,41           | -1,63          |
| SL0425           | phnW           | 2-aminoethylphosphonatepyruvate transaminase                                               | 1,08           | 1,07           |
| SL0498           | ybbO           | Uncharacterized oxidoreductase ybbO                                                        | 1,33           | -2,35          |
| SL0510           | gcl            | Glyoxylate carboligase                                                                     | 3,30           | 1,60           |
| SL0511           | gip            | Hydroxypyruvate isomerase                                                                  | 4,14           | 1,80           |
| SL0561           | glmS           | Glucosaminefructose-6-phosphate aminotransferase                                           | -1,25          | 1,28           |
| SL0566           | •              | [isomerizing]                                                                              | ,              | -              |
| SL0585           | nfnB<br>entB   | Oxygen-insensitive NAD(P)H nitroreductase<br>Isochorismatase                               | 1,67<br>1,59   | 1,58<br>2,00   |
| SL0505<br>SL0590 | ybdH           | Uncharacterized oxidoreductase ybdH                                                        | -1,64          | 2,30           |
| SL0591           | ybdL           | Aminotransferase ybdL                                                                      | -1,72          | 1,01           |
| SL0595           | dsbG           | Thiol:disulfide interchange protein dsbG                                                   | -1,18          | -1,00          |
| SL0603           | ybdR           | Uncharacterized zinc-type alcohol dehydrogenase-like protein                               | -1,25          | 1,45           |
|                  | ybuit          | ybdR                                                                                       |                |                |
| SL0637           |                | putative hydrolase N-terminus                                                              | -9,70          | -9,19          |
| SL0658           | ybeZ           | PhoH-like protein                                                                          | 2,34           | -1,61          |
| SL0665<br>SL0666 | nagA           | N-acetylglucosamine-6-phosphate deacetylase<br>Glucosamine-6-phosphate deaminase           | 1,02           | -1,22          |
| SL0000<br>SL0674 | nagB<br>nac    | Nitrogen assimilation regulatory protein nac                                               | -1,05<br>-1,10 | -1,33<br>-2,01 |
| SL0683           | speF           | Ornithine decarboxylase, inducible                                                         | 2,60           | 1,21           |
| SL0743           | oadG2          | Oxaloacetate decarboxylase gamma chain                                                     | -1,01          | -1,27          |
| SL0798           | ybiB           | Uncharacterized protein ybiB                                                               | 1,33           | -1,05          |
| SL0804           | glnP           | Glutamine transport system permease protein glnP                                           | 3,15           | -1,35          |
| SL0815           | ybiV2          | putative hydrolase                                                                         | -1,42          | -1,28          |
| SL0837           | ylil           | Soluble aldose sugar dehydrogenase ylil                                                    | -1,97          | -1,97          |
| SL0838           | yliJ           | Uncharacterized GST-like protein yliJ                                                      | -1,69          | -1,34          |
| SL0862           | yidJ           | Arylsulfatase                                                                              | -1,21          | -1,30          |
| SL0897           | Irp            | Leucine-responsive regulatory protein                                                      | -1,32          | -1,21          |
| SL0928           | smtA           | Protein smtA                                                                               | 1,52           | 1,17           |
| SL0938           | lrp<br>\/cc\// | Uncharacterized HTH-type transcriptional regulator y4tD                                    | -1,13<br>1 35  | -1,23          |
| SL1020<br>SL1041 | yccW<br>hpcC   | putative SAM-dependent methyltransferase<br>5-carboxymethyl-2-hydroxymuconate semialdehyde | 1,35<br>1,12   | 3,16<br>2,98   |
| 011041           | npee           | o oursonymethyr-z-nyuronymutonate seimatuenyue                                             | 1,12           | 2,30           |

|                  |              | dehydrogenase                                                                                    |                |                |
|------------------|--------------|--------------------------------------------------------------------------------------------------|----------------|----------------|
| SL1042           | hpcB         | 3,4-dihydroxyphenylacetate 2,3-dioxygenase                                                       | -1,08          | 2,43           |
| SL1048           | atsA         | Arylsulfatase                                                                                    | 2,17           | 1,15           |
| SL1056           | agp          | Glucose-1-phosphatase                                                                            | 1,14           | 3,19           |
| SL1072           | ghrA         | Glyoxylate/hydroxypyruvate reductase A                                                           | 1,51           | 1,37           |
| SL1146           | nagZ         | Beta-hexosaminidase                                                                              | 1,38           | -1,28          |
| SL1148           | ndh          | NADH dehydrogenase                                                                               | -1,52          | -1,64          |
| SL1223           | yeaE         | Uncharacterized protein yeaE                                                                     | 1,41           | 1,46           |
| SL1231           | ydjA         | Putative NAD(P)H nitroreductase ydjA                                                             | -1,10          | 1,50           |
| SL1257           | yniC         | Phosphatase yniC                                                                                 | 1,41           | -2,78          |
| SL1368           | nemA         | N-ethylmaleimide reductase                                                                       | -1,29          | 1,06           |
| SL1383           | gst          | Glutathione S-transferase                                                                        | -1,62          | -1,21          |
| SL1387           | rnfG         | Electron transport complex protein rnfG                                                          | 2,57           | -1,12          |
| SL1394           | ydgJ         | Uncharacterized oxidoreductase ydgJ                                                              | -1,02          | -1,36          |
| SL1432           | speG         | Spermidine N(1)-acetyltransferase                                                                | 1,41           | 1,05           |
| SL1461           | -            | Hypothetical                                                                                     | -1,96          | -2,19          |
| SL1513           | nhoA         | N-hydroxyarylamine O-acetyltransferase                                                           | -1,61          | -1,01          |
| SL1606           | ytbE         | Uncharacterized oxidoreductase ytbE                                                              | -1,64          | -1,87          |
| SL1649           | yciK         | Uncharacterized oxidoreductase yciK                                                              | 2,06           | 4,55           |
| SL1779           | yebU         | Ribosomal RNA small subunit methyltransferase F                                                  | 1,12           | -1,34          |
| SL2065           | rfbX         | Putative O-antigen transporter                                                                   | 4,46           | 1,63           |
| SL2087           | wcaF         | Putative colanic acid biosynthesis acetyltransferase wcaF                                        | -1,03          | -3,34          |
| SL2094           | wzb          | Low molecular weight protein-tyrosine-phosphatase wzb                                            | 1,79           | -1,93          |
| SL2163           | yeiT         | Uncharacterized oxidoreductase yeiT                                                              | -1,96          | -1,06          |
| SL2171           | yeiG         | S-formylglutathione hydrolase yeiG                                                               | 1,02           | -1,06          |
| SL2205           | yejM         | Inner membrane protein yejM                                                                      | 1,43           | -1,06          |
| SL2251           | glpQ         | Glycerophosphoryl diester phosphodiesterase                                                      | -1,05          | 3,61           |
| SL2291           | nuoH         | NADH-quinone oxidoreductase subunit H                                                            | 2,35           | 1,07           |
| SL2307           | pta          | Phosphate acetyltransferase                                                                      | 1,66           | -2,02          |
| SL2318<br>SL2387 | yfcG         | Uncharacterized GST-like protein yfcG                                                            | -1,16          | -1,73          |
| SL2307<br>SL2429 | yfeR<br>eutD | Uncharacterized HTH-type transcriptional regulator yfeR<br>Ethanolamine utilization protein eutD | 1,43           | -1,19          |
| SL2429<br>SL2442 | aegA         | Protein AegA                                                                                     | -1,73<br>3,11  | 1,05<br>2,72   |
| SL2442<br>SL2463 | purN         | Phosphoribosylglycinamide formyltransferase                                                      | 1,05           | -1,44          |
| SL2464           | ppk          | Polyphosphate kinase                                                                             | -1,01          | -1,55          |
| SL2465           | ррх          | Exopolyphosphatase                                                                               | 1,03           | -1,81          |
| SL2482           | yfgL         | Lipoprotein yfgL                                                                                 | 1,71           | -2,01          |
| SL2531           | yfhB         | Uncharacterized protein yfhB                                                                     | -1,37          | -1,01          |
| SL2537           | cynR         | HTH-type transcriptional regulator cynR                                                          | -1,47          | 1,64           |
| SL2606           | yfiC         | tRNA (adenine-N(6)-)-methyltransferase                                                           | 1,50           | 1,68           |
| SL2775           | gabD         | Succinate-semialdehyde dehydrogenase [NADP+]                                                     | 3,68           | 1,99           |
| SL2776           | gabT         | 4-aminobutyrate aminotransferase                                                                 | 2,72           | 1,68           |
| SL2805           | yqaB         | Phosphatase yqaB                                                                                 | 1,31           | -1,42          |
| SL2821           | norW         | Nitric oxide reductase FIRd-NAD(+) reductase                                                     | 1,09           | 1,85           |
| SL2894           | ygbM         | Protein ygbM                                                                                     | 1,31           | -1,33          |
| SL2897           | ygbJ         | Uncharacterized oxidoreductase ygbJ                                                              | 2,02           | 1,01           |
| SL2910           | ftsB         | Cell division protein ftsB homolog                                                               | 1,24           | 1,13           |
| SL2912           | cysC         | Adenylyl-sulfate kinase                                                                          | 1,28           | -1,13          |
| SL2913           | cysN         | Sulfate adenylyltransferase subunit 1                                                            | 1,28           | 1,02           |
| SL2914           | cysD         | Sulfate adenylyltransferase subunit 2                                                            | 1,14           | -1,47          |
| SL2925           | cysH         | Phosphoadenosine phosphosulfate reductase                                                        | -1,21          | -1,73          |
| SL2995           | kduD         | 2-dehydro-3-deoxy-D-gluconate 5-dehydrogenase                                                    | 1,38           | 2,11           |
| SL3032           | visC         | Protein visC                                                                                     | 1,03           | -2,07          |
| SL3054           | speB         | Agmatinase                                                                                       | -1,04          | 1,14           |
| SL3062           | speA         | Biosynthetic arginine decarboxylase                                                              | 1,10           | -1,06          |
| SL3065           | metK         | S-adenosylmethionine synthase                                                                    | 1,43           | -1,26          |
| SL3089           | speC         | Ornithine decarboxylase, constitutive                                                            | 2,04           | 1,40           |
| SL3091<br>SL3096 | -<br>atsA    | Virulence protein STM3117<br>Arylsulfatase                                                       | -1,85<br>-1,20 | -2,09<br>-1,17 |
| SL3096<br>SL3097 | atsB         | Anaerobic sulfatase-maturating enzyme                                                            | -1,20<br>-1,44 | -1,17<br>-1,48 |
| SL3097<br>SL3113 | gsp          | Bifunctional glutathionylspermidine synthetase/amidase                                           | 1,32           | -1,40<br>1,32  |
| SL3115<br>SL3156 | yqiA         | Esterase yqiA                                                                                    | 1,46           | -1,34          |
| SL3150<br>SL3157 | icc          | Protein icc                                                                                      | 1,85           | 1,05           |
| SL3193           | rlmG         | Ribosomal RNA large subunit methyltransferase G                                                  | -1,58          | 2,09           |
| SL3205           | yqjG         | Uncharacterized protein yqjG                                                                     | -1,14          | -1,01          |
| SL3223           | garD         | D-galactarate dehydratase                                                                        | -1,21          | 1,32           |
| SL3230           | gatZ         | D-tagatose-1,6-bisphosphate aldolase subunit gatZ                                                | -2,27          | -1,92          |
|                  | 5            | <b>v</b>                                                                                         | ,              | ,              |

| SL3245           | yhbS         | Uncharacterized N-acetyltransferase yhbS                                                     | 1,58          | 1,28          |
|------------------|--------------|----------------------------------------------------------------------------------------------|---------------|---------------|
| SL3302           | gltB         | Glutamate synthase [NADPH] large chain                                                       | -1,08         | 1,41          |
| SL3303           | gltD         | Glutamate synthase [NADPH] small chain                                                       | 1,01          | 1,49          |
| SL3311           | nanA         | N-acetylneuraminate lyase                                                                    | 1,40          | -1,38         |
| SL3325           | oadG2        | Oxaloacetate decarboxylase gamma chain 2                                                     | -1,02         | -1,21         |
| SL3366           | yrdA         | Protein yrdA                                                                                 | -1,33         | 1,06          |
| SL3463           | yrfG         | Uncharacterized protein yrfG                                                                 | 1,16          | 1,39          |
| SL3488           | rtcR         | Transcriptional regulatory protein rtcR                                                      | -1,25         | -1,12         |
| SL3496           | gldA         | Glycerol dehydrogenase                                                                       | 1,00          | 1,69          |
| SL3502           | glgA         | Glycogen synthase                                                                            | -1,21         | -1,18         |
| SL3516           | php          | Phosphotriesterase homology protein                                                          | -7,37         | -2,10         |
| SL3519           | ugpQ         | Glycerophosphoryl diester phosphodiesterase                                                  | -1,24         | 1,12          |
| SL3558           | yhiQ         | UPF0341 protein yhiQ                                                                         | -1,03         | -1,62         |
| SL3560<br>SL3570 | phoC<br>-    | Major phosphate-irrepressible acid phosphatase<br>Conserved Hypothetical Protein             | 1,40<br>-1,71 | -1,64<br>1,12 |
| SL3570<br>SL3640 | -<br>sgbH    | 3-keto-L-gulonate-6-phosphate decarboxylase sgbH                                             | -1,13         | 1,12          |
| SL3649           | yibF         | Uncharacterized GST-like protein yibF                                                        | -1,40         | 1,99          |
| SL3771           | yidF         | Uncharacterized protein yidF                                                                 | 1,22          | -1,16         |
| SL3819           | yieH         | Phosphatase vieH                                                                             | -1,24         | 1,06          |
|                  | •            | Glucosaminefructose-6-phosphate aminotransferase                                             |               |               |
| SL3828           | glmS         | [isomerizing]                                                                                | 1,78          | 1,92          |
| SL3904           | yigB         | Uncharacterized protein yigB                                                                 | 1,02          | -2,88         |
| SL3915           | pldB         | Lysophospholipase L2                                                                         | 1,35          | -1,19         |
| SL3920           | aslB         | Anaerobic sulfatase-maturating enzyme homolog AslB                                           | 1,24          | 1,09          |
| SL3981           | fdhE         | Protein fdhE homolog                                                                         | 1,53          | -1,05         |
| SL4033           | fpr          | FerredoxinNADP reductase                                                                     | 1,03          | -1,58         |
| SL4058           | gldA         | Glycerol dehydrogenase                                                                       | 1,22          | 1,62          |
| SL4078           | trmA         | tRNA (uracil-5-)-methyltransferase                                                           | 1,50          | 2,16          |
| SL4184           | tyrB         | Aromatic-amino-acid aminotransferase                                                         | -1,02         | -1,32         |
| SL4185           | aphA         | Class B acid phosphatase                                                                     | 1,34          | 5,38          |
| SL4203           | yfcG         | Glutathione S-Transferase                                                                    | -2,27         | -1,35         |
| SL4226           | phnA         | Protein phnA                                                                                 | 1,22          | 2,50          |
| SL4255<br>SL4319 | phoN         | Non-specific acid phosphatase                                                                | -2,15         | -1,53         |
| SL4319<br>SL4337 | ulaD         | 3-keto-L-gulonate-6-phosphate decarboxylase ulaD<br>3'(2'),5'-bisphosphate nucleotidase cysQ | 1,20<br>-1,26 | 1,74<br>1,90  |
| SL4337<br>SL4347 | cysQ<br>ppa  | Inorganic pyrophosphatase                                                                    | 1,46          | 1,90          |
| SL4347<br>SL4357 | iolG         | Inositol 2-dehydrogenase                                                                     | -2,18         | -1,09         |
| SL4413           | idnO         | Gluconate 5-dehydrogenase                                                                    | -1,54         | 1,86          |
| SL4430           | yjhP         | Uncharacterized protein yjhP                                                                 | 1,09          | 2,13          |
|                  |              | Glucosaminefructose-6-phosphate aminotransferase                                             |               |               |
| SL4470           | glmS         | [isomerizing]                                                                                | 1,51          | 2,82          |
| SL4491           | yjjV         | Uncharacterized deoxyribonuclease yjjV                                                       | 1,72          | 1,33          |
|                  |              | DNA metabolism                                                                               |               |               |
| SL0098           | polB         | DNA polymerase II                                                                            | 1,68          | -1,21         |
| SL0160           | -            | Restriction Endonuclease                                                                     | -1,48         | -3,43         |
| SL0190           | hrpB         | ATP-dependent RNA helicase hrpB                                                              | 1,64          | -1,04         |
| SL0232           | dnaE         | DNA polymerase III subunit alpha                                                             | 1,67          | -1,28         |
| SL0259           | dnaQ         | DNA polymerase III subunit epsilon                                                           | 1,99          | 1,17          |
| SL0352           | mod          | Type III restriction-modification system StyLTI enzyme mod                                   | 1,46          | 1,52          |
| SL0353           | res          | Type III restriction-modification system StyLTI enzyme res                                   | 2,06          | 2,38          |
| SL0390           | sbcC         | Nuclease sbcCD subunit C                                                                     | 1,95          | 1,76          |
| SL0391           | sbcD         | Nuclease sbcCD subunit D                                                                     | 1,57          | 1,05          |
| SL0406           | yajD         | Uncharacterized protein yajD                                                                 | -1,15         | -1,30         |
| SL0418           | xseB         | Exodeoxyribonuclease 7 small subunit                                                         | 2,96          | 1,36          |
| SL0445           | hupB         | DNA-binding protein HU-beta                                                                  | -1,31         | 1,81          |
| SL0474           | priC         | Primosomal replication protein N"                                                            | 1,17          | 1,50          |
| SL0477<br>SL0479 | dnaX<br>rocP | DNA polymerase III subunit tau                                                               | 1,49<br>1,52  | -1,53         |
| SL0479<br>SL0630 | recR<br>ybeB | Recombination protein recR<br>Uncharacterized protein ybeB                                   | 1,52<br>1,39  | -2,17<br>2,09 |
| SL0630<br>SL0634 | holA         | DNA polymerase III subunit delta                                                             | 1,87          | -2,09         |
| SL0034<br>SL0679 | seqA         | Protein segA                                                                                 | 1,82          | -1,20         |
| SL0690           | phrB         | Deoxyribodipyrimidine photo-lyase                                                            | -1,32         | -2,30         |
| SL0710           | nei          | Endonuclease 8                                                                               | 1,20          | -1,21         |
| SL0775           | uvrB         | UvrABC system protein B                                                                      | 1,07          | 1,11          |
| SL0797           | dinG         | Probable ATP-dependent helicase dinG                                                         | 1,94          | 1,12          |
| SL0852           | rimK         | Ribosomal protein S6 modification protein                                                    | 1,56          | 1,28          |
| SL0919           | ihfB         | Integration host factor subunit beta                                                         | 1,20          | 1,14          |
|                  |              |                                                                                              |               |               |

| SL1015 | helD | Helicase IV                                       | 1,23  | -1,44 |
|--------|------|---------------------------------------------------|-------|-------|
| SL1138 | holB | DNA polymerase III subunit delta'                 | 2,37  | -1,72 |
| SL1140 | ptsG | PTS system glucose-specific EIICB component       | 1,20  | 1,02  |
|        |      |                                                   |       |       |
| SL1153 | mfd  | Transcription-repair-coupling factor              | 1,90  | -1,41 |
| SL1173 | nudJ | Phosphatase nudJ                                  | 1,59  | 1,34  |
| SL1233 | topB | DNA topoisomerase 3                               | 1,37  | -1,48 |
| SL1237 | xthA | Exodeoxyribonuclease III                          | -1,27 | -1,57 |
| SL1244 | cho  | Excinuclease cho                                  | -1,19 | -2,89 |
| SL1273 | ihfA | Integration host factor subunit alpha             | -1,18 | -1,29 |
| SL1385 | nth  | Endonuclease III                                  | 1,98  | 1,17  |
|        |      |                                                   |       |       |
| SL1401 | tus  | DNA replication terminus site-binding protein     | 1,18  | 1,34  |
| SL1467 | hupB | Uptake hydrogenase large subunit                  | 1,25  | 1,16  |
| SL1571 | hrpA | ATP-dependent RNA helicase hrpA                   | 1,87  | 1,28  |
| SL1580 | -    | Hypothetical                                      | 1,04  | -1,12 |
| SL1590 | ogt  | Methylated-DNAprotein-cysteine methyltransferase  | -1,44 | 1,52  |
| SL1646 | topA | DNA topoisomerase 1                               | 1,71  | 1,57  |
| SL1682 | hns  | DNA-binding protein H-NS                          | -1,34 | 1,28  |
| SL1697 |      | • •                                               | -1,02 |       |
|        | ychN | Protein ychN                                      |       | -1,46 |
| SL1750 | yoaA | Probable ATP-dependent helicase yoaA              | 1,59  | -1,34 |
| SL1779 | yebU | Ribosomal RNA small subunit methyltransferase F   | 1,12  | -1,34 |
| SL1802 | -    | Phage Membrane Protein                            | -1,12 | -1,35 |
| SL1810 | holE | DNA polymerase III subunit theta                  | 1,19  | 4,58  |
| SL1816 | yebG | Uncharacterized protein yebG                      | 1,03  | 1,01  |
| SL1828 | ruvB | Holliday junction ATP-dependent DNA helicase ruvB | 1,61  | 1,56  |
| SL1829 | ruvA | Holliday junction ATP-dependent DNA helicase ruvb | 1,25  | -1,23 |
|        |      |                                                   |       |       |
| SL1833 | ruvC | Crossover junction endodeoxyribonuclease ruvC     | 1,52  | -1,43 |
| SL1876 | uvrC | UvrABC system protein C                           | 1,01  | -1,77 |
| SL1919 | vsr  | Very short patch repair protein                   | 1,24  | 1,95  |
| SL1920 | dcm  | DNA-cytosine methyltransferase                    | 1,73  | 1,82  |
| SL1926 | umuD | Protein umuD                                      | 1,47  | 1,60  |
| SL2051 | hisB | Histidine biosynthesis bifunctional protein hisB  | 1,07  | 1,07  |
| SL2101 | alkA | DNA-3-methyladenine glycosylase 2                 | -1,19 | 1,06  |
|        |      |                                                   |       |       |
| SL2180 | nfo  | Probable endonuclease 4                           | 1,82  | -1,63 |
| SL2206 | umuD | Protein umuD                                      | -1,57 | 1,08  |
| SL2234 | alkB | Alpha-ketoglutarate-dependent dioxygenase AlkB    | -1,07 | 1,21  |
| SL2241 | gyrA | DNA gyrase subunit A                              | 1,38  | -1,65 |
| SL2354 | yfcB | Uncharacterized adenine-specific methylase yfcB   | 1,18  | 2,15  |
| SL2390 | ligA | DNA ligase                                        | 1,28  | -1,21 |
| SL2473 | xseA | Exodeoxyribonuclease 7 large subunit              | 1,20  | -1,62 |
|        |      |                                                   |       |       |
| SL2541 | recO | DNA repair protein recO                           | 1,58  | -2,36 |
| SL2611 | ung  | Uracil-DNA glycosylase                            | 1,07  | -1,93 |
| SL2631 | xerD | Integrase                                         | 1,36  | 1,41  |
| SL2656 | recN | DNA repair protein recN                           | 1,68  | 1,19  |
| SL2742 | ptsG | PTS system glucose-specific EIICBA component      | 1,25  | 1,63  |
| SL2752 | -    | Hypothetical                                      | 1,03  | 1,09  |
| SL2783 | stpA | DNA-binding protein stpA                          | 2,01  | -6,63 |
|        |      | ÷                                                 |       |       |
| SL2808 | recX | Regulatory protein recX                           | 2,18  | 1,39  |
| SL2809 | recA | Protein recA                                      | 1,43  | 1,39  |
| SL2888 | mutS | DNA mismatch repair protein mutS                  | 2,27  | -1,08 |
| SL2923 | ygcB | Uncharacterized protein ygcB                      | -2,76 | 1,06  |
| SL2952 | xni  | Uncharacterized exonuclease xni                   | 1,61  | 2,67  |
| SL2971 | recD | Exodeoxyribonuclease V alpha chain                | 1,33  | 1,09  |
| SL2972 | recB | Exodeoxyribonuclease V beta chain                 | 1,81  | 1,06  |
| SL2974 | recC | Exodeoxyribonuclease V gamma chain                | 2,09  | 1,38  |
|        |      |                                                   |       |       |
| SL2983 | mutH | DNA mismatch repair protein mutH                  | 1,68  | -1,02 |
| SL3018 | recJ | Single-stranded-DNA-specific exonuclease recJ     | 2,17  | -1,03 |
| SL3020 | xerD | Tyrosine recombinase xerD                         | 1,64  | 1,54  |
| SL3040 | iciA | Chromosome initiation inhibitor                   | 1,39  | -1,45 |
| SL3068 | endA | Endonuclease-1                                    | 1,99  | 1,80  |
| SL3085 | mutY | A/G-specific adenine glycosylase                  | -1,04 | -1,98 |
| SL3098 | moaR | Monoamine regulon transcriptional regulator       | -1,31 | 1,17  |
|        |      |                                                   |       |       |
| SL3148 | parC | DNA topoisomerase 4 subunit A                     | 2,60  | 1,07  |
| SL3155 | parE | DNA topoisomerase 4 subunit B                     | -1,02 | -1,61 |
| SL3184 | dnaG | DNA primase                                       | -1,20 | -1,78 |
| SL3193 | rlmG | Ribosomal RNA large subunit methyltransferase G   | -1,58 | 2,09  |
| SL3358 | fis  | DNA-binding protein fis                           | -1,12 | -1,78 |
| SL3359 | yhdJ | Uncharacterized adenine-specific methylase yhdJ   | -1,07 | -1,11 |
|        |      | . , , ,                                           | ,-    |       |

| SL3451           | dam   | DNA adenine methylase                                      | 1,82  | -1,45 |
|------------------|-------|------------------------------------------------------------|-------|-------|
| SL3558           | yhiQ  | UPF0341 protein yhiQ                                       | -1,03 | -1,62 |
| SL3598           | -     | Hypothetical                                               | 1,04  | 1,32  |
| SL3608           | tag   | DNA-3-methyladenine glycosylase 1                          | 1,03  | 1,38  |
| SL3614           | yiaG  | Uncharacterized HTH-type transcriptional regulator yiaG    | 1,06  | 3,52  |
| SL3692           | mutM  | Formamidopyrimidine-DNA glycosylase                        | 2,26  | -1,18 |
| SL3695           | yicR  | UPF0758 protein vicR                                       | 2,63  | 15,77 |
| SL3705           | ligB  | DNA ligase B                                               | 1,79  | 10,68 |
| SL3703<br>SL3710 |       |                                                            |       |       |
|                  | recG  | ATP-dependent DNA helicase recG                            | 1,17  | -1,04 |
| SL3744           | yiaG  | Transcriptional Regulator XRE Family                       | 1,92  | 2,32  |
| SL3802           | gyrB  | DNA gyrase subunit B                                       | 1,11  | -1,91 |
| SL3803           | recF  | DNA replication and repair protein recF                    | 1,92  | -1,58 |
| SL3804           | dnaN  | DNA polymerase III subunit beta                            | 1,37  | -1,72 |
| SL3805           | dnaA  | Chromosomal replication initiator protein dnaA             | -1,15 | -2,15 |
| SL3813           | -     | RNA-directed DNA polymerase from retron EC86               | -1,64 | 1,27  |
| SL3872           | rep   | ATP-dependent DNA helicase rep                             | 1,02  | 1,25  |
| SL3905           | uvrD  | DNA helicase II                                            | 1,18  | -1,20 |
| SL3912           | recQ  | ATP-dependent DNA helicase recQ                            | 1,12  | -1,18 |
| SL4044           | priA  | Primosomal protein N'                                      | 1,03  | -1,04 |
| SL4078           | trmA  | tRNA (uracil-5-)-methyltransferase                         | 1,50  | 2,16  |
| SL4107           | nfi   | Endonuclease V                                             | 1,06  | -1,00 |
| SL4109           | hupA  | DNA-binding protein HU-alpha                               | 1,10  | 1,43  |
| SL4127           | yaiL  | Uncharacterized protein yaiL                               | 2,12  | 1,71  |
| SL4174           | lexA  | LexA repressor                                             | 1,01  | 2,04  |
| SL4175           | dinF  | DNA-damage-inducible protein F                             | 1,45  | 1,14  |
| SL4182           | dnaB  | Replicative DNA helicase                                   | 2,05  | 1,78  |
| SL4190           | uvrA  | UvrABC system protein A                                    | 1,65  | -1,56 |
| SL4192           | ssb   | Single-stranded DNA-binding protein                        | 1,44  | 1,20  |
| SL4305           | -     | Resembles Potassium Channels                               | 1,52  | -1,40 |
| SL4305<br>SL4316 | ulaA  | Ascorbate-specific permease IIC component ulaA             | 1,32  | 3,66  |
| SL4310<br>SL4325 |       |                                                            |       | 1,23  |
|                  | priB  | Primosomal replication protein n                           | 1,18  |       |
| SL4356           | iolE  | Inosose dehydratase                                        | -1,78 | -1,05 |
| SL4359           | ioll  | Inosose isomerase                                          | 1,18  | 2,16  |
| SL4406           | holC  | DNA polymerase III subunit chi                             | 2,08  | 1,95  |
| SL4419           | -     | Restriction Endonuclease                                   | -1,18 | 1,02  |
| SL4424           | -     | Hypothetical                                               | 2,22  | 2,46  |
| SL4430           | yjhP  | Uncharacterized protein yjhP                               | 1,09  | 2,13  |
| SL4455           | hsdS  | Type-1 restriction enzyme StySJI specificity protein       | 1,66  | 1,26  |
| SL4456           | hsdM  | Type I restriction enzyme EcoKI M protein                  | 1,28  | 1,46  |
| SL4457           | hsdR  | Type I restriction enzyme EcoKI R protein                  | 1,33  | 1,40  |
| SL4458           | mrr   | Mrr restriction system protein                             | 1,60  | 2,56  |
| SL4475           | dnaT  | Primosomal protein 1                                       | 1,97  | -1,52 |
| SL4485           | holD  | DNA polymerase III subunit psi                             | 1,92  | 2,57  |
| SL4506           | radA  | DNA repair protein radA                                    | 1,61  | 1,31  |
|                  |       | Energy metabolism                                          |       |       |
| SL0007           | talB  | Transaldolase 1                                            | -1,01 | -1,18 |
| SL0007           | chiA  | Chitinase A                                                | 1,16  | 1,23  |
| SL0018<br>SL0051 | -     | putative nitrite reductase                                 | 1,10  | 1,23  |
|                  |       |                                                            |       |       |
| SL0056           | oadA  | Oxaloacetate decarboxylase alpha chain                     | -1,07 | 1,16  |
| SL0059           | citC2 | [Citrate [pro-3S]-lyase] ligase                            | 2,45  | 10,46 |
| SL0060           | citD2 | Citrate lyase acyl carrier protein 2                       | 1,55  | 3,43  |
| SL0061           | citE  | Citrate lyase subunit beta                                 | 3,64  | 12,65 |
| SL0062           | citF  | Citrate lyase alpha chain                                  | 2,46  | 6,04  |
| SL0071           | caiD  | Carnitinyl-CoA dehydratase                                 | 1,24  | 1,12  |
| SL0076           | fixA  | Protein fixA                                               | -1,55 | 3,23  |
| SL0077           | fixB  | Protein fixB                                               | -1,56 | 3,01  |
| SL0078           | fixC  | Protein fixC                                               | -1,47 | 2,58  |
| SL0085           | caiD  | Hypothetical Protein caiD                                  | 1,27  | 1,05  |
| SL0086           | yabF  | putative NAD(P)H oxidoreductase                            | 1,29  | -1,37 |
| SL0101           | araD  | L-ribulose-5-phosphate 4-epimerase                         | 1,47  | 2,94  |
| SL0102           | araA  | L-arabinose isomerase                                      | 1,67  | 5,26  |
| SL0103           | araB  | Ribulokinase                                               | 2,26  | 7,11  |
| SL0152           | aceE  | Pyruvate dehydrogenase E1 component                        | 1,10  | 1,37  |
| QL 0452          |       | Dihydrolipoyllysine-residue acetyltransferase component of |       |       |
| SL0153           | aceF  | pyruvate dehydrogenase complex                             | 2,28  | 2,66  |
| SL0154           | lpdA  | Dihydrolipoyl dehydrogenase                                | 2,19  | 1,91  |
| SL0159           | acnB  | Aconitate hydratase 2                                      | 1,02  | 1,23  |
|                  |       |                                                            |       |       |

| SL0170                                                                                                                                             | gcd                                                                                                                                | Quinoprotein glucose dehydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1,56                                                                                                                                                                   | 1,56                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SL0188                                                                                                                                             | sfsA                                                                                                                               | Sugar fermentation stimulation protein A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,60                                                                                                                                                                    | -1,41                                                                                                                                                           |
|                                                                                                                                                    | SISA                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                 |
| SL0234                                                                                                                                             | -                                                                                                                                  | Chitinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,51                                                                                                                                                                    | 1,01                                                                                                                                                            |
| SL0235                                                                                                                                             | ldcC                                                                                                                               | Lysine decarboxylase, constitutive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1,14                                                                                                                                                                   | -1,27                                                                                                                                                           |
| SL0255                                                                                                                                             | mltD                                                                                                                               | Membrane-bound lytic murein transglycosylase D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,20                                                                                                                                                                    | -4,66                                                                                                                                                           |
| SL0256                                                                                                                                             | gloB                                                                                                                               | Hydroxyacylglutathione hydrolase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,11                                                                                                                                                                    | 2,79                                                                                                                                                            |
| SL0355                                                                                                                                             | qtxA                                                                                                                               | cytochrome BD2 subunit I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -4,66                                                                                                                                                                   | -1,77                                                                                                                                                           |
|                                                                                                                                                    |                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                         | ,                                                                                                                                                               |
| SL0356                                                                                                                                             | qtxB                                                                                                                               | cytochrome BD2 subunit II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2,70                                                                                                                                                                   | -1,51                                                                                                                                                           |
| SL0364                                                                                                                                             | prpC                                                                                                                               | 2-methylcitrate synthase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -5,41                                                                                                                                                                   | -2,42                                                                                                                                                           |
| SL0389                                                                                                                                             | araJ                                                                                                                               | Protein AraJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,04                                                                                                                                                                    | 1,59                                                                                                                                                            |
| SL0396                                                                                                                                             | malZ                                                                                                                               | Maltodextrin glucosidase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1,08                                                                                                                                                                   | 4,43                                                                                                                                                            |
| SL0434                                                                                                                                             | cyoD                                                                                                                               | Cytochrome o ubiquinol oxidase protein cyoD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,07                                                                                                                                                                    | 5,08                                                                                                                                                            |
|                                                                                                                                                    |                                                                                                                                    | Cytochrome o ubiquinol oxidase subunit 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                         |                                                                                                                                                                 |
| SL0435                                                                                                                                             | cyoC                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,32                                                                                                                                                                    | 4,41                                                                                                                                                            |
| SL0436                                                                                                                                             | суоВ                                                                                                                               | Ubiquinol oxidase subunit 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,82                                                                                                                                                                    | 2,57                                                                                                                                                            |
| SL0437                                                                                                                                             | суоА                                                                                                                               | Ubiquinol oxidase subunit 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,68                                                                                                                                                                    | 2,05                                                                                                                                                            |
| SL0465                                                                                                                                             | maa                                                                                                                                | Maltose O-acetyltransferase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,08                                                                                                                                                                    | 1,01                                                                                                                                                            |
| SL0487                                                                                                                                             | ushA                                                                                                                               | Protein ushA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,40                                                                                                                                                                    | 5,19                                                                                                                                                            |
| SL0497                                                                                                                                             | ybbN                                                                                                                               | Uncharacterized protein ybbN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,66                                                                                                                                                                    | -1,38                                                                                                                                                           |
|                                                                                                                                                    |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                 |
| SL0509                                                                                                                                             | allR                                                                                                                               | HTH-type transcriptional repressor AllR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,04                                                                                                                                                                    | -1,22                                                                                                                                                           |
| SL0521                                                                                                                                             | allD                                                                                                                               | Ureidoglycolate dehydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,67                                                                                                                                                                    | 3,62                                                                                                                                                            |
| SL0525                                                                                                                                             | arcC                                                                                                                               | Carbamate kinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,47                                                                                                                                                                    | 1,07                                                                                                                                                            |
| SL0566                                                                                                                                             | nfnB                                                                                                                               | Oxygen-insensitive NAD(P)H nitroreductase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,67                                                                                                                                                                    | 1,58                                                                                                                                                            |
| SL0599                                                                                                                                             | yyaE                                                                                                                               | molybdopterin-containing oxidoreductase catalytic subunit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4,06                                                                                                                                                                    | 2,19                                                                                                                                                            |
| SL0600                                                                                                                                             | dmsB                                                                                                                               | Anaerobic dimethyl sulfoxide reductase chain B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,45                                                                                                                                                                    | 1,96                                                                                                                                                            |
| 320000                                                                                                                                             | unisb                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,43                                                                                                                                                                    | 1,90                                                                                                                                                            |
| SL0601                                                                                                                                             | ynfH                                                                                                                               | molybdopterin-containing oxidoreductase membrane anchor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,35                                                                                                                                                                    | 1,00                                                                                                                                                            |
| <u>.</u>                                                                                                                                           |                                                                                                                                    | subunit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                         |                                                                                                                                                                 |
| SL0609                                                                                                                                             | citF                                                                                                                               | Citrate lyase alpha chain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8,07                                                                                                                                                                    | 21,53                                                                                                                                                           |
| SL0610                                                                                                                                             | citE                                                                                                                               | Citrate lyase subunit beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8,23                                                                                                                                                                    | 21,38                                                                                                                                                           |
| SL0611                                                                                                                                             | citD                                                                                                                               | Citrate lyase acyl carrier protein 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9,51                                                                                                                                                                    | 22,22                                                                                                                                                           |
| SL0612                                                                                                                                             | citC                                                                                                                               | [Citrate [pro-3S]-lyase] ligase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,93                                                                                                                                                                    | 8,29                                                                                                                                                            |
| SL0673                                                                                                                                             | ifcA                                                                                                                               | Fumarate reductase flavoprotein subunit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                         |                                                                                                                                                                 |
|                                                                                                                                                    |                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1,04                                                                                                                                                                   | -1,03                                                                                                                                                           |
| SL0676                                                                                                                                             | fldA                                                                                                                               | Flavodoxin-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,34                                                                                                                                                                    | -1,98                                                                                                                                                           |
| SL0680                                                                                                                                             | pgm                                                                                                                                | Phosphoglucomutase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,73                                                                                                                                                                    | -1,06                                                                                                                                                           |
| SL0712                                                                                                                                             | gltA                                                                                                                               | Citrate synthase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,12                                                                                                                                                                    | 1,56                                                                                                                                                            |
| SL0714                                                                                                                                             | sdhC                                                                                                                               | Succinate dehydrogenase cytochrome b556 subunit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,22                                                                                                                                                                    | 5,16                                                                                                                                                            |
|                                                                                                                                                    |                                                                                                                                    | Succinate dehydrogenase hydrophobic membrane anchor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                         |                                                                                                                                                                 |
| SL0715                                                                                                                                             | sdhD                                                                                                                               | subunit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,10                                                                                                                                                                    | 3,84                                                                                                                                                            |
| SL0716                                                                                                                                             | sdhA                                                                                                                               | Succinate dehydrogenase flavoprotein subunit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,34                                                                                                                                                                    | 4,37                                                                                                                                                            |
|                                                                                                                                                    |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                 |
| SL0717                                                                                                                                             | sdhB                                                                                                                               | Succinate dehydrogenase iron-sulfur subunit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,64                                                                                                                                                                    | 4,79                                                                                                                                                            |
| SL0718                                                                                                                                             | sucA                                                                                                                               | 2-oxoglutarate dehydrogenase E1 component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,45                                                                                                                                                                    | 1,25                                                                                                                                                            |
| SL0719                                                                                                                                             | sucB                                                                                                                               | Dihydrolipoyllysine-residue succinyltransferase component of 2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,61                                                                                                                                                                    | 1,24                                                                                                                                                            |
| 010/10                                                                                                                                             | SUCD                                                                                                                               | oxoglutarate dehydrogenase complex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,01                                                                                                                                                                    | 1,24                                                                                                                                                            |
| SL0720                                                                                                                                             | sucC                                                                                                                               | Succinyl-CoA ligase [ADP-forming] subunit beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,71                                                                                                                                                                    | 1,40                                                                                                                                                            |
| SL0721                                                                                                                                             | sucD                                                                                                                               | Succinyl-CoA ligase [ADP-forming] subunit alpha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,25                                                                                                                                                                    | 1,30                                                                                                                                                            |
| SL0722                                                                                                                                             | cydA                                                                                                                               | Cytochrome d ubiquinol oxidase subunit 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1,13                                                                                                                                                                   | -1,11                                                                                                                                                           |
|                                                                                                                                                    | -                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                 |
| SL0723                                                                                                                                             | cydB                                                                                                                               | Cytochrome d ubiquinol oxidase subunit 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1,11                                                                                                                                                                   | -1,06                                                                                                                                                           |
| SL0738                                                                                                                                             | fumB                                                                                                                               | Fumarate hydratase class I, anaerobic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1,96                                                                                                                                                                   | -1,44                                                                                                                                                           |
| SL0739                                                                                                                                             | ttdA                                                                                                                               | Putative fumarate hydratase subunit alpha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1,81                                                                                                                                                                   | -1,29                                                                                                                                                           |
| SL0743                                                                                                                                             | oadG2                                                                                                                              | Oxaloacetate decarboxylase gamma chain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1,01                                                                                                                                                                   | -1,27                                                                                                                                                           |
| SL0749                                                                                                                                             | gpmA                                                                                                                               | 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                         | 1,26                                                                                                                                                            |
|                                                                                                                                                    |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.55                                                                                                                                                                   |                                                                                                                                                                 |
| SI 0751                                                                                                                                            |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1,55<br>-1.40                                                                                                                                                          |                                                                                                                                                                 |
| SL0751                                                                                                                                             | galK                                                                                                                               | Galactokinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1,40                                                                                                                                                                   | -1,37                                                                                                                                                           |
| SL0752                                                                                                                                             | galK<br>galT                                                                                                                       | Galactokinase<br>Galactose-1-phosphate uridylyltransferase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1,40<br>-1,13                                                                                                                                                          | -1,37<br>-1,16                                                                                                                                                  |
| SL0752<br>SL0753                                                                                                                                   | galK<br>galT<br>galE                                                                                                               | Galactokinase<br>Galactose-1-phosphate uridylyltransferase<br>UDP-glucose 4-epimerase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1,40<br>-1,13<br>1,10                                                                                                                                                  | -1,37<br>-1,16<br>1,14                                                                                                                                          |
| SL0752                                                                                                                                             | galK<br>galT                                                                                                                       | Galactokinase<br>Galactose-1-phosphate uridylyltransferase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1,40<br>-1,13                                                                                                                                                          | -1,37<br>-1,16                                                                                                                                                  |
| SL0752<br>SL0753                                                                                                                                   | galK<br>galT<br>galE                                                                                                               | Galactokinase<br>Galactose-1-phosphate uridylyltransferase<br>UDP-glucose 4-epimerase<br>Imidazolonepropionase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1,40<br>-1,13<br>1,10<br>-1,16                                                                                                                                         | -1,37<br>-1,16<br>1,14<br>1,31                                                                                                                                  |
| SL0752<br>SL0753<br>SL0764<br>SL0765                                                                                                               | galK<br>galT<br>galE<br>hutl<br>hutG                                                                                               | Galactokinase<br>Galactose-1-phosphate uridylyltransferase<br>UDP-glucose 4-epimerase<br>Imidazolonepropionase<br>Formimidoylglutamase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1,40<br>-1,13<br>1,10<br>-1,16<br>-1,16                                                                                                                                | -1,37<br>-1,16<br>1,14<br>1,31<br>1,66                                                                                                                          |
| SL0752<br>SL0753<br>SL0764<br>SL0765<br>SL0768                                                                                                     | galK<br>galT<br>galE<br>hutI<br>hutG<br>hutH                                                                                       | Galactokinase<br>Galactose-1-phosphate uridylyltransferase<br>UDP-glucose 4-epimerase<br>Imidazolonepropionase<br>Formimidoylglutamase<br>Histidine ammonia-lyase                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1,40<br>-1,13<br>1,10<br>-1,16<br>-1,16<br>3,27                                                                                                                        | -1,37<br>-1,16<br>1,14<br>1,31<br>1,66<br>16,86                                                                                                                 |
| SL0752<br>SL0753<br>SL0764<br>SL0765<br>SL0768<br>SL0815                                                                                           | galK<br>galT<br>galE<br>hutI<br>hutG<br>hutH<br>ybiV2                                                                              | Galactokinase<br>Galactose-1-phosphate uridylyltransferase<br>UDP-glucose 4-epimerase<br>Imidazolonepropionase<br>Formimidoylglutamase<br>Histidine ammonia-lyase<br>putative hydrolase                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1,40<br>-1,13<br>1,10<br>-1,16<br>-1,16<br>3,27<br>-1,42                                                                                                               | -1,37<br>-1,16<br>1,14<br>1,31<br>1,66<br>16,86<br>-1,28                                                                                                        |
| SL0752<br>SL0753<br>SL0764<br>SL0765<br>SL0768<br>SL0815<br>SL0819                                                                                 | galK<br>galT<br>galE<br>hutI<br>hutG<br>hutH                                                                                       | Galactokinase<br>Galactose-1-phosphate uridylyltransferase<br>UDP-glucose 4-epimerase<br>Imidazolonepropionase<br>Formimidoylglutamase<br>Histidine ammonia-lyase<br>putative hydrolase<br>Putative formate acetyltransferase 3                                                                                                                                                                                                                                                                                                                                                                                                                 | -1,40<br>-1,13<br>1,10<br>-1,16<br>-1,16<br>3,27<br>-1,42<br>2,26                                                                                                       | -1,37<br>-1,16<br>1,14<br>1,31<br>1,66<br>16,86<br>-1,28<br>1,92                                                                                                |
| SL0752<br>SL0753<br>SL0764<br>SL0765<br>SL0768<br>SL0815<br>SL0819<br>SL0830                                                                       | galK<br>galT<br>galE<br>hutl<br>hutG<br>hutH<br>ybiV2<br>ybiW                                                                      | Galactokinase<br>Galactose-1-phosphate uridylyltransferase<br>UDP-glucose 4-epimerase<br>Imidazolonepropionase<br>Formimidoylglutamase<br>Histidine ammonia-lyase<br>putative hydrolase<br>Putative formate acetyltransferase 3<br>HpcH/Hpal Aldolase                                                                                                                                                                                                                                                                                                                                                                                           | -1,40<br>-1,13<br>1,10<br>-1,16<br>-1,16<br>3,27<br>-1,42<br>2,26<br>-1,31                                                                                              | -1,37<br>-1,16<br>1,14<br>1,31<br>1,66<br>16,86<br>-1,28<br>1,92<br>-2,09                                                                                       |
| SL0752<br>SL0753<br>SL0764<br>SL0765<br>SL0768<br>SL0815<br>SL0819                                                                                 | galK<br>galT<br>galE<br>hutI<br>hutG<br>hutH<br>ybiV2                                                                              | Galactokinase<br>Galactose-1-phosphate uridylyltransferase<br>UDP-glucose 4-epimerase<br>Imidazolonepropionase<br>Formimidoylglutamase<br>Histidine ammonia-lyase<br>putative hydrolase<br>Putative formate acetyltransferase 3                                                                                                                                                                                                                                                                                                                                                                                                                 | -1,40<br>-1,13<br>1,10<br>-1,16<br>-1,16<br>3,27<br>-1,42<br>2,26                                                                                                       | -1,37<br>-1,16<br>1,14<br>1,31<br>1,66<br>16,86<br>-1,28<br>1,92                                                                                                |
| SL0752<br>SL0753<br>SL0764<br>SL0765<br>SL0768<br>SL0815<br>SL0819<br>SL0830<br>SL0831                                                             | galK<br>galT<br>galE<br>hutl<br>hutG<br>hutH<br>ybiV2<br>ybiW<br>-<br>etfB                                                         | Galactokinase<br>Galactose-1-phosphate uridylyltransferase<br>UDP-glucose 4-epimerase<br>Imidazolonepropionase<br>Formimidoylglutamase<br>Histidine ammonia-lyase<br>putative hydrolase<br>Putative formate acetyltransferase 3<br>HpcH/Hpal Aldolase                                                                                                                                                                                                                                                                                                                                                                                           | -1,40<br>-1,13<br>1,10<br>-1,16<br>-1,16<br>3,27<br>-1,42<br>2,26<br>-1,31<br>-1,27                                                                                     | -1,37<br>-1,16<br>1,14<br>1,31<br>1,66<br>16,86<br>-1,28<br>1,92<br>-2,09<br>-2,24                                                                              |
| SL0752<br>SL0753<br>SL0764<br>SL0765<br>SL0768<br>SL0815<br>SL0819<br>SL0830<br>SL0831<br>SL0832                                                   | galK<br>galT<br>galE<br>hutl<br>hutG<br>hutH<br>ybiV2<br>ybiW<br>-<br>etfB<br>etfA                                                 | Galactokinase<br>Galactose-1-phosphate uridylyltransferase<br>UDP-glucose 4-epimerase<br>Imidazolonepropionase<br>Formimidoylglutamase<br>Histidine ammonia-lyase<br>putative hydrolase<br>Putative formate acetyltransferase 3<br>HpcH/Hpal Aldolase<br>Electron transfer flavoprotein subunit beta<br>Electron transfer flavoprotein subunit alpha                                                                                                                                                                                                                                                                                            | -1,40<br>-1,13<br>1,10<br>-1,16<br>-1,16<br>3,27<br>-1,42<br>2,26<br>-1,31<br>-1,27<br>-1,02                                                                            | -1,37<br>-1,16<br>1,14<br>1,31<br>1,66<br>16,86<br>-1,28<br>1,92<br>-2,09<br>-2,24<br>-1,59                                                                     |
| SL0752<br>SL0753<br>SL0764<br>SL0765<br>SL0768<br>SL0815<br>SL0819<br>SL0830<br>SL0831<br>SL0832<br>SL0834                                         | galK<br>galT<br>galE<br>hutl<br>hutG<br>hutH<br>ybiV2<br>ybiW<br>-<br>etfB<br>etfA<br>ydiS                                         | Galactokinase<br>Galactose-1-phosphate uridylyltransferase<br>UDP-glucose 4-epimerase<br>Imidazolonepropionase<br>Formimidoylglutamase<br>Histidine ammonia-lyase<br>putative hydrolase<br>Putative formate acetyltransferase 3<br>HpcH/Hpal Aldolase<br>Electron transfer flavoprotein subunit beta<br>Electron transfer flavoprotein subunit alpha<br>Electron transfer flavoprotein-ubiquinone oxidoreductase                                                                                                                                                                                                                                | -1,40<br>-1,13<br>1,10<br>-1,16<br>-1,16<br>3,27<br>-1,42<br>2,26<br>-1,31<br>-1,27<br>-1,02<br>-1,39                                                                   | -1,37<br>-1,16<br>1,14<br>1,31<br>1,66<br>16,86<br>-1,28<br>1,92<br>-2,09<br>-2,24<br>-1,59<br>-1,53                                                            |
| SL0752<br>SL0753<br>SL0764<br>SL0765<br>SL0768<br>SL0815<br>SL0819<br>SL0830<br>SL0831<br>SL0832<br>SL0834<br>SL0837                               | galK<br>galT<br>galE<br>hutl<br>hutG<br>hutH<br>ybiV2<br>ybiW<br>-<br>etfB<br>etfA<br>ydiS<br>ylil                                 | Galactokinase<br>Galactose-1-phosphate uridylyltransferase<br>UDP-glucose 4-epimerase<br>Imidazolonepropionase<br>Formimidoylglutamase<br>Histidine ammonia-lyase<br>putative hydrolase<br>Putative formate acetyltransferase 3<br>HpcH/Hpal Aldolase<br>Electron transfer flavoprotein subunit beta<br>Electron transfer flavoprotein subunit beta<br>Electron transfer flavoprotein subunit alpha<br>Electron transfer flavoprotein-ubiquinone oxidoreductase<br>Soluble aldose sugar dehydrogenase ylil                                                                                                                                      | -1,40<br>-1,13<br>1,10<br>-1,16<br>-1,16<br>3,27<br>-1,42<br>2,26<br>-1,31<br>-1,27<br>-1,02<br>-1,39<br>-1,97                                                          | -1,37<br>-1,16<br>1,14<br>1,31<br>1,66<br>16,86<br>-1,28<br>1,92<br>-2,09<br>-2,24<br>-1,59<br>-1,53<br>-1,97                                                   |
| SL0752<br>SL0753<br>SL0764<br>SL0765<br>SL0768<br>SL0815<br>SL0830<br>SL0831<br>SL0832<br>SL0834<br>SL0837<br>SL0840                               | galK<br>galT<br>galE<br>hutl<br>hutG<br>hutH<br>ybiV2<br>ybiW<br>-<br>etfB<br>etfA<br>ydiS<br>yliI<br>deoR                         | Galactokinase<br>Galactose-1-phosphate uridylyltransferase<br>UDP-glucose 4-epimerase<br>Imidazolonepropionase<br>Formimidoylglutamase<br>Histidine ammonia-lyase<br>putative hydrolase<br>Putative formate acetyltransferase 3<br>HpcH/Hpal Aldolase<br>Electron transfer flavoprotein subunit beta<br>Electron transfer flavoprotein subunit beta<br>Electron transfer flavoprotein subunit alpha<br>Electron transfer flavoprotein-ubiquinone oxidoreductase<br>Soluble aldose sugar dehydrogenase ylil<br>Deoxyribose operon repressor                                                                                                      | -1,40<br>-1,13<br>1,10<br>-1,16<br>-1,16<br>3,27<br>-1,42<br>2,26<br>-1,31<br>-1,27<br>-1,02<br>-1,39<br>-1,97<br>1,11                                                  | -1,37<br>-1,16<br>1,14<br>1,31<br>1,66<br>16,86<br>-1,28<br>1,92<br>-2,09<br>-2,24<br>-1,59<br>-1,53<br>-1,97<br>-1,54                                          |
| SL0752<br>SL0753<br>SL0764<br>SL0765<br>SL0768<br>SL0815<br>SL0819<br>SL0830<br>SL0831<br>SL0832<br>SL0834<br>SL0837                               | galK<br>galT<br>galE<br>hutl<br>hutG<br>hutH<br>ybiV2<br>ybiW<br>-<br>etfB<br>etfA<br>ydiS<br>yliI<br>deoR<br>grxA                 | Galactokinase<br>Galactose-1-phosphate uridylyltransferase<br>UDP-glucose 4-epimerase<br>Imidazolonepropionase<br>Formimidoylglutamase<br>Histidine ammonia-lyase<br>putative hydrolase<br>Putative formate acetyltransferase 3<br>HpcH/Hpal Aldolase<br>Electron transfer flavoprotein subunit beta<br>Electron transfer flavoprotein subunit beta<br>Electron transfer flavoprotein subunit alpha<br>Electron transfer flavoprotein-ubiquinone oxidoreductase<br>Soluble aldose sugar dehydrogenase ylil                                                                                                                                      | -1,40<br>-1,13<br>1,10<br>-1,16<br>-1,16<br>3,27<br>-1,42<br>2,26<br>-1,31<br>-1,27<br>-1,02<br>-1,39<br>-1,97<br>1,11<br>-1,77                                         | -1,37<br>-1,16<br>1,14<br>1,31<br>1,66<br><b>16,86</b><br>-1,28<br>1,92<br>-2,09<br>-2,24<br>-1,59<br>-1,53<br>-1,53<br>-1,97<br>-1,54<br>-2,63                 |
| SL0752<br>SL0753<br>SL0764<br>SL0765<br>SL0768<br>SL0815<br>SL0830<br>SL0831<br>SL0832<br>SL0834<br>SL0837<br>SL0840                               | galK<br>galT<br>galE<br>hutl<br>hutG<br>hutH<br>ybiV2<br>ybiW<br>-<br>etfB<br>etfA<br>ydiS<br>yliI<br>deoR                         | Galactokinase<br>Galactose-1-phosphate uridylyltransferase<br>UDP-glucose 4-epimerase<br>Imidazolonepropionase<br>Formimidoylglutamase<br>Histidine ammonia-lyase<br>putative hydrolase<br>Putative formate acetyltransferase 3<br>HpcH/Hpal Aldolase<br>Electron transfer flavoprotein subunit beta<br>Electron transfer flavoprotein subunit beta<br>Electron transfer flavoprotein subunit alpha<br>Electron transfer flavoprotein-ubiquinone oxidoreductase<br>Soluble aldose sugar dehydrogenase ylil<br>Deoxyribose operon repressor                                                                                                      | -1,40<br>-1,13<br>1,10<br>-1,16<br>-1,16<br>3,27<br>-1,42<br>2,26<br>-1,31<br>-1,27<br>-1,02<br>-1,39<br>-1,97<br>1,11                                                  | -1,37<br>-1,16<br>1,14<br>1,31<br>1,66<br>16,86<br>-1,28<br>1,92<br>-2,09<br>-2,24<br>-1,59<br>-1,53<br>-1,97<br>-1,54                                          |
| SL0752<br>SL0753<br>SL0764<br>SL0765<br>SL0815<br>SL0819<br>SL0830<br>SL0831<br>SL0832<br>SL0834<br>SL0837<br>SL0840<br>SL0848                     | galK<br>galT<br>galE<br>hutl<br>hutG<br>hutH<br>ybiV2<br>ybiW<br>-<br>etfB<br>etfA<br>ydiS<br>yliI<br>deoR<br>grxA                 | Galactokinase<br>Galactose-1-phosphate uridylyltransferase<br>UDP-glucose 4-epimerase<br>Imidazolonepropionase<br>Formimidoylglutamase<br>Histidine ammonia-lyase<br>putative hydrolase<br>Putative formate acetyltransferase 3<br>HpcH/Hpal Aldolase<br>Electron transfer flavoprotein subunit beta<br>Electron transfer flavoprotein subunit beta<br>Electron transfer flavoprotein-ubiquinone oxidoreductase<br>Soluble aldose sugar dehydrogenase ylil<br>Deoxyribose operon repressor<br>Glutaredoxin-1                                                                                                                                    | -1,40<br>-1,13<br>1,10<br>-1,16<br>-1,16<br>3,27<br>-1,42<br>2,26<br>-1,31<br>-1,27<br>-1,02<br>-1,39<br>-1,97<br>1,11<br>-1,77                                         | -1,37<br>-1,16<br>1,14<br>1,31<br>1,66<br><b>16,86</b><br>-1,28<br>1,92<br>-2,09<br>-2,24<br>-1,59<br>-1,53<br>-1,53<br>-1,97<br>-1,54<br>-2,63                 |
| SL0752<br>SL0753<br>SL0764<br>SL0765<br>SL0815<br>SL0819<br>SL0830<br>SL0831<br>SL0832<br>SL0834<br>SL0837<br>SL0840<br>SL0848<br>SL0850<br>SL0873 | galK<br>galT<br>galE<br>hutl<br>hutG<br>hutH<br>ybiV2<br>ybiW<br>-<br>etfB<br>etfA<br>ydiS<br>yliI<br>deoR<br>grxA<br>mdaA<br>ItaE | Galactokinase<br>Galactose-1-phosphate uridylyltransferase<br>UDP-glucose 4-epimerase<br>Imidazolonepropionase<br>Formimidoylglutamase<br>Histidine ammonia-lyase<br>putative hydrolase<br>Putative formate acetyltransferase 3<br>HpcH/Hpal Aldolase<br>Electron transfer flavoprotein subunit beta<br>Electron transfer flavoprotein subunit beta<br>Electron transfer flavoprotein subunit alpha<br>Electron transfer flavoprotein-ubiquinone oxidoreductase<br>Soluble aldose sugar dehydrogenase ylil<br>Deoxyribose operon repressor<br>Glutaredoxin-1<br>Oxygen-insensitive NADPH nitroreductase<br>Low specificity L-threonine aldolase | $\begin{array}{r} -1,40\\ -1,13\\ 1,10\\ -1,16\\ -1,16\\ \hline 3,27\\ -1,42\\ 2,26\\ -1,31\\ -1,27\\ -1,02\\ -1,39\\ -1,97\\ 1,11\\ -1,77\\ 1,79\\ 1,25\\ \end{array}$ | -1,37<br>-1,16<br>1,14<br>1,31<br>1,66<br><b>16,86</b><br>-1,28<br>1,92<br>-2,09<br>-2,24<br>-1,59<br>-1,53<br>-1,53<br>-1,97<br>-1,54<br>-2,63<br>2,17<br>1,20 |
| SL0752<br>SL0753<br>SL0764<br>SL0765<br>SL0815<br>SL0819<br>SL0830<br>SL0831<br>SL0832<br>SL0834<br>SL0837<br>SL0840<br>SL0848<br>SL0850           | galK<br>galT<br>galE<br>hutl<br>hutG<br>hutH<br>ybiV2<br>ybiW<br>-<br>etfB<br>etfA<br>ydiS<br>yliI<br>deoR<br>grxA<br>mdaA         | Galactokinase<br>Galactose-1-phosphate uridylyltransferase<br>UDP-glucose 4-epimerase<br>Imidazolonepropionase<br>Formimidoylglutamase<br>Histidine ammonia-lyase<br>putative hydrolase<br>Putative formate acetyltransferase 3<br>HpcH/Hpal Aldolase<br>Electron transfer flavoprotein subunit beta<br>Electron transfer flavoprotein subunit alpha<br>Electron transfer flavoprotein-ubiquinone oxidoreductase<br>Soluble aldose sugar dehydrogenase ylil<br>Deoxyribose operon repressor<br>Glutaredoxin-1<br>Oxygen-insensitive NADPH nitroreductase                                                                                        | $\begin{array}{r} -1,40\\ -1,13\\ 1,10\\ -1,16\\ -1,16\\ \hline 3,27\\ -1,42\\ 2,26\\ -1,31\\ -1,27\\ -1,02\\ -1,39\\ -1,97\\ 1,11\\ -1,77\\ 1,79\\ \end{array}$        | -1,37<br>-1,16<br>1,14<br>1,31<br>1,66<br>16,86<br>-1,28<br>1,92<br>-2,09<br>-2,24<br>-1,59<br>-1,53<br>-1,53<br>-1,97<br>-1,54<br>-2,63<br>2,17                |

| SL0875           | hcr   | NADH oxidoreductase hcr                                        | 2,78  | 1,77  |
|------------------|-------|----------------------------------------------------------------|-------|-------|
| SL0879           | ybjX  | Uncharacterized protein ybjX                                   | -1,29 | -3,90 |
| SL0896           | trxB  | Thioredoxin reductase                                          | 1,07  | -1,52 |
| SL0902           | dmsA  | Anaerobic dimethyl sulfoxide reductase chain A                 | -1,16 | -1,07 |
| SL0903           | dmsB  | Anaerobic dimethyl sulfoxide reductase chain B                 | -1,29 | -1,14 |
| SL0904           | dmsC  | Anaerobic dimethyl sulfoxide reductase chain C                 | -1,43 | -1,03 |
| SL0907           | pfIA  | Pyruvate formate-lyase 1-activating enzyme                     | 1,27  | -1,88 |
| SL0910           | pflB  | Formate acetyltransferase 1                                    | -1,01 | -1,44 |
| SL0939           | dpaL  | Diaminopropionate ammonia-lyase                                | 1,57  | 2,68  |
| SL1000           | ycbX  | Putative iron-sulfur protein                                   | -1,98 | -1,68 |
| SL1000           | mgsA  | Methylglyoxal synthase                                         | 1,47  | 2,53  |
|                  | -     | 4-hydroxyphenylacetate 3-monooxygenase reductase               |       |       |
| SL1037           | hpaC  | component                                                      | -1,19 | 1,02  |
|                  |       | 4-hydroxyphenylacetate 3-monooxygenase oxygenase               |       |       |
| SL1038           | hpaB  | component                                                      | 1,33  | 1,11  |
| SL1040           | hnaC  | 4-hydroxyphenylacetate degradation bifunctional                | 1 50  | 2 50  |
| SL1040           | hpaG  | isomerase/decarboxylase                                        | 1,58  | 2,59  |
| SL1042           | hpcB  | 3,4-dihydroxyphenylacetate 2,3-dioxygenase                     | -1,08 | 2,43  |
| SL1043           | hpcD  | 5-carboxymethyl-2-hydroxymuconate Delta-isomerase              | -1,08 | 2,36  |
| SL1044           | hpcG  | 2-oxo-hepta-3-ene-1,7-dioic acid hydratase                     | 1,37  | 1,38  |
| SL1045           | hpcH  | 4-hydroxy-2-oxo-heptane-1,7-dioate aldolase                    | 1,38  | 1,31  |
| SL1062           | putA  | Bifunctional protein putA                                      | 6,15  | 14,32 |
| SL1067           | nanE1 | Putative N-acetylmannosamine-6-phosphate 2-epimerase 1         | 1,91  | 2,40  |
| SL1074           | ycdY  | Uncharacterized protein ycdY                                   | 1,67  | 1,13  |
| SL1095           | yceJ  | Cytochrome b561 homolog 2                                      | -1,60 | -1,22 |
| SL1134           | fabF  | 3-oxoacyl-[acyl-carrier-protein] synthase 2                    | 2,30  | -1,31 |
| SL1140           | ptsG  | PTS system glucose-specific EIICB component                    | 1,20  | 1,02  |
| SL1146           | nagZ  | Beta-hexosaminidase                                            | 1,38  | -1,28 |
| SL1148           | ndh   | NADH dehydrogenase                                             | -1,52 | -1,64 |
| SL1140<br>SL1176 | icdA  | Isocitrate dehydrogenase [NADP]                                | 1,47  | 1,65  |
| SL1170<br>SL1189 | yodB  | Cytochrome b561 homolog 1                                      | 2,18  | -1,86 |
| SL1109<br>SL1208 | youb  | putative nitric oxide reductase                                | 1,36  | -1,03 |
| SL1208<br>SL1220 | -     | Uncharacterized protein yeaG                                   |       |       |
|                  | yeaG  |                                                                | -2,71 | 1,34  |
| SL1225           | gapA  | Glyceraldehyde-3-phosphate dehydrogenase A                     | 1,26  | 1,05  |
| SL1229           | ansA  | L-asparaginase 1                                               | 2,38  | -1,04 |
| SL1239           | astA  | Arginine N-succinyltransferase                                 | 2,62  | 10,81 |
| SL1240           | astD  | N-succinylglutamate 5-semialdehyde dehydrogenase               | 2,16  | 7,93  |
| SL1250           | celD  | putative cel operon repressor                                  | -1,50 | -5,19 |
| SL1251           | celF  | 6-phospho-beta-glucosidase                                     | -1,30 | -2,98 |
| SL1261           | pfkB  | 6-phosphofructokinase isozyme 2                                | -1,46 | 1,28  |
| SL1283           | ppsA  | Phosphoenolpyruvate synthase                                   | -1,48 | -1,07 |
| SL1286           | ydiS  | Probable electron transfer flavoprotein-quinone oxidoreductase | -1,09 | -1,70 |
| 014007           | •     | ydiS<br>Dataliaa haalaa faa faanaa kaina haaita diD            |       |       |
| SL1287           | ydiR  | Putative electron transfer flavoprotein subunit ydiR           | -1,28 | -2,31 |
| SL1288           | ydiQ  | Putative electron transfer flavoprotein subunit ydiQ           | -1,06 | 1,17  |
| SL1299           | ydiJ  | Uncharacterized protein ydiJ                                   | -2,10 | -1,77 |
| SL1300           | ydil  | Esterase ydil                                                  | -1,92 | -1,48 |
| SL1312           | pykF  | Pyruvate kinase I                                              | 1,00  | -1,13 |
| SL1316           | rbsK  | Ribokinase                                                     | -1,55 | 8,36  |
| SL1317           | ttrA  | tetrathionate reductase subunit A                              | -1,15 | -1,92 |
| SL1319           | ttrB  | Tetrathionate Reductase Subunit B                              | 1,48  | -1,29 |
| SL1367           | gloA  | Lactoylglutathione lyase                                       | 1,06  | -1,35 |
| SL1388           | rnfD  | Electron transport complex protein rnfD                        | 2,69  | -1,22 |
| SL1389           | rnfC  | Electron transport complex protein rnfC                        | 1,88  | -1,79 |
| SL1397           | manA  | Mannose-6-phosphate isomerase                                  | 2,27  | -1,06 |
| SL1398           | fumA  | Fumarate hydratase class I, aerobic                            | 1,93  | 2,49  |
| SL1400           | fumC  | Fumarate hydratase class II                                    | -1,18 | 1,45  |
| SL1409           | pntA  | NAD(P) transhydrogenase subunit alpha                          | -1,15 | -1,31 |
| SL1410           | pntB  | NAD(P) transhydrogenase subunit beta                           | -1,33 | -1,35 |
| SL1426           | dmsC  | Anaerobic dimethyl sulfoxide reductase chain C                 | -1,07 | -1,85 |
| SL1427           | dmsB  | Anaerobic dimethyl sulfoxide reductase chain B                 | -1,22 | -1,07 |
| SL1428           | dmsA2 | Probable dimethyl sulfoxide reductase chain A2                 | -1,13 | -1,22 |
| SL1435           | rspA  | Starvation-sensing protein rspA                                | 2,46  | 5,16  |
| SL1436           | rspB  | Starvation-sensing protein rspB                                | 1,90  | 4,95  |
| SL1438           | ydfl  | Uncharacterized oxidoreductase ydfl                            | 1,11  | 1,24  |
| SL1454           | ynel  | Aldehyde dehydrogenase-like protein ynel                       | -4,68 | 1,53  |
| SL1455           | glsA2 | Glutaminase 2                                                  | -1,66 | 1,84  |
| SL1461           | -     | Hypothetical                                                   | -1,96 | -2,19 |
|                  |       | · · ·                                                          | .,=•  | _,    |

| SL1462           | hoxQ         | Hydrogenase expression/formation protein hoxQ                                                         | -1,71          | -1,89         |
|------------------|--------------|-------------------------------------------------------------------------------------------------------|----------------|---------------|
| SL1463           | hyaE         | Hydrogenase-1 operon protein hyaE                                                                     | -2,00          | -1,36         |
| SL1465           | hoxM         | Hydrogenase expression/formation protein hoxM                                                         | -1,76          | -1,31         |
| SL1466           | hupZ         | Probable Ni/Fe-hydrogenase B-type cytochrome subunit                                                  | 1,31           | 1,53          |
| SL1468           | hoxK         | Uptake hydrogenase small subunit                                                                      | 1,01           | 1,32          |
| SL1470           | uxuR         | Uxu operon transcriptional regulator                                                                  | -1,31          | 1,11          |
|                  |              | Uncharacterized zinc-type alcohol dehydrogenase-like protein                                          |                |               |
| SL1471           | rspB         | HI_0053                                                                                               | -1,51          | 1,17          |
| SL1485           | galS         | HTH-type transcriptional regulator galS                                                               | 2,00           | -1,38         |
| SL1488           | glgX         | Glycogen operon protein glgX homolog                                                                  | -1,61          | 1,56          |
| SL1496           | sfcA         | NAD-dependent malic enzyme                                                                            | 1,47           | 1,66          |
| SL1497           | adhP         | Alcohol dehydrogenase, propanol-preferring                                                            | -2,82          | -1,06         |
|                  |              | Formate dehydrogenase, nitrate-inducible, cytochrome b556(fdn)                                        |                |               |
| SL1498           | fdnl         | subunit                                                                                               | 1,51           | 3,85          |
| SL1499           | fdnH         | Formate dehydrogenase, nitrate-inducible, iron-sulfur subunit                                         | 2,24           | 3,50          |
| SL1500           | fdnG         | Formate dehydrogenase, nitrate-inducible, major subunit                                               | 2,17           | 3,60          |
| SL1501           | fdnG         | Formate dehydrogenase, nitrate-inducible, major subunit                                               | 1,95           | 4,12          |
| SL1508           | narZ         | Respiratory nitrate reductase 2 alpha chain                                                           | -1,19          | 3,12          |
| SL1509           | narY         | Respiratory nitrate reductase 2 beta chain                                                            | -1,38          | 3,24          |
|                  |              | Probable nitrate reductase molybdenum cofactor assembly                                               |                |               |
| SL1510           | narW         | chaperone NarW                                                                                        | -1,56          | 3,00          |
| SL1511           | narV         | Respiratory nitrate reductase 2 gamma chain                                                           | -1,44          | 2,99          |
| SL1520           | yncB         | Putative NADP-dependent oxidoreductase yncB                                                           | -1,19          | 1,53          |
| SL1547           | sgcE         | Protein sgcE                                                                                          | -1,94          | -1,19         |
| SL1550           | lldD         | Lactate 2-monooxygenase                                                                               | 1,87           | 1,72          |
| SL1555           | ydcl         | Uncharacterized HTH-type transcriptional regulator ydcl                                               | -2,22          | 1,39          |
| SL1557           | adhC         | S-(hydroxymethyl)glutathione dehydrogenase                                                            | -1,02          | -1,36         |
| SL1569           | cybB         | Cytochrome b561                                                                                       | 1,02           | 1,39          |
| SL1573           | -            | Glutathione-Dependent Formaldehyde-Activating GFA                                                     | -1,38          | -1,09         |
| SL1577           | ldhA         | D-lactate dehydrogenase                                                                               | -1,02          | -1,78         |
| SL1581           | ydbK         | Probable pyruvate-flavodoxin oxidoreductase                                                           | 1,49           | -2,06         |
| SL1611           | ycjG         | L-Ala-D/L-Glu epimerase                                                                               | -1,69          | -2,51         |
| SL1615           | ycjX         | Uncharacterized protein ycjX                                                                          | 1,56           | 1,21          |
| SL1631           | fabl         | Enoyl-[acyl-carrier-protein] reductase [NADH]                                                         | 1,42           | -1,36         |
| SL1640           | yciM         | Uncharacterized protein yciM                                                                          | 1,09           | -2,47         |
| SL1644           | acnA         | Aconitate hydratase 1                                                                                 | -1,25          | 1,65          |
| SL1664           | ykgJ         | Uncharacterized protein ykgJ                                                                          | 1,07           | 1,65          |
| SL1680           | adhE         | Aldehyde-alcohol dehydrogenase                                                                        | -1,22          | -1,25         |
| SL1689           | narl         | Respiratory nitrate reductase 1 gamma chain                                                           | 2,66           | 9,45          |
|                  |              | Nitrate reductase molybdenum cofactor assembly chaperone                                              |                |               |
| SL1690           | narJ         | NarJ                                                                                                  | 4,98           | 9,45          |
| SL1691           | narH         | Respiratory nitrate reductase 1 beta chain                                                            | 3,53           | 7,87          |
| SL1692           | narG         | Respiratory nitrate reductase 1 alpha chain                                                           | 2,72           | 5,16          |
| SL1695           | narL         | Nitrate/nitrite response regulator protein narL                                                       | 1,37           | -1,09         |
| SL1714           | hyaA         | Hydrogenase-1 small chain                                                                             | 1,10           | 2,88          |
| SL1715           | hyaB         | Hydrogenase-1 large chain                                                                             | 1,39           | 2,40          |
| SL1716           | hyaC         | Probable Ni/Fe-hydrogenase 1 B-type cytochrome subunit                                                | 1,85           | 2,05          |
| SL1717           | hyaD         | Hydrogenase 1 maturation protease                                                                     | 1,69           | 1,82          |
| SL1719           | hyaF         | Hydrogenase-1 operon protein hyaF                                                                     | 1,29           | 1,27          |
| SL1720           | appC         | Cytochrome bd-II oxidase subunit 1                                                                    | 1,22           | 1,09          |
| SL1721           | appB         | Cytochrome bd-II oxidase subunit 2                                                                    | -1,03          | 1,11          |
| SL1724           | treA         | Periplasmic trehalase                                                                                 | -1,34          | 2,08          |
| SL1731           | dadA         | D-amino acid dehydrogenase small subunit                                                              | 1,05           | 1,82          |
| SL1740           | ycgM         | Uncharacterized protein ycgM                                                                          | -1,36          | -1,82         |
| SL1755           | sdaA         | L-serine dehydratase 1                                                                                | 1,62           | 1,63          |
| SL1802           | -            | Phage Membrane Protein                                                                                | -1,12          | -1,35         |
| SL1818           | eda          | KHG/KDPG aldolase                                                                                     | 1,67           | -1,03         |
| SL1819           | edd          | Phosphogluconate dehydratase                                                                          | 2,46           | -2,54         |
| SL1820           | zwf          | Glucose-6-phosphate 1-dehydrogenase                                                                   | -1,06          | -1,97         |
| SL1822           | pykA         | Pyruvate kinase II                                                                                    | 1,20           | 1,44          |
| SL1872           | рукл         | •                                                                                                     |                | -4,34         |
| SL1072<br>SL1888 | -<br>fliC    | Hypothetical<br>Flagellin                                                                             | -2,15          |               |
| SL1000<br>SL1892 |              | •                                                                                                     | -1,49<br>-1.60 | -1,03<br>1 75 |
| SL1892<br>SL2035 | amyA         | Cytoplasmic alpha-amylase                                                                             | -1,60<br>-1.04 | 1,75          |
|                  | yeeX         | UPF0265 protein Ent638_2575                                                                           | -1,04          | -1,13         |
| SL2040           | phsB         | Thiosulfate reductase electron transport protein phsB                                                 | -1,48          | 1,75          |
| SL2041           | phsA<br>bicB | Thiosulfate reductase                                                                                 | -1,35          | 1,64          |
| SL2051           | hisB         | Histidine biosynthesis bifunctional protein hisB<br>6-phosphogluconate dehydrogenase, decarboxylating | 1,07           | 1,07          |
| SL2058           | gnd          | ง-หางจุหางขานงงากลเอ นอกงนางขอกสรอ, นองสามบริหาสแกญ                                                   | 1,57           | -1,23         |
|                  |              |                                                                                                       |                |               |

| SL2060           | rfbK   | Phosphomannomutase                                           | 1,77  | 1,68  |
|------------------|--------|--------------------------------------------------------------|-------|-------|
| SL2069           | rfbF   | Glucose-1-phosphate cytidylyltransferase                     | 2,74  | 1,21  |
| SL2078           | wcaK   | Colanic acid biosynthesis protein wcaK                       | 1,43  | 1,38  |
| SL2081           | cpsG   | phosphomannomutase                                           | 1,19  | -1,28 |
| SL2121           | yegV   | Uncharacterized sugar kinase yegV                            | 1,41  | 1,70  |
| SL2145           | dld    | D-lactate dehydrogenase                                      | 1,22  | 2,02  |
| SL2152           | mhbM   | 3-hydroxybenzoate 6-hydroxylase                              | -1,12 | 1,82  |
| SL2153           | maiA   | Probable maleylacetoacetate isomerase                        | 1,20  | 1,79  |
| SL2154           | ycgM   | Uncharacterized protein PYRAB13970                           | 1,16  | 2,31  |
| SL2155           | gtdA   | Gentisate 1 2-Dioxygenase                                    | 1,16  | 2,58  |
| SL2156           | pcaK   | 4-hydroxybenzoate transporter                                | 1,36  | 1,61  |
| SL2157           | gbpR   | HTH-type transcriptional regulator gbpR                      | -1,09 | -1,14 |
| SL2168           | galS   | HTH-type transcriptional regulator galS                      | 2,04  | 4,52  |
| SL2173           | sdaA   | L-serine dehydratase 1                                       | 1,90  | -1,19 |
| SL2173<br>SL2181 | fruA   | PTS system fructose-specific EIIBC component                 | -1,36 | -2,54 |
| SL2101<br>SL2182 | fruK   | 1-phosphofructokinase                                        | -1,29 | -2,54 |
| SL2102<br>SL2205 | yejM   | Inner membrane protein yejM                                  | 1,43  | -1,06 |
| 312203           | yejivi | Antitermination protein Q homolog from lambdoid prophage     | 1,45  |       |
| SL2215           | quuD   | DLP12                                                        | 1,06  | -1,30 |
| SL2222           | narP   | Nitrate/nitrite response regulator protein narP              | 1,56  | 1,08  |
| SL2223           | ccmH   | Cytochrome c-type biogenesis protein ccmH                    | 2,06  | 1,52  |
| SL2223           | ccmH   | Cytochrome c-type biogenesis protein ccmH                    | 2,00  | 1,52  |
| SL2225           | napC   | Cytochrome c-type protein napC                               | 6,22  | 6,57  |
|                  | •      |                                                              |       |       |
| SL2226<br>SL2227 | napB   | Diheme cytochrome c napB                                     | 3,65  | 3,46  |
| SL2227<br>SL2228 | napH   | Ferredoxin-type protein napH                                 | 9,50  | 6,95  |
|                  | napG   | Ferredoxin-type protein napG                                 | 10,81 | 8,39  |
| SL2229           | napA   | Periplasmic nitrate reductase                                | 7,43  | 8,88  |
| SL2230           | napD   | Protein napD                                                 | 5,54  | 5,81  |
| SL2231           | napF   | Ferredoxin-type protein napF                                 | 3,73  | 4,56  |
| SL2242           | dgoD   | D-galactonate dehydratase                                    | -1,41 | -1,06 |
| SL2253           | glpA   | Anaerobic glycerol-3-phosphate dehydrogenase subunit A       | 1,56  | 1,22  |
| SL2254           | glpB   | Anaerobic glycerol-3-phosphate dehydrogenase subunit B       | 1,34  | 1,10  |
| SL2255           | glpC   | Anaerobic glycerol-3-phosphate dehydrogenase subunit C       | 1,04  | -1,05 |
| SL2260           | yfaW   | L-rhamnonate dehydratase                                     | -2,26 | -1,38 |
| SL2265           | ais    | Lipopolysaccharide core heptose(II)-phosphate phosphatase    | -3,11 | -1,91 |
| SL2285           | nuoN   | NADH-quinone oxidoreductase subunit N                        | 1,42  | -1,20 |
| SL2286           | nuoM   | NADH-quinone oxidoreductase subunit M                        | 1,55  | -1,19 |
| SL2287           | nuoL   | NADH-quinone oxidoreductase subunit L                        | 1,97  | 1,28  |
| SL2288           | nuoK   | NADH-quinone oxidoreductase subunit K                        | 2,82  | 1,33  |
| SL2289           | nuoJ   | NADH-quinone oxidoreductase subunit J                        | 2,23  | 1,16  |
| SL2290           | nuol   | NADH-quinone oxidoreductase subunit I                        | 2,12  | 1,07  |
| SL2291           | nuoH   | NADH-quinone oxidoreductase subunit H                        | 2,35  | 1,07  |
| SL2292           | nuoG   | NADH-quinone oxidoreductase subunit G                        | 1,95  | -1,14 |
| SL2293           | nuoF   | NADH-quinone oxidoreductase subunit F                        | 1,90  | -1,05 |
| SL2294           | nuoE   | NADH-quinone oxidoreductase subunit E                        | 1,19  | -1,24 |
| SL2295           | nuoC   | NADH-quinone oxidoreductase subunit C/D                      | 1,20  | -1,71 |
| SL2296           | nuoB   | NADH-quinone oxidoreductase subunit B                        | -1,03 | -1,35 |
| SL2297           | nuoA   | NADH-quinone oxidoreductase subunit A                        | 1,02  | -1,24 |
| SL2299           | IrhA   | Probable HTH-type transcriptional regulator IrhA             | -1,63 | -4,14 |
| SL2306           | ackA   | Acetate kinase                                               | 1,27  | -2,28 |
| SL2307           | pta    | Phosphate acetyltransferase                                  | 1,66  | -2,02 |
| SL2310           | tktA   | Putative transketolase N-terminal section                    | -2,06 | -1,47 |
| SL2314           | gntR   | HTH-type transcriptional regulator gntR                      | 1,98  | 1,53  |
| SL2364           | pgtA   | Phosphoglycerate transport system transcriptional regulatory | -2,57 | -1,77 |
| 012004           |        | protein pgtA                                                 |       |       |
| SL2371           | glk    | Glucokinase                                                  | 1,07  | -1,21 |
| SL2394           | ptsH   | Phosphocarrier protein HPr                                   | 2,06  | 2,12  |
| SL2420           | eutC   | Ethanolamine ammonia-lyase light chain                       | -1,53 | 1,10  |
| SL2421           | eutB   | Ethanolamine ammonia-lyase heavy chain                       | -1,40 | 1,06  |
| SL2423           | eutH   | Ethanolamine utilization protein eutH                        | -2,02 | -1,21 |
| SL2425           | eutJ   | Ethanolamine utilization protein eutJ                        | -2,00 | -1,62 |
| SL2429           | eutD   | Ethanolamine utilization protein eutD                        | -1,73 | 1,05  |
| SL2435           | maeB   | NADP-dependent malic enzyme                                  | 2,05  | 2,59  |
| SL2436           | tal2   | Transaldolase 2                                              | -1,37 | 1,60  |
| SL2437           | tktB   | Transketolase 2                                              | -1,34 | 1,48  |
| SL2490           | dmsC   | Anaerobic Dimethyl Sulfoxide Reductase Subunit C             | 2,83  | -1,40 |
| SL2491           | dmsB   | Anaerobic dimethyl sulfoxide reductase chain B               | 2,94  | 1,02  |
| SL2492           | dmsA   | Anaerobic dimethyl sulfoxide reductase chain A               | 3,12  | -1,06 |
|                  |        |                                                              |       |       |

| SL2497           | sseB         | Protein sseB                                                                                              | 1,25          | -1,25         |
|------------------|--------------|-----------------------------------------------------------------------------------------------------------|---------------|---------------|
| SL2500           | fdx          | 2Fe-2S ferredoxin                                                                                         | 2,21          | -1,18         |
| SL2510           | asrA         | Anaerobic sulfite reductase subunit A                                                                     | -6,07         | -1,62         |
| SL2511           | asrB         | Anaerobic sulfite reductase subunit B                                                                     | -6,11         | -1,82         |
| SL2512           | asrC         | Anaerobic sulfite reductase subunit C                                                                     | -5,83         | -1,82         |
| SL2516           | hcaT         | Probable 3-phenylpropionic acid transporter                                                               | 1,26          | -1,02         |
| SL2518           | hmpA         | Flavohemoprotein                                                                                          | 2,09          | 2,80          |
| SL2519<br>SL2521 | cadC<br>cadA | Transcriptional activator cadC<br>Lysine decarboxylase, inducible                                         | 1,19<br>-1,25 | -2,23<br>1,93 |
| SL2521<br>SL2610 | grcA         | Autonomous glycyl radical cofactor                                                                        | -1,25         | -1,70         |
| SL2010<br>SL2613 | trxC         | Thioredoxin-2                                                                                             | 1,12          | -2,94         |
| SL2738           | -            | Hypothetical                                                                                              | -1,05         | -2,33         |
| SL2739           | hxlA         | 3-hexulose-6-phosphate synthase                                                                           | -1,38         | 1,06          |
| SL2742           | ptsG         | PTS system glucose-specific EIICBA component                                                              | 1,25          | 1,63          |
| SL2764           | ybjX         | Uncharacterized protein ybjX                                                                              | -1,03         | -5,61         |
| SL2806           | csrA         | Carbon storage regulator homolog                                                                          | 1,15          | 1,44          |
| SL2815           | srID         | Sorbitol-6-phosphate 2-dehydrogenase                                                                      | -5,96         | 1,09          |
| SL2816           | gutM         | Glucitol operon activator protein                                                                         | -5,39         | 1,21          |
| SL2817           | srlR         | Glucitol operon repressor                                                                                 | -1,03         | 1,59          |
| SL2820           | norV         | Anaerobic nitric oxide reductase flavorubredoxin                                                          | -1,15         | -1,21         |
| SL2823           | hydN         | Electron transport protein hydN                                                                           | -1,59         | -4,73         |
| SL2826           | hycH         | Formate hydrogenlyase maturation protein hycH                                                             | 1,63          | 1,91          |
| SL2827           | hycG         | Formate hydrogenlyase subunit 7                                                                           | 1,76          | 1,91          |
| SL2828           | hycF         | Formate hydrogenlyase subunit 6                                                                           | 2,22          | 1,56          |
| SL2829           | hycE         | Formate hydrogenlyase subunit 5                                                                           | 1,53          | -1,50         |
| SL2830           | hycD         | Formate hydrogenlyase subunit 4                                                                           | -1,02         | -2,29         |
| SL2831           | hycC         | Formate hydrogenlyase subunit 3                                                                           | -1,29         | -4,84         |
| SL2835<br>SL2838 | hypB<br>hypE | Hydrogenase isoenzymes nickel incorporation protein hypB<br>Hydrogenase isoenzymes formation protein hypE | 1,86<br>2,21  | 1,28<br>-1,79 |
| SL2839           | fhlA         | Formate hydrogenlyase transcriptional activator                                                           | 1,72          | -2,09         |
| SL2895           | ygbL         | Putative aldolase class 2 protein ygbL                                                                    | 1,81          | -1,08         |
| SL2897           | ygbL         | Uncharacterized oxidoreductase ygbJ                                                                       | 2,02          | 1,00          |
| SL2910           | ftsB         | Cell division protein ftsB homolog                                                                        | 1,24          | 1,13          |
| SL2927           | cysJ         | Sulfite reductase [NADPH] flavoprotein alpha-component                                                    | 1,01          | -2,43         |
| SL2931           | eno          | Enolase                                                                                                   | -1,01         | -1,08         |
| SL2944           | yqcA         | Uncharacterized protein yqcA                                                                              | 1,21          | 1,09          |
| SL2951           | sdaB         | L-serine dehydratase 2                                                                                    | 2,46          | 8,11          |
| SL2953           | fucO         | Lactaldehyde reductase                                                                                    | 1,45          | 1,68          |
| SL2954           | fucA         | L-fuculose phosphate aldolase                                                                             | 1,72          | 1,56          |
| SL2956           | fucl         | L-fucose isomerase                                                                                        | 1,23          | -1,19         |
| SL2957           | fucK         | L-fuculokinase                                                                                            | 1,48          | -1,28         |
| SL2958           | fucU         | L-fucose mutarotase                                                                                       | 1,02          | 1,44          |
| SL2959<br>SL2977 | fucR         | L-fucose operon activator                                                                                 | 1,51          | 6,68          |
| SL2977<br>SL2989 | ppdB<br>galR | Prepilin peptidase-dependent protein B<br>HTH-type transcriptional regulator galR                         | 3,21<br>1,29  | 7,11<br>2,07  |
| SL3021           | fldB         | Flavodoxin-2                                                                                              | 1,23          | 1,18          |
| SL3027           | bglA         | 6-phospho-beta-glucosidase BgIA                                                                           | 1,19          | -1,38         |
| SL3029           | gcvP         | Glycine dehydrogenase [decarboxylating]                                                                   | -6,89         | -4,23         |
| SL3030           | gcvH         | Glycine cleavage system H protein                                                                         | -3,46         | -2,33         |
| SL3031           | gcvT         | Aminomethyltransferase                                                                                    | -2,78         | -1,92         |
| SL3032           | visC         | Protein visC                                                                                              | 1,03          | -2,07         |
| SL3039           | rpiA         | Ribose-5-phosphate isomerase A                                                                            | 1,86          | 2,49          |
| SL3044           | fbaA         | Fructose-bisphosphate aldolase class 2                                                                    | 1,01          | -1,25         |
| SL3045           | pgk          | Phosphoglycerate kinase                                                                                   | 1,07          | -1,23         |
| SL3051           | cbiO         | Cobalt import ATP-binding protein CbiO                                                                    | 3,87          | 4,26          |
| SL3052           | tktA         | Transketolase 1                                                                                           | 1,85          | 1,74          |
| SL3057           | yjmC         | Uncharacterized oxidoreductase yjmC                                                                       | 1,44          | 1,02          |
| SL3058           | yjjN         | Uncharacterized zinc-type alcohol dehydrogenase-like protein<br>yjjN                                      | 1,29          | 1,40          |
| SL3059           | uxuB         | D-mannonate oxidoreductase                                                                                | 2,03          | 1,95          |
| SL3060           | uxuR         | Uxu operon regulator                                                                                      | 1,56          | 1,33          |
| SL3081           | ansB         | L-asparaginase 2                                                                                          | 2,62          | 4,78          |
| SL3092           | cat2         | 4-hydroxybutyrate coenzyme A transferase                                                                  | -2,32         | 1,04          |
| SL3094           | citE         | Citrate lyase subunit beta                                                                                | -2,05         | 1,72          |
| SL3103           | feaB         | Phenylacetaldehyde dehydrogenase                                                                          | -1,11         | 1,18          |
| SL3109           | uxuA         | Mannonate dehydratase                                                                                     | 1,88          | 2,97          |
| SL3110           | uxuB         | D-mannonate oxidoreductase                                                                                | 1,05          | 2,40          |
|                  |              |                                                                                                           |               |               |

| SL3111           | uxaC         | Uronate isomerase                                                         | -1,13        | 2,07          |
|------------------|--------------|---------------------------------------------------------------------------|--------------|---------------|
| SL3119           | hybE         | Hydrogenase-2 operon protein hybE                                         | 2,72         | -2,04         |
| SL3121           | hybC         | Hydrogenase-2 large chain                                                 | 1,33         | -1,58         |
| SL3122           | hybB         | Probable Ni/Fe-hydrogenase 2 b-type cytochrome subunit                    | 1,29         | -1,41         |
| SL3123           | hybA         | Hydrogenase-2 operon protein hybA                                         | 1,57         | -1,03         |
| SL3124           | hybO         | Hydrogenase-2 small chain                                                 | 1,43         | 1,14          |
| SL3138           | yqhD         | Alcohol dehydrogenase yqhD                                                | 1,46         | 2,03          |
| SL3170           | glgS         | Glycogen synthesis protein glgS                                           | -1,35        | -1,26         |
| SL3190           | aer          | Aerotaxis receptor                                                        | -6,60        | 2,93          |
| SL3212           | tdcG         | L-serine dehydratase tdcG                                                 | -1,48        | 1,61          |
| SL3213           | tdcE         | Keto-acid formate acetyltransferase                                       | -1,70        | 1,39          |
| SL3214           | tdcD         | Propionate kinase                                                         | -2,92        | 1,89          |
| SL3216           | tdcB         | Threonine dehydratase catabolic                                           | -2,66        | 4,61          |
| SL3223           | garD         | D-galactarate dehydratase                                                 | -1,21        | 1,32          |
| SL3224           | ydjE         | Uncharacterized sugar kinase ydjE                                         | -1,42        | 1,16          |
| SL3225           | glpR         | Glycerol-3-phosphate regulon repressor                                    | -1,24        | -1,09         |
| SL3226           | gatY         | D-tagatose-1,6-bisphosphate aldolase subunit gatY                         | -25,28       | 1,21          |
| SL3227           | fruK         | 1-phosphofructokinase                                                     | -15,40       | -1,46         |
| SL3228           | fruA         | PTS system fructose-specific EIIABC component                             | -14,19       | -2,16         |
| SL3230           | gatZ         | D-tagatose-1,6-bisphosphate aldolase subunit gatZ                         | -2,27        | -1,92         |
| SL3234           | gatD         | Galactitol-1-phosphate 5-dehydrogenase                                    | -1,04        | 1,05          |
| SL3235           | gatR         | Galactitol utilization operon repressor                                   | 1,11         | 3,15          |
| SL3287           | kdsD         | Arabinose 5-phosphate isomerase                                           | 1,66         | -2,31         |
| SL3309           | nanE2        | Putative N-acetylmannosamine-6-phosphate 2-epimerase 2                    | -1,59        | -1,49         |
| SL3318           | yhcM         | Uncharacterized protein yhcM                                              | 1,40         | 1,05          |
| SL3324           | oadA         | Oxaloacetate decarboxylase alpha chain                                    | -1,09        | 1,11          |
| SL3325           | oadG2        | Oxaloacetate decarboxylase gamma chain 2                                  | -1,02        | -1,21         |
| SL3326           | ttdB         | L(+)-tartrate dehydratase subunit beta                                    | 2,03         | 1,98          |
| SL3327           | ttdA         | L(+)-tartrate dehydratase subunit alpha                                   | 2,03         | 2,64          |
| SL3331           | mdh          | Malate dehydrogenase                                                      | 1,57         | 5,89          |
| SL3349           | yhdH         | Putative quinone oxidoreductase yhdH                                      | 2,40         | 2,34          |
| SL3350           | yedY         | Sulfoxide reductase catalytic subunit yedY                                | 1,06         | 1,43          |
| SL3357           | dusB         | tRNA-dihydrouridine synthase B                                            | -1,34        | -1,57         |
| SL3425           | kefG         | Glutathione-regulated potassium-efflux system ancillary protein           | -1,33        | -1,68         |
|                  |              | kefG                                                                      |              |               |
| SL3431<br>SL3441 | prkB         | Probable phosphoribulokinase<br>Nitrite reductase [NAD(P)H] large subunit | -1,26        | -1,13         |
| SL3441<br>SL3442 | nirB<br>nirD |                                                                           | 4,96         | 4,39          |
| SL3442<br>SL3449 |              | Nitrite reductase [NAD(P)H] small subunit                                 | 7,05         | 3,43          |
| SL3449<br>SL3450 | gph          | Phosphoglycolate phosphatase<br>Ribulose-phosphate 3-epimerase            | 1,75<br>1,63 | -1,01<br>1,22 |
| SL3463           | rpe<br>yrfG  | Uncharacterized protein yrfG                                              | 1,16         | 1,39          |
| SL3467           | pckA         | Phosphoenolpyruvate carboxykinase [ATP]                                   | -1,72        | 1,30          |
| SL3480           | malQ         | 4-alpha-glucanotransferase                                                | -2,67        | -1,24         |
| SL3480<br>SL3481 | malP         | Maltodextrin phosphorylase                                                | -3,34        | 1,62          |
| SL3482           | malT         | HTH-type transcriptional regulator malT                                   | 1,23         | 5,98          |
| SL3488           | rtcR         | Transcriptional regulatory protein rtcR                                   | -1,25        | -1,12         |
| SL3489           | glpR         | Glycerol-3-phosphate regulon repressor                                    | -1,30        | -2,31         |
| SL3490           | glpR         | Glycerol-3-phosphate regulon repressor                                    | -1,19        | -3,00         |
| SL3491           | glpG         | Rhomboid protease glpG                                                    | 1,51         | -2,35         |
| SL3492           | glpE         | Thiosulfate sulfurtransferase glpE                                        | -1,09        | -2,82         |
| SL3493           | glpD         | Aerobic glycerol-3-phosphate dehydrogenase                                | -2,38        | -1,30         |
| SL3501           | glgP         | Glycogen phosphorylase                                                    | -1,31        | -1,32         |
| SL3503           | glgC         | Glucose-1-phosphate adenylyltransferase                                   | -1,06        | 1,51          |
| SL3504           | glgX         | Glycogen debranching enzyme                                               | 1,36         | 1,41          |
| SL3505           | glgB         | 1,4-alpha-glucan-branching enzyme                                         | 1,15         | 1,86          |
| SL3507           | gntU         | Low-affinity gluconate transporter                                        | 2,69         | -1,42         |
| SL3508           | gntK         | Thermoresistant gluconokinase                                             | 3,26         | -2,10         |
| SL3509           | gntR         | HTH-type transcriptional regulator gntR                                   | 1,55         | -1,21         |
| SL3513           | rbsK         | Ribokinase                                                                | -4,00        | 1,27          |
| SL3543           | tusA         | Sulfurtransferase tusA                                                    | -8,27        | -6,94         |
| SL3560           | phoC         | Major phosphate-irrepressible acid phosphatase                            | 1,40         | -1,64         |
| SL3563           | ansB         | L-asparaginase                                                            | 1,75         | 12,37         |
| SL3565           | frID         | Fructosamine kinase frID                                                  | 1,54         | 24,98         |
| SL3568           | treF         | Cytoplasmic trehalase                                                     | -1,96        | -2,00         |
| SL3577           | kdgK         | 2-dehydro-3-deoxygluconokinase                                            | 1,92         | 4,44          |
| SL3590           | mdeA         | cystathionine gamma-synthase                                              | -2,33        | -3,58         |
| SL3598           | -            | Hypothetical                                                              | 1,04         | 1,32          |
|                  |              |                                                                           | ,            | ,             |

| SL3610 | bisC  | Biotin sulfoxide reductase                                  | 1,29  | -1,37 |
|--------|-------|-------------------------------------------------------------|-------|-------|
| SL3612 | ghrB  | Glyoxylate/hydroxypyruvate reductase B                      | 1,12  | 1,23  |
| SL3625 | xylB  | Xylulose kinase                                             | -1,28 | 1,07  |
| SL3626 | xylA  | Xylose isomerase                                            | -1,88 | 1,70  |
| SL3629 | malS  | Alpha-amylase                                               | -2,80 | 1,12  |
| SL3632 | yiaJ  | HTH-type transcriptional regulator yiaJ                     | 1,17  | -1,02 |
| SL3633 | dlgD  | 2,3-diketo-L-gulonate reductase                             | 1,18  | 3,90  |
| SL3639 | lyxK  | L-xylulose/3-keto-L-gulonate kinase                         | -1,06 | 1,16  |
| SL3641 | sgbU  | Putative L-ribulose-5-phosphate 3-epimerase sgbU            | 1,25  | 2,13  |
| SL3642 | sgbE  | L-ribulose-5-phosphate 4-epimerase sgbE                     | -1,60 | 1,78  |
| SL3645 | aldB  | Aldehyde dehydrogenase B                                    | -1,43 | 3,84  |
| SL3651 | mtID  | Mannitol-1-phosphate 5-dehydrogenase                        | 1,30  | 1,59  |
| SL3652 | mtlR  | Mannitol operon repressor                                   | -1,04 | 1,25  |
| SL3659 | lldD  | L-lactate dehydrogenase [cytochrome]                        | 1,18  | 2,43  |
| SL3666 | gpsA  | Glycerol-3-phosphate dehydrogenase [NAD(P)+]                | 1,65  | 1,59  |
| SL3670 | gpml  | 2,3-bisphosphoglycerate-independent phosphoglycerate mutase | 1,54  | -1,28 |
| SL3673 | yibD  | Uncharacterized glycosyltransferase yibD                    | -1,01 | -1,85 |
| SL3674 | tdh   | L-threonine 3-dehydrogenase                                 | 3,00  | 4,44  |
| SL3675 | kbl   | Putative 8-amino-7-oxononanoate synthase/2-amino-3-         | 3,05  | 6,06  |
|        |       | ketobutyrate coenzyme A ligase                              |       |       |
| SL3740 | gmuD  | 6-phospho-beta-glucosidase gmuD                             | 1,03  | 3,39  |
| SL3745 | ptsH  | Conserved Hypothetical Protein                              | -1,14 | -1,07 |
| SL3746 | kbaY  | D-tagatose-1,6-bisphosphate aldolase subunit kbaY           | -1,09 | -1,19 |
| SL3747 | glpK  | Glycerol kinase                                             | -2,12 | -1,13 |
| SL3759 | rbsK  | Ribokinase                                                  | -2,90 | 1,43  |
| SL3760 | deoR  | Deoxyribose operon repressor                                | 2,52  | 1,66  |
| SL3770 | dsdA  | D-serine dehydratase                                        | 1,12  | 1,06  |
| SL3779 | ccmH  | Cytochrome c-type biogenesis protein ccmH                   | 3,11  | 1,51  |
| SL3779 | ccmH  | Cytochrome c-type biogenesis protein ccmH                   | 3,11  | 1,51  |
| SL3781 | ccmF  | Cytochrome c-type biogenesis protein ccmF                   | 4,67  | 1,08  |
| SL3781 | ccmF  | Cytochrome c-type biogenesis protein ccmF                   | 4,67  | 1,08  |
| SL3788 | torA  | Trimethylamine-N-oxide reductase                            | 1,09  | -1,20 |
| SL3789 | torC  | Cytochrome c-type protein torC                              | -1,13 | -1,90 |
| SL3792 | torS  | Sensor protein torS                                         | 1,53  | -1,13 |
| SL3794 | dgoD1 | D-galactonate dehydratase 1                                 | -1,28 | -1,03 |
| SL3795 | dgoA  | 2-dehydro-3-deoxy-6-phosphogalactonate aldolase             | -1,15 | 1,89  |
| SL3800 | dgoD  | D-galactonate dehydratase                                   | -2,48 | 1,33  |
| SL3825 | fruA  | PTS system fructose-specific EIIBC component                | 1,27  | 1,82  |
| SL3831 | atpC  | ATP synthase epsilon chain                                  | 2,70  | 1,81  |
| SL3832 | atpD  | ATP synthase subunit beta                                   | 1,72  | 1,42  |
| SL3833 | atpG  | ATP synthase gamma chain                                    | 2,22  | 1,56  |
| SL3834 | atpA  | ATP synthase subunit alpha                                  | 2,09  | 1,46  |
| SL3835 | atpH  | ATP synthase subunit delta                                  | 2,64  | 1,75  |
| SL3836 | atpF  | ATP synthase subunit b                                      | 1,74  | 1,47  |
| SL3837 | atpE  | ATP synthase subunit c                                      | 1,41  | 1,16  |
| SL3838 | atpB  | ATP synthase subunit a                                      | 1,44  | -1,00 |
| SL3839 | atpl  | ATP synthase protein I                                      | 1,06  | 1,55  |
| SL3842 | mioC  | Protein mioC                                                | 1,25  | 1,37  |
| SL3852 | rbsK  | Ribokinase                                                  | 1,03  | 1,67  |
| SL3904 | yigB  | Uncharacterized protein yigB                                | 1,02  | -2,88 |
| SL3928 | tatB  | Sec-independent protein translocase protein tatB homolog    | 1,57  | 1,74  |
| SL3933 | ubiB  | NAD(P)H-flavin reductase                                    | 1,09  | -1,27 |
| SL3946 | yihG  | Probable acyltransferase yihG                               | 1,25  | -1,19 |
| SL3965 | yihQ  | Alpha-glucosidase yihQ                                      | -1,67 | 1,40  |
| SL3968 | yihT  | Uncharacterized aldolase yihT                               | 1,87  | 1,89  |
| SL3970 | yihV  | Uncharacterized sugar kinase yihV                           | 1,35  | 3,53  |
| SL3971 | yihW  | Uncharacterized HTH-type transcriptional regulator yihW     | -1,03 | 1,15  |
| SL3981 | fdhE  | Protein fdhE homolog                                        | 1,53  | -1,05 |
| SL3982 | fdol  | Formate dehydrogenase, cytochrome b556(fdo) subunit         | -1,02 | -1,05 |
| SL3983 | fdoH  | Formate dehydrogenase-O iron-sulfur subunit                 | -1,04 | 1,04  |
| SL3984 | fdoG  | Formate dehydrogenase-O major subunit                       | -1,24 | 1,01  |
| SL3985 | fdoG  | Formate dehydrogenase-O major subunit                       | -1,32 | 1,18  |
| SL3986 | fdhD  | Protein fdhD                                                | 2,15  | -1,17 |
| SL3993 | yiaY  | Probable alcohol dehydrogenase                              | -1,23 | 1,05  |
| SL3994 | rhaD  | Rhamnulose-1-phosphate aldolase                             | 1,10  | 1,36  |
| SL3995 | rhaA  | L-rhamnose isomerase                                        | 1,02  | 1,15  |
| SL3996 | rhaB  | Rhamnulokinase                                              | 1,18  | 1,33  |
|        |       |                                                             | -,    | -,    |

| SL4011                                 | pfkA         | 6-phosphofructokinase isozyme 1                                       | -1,06         | -1,05         |  |
|----------------------------------------|--------------|-----------------------------------------------------------------------|---------------|---------------|--|
| SL4015                                 | scrK         | Fructokinase                                                          | 1,30          | 2,56          |  |
| SL4021                                 | lsrK         | Autoinducer 2 kinase IsrK                                             | -1,48         | 1,54          |  |
| SL4029                                 | IsrE         | Putative epimerase IsrE                                               | -2,21         | -2,31         |  |
| SL4030                                 | tpiA         | Triosephosphate isomerase                                             | 1,42          | -1,19         |  |
| SL4035                                 | glpK         | Glycerol kinase                                                       | -1,21         | 1,56          |  |
| SL4059<br>SL4063                       | talC<br>pfID | Probable fructose-6-phosphate aldolase<br>Formate acetyltransferase 2 | 1,54<br>-1,28 | 1,04<br>2,36  |  |
| SL4003<br>SL4064                       | pfIC         | Pyruvate formate-lyase 2-activating enzyme                            | 1,42          | 1,21          |  |
| SL4004<br>SL4065                       | frwD         | Fructose-like phosphotransferase enzyme IIB component 3               | -1,03         | 1,59          |  |
| SL4069                                 | ppc          | Phosphoenolpyruvate carboxylase                                       | -2,24         | -4,32         |  |
| SL4113                                 | zraR         | Transcriptional regulatory protein zraR                               | 1,61          | 1,99          |  |
| SL4118                                 | aceB         | Malate synthase A                                                     | 1,34          | 1,65          |  |
| SL4119                                 | aceA         | Isocitrate lyase                                                      | -1,43         | 1,95          |  |
| SL4120                                 | aceK         | Isocitrate dehydrogenase kinase/phosphatase                           | 1,14          | 1,34          |  |
| SL4122                                 | iclR         | Acetate operon repressor                                              | 1,38          | 1,90          |  |
| SL4157                                 | pgi          | Glucose-6-phosphate isomerase                                         | 1,11          | -1,24         |  |
| SL4181                                 | qorA         | Quinone oxidoreductase 1                                              | -2,35         | -1,47         |  |
| SL4185                                 | aphA         | Class B acid phosphatase                                              | 1,34          | 5,38          |  |
| SL4213                                 | nrfA         | Cytochrome c-552                                                      | 2,34          | 5,15          |  |
| SL4214                                 | nrfB         | Cytochrome c-type protein nrfB                                        | 2,06          | 3,64          |  |
| SL4215                                 | nrfC         | Protein nrfC                                                          | 1,77          | 2,94          |  |
| SL4216                                 | nrfD         | Protein nrfD                                                          | 2,14          | 2,39          |  |
| SL4218                                 | nrfG         | Formate-dependent nitrite reductase complex subunit nrfG              | 2,23          | 2,20          |  |
| SL4221                                 | fdhF         | Formate dehydrogenase H                                               | 2,03          | 1,06          |  |
| SL4222                                 | fdhF         | Formate dehydrogenase H                                               | 2,28          | 1,50          |  |
| SL4233                                 | adiA         | Biodegradative arginine decarboxylase                                 | -1,11         | 1,52          |  |
| SL4234                                 | melR         | Melibiose operon regulatory protein                                   | -1,02         | 5,38          |  |
| SL4235                                 | melA         | Alpha-galactosidase                                                   | -4,04         | 1,15          |  |
| SL4237                                 | fumB         | Fumarate hydratase class I, anaerobic                                 | 1,27          | -1,21         |  |
| SL4242                                 | dmsA         | Anaerobic dimethyl sulfoxide reductase chain A                        | -1,01         | 2,58          |  |
| SL4243                                 | dmsB         | Anaerobic dimethyl sulfoxide reductase chain B                        | -1,16         | 1,94          |  |
| SL4244                                 | dmsC         | Anaerobic dimethyl sulfoxide reductase chain C                        | -1,03         | 1,99          |  |
| SL4263<br>SL4277                       | aspA         | Aspartate ammonia-lyase<br>Fumarate reductase subunit D               | 1,03          | 1,09          |  |
| SL4277<br>SL4278                       | frdD<br>frdC | Fumarate reductase subunit C                                          | 2,16<br>1,60  | 1,18<br>-1,00 |  |
| SL4278<br>SL4279                       | frdB         | Fumarate reductase subunit C                                          | 1,50          | -1,12         |  |
| SL4279<br>SL4280                       | frdA         | Fumarate reductase flavoprotein subunit                               | 1,51          | -1,12         |  |
| SL4289                                 | yjeS         | Putative electron transport protein yjeS                              | 1,26          | -1,51         |  |
| SL4316                                 | ulaA         | Ascorbate-specific permease IIC component ulaA                        | 1,30          | 3,66          |  |
| SL4320                                 | ulaE         | L-ribulose-5-phosphate 3-epimerase ulaE                               | 1,09          | 1,25          |  |
| SL4321                                 | ulaF         | L-ribulose-5-phosphate 4-epimerase ulaF                               | -1,24         | 1,10          |  |
| SL4334                                 | qorB         | Quinone oxidoreductase 2                                              | 1,03          | 1,27          |  |
| SL4346                                 | -            | Dihydroorotase                                                        | 1,26          | -1,01         |  |
| SL4348                                 | fbp          | Fructose-1,6-bisphosphatase class 1                                   | 1,28          | 1,05          |  |
| SL4350                                 | hexR         | Uncharacterized HTH-type transcriptional regulator HI_0143            | 1,42          | -2,36         |  |
| SL4354                                 | iolA1        | Methylmalonate semialdehyde dehydrogenase [acylating] 1               | -1,53         | 1,66          |  |
| SL4358                                 | srfJ         | Glucan Endo-1 6-Beta-Glucosidase                                      | -1,04         | -1,00         |  |
| SL4362                                 | iolD1        | 3D-(3,5/4)-trihydroxycyclohexane-1,2-dione hydrolase 1                | 1,45          | 2,17          |  |
| SL4366                                 | iolH         | Protein iolH                                                          | -3,04         | 1,36          |  |
| SL4369                                 | cybC         | Soluble cytochrome b562                                               | -1,59         | 1,37          |  |
| SL4384                                 | treC         | Trehalose-6-phosphate hydrolase                                       | 2,36          | 10,59         |  |
| SL4396                                 | arcC         | Carbamate kinase                                                      | -1,99         | 2,87          |  |
| SL4414                                 | idnD         | L-idonate 5-dehydrogenase                                             | -1,32         | 2,80          |  |
| SL4415                                 | idnK         | Thermosensitive gluconokinase                                         | -1,12         | 2,19          |  |
| SL4416                                 | yjgB         | Uncharacterized zinc-type alcohol dehydrogenase-like protein<br>yjgB  | -1,49         | 2,20          |  |
| SL4436                                 | yczH         | Uncharacterized protein yczH                                          | 1,10          | 1,47          |  |
| SL4437                                 | uxuR         | Uxu operon transcriptional regulator                                  | 1,35          | -1,05         |  |
| SL4450                                 | ssdA         | Succinate-semialdehyde dehydrogenase [NADP+]                          | -1,33         | 2,50          |  |
| SL4491                                 | yjjV         | Uncharacterized deoxyribonuclease yjjV                                | 1,72          | 1,33          |  |
| SL4494                                 | deoC         | Deoxyribose-phosphate aldolase                                        | 1,50          | -1,54         |  |
| SL4512                                 | gpmB         | Probable phosphoglycerate mutase gpmB                                 | 1,70          | 1,68          |  |
| Fatty acid and phospholipid metabolism |              |                                                                       |               |               |  |
| SL0074                                 | caiA         | Crotonobetainyl-CoA dehydrogenase                                     | 1,68          | 3,58          |  |
| SL0074<br>SL0223                       | cdsA         | Phosphatidate cytidylyltransferase                                    | 1,00          | -1,92         |  |
| SL0227                                 | lpxD         | UDP-3-O-[3-hydroxymyristoyl] glucosamine N-acyltransferase            | 1,55          | -1,41         |  |
|                                        |              |                                                                       | .,00          | .,            |  |

| SL0228           | fabZ         | (3R)-hydroxymyristoyl-[acyl-carrier-protein] dehydratase                                                | 1,42           | -1,30          |
|------------------|--------------|---------------------------------------------------------------------------------------------------------|----------------|----------------|
| SL0233           | accA         | Acetyl-coenzyme A carboxylase carboxyl transferase subunit                                              | 2,00           | -1,00          |
|                  |              | alpha                                                                                                   |                |                |
| SL0414           | pgpA         | Phosphatidylglycerophosphatase A                                                                        | 1,61           | 1,27           |
| SL0458           | tesB         | Acyl-CoA thioesterase 2                                                                                 | 1,22           | 1,64           |
| SL0483           | aes          | Acetyl esterase                                                                                         | -1,39          | 1,02           |
| SL0499           | tesA         | Acyl-CoA thioesterase I                                                                                 | -1,10          | -1,99          |
| SL0788           | ybhO         | Putative cardiolipin synthase ybhO                                                                      | -2,14          | -2,23          |
| SL0815           | ybiV2        | putative hydrolase                                                                                      | -1,42          | -1,28          |
| SL0833           | mmgC         | Acyl-CoA dehydrogenase                                                                                  | -1,28          | -1,48          |
| SL0871<br>SL1007 | ybjS<br>fabA | putative nucleoside-diphosphate-sugar epimerase<br>3-hydroxydecanoyl-[acyl-carrier-protein] dehydratase | 1,28<br>1,44   | -1,84          |
| SL1007<br>SL1023 |              | Acylphosphatase                                                                                         | -1,14          | 1,85<br>1,31   |
| SL1023<br>SL1129 | yccX<br>plsX | Phosphate acyltransferase                                                                               | -1,14<br>1,32  | -1,60          |
| SL1129<br>SL1130 | fabH         | 3-oxoacyl-[acyl-carrier-protein] synthase 3                                                             | 1,87           | -1,42          |
| SL1130<br>SL1131 | fabD         | Malonyl CoA-acyl carrier protein transacylase                                                           | 2,20           | -1,00          |
| SL1131<br>SL1132 | fabG         | 3-oxoacyl-[acyl-carrier-protein] reductase                                                              | 2,20           | 1,03           |
| SL1132<br>SL1133 | acpP         | Acyl carrier protein                                                                                    | 1,52           | -1,12          |
| SL1146           | nagZ         | Beta-hexosaminidase                                                                                     | 1,38           | -1,28          |
| SL1284           | fadK         | Short-chain-fatty-acidCoA ligase                                                                        | 1,04           | -1,75          |
| SL1290           | ydiO         | Uncharacterized protein ydiO                                                                            | -1,75          | -1,45          |
| SL1359           | cfa          | Cyclopropane-fatty-acyl-phospholipid synthase                                                           | -1,07          | -1,49          |
| SL1572           | azoR         | FMN-dependent NADH-azoreductase                                                                         | 1,66           | -2,65          |
| SL1605           | yjgl         | Uncharacterized oxidoreductase yjgl                                                                     | 1,53           | 1,04           |
| SL1642           | pgpB         | Phosphatidylglycerophosphatase B                                                                        | 1,15           | 1,00           |
| SL1670           | cls          | Cardiolipin synthase                                                                                    | 1,64           | 1,29           |
| SL1733           | fadR         | Fatty acid metabolism regulator protein                                                                 | 1,45           | -1,10          |
|                  |              | CDP-diacylglycerolglycerol-3-phosphate 3-                                                               |                |                |
| SL1875           | pgsA         | phosphatidyltransferase                                                                                 | 1,07           | -1,00          |
| SL2149           | yohF         | Uncharacterized oxidoreductase yohF                                                                     | -1,55          | 1,63           |
| SL2335           | accD         | Acetyl-coenzyme A carboxylase carboxyl transferase subunit                                              | 1,84           | -1,18          |
|                  |              | beta                                                                                                    |                |                |
| SL2347           | fabB         | 3-oxoacyl-[acyl-carrier-protein] synthase 1                                                             | 1,99           | 1,38           |
| SL2357           | fadJ         | Fatty acid oxidation complex subunit alpha                                                              | 1,53           | 1,43           |
| SL2358           | fadl         | 3-ketoacyl-CoA thiolase                                                                                 | 1,11           | -1,08          |
| SL2408           | ucpA         | Oxidoreductase ucpA                                                                                     | 1,40           | -1,10          |
| SL2417           | eutR         | HTH-type transcriptional regulator eutR                                                                 | -1,01          | 1,41           |
| SL2422           | eutA         | Ethanolamine utilization protein eutA                                                                   | -1,26          | -1,17          |
| SL2424<br>SL2426 | eutG         | Ethanolamine utilization protein eutG                                                                   | -1,25          | -1,21          |
| SL2420<br>SL2427 | eutE<br>eutN | Ethanolamine utilization protein eutE<br>Ethanolamine utilization protein eutN                          | -2,28<br>-1,76 | -1,31<br>-1,09 |
| SL2427<br>SL2428 | eutM         | Ethanolamine utilization protein eutil                                                                  | -2,04          | -1,11          |
| SL2420<br>SL2431 | eutQ         | Ethanolamine utilization protein eutQ                                                                   | -2,04          | 2,57           |
| SL2431<br>SL2508 | suhB         | Inositol-1-monophosphatase                                                                              | -1,02          | -1,72          |
| SL2508<br>SL2539 | acpS         | Holo-[acyl-carrier-protein] synthase                                                                    | 1,12           | -1,39          |
| SL2555<br>SL2616 | pssA         | CDP-diacylglycerolserine O-phosphatidyltransferase                                                      | -1,06          | -1,35          |
| SL2988           | aas          | Bifunctional protein aas                                                                                | -1,00          | 1,21           |
| SL2997           | yqeF         | Probable acetyl-CoA acetyltransferase                                                                   | 1,16           | 3,16           |
| SL3147           | plsC         | 1-acyl-sn-glycerol-3-phosphate acyltransferase                                                          | 2,54           | -1,01          |
| SL3156           | yqiA         | Esterase yqiA                                                                                           | 1,46           | -1,34          |
| SL3157           | icc          | Protein icc                                                                                             | 1,85           | 1,05           |
| SL3192           | fadH         | 2,4-dienoyl-CoA reductase [NADPH]                                                                       | -1,14          | 4,94           |
| SL3246           | yhbT         | Uncharacterized protein yhbT                                                                            | 1,93           | 1,56           |
| SL3352           | accB         | Biotin carboxyl carrier protein of acetyl-CoA carboxylase                                               | 2,07           | -1,19          |
| SL3353           | accC         | Biotin carboxylase                                                                                      | 2,22           | -1,65          |
| SL3463           | yrfG         | Uncharacterized protein yrfG                                                                            | 1,16           | 1,39           |
| SL3607           | yhjY         | Uncharacterized protein yhjY                                                                            | -1,80          | -1,84          |
| SL3904           | yigB         | Uncharacterized protein yigB                                                                            | 1,02           | -2,88          |
| SL3935           | fadA         | 3-ketoacyl-CoA thiolase                                                                                 | 6,71           | 5,63           |
| SL3936           | fadB         | Fatty acid oxidation complex subunit alpha                                                              | 6,83           | 5,93           |
| SL3978           | est          | Esterase                                                                                                | 1,36           | 3,79           |
| SL4013           | cdh          | CDP-diacylglycerol pyrophosphatase                                                                      | -1,05          | 1,78           |
| SL4172           | plsB         | Glycerol-3-phosphate acyltransferase                                                                    | 1,74           | -1,29          |
| SL4173           | dgkA         | Diacylglycerol kinase                                                                                   | 1,54           | -1,07          |
| SL4211           | acs          | Acetyl-coenzyme A synthetase                                                                            | 3,25           | 4,90           |
| SL4285           | psd          | Phosphatidylserine decarboxylase proenzyme                                                              | 1,31           | 1,10           |
| SL4310           | aidB         | Protein AidB                                                                                            | 1,89           | 7,60           |
| SL4353           | iolB         | 5-deoxy-glucuronate isomerase                                                                           | -1,41          | 1,78           |
|                  |              |                                                                                                         |                |                |

| SL4472           | mdoB         | Phosphoglycerol transferase I                                       | -1,21          | -2,16          |
|------------------|--------------|---------------------------------------------------------------------|----------------|----------------|
| SL4491           | yjjV         | Uncharacterized deoxyribonuclease yjjV                              | 1,72           | 1,33           |
|                  |              | Hypothetical proteins                                               |                |                |
| SL0028           | bcfH         | putative thiol-disulfide isomerase                                  | -1,01          | -1,09          |
| SL0034           | yhcR         | Endonuclease yhcR                                                   | -1,65          | 1,18           |
| SL0119<br>SL0168 | mraZ         | Protein mraZ<br>Uncharacterized protein yacC                        | 1,07<br>1,60   | -1,24<br>-1,44 |
| SL0108<br>SL0290 | yacC<br>yjiW | Hypothetical                                                        | -1,05          | -1,04          |
| SL0340           | -            | putative inner membrane protein                                     | -1,31          | -2,26          |
| SL0404           | -            | Glyoxalase/Bleomycin Resistance Protein/Dioxygenase                 | 1,86           | 1,05           |
| SL0409           | nrdR         | Transcriptional repressor nrdR                                      | 1,54           | 1,11           |
| SL0448           | tesC         | Long-chain acyl-CoA thioesterase tesC                               | 1,79           | 1,52           |
| SL0478           | ybaB         | UPF0133 protein KPK_4227                                            | 1,66           | -1,75          |
| SL0496           | ybbM         | UPF0014 inner membrane protein ybbM                                 | 1,56           | -1,34          |
| SL0629           | rlmH         | Ribosomal RNA large subunit methyltransferase H                     | 1,20           | 1,27           |
| SL0657           | ybeY         | Putative metalloprotease ybeY                                       | 1,59           | -2,17          |
| SL0692<br>SL0693 | ybgl<br>ybgJ | UPF0135 protein ybgI<br>Uncharacterized protein ybgJ                | -1,20<br>1,04  | 1,96<br>1,79   |
| SL0726           | ybg5<br>ybgC | Acyl-CoA thioester hydrolase ybgC                                   | 1,93           | -1,38          |
| SL0769           | ybge         | UPF0098 protein ybhB                                                | 2,48           | 1,56           |
| SL0828           | yliG         | putative Fe-S oxidoreductases family 1                              | 1,27           | 1,19           |
| SL0883           | clpS         | ATP-dependent Clp protease adapter protein clpS                     | -1,32          | -4,94          |
| SL0999           | ycbW         | Uncharacterized protein ycbW                                        | -1,97          | -1,73          |
| SL1098           | bssS         | Biofilm regulator BssS                                              | -1,51          | 1,32           |
| SL1136           | yceG         | UPF0755 protein yceG                                                | 1,70           | -1,85          |
| SL1217           | yeaK         | Uncharacterized protein yeaK                                        | -1,44          | -1,84          |
| SL1227           | yeaC         | Uncharacterized protein yeaC                                        | 1,46           | 1,72           |
| SL1415<br>SL1445 | asr          | Acid shock protein                                                  | -1,03          | 1,18           |
| SL1445<br>SL1451 | ydel<br>marC | Uncharacterized protein ydel<br>UPF0056 inner membrane protein marC | -3,62<br>-1,11 | -2,37<br>-1,97 |
| SL1545           | sgcQ         | Putative sgc region protein sgcQ                                    | -1,59          | 1,39           |
| SL1602           | -            | Hypothetical                                                        | -5,11          | -10,61         |
| SL1671           | yciU         | UPF0263 protein CKO_01325                                           | 1,09           | 2,97           |
| SL1679           | ychE         | UPF0056 membrane protein yhcE                                       | -1,06          | 1,13           |
| SL1834           | yebC         | UPF0082 protein CKO_01097                                           | 1,83           | -1,12          |
| SL1866           | -            | Hypothetical                                                        | 2,44           | 1,02           |
| SL2117           | yegS         | Probable lipid kinase yegS                                          | 1,16           | -1,83          |
| SL2159<br>SL2359 | yohK<br>yfcZ | Inner membrane protein yohK<br>UPF0381 protein yfcZ                 | -2,15<br>1,58  | -13,53<br>1,23 |
| SL2339<br>SL2440 | nudK         | GDP-mannose pyrophosphatase nudK                                    | -1,24          | 1,09           |
| SL2487           | yfgB         | putative Fe-S-cluster redox enzyme                                  | -1,03          | -1,32          |
| SL2621           | yfiH         | UPF0124 protein yfiH                                                | 2,20           | 1,13           |
| SL2901           | vdcC         | Protein vdcC                                                        | 1,32           | 1,44           |
| SL2907           | truD         | tRNA pseudouridine synthase D                                       | 2,07           | -1,00          |
| SL3069           | rsmE         | Ribosomal RNA small subunit methyltransferase E                     | 1,64           | -1,12          |
| SL3071           | yqgE         | UPF0301 protein yqgE                                                | 1,16           | -1,27          |
| SL3072           | yqgF         | Putative Holliday junction resolvase                                | 1,37           | -1,56          |
| SL3075<br>SL3077 | yggS         | UPF0001 protein yggS<br>UPF0235 protein CKO_04329                   | 2,20           | 1,03           |
| SL3077<br>SL3083 | yggU<br>yggL | UPF0235 protein CKO_04329<br>Uncharacterized protein yggL           | 1,73<br>1,48   | -1,29<br>2,23  |
| SL3003<br>SL3127 | ygg∟<br>yqhA | UPF0114 protein yghA                                                | -2,13          | -2,18          |
| SL3150           | ygiW         | Protein ygiW                                                        | -1,86          | 1,43           |
| SL3159           | nudF         | ADP-ribose pyrophosphatase                                          | 1,31           | -1,06          |
| SL3180           | plsY         | Glycerol-3-phosphate acyltransferase                                | 1,09           | 1,29           |
| SL3236           | rsml         | Ribosomal RNA small subunit methyltransferase I                     | 1,27           | -1,31          |
| SL3238           | yraN         | UPF0102 protein yraN                                                | 1,64           | -1,46          |
| SL3270           | yhbY         | RNA-binding protein yhbY                                            | 1,13           | -1,70          |
| SL3301<br>SL3338 | yhcC         | Uncharacterized protein yhcC<br>Protein AaeX                        | 1,71           | 2,46           |
| SL3338<br>SL3419 | aaeX<br>yheO | Uncharacterized protein yheO                                        | 2,03<br>1,41   | 1,95<br>-1,67  |
| SL3419<br>SL3483 | yafQ         | Uncharacterized protein yafQ                                        | -1,15          | -1,67<br>1,81  |
| SL3463<br>SL3553 | yhiN         | Uncharacterized protein yald                                        | 1,26           | 1,52           |
| SL3701           | yicC         | UPF0701 protein yicC                                                | 1,64           | 1,56           |
| SL3808           | hlyA         | Putative alpha-hemolysin                                            | 1,63           | -1,43          |
| SL3845           | viaA         | Protein viaA                                                        | -1,18          | -1,22          |
| SL3932           | ubiD         | 3-octaprenyl-4-hydroxybenzoate carboxy-lyase                        | 1,28           | -1,08          |
| SL3938           | yigZ         | IMPACT family member yigZ                                           | 1,57           | -1,41          |

| SL4180           | pspG         | Phage shock protein G                                                      | -4,76          | -3,56          |
|------------------|--------------|----------------------------------------------------------------------------|----------------|----------------|
| SL4186           | yjbQ         | UPF0047 protein yjbQ                                                       | -1,14          | 1,08           |
| SL4270           | yjeK         | Uncharacterized KamA family protein YjeK                                   | 1,25           | -1,05          |
| SL4291           | yjeE         | UPF0079 ATP-binding protein yjeE                                           | 1,37           | 1,59           |
| SL4377           |              | Hypothetical                                                               | 1,10           | 1,75           |
| SL4429           | yeeN         | UPF0082 protein LACR_0237                                                  | 1,37           | -2,05          |
| SL4454           | symE         | Endoribonuclease symE                                                      | 1,42           | 1,06           |
| SL4511           | yjjX         | UPF0244 protein yjjX                                                       | 1,94           | 1,16           |
|                  |              | Prophages and transposons                                                  |                |                |
| SL0015           | -            | Hypothetical                                                               | 1,19           | 1,12           |
| SL0286           | rhsD         | Putative protein rhsD                                                      | 1,27           | -2,21          |
| SL0293           | -            | Pseudogene (putative transposase)                                          | 1,09           | -1,00          |
| SL0294           | yagA         | Insertion element IS407 uncharacterized 31.7 kDa protein                   | 1,00           | 1,15           |
| SL0319           | insF1        | Transposase insF for insertion sequence IS3A                               | -1,53          | -1,27          |
| SL0341           | ail          | Attachment invasion locus protein                                          | -1,07          | -1,27          |
| SL0475           | ybaN         | Inner membrane protein ybaN                                                | -1,11          | -1,42          |
| SL0546<br>SL0697 | nisX1        | Transposase for insertion sequence element IS904 pseudogene                | -1,06          | 1,54           |
|                  | fimB         | Type 1 fimbriae regulatory protein fimB                                    | -1,74          | -1,30          |
| SL0736<br>SL0808 | ybgS<br>ompX | Uncharacterized protein ybgS<br>Outer membrane protein X                   | -2,62<br>-1,02 | -1,97          |
| SL0808<br>SL0885 | tnpA1        | Transposase for insertion sequence element IS1541                          | 1,56           | -1,37<br>-1,50 |
| SL0886           | insF7        | Insertion element IS600 uncharacterized 31 kDa protein                     | -1,36          | 1,73           |
| SL1181           | envE         | Probable lipoprotein envE                                                  | -1,18          | -4,06          |
| SL1443           | ymdF         | Uncharacterized protein ymdF                                               | -3,87          | -2,05          |
| SL1560           | tfpB         | Protein tfpB                                                               | -2,50          | -2,96          |
| SL1568           | ybcY         | Putative uncharacterized protein ybcY                                      | 1,66           | 1,05           |
| SL1580           | -            | Hypothetical                                                               | 1,04           | -1,12          |
| SL1583           | emrE         | Multidrug transporter emrE                                                 | 1,96           | 1,43           |
| SL1601           | -            | Hypothetical Protein SL1601                                                | -1,22          | -1,20          |
| SL1617           | pspD         | Phage shock protein D                                                      | -5,24          | -2,68          |
| SL1620           | pspA         | Phage shock protein A                                                      | -7,80          | -3,48          |
| SL1660           | yciF         | Protein yciF                                                               | -7,59          | -1,84          |
| SL1662           | -            | Probable manganese catalase                                                | -2,93          | -1,43          |
| SL1782           | pphA         | Serine/threonine-protein phosphatase 1                                     | -2,70          | -2,73          |
| SL1790           | -            | Transposase for insertion sequence element ISRM3                           | -1,34          | 1,66           |
| SL1791           | intE         | Prophage lambda integrase                                                  | -1,16          | -1,06          |
| SL1792           | -            | Hypothetical<br>Tail fiber assembly protein homolog from lambdoid prophage | -1,58          | -1,00          |
| SL1800           | ycdD         | Fels-1                                                                     | -3,67          | -2,33          |
| SL1804           | -            | Hypothetical                                                               | 1,41           | 1,20           |
| SL1806           | intE         | Prophage lambda integrase                                                  | 1,02           | 2,40           |
| SL2043           | sopA         | E3 ubiquitin-protein ligase SopA                                           | -28,13         | -16,06         |
| SL2209           | yfdK         | Uncharacterized protein yfdK                                               | -1,41          | 1,10           |
| SL2211           | ycfK         | Uncharacterized protein ycfK                                               | 1,03           | 1,26           |
| SL2212           | -            | Prohead Protease                                                           | -1,22          | -1,51          |
| SL2214           | pifA         | KAP P-Loop Domain-Containing Protein                                       | 1,48           | 8,00           |
| SL2343           | sfsB         | Sugar fermentation stimulation protein B                                   | 1,12           | 1,07           |
| SL2470           | insF1        | Transposase insF for insertion sequence IS3A                               | -1,25          | -1,05          |
| SL2633           | -            | Putative uncharacterized protein ORFI in retron EC67                       | 1,72           | 1,60           |
| SL2634           | -            | Hypothetical                                                               | 1,06           | -1,18          |
| SL2635<br>SL2636 | -            | Putative uncharacterized protein ORFB in retron EC67<br>Hypothetical       | -1,18          | 1,09           |
| SL2030<br>SL2637 | -            | Putative uncharacterized protein ORFC-like in prophage region              | 1,02<br>1,06   | -1,04<br>1,21  |
| SL2638           | -            | Hypothetical                                                               | -1,82          | 1,08           |
| SL2639           | _            | similar to TraR                                                            | -1,73          | 1,10           |
| SL2640           | -            | Hypothetical Protein SL2640                                                | -1,12          | 1,89           |
| SL2641           | -            | Probable replication endonuclease from prophage-like region 1              | 1,16           | -1,02          |
| SL2642           | gpF          | P2 GpU Family Protein                                                      | 1,43           | 1,02           |
| SL2643           | gpD          | Late Control D Family Protein                                              | -1,12          | 1,20           |
| SL2644           | -            | Hypothetical Protein SL2644                                                | 1,02           | 1,56           |
| SL2645           | gpB          | Prophage P2 OGR protein                                                    | 1,02           | 1,33           |
| SL2729           | -            | Hypothetical                                                               | 1,16           | 1,85           |
| SL2733           | sfsB         | Sugar fermentation stimulation protein B                                   | -1,82          | -1,39          |
| SL2750           | lcrS         | Low calcium response locus protein S                                       | 1,27           | 1,53           |
| SL2753           | insE1        | Transposase insE for insertion sequence IS3A                               | 1,33           | -1,07          |
| SL2754           | insF1        | Transposase insF for insertion sequence IS3A                               | -1,91          | -1,29          |
| SL2756           | fljB         | Phase 2 flagellin                                                          | -7,31          | -1,25          |
|                  |              |                                                                            |                |                |

| SL2761           | iroE        | Ferri-bacillibactin esterase BesA                                                         | -1,04        | -2,81          |
|------------------|-------------|-------------------------------------------------------------------------------------------|--------------|----------------|
| SL2798           | emrR        | Transcriptional repressor emrR                                                            | 1,58         | -1,12          |
| SL2886           | pphB        | Serine/threonine-protein phosphatase 2                                                    | 1,43         | -2,35          |
| SL3010           | -           | Virulence membrane protein                                                                | 1,23         | 1,18           |
| SL3278           | sfsB        | Sugar fermentation stimulation protein B                                                  | 1,12         | 1,15           |
| SL3524           | kil         | Death On Curing Protein                                                                   | 1,62         | 1,71           |
| SL3813           | -           | RNA-directed DNA polymerase from retron EC86                                              | -1,64        | 1,27           |
| SL4042           | ftsN        | Cell division protein ftsN                                                                | 1,71         | -1,91          |
| SL4232           | adiY        | HTH-type transcriptional regulator AdiY                                                   | -1,88        | 1,78           |
| SL4248           | -           | Hypothetical                                                                              | -26,42       | -8,48          |
| SL4295           | hfq         | Protein hfq                                                                               | 1,19         | 1,17           |
| SL4379           | relB        | Antitoxin RelB                                                                            | 1,43         | 2,34           |
| SL4388           | -           | Conserved Hypothetical Protein                                                            | 1,66         | 1,60           |
| SL4417           | intZ        | Integrase Family Protein                                                                  | -1,10        | -1,07          |
| SL4474           | dnaC        | DNA replication protein dnaC                                                              | 1,25         | -1,23          |
|                  |             | Protein fate                                                                              |              |                |
| SL0012           | dnaK        | Chaperone protein dnaK                                                                    | 4,03         | 1,12           |
| SL0048           | lspA        | Lipoprotein signal peptidase                                                              | 1,92         | -1,26          |
| SL0059           | citC2       | [Citrate [pro-3S]-lyase] ligase                                                           | 2,45         | 10,46          |
| SL0082           | -           | secreted protein                                                                          | -2,78        | -2,84          |
| SL0093           | surA        | Chaperone surA                                                                            | 2,00         | -1,69          |
| SL0136           | secA        | Protein translocase subunit secA                                                          | 2,47         | -1,17          |
| SL0144           | ppdD        | Prepilin peptidase-dependent protein D                                                    | 1,91         | 3,64           |
| SL0197           | stfC        | outer membrane usher protein stfc (putative fimbrial outer                                | -1,16        | -1,19          |
| SL0198           | stfD        | membrane usher)                                                                           | 1,20         |                |
| SL0198<br>SL0210 | htrA        | periplasmic fimbrial chaperone stfd                                                       | 1,52         | -1,25          |
| SL0210<br>SL0216 | map         | Protease do precursor; heat shock protein HtrA<br>Methionine aminopeptidase               | 1,69         | -1,16<br>-1,01 |
| SL0210<br>SL0224 | yaeL        | Regulator of sigma E protease                                                             | 1,48         | -1,91          |
| SL0224           | clpB        | Chaperone protein clpB                                                                    | 2,15         | 1,30           |
| SL0312           | pepD        | Aminoacyl-histidine dipeptidase                                                           | 1,33         | 1,73           |
| SL0401           | yajC        | UPF0092 membrane protein yajC                                                             | 2,21         | 1,03           |
| SL0402           | secD        | Protein-export membrane protein secD                                                      | 2,38         | -1,71          |
| SL0403           | secF        | Protein-export membrane protein secF                                                      | 2,23         | -1,52          |
| SL0406           | yajD        | Uncharacterized protein yajD                                                              | -1,15        | -1,30          |
| SL0441           | tig         | Trigger factor                                                                            | 1,82         | 1,56           |
| SL0442           | clpP        | ATP-dependent Clp protease proteolytic subunit                                            | 1,49         | -1,09          |
| SL0443           | clpX        | ATP-dependent Clp protease ATP-binding subunit clpX                                       | 1,38         | -2,43          |
| SL0444           | lon         | Hypothetical Protein Ion                                                                  | 3,26         | -1,03          |
| SL0446           | ppiD        | Peptidyl-prolyl cis-trans isomerase D                                                     | 1,23         | -3,61          |
| SL0480           | htpG        | Chaperone protein htpG                                                                    | 4,77         | 1,50           |
| SL0520           | allC        | Allantoate amidohydrolase                                                                 | 1,18         | 2,19           |
| SL0522           | fdrA        | Protein fdrA                                                                              | 1,22         | 1,84           |
| SL0538           | fimC        | Chaperone protein fimC                                                                    | -3,07        | -12,54         |
| SL0612           | citC        | [Citrate [pro-3S]-lyase] ligase                                                           | 3,93         | 8,29           |
| SL0620           | tatE        | Sec-independent protein translocase protein tatE                                          | 1,36         | 1,45           |
| SL0623           | lipB        | Octanoyltransferase                                                                       | 1,42         | -2,06          |
| SL0630           | ybeB        | Uncharacterized protein ybeB                                                              | 1,39         | 2,09           |
| SL0648           | hscC        | Chaperone protein hscC                                                                    | 2,34         | -1,10          |
| SL0655           | Int         | Apolipoprotein N-acyltransferase                                                          | 1,66         | -1,84          |
| SL0820           | ybiY        | Putative pyruvate formate-lyase 3-activating enzyme                                       | 3,06         | 2,87           |
| SL0879           | ybjX        | Uncharacterized protein ybjX                                                              | -1,29        | -3,90          |
| SL0884           | clpA        | ATP-dependent Clp protease ATP-binding subunit clpA                                       | -2,55        | -2,55          |
| SL0893<br>SL0899 | aat<br>IolA | Leucyl/phenylalanyl-tRNAprotein transferase<br>Outer-membrane lipoprotein carrier protein | 1,08<br>1,26 | 1,01           |
| SL0899<br>SL0997 | pepN        | Aminopeptidase N                                                                          | -1,17        | -1,38<br>-1,71 |
| SL1008           | lonH        | Putative protease                                                                         | 1,48         | -1,21          |
| SL1000           | cbpA        | Curved DNA-binding protein                                                                | -1,24        | 1,13           |
| SL1084           | ymdB        | putative ACR protein                                                                      | -1,98        | 1,12           |
| SL1004<br>SL1090 | msyB        | Acidic protein msyB                                                                       | -1,98        | 5,67           |
| SL1094           | ycel        | UPF0312 protein Ent638_1570                                                               | 1,01         | 1,14           |
| SL1140           | ptsG        | PTS system glucose-specific EIICB component                                               | 1,20         | 1,02           |
| SL1140<br>SL1142 | hinT        | HIT-like protein hinT                                                                     | 1,35         | 1,15           |
| SL1142           | рерТ        | Peptidase T                                                                               | 2,28         | 2,03           |
| SL1187           | ibp         | Small heat shock protein ibp                                                              | 1,32         | -1,08          |
| SL1230           | sppA        | Protease 4                                                                                | 2,38         | -1,12          |
| SL1314           | pip         | Proline iminopeptidase                                                                    | -2,62        | 2,83           |
| -                | 1.16        |                                                                                           | _,           | ,              |

| SL1376           | slyA   | Transcriptional regulator slyA                             | -1,84 | -1,30 |
|------------------|--------|------------------------------------------------------------|-------|-------|
| SL1442           | dcp    | Peptidyl-dipeptidase dcp                                   | -1,00 | -1,19 |
| SL1460           | hypA   | Hydrogenase nickel incorporation protein hypA              | -2,80 | -1,95 |
| SL1464           | hupF   | Hydrogenase expression/formation protein hupF              | -1,78 | -1,24 |
| SL1524           | srfA   | putative virulence effector protein                        | 1,09  | -1,08 |
| SL1525           | srfB   | Virulence Protein SrfB                                     | 1,58  | 1,72  |
| SL1520<br>SL1530 | vanX   | D-alanyl-D-alanine dipeptidase                             | -1,58 | -1,76 |
| SL1530<br>SL1534 | ydcP   | Uncharacterized protease ydcP                              | -1,06 | 1,42  |
| SL1534<br>SL1542 | •      |                                                            |       |       |
|                  | sgcX   | Putative aminopeptidase sgcX                               | -1,59 | 2,19  |
| SL1551           | ycel   | UPF0312 protein VPA0850                                    | 2,31  | 2,13  |
| SL1600           | -      | Conserved Hypothetical Protein Exported Protein            | -1,12 | -2,03 |
| SL1610           | mpaA   | Protein mpaA                                               | -1,04 | -1,26 |
| SL1648           | sohB   | Probable protease sohB                                     | 1,06  | -1,30 |
| SL1697           | ychN   | Protein ychN                                               | -1,02 | -1,46 |
| SL1706           | lolB   | Outer-membrane lipoprotein lolB                            | 1,55  | -1,63 |
| SL1774           | prc    | Tail-specific protease                                     | 1,56  | -1,39 |
| SL1802           | -      | Phage Membrane Protein                                     | -1,12 | -1,35 |
| SL1813           | ptrB   | Protease 2                                                 | -1,41 | -1,32 |
| SL1824           | yebA   | Uncharacterized metalloprotease yebA                       | 1,27  | -1,40 |
| SL1979           | -      | Hypothetical                                               | -1,12 | 1,24  |
| SL2051           | hisB   | Histidine biosynthesis bifunctional protein hisB           | 1,07  | 1,07  |
| SL2079           | wzxC   | Lipopolysaccharide biosynthesis protein wzxC               | 1,78  | -1,14 |
| SL2144           | bgIX   | Periplasmic beta-glucosidase                               | 1,24  | -1,58 |
| SL2205           | yejM   | Inner membrane protein yejM                                | 1,43  | -1,06 |
| SL2212           | yejivi | Prohead Protease                                           | -1,22 | -1,51 |
| SL2212           | ccmA2  | Putative bifunctional cytochrome c-type biogenesis protein | 1,48  | -1,22 |
| SL2224<br>SL2232 | eco    | ccmAE<br>Ecotin                                            | 2,36  | -1,22 |
| SL2232           |        | tRNA 5-methylaminomethyl-2-thiouridine biosynthesis        | 1,67  |       |
| SL2348<br>SL2449 | mnmC   | bifunctional protein mnmC<br>Uncharacterized protein ypfJ  | 1,30  | 1,05  |
|                  | ypfJ   |                                                            |       | 1,06  |
| SL2495           | sseA   | 3-mercaptopyruvate sulfurtransferase                       | -1,09 | 1,29  |
| SL2497           | sseB   | Protein sseB                                               | 1,25  | -1,25 |
| SL2498           | pepB   | Peptidase B                                                | 1,61  | 1,05  |
| SL2501           | hscA   | Chaperone protein hscA                                     | 1,78  | -2,00 |
| SL2502           | hscB   | Co-chaperone protein hscB                                  | 1,41  | -2,30 |
| SL2544           | lepB   | Signal peptidase I                                         | -1,09 | -1,20 |
| SL2620           | clpB   | Chaperone protein clpB                                     | 3,11  | 1,64  |
| SL2650           | ffh    | Signal recognition particle protein                        | 1,50  | -2,01 |
| SL2654           | grpE   | Protein grpE                                               | 4,63  | 2,48  |
| SL2662           | bepC   | Outer membrane efflux protein BepC                         | -1,17 | 1,67  |
| SL2663           | apxIB  | Toxin RTX-I translocation ATP-binding protein              | -1,77 | 1,64  |
| SL2664           | cyaD   | Protein cyaD                                               | -1,70 | 1,42  |
| SL2742           | ptsG   | PTS system glucose-specific EIICBA component               | 1,25  | 1,63  |
| SL2764           | ybjX   | Uncharacterized protein ybjX                               | -1,03 | -5,61 |
| SL2822           | hypF   | CarbamovItransferase hypF                                  | 1,56  | 1,13  |
| SL2825           | hycl   | Hydrogenase 3 maturation protease                          | 1,79  | 2,71  |
| SL2834           | hypA   | Protein hypA                                               | 1,79  | 1,09  |
| SL2836           | hypC   | Hydrogenase isoenzymes formation protein hypC              | 1,53  | 1,00  |
| SL2837           | hypD   | Hydrogenase isoenzymes formation protein hypD              | 2,33  | -1,13 |
| SL2899           | slyA   | Transcriptional regulator                                  | 1,28  | 1,50  |
| SL2033<br>SL2905 | -      | Protein-L-isoaspartate O-methyltransferase                 | 2,07  | -1,69 |
|                  | pcm    |                                                            |       |       |
| SL2973           | ptrA   | Protease 3                                                 | 2,13  | -1,23 |
| SL2975           | ppdC   | Prepilin peptidase-dependent protein C                     | 2,32  | 1,68  |
| SL2978           | ppdA   | Prepilin peptidase-dependent protein A                     | 1,16  | 3,67  |
| SL2980           | lgt    | Prolipoprotein diacylglyceryl transferase                  | -1,08 | -1,52 |
| SL3007           | stdB   | putative outer membrane usher protein                      | 1,11  | -1,10 |
| SL3034           | pepP   | Xaa-Pro aminopeptidase                                     | 1,38  | -1,23 |
| SL3117           | hybG   | Hydrogenase-2 operon protein hybG                          | 1,28  | -2,17 |
| SL3118           | hybF   | Probable hydrogenase nickel incorporation protein hybF     | 2,02  | -2,14 |
| SL3120           | hybD   | Hydrogenase 2 maturation protease                          | 1,38  | -1,59 |
| SL3166           | dsbA   | Thiol:disulfide interchange protein dsbA                   | -1,55 | 1,18  |
| SL3182           | gcp    | Probable O-sialoglycoprotein endopeptidase                 | 2,17  | 1,64  |
| SL3247           | yhbU   | Uncharacterized protease yhbU                              | 3,03  | 2,73  |
| SL3264           | secG   | Protein-export membrane protein secG                       | -1,65 | -1,36 |
| SL3320           | degQ   | Protease degQ                                              | 1,05  | -1,25 |
| SL3321           | degS   | Protease degS                                              | 1,44  | -1,36 |
| SL3341           | yhdP   | Uncharacterized protein yhdP                               | 1,67  | -1,31 |
|                  |        | · ·                                                        | 7 -   | ,     |

| SL3373           | def          | Peptide deformylase                                        | -1,32         | -2,20          |
|------------------|--------------|------------------------------------------------------------|---------------|----------------|
| SL3387           | secY         | Preprotein translocase subunit secY                        | 1,30          | 1,15           |
| SL3409           | hopD         | Leader peptidase hopD                                      | -2,98         | -1,17          |
| SL3422           | slyD         | FKBP-type peptidyl-prolyl cis-trans isomerase slyD         | 1,10          | 2,24           |
| SL3439           | ppiA         | Peptidyl-prolyl cis-trans isomerase A                      | 1,33          | -2,27          |
| SL3462           | yrfF         | Putative membrane protein igaA homolog                     | 1,19          | -1,54          |
| SL3534           | ftsX         | Cell division protein ftsX                                 | 2,00          | -1,37          |
| SL3543           | tusA         | Sulfurtransferase tusA                                     | -8,27         | -6,94          |
| SL3559           | prIC         | Oligopeptidase A                                           | -1,31         | -3,84          |
| SL3560           | phoC         | Major phosphate-irrepressible acid phosphatase             | 1,40          | -1,64          |
| SL3592           | dppF         | Dipeptide transport ATP-binding protein dppF               | -4,65         | -3,99          |
| SL3596           | dppA         | Periplasmic dipeptide transport protein                    | -6,01         | -2,14          |
| SL3598           | -<br>InfD    | Hypothetical                                               | 1,04          | 1,32           |
| SL3605<br>SL3610 | lpfB<br>bisC | Chaperone protein lpfB<br>Biotin sulfoxide reductase       | 1,09<br>1,29  | -1,55<br>-1,37 |
| SL3667           | secB         | Protein-export protein secB                                | 1,50          | 1,83           |
| SL3671           | yibP         | Uncharacterized protein yibP                               | 1,92          | -2,05          |
| SL3776           | ibpA         | Small heat shock protein ibpA                              | 5,63          | -1,03          |
| SL3780           | ccmG1        | Thiol:disulfide interchange protein dsbE                   | 3,06          | 1,10           |
| SL3784           | ccmB         | Heme exporter protein B                                    | 2,72          | -1,35          |
| SL3784           | ccmB         | Heme exporter protein B                                    | 2,72          | -1,35          |
|                  |              | Putative bifunctional cytochrome c-type biogenesis protein |               |                |
| SL3785           | ccmAE        | ccmAE                                                      | 1,04          | -1,29          |
| SL3885           | wzxE         | Protein wzxE                                               | 1,65          | -1,92          |
| SL3937           | pepQ         | Xaa-Pro dipeptidase                                        | 1,43          | 1,21           |
| SL3945           | dsbA         | Thiol:disulfide interchange protein dsbA                   | -1,51         | -1,17          |
| SL4040           | hslU         | ATP-dependent protease ATPase subunit HsIU                 | 3,39          | -1,38          |
| SL4041           | hslV         | ATP-dependent protease subunit HsIV                        | 2,50          | -1,24          |
| SL4086           | secE         | Preprotein translocase subunit secE                        | 1,23          | -1,33          |
| SL4125           | pepE         | Peptidase E                                                | 1,69          | 1,29           |
| SL4166           | malE         | Maltose-binding periplasmic protein                        | -2,38         | 3,45           |
| SL4185           | aphA         | Class B acid phosphatase                                   | 1,34          | 5,38           |
| SL4266<br>SL4267 | groS         | 10 kDa chaperonin<br>60 kDa chaperonin                     | 3,76          | 1,75           |
| SL4207<br>SL4275 | groL<br>sugE | Quaternary ammonium compound-resistance protein sugE       | 2,17<br>-1,45 | 1,42<br>-1,05  |
| SL4275<br>SL4297 | hflK         | Protein hflK                                               | 1,50          | -1,71          |
| SL4298           | hflC         | Protein hflC                                               | 1,41          | -1,90          |
| SL4316           | ulaA         | Ascorbate-specific permease IIC component ulaA             | 1,30          | 3,66           |
| SL4407           | pepA         | Probable cytosol aminopeptidase                            | 1,55          | 2,24           |
| SL4420           | lon          | Hypothetical                                               | 1,02          | 1,05           |
| SL4443           | iadA         | Isoaspartyl dipeptidase                                    | -2,04         | 1,32           |
| SL4492           | yjjW         | Uncharacterized protein yjjW                               | 5,75          | 6,32           |
| SL4521           | fimC         | Chaperone protein fimC                                     | 1,21          | -1,80          |
|                  |              | Protein synthesis                                          |               |                |
| SL0038           | -            | Hypothetical                                               | -1,09         | 1,00           |
| SL0044           | rpsT         | 30S ribosomal protein S20                                  | 1,17          | 1,12           |
| SL0045           | yaaY         | Uncharacterized protein yaaY                               | 1,84          | -2,27          |
| SL0047           | ileS         | Isoleucyl-tRNA synthetase                                  | 1,75          | -1,24          |
| SL0049           | fkpB         | FKBP-type 16 kDa peptidyl-prolyl cis-trans isomerase       | 1,75          | -1,52          |
| SL0091           | ksgA         | dimethyladenosine transferase                              | 1,28          | -1,55          |
| SL0100           | -            | Hypothetical                                               | 1,29          | -1,91          |
| SL0138           | yacG         | UPF0243 zinc-binding protein yacG                          | 1,81          | 1,91           |
| SL0186           | yadB         | glutamyl-tRNA synthetase                                   | -1,07         | -45,85         |
| SL0212           | yaeH         | UPF0325 protein ESA_03178                                  | -1,03         | 3,85           |
| SL0217           | rpsB         | 30S ribosomal protein S2                                   | 1,26          | 1,30           |
| SL0218           | tsf          | Elongation factor Ts                                       | 1,65          | 1,60           |
| SL0220           | frr          | Ribosome-recycling factor                                  | 1,51          | 1,04           |
| SL0239           | yaeP         | UPF0253 protein CKO_03176                                  | -1,03         | 1,38           |
| SL0243           | proS         | Prolyl-tRNA synthetase                                     | 1,57          | -1,31          |
| SL0260           | sciA         | Hypothetical                                               | 1,26          | -1,50          |
| SL0262           | sciC         | Hypothetical                                               | 1,73          | -1,20          |
| SL0263<br>SL0265 | sciD<br>sciF | Hypothetical<br>Cutoplasmic Protein                        | 2,38<br>3,12  | -1,54<br>1 13  |
| SL0265<br>SL0268 | sciF<br>scil | Cytoplasmic Protein<br>Hypothetical                        | 1,77          | 1,13<br>1,43   |
| SL0208<br>SL0270 | sciJ         | Cytoplasmic Protein                                        | 1,10          | 1,43           |
| SL0270<br>SL0271 | sciK         | Protein hcp1                                               | 1,12          | -1,01          |
| SL0272           | -            | Cytoplasmic Protein                                        | 1,19          | -1,02          |
|                  |              | <b>, .</b>                                                 | .,            | .,             |

| SL0274           | sciK1        | Protein hcp1                                             | 1,66   | -1,19  |
|------------------|--------------|----------------------------------------------------------|--------|--------|
| SL0276           | sciO         | Hypothetical                                             | 1,43   | -1,29  |
| SL0281           | sciT         | Cytoplasmic Protein                                      | 1,38   | 1,21   |
| SL0283           |              |                                                          |        |        |
|                  | sciV         | Hypothetical                                             | -1,20  | -2,10  |
| SL0285           | sciW         | Hypothetical                                             | 1,19   | 1,00   |
| SL0288           | sciX         | Cytoplasmic Protein                                      | 1,30   | -1,23  |
| SL0289           | sciY         | Phosphotriesterase                                       | 1,22   | -1,36  |
| SL0291           | -            | Cytoplasmic Protein                                      | -1,18  | -1,30  |
| SL0292           | -            | Pseudogene                                               | -1,15  | -1,23  |
| SL0301           | -            | Hypothetical                                             | -1,60  | -1,32  |
| SL0307           | yafJ         | Putative glutamine amidotransferase yafJ                 | -1,05  | 1,04   |
| SL0311           | prfH         | Putative peptide chain release factor homolog            | 1,18   | -1,08  |
| SL0322           | yoaC         | Uncharacterized protein yoaC                             | -2,02  | 1,93   |
|                  | yuac         |                                                          |        |        |
| SL0354           | -            | Hypothetical                                             | -3,27  | -1,16  |
| SL0357           | -            | Hypothetical                                             | -1,84  | 1,16   |
| SL0378           | yaiB         | Anti-adapter protein                                     | -1,42  | -1,43  |
| SL0384           | yaiA         | Uncharacterized protein yaiA                             | 1,38   | -1,06  |
| SL0386           | yaiE         | UPF0345 protein Ent638_0862                              | -1,20  | -1,05  |
| SL0398           | yajB         | putative cytoplasmic protein                             | 1,20   | -1,23  |
| SL0399           | queA         | S-adenosylmethionine:tRNA ribosyltransferase-isomerase   | 1,38   | 1,04   |
| SL0400           | tgt          | Queuine tRNA-ribosyltransferase                          | 2,50   | 1,32   |
| SL0406           | yajD         | Uncharacterized protein yajD                             | -1,15  | -1,30  |
| SL0429           | yajD<br>yajQ | UPF0234 protein CKO 02735                                | 1,93   | 2,55   |
|                  |              |                                                          |        |        |
| SL0462           | rpmE2        | 50S ribosomal protein L31 type B                         | -1,81  | 1,73   |
| SL0463           | rpmJ         | 50S ribosomal protein L36                                | -2,04  | 1,26   |
| SL0467           | ybaJ         | Uncharacterized protein ybaJ                             | -1,05  | -1,40  |
| SL0489           | ybaP         | Uncharacterized protein ybaP                             | 1,28   | 1,33   |
| SL0524           | ylbF         | Uncharacterized protein ylbF                             | 1,09   | 1,04   |
| SL0529           | ppiB         | Peptidyl-prolyl cis-trans isomerase B                    | 1,17   | 1,58   |
| SL0530           | cysS         | Cysteinyl-tRNA synthetase                                | 1,09   | -1,19  |
| SL0624           | ybeD         | UPF0250 protein Ent638_1166                              | 1,61   | -1,87  |
| SL0630           | ybeB         | Uncharacterized protein ybeB                             | 1,39   | 2,09   |
| SL0636           | leuS         | Leucyl-tRNA synthetase                                   | 1,21   | -2,10  |
|                  |              |                                                          |        |        |
| SL0641           | ybeL         | Uncharacterized protein ybeL                             | -1,52  | 2,12   |
| SL0649           | -            | Hypothetical                                             | 1,11   | 2,13   |
| SL0659           | miaB         | (Dimethylallyl)adenosine tRNA methylthiotransferase miaB | 1,06   | -1,18  |
| SL0668           | glnS         | Glutaminyl-tRNA synthetase                               | 1,81   | -1,42  |
| SL0681           | -            | 5-Nitroimidazole Antibiotic Resistance Protein           | 2,07   | -1,24  |
| SL0696           | -            | Hypothetical                                             | -1,47  | -1,69  |
| SL0709           | -            | Hypothetical                                             | 1,69   | -1,49  |
| SL0777           | ybhK         | UPF0052 protein ybhK                                     | 1,42   | -1,02  |
| SL0789           | vbhP         | Uncharacterized protein ybhP                             | -1,46  | -2,31  |
| SL0829           | bssR         | Biofilm regulator BssR                                   | -3,01  | 1,27   |
| SL0853           | ybjN         | Uncharacterized protein ybjN                             | 1,78   | 1,29   |
|                  |              |                                                          |        |        |
| SL0859           | rumB         | 23S rRNA (uracil-5-)-methyltransferase rumB              | 1,27   | -1,01  |
| SL0887           | OrfA         | ISPsy11, transposase                                     | -1,67  | 1,58   |
| SL0889           | yhhW         | Pirin-like protein PA2418                                | 1,12   | 2,03   |
| SL0891           | infA         | Translation initiation factor IF-1                       | 1,01   | -1,47  |
| SL0901           | serS         | Seryl-tRNA synthetase                                    | 1,45   | -2,22  |
| SL0908           | -            | Conserved Hypothetical Protein                           | 1,79   | -1,86  |
| SL0918           | rpsA         | 30S ribosomal protein S1                                 | 1,22   | -1,18  |
| SL0937           | asnS         | Asparaginyl-tRNA synthetase                              | 1,64   | -3,14  |
| SL1006           | rmf          | Ribosome modulation factor                               | 1,41   | 1,02   |
| SL1009           | ycbG         | UPF0268 protein ycbG                                     | -1,30  | -1,13  |
| SL1057           | yccJ         | Uncharacterized protein yccJ                             | 1,06   | 1,35   |
| SL1104           | rimJ         | Ribosomal-protein-alanine acetyltransferase              | 1,19   | 2,09   |
|                  |              |                                                          |        |        |
| SL1128           | rpmF         | 50S ribosomal protein L32                                | 1,11   | 1,70   |
| SL1145           | thiK         | Thiamine kinase                                          | 1,35   | 1,10   |
| SL1172           | trmU         | tRNA-specific 2-thiouridylase mnmA                       | 1,21   | -1,23  |
| SL1177           | -            | Bacteriophage Protein                                    | -19,48 | -16,74 |
| SL1186           | -            | Hypothetical                                             | -2,26  | -4,93  |
| SL1202           | ymgB         | Hypothetical                                             | -3,76  | 1,16   |
| SL1203           | -            | Hypothetical                                             | 1,08   | 1,00   |
| SL1207           | yoaG         | Protein yoaG                                             | 2,36   | 1,70   |
| SL1232           | selD         | Selenide, water dikinase                                 | 1,46   | 1,14   |
| SL1267           | thrS         | Threonyl-tRNA synthetase                                 | 1,02   | 1,20   |
| SL1267<br>SL1268 | infC         | Translation initiation factor IF-3                       | -1,01  | -1,14  |
| 021200           | init         |                                                          | -1,01  | -1,14  |
|                  |              |                                                          |        |        |

| SL1269           | rpml       | 50S ribosomal protein L35                                | -1,01         | 1,01          |
|------------------|------------|----------------------------------------------------------|---------------|---------------|
| SL1270           | rplT       | 50S ribosomal protein L20                                | 1,34          | 1,23          |
| SL1271           | pheS       | Phenylalanyl-tRNA synthetase alpha chain                 | 2,56          | -1,59         |
| SL1272           | pheT       | Phenylalanyl-tRNA synthetase beta chain                  | 1,99          | 1,00          |
| SL1280           | ydiE       | Uncharacterized protein ydiE                             | -1,14         | -2,69         |
| SL1301           | ydiH       | Uncharacterized protein ydiH                             | -1,80         | -1,37         |
| SL1315           | -          | Hypothetical                                             | -2,51         | 2,91          |
| SL1322           | ydhZ       | Uncharacterized protein ydhZ                             | -1,47         | -1,40         |
| SL1381           | tyrS       | Tyrosyl-tRNA synthetase                                  | 1,41          | -1,43         |
| SL1393           | cnu        | OriC-binding nucleoid-associated protein                 | 1,04          | -1,83         |
| SL1439           | ydfZ       | Putative selenoprotein ydfZ                              | 1,31          | 6,74          |
| SL1433           | queA       | S-adenosylmethionine:tRNA ribosyltransferase-isomerase   | -2,81         | -2,90         |
| SL1477           | relE       | Toxin relE                                               | 1,13          | -1,16         |
| SL1479<br>SL1480 | -          | Hypothetical                                             | 1,13          | 1,31          |
| SL1480<br>SL1482 | -          | Cytoplasmic Protein                                      | -1,44         | -1,03         |
| SL1402<br>SL1495 |            | 30S ribosomal protein S22                                | -2,26         |               |
|                  | rpsV       |                                                          | -2,20<br>1,25 | -1,38<br>2,26 |
| SL1504           | -<br>ata A | Glutathione-Dependent Formaldehyde-Activating GFA        |               |               |
| SL1514           | steA       | Secreted effector protein steA                           | -1,36         | -1,06         |
| SL1523           | ydcY       | Uncharacterized protein ydcY                             | 1,65          | 2,16          |
| SL1630           | ycjE       | Uncharacterized protein ycjE                             | 1,04          | -1,37         |
| SL1632           | yciW       | Uncharacterized protein yciW                             | 1,38          | -1,03         |
| SL1638           | yciH       | Uncharacterized protein yciH                             | -1,36         | 1,84          |
| SL1647           | yciN       | Protein yciN                                             | 1,59          | 1,69          |
| SL1686           | ychJ       | UPF0225 protein ychJ                                     | 1,22          | -1,76         |
| SL1697           | ychN       | Protein ychN                                             | -1,02         | -1,46         |
| SL1704           | prfA       | Peptide chain release factor 1                           | 1,50          | -2,45         |
| SL1711           | pth        | Peptidyl-tRNA hydrolase                                  | 1,89          | 1,35          |
| SL1713           | -          | Hypothetical                                             | 1,06          | -1,07         |
| SL1727           | emtA       | Endo-type membrane-bound lytic murein transglycosylase A | 1,24          | 1,76          |
| SL1732           | ycgB       | Uncharacterized protein ycgB                             | -2,14         | 1,63          |
| SL1738           | -          | Hypothetical Protein SL1738                              | -2,03         | 1,22          |
| SL1741           | ycgL       | UPF0745 protein ycgL                                     | 1,31          | -1,57         |
| SL1752           | yoaH       | UPF0181 protein yoaH                                     | 1,08          | -1,10         |
| SL1764           | rrmA       | rRNA guanine-N1-methyltransferase                        | -1,04         | 1,16          |
| SL1779           | yebU       | Ribosomal RNA small subunit methyltransferase F          | 1,12          | -1,34         |
| SL1788           | -          | Hypothetical Protein SL1788                              | -1,08         | -1,24         |
| SL1796           | pinE       | DNA-invertase from lambdoid prophage e14                 | -1,70         | -1,63         |
| SL1830           | -          | Cytoplasmic Protein                                      | -1,03         | -1,05         |
| SL1836           | aspS       | Aspartyl-tRNA synthetase                                 | 1,51          | -1,53         |
| SL1844           | argS       | Arginyl-tRNA synthetase                                  | 1,08          | 1,29          |
| SL1846           | yesR       | Unsaturated rhamnogalacturonyl hydrolase yesR            | 1,15          | -1,00         |
| SL1896           | -          | putative 50S ribosomal protein                           | -5,89         | -2,08         |
| SL1916           | yodC       | Uncharacterized protein yodC                             | -1,36         | 1,23          |
| SL1987           | -          | Hypothetical                                             | 1,57          | 1,57          |
| SL2052           | hisH       | Imidazole glycerol phosphate synthase subunit hisH       | 1,35          | 1,00          |
| SL2114           | cesT       | Tir chaperone                                            | -1,29         | -2,12         |
| SL2132           | metG       | Methionyl-tRNA synthetase                                | 1,06          | -1,18         |
| SL2188           | yeiP       | Elongation factor P-like protein                         | 1,72          | 4,21          |
| SL2197           | yejG       | Uncharacterized protein yejG                             | -2,52         | -1,24         |
| SL2199           | rsuA       | Ribosomal small subunit pseudouridine synthase A         | 1,19          | -1,20         |
| SL2201           | rplY       | 50S ribosomal protein L25                                | 1,33          | 2,39          |
| SL2204           | yejL       | UPF0352 protein yejL                                     | 1,96          | 1,33          |
| SL2216           | ydfU       | Uncharacterized protein ydfU                             | 1,01          | 1,41          |
| SL2256           | sseL       | Deubiquitinase sseL                                      | -1,90         | -2,80         |
| SL2298           | -          | Hypothetical                                             | -1,06         | -1,69         |
| SL2327           | -          | Amino Acid Racemase                                      | -1,24         | 3,25          |
| SL2337           | truA       | tRNA pseudouridine synthase A                            | 2,45          | -1,95         |
| SL2342           | -          | Bacteriophage Protein                                    | -1,06         | -2,20         |
| SL2344           | -          | Hypothetical                                             | 1,46          | -1,28         |
| SL2349           | yfcL       | Uncharacterized protein yfcL                             | 1,54          | 1,20          |
| SL2381           | gltX       | Glutamyl-tRNA synthetase                                 | 1,65          | 1,02          |
| SL2389           | уреВ       | Uncharacterized protein ypeB                             | 1,19          | -1,52         |
| SL2397           | -          | Hypothetical                                             | 1,20          | 1,00          |
| SL2400           | yfeJ       | Putative glutamine amidotransferase-like protein yfeJ    | 1,27          | 1,05          |
| SL2416           | ypfL       | Uncharacterized protein ypfL                             | -1,04         | -1,47         |
| SL2438           | -          | Hypothetical                                             | -1,36         | -1,66         |
| SL2469           | -          | Hypothetical                                             | 1,14          | 1,15          |
|                  |            |                                                          |               |               |

| SL2480           | yfgJ  | Uncharacterized protein yfgJ                         | 2,83  | -1,79 |
|------------------|-------|------------------------------------------------------|-------|-------|
| SL2484           | hisS  | Histidyl-tRNA synthetase                             | 1,17  | -1,72 |
| SL2496           | _     | Hypothetical                                         | 1,83  | 1,52  |
| SL2507           | trmJ  | tRNA (cytidine/uridine-2'-O-)-methyltransferase trmJ | 1,60  | -1,95 |
| SL2619           | -     | Hypothetical                                         | -1,86 | 4,28  |
| SL2622           | rluD  | Ribosomal large subunit pseudouridine synthase D     | 1,35  | -1,08 |
| SL2022<br>SL2646 |       | 50S ribosomal protein L19                            |       |       |
|                  | rpIS  | •                                                    | 1,37  | 1,42  |
| SL2647           | trmD  | tRNA (guanine-N(1)-)-methyltransferase               | 1,16  | 1,12  |
| SL2653           | -     | Hypothetical                                         | 1,11  | -1,03 |
| SL2658           | rnfH  | Protein rnfH                                         | 1,41  | 1,32  |
| SL2660           | smpB  | SsrA-binding protein                                 | 1,22  | -1,23 |
| SL2726           | -     | Hypothetical                                         | -1,06 | -1,59 |
| SL2727           | -     | Hypothetical                                         | -1,03 | 1,10  |
| SL2731           | -     | Hypothetical                                         | -1,03 | -2,64 |
| SL2751           | -     | Hypothetical                                         | 1,28  | -1,26 |
| SL2785           | ygaC  | Uncharacterized protein ygaC                         | 1,25  | -2,00 |
| SL2807           | alaS  | Alanyl-tRNA synthetase                               | 1,76  | 1,49  |
| SL2881           | -     | Hypothetical                                         | -2,29 | -1,99 |
| SL2882           | -     | Cytoplasmic Protein                                  | -1,38 | -2,06 |
| SL2889           | -     | Hypothetical                                         | 1,56  | 1,08  |
| SL2915           | iap   | Alkaline phosphatase isozyme conversion protein      | 1,28  | -2,93 |
| SL2917           | ygbT  | Uncharacterized protein ygbT                         | -2,29 | -1,86 |
| SL2917<br>SL2918 |       |                                                      | -2,29 |       |
|                  | ygcH  | Uncharacterized protein ygcH                         |       | -1,68 |
| SL2938           | rumA  | 23S rRNA (uracil-5-)-methyltransferase rumA          | 1,25  | -1,61 |
| SL3001           | rcnR  | Transcriptional repressor rcnR                       | 1,09  | -1,95 |
| SL3003           | -     | Hypothetical                                         | -1,52 | -1,49 |
| SL3004           | -     | Hypothetical                                         | -2,02 | -2,20 |
| SL3016           | lysS  | Lysyl-tRNA synthetase                                | 1,41  | 1,18  |
| SL3017           | prfB  | Peptide chain release factor 2                       | 1,43  | -1,34 |
| SL3023           | ygfY  | UPF0350 protein ygfY                                 | 1,31  | 1,71  |
| SL3036           | zapA  | Cell division protein zapA                           | -1,04 | 1,30  |
| SL3099           |       | Hypothetical                                         | -2,64 | -1,60 |
| SL3101           | -     | Hypothetical                                         | -1,54 | -1,15 |
| SL3105           | -     | Hypothetical                                         | -1,30 | -1,37 |
| SL3125           | yghW  | Uncharacterized protein yghW                         | -2,77 | -1,23 |
| SL3129           | ygnvv |                                                      | -2,87 |       |
|                  | -     | Hypothetical                                         |       | -2,96 |
| SL3130           | -     | Hypothetical                                         | -4,26 | -3,85 |
| SL3154           | ygiN  | Probable quinol monooxygenase ygiN                   | 1,46  | 1,66  |
| SL3158           | yqiB  | Uncharacterized protein yqiB                         | 1,56  | 1,05  |
| SL3174           | glnE  | Glutamate-ammonia-ligase adenylyltransferase         | 1,48  | -1,02 |
| SL3183           | rpsU  | 30S ribosomal protein S21                            | 1,14  | -1,52 |
| SL3193           | rlmG  | Ribosomal RNA large subunit methyltransferase G      | -1,58 | 2,09  |
| SL3208           | yhaK  | Pirin-like protein yhaK                              | -1,17 | 1,18  |
| SL3251           | -     | Conserved Hypothetical Protein                       | 1,11  | -1,04 |
| SL3256           | rpsO  | 30S ribosomal protein S15                            | 1,89  | 1,47  |
| SL3257           | truB  | tRNA pseudouridine synthase B                        | 3,01  | 1,31  |
| SL3259           | infB  | Translation initiation factor IF-2                   | 1,46  | 1,00  |
| SL3263           | -     | Hypothetical                                         | -2,25 | -1,45 |
| SL3269           | ftsJ  | cell division protein                                | 1,51  | -2,96 |
| SL3271           | greA  | Transcription elongation factor greA                 | 1,31  | -2,91 |
| SL3275           | rpmA  | 50S ribosomal protein L27                            | -1,05 | 1,01  |
| SL3276           | rpIU  | 50S ribosomal protein L21                            | 1,08  | 1,19  |
| SL3293           |       | •                                                    |       |       |
|                  | yhbH  | Probable sigma(54) modulation protein                | -1,04 | 1,74  |
| SL3315           |       | Hypothetical                                         | 1,25  | 1,63  |
| SL3316           | rpsl  | 30S ribosomal protein S9                             | 1,18  | 1,58  |
| SL3317           | rplM  | 50S ribosomal protein L13                            | 1,10  | 1,68  |
| SL3335           | yhcO  | Uncharacterized protein yhcO                         | -1,51 | 2,41  |
| SL3356           | prmA  | Ribosomal protein L11 methyltransferase              | 1,64  | 1,59  |
| SL3369           | rimN  | Putative ribosome maturation factor rimN             | -1,10 | -1,91 |
| SL3374           | fmt   | Methionyl-tRNA formyltransferase                     | -1,65 | -4,23 |
| SL3375           | rsmB  | Ribosomal RNA small subunit methyltransferase B      | -1,63 | -4,63 |
| SL3381           | rplQ  | 50S ribosomal protein L17                            | 2,11  | 1,55  |
| SL3383           | rpsD  | 30S ribosomal protein S4                             | 1,10  | 1,07  |
| SL3384           | rpsK  | 30S ribosomal protein S11                            | 1,12  | 1,03  |
| SL3385           | rpsM  | 30S ribosomal protein S13                            | 1,47  | 1,21  |
| SL3386           | rpmJ1 | 50S ribosomal protein L36 1                          | 1,38  | 1,09  |
| SL3388           | rplO  | 50S ribosomal protein L15                            | 1,35  | 1,35  |
| - 20000          |       | ·····                                                | 1,00  | .,00  |

| SL3389           | rpmD       | 50S ribosomal protein L30                                              | 1,36  | 1,35  |
|------------------|------------|------------------------------------------------------------------------|-------|-------|
| SL3390           | rpsE       | 30S ribosomal protein S5                                               | 1,17  | 1,20  |
| SL3391           | rplR       | 50S ribosomal protein L18                                              | 1,33  | 1,35  |
| SL3392           | rplF       | 50S ribosomal protein L6                                               | 1,20  | 1,16  |
| SL3393           | rpsH       | 30S ribosomal protein S8                                               | 1,34  | 1,29  |
| SL3394           | rpsN       | 30S ribosomal protein S14                                              | 1,57  | 1,42  |
| SL3395           | rpIE       | 50S ribosomal protein L5                                               | 1,17  | 1,13  |
| SL3395<br>SL3396 |            | •                                                                      | 1,17  | 1,13  |
|                  | rpIX       | 50S ribosomal protein L24                                              |       |       |
| SL3397           | rplN       | 50S ribosomal protein L14                                              | 1,21  | 1,17  |
| SL3398           | rpsQ       | 30S ribosomal protein S17                                              | 1,74  | 1,65  |
| SL3399           | rpmC       | 50S ribosomal protein L29                                              | 1,84  | 1,94  |
| SL3400           | rplP       | 50S ribosomal protein L16                                              | 1,40  | 1,54  |
| SL3401           | rpsC       | 30S ribosomal protein S3                                               | 1,54  | 1,65  |
| SL3402           | rplV       | 50S ribosomal protein L22                                              | 1,43  | 1,52  |
| SL3403           | rpsS       | 30S ribosomal protein S19                                              | 1,21  | 1,27  |
| SL3404           | rplB       | 50S ribosomal protein L2                                               | 1,26  | 1,35  |
| SL3405           | rplW       | 50S ribosomal protein L23                                              | 1,20  | 1,19  |
| SL3406           | rplD       | 50S ribosomal protein L4                                               | 1,16  | 1,10  |
| SL3407           | rpIC       | 50S ribosomal protein L3                                               | 1,31  | 1,27  |
| SL3408           | rpsJ       | 30S ribosomal protein S10                                              | 1,24  | 1,19  |
| SL3412           | tuf        | Elongation factor Tu 1                                                 | 1,19  | 1,30  |
| SL3413           | fusA       | Elongation factor G                                                    | 1,28  | 1,14  |
| SL3414           | rpsG       | 30S ribosomal protein S7                                               | 1,17  | 1,07  |
| SL3415           | rpsL       | 30S ribosomal protein S12                                              | 1,45  | 1,25  |
| SL3420           | fkpA       | FKBP-type peptidyl-prolyl cis-trans isomerase fkpA                     | 1,51  | -2,17 |
| SL3423           | yheV       | Uncharacterized protein yheV                                           | 1,27  | 1,43  |
| SL3428           | ydhR       | Putative monooxygenase ydhR                                            | -1,29 | 2,42  |
| SL3430           | yheU       | UPF0270 protein yheU                                                   | -1,01 | -1,12 |
| SL3438           | yhfG       | Uncharacterized protein yhfG                                           | 1,29  | 1,82  |
| SL3430<br>SL3448 | trpS       | Tryptophanyl-tRNA synthetase                                           | 1,96  | 1,02  |
| SL3440<br>SL3464 | hslR       | Heat shock protein 15                                                  | 1,74  | 1,68  |
|                  |            | •                                                                      |       |       |
| SL3474           | feoC       | Ferrous iron transport protein C                                       | -1,51 | -1,86 |
| SL3510           | yhhW       | Protein yhhW                                                           | -1,19 | 1,07  |
| SL3514           | -          | Hypothetical                                                           | -9,24 | -1,47 |
| SL3525           | yhhV       | Uncharacterized protein yhhV                                           | 1,18  | 1,68  |
| SL3558           | yhiQ       | UPF0341 protein yhiQ                                                   | -1,03 | -1,62 |
| SL3587           | yhjS       | Uncharacterized protein yhjS                                           | -1,59 | -1,43 |
| SL3620           | glyS       | Glycyl-tRNA synthetase beta subunit                                    | 1,36  | -1,01 |
| SL3621           | glyQ       | Glycyl-tRNA synthetase alpha subunit                                   | 1,54  | -1,43 |
| SL3647           | selB       | Selenocysteine-specific elongation factor                              | 1,42  | 1,03  |
| SL3648           | selA       | L-seryl-tRNA(Sec) selenium transferase                                 | 1,59  | 1,20  |
| SL3653           | yibT       | Uncharacterized protein yibT                                           | -1,74 | 1,96  |
| SL3654           | yibL       | Uncharacterized protein yibL                                           | 1,84  | -1,49 |
| SL3660           | yibK       | Uncharacterized tRNA/rRNA methyltransferase yibK                       | 2,28  | 3,68  |
| SL3693           | rpmG       | 50S ribosomal protein L33                                              | 1,06  | 1,11  |
| SL3694           | rpmB       | 50S ribosomal protein L28                                              | 1,23  | 1,19  |
| SL3709           | trmH       | tRNA guanosine-2'-O-methyltransferase                                  | 3,81  | -1,10 |
| SL3732           | -          | Hypothetical                                                           | 1,21  | 1,47  |
| SL3733           | selA       | Uncharacterized protein mlr3804                                        | -1,24 | 1,48  |
| SL3757           | -          | Hypothetical                                                           | -3,93 | 1,17  |
| SL3806           | rpmH       | 50S ribosomal protein L34                                              | 1,24  | -1,01 |
| SL3810           | mnmE       | tRNA modification GTPase mnmE                                          | 2,15  | 1,06  |
| SL3866           | -          | Hypothetical                                                           | 2,09  | 2,84  |
| SL3867           | -          | Hypothetical                                                           | 1,90  | 1,81  |
| SL3870           | ppiC       | Peptidyl-prolyl cis-trans isomerase C                                  | -1,07 | 1,96  |
| SL3897           | -          | Hypothetical                                                           | 1,03  | -1,02 |
| SL3943           | yihD       | Protein yihD                                                           | -1,16 | 1,06  |
| SL3950           | yihl       | UPF0241 protein yihl                                                   | 1,01  | 2,32  |
| SL3961           | -          | Hypothetical                                                           | 1,35  | 1,97  |
| SL3974           | dtd        | D-tyrosyl-tRNA(Tyr) deacylase                                          | 1,11  | -1,13 |
| SL3977           | ygjN       | Uncharacterized protein ygjN                                           | 2,17  | 2,42  |
| SL3977<br>SL4005 | yiiM       | Protein yiiM                                                           | -1,18 | 1,19  |
| SL4005<br>SL4019 | cdh        | CDP-diacylglycerol pyrophosphatase                                     | 1,28  | 1,19  |
| SL4019<br>SL4037 |            | Cell division protein zapB                                             | 1,20  | 1,23  |
|                  | zapB       |                                                                        |       |       |
| SL4045           | rpmE       | 50S ribosomal protein L31                                              | 1,44  | 2,30  |
| SL4053           | -<br>trm ^ | Hypothetical<br>tRNA (uracil-5-)-methyltransferase                     | 1,43  | 3,84  |
| SL4078           | trmA       | แก่หัว (และกราวากอนไข่และเอายังออย่างอย่างอย่างอย่างอย่างอย่างอย่างอย่ | 1,50  | 2,16  |
|                  |            |                                                                        |       |       |

| SL4085           | tuf2      | Elongation factor Tu 2                                     | 1,17          | 1,32         |
|------------------|-----------|------------------------------------------------------------|---------------|--------------|
| SL4088           | rplK      | 50S ribosomal protein L11                                  | 1,11          | 1,26         |
| SL4089           | rpIA      | 50S ribosomal protein L1                                   | 1,22          | 1,41         |
| SL4090           | rplJ      | 50S ribosomal protein L10                                  | 1,46          | 1,90         |
| SL4091           | rplL      | 50S ribosomal protein L7/L12                               | 1,89          | 2,50         |
| SL4095           | -         | Hypothetical                                               | 1,67          | 1,09         |
| SL4097           | -         | Hypothetical                                               | -1,18         | 1,24         |
| SL4121           | -         | Hypothetical                                               | 1,05          | 1,25         |
| SL4126           | -         | Hypothetical Protein SL4126                                | 1,64          | -1,11        |
| SL4176           | yjbJ      | UPF0337 protein yjbJ                                       | -1,54         | 1,00         |
| SL4239           | -         | Hypothetical                                               | -2,01         | -39,41       |
| SL4252           | -         | Hypothetical                                               | -9,05         | -6,03        |
| SL4260           | dsbD      | Thiol:disulfide interchange protein dsbD                   | -1,68         | -1,93        |
| SL4271           | efp       | Elongation factor P                                        | 1,45          | 1,04         |
| SL4294           | miaA      | tRNA dimethylallyltransferase                              | 1,27          | 1,26         |
| SL4302           | rlmB      | 23S rRNA (guanosine-2'-O-)-methyltransferase rlmB          | 1,78          | -2,06        |
| SL4303           | yjfl      | Uncharacterized protein yjfl                               | 1,92          | -1,09        |
| SL4323           |           | Hypothetical                                               | 1,03          | -1,64        |
| SL4324           | rpsF      | 30S ribosomal protein S6                                   | 1,38          | 1,33         |
| SL4326           | rpsR      | 30S ribosomal protein S18                                  | 1,65          | 1,46         |
| SL4327           | rpll      | 50S ribosomal protein L9                                   | 1,12          | 1,06         |
| SL4330           | fklB      | FKBP-type 22 kDa peptidyl-prolyl cis-trans isomerase       | 1,31          | 1,35         |
| SL4339           | ytfK      | Uncharacterized protein ytfK                               | -2,61         | 1,30         |
| SL4341           | msrA      | Peptide methionine sulfoxide reductase msrA                | -1,22         | 1,22         |
| SL4344           | ytfP      | Gamma-glutamylcyclotransferase family protein ytfP         | -1,62         | -1,08        |
| SL4361           | iolC      | 5-dehydro-2-deoxygluconokinase                             | 1,53          | 2,80         |
| SL4365           | -<br>     | Xylose Isomerase Domain-Containing Protein                 | -2,00         | 1,83         |
| SL4367           | yjgA      | UPF0307 protein CKO_03595                                  | 1,24          | 2,15         |
| SL4370           | -         | Hypothetical                                               | 1,02          | 1,43         |
| SL4371<br>SL4372 | -         | Hypothetical<br>Hypothetical                               | -1,35         | 1,87         |
| SL4372<br>SL4376 | -<br>selA | Uncharacterized protein mlr3804                            | -1,14<br>1,11 | 1,96<br>1,78 |
| SL4370<br>SL4380 | relE      | Toxin relE                                                 | 1,29          | 2,64         |
| SL4300<br>SL4400 | yjgD      | Uncharacterized protein yjgD                               | 1,67          | 1,02         |
| SL4400<br>SL4405 | valS      | Valyl-tRNA synthetase                                      | 2,29          | -1,46        |
| SL4403<br>SL4421 | vai3<br>- | Hypothetical                                               | 1,01          | -1,40        |
| SL4421<br>SL4422 | _         | Hypothetical                                               | 1,20          | 1,08         |
| SL4426           | -         | Hypothetical                                               | 1,98          | 1,31         |
| SL4430           | yjhP      | Uncharacterized protein yjhP                               | 1,09          | 2,13         |
| SL4432           | -         | Hypothetical                                               | 2,24          | 4,12         |
| SL4434           | -         | Hypothetical                                               | -2,74         | -5,31        |
| SL4438           | trpS      | Tryptophanyl-tRNA synthetase                               | 1,18          | -1,00        |
| SL4440           | -         | Hypothetical                                               | 1,04          | -1,09        |
| SL4460           | -         | Hypothetical                                               | -1,03         | 2,69         |
| SL4486           | riml      | Ribosomal-protein-alanine acetyltransferase                | 2,38          | 1,46         |
| SL4488           | prfC      | Peptide chain release factor 3                             | 2,48          | 1,28         |
| SL4527           | lasT      | Uncharacterized tRNA/rRNA methyltransferase lasT           | -1,02         | -1,00        |
|                  |           | Purines, pyrimidines, nucleosides and n                    | ucleotides    | <u> </u>     |
| SL0067           | carA      | Carbamoyl-phosphate synthase small chain                   | 1,80          | -1,29        |
| SL0007<br>SL0068 | carB      | Carbamoyl-phosphate synthase large chain                   | 2,14          | 1,63         |
| SL0008<br>SL0137 | mutT      | Mutator mutT protein                                       | 1,18          | 1,03         |
| SL0137<br>SL0141 | guaC      | GMP reductase                                              | 1,61          | -1,25        |
| SL0141<br>SL0171 | hpt       | Hypoxanthine phosphoribosyltransferase                     | 1,49          | 1,08         |
| SL0219           | pyrH      | Uridylate kinase                                           | 1,44          | 1,04         |
| SL0313           | gpt       | Xanthine phosphoribosyltransferase                         | 1,55          | 1,53         |
| SL0476           | apt       | Adenine phosphoribosyltransferase                          | 1,25          | -1,35        |
| SL0481           | adk       | Adenylate kinase                                           | 1,81          | -1,36        |
| SL0484           | gsk       | Inosine-guanosine kinase                                   | 1,01          | -1,22        |
| SL0521           | allD      | Ureidoglycolate dehydrogenase                              | 1,67          | 3,62         |
| SL0526           | purK      | Phosphoribosylaminoimidazole carboxylase ATPase subunit    | 1,35          | -1,78        |
| SL0527           | purE      | Phosphoribosylaminoimidazole carboxylase catalytic subunit | 1,53          | -1,36        |
| SL0650           | rihA      | Pyrimidine-specific ribonucleoside hydrolase rihA          | 1,27          | 2,11         |
| SL0743           | oadG2     | Oxaloacetate decarboxylase gamma chain                     | -1,01         | -1,27        |
| SL0917           | cmk       | Cytidylate kinase                                          | 2,18          | 1,17         |
| SL0998           | pyrD      | Dihydroorotate dehydrogenase                               | 1,32          | -1,10        |
| SL1100           | pyrC      | Dihydroorotase                                             | 1,32          | -1,29        |
| SL1137           | tmk       | Thymidylate kinase                                         | 1,51          | -1,79        |
|                  |           |                                                            |               |              |

| SL1170           | purB         | Adenylosuccinate lyase                                                                             | 1,48           | 1,16           |
|------------------|--------------|----------------------------------------------------------------------------------------------------|----------------|----------------|
| SL1220           | yeaG         | Uncharacterized protein yeaG                                                                       | -2,71          | 1,34           |
| SL1362           | purR         | HTH-type transcriptional repressor purR                                                            | 1,31           | -1,06          |
| SL1395           | add          | Adenosine deaminase                                                                                | 1,47           | 1,39           |
| SL1455           | glsA2        | Glutaminase 2                                                                                      | -1,66          | 1,84           |
| SL1639           | pyrF         | Orotidine 5'-phosphate decarboxylase                                                               | 1,20           | 2,89           |
| SL1681<br>SL1687 | tdk          | Thymidine kinase                                                                                   | 1,74           | 1,46<br>-1,53  |
| SL1007<br>SL1708 | purU<br>prs  | Formyltetrahydrofolate deformylase<br>Ribose-phosphate pyrophosphokinase                           | -1,10<br>1,41  | -1,43          |
| SL1817           | purT         | Phosphoribosylglycinamide formyltransferase 2                                                      | 1,69           | -1,06          |
| SL1835           | ntpA         | dATP pyrophosphohydrolase                                                                          | 1,84           | -1,63          |
| SL1986           | amn          | AMP nucleosidase                                                                                   | -1,39          | 1,59           |
| SL2057           | udg          | UDP-glucose 6-dehydrogenase                                                                        | -3,00          | -8,32          |
| SL2098           | dcd          | Deoxycytidine triphosphate deaminase                                                               | -1,12          | -1,01          |
| SL2099           | udk          | Uridine kinase                                                                                     | 1,34           | -2,47          |
| SL2160           | cdd          | Cytidine deaminase                                                                                 | -1,69          | -10,57         |
| SL2164           | yeiA         | Uncharacterized protein yeiA                                                                       | -2,41          | -1,59          |
| SL2246           | nrdA         | Ribonucleoside-diphosphate reductase 1 subunit alpha                                               | -1,40          | -2,09          |
| SL2247           | nrdB         | Ribonucleoside-diphosphate reductase 1 subunit beta                                                | -1,06          | -1,06          |
| SL2268<br>SL2331 | arnA<br>purF | Bifunctional polymyxin resistance protein ArnA<br>Amidophosphoribosyltransferase                   | -2,26<br>-1,01 | -2,78<br>1,11  |
| SL2331<br>SL2385 | xapA         | Xanthosine phosphorylase                                                                           | -1,14          | -1,87          |
| SL2450           | purC         | Phosphoribosylaminoimidazole-succinocarboxamide synthase                                           | -1,11          | -1,79          |
| SL2461           | upp          | Uracil phosphoribosyltransferase                                                                   | 1,13           | 1,35           |
| SL2462           | purM         | Phosphoribosylformylglycinamidine cyclo-ligase                                                     | 1,20           | -1,23          |
| SL2471           | guaA         | GMP synthase [glutamine-hydrolyzing]                                                               | 1,00           | -1,28          |
| SL2472           | guaB         | Inosine-5'-monophosphate dehydrogenase                                                             | -1,01          | -1,30          |
| SL2488           | ndk          | Nucleoside diphosphate kinase                                                                      | 2,19           | 5,40           |
| SL2517           | glyA         | Serine hydroxymethyltransferase 1                                                                  | 1,49           | 1,49           |
| SL2527           | purL         | Phosphoribosylformylglycinamidine synthase                                                         | 1,53           | 1,31           |
| SL2791           | nrdl         | Protein nrdl<br>Bibernalesside diabeen bete reductees 2 subusit slabs                              | -1,25          | -1,12          |
| SL2792           | nrdE         | Ribonucleoside-diphosphate reductase 2 subunit alpha                                               | 1,07           | -1,19          |
| SL2793<br>SL2932 | nrdF<br>pyrG | Ribonucleoside-diphosphate reductase 2 subunit beta<br>CTP synthase                                | -1,50<br>1,22  | -1,26<br>-1,60 |
| SL2932<br>SL2949 | ygdH         | LOG family protein ygdH                                                                            | -1,40          | 1,34           |
| SL2979           | thyA         | Thymidylate synthase                                                                               | -1,05          | -2,15          |
| SL3157           | icc          | Protein icc                                                                                        | 1,85           | 1,05           |
| SL3306           | codA         | Cytosine deaminase                                                                                 | 1,17           | 3,61           |
| SL3325           | oadG2        | Oxaloacetate decarboxylase gamma chain 2                                                           | -1,02          | -1,21          |
| SL3697           | dut          | Deoxyuridine 5'-triphosphate nucleotidohydrolase                                                   | 2,50           | -1,09          |
| SL3699           | pyrE         | Orotate phosphoribosyltransferase                                                                  | 1,46           | 1,40           |
| SL3706           | gmk          | Guanylate kinase                                                                                   | 1,53           | -1,27          |
| SL3708           | spoT         | Guanosine-3',5'-bis(diphosphate) 3'-pyrophosphohydrolase                                           | 0,00           | -1,03          |
| SL3882<br>SL3922 | rffH         | Glucose-1-phosphate thymidylyltransferase 2                                                        | 1,85           | -1,27          |
| SL3922<br>SL4020 | udp<br>-     | Uridine phosphorylase<br>Conserved Hypothetical Protein                                            | 1,20<br>-1,79  | -1,10<br>1,41  |
| SL4020<br>SL4054 | -<br>yfkN    | Trifunctional nucleotide phosphoesterase protein yfkN                                              | 1,11           | 3,68           |
| SL4114           | purD         | Phosphoribosylamineglycine ligase                                                                  | 1,19           | -1,01          |
| SL4115           | purB         | Bifunctional purine biosynthesis protein purH                                                      | 1,14           | -1,45          |
| SL4299           | purA         | Adenylosuccinate synthetase                                                                        | 1,33           | -1,35          |
| SL4336           | cpdB         | 2',3'-cyclic-nucleotide 2'-phosphodiesterase/3'-nucleotidase                                       | 1,00           | 4,02           |
| SL4375           | -            | Dihydroorotase                                                                                     | -1,49          | 1,62           |
| SL4381           | nrdG         | Anaerobic ribonucleoside-triphosphate reductase-activating                                         | 1,64           | -2,38          |
|                  |              | protein<br>Anagrahia ribanuglagaida trinkaankata radustaga                                         |                |                |
| SL4382<br>SL4390 | nrdD         | Anaerobic ribonucleoside-triphosphate reductase<br>Aspartate carbamoyltransferase regulatory chain | 1,15<br>1,00   | -2,61<br>4,61  |
| SL4390<br>SL4391 | pyrl<br>pyrB | Aspartate carbamoyltransferase                                                                     | -1,05          | 3,84           |
| SL4494           | deoC         | Deoxyribose-phosphate aldolase                                                                     | 1,50           | -1,54          |
| SL4495           | deoA         | Thymidine phosphorylase                                                                            | 1,41           | -1,41          |
| SL4496           | deoB         | Phosphopentomutase                                                                                 | 1,06           | -1,86          |
| SL4497           | deoD         | Purine nucleoside phosphorylase deoD-type                                                          | -1,03          | -1,54          |
|                  |              | Regulatory functions                                                                               |                |                |
| SL0009           | yaaH         | Inner membrane protein yaaH                                                                        | 2,64           | 2,69           |
| SL0003<br>SL0014 | ybdO         | Uncharacterized HTH-type transcriptional regulator ybdO                                            | 1,30           | 1,36           |
| SL0030           | MarT         | putative transcription regulator                                                                   | -1,30          | -1,18          |
| SL0031           | leuO         | Probable HTH-type transcriptional regulator leuO                                                   | 1,03           | 1,08           |
| SL0032           | -            | Hypothetical                                                                                       | 1,20           | 1,26           |
|                  |              |                                                                                                    |                |                |

| SL0053           | citB  | Transcriptional regulatory protein CitB                                        | -1,15 | 2,03  |
|------------------|-------|--------------------------------------------------------------------------------|-------|-------|
| SL0066           | -     | putative viral protein                                                         | -1,76 | -4,07 |
| SL0118           | fruR  | Fructose repressor                                                             | 1,45  | 1,57  |
| SL0151           | pdhR  | Pyruvate dehydrogenase complex repressor                                       | -1,07 | -2,19 |
| SL0165           | ygbl  | Uncharacterized HTH-type transcriptional regulator ygbl                        | 1,26  | 1,16  |
| SL0103<br>SL0187 | dksA  | DnaK suppressor protein                                                        |       |       |
|                  |       |                                                                                | -1,17 | 0,00  |
| SL0188           | sfsA  | Sugar fermentation stimulation protein A                                       | 1,60  | -1,41 |
| SL0251           | yafC  | Uncharacterized HTH-type transcriptional regulator yafC                        | -1,14 | 1,06  |
| SL0328           | ttdR  | putative LysR family transcriptional regulator                                 | -1,28 | -1,14 |
| SL0339           | -     | Transmembrane Regulator                                                        | -1,66 | -1,63 |
| SL0342           | -     | Response Regulator                                                             | -1,10 | -1,72 |
| SL0349           | hmrR  | HTH-type transcriptional regulator hmrR                                        | -1,59 | 1,82  |
| SL0358           | pchR  | AraC family transcriptional regulator                                          | -1,98 | -1,35 |
| SL0388           | mak   | putative sugar kinase/putative transcriptional regulator<br>(NagC/XyIR family) | 1,25  | 2,02  |
| SL0392           | phoB  | Phosphate regulon transcriptional regulatory protein phoB                      | 1,13  | -1,59 |
| SL0393           | phoR  | Phosphate regulon sensor protein phoR                                          | 1,14  | -2,22 |
| SL0405           | yobV  | Uncharacterized HTH-type transcriptional regulator yobV                        | 1,11  | -1,46 |
| SL0406           | yajD  | Uncharacterized protein yajD                                                   | -1,15 | -1,30 |
| SL0412           | nusB  | N utilization substance protein B homolog                                      | 1,96  | 1,71  |
|                  |       | Putative transcriptional regulator of 2-aminoethylphosphonate                  |       |       |
| SL0424           | phnR  | degradation operons                                                            | 1,43  | -1,05 |
| SL0453           | ybaO  | Uncharacterized HTH-type transcriptional regulator ybaO                        | 1,62  | -1,17 |
| SL0456           | glnK  | Nitrogen regulatory protein P-II 2                                             | 6,02  | -1,15 |
| SL0492           | cueR  | HTH-type transcriptional regulator cueR                                        | 2,00  | 2,31  |
| SL0550           | cusA  | Sensor kinase                                                                  | -1,55 | -1,79 |
| SL0551           | ykgD  | Uncharacterized HTH-type transcriptional regulator ykgD                        | -1,02 | -1,11 |
| SL0559           | levR  | Transcriptional regulatory protein levR                                        | -1,64 | 4,63  |
| SL0568           | _     | TetR Family Transcriptional Regulator                                          | 1,76  | 1,35  |
| SL0569           | ramA  | Transcriptional activator ramA                                                 | -1,04 | -1,01 |
| SL0588           | cstA  | Carbon starvation protein A                                                    | -2,62 | 4,30  |
| SL0594           | ybdO  | Uncharacterized HTH-type transcriptional regulator ybdO                        | -1,66 | -1,83 |
| SL0594<br>SL0604 | rnk   | Regulator of nucleoside diphosphate kinase                                     | 1,16  | -2,37 |
|                  |       |                                                                                |       |       |
| SL0613           | dpiB  | Sensor histidine kinase DpiB                                                   | -1,01 | -1,36 |
| SL0614           | dpiA  | Transcriptional regulatory protein DpiA                                        | 1,24  | -1,36 |
| SL0622           | ybeF  | Uncharacterized HTH-type transcriptional regulator ybeF                        | -1,94 | -1,55 |
| SL0630           | ybeB  | Uncharacterized protein ybeB                                                   | 1,39  | 2,09  |
| SL0640           | yqiR  | putative sigma-54 dependent transcriptional regulato                           | -1,25 | 1,01  |
| SL0658           | ybeZ  | PhoH-like protein                                                              | 2,34  | -1,61 |
| SL0664           | nagC  | N-acetylglucosamine repressor                                                  | 1,39  | -1,77 |
| SL0672           | citB  | Citrate utilization protein B                                                  | -1,02 | 1,07  |
| SL0675           | fur   | Ferric uptake regulation protein                                               | -1,18 | -3,29 |
| SL0677           | ybfE  | Uncharacterized protein ybfE                                                   | 1,77  | -1,11 |
| SL0684           | kdpE  | KDP operon transcriptional regulatory protein kdpE                             | 1,14  | -1,22 |
| SL0685           | kdpD  | Sensor protein kdpD                                                            | 1,22  | -1,76 |
| SL0695           | ybgL  | UPF0271 protein ybgL                                                           | -1,29 | 1,10  |
| SL0740           | ywbl  | Uncharacterized HTH-type transcriptional regulator ywbl                        | 1,43  | 3,78  |
| SL0741           | yjiE  | Uncharacterized HTH-type transcriptional regulator yilE                        | 1,44  | -1,64 |
| SL0741           | yfbS  | Uncharacterized transporter MJ0672                                             | 1,33  | -1,04 |
| SL0742<br>SL0766 | hutC  | Histidine utilization repressor                                                | -1,13 | -1,04 |
| SL0700<br>SL0795 |       | •                                                                              |       |       |
|                  | ybiH  | Uncharacterized HTH-type transcriptional regulator ybiH                        | 2,00  | 1,33  |
| SL0806           | dps   | DNA protection during starvation protein                                       | -1,33 | -1,23 |
| SL0810           | mntR  | iron dependent repressor family transcriptional regulator                      | 2,39  | -1,04 |
| SL0824           | gsiA  | Glutathione import ATP-binding protein gsiA                                    | 1,52  | -1,02 |
| SL0835           | cysL  | HTH-type transcriptional regulator cysL                                        | -1,64 | -6,20 |
| SL0845           | ybjK  | Uncharacterized HTH-type transcriptional regulator ybjK                        | -1,10 | 1,14  |
| SL0879           | ybjX  | Uncharacterized protein ybjX                                                   | -1,29 | -3,90 |
| SL0890           | yafC  | Uncharacterized HTH-type transcriptional regulator HI_1364                     | 1,25  | -1,12 |
| SL0909           | sopD2 | Secreted effector protein sopD2                                                | -3,00 | -5,55 |
| SL1022           | ybcM  | AraC family bacterial regulatory protein                                       | -1,01 | 1,27  |
| SL1034           | copS  | histidine kinase                                                               | 1,34  | -1,48 |
| SL1035           | copR  | response regulator                                                             | 1,07  | -1,04 |
| SL1039           | hpaR  | Homoprotocatechuate degradative operon repressor                               | -1,03 | 1,50  |
| SL1047           | ydiP  | Transcriptional Regulator AraC Family                                          | 1,19  | -1,52 |
| SL1060           | ycdC  | putative transcriptional repressor (TetR/AcrR family)                          | 1,12  | 1,43  |
| SL1065           | yfeT  | Uncharacterized HTH-type transcriptional regulator HI 0143                     | 1,29  | -1,26 |
| SL1005<br>SL1079 | csgD  | Probable csgAB operon transcriptional regulatory protein                       | -2,40 | -2,72 |
| SL1168           | phoQ  | Virulence sensor histidine kinase phoQ                                         | 1,08  | -2,72 |
| 021100           | priod |                                                                                | 1,00  | 1,77  |
|                  |       |                                                                                |       |       |

| SL1169           | phoP  | Virulence transcriptional regulatory protein phoP                         | -1,07 | -1,41 |
|------------------|-------|---------------------------------------------------------------------------|-------|-------|
| SL1201           | ycgE  | Uncharacterized HTH-type transcriptional regulator ycgE                   | 1,11  | -1,47 |
| SL1215           | yeaM  | Uncharacterized HTH-type transcriptional regulator yeaM                   | 1,96  | 1,15  |
| SL1220           | yeaG  | Uncharacterized protein yeaG                                              | -2,71 | 1,34  |
| SL1220           | osmE  | Osmotically-inducible lipoprotein E                                       | -2,23 | -1,22 |
|                  |       |                                                                           |       |       |
| SL1289           | ydiP  | Uncharacterized HTH-type transcriptional regulator ydiP                   | -1,25 | -1,47 |
| SL1300           | ydil  | Esterase ydil                                                             | -1,92 | -1,48 |
| SL1321           | ttrR  | Transcriptional regulatory protein fixJ                                   | -1,28 | 1,02  |
| SL1361           | ydhB  | Uncharacterized HTH-type transcriptional regulator ydhB                   | 1,66  | -1,22 |
| SL1402           | rstB  | Sensor protein rstB                                                       | 1,18  | 1,04  |
| SL1405           | rstA  | Transcriptional regulatory protein rstA                                   | -1,06 | -1,68 |
| SL1417           | ynfL  | Uncharacterized HTH-type transcriptional regulator ynfL                   | 1,18  | -1,70 |
| SL1418           | mlc   | Protein mlc                                                               | 2,13  | 1,99  |
| SL1422           | opuCB | Glycine betaine/carnitine/choline transport system permease protein opuCB | 1,28  | 2,33  |
| SL1449           | marA  | Multiple antibiotic resistance protein marA                               | 2,50  | 2,07  |
| SL1450           | marR  | Multiple antibiotic resistance protein marR                               | 2,47  | 1,49  |
| SL1453           | yneJ  | Uncharacterized HTH-type transcriptional regulator yneJ                   | 1,68  | -1,04 |
| SL1476           | · -   | MarR Family Transcriptional Regulator                                     | 1,82  | -1,12 |
| SL1506           | -     | TetR Family Transcriptional Regulator                                     | -1,37 | -1,04 |
| SL1524           | srfA  | putative virulence effector protein                                       | 1,09  | -1,08 |
| SL1525           | srfB  | Virulence Protein SrfB                                                    | 1,58  | 1,72  |
|                  |       |                                                                           |       |       |
| SL1529           | ydcR  | Uncharacterized HTH-type transcriptional regulator ydcR                   | -1,19 | -1,63 |
| SL1548           | sgcR  | Putative sgc region transcriptional regulator                             | -1,81 | -1,48 |
| SL1586           | dbpA  | ATP-independent RNA helicase dbpA                                         | -1,14 | 1,31  |
| SL1607           | yhjC  | Uncharacterized HTH-type transcriptional regulator yhjC                   | 1,24  | 1,38  |
| SL1636           | yciT  | Uncharacterized HTH-type transcriptional regulator yciT                   | -1,25 | -2,20 |
| SL1645           | cysB  | HTH-type transcriptional regulator cysB                                   | -1,56 | -1,72 |
| SL1694           | narX  | Nitrate/nitrite sensor protein narX                                       | 2,12  | -1,17 |
| SL1697           | ychN  | Protein ychN                                                              | -1,02 | -1,46 |
| SL1701           | sirB1 | Protein sirB1                                                             | 2,16  | -1,27 |
| SL1754           | yeaB  | putative NTP pyrophosphohydrolase                                         | 1,44  | -1,68 |
| SL1771           | kdgR  | Pectin degradation repressor protein kdgR                                 | 1,06  | 1,15  |
| SL1775           | proQ  | ProP effector                                                             | 1,57  | -1,12 |
|                  | fliA  |                                                                           |       |       |
| SL1885           |       | RNA polymerase sigma factor for flagellar operon                          | -2,59 | -1,03 |
| SL2046           | yeeY  | Uncharacterized HTH-type transcriptional regulator yeeY                   | -1,25 | 1,04  |
| SL2055           | hisl  | Histidine biosynthesis bifunctional protein hislE                         | 1,08  | 1,06  |
| SL2075           | galF  | UTPglucose-1-phosphate uridylyltransferase                                | 1,16  | -1,45 |
| SL2100           | yegE  | Probable diguanylate cyclase YegE                                         | 1,05  | -1,59 |
| SL2122           | yegW  | Uncharacterized HTH-type transcriptional regulator yegW                   | 1,09  | 1,35  |
| SL2138           | mlrA  | HTH-type transcriptional regulator mlrA                                   | -1,44 | 1,41  |
| SL2172           | -     | Transcriptional Regulator                                                 | 1,43  | -1,42 |
| SL2178           | yeiE  | Uncharacterized HTH-type transcriptional regulator yeiE                   | -1,10 | -1,00 |
| SL2240           | rcsC  | Sensor protein rcsC                                                       | 1,37  | -1,39 |
| SL2244           | ntaR  | Nta operon transcriptional regulator                                      | 1,18  | 1,03  |
| SL2250           | yvbU  | Uncharacterized HTH-type transcriptional regulator yvbU                   | 1,84  | 2,54  |
| SL2261           | yfaX  | Uncharacterized HTH-type transcriptional regulator ytob                   | -1,26 | -1,03 |
| SL2201<br>SL2302 |       | Uncharacterized transporter yfbS                                          | 1,22  |       |
|                  | yfbS  |                                                                           |       | 1,05  |
| SL2330           | rocR  | Arginine utilization regulatory protein rocR                              | 2,26  | 2,10  |
| SL2356           | sixA  | Phosphohistidine phosphatase sixA                                         | 1,22  | 2,37  |
| SL2365           | pgtB  | Phosphoglycerate transport system sensor protein pgtB                     | -1,94 | -1,91 |
| SL2366           | pgtC  | Phosphoglycerate transport regulatory protein pgtC                        | -1,32 | 1,20  |
| SL2372           | yfeO  | Putative ion-transport protein yfeO                                       | -1,78 | -1,53 |
| SL2382           | xapR  | HTH-type transcriptional regulator xapR                                   | -1,51 | -1,02 |
| SL2399           | ptsJ  | Putative transcriptional regulatory protein ptsJ                          | 2,34  | -1,26 |
| SL2443           | narQ  | Nitrate/nitrite sensor protein narQ                                       | 1,13  | -2,33 |
| SL2453           | gcvR  | Glycine cleavage system transcriptional repressor                         | -1,33 | -1,78 |
| SL2523           | gInB  | Nitrogen regulatory protein P-II 1                                        | -1,03 | 1,68  |
| SL2524           | yfhA  | Uncharacterized protein yfhA                                              | 1,24  | 1,08  |
| SL2525           | yfhG  | Uncharacterized protein yfhG                                              | 1,15  | 1,05  |
| SL2526           | yfhK  | Putative sensor-like histidine kinase yfhK                                | 1,13  | -1,22 |
| SL2520<br>SL2542 | -     |                                                                           |       | -2,06 |
|                  | era   | GTP-binding protein era homolog                                           | 1,35  |       |
| SL2601           | rseC  | Sigma-E factor regulatory protein rseC                                    | 1,51  | -1,19 |
| SL2602           | rseB  | Sigma-E factor regulatory protein rseB                                    | 1,84  | -1,45 |
| SL2603           | rseA  | Sigma-E factor negative regulatory protein                                | 1,24  | -1,53 |
| SL2608           | yfiE  | Uncharacterized HTH-type transcriptional regulator yfiE                   | -1,23 | -1,58 |
| SL2728           | -     | Cytoplasmic Protein                                                       | 1,19  | 3,68  |
|                  |       |                                                                           |       |       |

| SL2732           | -            | Transcriptional Regulator XRE Family                                                               | -1,14 | -1,01         |
|------------------|--------------|----------------------------------------------------------------------------------------------------|-------|---------------|
| SL2764           | ybjX         | Uncharacterized protein ybjX                                                                       | -1,03 | -5,61         |
| SL2765           | mig-14       | putative transcriptional regulator                                                                 | -1,26 | -6,91         |
| SL2778           | ygaE         | Uncharacterized HTH-type transcriptional regulator ygaE                                            | -1,84 | -1,60         |
| SL2787           | mocR         | Probable rhizopine catabolism regulatory protein mocR                                              | 1,26  | 1,58          |
| SL2806           | csrA         | Carbon storage regulator homolog                                                                   | 1,15  | 1,44          |
| SL2819           | norR         | Anaerobic nitric oxide reductase transcription regulator norR                                      | 1,53  | -1,07         |
| SL2833           | hycA         | Formate hydrogenlyase regulatory protein hycA                                                      | 1,39  | -2,89         |
| SL2891           | ptxR         | HTH-type transcriptional regulator ptxR                                                            | 1,23  | 1,34          |
| SL2898           | ygbl         | Uncharacterized HTH-type transcriptional regulator ygbl                                            | 2,02  | 1,56          |
| SL2939           | barA         | Signal transduction histidine-protein kinase BarA                                                  | 1,92  | -1,45         |
| SL2949           | ygdH         | LOG family protein ygdH                                                                            | -1,40 | 1,34          |
| SL2962           | gcvA         | Glycine cleavage system transcriptional activator                                                  | 1,25  | -3,31         |
| SL2982           | rppH         | RNA pyrophosphohydrolase                                                                           | -1,12 | -1,45         |
| SL2990           | ascG         | HTH-type transcriptional regulator AscG                                                            | 1,08  | 1,40          |
| SL2998           | allS         | HTH-type transcriptional activator AllS                                                            | 1,41  | -1,25         |
| SL3073           | -            | global regulatory protein                                                                          | -1,01 | 1,44          |
| SL3095           | budR         | HTH-type transcriptional regulator BudR                                                            | 2,76  | 1,82          |
| SL3137           | yqhC         | Uncharacterized HTH-type transcriptional regulator yqhC                                            | 1,53  | 1,11          |
| SL3149           | ygiV         | Probable transcriptional regulator ygiV                                                            | -1,35 | -1,02         |
| SL3151           | qseB         | Transcriptional regulatory protein gseB                                                            | 1,91  | 1,46          |
| SL3151<br>SL3152 | qseC         | Sensor protein qseC                                                                                | 1,88  | 1,10          |
| SL3132<br>SL3185 | rpoD         | RNA polymerase sigma factor rpoD                                                                   | 1,52  | -1,54         |
| SL3103<br>SL3207 | -            |                                                                                                    |       |               |
| SL3207<br>SL3217 | yhaJ<br>tdoA | Uncharacterized HTH-type transcriptional regulator yhaJ<br>HTH-type transcriptional regulator tdcA | 1,10  | 1,23<br>32,27 |
| SL3217<br>SL3300 | tdcA         |                                                                                                    | -1,35 |               |
|                  | arcB         | Aerobic respiration control sensor protein ArcB                                                    | 2,05  | 1,77          |
| SL3312           | nanR         | Transcriptional regulator nanR                                                                     | 1,05  | -1,21         |
| SL3314           | sspA         | Stringent starvation protein A                                                                     | 1,12  | -1,19         |
| SL3328           | yfbS         | Uncharacterized transporter MJ0672                                                                 | 1,48  | 2,26          |
| SL3330           | pdhR         | GntR Family Transcriptional Regulator                                                              | 2,07  | 1,35          |
| SL3332           | argR         | Arginine repressor                                                                                 | 1,37  | 1,65          |
| SL3339           | aaeR         | HTH-type transcriptional activator AaeR                                                            | 1,25  | 1,45          |
| SL3340           | tldD         | Protein tldD                                                                                       | 1,62  | -1,64         |
| SL3379           | zntR         | HTH-type transcriptional regulator zntR                                                            | 1,15  | 1,50          |
| SL3469           | ompR         | Transcriptional regulatory protein ompR                                                            | 1,14  | 1,11          |
| SL3500           | yfaX         | Uncharacterized HTH-type transcriptional regulator yfaX                                            | 1,77  | 1,06          |
| SL3567           | yvoA         | HTH-type transcriptional repressor yvoA                                                            | 2,22  | 1,62          |
| SL3571           | yhjB         | Putative HTH-type transcriptional regulator yhjB                                                   | -3,15 | -4,61         |
| SL3572           | yhjC         | Uncharacterized HTH-type transcriptional regulator yhjC                                            | 1,56  | 1,62          |
| SL3599           | celR         | HTH-type transcriptional regulator celR                                                            | 1,11  | 1,12          |
| SL3610           | bisC         | Biotin sulfoxide reductase                                                                         | 1,29  | -1,37         |
| SL3627           | xylR         | Xylose operon regulatory protein                                                                   | -1,25 | 1,04          |
| SL3643           | yisR         | Uncharacterized HTH-type transcriptional regulator yisR                                            | -1,14 | 2,76          |
| SL3646           | yajF         | Uncharacterized protein CPE0188                                                                    | -1,45 | -2,40         |
| SL3658           | lldR         | Putative L-lactate dehydrogenase operon regulatory protein                                         | 1,16  | 2,01          |
| SL3661           | idnR         | HTH-type transcriptional regulator idnR                                                            | 1,45  | 1,45          |
| SL3698           | slmA         | HTH-type protein slmA                                                                              | 1,79  | 1,06          |
| SL3702           | ybeF         | LysR Family Transcriptional Regulator                                                              | 1,49  | -1,14         |
| SL3708           | spoT         | Guanosine-3',5'-bis(diphosphate) 3'-pyrophosphohydrolase                                           | 0,00  | -1,03         |
| SL3738           | levR         | Transcriptional regulatory protein levR                                                            | 1,86  | 2,42          |
|                  |              | Mannosyl-D-glycerate transport/metabolism system repressor                                         |       | 5,24          |
| SL3751           | mngR         | mngR                                                                                               | 1,51  | 5,24          |
| SL3768           | dsdC         | HTH-type transcriptional regulator dsdC                                                            | 2,09  | 3,74          |
| SL3790           | torR         | TorCAD operon transcriptional regulatory protein torR                                              | 1,22  | 2,32          |
| SL3791           | torT         | Periplasmic protein torT                                                                           | -1,00 | -1,23         |
| SL3797           | dgoR         | Galactonate operon transcriptional repressor                                                       | 1,12  | 1,20          |
| SL3801           | ybhD         | Uncharacterized HTH-type transcriptional regulator ybhD                                            | 1,52  | 2,82          |
| SL3815           | yidZ         | HTH-type transcriptional regulator yidZ                                                            | 1,03  | -1,08         |
| SL3820           | phoU         | Phosphate transport system protein phoU                                                            | 1,06  | 1,09          |
| SL3843           | asnC         | Regulatory protein AsnC                                                                            | 1,42  | 1,26          |
| SL3846           | ravA         | ATPase ravA                                                                                        | 1,08  | 1,69          |
| SL3853           | rbsR         | Ribose operon repressor                                                                            | -1,12 | 1,19          |
| SL3858           | hdfR         | HTH-type transcriptional regulator hdfR                                                            | -1,07 | -1,60         |
| SL3868           | ilvY         | HTH-type transcriptional regulator ilvY                                                            | -1,18 | 1,71          |
| SL3873           | gppA         | Guanosine-5'-triphosphate,3'-diphosphate pyrophosphatase                                           | 1,11  | -1,70         |
| SL3894           | cyaA         | Adenylate cyclase                                                                                  | -1,85 | -3,10         |
| SL3918           | metR         | HTH-type transcriptional regulator metR                                                            | -1,19 | 1,31          |
|                  |              | -                                                                                                  | -     |               |

| SL3931           | rfaH         | Transcriptional activator rfaH                                          | 1,65          | 1,40           |
|------------------|--------------|-------------------------------------------------------------------------|---------------|----------------|
| SL3952           | gInG         | Nitrogen regulation protein NR(I)                                       | 1,89          | -1,32          |
| SL3953           | glnL         | Nitrogen regulation protein NR(II)                                      | 1,84          | -2,53          |
| SL3980           | -            | Transcriptional Regulator XRE Family                                    | 1,24          | 2,38           |
| SL3997           | rhaS         | HTH-type transcriptional activator rhaS                                 | 1,02          | 5,18           |
| SL3998           | rhaR         | HTH-type transcriptional activator rhaR                                 | 1,77          | 5,45           |
| SL4007           | срхА         | Sensor protein cpxA                                                     | 1,76          | 1,19           |
| SL4008           | cpxR         | Transcriptional regulatory protein cpxR                                 | 1,29          | 1,77           |
| SL4017           | mngR         | Mannosyl-D-glycerate transport/metabolism system repressor              | 1,08          | 1,37           |
|                  |              | mngR                                                                    |               |                |
| SL4043           | cytR         | HTH-type transcriptional repressor cytR                                 | 1,47          | -1,04          |
| SL4048           | metJ         | Met repressor                                                           | 1,75          | 1,96           |
| SL4066           | yijO         | Uncharacterized HTH-type transcriptional regulator yijO                 | -1,18         | 1,61           |
| SL4074           | oxyR         | Hydrogen peroxide-inducible genes activator                             | 1,06          | 1,13           |
| SL4104           | rsd          | Regulator of sigma D                                                    | -1,21         | 2,95           |
| SL4112           | zraS         | Sensor protein zraS                                                     | 1,79          | 2,94           |
| SL4166           | malE         | Maltose-binding periplasmic protein                                     | -2,38         | 3,45           |
| SL4174<br>SL4177 | lexA         | LexA repressor                                                          | 1,01          | 2,04           |
|                  | zur          | Zinc uptake regulation protein                                          | -1,30         | 1,33           |
| SL4202<br>SL4206 | soxR         | Redox-sensitive transcriptional activator soxR                          | 1,08          | -1,18          |
| SL4200<br>SL4224 | ywbl<br>phpO | Uncharacterized HTH-type transcriptional regulator ywbl<br>Protein phnO | 1,54<br>-1,02 | -1,23<br>-1,23 |
| SL4224<br>SL4228 | phnO<br>basS | Sensor protein BasS                                                     | -1,64         | -1,57          |
| SL4220<br>SL4229 | basS<br>basR | Transcriptional regulatory protein BasR                                 | -1,16         | -1,38          |
| SL4229<br>SL4240 | dcuR         | Transcriptional regulatory protein dask                                 | 1,35          | -1,23          |
| SL4240<br>SL4241 | dcuS         | Sensor protein dcuS                                                     | 2,28          | -1,84          |
| SL4250           | rtsB         | GerE Family Regulatory Protein                                          | -62,07        | -9,42          |
| SL4258           | ybbl         | Transcriptional Regulator MerR Family                                   | 1,12          | 1,29           |
| SL4259           | yjdC         | HTH-type transcriptional regulator yjdC                                 | -1,50         | -1,25          |
| SL4274           | ecnR         | Transcriptional regulatory protein entR                                 | -1,50         | -1,08          |
| SL4296           | hflX         | GTP-binding protein hflX                                                | 1,40          | -1,11          |
| SL4300           | nsrR         | HTH-type transcriptional repressor nsrR                                 | 1,35          | -1,24          |
| SL4304           | yjfJ         | Uncharacterized protein YjfJ                                            | 1,65          | -1,08          |
| SL4314           | ulaR         | HTH-type transcriptional regulator ulaR                                 | 1,85          | 2,20           |
| SL4355           | ydiP         | Uncharacterized HTH-type transcriptional regulator ydiP                 | 1,22          | 4,58           |
| SL4393           | argR         | Arginine repressor                                                      | -1,76         | 1,94           |
| SL4395           | arcB         | Ornithine carbamoyltransferase, catabolic                               | -2,08         | 2,30           |
| SL4397           | arcA         | Arginine deiminase                                                      | -1,86         | 3,40           |
| SL4411           | idnR         | HTH-type transcriptional regulator idnR                                 | -1,66         | -1,15          |
| SL4442           | yjiE         | Uncharacterized HTH-type transcriptional regulator yjiE                 | -1,88         | 1,59           |
| SL4463           | yjiY         | Inner membrane protein yjiY                                             | -1,46         | -3,30          |
| SL4465           | levR         | Transcriptional regulatory protein levR                                 | -1,99         | -1,08          |
| SL4478           | yjjQ         | Uncharacterized protein yjjQ                                            | 1,25          | 1,52           |
| SL4479           | bglJ         | Transcriptional activator protein BgIJ                                  | 1,33          | 2,06           |
| SL4480           | ywhH         | Uncharacterized protein ywhH                                            | 1,13          | 1,61           |
| SL4510           | trpR         | Trp operon repressor                                                    | 1,82          | 1,68           |
| SL4513           | rob          | Right origin-binding protein                                            | 1,35          | -1,20          |
| SL4515           | creB         | Transcriptional regulatory protein creB                                 | 2,42          | 1,12           |
| SL4516           | creC         | Sensor protein creC                                                     | 2,76          | -1,13          |
| SL4525           | arcA         | Aerobic respiration control protein ArcA                                | 1,41          | 1,15           |
|                  |              | Transcription                                                           |               |                |
| SL0053           | citB         | Transcriptional regulatory protein CitB                                 | -1,15         | 2,03           |
| SL0097           | hepA         | ATP-dependent helicase HepA                                             | 1,23          | -1,39          |
| SL0185           | pcnB         | Poly(A) polymerase                                                      | 1,20          | -1,44          |
| SL0231           | rnhB         | Ribonuclease HII                                                        | 2,34          | -2,44          |
| SL0258           | rnhA         | Ribonuclease H                                                          | 1,77          | 1,48           |
| SL0605           | rna          | Ribonuclease I                                                          | 1,45          | -1,99          |
| SL0672           | citB         | Citrate utilization protein B                                           | -1,02         | 1,07           |
| SL0695           | ybgL         | UPF0271 protein ybgL                                                    | -1,29         | 1,10           |
| SL0796           | rhlE         | ATP-dependent RNA helicase rhlE                                         | 1,88          | -1,21          |
| SL0900           | rarA         | Replication-associated recombination protein A                          | 1,49          | -1,73          |
| SL1122           | rne          | Ribonuclease E                                                          | 1,87          | -1,25          |
| SL1366           | rnt          | Ribonuclease T                                                          | 1,25          | -1,86          |
| SL1633           | rnb          | Exoribonuclease 2                                                       | 1,51          | -1,02          |
| SL1745           | rnd          | Ribonuclease D                                                          | 1,68          | -2,92          |
| SL1810           | holE         | DNA polymerase III subunit theta                                        | 1,19          | 4,58           |
| SL2107           | baeS         | Signal transduction histidine-protein kinase BaeS                       | -1,25         | -2,41          |
|                  |              |                                                                         |               | -              |

| SL2108                                                             | baeR                                                                   | Transcriptional regulatory protein BaeR                                                                                                                                                                                                                                                                                                               | -1,21                                                          | -1,68                                                         |
|--------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|
| SL2200                                                             | yejH                                                                   | Uncharacterized protein yejH                                                                                                                                                                                                                                                                                                                          | 1,28                                                           | -1,26                                                         |
| SL2543                                                             | rnc                                                                    | Ribonuclease 3                                                                                                                                                                                                                                                                                                                                        | 1,19                                                           | -2,16                                                         |
| SL2604                                                             | rpoE                                                                   | RNA polymerase sigma-E factor                                                                                                                                                                                                                                                                                                                         | 1,73                                                           | -1,85                                                         |
| SL2607                                                             | srmB                                                                   | ATP-dependent RNA helicase srmB                                                                                                                                                                                                                                                                                                                       | 1,47                                                           | 2,07                                                          |
| SL2624                                                             | raiA                                                                   | Ribosome-associated inhibitor A                                                                                                                                                                                                                                                                                                                       | -2,75                                                          | 1,85                                                          |
| SL2756                                                             | fljB                                                                   | Phase 2 flagellin                                                                                                                                                                                                                                                                                                                                     | -7,31                                                          | -1,25                                                         |
| SL2768                                                             | tctE                                                                   | Sensor protein tctE                                                                                                                                                                                                                                                                                                                                   | 1,31                                                           | 3,07                                                          |
| SL2769                                                             | tctD                                                                   | Transcriptional regulatory protein tctD                                                                                                                                                                                                                                                                                                               | 1,65                                                           | 3,86                                                          |
| SL2903                                                             | rpoS                                                                   | RNA polymerase sigma factor rpoS                                                                                                                                                                                                                                                                                                                      | -1,21                                                          | -1,28                                                         |
| SL3177                                                             | cca                                                                    | Multifunctional CCA protein                                                                                                                                                                                                                                                                                                                           | 1,33                                                           | -2,17                                                         |
| SL3185                                                             | rpoD                                                                   | RNA polymerase sigma factor rpoD                                                                                                                                                                                                                                                                                                                      | 1,52                                                           | -1,54                                                         |
| SL3253                                                             | deaD                                                                   | Cold-shock DEAD box protein A                                                                                                                                                                                                                                                                                                                         | 1,01                                                           | -7,63                                                         |
| SL3255                                                             | pnp                                                                    | Polyribonucleotide nucleotidyltransferase                                                                                                                                                                                                                                                                                                             | -1,02                                                          | -1,57                                                         |
| SL3258                                                             | rbfA                                                                   | Ribosome-binding factor A                                                                                                                                                                                                                                                                                                                             | 3,05                                                           | 1,32                                                          |
| SL3260                                                             | nusA                                                                   | Transcription elongation protein nusA                                                                                                                                                                                                                                                                                                                 | 1,26                                                           | -1,16                                                         |
| SL3292<br>SL3382                                                   | rpoN                                                                   | RNA polymerase sigma-54 factor                                                                                                                                                                                                                                                                                                                        | 1,30<br>1,25                                                   | -1,34<br>1,15                                                 |
| SL3362<br>SL3470                                                   | rpoA<br>greB                                                           | DNA-directed RNA polymerase subunit alpha<br>Transcription elongation factor greB                                                                                                                                                                                                                                                                     | 1,25                                                           | -2,08                                                         |
| SL3485                                                             | rtcA                                                                   | Probable RNA 3'-terminal phosphate cyclase                                                                                                                                                                                                                                                                                                            | -1,95                                                          | -2,08                                                         |
| SL3533                                                             | rpoH                                                                   | RNA polymerase sigma-32 factor                                                                                                                                                                                                                                                                                                                        | 1,22                                                           | -1,39                                                         |
| SL3573                                                             | yhjD                                                                   | Inner membrane protein yhjD                                                                                                                                                                                                                                                                                                                           | 1,20                                                           | -1,07                                                         |
| SL3700                                                             | rph                                                                    | Ribonuclease PH                                                                                                                                                                                                                                                                                                                                       | 1,61                                                           | 1,16                                                          |
| SL3707                                                             | rpoZ                                                                   | DNA-directed RNA polymerase subunit omega                                                                                                                                                                                                                                                                                                             | 1,34                                                           | 1,42                                                          |
| SL3738                                                             | levR                                                                   | Transcriptional regulatory protein levR                                                                                                                                                                                                                                                                                                               | 1,86                                                           | 2,42                                                          |
| SL3807                                                             | rnpA                                                                   | Ribonuclease P protein component                                                                                                                                                                                                                                                                                                                      | 1,57                                                           | -1,46                                                         |
| SL3874                                                             | rhlB                                                                   | ATP-dependent RNA helicase rhlB                                                                                                                                                                                                                                                                                                                       | 1,37                                                           | -1,64                                                         |
| SL3876                                                             | rho                                                                    | Transcription termination factor rho                                                                                                                                                                                                                                                                                                                  | -1,48                                                          | -2,45                                                         |
| SL3973                                                             | rbn                                                                    | UPF0761 membrane protein CKO_03126                                                                                                                                                                                                                                                                                                                    | -1,14                                                          | 1,36                                                          |
| SL4087                                                             | nusG                                                                   | Transcription antitermination protein nusG                                                                                                                                                                                                                                                                                                            | 1,98                                                           | -1,44                                                         |
| SL4092                                                             | rpoB                                                                   | DNA-directed RNA polymerase subunit beta                                                                                                                                                                                                                                                                                                              | 1,48                                                           | -1,13                                                         |
| SL4093                                                             | rpoC                                                                   | DNA-directed RNA polymerase subunit beta'                                                                                                                                                                                                                                                                                                             | 1,49                                                           | 1,34                                                          |
| SL4228                                                             | basS                                                                   | Sensor protein BasS                                                                                                                                                                                                                                                                                                                                   | -1,64                                                          | -1,57                                                         |
| SL4301                                                             | rnr                                                                    | Ribonuclease R                                                                                                                                                                                                                                                                                                                                        | 1,13                                                           | 1,04                                                          |
| SL4389                                                             | yjgF                                                                   | UPF0076 protein yjgF                                                                                                                                                                                                                                                                                                                                  | 1,24                                                           | 1,68                                                          |
|                                                                    | 713.                                                                   | Transport and binding proteins                                                                                                                                                                                                                                                                                                                        | .,                                                             | .,                                                            |
|                                                                    |                                                                        | N,N'-diacetylchitobiose-specific phosphotransferase enzyme IIB                                                                                                                                                                                                                                                                                        |                                                                |                                                               |
| SL1247                                                             | celA                                                                   | component                                                                                                                                                                                                                                                                                                                                             | 1,04                                                           | -1,41                                                         |
| SL1248                                                             | celB                                                                   | N,N'-diacetylchitobiose permease IIC component                                                                                                                                                                                                                                                                                                        | 1,58                                                           | -1,52                                                         |
| SL1546                                                             | sgcA                                                                   | Putative phosphotransferase IIA component sgcA                                                                                                                                                                                                                                                                                                        | -2,17                                                          | -1,02                                                         |
| SL2137                                                             | yehU                                                                   | Inner membrane protein yehU                                                                                                                                                                                                                                                                                                                           | 2,49                                                           | 10,40                                                         |
| SL2181                                                             | fruA                                                                   | PTS system fructose-specific EIIBC component                                                                                                                                                                                                                                                                                                          | -1,36                                                          | -2,54                                                         |
| SL2311                                                             | ulaA                                                                   | Ascorbate-specific permease IIC component ulaA                                                                                                                                                                                                                                                                                                        | -2,08                                                          | -1,15                                                         |
| SL2312                                                             | ulaB                                                                   | putative sugar phosphotransferase component IIB                                                                                                                                                                                                                                                                                                       | -1,30                                                          | 1,16                                                          |
| SL2313                                                             | ulaC                                                                   | Ascorbate-specific phosphotransferase enzyme IIA component                                                                                                                                                                                                                                                                                            | 1,88                                                           | 2,57                                                          |
| SL2532                                                             | ybbF                                                                   | Putative PTS system EIIBC component ybbF                                                                                                                                                                                                                                                                                                              | 1,08                                                           | 2,21                                                          |
| SL3228                                                             | fruA                                                                   | PTS system fructose-specific EIIABC component                                                                                                                                                                                                                                                                                                         | -14,19                                                         | -2,16                                                         |
| SL3231                                                             | gatA                                                                   | Galactitol-specific phosphotransferase enzyme IIA component                                                                                                                                                                                                                                                                                           | -1,64                                                          | -1,18                                                         |
| SL3233                                                             | gatC                                                                   | Galactitol permease IIC component                                                                                                                                                                                                                                                                                                                     | -1,71                                                          | 1,61                                                          |
| SL3294                                                             | ptsN                                                                   | Nitrogen regulatory protein                                                                                                                                                                                                                                                                                                                           | 1,38                                                           | 1,74                                                          |
| SL3643                                                             | yisR                                                                   | Uncharacterized HTH-type transcriptional regulator yisR                                                                                                                                                                                                                                                                                               | -1,14                                                          | 2,76                                                          |
| SL3735                                                             | agaC                                                                   | N-acetylgalactosamine permease IIC component 1                                                                                                                                                                                                                                                                                                        | -1,63                                                          | 1,68                                                          |
| SL3736                                                             | levE                                                                   | Fructose-specific phosphotransferase enzyme IIB component                                                                                                                                                                                                                                                                                             | -1,32                                                          | 2,33                                                          |
| SL4468                                                             | agaC                                                                   | N-acetylgalactosamine permease IIC component 1                                                                                                                                                                                                                                                                                                        | -1,16                                                          | 3,49                                                          |
| SL0006<br>SL0040                                                   | yaaJ                                                                   | Uncharacterized transporter yaaJ                                                                                                                                                                                                                                                                                                                      | 2,57                                                           | 1,05                                                          |
| SL0040<br>SL0041                                                   |                                                                        | Na(+)/H(+) antiporter nhaA                                                                                                                                                                                                                                                                                                                            | 1,38                                                           | -1,78                                                         |
|                                                                    | nhaA                                                                   | Transprintional activator protain phoP                                                                                                                                                                                                                                                                                                                | 1 24                                                           | 1 05                                                          |
|                                                                    | nhaR                                                                   | Transcriptional activator protein nhaR                                                                                                                                                                                                                                                                                                                | 1,24                                                           | -1,85                                                         |
| SL0043                                                             | nhaR<br>xylP                                                           | putative sodium galactoside symporter                                                                                                                                                                                                                                                                                                                 | 1,13                                                           | 5,23                                                          |
| SL0054                                                             | nhaR<br>xylP<br>citA                                                   | putative sodium galactoside symporter<br>Sensor histidine kinase CitA                                                                                                                                                                                                                                                                                 | 1,13<br>-1,02                                                  | 5,23<br>1,55                                                  |
| SL0054<br>SL0055                                                   | nhaR<br>xylP<br>citA<br>oadB1                                          | putative sodium galactoside symporter<br>Sensor histidine kinase CitA<br>Oxaloacetate decarboxylase beta chain 1                                                                                                                                                                                                                                      | 1,13<br>-1,02<br>1,11                                          | 5,23<br>1,55<br>1,66                                          |
| SL0054<br>SL0055<br>SL0056                                         | nhaR<br>xylP<br>citA<br>oadB1<br>oadA                                  | putative sodium galactoside symporter<br>Sensor histidine kinase CitA<br>Oxaloacetate decarboxylase beta chain 1<br>Oxaloacetate decarboxylase alpha chain                                                                                                                                                                                            | 1,13<br>-1,02<br>1,11<br>-1,07                                 | 5,23<br>1,55<br>1,66<br>1,16                                  |
| SL0054<br>SL0055<br>SL0056<br>SL0057                               | nhaR<br>xyIP<br>citA<br>oadB1<br>oadA<br>oadG1                         | putative sodium galactoside symporter<br>Sensor histidine kinase CitA<br>Oxaloacetate decarboxylase beta chain 1<br>Oxaloacetate decarboxylase alpha chain<br>Probable oxaloacetate decarboxylase gamma chain 1                                                                                                                                       | 1,13<br>-1,02<br>1,11<br>-1,07<br>2,26                         | 5,23<br>1,55<br>1,66<br>1,16<br>8,83                          |
| SL0054<br>SL0055<br>SL0056<br>SL0057<br>SL0058                     | nhaR<br>xyIP<br>citA<br>oadB1<br>oadA<br>oadG1<br>citC                 | putative sodium galactoside symporter<br>Sensor histidine kinase CitA<br>Oxaloacetate decarboxylase beta chain 1<br>Oxaloacetate decarboxylase alpha chain<br>Probable oxaloacetate decarboxylase gamma chain 1<br>Citrate-sodium symporter                                                                                                           | 1,13<br>-1,02<br>1,11<br>-1,07<br>2,26<br>1,31                 | 5,23<br>1,55<br>1,66<br>1,16<br>8,83<br>9,18                  |
| SL0054<br>SL0055<br>SL0056<br>SL0057<br>SL0058<br>SL0087           | nhaR<br>xylP<br>citA<br>oadB1<br>oadA<br>oadG1<br>citC<br>kefC         | putative sodium galactoside symporter<br>Sensor histidine kinase CitA<br>Oxaloacetate decarboxylase beta chain 1<br>Oxaloacetate decarboxylase alpha chain<br>Probable oxaloacetate decarboxylase gamma chain 1<br>Citrate-sodium symporter<br>Glutathione-regulated potassium-efflux system protein kefC                                             | 1,13<br>-1,02<br>1,11<br>-1,07<br>2,26<br>1,31<br>1,54         | 5,23<br>1,55<br>1,66<br>1,16<br>8,83<br>9,18<br>-1,64         |
| SL0054<br>SL0055<br>SL0056<br>SL0057<br>SL0058<br>SL0087<br>SL0106 | nhaR<br>xylP<br>citA<br>oadB1<br>oadA<br>oadG1<br>citC<br>kefC<br>yabJ | putative sodium galactoside symporter<br>Sensor histidine kinase CitA<br>Oxaloacetate decarboxylase beta chain 1<br>Oxaloacetate decarboxylase alpha chain<br>Probable oxaloacetate decarboxylase gamma chain 1<br>Citrate-sodium symporter                                                                                                           | 1,13<br>-1,02<br>1,11<br>-1,07<br>2,26<br>1,31<br>1,54<br>1,45 | 5,23<br>1,55<br>1,66<br>1,16<br>8,83<br>9,18<br>-1,64<br>1,04 |
| SL0054<br>SL0055<br>SL0056<br>SL0057<br>SL0058<br>SL0087           | nhaR<br>xylP<br>citA<br>oadB1<br>oadA<br>oadG1<br>citC<br>kefC         | putative sodium galactoside symporter<br>Sensor histidine kinase CitA<br>Oxaloacetate decarboxylase beta chain 1<br>Oxaloacetate decarboxylase alpha chain<br>Probable oxaloacetate decarboxylase gamma chain 1<br>Citrate-sodium symporter<br>Glutathione-regulated potassium-efflux system protein kefC<br>Thiamine import ATP-binding protein ThiQ | 1,13<br>-1,02<br>1,11<br>-1,07<br>2,26<br>1,31<br>1,54         | 5,23<br>1,55<br>1,66<br>1,16<br>8,83<br>9,18<br>-1,64         |

| SL0109           | yabN         | putative ABC transporter periplasmic solute binding protein  | 1,77  | -1,04 |
|------------------|--------------|--------------------------------------------------------------|-------|-------|
| SL0147           | ampE         | Protein AmpE                                                 | -1,09 | -1,26 |
| SL0148           | uidB         | glycosyl hydrolase                                           | 1,35  | 1,49  |
| SL0149           | yicJ         | Inner membrane symporter yicJ                                | 1,11  | 2,14  |
|                  | aroP         | Aromatic amino acid transport protein AroP                   |       |       |
| SL0150           |              |                                                              | -1,36 | 1,74  |
| SL0156           |              | secreted protein                                             | 1,83  | 2,65  |
| SL0162           | kdgT         | 2-keto-3-deoxygluconate permease 1                           | 1,31  | 1,66  |
| SL0173           | yadG         | Uncharacterized ABC transporter ATP-binding protein yadG     | 1,28  | -1,21 |
| SL0174           | yadH         | Inner membrane transport permease yadH                       | 1,44  | -1,19 |
| SL0179           | yadl         | Putative phosphotransferase enzyme IIA component yadl        | 1,14  | 1,35  |
| SL0193           | fhuC         | Iron(3+)-hydroxamate import ATP-binding protein fhuC         | -1,03 | -1,19 |
| SL0194           | fhuD         | Iron(3+)-hydroxamate-binding protein fhuD                    | 1,02  | -1,12 |
| SL0204           | yadQ         | putative CIC family chlorine transport protein               | 1,69  | -1,12 |
| SL0207           | btuF         | Vitamin B12-binding protein                                  | 1,83  | 1,02  |
| SL0207<br>SL0213 |              | ÷.                                                           |       |       |
|                  | shiA         | Shikimate transporter                                        | -1,15 | -2,58 |
| SL0247           | yaeE         | D-methionine transport system permease protein               | 1,04  | -1,08 |
| SL0248           | metN1        | Methionine import ATP-binding protein MetN 1                 | 1,31  | -1,22 |
| SL0252           | ytbD         | Uncharacterized MFS-type transporter ytbD                    | 1,36  | 1,81  |
| SL0273           | -            | Hypothetical                                                 | 1,64  | -1,09 |
| SL0282           | sciU         | secreted protein                                             | 1,43  | -1,03 |
| SL0323           | ynfM         | Inner membrane transport protein ynfM                        | -1,40 | 1,10  |
| SL0337           | -            | Periplasmic Protein                                          | 1,12  | -2,46 |
| SL0348           | actP         | Copper-transporting P-type ATPase                            | -1,04 | 1,67  |
| SL0350           | -            | putative copper chaperone                                    | 1,34  | 1,61  |
| SL0351           | yjhB         | Putative metabolite transport protein yjhB                   | 2,13  | 1,58  |
| SL0359           | foxA         |                                                              |       |       |
|                  |              | Ferrioxamine B receptor                                      | 1,07  | 1,14  |
| SL0360           | yahN         | Uncharacterized membrane protein yahN                        | 1,48  | 5,41  |
| SL0371           | sbmA         | Protein sbmA                                                 | 1,36  | -3,76 |
| SL0394           | brnQ         | Branched-chain amino acid transport system 2 carrier protein | 1,49  | 1,06  |
| SL0395           | proY         | Proline-specific permease proY                               | 1,62  | -2,21 |
| SL0407           | tsx          | Nucleoside-specific channel-forming protein tsx              | 2,44  | 3,41  |
| SL0415           | yajO         | Uncharacterized oxidoreductase yajO                          | -3,14 | -1,02 |
| SL0430           | yajR         | Inner membrane transport protein yajR                        | 1,51  | -1,42 |
| SL0454           | mdIA         | Multidrug resistance-like ATP-binding protein mdlA           | 1,92  | -1,43 |
| SL0455           | mdlB         | Multidrug resistance-like ATP-binding protein mdlB           | 1,75  | -1,26 |
| SL0457           | amtB         | Ammonia channel                                              | 2,71  | 1,97  |
|                  |              |                                                              |       |       |
| SL0468           | acrB         | Acriflavine resistance protein B                             | 1,70  | -2,14 |
| SL0470           | acrR         | HTH-type transcriptional regulator AcrR                      | 1,31  | -1,34 |
| SL0485           | ybaL         | Inner membrane protein ybaL                                  | -1,62 | -3,63 |
| SL0490           | -            | secreted protein                                             | -1,77 | -1,19 |
| SL0491           | copA         | Copper-exporting P-type ATPase A                             | 1,09  | 1,12  |
| SL0495           | ybbL         | Uncharacterized ABC transporter ATP-binding protein ybbL     | 1,95  | -1,17 |
| SL0500           | ybbA         | Uncharacterized ABC transporter ATP-binding protein ybbA     | -1,21 | -2,38 |
| SL0504           | sfbB         | Methionine import ATP-binding protein                        | -3,94 | -2,65 |
| SL0505           | sfbC         | Probable D-methionine transport system permease protein      | -3,31 | -2,41 |
| SL0513           | yybO         | metabolite transport protein                                 | -1,04 | 1,01  |
| SL0515           | ybbW         | Putative allantoin permease                                  | -1,04 | 1,49  |
| SL0517           | ybbY         | Putative purine permease ybbY                                | -1,48 | -1,02 |
| SL0557           | ybdG         | Uncharacterized protein ybdG                                 | -1,03 | -1,40 |
| SL0557<br>SL0562 | -            |                                                              |       |       |
|                  | manZ         | Mannose permease IID component                               | 1,26  | 2,31  |
| SL0563           | manY         | Mannose permease IIC component                               | 1,12  | 1,81  |
| SL0564           | manX         | PTS system mannose-specific EIIAB component                  | 1,01  | 1,21  |
| SL0565           | manX         | PTS System Fructocific IIA Component                         | 1,14  | 1,14  |
| SL0572           | entD         | 4'-phosphopantetheinyl transferase entD                      | -1,01 | -1,32 |
| SL0573           | fepA         | Ferrienterobactin receptor                                   | 1,26  | 1,32  |
| SL0574           | fes          | Enterochelin esterase                                        | 1,05  | -1,47 |
| SL0577           | fepE         | Ferric enterobactin transport protein fepE                   | 1,29  | 1,38  |
| SL0578           | fepC         | Ferric enterobactin transport ATP-binding protein fepC       | 1,22  | -1,38 |
| SL0579           | fepG         | Ferric enterobactin transport system permease protein fepG   | 1,78  | 1,02  |
| SL0580           | fepD         | Ferric enterobactin transport system permease protein fepD   | 1,57  | 1,06  |
| SL0580<br>SL0581 |              | membrane protein p43                                         | 1,23  | -1,06 |
|                  | ybdA<br>ontB |                                                              |       |       |
| SL0585           | entB         | Isochorismatase                                              | 1,59  | 2,00  |
| SL0615           | dcuC         | Anaerobic C4-dicarboxylate transporter dcuC                  | 2,36  | -1,19 |
| SL0639           | kdgT2        | 2-keto-3-deoxygluconate permease 2                           | -1,65 | -3,33 |
| SL0651           | gltL         | Glutamate/aspartate transport ATP-binding protein gltL       | 4,20  | 3,26  |
| SL0652           | gltK         | Glutamate/aspartate transport system permease protein gltK   | 2,67  | 2,42  |
| SL0653           | gltJ         | Glutamate/aspartate transport system permease protein gltJ   | 1,55  | 1,58  |
|                  |              |                                                              |       |       |

| SL0654 | gltl  | Glutamate/aspartate periplasmic-binding protein              | 2,61   | 1,58  |
|--------|-------|--------------------------------------------------------------|--------|-------|
| SL0667 | nagE  | PTS system N-acetylglucosamine-specific EIICBA component     | -1,53  | 1,39  |
| SL0671 | citA  | Citrate-proton symporter                                     | -1,37  | 1,56  |
| SL0682 | potE  | Putrescine-ornithine antiporter                              | 2,35   | -1,11 |
|        |       | •                                                            |        |       |
| SL0686 | kdpC  | Potassium-transporting ATPase C chain                        | 1,45   | 1,32  |
| SL0688 | kdpA  | Potassium-transporting ATPase A chain                        | 1,61   | -1,03 |
| SL0689 | ybfA  | Uncharacterized protein ybfA                                 | -1,93  | -1,87 |
| SL0691 | dtpD  | Dipeptide permease D                                         | 3,04   | -4,97 |
| SL0728 | tolR  | Protein tolR                                                 | 1,38   | -1,97 |
| SL0730 | tolB  | Protein tolB                                                 | 1,49   | 1,13  |
| SL0734 | pnuC  | Nicotinamide riboside transporter pnuC                       | -1.72  | 1,31  |
| SL0735 | zitB  | Zinc transporter zitB                                        | -2,06  | 1,09  |
| SL0745 | oadB2 | Oxaloacetate decarboxylase beta chain                        | 1,30   | 1,69  |
|        |       | •                                                            |        |       |
| SL0747 | fecD  | Putative ABC transporter permease protein MJ0087             | 2,46   | 1,24  |
| SL0748 | fhuC  | Iron(3+)-hydroxamate import ATP-binding protein fhuC         | 1,75   | 1,18  |
| SL0755 | modF  | Putative molybdenum transport ATP-binding protein modF       | -1,15  | -1,22 |
| SL0756 | modE  | Transcriptional regulator modE                               | 1,45   | -1,13 |
| SL0758 | modA  | Molybdate-binding periplasmic protein                        | -1,24  | -1,02 |
| SL0759 | modB  | Molybdenum transport system permease protein modB            | -1,51  | -1,52 |
| SL0760 | modC  | Molybdenum import ATP-binding protein ModC                   | -2,18  | -1,47 |
| SL0793 | ybhF  | Uncharacterized ABC transporter ATP-binding protein ybhF     | 1,03   | -2,64 |
| SL0794 | ybhG  | UPF0194 membrane protein CKO_02332                           | -1,01  | -2,11 |
| SL0802 |       |                                                              |        |       |
|        | ybiO  | Uncharacterized mscS family protein ybiO                     | 1,36   | -1,40 |
| SL0803 | glnQ  | Glutamine transport ATP-binding protein glnQ                 | 3,21   | -1,17 |
| SL0805 | glnH  | Glutamine-binding periplasmic protein                        | 3,04   | 1,24  |
| SL0813 | ybiT  | Uncharacterized ABC transporter ATP-binding protein ybiT     | 1,41   | -3,51 |
| SL0816 | ybiT  | Hypothetical Protein ybiT                                    | 1,11   | -1,50 |
| SL0825 | gsiB  | Glutathione-binding protein gsiB                             | 1,07   | 1,50  |
| SL0826 | gsiC  | Glutathione transport system permease protein gsiC           | 1,05   | 1,28  |
| SL0827 | gsiD  | Glutathione transport system permease protein gsiD           | 1,10   | 1,19  |
| SL0844 | ybjJ  | Inner membrane protein ybjJ                                  | 1,53   | -1,33 |
| SL0846 | ybjL  | Putative transport protein ybjb                              | 1,25   | -3,92 |
|        |       |                                                              |        |       |
| SL0854 | potF  | Putrescine-binding periplasmic protein                       | -1,01  | -1,24 |
| SL0856 | potH  | Putrescine transport system permease protein potH            | 1,37   | 1,11  |
| SL0857 | potl  | Putrescine transport system permease protein potl            | -1,03  | -1,34 |
| SL0861 | sgaB  | Phosphotransferase II B Component                            | -1,29  | -1,16 |
| SL0863 | artJ  | ABC transporter arginine-binding protein 1                   | 1,60   | -1,57 |
| SL0864 | artM  | Arginine ABC transporter permease protein ArtM               | 1,90   | -1,51 |
| SL0865 | artQ  | Arginine ABC transporter permease protein ArtQ               | 1,53   | -1,48 |
| SL0866 | artl  | Putative ABC transporter arginine-binding protein 2          | 1,33   | 1,07  |
| SL0867 | artP  | Arginine transport ATP-binding protein ArtP                  | 1,48   | -1,48 |
| SL0881 | macB  | Macrolide export ATP-binding/permease protein macB           | -1,32  | -3,32 |
| SL0894 |       | ATP-binding/permease protein cydC                            |        |       |
|        | cydC  |                                                              | 1,04   | -1,12 |
| SL0895 | cydD  | ATP-binding/permease protein cydD                            | -1,09  | -2,15 |
| SL0905 | ycaD  | Uncharacterized MFS-type transporter ycaD                    | -3,14  | -2,48 |
| SL0906 | ycaM  | Inner membrane transporter ycaM                              | -1,22  | 2,46  |
| SL0911 | focA  | Probable formate transporter 1                               | -1,13  | -3,08 |
| SL0921 | msbA  | Lipid A export ATP-binding/permease protein msbA             | 1,56   | -1,41 |
| SL0940 | yfIA  | putative transcriptional regulator, Lrp family               | 1,44   | 1,65  |
| SL1002 | uup   | ABC transporter ATP-binding protein uup                      | 2,58   | 1,36  |
| SL1017 | yccT  | UPF0319 protein yccT                                         | -1,39  | 1,22  |
| SL1046 | hpaX  | putative 4-hydroxyphenylacetate permease                     | 1,15   | 1,35  |
| SL1061 | прах  | Uncharacterized protein R02472                               | 1,58   | 3,52  |
|        | -<br> | •                                                            |        |       |
| SL1063 | putP  | Sodium/proline symporter                                     | 1,44   | 3,39  |
| SL1064 | phoH  | Protein phoH                                                 | -43,63 | -2,38 |
| SL1066 | sglT  | Sodium/glucose cotransporter                                 | -1,89  | -1,01 |
| SL1076 | csgG  | Curli production assembly/transport component csgG           | -1,23  | -2,40 |
| SL1078 | csgE  | Curli production assembly/transport component csgE           | -2,05  | -2,07 |
| SL1141 | fhuE  | FhuE receptor                                                | 1,03   | -1,36 |
| SL1154 | loIC  | Lipoprotein-releasing system transmembrane protein lolC      | 2,06   | -1,78 |
| SL1155 | loID  | Lipoprotein-releasing system ATP-binding protein LoID        | 1,88   | -1,69 |
| SL1156 | loIE  | Lipoprotein-releasing system transmembrane protein lolE      | 1,92   | -1,72 |
| SL1159 | potD  | Spermidine/putrescine-binding periplasmic protein            | 1,41   | -1,01 |
| SL1160 | potD  | Spermidine/putrescine transport system permease protein potC | 1,54   | -1,11 |
|        | •     |                                                              |        |       |
| SL1162 | potB  | Spermidine/putrescine transport system permease protein potB | 1,47   | 1,10  |
| SL1163 | potA  | Spermidine/putrescine import ATP-binding protein PotA        | 1,79   | 1,49  |
| SL1174 | -     | Hypothetical                                                 | 1,90   | 1,60  |
|        |       |                                                              |        |       |

| SL1185           | -            | Lysozyme Inhibitor                                                                                     | -1,17          | -1,77          |
|------------------|--------------|--------------------------------------------------------------------------------------------------------|----------------|----------------|
| SL1191           | xp55         | Protein XP55                                                                                           | 4,46           | 4,29           |
| SL1192           | dppB         | Putative peptide transport system permease protein BMEII0209                                           | 5,39           | 3,41           |
| SL1193           | nikC         | Putative peptide transport system permease protein                                                     | 3,80           | 1,93           |
| SL1195           | potA         | BruAb2_1032<br>Spermidine/putrescine import ATP-binding protein PotA                                   | 2,18           | 2,07           |
| SL1193<br>SL1198 | yodA         | Metal-binding protein yodA                                                                             | -1,14          | 2,07           |
| SL1205           | leuE         | Leucine efflux protein                                                                                 | -1,15          | -1,15          |
| SL1212           | -            | Hypothetical                                                                                           | -1,19          | -1,52          |
| SL1214           | yeaN         | Inner membrane transport protein yeaN                                                                  | 1,59           | -1,22          |
| SL1248           | celB         | N,N'-diacetylchitobiose permease IIC component                                                         | 1,58           | -1,52          |
|                  |              | N,N'-diacetylchitobiose-specific phosphotransferase enzyme IIA                                         |                |                |
| SL1249           | celC         | component                                                                                              | -1,00          | -1,96          |
| SL1255           | ydjN         | Uncharacterized symporter ydjN                                                                         | 1,50           | 1,84           |
| SL1274           | btuC         | Vitamin B12 import system permease protein BtuC                                                        | 1,75           | 1,16           |
| SL1275           | btuE         | Vitamin B12 transport periplasmic protein BtuE                                                         | 1,39           | 1,68           |
| SL1276           | btuD         | Vitamin B12 import ATP-binding protein BtuD                                                            | -1,08          | 1,42           |
| SL1294           | ydiN         | Inner membrane transport protein ydiN                                                                  | -1,96          | -1,80          |
| SL1295           | ydiN         | Inner membrane transport protein ydiN                                                                  | -1,02          | 1,02           |
| SL1296           | ydiM         | Inner membrane transport protein ydiM                                                                  | -1,88          | -1,30          |
| SL1302<br>SL1305 | ydjN<br>sufC | Uncharacterized symporter ydjN<br>Brabable ATB dependent transporter sufC                              | 1,78           | 8,97           |
| SL1305<br>SL1313 | puuP         | Probable ATP-dependent transporter sufC<br>Putrescine importer                                         | -1,67<br>-2,18 | -1,86<br>2,88  |
| SL1313<br>SL1357 | mdtK         | Multidrug resistance protein mdtK                                                                      | -1,46          | -2,08          |
| SL1360           | ydhC         | Inner membrane transport protein ydhC                                                                  | 1,21           | -8,66          |
| SL1374           | ydhJ         | Uncharacterized protein ydhJ                                                                           | 1,84           | -1,33          |
| SL1384           | dtpA         | Dipeptide and tripeptide permease A                                                                    | -1,11          | -1,35          |
| SL1403           | aepA         | Exoenzymes regulatory protein AepA                                                                     | -1,85          | -1,60          |
| SL1407           | ydgl         | Putative arginine/ornithine antiporter                                                                 | 1,22           | 1,44           |
| SL1412           | mdtJ         | Spermidine export protein mdtJ                                                                         | 1,38           | 2,91           |
| SL1413           | mdtl         | Spermidine export protein mdtl                                                                         | 1,14           | 2,62           |
| SL1416           | ynfM         | Inner membrane transport protein ynfM                                                                  | 1,25           | -1,07          |
| SL1420           | clcB         | Voltage-gated CIC-type chloride channel clcB                                                           | 2,09           | 1,29           |
| SL1421           | opuBA        | Choline transport ATP-binding protein opuBA                                                            | 1,21           | 2,34           |
| SL1423           | opuCC        | Glycine betaine/carnitine/choline-binding protein                                                      | 1,51           | 2,35           |
| SL1424           | opuCB        | Glycine betaine/carnitine/choline transport system permease                                            | 1,13           | 2,03           |
| SL1437           | -            | protein opuCB                                                                                          |                | 1,70           |
| SL1437<br>SL1446 | ydfJ<br>ydeE | Putative inner membrane metabolite transport protein ydfJ<br>Uncharacterized MFS-type transporter ydeE | 1,15<br>-2,20  | -1,51          |
| SL1448           | marB         | Multiple antibiotic resistance protein marB                                                            | 1,55           | 1,52           |
| SL1452           | sotB         | Probable sugar efflux transporter                                                                      | -1,53          | -7,72          |
| SL1472           | exuT         | Hexuronate transporter                                                                                 | -1,64          | 1,38           |
| SL1474           | tetA         | Tetracycline resistance protein, class G                                                               | 1,40           | 1,45           |
| SL1486           | -            | Uncharacterized Na(+)/H(+) antiporter HI_1107                                                          | 1,10           | 2,78           |
| SL1503           | ompD         | Outer membrane porin protein ompD                                                                      | 1,04           | 1,26           |
| SL1507           | narU         | Nitrite extrusion protein 2                                                                            | -1,39          | 1,61           |
| SL1515           | ansP         | L-asparagine permease                                                                                  | 1,62           | 2,67           |
| SL1517           | yncE         | Uncharacterized protein YncE                                                                           | -1,57          | -1,70          |
| SL1518           | yncD         | Probable tonB-dependent receptor yncD                                                                  | -2,51          | 1,20           |
| SL1521           | yncA         | Uncharacterized N-acetyltransferase yncA                                                               | -1,67          | -1,23          |
| SL1533           | yncJ         | Uncharacterized protein yncJ                                                                           | -2,31          | -2,27          |
| SL1536           | ydcO         | Inner membrane protein ydcO                                                                            | 1,62           | 1,56           |
| SL1539           | tehA         | Tellurite resistance protein tehA                                                                      | 1,74           | -1,43          |
| SL1543           | sgcB         | Putative phosphotransferase enzyme IIB component sgcB                                                  | -2,05          | 2,16           |
| SL1544<br>SL1546 | sgcC         | Putative permease IIC component<br>Putative phosphotransferase IIA component sgcA                      | -2,56<br>-2,17 | 1,92           |
| SL1540<br>SL1563 | sgcA<br>fliY | Cystine-binding periplasmic protein                                                                    | -2,17          | -1,02<br>1,14  |
|                  |              | Inner membrane amino-acid ABC transporter permease protein                                             |                |                |
| SL1564           | yecS         | vecS                                                                                                   | -1,14          | 1,01           |
| SL1565           | glnQ         | Glutamine transport ATP-binding protein glnQ                                                           | 1,08           | 1,16           |
| SL1566           | yecS         | Inner membrane amino-acid ABC transporter permease protein                                             | -1,36          | 1,02           |
|                  |              | yecS                                                                                                   |                |                |
| SL1587           | zntB         | Zinc transport protein zntB                                                                            | -1,03          | -1,09          |
| SL1609           | mppA         | Periplasmic murein peptide-binding protein                                                             | 1,81           | -1,22          |
| SL1613           | tyrR         | Transcriptional regulatory protein tyrR                                                                | 1,16           | -1,56          |
| SL1615<br>SL1622 | ycjX         | Uncharacterized protein ycjX<br>Peptide transport periplasmic protein sapA                             | 1,56<br>2,23   | 1,21<br>-1,17  |
| SL1622<br>SL1623 | sapA<br>sapB | Peptide transport perplasmic protein sapa<br>Peptide transport system permease protein sapB            | 2,23           | -1,17<br>-1,35 |
| 021020           | зарь         | · opido iranoport oyotom pormodoc protein sapo                                                         | 2,02           | 1,00           |

| SL1624           | sapC         | Peptide transport system permease protein sapC                          | 2,97         | -1,03         |
|------------------|--------------|-------------------------------------------------------------------------|--------------|---------------|
| SL1625           | sapD         | Peptide transport system ATP-binding protein sapD                       | 1,83         | -1,06         |
| SL1626           | sapF         | Peptide transport system ATP-binding protein sapF                       | 1,79         | 1,13          |
| SL1674           | oppD         | Oligopeptide transport ATP-binding protein oppD                         | -2,23        | -1,15         |
| SL1675           | oppC         | Oligopeptide transport system permease protein oppC                     | -2,56        | -1,45         |
| SL1676           | оррВ         | Oligopeptide transport system permease protein oppB                     | -2,74        | -1,34         |
| SL1693           | narK         | Nitrite extrusion protein 1                                             | 7,78         | 32,48         |
| SL1698           | chaB         | Cation transport regulator chaB                                         | -2,32        | 1,09          |
| SL1699           | chaA         | Calcium/proton antiporter                                               | 1,63         | -1,93         |
| SL1709           | ychM         | Putative sulfate transporter ychM                                       | 1,59         | -1,97         |
| SL1729           | cvrA         | Cell volume regulation protein A                                        | -3,15        | -3,26         |
| SL1734           | nhaB         | Na(+)/H(+) antiporter nhaB                                              | -1,07        | -1,70         |
| SL1759           | manX         | PTS system mannose-specific EIIAB component                             | -1,71        | 1,08          |
| SL1760           | manY         | Mannose permease IIC component                                          | -1,31        | -1,07         |
| SL1761           | manZ         | Mannose permease IID component                                          | -2,23        | -1,23         |
| SL1768           | yebO         | Uncharacterized protein yebO                                            | -1,89        | -2,49         |
| SL1772           | yebQ         | Uncharacterized transporter yebQ                                        | 1,49         | -3,40         |
| SL1808           | yebZ         | Inner membrane protein yebZ                                             | -1,12        | 1,11          |
| SL1865           | ftnB         | Ferritin-like protein 2                                                 | -1,11        | 2,31          |
| SL1868           | ftnA         | Ferritin-1                                                              | 1,09         | 2,47          |
| SL1870           | tyrP         | Tyrosine-specific transport protein                                     | 1,87         | 1,03          |
| SL1880           | yecC         | Uncharacterized amino-acid ABC transporter ATP-binding<br>protein yecC  | -1,24        | -1,41         |
| <u>.</u>         | •            | Inner membrane amino-acid ABC transporter permease protein              | 4.40         | 4             |
| SL1881           | yecS         | yecS                                                                    | -1,42        | -1,75         |
| SL1883           | fliY         | Cystine-binding periplasmic protein                                     | -2,60        | -1,21         |
| SL1981           | -            | Hypothetical                                                            | 1,07         | 1,84          |
| SL1983           | -            | Hypothetical                                                            | -1,67        | 1,06          |
| SL2045           | yeeF         | Inner membrane transport protein yeeF                                   | -1,06        | -2,44         |
| SL2106           | mdtD         | Putative multidrug resistance protein mdtD                              | 1,75         | -1,40         |
| SL2119           | yegT         | Putative nucleoside transporter yegT                                    | 1,83         | 2,44          |
| SL2141           | yehX         | Putative osmoprotectant uptake system ATP-binding protein               | -1,22        | 1,17          |
| 012111           | your         | yehX                                                                    | .,           | .,            |
| SL2143           | osmF         | Putative osmoprotectant uptake system substrate-binding protein<br>osmF | -1,08        | 1,90          |
| SL2150           | mdtQ         | Multidrug resistance outer membrane protein mdtQ                        | 1,99         | 1,16          |
| SL2165           | mglC         | Galactoside transport system permease protein mglC                      | -1,87        | 2,33          |
| SL2166           | mglA         | Galactose/methyl galactoside import ATP-binding protein MgIA            | -1,88        | 2,14          |
| SL2167           | mglB         | D-galactose-binding periplasmic protein                                 | -1,24        | 3,67          |
| SL2177           | lysP         | Lysine-specific permease                                                | 1,13         | -2,05         |
| SL2183           | fruB         | Multiphosphoryl transfer protein                                        | 1,01         | -2,11         |
| SL2184           | setB         | Sugar efflux transporter B                                              | 1,79         | -1,31         |
| SL2194           | yejB         | Inner membrane ABC transporter permease protein yejB                    | 1,10         | -1,95         |
| SL2195           | yejE         | Inner membrane ABC transporter permease protein yejE                    | 1,07         | -1,70         |
| SL2196           | yejF         | Uncharacterized ABC transporter ATP-binding protein yejF                | -1,45        | -1,53         |
| SL2198           | bcr          | Bicyclomycin resistance protein                                         | 1,25         | -1,81         |
| SL2224           | ccmA2        | Putative bifunctional cytochrome c-type biogenesis protein              | 1,48         | -1,22         |
|                  |              | ccmAE                                                                   |              |               |
| SL2233           | yojl         | ABC transporter ATP-binding protein yojl                                | -1,33        | -1,68         |
| SL2243           | ttuB         | Putative tartrate transporter                                           | -1,08        | 1,01          |
| SL2249           | ywoG         | Uncharacterized MFS-type transporter ywoG                               | -1,28        | 1,22          |
| SL2252           | glpT         | Glycerol-3-phosphate transporter                                        | 1,04         | 1,72          |
| SL2259           | yfaV<br>bioD | Inner membrane transport protein yfaV                                   | -1,88        | -1,64         |
| SL2320           | hisP         | Histidine transport ATP-binding protein hisP                            | 1,55         | -1,82         |
| SL2322           | hisQ         | Histidine transport system permease protein hisQ                        | 1,90         | -2,24         |
| SL2323<br>SL2326 | hisJ<br>rocC | Histidine-binding periplasmic protein<br>Amino-acid permease rocC       | 2,06<br>1,18 | -1,11<br>1,42 |
| SL2320<br>SL2328 | xasA         | Uncharacterized transporter lpg1691                                     | -1,18        | 1,91          |
| SL2320<br>SL2341 | yfcJ         | UPF0226 membrane protein SARI 00527                                     | 1,12         | 1,04          |
| SL2341<br>SL2345 | yic5<br>-    | Hypothetical                                                            | 1,31         | -1,23         |
| SL2351           | yfcA         | UPF0721 transmembrane protein yfcA                                      | 1,79         | 1,49          |
| SL2360           | fadL         | Long-chain fatty acid transport protein                                 | 2,35         | 7,03          |
| SL2362           | yfdC         | Inner membrane protein yfdC                                             | -1,79        | -3,14         |
| SL2367           | pgtP         | Phosphoglycerate transporter protein                                    | -1,52        | 1,38          |
| SL2372           | yfeO         | Putative ion-transport protein yfeO                                     | -1,78        | -1,53         |
| SL2374           | yghZ         | Uncharacterized protein yghZ                                            | -1,11        | -1,14         |
| SL2376           | mntH         | Manganese transport protein mntH                                        | -1,17        | -1,67         |
| SL2377           | nupC         | Nucleoside permease nupC                                                | 2,60         | 2,08          |
|                  |              |                                                                         |              |               |

| SL2384   | xapB  | Xanthosine permease                                          | -1,93 | -1.69 |
|----------|-------|--------------------------------------------------------------|-------|-------|
| SL2388   | yfeH  | Uncharacterized protein yfeH                                 | 1,37  | -1,12 |
|          | •     |                                                              |       |       |
| SL2392   | cysZ  | Protein cysZ homolog                                         | 1,58  | -2,07 |
| SL2395   | ptsl  | Phosphoenolpyruvate-protein phosphotransferase               | 1,38  | 1,32  |
| SL2396   | crr   | Glucose-specific phosphotransferase enzyme IIA component     | 1,23  | 1,26  |
| SL2401   | yfeK  | Uncharacterized protein yfeK                                 | 2,24  | -1,27 |
| SL2404   | cysA  | Sulfate/thiosulfate import ATP-binding protein cysA          | 1,29  | -1,07 |
| SL2405   | cysW  | Sulfate transport system permease protein cysW               | 1,29  | -1,26 |
| SL2406   | cysU  | Sulfate transport system permease protein cysT               | 1,36  | -1,10 |
| SL2400   |       |                                                              |       |       |
|          | cysP  | Thiosulfate-binding protein                                  | 1,05  | 1,12  |
| SL2444   | acrD  | Probable aminoglycoside efflux pump                          | 1,45  | -1,64 |
| SL2456   | perM  | Putative permease perM                                       | 1,28  | 1,48  |
| SL2460   | uraA  | Uracil permease                                              | 2,67  | 1,40  |
| SL2514   | -     | Uncharacterized protein HI_1249                              | 1,47  | 1,39  |
| SL2520   | cadB  | Probable cadaverine/lysine antiporter                        | -1,12 | 1,15  |
| SL2522   | yjdL  | Probable dipeptide and tripeptide permease YjdL              | -1,02 | 2,24  |
| SL2529   | yfhD  | Membrane-bound lytic murein transglycosylase F               | 1,96  | 1,16  |
|          | •     |                                                              |       |       |
| SL2536   | yhjX  | Inner membrane protein yhjX                                  | -1,07 | -1,36 |
| SL2609   | eamB  | Cysteine/O-acetylserine efflux protein                       | -1,36 | -4,44 |
| SL2618   | kgtP  | Alpha-ketoglutarate permease                                 | 1,22  | 1,46  |
| SL2629   | yfiR  | Uncharacterized protein yfiR                                 | 1,23  | -1,66 |
| SL2725   | -     | Hypothetical Protein SL2725                                  | -1,64 | 2,45  |
| SL2734   | srlA  | Glucitol/sorbitol permease IIC component                     | -1,98 | -1,30 |
| 012704   | SILA  | Glucitol/sorbitol-specific phosphotransferase enzyme IIA     |       |       |
| SL2735   | srlB  | component                                                    | -1,65 | 1,37  |
|          |       | Glucitol/sorbitol-specific phosphotransferase enzyme IIB     |       |       |
| SL2736   | srlE  |                                                              | -2,06 | -1,00 |
| 01.0707  |       | component                                                    |       |       |
| SL2737   | yrbE  | Uncharacterized oxidoreductase yrbE                          | -1,68 | -1,02 |
| SL2759   | iroC  | Putative multidrug export ATP-binding/permease protein       | -1,70 | -1,51 |
| SL2760   | iroD  | Enterochelin esterase                                        | -1,32 | -2,69 |
| SL2762   | iroN  | TonB-dependent outer membrane siderophore receptor protein   | -2,34 | -1,04 |
| SL2767   | hoxN  | High-affinity nickel transport protein                       | -2,12 | -2,78 |
| SL2777   | gabP  | GABA permease                                                | 1,13  | 1,51  |
| SL2780   | •     |                                                              | -2,21 | 1,26  |
|          | yqaE  | UPF0057 membrane protein yqaE                                |       |       |
| SL2794   | proV  | Glycine betaine/L-proline transport ATP-binding protein proV | -1,46 | -3,01 |
| SL2795   | proW  | Glycine betaine/L-proline transport system permease protein  | -1,45 | -2,21 |
|          | -     | proW                                                         |       |       |
| SL2797   | ygaY  | Uncharacterized transporter ygaY                             | 1,47  | -1,79 |
| SL2799   | emrA  | Multidrug resistance protein A                               | 2,07  | -1,46 |
| SL2800   | emrB  | Multidrug resistance protein B                               | 2,58  | -2,20 |
| SL2812   | srlA  | Glucitol/sorbitol permease IIC component                     | -5,89 | 1,61  |
| <u>.</u> |       | Glucitol/sorbitol-specific phosphotransferase enzyme IIB     |       |       |
| SL2813   | srlE  | component                                                    | -6,24 | 1,53  |
|          |       | Glucitol/sorbitol-specific phosphotransferase enzyme IIA     |       |       |
| SL2814   | srlB  | component                                                    | -7,11 | 1,32  |
| SL2824   | _     | Conserved Hypothetical Protein                               | 2,16  | 2,60  |
|          | vhoA  |                                                              |       |       |
| SL2890   | yhcA  | Uncharacterized MFS-type transporter yhcA                    | -1,07 | 1,38  |
| SL2892   | ygbN  | Uncharacterized permease HI_1015                             | -1,02 | -1,02 |
| SL2943   | gudP  | Probable glucarate transporter                               | 2,74  | 6,47  |
| SL2950   | sdaC  | Serine transporter                                           | 2,67  | 6,74  |
| SL2976   | ygdB  | Uncharacterized protein ygdB                                 | 2,23  | 1,70  |
| SL2981   | ptsP  | Phosphoenolpyruvate-protein phosphotransferase ptsP          | -1,44 | -1,84 |
| SL2984   | ygdQ  | UPF0053 inner membrane protein ygdQ                          | -1,47 | -3,45 |
| SL2987   | IpIT  | Lysophospholipid transporter lpIT                            | 1,04  |       |
|          |       |                                                              |       | 1,00  |
| SL2994   | araE  | Arabinose-proton symporter                                   | -1,10 | 2,27  |
| SL3000   | yqeG  | Inner membrane transport protein yqeG                        | 1,90  | -1,92 |
| SL3009   | yfdX  | Protein yfdX                                                 | -1,20 | -1,01 |
| SL3041   | yggE  | Uncharacterized protein yggE                                 | 1,40  | -1,89 |
| SL3042   | argO  | Arginine exporter protein ArgO                               | 1,54  | 3,40  |
| SL3050   | cbiO1 | Cobalt import ATP-binding protein CbiO 1                     | 3,90  | 4,71  |
| SL3066   | galP  | Galactose-proton symporter                                   | -1,63 | 1,88  |
|          | -     |                                                              |       |       |
| SL3080   | yggM  | Uncharacterized protein yggM                                 | 5,96  | 9,61  |
| SL3088   | nupG  | Nucleoside permease nupG                                     | 1,29  | 2,51  |
| SL3100   | steT  | Serine/threonine exchanger steT                              | -2,23 | -1,25 |
| SL3108   | exuT  | Hexuronate transporter                                       | -1,13 | 5,32  |
| SL3115   | _     | Uncharacterized protein PM1146                               | 1,88  | -1,15 |
| SL3116   | -     | Uncharacterized protein HI_1472                              | 4,30  | -1,24 |
| SL3132   | exbD  | Biopolymer transport protein exbD                            | 1,31  | -1,85 |
| 010102   | CYDD  |                                                              | 1,01  | -1,00 |

| SL3140         | yflS   | Putative malate transporter vflS                              | 1,53   | 1,09  |
|----------------|--------|---------------------------------------------------------------|--------|-------|
| SL3143         | yiiZ   | Uncharacterized protein yiiZ                                  | 1,61   | 3,36  |
|                | -      |                                                               |        |       |
| SL3144         | -      | C4-Dicarboxylate Transport System Permease Small Protein      | 1,26   | 2,47  |
| SL3187         | yqjH   | Uncharacterized protein yqjH                                  | -1,34  | 1,02  |
| SL3197         | alx    | Inner membrane protein alx                                    | -1,64  | -1,87 |
| SL3198         | sstT   | Serine/threonine transporter sstT                             | -1,72  | 2,18  |
|                |        | ·                                                             |        |       |
| SL3211         | yhaO   | Inner membrane transport protein yhaO                         | 1,03   | 3,93  |
| SL3215         | tdcC   | Threonine/serine transporter tdcC                             | -2,91  | 1,90  |
| SL3229         | fruB   | Multiphosphoryl transfer protein                              | -11,58 | -2,71 |
| SL3232         | gatB   | Galactitol-specific phosphotransferase enzyme IIB component   | -1,25  | 1,37  |
| SL3233         | gatC   | Galactitol permease IIC component                             | -1,71  | 1,61  |
|                |        |                                                               |        | •     |
| SL3252         | mtr    | Tryptophan-specific transport protein                         | 1,77   | -1,56 |
| SL3283         | mlaD   | Probable phospholipid ABC transporter-binding protein mlaD    | 1,57   | -1,20 |
| SL3284         | mlaE   | Probable phospholipid ABC transporter permease protein mlaE   | 2,23   | -1,66 |
| SL3285         | mlaF   | Probable phospholipid import ATP-binding protein mlaF         | 1,47   | -1,36 |
| SL3291         |        | Lipopolysaccharide export system ATP-binding protein lptB     |        |       |
|                | lptB   |                                                               | 1,62   | -1,41 |
| SL3296         | ptsO   | Phosphocarrier protein NPr                                    | 1,93   | 1,21  |
| SL3318         | yhcM   | Uncharacterized protein yhcM                                  | 1,40   | 1,05  |
| SL3319         | yhcB   | Putative cytochrome d ubiquinol oxidase subunit 3             | -1,00  | -1,11 |
| SL3323         | oadB1  | Oxaloacetate decarboxylase beta chain 1                       | 1,23   | 1,54  |
|                |        |                                                               |        |       |
| SL3324         | oadA   | Oxaloacetate decarboxylase alpha chain                        | -1,09  | 1,11  |
| SL3355         | panF   | Sodium/pantothenate symporter                                 | 1,75   | 1,42  |
| SL3360         | yhdU   | Uncharacterized protein yhdU                                  | 1,37   | 2,98  |
| SL3362         | envR   | Probable acrEF/envCD operon repressor                         | 1,01   | 1,05  |
|                | acrF   |                                                               | 1,12   | 1,13  |
| SL3364         |        | Acriflavine resistance protein F                              |        |       |
| SL3367         | yrdB   | Uncharacterized protein yrdB                                  | -1,22  | -1,45 |
| SL3376         | trkA   | Trk system potassium uptake protein trkA                      | -1,17  | -3,78 |
| SL3410         | bfr    | Bacterioferritin                                              | -2,43  | 1,39  |
| SL3424         | kefB   | Glutathione-regulated potassium-efflux system protein kefB    | 1,31   | -1,24 |
|                |        |                                                               |        |       |
| SL3426         | yheS   | Uncharacterized ABC transporter ATP-binding protein yheS      | 1,64   | 1,02  |
| SL3433         | crp    | Catabolite gene activator                                     | 1,47   | 1,06  |
| SL3440         | tsgA   | Protein tsgA                                                  | 1,51   | -3,97 |
| SL3472         | feoA   | Ferrous iron transport protein A                              | 1,37   | -1,31 |
| SL3473         | feoB   |                                                               |        |       |
|                |        | Ferrous iron transport protein B                              | -1,74  | -1,62 |
| SL3479         | gntT   | High-affinity gluconate transporter                           | 2,71   | 2,48  |
| SL3520         | ugpC   | sn-glycerol-3-phosphate import ATP-binding protein UgpC       | 1,09   | 1,88  |
| 01.0504        |        | sn-glycerol-3-phosphate transport system permease protein     | 4 45   |       |
| SL3521         | ugpE   | ugpE                                                          | -1,45  | 1,31  |
|                |        | sn-glycerol-3-phosphate transport system permease protein     |        |       |
| SL3522         | ugpA   | ugpA                                                          | -1,02  | 1,19  |
| SL3523         | uanP   |                                                               | -1,12  | 3,38  |
| 313023         | ugpB   | sn-glycerol-3-phosphate-binding periplasmic protein ugpB      | -1,12  | 3,30  |
| SL3526         | livF   | High-affinity branched-chain amino acid transport ATP-binding | -1,59  | 1,02  |
|                |        | protein livF                                                  | .,     | .,•=  |
| SL3527         | livG   | High-affinity branched-chain amino acid transport ATP-binding | -1,88  | -1,07 |
| 010027         | 1100   | protein livG                                                  | -1,00  | -1,07 |
| SL3528         | 15.484 | High-affinity branched-chain amino acid transport system      | 1 70   | 1 01  |
| SL3520         | livM   | permease protein livM                                         | -1,73  | -1,01 |
| <u>.</u>       |        | High-affinity branched-chain amino acid transport system      | 4 40   | 4.05  |
| SL3529         | livH   | permease protein livH                                         | -1,43  | 1,35  |
| SL3532         | livJ   | Leu/Ile/Val-binding protein                                   | 1,13   | 1,76  |
|                |        |                                                               |        |       |
| SL3541         | zntA   | Lead, cadmium, zinc and mercury-transporting ATPase           | 1,04   | -1,05 |
| SL3546         | yhhS   | UPF0226 membrane protein SEN3404                              | -1,11  | -1,01 |
| SL3550         | yhhJ   | Inner membrane transport permease yhhJ                        | -2,43  | -1,11 |
| SL3551         | yhiH   | Uncharacterized ABC transporter ATP-binding protein yhiH      | -2,51  | -1,32 |
| SL3552         | -      | Uncharacterized protein yhil                                  |        | 1,15  |
|                | yhil   |                                                               | -1,45  |       |
| SL3554         | pitA   | Low-affinity inorganic phosphate transporter 1                | 1,52   | -1,17 |
| SL3557         | dtpB   | Dipeptide and tripeptide permease B                           | -1,10  | 2,86  |
| SL3564         | dcuB   | Anaerobic C4-dicarboxylate transporter dcuB                   | 2,03   | 25,68 |
| SL3574         | yhjE   | Inner membrane metabolite transport protein yhjE              | -1,32  | -1,07 |
|                |        |                                                               |        |       |
| SL3579         | dctA   | C4-dicarboxylate transport protein                            | 2,15   | 8,22  |
| SL3591         | yhjV   | Inner membrane transport protein yhjV                         | 1,42   | 1,39  |
| SL3593         | dppD   | Dipeptide transport ATP-binding protein dppD                  | -6,29  | -4,77 |
| SL3594         | dppC   | Dipeptide transport system permease protein dppC              | -7,27  | -6,99 |
| SL3595         |        |                                                               |        | -7,97 |
|                | dppB   | Dipeptide transport system permease protein dppB              | -8,43  |       |
| SL3597         | pucK   | Uric acid permease pucK                                       | 1,10   | 1,70  |
| SL3616         | -      | Hypothetical                                                  | -1,53  | -1,99 |
| <b>CI 2626</b> |        | 2,3-diketo-L-gulonate TRAP transporter small permease protein |        |       |
| SL3636         | yiaM   | yiaM                                                          | -1,04  | 1,14  |
| SL3638         | yiaO   | 2,3-diketo-L-gulonate-binding periplasmic protein yiaO        | -1,22  | 1,64  |
|                | ,      | ,                                                             | · ,——  | .,    |
|                |        |                                                               |        |       |

| SL3650           | mtlA         | PTS system mannitol-specific EIICBA component               | 1,08  | 2,62  |
|------------------|--------------|-------------------------------------------------------------|-------|-------|
| SL3657           | lldP         | L-lactate permease                                          | 1,13  | 1,21  |
| SL3662           | mdlA         | Mandelate racemase                                          | 1,59  | 2,01  |
| SL3663           | gudP         | Probable glucarate transporter                              | -1,06 | 2,07  |
| SL3672           | yibQ         | Uncharacterized protein yibQ                                | 1,31  | -1,80 |
| SL3712           | gltS         | Sodium/glutamate symport carrier protein                    | 1,88  |       |
|                  | -            | ÷ • • •                                                     |       | 3,17  |
| SL3713           | xanP         | Xanthine permease XanP                                      | 1,26  | 3,94  |
| SL3716           | yicJ         | Inner membrane symporter yicJ                               | 1,29  | 1,46  |
| SL3734           | manZ         | Mannose permease IID component                              | -1,35 | 1,73  |
| SL3737           | manX         | PTS System Fructose Subfamily IIA Component                 | -1,55 | 2,74  |
| SL3748           | gatC         | Galactitol permease IIC component                           | -2,47 | 1,09  |
| SL3749           | gatB         | Galactitol-specific phosphotransferase enzyme IIB component | -1,90 | 1,48  |
| SL3750           | gatA         | PTS IIA-Like Nitrogen-Regulatory Protein PtsN               | -1,44 | 2,98  |
| SL3753           | uhpT         | Hexose phosphate transport protein                          | 1,10  | 3,98  |
| SL3755           | uhpB         | Sensor protein uhpB                                         | 2,11  | 1,43  |
| SL3756           | uhpA         | Transcriptional regulatory protein uhpA                     | 1,70  | 1,70  |
| SL3758           | fucP         | L-fucose-proton symporter                                   | -3,82 | 1,27  |
| SL3766           | emrD         | Multidrug resistance protein D                              | 1,38  | 2,07  |
| SL3767           | -            | Hypothetical                                                | 1,02  | 2,56  |
| SL3769           | dsdX         | DsdX permease                                               | -1,20 | 1,29  |
| SL3774           | yidE         | Putative transport protein CKO_00031                        | 1,83  | 3,18  |
|                  |              |                                                             |       |       |
| SL3782           | ccmE1        | Cytochrome c-type biogenesis protein ccmE 1                 | 3,70  | 1,04  |
| SL3783           | ccmC         | Heme exporter protein C                                     | 3,00  | -1,09 |
| SL3783           | ccmC         | Heme exporter protein C                                     | 3,00  | -1,09 |
| SL3784           | ccmB         | Heme exporter protein B                                     | 2,72  | -1,35 |
| SL3784           | ccmB         | Heme exporter protein B                                     | 2,72  | -1,35 |
| SL3785           | ccmAE        | Putative bifunctional cytochrome c-type biogenesis protein  | 1,04  | -1,29 |
|                  |              | ccmAE                                                       |       |       |
| SL3793           | dgoT         | D-galactonate transporter                                   | 1,32  | 1,12  |
| SL3799           | gudP         | Probable glucarate transporter                              | -1,29 | 1,54  |
| SL3814           | mdtL         | Multidrug resistance protein mdtL                           | -1,16 | -1,22 |
| SL3821           | pstB         | Phosphate import ATP-binding protein pstB                   | 1,41  | 1,29  |
| SL3822           | pstA         | Phosphate transport system permease protein pstA            | 1,26  | -1,98 |
| SL3823           | pstC         | Phosphate transport system permease protein pstC            | -1,12 | -2,12 |
| SL3824           | pstS         | Phosphate-binding protein pstS                              | -1,81 | -2,30 |
| SL3825           | fruA         | PTS system fructose-specific EIIBC component                | 1,27  | 1,82  |
| SL3827           |              |                                                             |       |       |
|                  | sgrR         | HTH-type transcriptional regulator sgrR                     | 1,65  | 1,37  |
| SL3830           | -            | Hypothetical                                                | 1,41  | -1,08 |
| SL3847           | kup          | Low affinity potassium transport system protein kup         | 1,51  | -1,57 |
| SL3848           | rbsD         | D-ribose pyranase                                           | -1,13 | -4,44 |
| SL3849           | rbsA1        | Ribose import ATP-binding protein RbsA 1                    | 1,12  | -4,19 |
| SL3850           | rbsC         | Ribose transport system permease protein rbsC               | 1,02  | -2,24 |
| SL3851           | rbsB         | D-ribose-binding periplasmic protein                        | -1,18 | 1,19  |
| SL3889           | yifK         | Probable transport protein yifK                             | -1,05 | 3,81  |
| SL3906           | corA         | Magnesium transport protein corA                            | -1,11 | -1,38 |
| SL3917           | yigM         | Uncharacterized membrane protein yigM                       | 1,60  | -1,33 |
| SL3928           | tatB         | Sec-independent protein translocase protein tatB homolog    | 1,57  | 1,74  |
| SL3939           | trkH         | Trk system potassium uptake protein trkH                    | 1,65  | -1,01 |
| SL3960           | -            | Hypothetical                                                | -1,58 | -1,45 |
| SL3963           | yihO         | Uncharacterized symporter yihO                              | -1,48 | 1,24  |
| SL3964           | yihP         | Inner membrane symporter yihP                               | -1,18 | 1,15  |
|                  | •            |                                                             |       |       |
| SL3999           | rhaT         | L-rhamnose-proton symporter                                 | 1,09  | 1,59  |
| SL4002           | yiaM         | Tripartite ATP-Independent Periplasmic Transporter DctQ     | 1,54  | 1,63  |
| SL4003           | yiiZ         | Uncharacterized protein yiiZ                                | -1,40 | 1,13  |
| SL4010           | fieF         | Cation-efflux pump fieF                                     | 1,49  | -1,18 |
| SL4012           | sbp          | Sulfate-binding protein                                     | 1,02  | 1,01  |
| SL4014           | yagG         | Uncharacterized symporter yagG                              | 1,28  | 2,24  |
| SL4018           | -            | Hypothetical                                                | 1,33  | -1,09 |
| SL4022           | IsrR         | Transcriptional regulator IsrR                              | 2,77  | 3,64  |
| SL4023           | IsrA         | Autoinducer 2 import ATP-binding protein IsrA               | 2,75  | 22,29 |
| SL4024           | lsrC         | Autoinducer 2 import system permease protein IsrC           | -1,40 | 5,57  |
| SL4025           | lsrD         | Autoinducer 2 import system permease protein IsrD           | -1,87 | 2,42  |
| SL4026           | IsrB         | Autoinducer 2-binding protein IsrB                          | -3,11 | -1,79 |
| SL4020<br>SL4036 | glpF         | Glycerol uptake facilitator protein                         | -1,98 | 1,96  |
| SL4030<br>SL4060 |              | Multiphosphoryl transfer protein 2                          | -1,98 | 1,37  |
|                  | ptsA<br>frwC |                                                             |       |       |
| SL4061           | frwC         | Fructose-like permease IIC component 2                      | 1,86  | 17,80 |
| SL4062           | frwB         | Fructose-like phosphotransferase enzyme IIB component 2     | 1,28  | 7,78  |

| SL4079                                                                                                                                                                                                                                                                                                             | btuB                                                                                                                                                                                                                      | Vitamin B12 transporter BtuB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,32                                                                                                                                                                                                                                             | 1,18                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SL4124                                                                                                                                                                                                                                                                                                             | yjbB                                                                                                                                                                                                                      | Uncharacterized protein yjbB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,05                                                                                                                                                                                                                                             | -1,05                                                                                                                                                                                                                                                                 |
| SL4163                                                                                                                                                                                                                                                                                                             | malG                                                                                                                                                                                                                      | Maltose transport system permease protein malG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -4,46                                                                                                                                                                                                                                            | 1,84                                                                                                                                                                                                                                                                  |
| SL4164                                                                                                                                                                                                                                                                                                             | malF                                                                                                                                                                                                                      | Maltose transport system permease protein malF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -3,99                                                                                                                                                                                                                                            | 4,45                                                                                                                                                                                                                                                                  |
| SL4167                                                                                                                                                                                                                                                                                                             | malK                                                                                                                                                                                                                      | Maltose/maltodextrin import ATP-binding protein MalK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -3,69                                                                                                                                                                                                                                            | 12,13                                                                                                                                                                                                                                                                 |
| SL4168                                                                                                                                                                                                                                                                                                             | lamB                                                                                                                                                                                                                      | Maltoporin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1,47                                                                                                                                                                                                                                            | 2,16                                                                                                                                                                                                                                                                  |
| SL4205<br>SL4209                                                                                                                                                                                                                                                                                                   | yjcE<br>actP                                                                                                                                                                                                              | Uncharacterized Na(+)/H(+) exchanger yjcE<br>Cation/acetate symporter ActP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1,60<br>1,88                                                                                                                                                                                                                                    | -2,73<br>2,48                                                                                                                                                                                                                                                         |
| SL4209<br>SL4219                                                                                                                                                                                                                                                                                                   | gltP                                                                                                                                                                                                                      | Proton glutamate symport protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,88                                                                                                                                                                                                                                             | 1,02                                                                                                                                                                                                                                                                  |
| SL4227                                                                                                                                                                                                                                                                                                             | proP                                                                                                                                                                                                                      | Proline/betaine transporter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,22                                                                                                                                                                                                                                             | -1,61                                                                                                                                                                                                                                                                 |
| SL4231                                                                                                                                                                                                                                                                                                             | adiC                                                                                                                                                                                                                      | Arginine/agmatine antiporter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1,10                                                                                                                                                                                                                                            | 1,36                                                                                                                                                                                                                                                                  |
| SL4236                                                                                                                                                                                                                                                                                                             | melB                                                                                                                                                                                                                      | Melibiose carrier protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -9,49                                                                                                                                                                                                                                            | 1,17                                                                                                                                                                                                                                                                  |
| SL4238                                                                                                                                                                                                                                                                                                             | dcuB                                                                                                                                                                                                                      | Anaerobic C4-dicarboxylate transporter dcuB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2,43                                                                                                                                                                                                                                            | -9,28                                                                                                                                                                                                                                                                 |
| SL4246                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                         | putative periplasmic or exported protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1,41                                                                                                                                                                                                                                            | -1,12                                                                                                                                                                                                                                                                 |
| SL4262                                                                                                                                                                                                                                                                                                             | dcuA                                                                                                                                                                                                                      | Anaerobic C4-dicarboxylate transporter dcuA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1,14                                                                                                                                                                                                                                            | 1,00                                                                                                                                                                                                                                                                  |
| SL4265                                                                                                                                                                                                                                                                                                             | yjeH                                                                                                                                                                                                                      | Inner membrane protein yjeH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1,11                                                                                                                                                                                                                                            | -1,36                                                                                                                                                                                                                                                                 |
| SL4282                                                                                                                                                                                                                                                                                                             | yjeM                                                                                                                                                                                                                      | Inner membrane transporter yjeM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,32                                                                                                                                                                                                                                             | -2,23                                                                                                                                                                                                                                                                 |
| SL4284                                                                                                                                                                                                                                                                                                             | yjeP                                                                                                                                                                                                                      | Uncharacterized mscS family protein yjeP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,62                                                                                                                                                                                                                                             | -1,02                                                                                                                                                                                                                                                                 |
| SL4288<br>SL4317                                                                                                                                                                                                                                                                                                   | artJ                                                                                                                                                                                                                      | ABC transporter arginine-binding protein 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1,45                                                                                                                                                                                                                                            | -1,25                                                                                                                                                                                                                                                                 |
| SL4317<br>SL4318                                                                                                                                                                                                                                                                                                   | ulaB<br>ulaC                                                                                                                                                                                                              | Ascorbate-specific phosphotransferase enzyme IIB component<br>Ascorbate-specific phosphotransferase enzyme IIA component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,77                                                                                                                                                                                                                                             | 2,92                                                                                                                                                                                                                                                                  |
| SL4318<br>SL4331                                                                                                                                                                                                                                                                                                   | cycA                                                                                                                                                                                                                      | D-serine/D-alanine/glycine transporter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,60<br>-1,37                                                                                                                                                                                                                                    | 2,55<br>-1,04                                                                                                                                                                                                                                                         |
| SL4345                                                                                                                                                                                                                                                                                                             | dgoT                                                                                                                                                                                                                      | D-galactonate transporter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,20                                                                                                                                                                                                                                             | 1,50                                                                                                                                                                                                                                                                  |
| SL4351                                                                                                                                                                                                                                                                                                             | xylE                                                                                                                                                                                                                      | D-xylose-proton symporter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2,11                                                                                                                                                                                                                                            | 1,22                                                                                                                                                                                                                                                                  |
| SL4352                                                                                                                                                                                                                                                                                                             | xylE                                                                                                                                                                                                                      | D-xylose-proton symporter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1,61                                                                                                                                                                                                                                            | 1,08                                                                                                                                                                                                                                                                  |
| SL4360                                                                                                                                                                                                                                                                                                             | yfcJ                                                                                                                                                                                                                      | UPF0226 protein STM4428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,07                                                                                                                                                                                                                                             | 1,39                                                                                                                                                                                                                                                                  |
| SL4363                                                                                                                                                                                                                                                                                                             | yrbE                                                                                                                                                                                                                      | Uncharacterized oxidoreductase yrbE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1,08                                                                                                                                                                                                                                            | 1,10                                                                                                                                                                                                                                                                  |
| SL4364                                                                                                                                                                                                                                                                                                             | csbX                                                                                                                                                                                                                      | Alpha-ketoglutarate permease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1,17                                                                                                                                                                                                                                            | 1,07                                                                                                                                                                                                                                                                  |
| SL4387                                                                                                                                                                                                                                                                                                             | mgtA                                                                                                                                                                                                                      | Magnesium-transporting ATPase, P-type 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,52                                                                                                                                                                                                                                             | -2,79                                                                                                                                                                                                                                                                 |
| SL4409                                                                                                                                                                                                                                                                                                             | lptF                                                                                                                                                                                                                      | Lipopolysaccharide export system permease protein lptF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,64                                                                                                                                                                                                                                             | -2,03                                                                                                                                                                                                                                                                 |
| SL4412                                                                                                                                                                                                                                                                                                             | idnT                                                                                                                                                                                                                      | Gnt-II system L-idonate transporter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1,32                                                                                                                                                                                                                                            | 1,46                                                                                                                                                                                                                                                                  |
| SL4444                                                                                                                                                                                                                                                                                                             | yjiG                                                                                                                                                                                                                      | Inner membrane protein yjiG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2,57                                                                                                                                                                                                                                            | 1,71                                                                                                                                                                                                                                                                  |
| SL4446<br>SL4466                                                                                                                                                                                                                                                                                                   | yjiJ<br>manX                                                                                                                                                                                                              | Uncharacterized protein yjiJ<br>PTS System Fructocific IIA Component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,05                                                                                                                                                                                                                                             | -1,80<br>5,24                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1,58                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                       |
| SL4467                                                                                                                                                                                                                                                                                                             | manX                                                                                                                                                                                                                      | Probable phosphotransferase enzyme IIB component<br>M6 Spy0801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1,29                                                                                                                                                                                                                                            | 4,12                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                           | Probable phosphotransferase enzyme IIB component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                       |
| SL4467                                                                                                                                                                                                                                                                                                             | manX                                                                                                                                                                                                                      | Probable phosphotransferase enzyme IIB component<br>M6_Spy0801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1,29                                                                                                                                                                                                                                            | 4,12                                                                                                                                                                                                                                                                  |
| SL4467                                                                                                                                                                                                                                                                                                             | manX                                                                                                                                                                                                                      | Probable phosphotransferase enzyme IIB component<br>M6_Spy0801<br>Mannose permease IID component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1,29                                                                                                                                                                                                                                            | 4,12<br>2,92                                                                                                                                                                                                                                                          |
| SL4467<br>SL4469                                                                                                                                                                                                                                                                                                   | manX<br>manZ                                                                                                                                                                                                              | Probable phosphotransferase enzyme IIB component<br>M6_Spy0801<br>Mannose permease IID component<br><b>Unclassified</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1,29<br>-1,23                                                                                                                                                                                                                                   | 4,12                                                                                                                                                                                                                                                                  |
| SL4467<br>SL4469<br>SL0013                                                                                                                                                                                                                                                                                         | manX<br>manZ<br>dnaJ                                                                                                                                                                                                      | Probable phosphotransferase enzyme IIB component<br>M6_Spy0801<br>Mannose permease IID component<br>Unclassified<br>Chaperone protein dnaJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1,29<br>-1,23<br>4,05<br>1,36<br>1,22                                                                                                                                                                                                           | 4,12<br>2,92<br>-1,56<br>1,39<br>1,08                                                                                                                                                                                                                                 |
| SL4467<br>SL4469<br>SL0013<br>SL0016<br>SL0017<br>SL0090                                                                                                                                                                                                                                                           | manX<br>manZ<br>dnaJ<br>-<br>yqel<br>apaG                                                                                                                                                                                 | Probable phosphotransferase enzyme IIB component<br>M6_Spy0801<br>Mannose permease IID component<br>Unclassified<br>Chaperone protein dnaJ<br>Hypothetical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1,29<br>-1,23<br>4,05<br>1,36<br>1,22<br>1,56                                                                                                                                                                                                   | 4,12<br>2,92<br>-1,56<br>1,39<br>1,08<br>-1,34                                                                                                                                                                                                                        |
| SL4467<br>SL4469<br>SL0013<br>SL0016<br>SL0017<br>SL0090<br>SL0104                                                                                                                                                                                                                                                 | manX<br>manZ<br>dnaJ<br>-<br>yqel<br>apaG<br>araC                                                                                                                                                                         | Probable phosphotransferase enzyme IIB component<br>M6_Spy0801<br>Mannose permease IID component<br>Unclassified<br>Chaperone protein dnaJ<br>Hypothetical<br>Hypothetical<br>Protein ApaG<br>Arabinose operon regulatory protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1,29<br>-1,23<br>4,05<br>1,36<br>1,22<br>1,56<br>1,73                                                                                                                                                                                           | 4,12<br>2,92<br>-1,56<br>1,39<br>1,08<br>-1,34<br>9,28                                                                                                                                                                                                                |
| SL4467<br>SL4469<br>SL0013<br>SL0016<br>SL0017<br>SL0090<br>SL0104<br>SL0175                                                                                                                                                                                                                                       | manX<br>manZ<br>dnaJ<br>-<br>yqel<br>apaG<br>araC<br>lpfD                                                                                                                                                                 | Probable phosphotransferase enzyme IIB component<br>M6_Spy0801<br>Mannose permease IID component<br><b>Unclassified</b><br>Chaperone protein dnaJ<br>Hypothetical<br>Hypothetical<br>Protein ApaG<br>Arabinose operon regulatory protein<br>Protein lpfD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1,29<br>-1,23<br>4,05<br>1,36<br>1,22<br>1,56<br>1,73<br>1,26                                                                                                                                                                                   | 4,12<br>2,92<br>-1,56<br>1,39<br>1,08<br>-1,34<br>9,28<br>-1,25                                                                                                                                                                                                       |
| SL4467<br>SL4469<br>SL0013<br>SL0016<br>SL0017<br>SL0090<br>SL0104<br>SL0175<br>SL0176                                                                                                                                                                                                                             | manX<br>manZ<br>dnaJ<br>-<br>yqel<br>apaG<br>araC<br>lpfD<br>lpfC                                                                                                                                                         | Probable phosphotransferase enzyme IIB component<br>M6_Spy0801<br>Mannose permease IID component<br><b>Unclassified</b><br>Chaperone protein dnaJ<br>Hypothetical<br>Hypothetical<br>Protein ApaG<br>Arabinose operon regulatory protein<br>Protein lpfD<br>Outer membrane usher protein lpfC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1,29<br>-1,23<br>4,05<br>1,36<br>1,22<br>1,56<br>1,73<br>1,26<br>1,15                                                                                                                                                                           | 4,12<br>2,92<br>-1,56<br>1,39<br>1,08<br>-1,34<br>9,28<br>-1,25<br>-1,04                                                                                                                                                                                              |
| SL4467<br>SL4469<br>SL0013<br>SL0016<br>SL0017<br>SL0090<br>SL0104<br>SL0175<br>SL0176<br>SL0178                                                                                                                                                                                                                   | manX<br>manZ<br>dnaJ<br>-<br>yqel<br>apaG<br>araC<br>lpfD<br>lpfC<br>fimF                                                                                                                                                 | Probable phosphotransferase enzyme IIB component<br>M6_Spy0801<br>Mannose permease IID component<br><b>Unclassified</b><br>Chaperone protein dnaJ<br>Hypothetical<br>Hypothetical<br>Protein ApaG<br>Arabinose operon regulatory protein<br>Protein lpfD<br>Outer membrane usher protein lpfC<br>Fimbrial subunit type 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1,29<br>-1,23<br>4,05<br>1,36<br>1,22<br>1,56<br>1,73<br>1,26<br>1,15<br>1,02                                                                                                                                                                   | 4,12<br>2,92<br>-1,56<br>1,39<br>1,08<br>-1,34<br>9,28<br>-1,25<br>-1,04<br>2,50                                                                                                                                                                                      |
| SL4467<br>SL4469<br>SL0013<br>SL0016<br>SL0017<br>SL0090<br>SL0104<br>SL0175<br>SL0176<br>SL0178<br>SL0195                                                                                                                                                                                                         | manX<br>manZ<br>dnaJ<br>-<br>yqel<br>apaG<br>araC<br>lpfD<br>lpfC<br>fimF<br>fhuB                                                                                                                                         | Probable phosphotransferase enzyme IIB component<br>M6_Spy0801<br>Mannose permease IID component<br><b>Unclassified</b><br>Chaperone protein dnaJ<br>Hypothetical<br>Hypothetical<br>Protein ApaG<br>Arabinose operon regulatory protein<br>Protein lpfD<br>Outer membrane usher protein lpfC<br>Fimbrial subunit type 1<br>Iron(3+)-hydroxamate import system permease protein fhuB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1,29<br>-1,23<br>4,05<br>1,36<br>1,22<br>1,56<br>1,73<br>1,26<br>1,15<br>1,02<br>1,09                                                                                                                                                           | 4,12<br>2,92<br>-1,56<br>1,39<br>1,08<br>-1,34<br>9,28<br>-1,25<br>-1,04<br>2,50<br>-1,13                                                                                                                                                                             |
| SL4467<br>SL4469<br>SL0013<br>SL0016<br>SL0017<br>SL0090<br>SL0104<br>SL0175<br>SL0176<br>SL0178<br>SL0195<br>SL0205                                                                                                                                                                                               | manX<br>manZ<br>dnaJ<br>-<br>yqel<br>apaG<br>araC<br>lpfD<br>lpfC<br>fimF<br>fhuB<br>erpA                                                                                                                                 | Probable phosphotransferase enzyme IIB component<br>M6_Spy0801<br>Mannose permease IID component<br><b>Unclassified</b><br>Chaperone protein dnaJ<br>Hypothetical<br>Hypothetical<br>Protein ApaG<br>Arabinose operon regulatory protein<br>Protein lpfD<br>Outer membrane usher protein lpfC<br>Fimbrial subunit type 1<br>Iron(3+)-hydroxamate import system permease protein fhuB<br>Iron-sulfur cluster insertion protein erpA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1,29<br>-1,23<br>4,05<br>1,36<br>1,22<br>1,56<br>1,73<br>1,26<br>1,15<br>1,02<br>1,09<br>-1,04                                                                                                                                                  | 4,12<br>2,92<br>-1,56<br>1,39<br>1,08<br>-1,34<br>9,28<br>-1,25<br>-1,04<br>2,50<br>-1,13<br>-1,06                                                                                                                                                                    |
| SL4467<br>SL4469<br>SL0013<br>SL0016<br>SL0017<br>SL0090<br>SL0104<br>SL0175<br>SL0176<br>SL0176<br>SL0178<br>SL0195<br>SL0205<br>SL0254                                                                                                                                                                           | manX<br>manZ<br>dnaJ<br>-<br>yqel<br>apaG<br>araC<br>lpfD<br>lpfC<br>fimF<br>fhuB<br>erpA<br>yafE                                                                                                                         | Probable phosphotransferase enzyme IIB component<br>M6_Spy0801<br>Mannose permease IID component<br><b>Unclassified</b><br>Chaperone protein dnaJ<br>Hypothetical<br>Hypothetical<br>Protein ApaG<br>Arabinose operon regulatory protein<br>Protein lpfD<br>Outer membrane usher protein lpfC<br>Fimbrial subunit type 1<br>Iron(3+)-hydroxamate import system permease protein fhuB<br>Iron-sulfur cluster insertion protein erpA<br>Uncharacterized protein yafE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1,29<br>-1,23<br>4,05<br>1,36<br>1,22<br>1,56<br>1,73<br>1,26<br>1,15<br>1,02<br>1,09<br>-1,04<br>-1,12                                                                                                                                         | 4,12<br>2,92<br>-1,56<br>1,39<br>1,08<br>-1,34<br>9,28<br>-1,25<br>-1,04<br>2,50<br>-1,13<br>-1,06<br>-1,17                                                                                                                                                           |
| SL4467<br>SL4469<br>SL0013<br>SL0016<br>SL0017<br>SL0090<br>SL0104<br>SL0175<br>SL0176<br>SL0176<br>SL0178<br>SL0195<br>SL0255<br>SL0254<br>SL0279                                                                                                                                                                 | manX<br>manZ<br>dnaJ<br>-<br>yqel<br>apaG<br>araC<br>lpfD<br>lpfC<br>fimF<br>fhuB<br>erpA<br>yafE<br>sciR                                                                                                                 | Probable phosphotransferase enzyme IIB component<br>M6_Spy0801<br>Mannose permease IID component<br><b>Unclassified</b><br>Chaperone protein dnaJ<br>Hypothetical<br>Hypothetical<br>Protein ApaG<br>Arabinose operon regulatory protein<br>Protein lpfD<br>Outer membrane usher protein lpfC<br>Fimbrial subunit type 1<br>Iron(3+)-hydroxamate import system permease protein fhuB<br>Iron-sulfur cluster insertion protein erpA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1,29<br>-1,23<br>4,05<br>1,36<br>1,22<br>1,56<br>1,73<br>1,26<br>1,15<br>1,02<br>1,09<br>-1,04<br>-1,12<br>1,46                                                                                                                                 | 4,12<br>2,92<br>-1,56<br>1,39<br>1,08<br>-1,34<br>9,28<br>-1,25<br>-1,04<br>2,50<br>-1,13<br>-1,06<br>-1,17<br>-1,10                                                                                                                                                  |
| SL4467<br>SL4469<br>SL0013<br>SL0016<br>SL0017<br>SL0090<br>SL0104<br>SL0175<br>SL0176<br>SL0176<br>SL0178<br>SL0195<br>SL0205<br>SL0254<br>SL0279<br>SL0280                                                                                                                                                       | manX<br>manZ<br>dnaJ<br>-<br>yqel<br>apaG<br>araC<br>lpfD<br>lpfC<br>fimF<br>fhuB<br>erpA<br>yafE<br>sciR<br>sciS                                                                                                         | Probable phosphotransferase enzyme IIB component<br>M6_Spy0801<br>Mannose permease IID component<br><b>Unclassified</b><br>Chaperone protein dnaJ<br>Hypothetical<br>Hypothetical<br>Protein ApaG<br>Arabinose operon regulatory protein<br>Protein lpfD<br>Outer membrane usher protein lpfC<br>Fimbrial subunit type 1<br>Iron(3+)-hydroxamate import system permease protein fhuB<br>Iron-sulfur cluster insertion protein erpA<br>Uncharacterized protein yafE<br>putative shiga-like toxin A subunit<br>IcmF-related integral membrane ATP-binding protein, virulence<br>associated protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1,29<br>-1,23<br>4,05<br>1,36<br>1,22<br>1,56<br>1,73<br>1,26<br>1,15<br>1,02<br>1,09<br>-1,04<br>-1,12<br>1,46<br>1,19                                                                                                                         | 4,12<br>2,92<br>-1,56<br>1,39<br>1,08<br>-1,34<br>9,28<br>-1,25<br>-1,04<br>2,50<br>-1,13<br>-1,06<br>-1,17<br>-1,10<br>-1,03                                                                                                                                         |
| SL4467<br>SL4469<br>SL0013<br>SL0016<br>SL0017<br>SL0090<br>SL0104<br>SL0175<br>SL0176<br>SL0175<br>SL0176<br>SL0178<br>SL0195<br>SL0255<br>SL0254<br>SL0254<br>SL0280<br>SL0287                                                                                                                                   | manX<br>manZ<br>dnaJ<br>-<br>yqel<br>apaG<br>araC<br>lpfD<br>lpfC<br>fimF<br>fhuB<br>erpA<br>yafE<br>sciR<br>sciS<br>rhsE                                                                                                 | Probable phosphotransferase enzyme IIB component<br>M6_Spy0801<br>Mannose permease IID component<br><b>Unclassified</b><br>Chaperone protein dnaJ<br>Hypothetical<br>Hypothetical<br>Protein ApaG<br>Arabinose operon regulatory protein<br>Protein lpfD<br>Outer membrane usher protein lpfC<br>Fimbrial subunit type 1<br>Iron(3+)-hydroxamate import system permease protein fhuB<br>Iron-sulfur cluster insertion protein erpA<br>Uncharacterized protein yafE<br>putative shiga-like toxin A subunit<br>IcmF-related integral membrane ATP-binding protein, virulence<br>associated protein<br>Putative protein rhsE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1,29<br>-1,23<br>4,05<br>1,36<br>1,22<br>1,56<br>1,73<br>1,26<br>1,15<br>1,02<br>1,09<br>-1,04<br>-1,12<br>1,46<br>1,19<br>-1,24                                                                                                                | 4,12<br>2,92<br>-1,56<br>1,39<br>1,08<br>-1,34<br>9,28<br>-1,25<br>-1,04<br>2,50<br>-1,13<br>-1,06<br>-1,17<br>-1,10<br>-1,03<br>-1,94                                                                                                                                |
| SL4467<br>SL4469<br>SL0013<br>SL0016<br>SL0017<br>SL0090<br>SL0104<br>SL0175<br>SL0176<br>SL0178<br>SL0175<br>SL0275<br>SL0255<br>SL0254<br>SL0279<br>SL0280<br>SL0287<br>SL0280                                                                                                                                   | manX<br>manZ<br>dnaJ<br>-<br>yqel<br>apaG<br>araC<br>lpfD<br>lpfC<br>fimF<br>fhuB<br>erpA<br>yafE<br>sciR<br>sciS<br>rhsE<br>sinR                                                                                         | Probable phosphotransferase enzyme IIB component<br>M6_Spy0801<br>Mannose permease IID component<br><b>Unclassified</b><br>Chaperone protein dnaJ<br>Hypothetical<br>Hypothetical<br>Protein ApaG<br>Arabinose operon regulatory protein<br>Protein lpfD<br>Outer membrane usher protein lpfC<br>Fimbrial subunit type 1<br>Iron(3+)-hydroxamate import system permease protein fhuB<br>Iron-sulfur cluster insertion protein erpA<br>Uncharacterized protein yafE<br>putative shiga-like toxin A subunit<br>IcmF-related integral membrane ATP-binding protein, virulence<br>associated protein<br>Putative protein rhsE<br>Probable HTH-type transcriptional regulator sinR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1,29<br>-1,23<br>4,05<br>1,36<br>1,22<br>1,56<br>1,73<br>1,26<br>1,15<br>1,02<br>1,09<br>-1,04<br>-1,12<br>1,46<br>1,19<br>-1,24<br>-4,83                                                                                                       | 4,12<br>2,92<br>-1,56<br>1,39<br>1,08<br>-1,34<br>9,28<br>-1,25<br>-1,04<br>2,50<br>-1,13<br>-1,06<br>-1,17<br>-1,10<br>-1,03<br>-1,94<br>-2,72                                                                                                                       |
| SL4467<br>SL4469<br>SL0013<br>SL0016<br>SL0017<br>SL0090<br>SL0104<br>SL0175<br>SL0176<br>SL0178<br>SL0175<br>SL0275<br>SL0255<br>SL0254<br>SL0279<br>SL0280<br>SL0287<br>SL0280<br>SL0287<br>SL0300<br>SL0303                                                                                                     | manX<br>manZ<br>dnaJ<br>-<br>yqel<br>apaG<br>araC<br>lpfD<br>lpfC<br>fimF<br>fhuB<br>erpA<br>yafE<br>sciR<br>sciS<br>rhsE<br>sinR<br>sciZ                                                                                 | Probable phosphotransferase enzyme IIB component<br>M6_Spy0801<br>Mannose permease IID component<br><b>Unclassified</b><br>Chaperone protein dnaJ<br>Hypothetical<br>Hypothetical<br>Protein ApaG<br>Arabinose operon regulatory protein<br>Protein lpfD<br>Outer membrane usher protein lpfC<br>Fimbrial subunit type 1<br>Iron(3+)-hydroxamate import system permease protein fhuB<br>Iron-sulfur cluster insertion protein erpA<br>Uncharacterized protein yafE<br>putative shiga-like toxin A subunit<br>IcmF-related integral membrane ATP-binding protein, virulence<br>associated protein<br>Putative protein rhsE<br>Probable HTH-type transcriptional regulator sinR<br>secreted protein (homology to Shigella VirG protein)                                                                                                                                                                                                                                                                                                                                                                                                                          | -1,29<br>-1,23<br>4,05<br>1,36<br>1,22<br>1,56<br>1,73<br>1,26<br>1,15<br>1,02<br>1,09<br>-1,04<br>-1,12<br>1,46<br>1,19<br>-1,24<br>-4,83<br>1,18                                                                                               | 4,12<br>2,92<br>-1,56<br>1,39<br>1,08<br>-1,34<br>9,28<br>-1,25<br>-1,04<br>2,50<br>-1,13<br>-1,06<br>-1,17<br>-1,10<br>-1,03<br>-1,94<br>-2,72<br>-1,44                                                                                                              |
| SL4467<br>SL4469<br>SL0013<br>SL0016<br>SL0017<br>SL0090<br>SL0104<br>SL0175<br>SL0176<br>SL0178<br>SL0175<br>SL0275<br>SL0255<br>SL0254<br>SL0279<br>SL0280<br>SL0287<br>SL0280<br>SL0287<br>SL0300<br>SL0303<br>SL0308                                                                                           | manX<br>manZ<br>dnaJ<br>-<br>yqel<br>apaG<br>araC<br>lpfD<br>lpfC<br>fimF<br>fhuB<br>erpA<br>yafE<br>sciR<br>sciS<br>rhsE<br>sinR<br>sciZ<br>yafK                                                                         | Probable phosphotransferase enzyme IIB component<br>M6_Spy0801<br>Mannose permease IID component<br>Unclassified<br>Chaperone protein dnaJ<br>Hypothetical<br>Hypothetical<br>Protein ApaG<br>Arabinose operon regulatory protein<br>Protein lpfD<br>Outer membrane usher protein lpfC<br>Fimbrial subunit type 1<br>Iron(3+)-hydroxamate import system permease protein fhuB<br>Iron-sulfur cluster insertion protein erpA<br>Uncharacterized protein yafE<br>putative shiga-like toxin A subunit<br>IcmF-related integral membrane ATP-binding protein, virulence<br>associated protein<br>Putative protein rhsE<br>Probable HTH-type transcriptional regulator sinR<br>secreted protein (homology to Shigella VirG protein)<br>Putative L,D-transpeptidase YafK                                                                                                                                                                                                                                                                                                                                                                                             | -1,29<br>-1,23<br>4,05<br>1,36<br>1,22<br>1,56<br>1,73<br>1,26<br>1,15<br>1,02<br>1,09<br>-1,04<br>-1,12<br>1,46<br>1,19<br>-1,24<br>-4,83<br>1,18<br>-1,16                                                                                      | 4,12<br>2,92<br>-1,56<br>1,39<br>1,08<br>-1,34<br>9,28<br>-1,25<br>-1,04<br>2,50<br>-1,13<br>-1,06<br>-1,17<br>-1,10<br>-1,03<br>-1,94<br>-2,72<br>-1,44<br>1,12                                                                                                      |
| SL4467<br>SL4469<br>SL0013<br>SL0016<br>SL0017<br>SL0090<br>SL0174<br>SL0175<br>SL0176<br>SL0178<br>SL0175<br>SL0275<br>SL0255<br>SL0254<br>SL0279<br>SL0280<br>SL0287<br>SL0280<br>SL0287<br>SL0300<br>SL0303<br>SL0308<br>SL0316                                                                                 | manX<br>manZ<br>dnaJ<br>-<br>yqel<br>apaG<br>araC<br>lpfD<br>lpfC<br>fimF<br>fhuB<br>erpA<br>yafE<br>sciR<br>sciR<br>sciS<br>rhsE<br>sinR<br>sciZ<br>yafK<br>phoE                                                         | Probable phosphotransferase enzyme IIB component<br>M6_Spy0801<br>Mannose permease IID component<br><b>Unclassified</b><br>Chaperone protein dnaJ<br>Hypothetical<br>Hypothetical<br>Protein ApaG<br>Arabinose operon regulatory protein<br>Protein lpfD<br>Outer membrane usher protein lpfC<br>Fimbrial subunit type 1<br>Iron(3+)-hydroxamate import system permease protein fhuB<br>Iron-sulfur cluster insertion protein erpA<br>Uncharacterized protein yafE<br>putative shiga-like toxin A subunit<br>IcmF-related integral membrane ATP-binding protein, virulence<br>associated protein<br>Putative protein rhsE<br>Probable HTH-type transcriptional regulator sinR<br>secreted protein (homology to Shigella VirG protein)<br>Putative L,D-transpeptidase YafK<br>Outer membrane pore protein E                                                                                                                                                                                                                                                                                                                                                     | -1,29<br>-1,23<br>4,05<br>1,36<br>1,22<br>1,56<br>1,73<br>1,26<br>1,15<br>1,02<br>1,09<br>-1,04<br>-1,12<br>1,46<br>1,19<br>-1,24<br>-4,83<br>1,18<br>-1,16<br>-1,07                                                                             | 4,12<br>2,92<br>-1,56<br>1,39<br>1,08<br>-1,34<br>9,28<br>-1,25<br>-1,04<br>2,50<br>-1,13<br>-1,06<br>-1,17<br>-1,10<br>-1,03<br>-1,94<br>-2,72<br>-1,44<br>1,12<br>1,59                                                                                              |
| SL4467<br>SL4469<br>SL0013<br>SL0016<br>SL0017<br>SL0090<br>SL0104<br>SL0175<br>SL0176<br>SL0178<br>SL0175<br>SL0255<br>SL0254<br>SL0255<br>SL0254<br>SL0279<br>SL0280<br>SL0287<br>SL0280<br>SL0287<br>SL0300<br>SL0303<br>SL0308<br>SL0316<br>SL0345                                                             | manX<br>manZ<br>dnaJ<br>-<br>yqel<br>apaG<br>araC<br>lpfD<br>lpfC<br>fimF<br>fhuB<br>erpA<br>yafE<br>sciR<br>sciS<br>rhsE<br>sinR<br>sciZ<br>yafK<br>phoE<br>oprM                                                         | Probable phosphotransferase enzyme IIB component<br>M6_Spy0801<br>Mannose permease IID component<br>Unclassified<br>Chaperone protein dnaJ<br>Hypothetical<br>Hypothetical<br>Protein ApaG<br>Arabinose operon regulatory protein<br>Protein lpfD<br>Outer membrane usher protein lpfC<br>Fimbrial subunit type 1<br>Iron(3+)-hydroxamate import system permease protein fhuB<br>Iron-sulfur cluster insertion protein erpA<br>Uncharacterized protein yafE<br>putative shiga-like toxin A subunit<br>IcmF-related integral membrane ATP-binding protein, virulence<br>associated protein<br>Putative protein rhsE<br>Probable HTH-type transcriptional regulator sinR<br>secreted protein (homology to Shigella VirG protein)<br>Putative L,D-transpeptidase YafK<br>Outer membrane pore protein E<br>putative outer membrane efflux lipoprotein                                                                                                                                                                                                                                                                                                              | -1,29<br>-1,23<br>4,05<br>1,36<br>1,22<br>1,56<br>1,73<br>1,26<br>1,15<br>1,02<br>1,09<br>-1,04<br>-1,12<br>1,46<br>1,19<br>-1,24<br>-4,83<br>1,18<br>-1,16<br>-1,07<br>1,42                                                                     | $\begin{array}{r} 4,12\\ 2,92\\ \hline \\ -1,56\\ 1,39\\ 1,08\\ -1,34\\ 9,28\\ -1,25\\ -1,04\\ 2,50\\ -1,13\\ -1,06\\ -1,17\\ -1,10\\ -1,03\\ -1,94\\ -2,72\\ -1,44\\ 1,12\\ 1,59\\ 1,42\\ \end{array}$                                                               |
| SL4467<br>SL4469<br>SL0013<br>SL0016<br>SL0017<br>SL0090<br>SL0104<br>SL0175<br>SL0176<br>SL0178<br>SL0175<br>SL0255<br>SL0254<br>SL0254<br>SL0279<br>SL0280<br>SL0287<br>SL0280<br>SL0287<br>SL0300<br>SL0303<br>SL0308<br>SL0316<br>SL0345<br>SL0362                                                             | manX<br>manZ<br>dnaJ<br>-<br>yqel<br>apaG<br>araC<br>lpfD<br>lpfC<br>fimF<br>fhuB<br>erpA<br>yafE<br>sciR<br>sciS<br>rhsE<br>sinR<br>sciZ<br>yafK<br>phoE<br>oprM<br>prpR                                                 | Probable phosphotransferase enzyme IIB component<br>M6_Spy0801<br>Mannose permease IID component<br>Unclassified<br>Chaperone protein dnaJ<br>Hypothetical<br>Hypothetical<br>Protein ApaG<br>Arabinose operon regulatory protein<br>Protein lpfD<br>Outer membrane usher protein lpfC<br>Fimbrial subunit type 1<br>Iron(3+)-hydroxamate import system permease protein fhuB<br>Iron-sulfur cluster insertion protein erpA<br>Uncharacterized protein yafE<br>putative shiga-like toxin A subunit<br>IcmF-related integral membrane ATP-binding protein, virulence<br>associated protein<br>Putative protein rhsE<br>Probable HTH-type transcriptional regulator sinR<br>secreted protein (homology to Shigella VirG protein)<br>Putative L,D-transpeptidase YafK<br>Outer membrane pore protein E<br>putative outer membrane efflux lipoprotein<br>Propionate catabolism operon regulatory protein                                                                                                                                                                                                                                                           | -1,29<br>-1,23<br>4,05<br>1,36<br>1,22<br>1,56<br>1,73<br>1,26<br>1,15<br>1,02<br>1,09<br>-1,04<br>-1,12<br>1,46<br>1,19<br>-1,24<br>-4,83<br>1,18<br>-1,16<br>-1,07<br>1,42<br>-1,42                                                            | $\begin{array}{r} 4,12\\ 2,92\\ \hline \\ -1,56\\ 1,39\\ 1,08\\ -1,34\\ 9,28\\ -1,25\\ -1,04\\ 2,50\\ -1,13\\ -1,06\\ -1,17\\ -1,10\\ -1,03\\ -1,94\\ -2,72\\ -1,44\\ 1,12\\ 1,59\\ 1,42\\ 1,11\\ \end{array}$                                                        |
| SL4467<br>SL4469<br>SL0013<br>SL0016<br>SL0017<br>SL0090<br>SL0104<br>SL0175<br>SL0176<br>SL0178<br>SL0175<br>SL0255<br>SL0254<br>SL0254<br>SL0279<br>SL0280<br>SL0287<br>SL0280<br>SL0287<br>SL0300<br>SL0303<br>SL0308<br>SL0316<br>SL0345<br>SL0362<br>SL0363                                                   | manX<br>manZ<br>dnaJ<br>-<br>yqel<br>apaG<br>araC<br>lpfD<br>lpfC<br>fimF<br>fhuB<br>erpA<br>yafE<br>sciR<br>sciS<br>rhsE<br>sinR<br>sciZ<br>yafK<br>phoE<br>oprM<br>prpR<br>prpB                                         | Probable phosphotransferase enzyme IIB component<br>M6_Spy0801<br>Mannose permease IID component<br>Unclassified<br>Chaperone protein dnaJ<br>Hypothetical<br>Hypothetical<br>Protein ApaG<br>Arabinose operon regulatory protein<br>Protein lpfD<br>Outer membrane usher protein lpfC<br>Fimbrial subunit type 1<br>Iron(3+)-hydroxamate import system permease protein fhuB<br>Iron-sulfur cluster insertion protein erpA<br>Uncharacterized protein yafE<br>putative shiga-like toxin A subunit<br>IcmF-related integral membrane ATP-binding protein, virulence<br>associated protein<br>Putative protein rhsE<br>Probable HTH-type transcriptional regulator sinR<br>secreted protein (homology to Shigella VirG protein)<br>Putative L,D-transpeptidase YafK<br>Outer membrane pore protein E<br>putative outer membrane efflux lipoprotein<br>Propionate catabolism operon regulatory protein<br>Methylisocitrate lyase                                                                                                                                                                                                                                 | -1,29<br>-1,23<br>4,05<br>1,36<br>1,22<br>1,56<br>1,73<br>1,26<br>1,15<br>1,02<br>1,09<br>-1,04<br>-1,12<br>1,46<br>1,19<br>-1,24<br>-4,83<br>1,18<br>-1,16<br>-1,07<br>1,42<br>-1,42<br>-3,23                                                   | $\begin{array}{r} 4,12\\ 2,92\\ \hline \\ -1,56\\ 1,39\\ 1,08\\ -1,34\\ 9,28\\ -1,25\\ -1,04\\ 2,50\\ -1,13\\ -1,06\\ -1,17\\ -1,10\\ -1,03\\ -1,94\\ -2,72\\ -1,44\\ 1,12\\ 1,59\\ 1,42\\ 1,11\\ -3,95\\ \end{array}$                                                |
| SL4467<br>SL4469<br>SL0013<br>SL0016<br>SL0017<br>SL0090<br>SL0104<br>SL0175<br>SL0176<br>SL0178<br>SL0175<br>SL0255<br>SL0254<br>SL0254<br>SL0279<br>SL0280<br>SL0287<br>SL0280<br>SL0287<br>SL0300<br>SL0303<br>SL0308<br>SL0316<br>SL0345<br>SL0362                                                             | manX<br>manZ<br>dnaJ<br>-<br>yqel<br>apaG<br>araC<br>lpfD<br>lpfC<br>fimF<br>fhuB<br>erpA<br>yafE<br>sciR<br>sciS<br>rhsE<br>sinR<br>sciZ<br>yafK<br>phoE<br>oprM<br>prpR                                                 | Probable phosphotransferase enzyme IIB component<br>M6_Spy0801<br>Mannose permease IID component<br>Unclassified<br>Chaperone protein dnaJ<br>Hypothetical<br>Hypothetical<br>Protein ApaG<br>Arabinose operon regulatory protein<br>Protein lpfD<br>Outer membrane usher protein lpfC<br>Fimbrial subunit type 1<br>Iron(3+)-hydroxamate import system permease protein fhuB<br>Iron-sulfur cluster insertion protein erpA<br>Uncharacterized protein yafE<br>putative shiga-like toxin A subunit<br>IcmF-related integral membrane ATP-binding protein, virulence<br>associated protein<br>Putative protein rhsE<br>Probable HTH-type transcriptional regulator sinR<br>secreted protein (homology to Shigella VirG protein)<br>Putative L,D-transpeptidase YafK<br>Outer membrane pore protein E<br>putative outer membrane efflux lipoprotein<br>Propionate catabolism operon regulatory protein                                                                                                                                                                                                                                                           | -1,29<br>-1,23<br>4,05<br>1,36<br>1,22<br>1,56<br>1,73<br>1,26<br>1,15<br>1,02<br>1,09<br>-1,04<br>-1,12<br>1,46<br>1,19<br>-1,24<br>-4,83<br>1,18<br>-1,16<br>-1,07<br>1,42<br>-1,42<br>-3,23<br>-1,57                                          | $\begin{array}{r} 4,12\\ 2,92\\ \hline \\ -1,56\\ 1,39\\ 1,08\\ -1,34\\ 9,28\\ -1,25\\ -1,04\\ 2,50\\ -1,13\\ -1,06\\ -1,17\\ -1,10\\ -1,03\\ -1,94\\ -2,72\\ -1,44\\ 1,12\\ 1,59\\ 1,42\\ 1,11\\ \end{array}$                                                        |
| SL4467<br>SL4469<br>SL0013<br>SL0016<br>SL0017<br>SL0090<br>SL0104<br>SL0175<br>SL0176<br>SL0178<br>SL0195<br>SL0205<br>SL0254<br>SL0254<br>SL0259<br>SL0280<br>SL0287<br>SL0280<br>SL0287<br>SL0300<br>SL0303<br>SL0308<br>SL0316<br>SL0345<br>SL0363<br>SL0368                                                   | manX<br>manZ<br>dnaJ<br>-<br>yqel<br>apaG<br>araC<br>lpfD<br>lpfC<br>fimF<br>fhuB<br>erpA<br>yafE<br>sciR<br>sciS<br>rhsE<br>sinR<br>sciZ<br>yafK<br>phoE<br>oprM<br>prpR<br>prpB<br>yaiU                                 | Probable phosphotransferase enzyme IIB component<br>M6_Spy0801<br>Mannose permease IID component<br>Unclassified<br>Chaperone protein dnaJ<br>Hypothetical<br>Hypothetical<br>Protein ApaG<br>Arabinose operon regulatory protein<br>Protein lpfD<br>Outer membrane usher protein lpfC<br>Fimbrial subunit type 1<br>Iron(3+)-hydroxamate import system permease protein fhuB<br>Iron-sulfur cluster insertion protein erpA<br>Uncharacterized protein yafE<br>putative shiga-like toxin A subunit<br>IcmF-related integral membrane ATP-binding protein, virulence<br>associated protein<br>Putative protein rhsE<br>Probable HTH-type transcriptional regulator sinR<br>secreted protein (homology to Shigella VirG protein)<br>Putative L,D-transpeptidase YafK<br>Outer membrane pore protein E<br>putative outer membrane efflux lipoprotein<br>Propionate catabolism operon regulatory protein<br>Methylisocitrate lyase<br>autotransporter/virulence factor                                                                                                                                                                                             | -1,29<br>-1,23<br>4,05<br>1,36<br>1,22<br>1,56<br>1,73<br>1,26<br>1,15<br>1,02<br>1,09<br>-1,04<br>-1,12<br>1,46<br>1,19<br>-1,24<br>-4,83<br>1,18<br>-1,16<br>-1,07<br>1,42<br>-1,42<br>-3,23                                                   | $\begin{array}{r} 4,12\\ 2,92\\ \hline \\ -1,56\\ 1,39\\ 1,08\\ -1,34\\ 9,28\\ -1,25\\ -1,04\\ 2,50\\ -1,13\\ -1,06\\ -1,17\\ -1,10\\ -1,03\\ -1,94\\ -2,72\\ -1,44\\ 1,12\\ 1,59\\ 1,42\\ 1,11\\ -3,95\\ -1,26\\ \end{array}$                                        |
| SL4467<br>SL4469<br>SL0013<br>SL0016<br>SL0017<br>SL0090<br>SL0104<br>SL0175<br>SL0176<br>SL0178<br>SL0195<br>SL0255<br>SL0254<br>SL0254<br>SL0259<br>SL0280<br>SL0287<br>SL0280<br>SL0287<br>SL0300<br>SL0303<br>SL0308<br>SL0316<br>SL0345<br>SL0363<br>SL0368<br>SL0426                                         | manX<br>manZ<br>dnaJ<br>-<br>yqel<br>apaG<br>araC<br>lpfD<br>lpfC<br>fimF<br>fhuB<br>erpA<br>yafE<br>sciR<br>sciS<br>rhsE<br>sinR<br>sciZ<br>yafK<br>phoE<br>oprM<br>prpR<br>prpB<br>yaiU<br>phnX                         | Probable phosphotransferase enzyme IIB component<br>M6_Spy0801<br>Mannose permease IID component<br>Unclassified<br>Chaperone protein dnaJ<br>Hypothetical<br>Hypothetical<br>Protein ApaG<br>Arabinose operon regulatory protein<br>Protein lpfD<br>Outer membrane usher protein lpfC<br>Fimbrial subunit type 1<br>Iron(3+)-hydroxamate import system permease protein fhuB<br>Iron-sulfur cluster insertion protein erpA<br>Uncharacterized protein yafE<br>putative shiga-like toxin A subunit<br>IcmF-related integral membrane ATP-binding protein, virulence<br>associated protein<br>Putative protein rhsE<br>Probable HTH-type transcriptional regulator sinR<br>secreted protein (homology to Shigella VirG protein)<br>Putative L,D-transpeptidase YafK<br>Outer membrane pore protein E<br>putative outer membrane efflux lipoprotein<br>Propionate catabolism operon regulatory protein<br>Methylisocitrate lyase<br>autotransporter/virulence factor<br>Phosphonoacetaldehyde hydrolase                                                                                                                                                          | -1,29<br>-1,23<br>4,05<br>1,36<br>1,22<br>1,56<br>1,73<br>1,26<br>1,15<br>1,02<br>1,09<br>-1,04<br>-1,12<br>1,46<br>1,19<br>-1,24<br>-4,83<br>1,18<br>-1,16<br>-1,07<br>1,42<br>-1,42<br>-3,23<br>-1,57<br>-1,13                                 | $\begin{array}{r} 4,12\\ 2,92\\ \hline \\ -1,56\\ 1,39\\ 1,08\\ -1,34\\ 9,28\\ -1,25\\ -1,04\\ 2,50\\ -1,13\\ -1,06\\ -1,17\\ -1,10\\ -1,03\\ -1,94\\ -2,72\\ -1,44\\ 1,12\\ 1,59\\ 1,42\\ 1,11\\ -3,95\\ -1,26\\ -1,25\\ \end{array}$                                |
| SL4467<br>SL4469<br>SL0013<br>SL0016<br>SL0017<br>SL0090<br>SL0104<br>SL0175<br>SL0176<br>SL0178<br>SL0175<br>SL0205<br>SL0255<br>SL0254<br>SL0254<br>SL0279<br>SL0280<br>SL0287<br>SL0280<br>SL0287<br>SL0300<br>SL0303<br>SL0308<br>SL0316<br>SL0345<br>SL0363<br>SL0368<br>SL0368<br>SL0461<br>SL0466<br>SL0512 | manX<br>manZ<br>dnaJ<br>-<br>yqel<br>apaG<br>araC<br>lpfD<br>lpfC<br>fihuB<br>erpA<br>yafE<br>sciR<br>sciS<br>rhsE<br>sinR<br>sciZ<br>yafK<br>phoE<br>oprM<br>prpR<br>prpB<br>yaiU<br>phnX<br>ylaB<br>hha<br>glxR         | Probable phosphotransferase enzyme IIB component<br>M6_Spy0801<br>Mannose permease IID component<br>Unclassified<br>Chaperone protein dnaJ<br>Hypothetical<br>Hypothetical<br>Protein ApaG<br>Arabinose operon regulatory protein<br>Protein IpfD<br>Outer membrane usher protein IpfC<br>Fimbrial subunit type 1<br>Iron(3+)-hydroxamate import system permease protein fhuB<br>Iron-sulfur cluster insertion protein erpA<br>Uncharacterized protein yafE<br>putative shiga-like toxin A subunit<br>IcmF-related integral membrane ATP-binding protein, virulence<br>associated protein<br>Putative protein rhsE<br>Probable HTH-type transcriptional regulator sinR<br>secreted protein (homology to Shigella VirG protein)<br>Putative L,D-transpeptidase YafK<br>Outer membrane pore protein E<br>putative outer membrane efflux lipoprotein<br>Propionate catabolism operon regulatory protein<br>Methylisocitrate lyase<br>autotransporter/virulence factor<br>Phosphonoacetaldehyde hydrolase<br>Uncharacterized protein ylaB<br>Hemolysin expression-modulating protein<br>2-hydroxy-3-oxopropionate reductase                                        | -1,29<br>-1,23<br>4,05<br>1,36<br>1,22<br>1,56<br>1,73<br>1,26<br>1,15<br>1,02<br>1,09<br>-1,04<br>-1,12<br>1,46<br>1,19<br>-1,24<br>-4,83<br>1,18<br>-1,16<br>-1,07<br>1,42<br>-1,42<br>-3,23<br>-1,57<br>-1,13<br>1,18<br>1,02<br>2,04         | $\begin{array}{c} 4,12\\ 2,92\\ \hline \\ -1,56\\ 1,39\\ 1,08\\ -1,34\\ 9,28\\ -1,25\\ -1,04\\ 2,50\\ -1,13\\ -1,06\\ -1,17\\ -1,10\\ -1,03\\ -1,94\\ -2,72\\ -1,44\\ 1,12\\ 1,59\\ 1,42\\ 1,11\\ -3,95\\ -1,26\\ -1,25\\ -1,28\\ -1,05\\ 1,44\\ \end{array}$         |
| SL4467<br>SL4469<br>SL0013<br>SL0016<br>SL0017<br>SL0090<br>SL0104<br>SL0175<br>SL0176<br>SL0178<br>SL0175<br>SL0205<br>SL0254<br>SL0254<br>SL0279<br>SL0280<br>SL0287<br>SL0280<br>SL0287<br>SL0300<br>SL0303<br>SL0308<br>SL0316<br>SL0345<br>SL0363<br>SL0368<br>SL0368<br>SL0461<br>SL0466<br>SL0512<br>SL0528 | manX<br>manZ<br>dnaJ<br>-<br>yqel<br>apaG<br>araC<br>lpfD<br>lpfC<br>fihuB<br>erpA<br>yafE<br>sciR<br>sciS<br>rhsE<br>sinR<br>sciZ<br>yafK<br>phoE<br>oprM<br>prpR<br>prpB<br>yaiU<br>phnX<br>ylaB<br>hha<br>glxR<br>lpxH | Probable phosphotransferase enzyme IIB component<br>M6_Spy0801<br>Mannose permease IID component<br>Unclassified<br>Chaperone protein dnaJ<br>Hypothetical<br>Hypothetical<br>Protein ApaG<br>Arabinose operon regulatory protein<br>Protein lpfD<br>Outer membrane usher protein lpfC<br>Fimbrial subunit type 1<br>Iron(3+)-hydroxamate import system permease protein fhuB<br>Iron-sulfur cluster insertion protein erpA<br>Uncharacterized protein yafE<br>putative shiga-like toxin A subunit<br>IcmF-related integral membrane ATP-binding protein, virulence<br>associated protein<br>Putative protein rhsE<br>Probable HTH-type transcriptional regulator sinR<br>secreted protein (homology to Shigella VirG protein)<br>Putative L,D-transpeptidase YafK<br>Outer membrane pore protein E<br>putative outer membrane efflux lipoprotein<br>Propionate catabolism operon regulatory protein<br>Methylisocitrate lyase<br>autotransporter/virulence factor<br>Phosphonoacetaldehyde hydrolase<br>Uncharacterized protein ylaB<br>Hemolysin expression-modulating protein<br>2-hydroxy-3-oxopropionate reductase<br>UDP-2,3-diacylglucosamine hydrolase | -1,29<br>-1,23<br>4,05<br>1,36<br>1,22<br>1,56<br>1,73<br>1,26<br>1,15<br>1,02<br>1,09<br>-1,04<br>-1,12<br>1,46<br>1,19<br>-1,24<br>-4,83<br>1,18<br>-1,16<br>-1,07<br>1,42<br>-1,42<br>-3,23<br>-1,57<br>-1,13<br>1,18<br>1,02<br>2,04<br>1,60 | $\begin{array}{c} 4,12\\ 2,92\\ \hline \\ -1,56\\ 1,39\\ 1,08\\ -1,34\\ 9,28\\ -1,25\\ -1,04\\ 2,50\\ -1,13\\ -1,06\\ -1,17\\ -1,10\\ -1,03\\ -1,94\\ -2,72\\ -1,44\\ 1,12\\ 1,59\\ 1,42\\ 1,11\\ -3,95\\ -1,26\\ -1,25\\ -1,28\\ -1,05\\ 1,44\\ -1,43\\ \end{array}$ |
| SL4467<br>SL4469<br>SL0013<br>SL0016<br>SL0017<br>SL0090<br>SL0104<br>SL0175<br>SL0176<br>SL0178<br>SL0175<br>SL0205<br>SL0255<br>SL0254<br>SL0254<br>SL0279<br>SL0280<br>SL0287<br>SL0280<br>SL0287<br>SL0300<br>SL0303<br>SL0308<br>SL0316<br>SL0345<br>SL0363<br>SL0368<br>SL0368<br>SL0461<br>SL0466<br>SL0512 | manX<br>manZ<br>dnaJ<br>-<br>yqel<br>apaG<br>araC<br>lpfD<br>lpfC<br>fihuB<br>erpA<br>yafE<br>sciR<br>sciS<br>rhsE<br>sinR<br>sciZ<br>yafK<br>phoE<br>oprM<br>prpR<br>prpB<br>yaiU<br>phnX<br>ylaB<br>hha<br>glxR         | Probable phosphotransferase enzyme IIB component<br>M6_Spy0801<br>Mannose permease IID component<br>Unclassified<br>Chaperone protein dnaJ<br>Hypothetical<br>Hypothetical<br>Protein ApaG<br>Arabinose operon regulatory protein<br>Protein IpfD<br>Outer membrane usher protein IpfC<br>Fimbrial subunit type 1<br>Iron(3+)-hydroxamate import system permease protein fhuB<br>Iron-sulfur cluster insertion protein erpA<br>Uncharacterized protein yafE<br>putative shiga-like toxin A subunit<br>IcmF-related integral membrane ATP-binding protein, virulence<br>associated protein<br>Putative protein rhsE<br>Probable HTH-type transcriptional regulator sinR<br>secreted protein (homology to Shigella VirG protein)<br>Putative L,D-transpeptidase YafK<br>Outer membrane pore protein E<br>putative outer membrane efflux lipoprotein<br>Propionate catabolism operon regulatory protein<br>Methylisocitrate lyase<br>autotransporter/virulence factor<br>Phosphonoacetaldehyde hydrolase<br>Uncharacterized protein ylaB<br>Hemolysin expression-modulating protein<br>2-hydroxy-3-oxopropionate reductase                                        | -1,29<br>-1,23<br>4,05<br>1,36<br>1,22<br>1,56<br>1,73<br>1,26<br>1,15<br>1,02<br>1,09<br>-1,04<br>-1,12<br>1,46<br>1,19<br>-1,24<br>-4,83<br>1,18<br>-1,16<br>-1,07<br>1,42<br>-1,42<br>-3,23<br>-1,57<br>-1,13<br>1,18<br>1,02<br>2,04         | $\begin{array}{c} 4,12\\ 2,92\\ \hline \\ -1,56\\ 1,39\\ 1,08\\ -1,34\\ 9,28\\ -1,25\\ -1,04\\ 2,50\\ -1,13\\ -1,06\\ -1,17\\ -1,10\\ -1,03\\ -1,94\\ -2,72\\ -1,44\\ 1,12\\ 1,59\\ 1,42\\ 1,11\\ -3,95\\ -1,26\\ -1,25\\ -1,28\\ -1,05\\ 1,44\\ \end{array}$         |

| SL0539 | fimD  | Outer membrane usher protein fimD                          | -2,30  | -4,82  |
|--------|-------|------------------------------------------------------------|--------|--------|
| SL0540 | fimH  | Protein fimH                                               | -1,76  | -3,62  |
| SL0541 | fimF  | Fimbrial-like protein fimF                                 | -1,41  | -1,87  |
| SL0542 | fimZ  | Fimbriae Z protein                                         | -1,35  | -1,90  |
| SL0543 | fimY  | Fimbriae Y protein                                         | -2,31  | -2,74  |
| SL0545 | fimW  | Fimbriae W protein                                         | -2,20  | -1,91  |
| SL0556 | pheP  | Phenylalanine-specific permease                            | 1,02   | 3,17   |
| SL0558 | •     | outer membrane N-acetyl phenylalanine beta-naphthyl ester- |        |        |
| 320330 | apeE  | cleaving esterase                                          | -2,02  | 1,13   |
| SL0582 | fepB  | Ferrienterobactin-binding periplasmic protein              | 1,30   | -1,24  |
| SL0598 | ynfl  | Cytoplasmic Chaperone rD Family Protein                    | 1,42   | -2,26  |
| SL0607 | citG2 | Probable 2-(5"-triphosphoribosyl)-3'-dephosphocoenzyme-A   | 3,38   | 5,25   |
|        |       | synthase 2                                                 |        |        |
| SL0631 | cobC  | Alpha-ribazole phosphatase                                 | 1,67   | 1,14   |
| SL0638 | uxaA  | putative hydrolase C-terminus                              | -9,54  | -8,11  |
| SL0687 | kdpB  | Potassium-transporting ATPase B chain                      | 1,59   | 1,20   |
| SL0727 | tolQ  | Protein tolQ                                               | 1,75   | -1,65  |
| SL0746 | citG  | 2-(5"-triphosphoribosyl)-3'-dephosphocoenzyme-A synthase   | 1,93   | 1,56   |
| SL0750 | galM  | Aldose 1-epimerase                                         | -1,23  | -1,82  |
| SL0762 | ybhE  | putative 3-carboxymuconate cyclase                         | -1,55  | 1,84   |
| SL0807 | ybiF  | Inner membrane transporter rhtA                            | 1,16   | -1,47  |
| SL0836 | yxjC  | Uncharacterized transporter yxjC                           | -1,99  | -3,76  |
| SL0855 | potG  | Putrescine transport ATP-binding protein potG              | 1,22   | -1,13  |
| SL0869 | ybjQ  | UPF0145 protein Ent638_1382                                | 1,11   | -1,13  |
| SL0872 | ybjT  | Uncharacterized protein ybjT                               | 1,02   | 1,01   |
| SL0926 | mukF  | killing factor KicB                                        | 1,04   | -1,84  |
| SL0927 | ycbC  | Uncharacterized protein ycbC                               | 1,62   | -2,35  |
| SL1001 | ycbY  | N6-adenine-specific DNA methylase                          | 1,56   | 1,07   |
| SL1025 | yccA  | Inner membrane protein yccA                                | -1,06  | -1,02  |
| SL1052 | scsA  | membrane protein, suppressor for copper-sensitivity A      | -1,07  | 1,40   |
| SL1053 | scsB  | membrane protein, suppressor for copper-sensitivity B      | 1,76   | 1,96   |
| SL1054 | scsC  | secreted protein, suppressor for copper-sensitivity C      | 1,71   | 1,79   |
| SL1055 | scsD  | secreted protein, suppressor for copper-sensitivity D      | 1,54   | 1,20   |
| SL1070 | yjhB  | Putative metabolite transport protein yjhB                 | -1,82  | -1,87  |
| SL1082 | csgC  | Curli assembly protein csgC                                | -1,27  | -1,24  |
| SL1097 | solA  | N-methyl-L-tryptophan oxidase                              | -1,07  | -1,62  |
| SL1107 | mviN  | Virulence factor mviN                                      | 2,06   | -1,50  |
| SL1110 | flgA  | Flagella basal body P-ring formation protein flgA          | 1,65   | 4,05   |
| SL1127 | yceD  | Uncharacterized protein yceD                               | -1,08  | -1,06  |
| SL1161 | sifA  | Secreted effector protein sifA                             | -1,44  | -2,70  |
| SL1180 | msgA  | Virulence protein msgA                                     | -1,63  | -2,62  |
| SL1182 | cspH  | Cold shock-like protein cspH                               | -1,58  | -1,12  |
| SL1183 | pagD  | Virulence protein pagD                                     | -6,34  | -10,07 |
| SL1188 | -     | Hypothetical                                               | -1,79  | -2,04  |
| SL1194 | nikD  | Nickel import ATP-binding protein NikD                     | 3,11   | 2,54   |
| SL1221 | mipA  | MltA-interacting protein                                   | -1,28  | -1,27  |
| SL1254 | cedA  | Cell division activator cedA                               | 1,61   | -1,05  |
| SL1265 | nucA  | Nuclease                                                   | -12,33 | -14,89 |
| SL1266 | rfc   | O-antigen polymerase                                       | 1,20   | -2,08  |
| SL1291 | ydiF  | Uncharacterized protein ydiF                               | 1,75   | 1,13   |
| SL1318 | ttrC  | Tetrathionate Reductase Subunit C                          | 1,30   | -1,45  |
| SL1320 | ttrS  | Sensor protein                                             | 1,23   | 1,75   |
| SL1373 | ydhK  | Uncharacterized transporter ydhK                           | 1,71   | -1,29  |
| SL1377 | slyB  | Outer membrane lipoprotein slyB                            | 1,00   | -1,06  |
| SL1425 | dmsD  | Twin-arginine leader-binding protein dmsD                  | -1,01  | -2,31  |
| SL1429 | dmsA1 | Putative dimethyl sulfoxide reductase chain A1             | 1,81   | 1,76   |
| SL1473 | pqaA  | PhoPQ-activated protein                                    | -3,78  | -1,35  |
| SL1484 | -     | Coiled-Coil Protein                                        | 1,12   | 1,01   |
| SL1505 | smvA  | Methyl viologen resistance protein smvA                    | -1,52  | -3,14  |
| SL1512 | yddE  | Uncharacterized isomerase yddE                             | -1,20  | 1,22   |
| SL1526 | srfC  | Virulence Factor                                           | 1,20   | 1,53   |
| SL1531 | ugtL  | D-Alanyl-D-Alanine Dipeptidase                             | -7,52  | -9,15  |
| SL1532 | sifB  | Secreted effector protein sifB                             | -3,43  | -3,52  |
| SL1558 | yaiN  | Uncharacterized protein in bioA 5'region                   | 1,61   | -1,66  |
| SL1561 | sseJ  | Secreted effector protein sseJ                             | -3,13  | -4,11  |
| SL1591 | fnr   | Fumarate and nitrate reduction regulatory protein          | 1,03   | -1,33  |
| SL1596 | -     | Hypothetical                                               | 1,13   | 5,27   |
| SL1599 | yeeJ  | Invasin                                                    | 1,13   | 1,11   |
|        | -     |                                                            | -      | •      |

| SL1608           | -            | NmrA Family Protein                                                      | -1,06         | -1,04        |
|------------------|--------------|--------------------------------------------------------------------------|---------------|--------------|
| SL1614           | ycjF         | UPF0283 membrane protein ycjF                                            | 1,37          | -1,21        |
| SL1629           | -            | Hypothetical A                                                           | 1,27          | 1,14         |
| SL1653           | trpH         | Protein trpH                                                             | 1,73          | -1,33        |
| SL1655           | trpD         | Anthranilate synthase component II                                       | 1,24          | 1,07         |
| SL1668           | tonB         | Protein tonB                                                             | -1,10         | -1,89        |
| SL1672           | -            | Putative potassium channel protein RPA4233                               | -1,26         | 1,94         |
| SL1673           | oppF         | Oligopeptide transport ATP-binding protein oppF                          | -1,74         | 1,04         |
| SL1677           | oppA         | Periplasmic oligopeptide-binding protein                                 | -3,30         | 1,43         |
| SL1684           | hnr          | Protein hnr                                                              | 1,37          | 1,16         |
| SL1718           |              |                                                                          |               | 1,82         |
|                  | hyaE<br>fodD | hydrogenase-1 operon protein HyaE                                        | 1,77          |              |
| SL1747           | fadD         | Long-chain-fatty-acidCoA ligase                                          | 1,91          | -1,27        |
| SL1784           | sopE2        | Guanine nucleotide exchange factor sopE2                                 | -52,09        | -5,12        |
| SL1793           | pagO         | Protein pagO                                                             | -3,30         | -4,98        |
| SL1799           | pagK         | bacteriophage encoded pagK (phoPQ-activated protein)                     | -5,49         | -4,51        |
| SL1805           | recE         | Exodeoxyribonuclease 8                                                   | 1,15          | 1,12         |
| SL1825           | znuA         | High-affinity zinc uptake system protein znuA                            | -1,11         | 1,64         |
| SL1826           | znuC         | Zinc import ATP-binding protein ZnuC                                     | 1,95          | -1,07        |
| SL1847           | flhE         | Flagellar protein flhE                                                   | -1,81         | -1,45        |
| SL1850           | cheZ         | Chemotaxis protein cheZ                                                  | -3,23         | -1,73        |
| SL1855           | cheW         | Chemotaxis protein cheW                                                  | -3,07         | -1,17        |
| SL1856           | cheA         | Chemotaxis protein cheA                                                  | -2,45         | -1,53        |
| SL1858           | motA         | Motility protein A                                                       | -2,44         | -1,72        |
| SL1877           | uvrY         | Response regulator uvrY                                                  | -1,12         | -1,44        |
| SL1887           | fliB         | Lysine-N-methylase                                                       | -4,79         | -1,84        |
| SL1891           | fliT         | Flagellar protein fliT                                                   | -3,04         | 1,06         |
| SL1893           | yedD         | Uncharacterized lipoprotein yedD                                         | 1,09          | 1,78         |
| SL1894           | yedE         | UPF0394 inner membrane protein yedE                                      | 2,21          | 17,08        |
| SL1895           | yedF         | UPF0033 protein yedF                                                     | 2,43          | 17,78        |
| SL1904           | fliL         | Flagellar protein FliL                                                   | -1,61         | 1,04         |
| SL1906           | fliN         | Flagellar motor switch protein FliN                                      | -1,77         | -1,13        |
| SL1907           | fliO         | Flagellar protein fliO                                                   | -1,49         | -1,68        |
| SL1914           | yedP         | Putative mannosyl-3-phosphoglycerate phosphatase                         | 1,38          | -1,42        |
| SL1925           | umuC         | Protein umuC                                                             | 1,30          | 1,49         |
| SL1925<br>SL1991 | erfK         | Probable L,D-transpeptidase ErfK/SrfK                                    | -2,09         | -1,17        |
| SL2044           | sbcB         |                                                                          | -2,09<br>1,26 |              |
|                  |              | Exodeoxyribonuclease I<br>Protein rfbU                                   |               | -2,02        |
| SL2063           | rfbU         |                                                                          | 2,23          | 1,26         |
| SL2070           | rfbl         | Protein rfbl                                                             | 2,76          | -1,13        |
| SL2102           | yegD         | Uncharacterized chaperone protein yegD                                   | 1,05          | 1,63         |
| SL2109           | -            | Hypothetical                                                             | -1,95         | -2,43        |
| SL2140           | yehW         | Putative osmoprotectant uptake system permease protein yehW              | -1,70         | -1,07        |
| SL2142           | yehY         | Putative osmoprotectant uptake system permease protein yehY              | -1,29         | 1,22         |
| SL2175           | uhpC         | Regulatory protein uhpC                                                  | 1,28          | 1,79         |
| SL2207           | msgA         | Virulence protein msgA                                                   | -1,29         | 1,12         |
| SL2213           | -            | Hypothetical                                                             | -1,20         | -1,48        |
| SL2218           | -            | Bacteriophage Tail Fiber Assembly Protein                                | -1,49         | -1,43        |
| SL2219           | stfR         | Side Tail Fiber Protein                                                  | -1,99         | -1,99        |
| SL2235           | ada          | Regulatory protein ada                                                   | 1,19          | 1,47         |
| SL2238           | yojN         | Hypothetical Protein yojN                                                | 1,34          | -1,40        |
| SL2239           | rcsB         | Capsular synthesis regulator component B                                 | 1,41          | -1,61        |
| SL2273           | pmrD         | Signal transduction protein pmrD                                         | 1,18          | -1,29        |
| SL2279           | menF         | Menaquinone-specific isochorismate synthase                              | 1,10          | -1,19        |
| SL2284           | yfbK         | Uncharacterized protein vfbK                                             | 1,31          | -1,34        |
| SL2321           | hisM         | Histidine transport system permease protein hisM                         | 1,98          | -2,16        |
| SL2324           | argT         | Lysine-arginine-ornithine-binding periplasmic protein                    | 5,77          | 2,23         |
| SL2333           | dedD         | Protein dedD                                                             | 1,01          | -1,15        |
| SL2340           | flk          | Flagellar regulator flk                                                  | 1,69          | 1,03         |
| SL2363           | pgtE         | Outer membrane protease E                                                | -4,08         | -3,07        |
| SL2402           | yfeL         | Uncharacterized protein yfeL                                             | 1,89          | -1,37        |
| SL2499           | iscX         | Protein iscX                                                             | 2,22          | 1,01         |
| SL2648           | rimM         | Ribosome maturation factor rimM                                          | 1,29          | 1,24         |
| SL2649           | rpsP         | 30S ribosomal protein S16                                                | 1,18          | 1,10         |
| SL2655           | ppnK         | Probable inorganic polyphosphate/ATP-NAD kinase                          | -1,31         | -1,19        |
| SL2055<br>SL2659 | yfjG         | UPF0083 protein yfjG                                                     | 1,90          | 1,31         |
|                  | yijO         | ATPase                                                                   |               |              |
| SL2730           | -            |                                                                          | 1,61<br>-1.27 | -2,06        |
| SL2741<br>SL2743 | -<br>        | Glucose-6-Phosphate Isomerase<br>HTH-type transcriptional regulator sgrR | -1,27         | 1,49<br>4,48 |
| 312/43           | sgrR         |                                                                          | 1,16          | 4,40         |
|                  |              |                                                                          |               |              |

| SL2744           | -    | Hypothetical                                             | 1,04   | 1,55   |
|------------------|------|----------------------------------------------------------|--------|--------|
| SL2755           | fljA | Repressor of phase 1 flagellin gene                      | -37,56 | -1,47  |
| SL2757           | hin  | DNA-invertase hin                                        | -3,06  | 3,30   |
| SL2758           | iroB | putative glycosyltransferase                             | -6,14  | -1,34  |
| SL2770           | yfIP | UPF0065 protein yfIP                                     | 1,38   | 34,16  |
| SL2771           | -    | Hypothetical                                             | 1,39   | 42,49  |
| SL2772           | -    | Uncharacterized 52.8 kDa protein in TAR-I ttuC' 3'region | 1,85   | 6,58   |
| SL2790           | nrdH | Glutaredoxin-like protein nrdH                           | -1,39  | -1,10  |
| SL2832           | hycB | Formate hydrogenlyase subunit 2                          | -1,07  | -4,99  |
| SL2924           | sopD | Secreted effector protein sopD                           | -80,68 | -16,87 |
| SL2926           | cysl | Sulfite reductase [NADPH] hemoprotein beta-component     | 1,08   | -2,06  |
| SL2941           | gudD | Glucarate dehydratase                                    | 3,16   | 4,39   |
| SL2942           | gudX | Glucarate dehydratase-related protein                    | 3,04   | 6,36   |
| SL2947           | syd  | Protein syd                                              | 2,13   | 1,32   |
| SL2996           | kdul | 4-deoxy-L-threo-5-hexosulose-uronate ketol-isomerase     | 2,36   | 2,72   |
| SL3006           | stdC | putative fimbrial chaparone protein                      | -1,13  | -1,08  |
| SL3008           | stdO | Uncharacterized fimbrial-like protein ybgD               | -1,68  | -2,25  |
| SL3015           | idi  | Isopentenyl-diphosphate Delta-isomerase                  | 1,08   | -1,13  |
| SL3015<br>SL3026 | yqfB | UPF0267 protein yqfB                                     | -1,02  | 2,02   |
| SL3020<br>SL3106 | уців | Polysaccharide Deacetylase                               | -20,62 | -2,34  |
| SL3100<br>SL3128 | -    | Hypothetical                                             |        |        |
|                  | -    |                                                          | -3,42  | -1,49  |
| SL3133           | exbB | Biopolymer transport protein exbB                        | 1,36   | -1,59  |
| SL3145           | ygiK | Uncharacterized protein ygiK                             | 1,14   | 1,15   |
| SL3146           | sufl | Protein sufl                                             | 1,30   | -1,12  |
| SL3160           | tolC | Outer membrane protein tolC                              | 1,14   | 1,02   |
| SL3162           | ygiC | Uncharacterized protein ygiC                             | 1,11   | -1,30  |
| SL3221           | garR | 2-hydroxy-3-oxopropionate reductase                      | 1,87   | 1,64   |
| SL3241           | yraR | Uncharacterized protein yraR                             | 1,03   | 1,16   |
| SL3250           | yafK | Putative L,D-transpeptidase YafK                         | 1,09   | -1,12  |
| SL3261           | rimP | Ribosome maturation factor rimP                          | 1,02   | -1,46  |
| SL3288           | kdsC | 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase     | 1,93   | -1,96  |
| SL3290           | lptA | Lipopolysaccharide export system protein lptA            | 1,73   | -1,50  |
| SL3295           | yhbJ | UPF0042 nucleotide-binding protein PC1_0271              | 1,22   | 1,19   |
| SL3305           | codB | Cytosine permease                                        | 1,09   | 3,48   |
| SL3443           | nirC | Probable nitrite transporter                             | 7,52   | 2,27   |
| SL3478           | nfuA | Fe/S biogenesis protein nfuA                             | 3,11   | -2,21  |
| SL3487           | rsr  | 60 kDa SS-A/Ro ribonucleoprotein homolog                 | -7,28  | -2,62  |
| SL3530           | livK | Leucine-specific-binding protein                         | -1,50  | 1,53   |
| SL3549           | nikR | Nickel-responsive regulator                              | 1,21   | 1,07   |
| SL3581           | bcsC | Cellulose synthase operon protein C                      | 1,16   | -1,20  |
| SL3582           | bcsZ | Endoglucanase                                            | 1,24   | -1,79  |
| SL3601           | lpfE | Protein lpfE                                             | -1,04  | 1,15   |
| SL3602           | lpfD | Protein lpfD                                             | 1,04   | -1,97  |
| SL3603           | lpfD | Protein lpfD                                             | -1,28  | -1,05  |
| SL3604           | lpfC | Outer membrane usher protein lpfC                        | 1,02   | 1,27   |
| SL3606           | IpfA | Long polar fimbria protein A                             | -1,09  | -1,40  |
| SL3679           | rfaL | O-antigen ligase                                         | 1,13   | -2,63  |
| SL3754           | uhpC | Regulatory protein uhpC                                  | 2,59   | 1,86   |
| SL3796           | dgoK | 2-dehydro-3-deoxygalactonokinase                         | 1,51   | 1,98   |
| SL3886           | wecF | 4-alpha-L-fucosyltransferase                             | 1,58   | -1,96  |
| SL3887           | rffT | Putative ECA polymerase                                  | 1,58   | -1,46  |
| SL3898           | cyaY | Protein cyaY                                             | 1,44   | 1,40   |
| SL3907           | yigF | Uncharacterized protein yigF                             | -2,14  | -2,15  |
| SL3911           | pldA | Phospholipase A1                                         | 1,26   | -2,69  |
| SL3934           | · -  | Arylsulfotransferase                                     | 1,34   | 1,33   |
| SL3948           | engB | Probable GTP-binding protein engB                        | 1,59   | 2,04   |
| SL3959           | -    | Hypothetical                                             | -1,20  | -1,72  |
| SL3966           | yihR | Uncharacterized protein yihR                             | -1,16  | 1,31   |
| SL4001           | ygiK | Uncharacterized protein ygiK                             | 1,14   | 1,24   |
| SL4169           | malM | Maltose operon periplasmic protein                       | -3,00  | 2,47   |
| SL4201           | soxS | Regulatory protein soxS                                  | -2,40  | -2,53  |
| SL4217           | nrfE | Cytochrome c-type biogenesis protein nrfE                | 2,25   | 1,60   |
| SL4223           | lpxO | putative dioxygenase for synthesis of lipid              | 1,03   | 1,94   |
| SL4245           | dmsD | Twin-arginine leader-binding protein dmsD                | -1,05  | 1,92   |
| SL4243<br>SL4272 | ecnA | Entericidin A                                            | 1,73   | -1,49  |
| SL4272<br>SL4293 | mutL | DNA mismatch repair protein mutL                         | 1,73   | 1,43   |
| SL4295<br>SL4309 | yjfC | Uncharacterized protein yjfC                             | 1,50   | 1,35   |
| 02-000           | , U  |                                                          | 1,00   | 1,00   |

| SL4338 | ytfJ         | Uncharacterized protein ytfJ                                 | -1,08 | 2,14  |
|--------|--------------|--------------------------------------------------------------|-------|-------|
| SL4378 | licR         | Probable licABCH operon regulator                            | 1,17  | 1,88  |
| SL4401 | miaE         | tRNA-(ms[2]io[6]A)-hydroxylase                               | 1,92  | 1,00  |
| SL4418 | yjhR         | Putative uncharacterized protein yjhR                        | -1,07 | 1,16  |
| SL4423 | -            | ABC-Type Transporter                                         | 1,09  | 1,07  |
| SL4484 | rsmC         | Ribosomal RNA small subunit methyltransferase C              | 1,75  | -1,07 |
| SL4490 | yjjU         | Uncharacterized protein yjjU                                 | -1,18 | -1,08 |
| SL4500 | yhcA         | Uncharacterized fimbrial chaperone yhcA                      | -2,05 | -2,10 |
| SL4507 | nadR         | Transcriptional regulator nadR                               | 1,41  | 1,27  |
| SL4508 |              | Uncharacterized ABC transporter ATP-binding protein yjjK     | 1,70  | 1,24  |
| SL4520 | yjjK<br>lpfC |                                                              | -1,10 | -1,24 |
| 3L4320 | ipic         | Outer membrane usher protein lpfC                            | -1,10 | -1,20 |
|        |              | Unknown function                                             |       |       |
| SL0005 | yaaA         | UPF0246 protein yaaA                                         | -1,40 | -1,82 |
| SL0011 | yaal         | UPF0412 protein yaal                                         | 2,29  | -1,26 |
| SL0029 | -            | Hypothetical                                                 | 1,14  | -1,15 |
| SL0042 | yicl         | Uncharacterized family 31 glucosidase ORF2                   | -2,08 | 2,29  |
| SL0052 | rihC         | Non-specific ribonucleoside hydrolase rihC                   | 1,01  | 1,74  |
| SL0063 | citX         | Apo-citrate lyase phosphoribosyl-dephospho-CoA transferase   | 1,59  | 4,27  |
| SL0079 | fixX         | Ferredoxin-like protein fixX                                 | -1,46 | 2,02  |
| SL0080 | yaaU         | Putative metabolite transport protein yaaU                   | -1,42 | 1,18  |
| SL0081 | ygdl         | Uncharacterized lipoprotein ygdl                             | -2,43 | -1,45 |
| SL0083 | yhcN         | Hypothetical                                                 | -3,01 | -1,85 |
| SL0095 | djlA         | DnaJ-like protein djlA                                       | 1,61  | -1,06 |
| SL0096 | rluA         | Ribosomal large subunit pseudouridine synthase A             | 1,78  | 1,04  |
| SL0099 | ygjQ         | Hypothetical                                                 | 1,20  | -2,19 |
| SL0105 | yabl         | Inner membrane protein yabl                                  | -1,32 | 1,42  |
| SL0120 | mraW         | Ribosomal RNA small subunit methyltransferase H              | 1,21  | -1,45 |
| SL0135 | secM         | Secretion monitor                                            | 1,70  | 1,01  |
| SL0139 | yacF         | UPF0289 protein CKO_03274                                    | 1,67  | 1,32  |
| SL0161 | yacL         | UPF0231 protein yacL                                         | 1,34  | 1,76  |
| SL0180 | yadE         | Uncharacterized protein yadE                                 | 1,52  | -1,18 |
| SL0189 | ligT         | 2'-5'-RNA ligase                                             | 1,54  | -1,20 |
| SL0202 | yadU         | putative outer membrane protein                              | -1,03 | 1,07  |
| SL0206 | yadS         | UPF0126 inner membrane protein yadS                          | -1,26 | -1,24 |
| SL0211 | cdaR         | Carbohydrate diacid regulator                                | 2,32  | 5,18  |
| SL0236 | yaeR         | Uncharacterized protein yaeR                                 | 1,08  | 1,23  |
| SL0238 | rof          | Protein rof                                                  | -1,36 | 1,26  |
| SL0240 | yaeQ         | Uncharacterized protein yaeQ                                 | 2,92  | 1,04  |
| SL0241 | yaeJ         | Uncharacterized protein yaeJ                                 | 3,10  | -1,03 |
| SL0242 | cutF         | copper homeostasis protein CutF precursor (lipoprotein nlpE) | 1,46  | -1,73 |
| SL0244 | yaeB         | UPF0066 protein yaeB                                         | 1,89  | -3,80 |
| SL0249 | gmhB         | D,D-heptose 1,7-bisphosphate phosphatase                     | 1,05  | -1,17 |
| SL0253 | yafD         | UPF0294 protein Ent638_0743                                  | -1,00 | 1,35  |
| SL0257 | yafS         | Uncharacterized protein vafS                                 | 1,01  | -1,10 |
| SL0261 | sciB         | Hypothetical                                                 | 2,06  | 1,04  |
| SL0264 | sciE         | Virulence Protein SciE Type                                  | 2,32  | 1,13  |
| SL0267 | sciH         | Hypothetical                                                 | 2,11  | 1,66  |
| SL0284 | vrgS         | Type VI secretion protein                                    | -1,10 | -1,05 |
| SL0299 | ybeJ         | putative xylanase/chitin deacetylase                         | -1,69 | 1,29  |
| SL0302 | pagN         | outer membrane adhesin                                       | -1,80 | -1,23 |
| SL0309 | dinP         | DNA polymerase IV                                            | -1,38 | 1,21  |
| SL0310 | ykfJ         | Uncharacterized protein ykfJ (pseudo)                        | -1,44 | -1,07 |
| SL0314 | frsA         | putative hydrolase of the alpha/beta superfamily             | 1,24  | -1,07 |
| SL0320 | dhaF         | pseudogene                                                   | -1,16 | 1,02  |
| SL0329 | -            | Hypothetical                                                 | -2,10 | -1,78 |
| SL0338 | rtn          | Protein rtn                                                  | -2,17 | -2,10 |
| SL0361 | yahO         | Uncharacterized protein yahO                                 | -4,11 | -1,10 |
| SL0365 | prpD         | 2-methylcitrate dehydratase                                  | -2,37 | -1,50 |
| SL0366 | prpE         | PropionateCoA ligase                                         | -1,86 | -1,92 |
| SL0372 | yaiW         | Uncharacterized protein yaiW                                 | 1,01  | -2,75 |
| SL0374 | yaiZ         | Uncharacterized protein yaiZ                                 | 1,37  | 2,88  |
| SL0380 | adrA         | putative diguanylate cyclase/phosphodiesterase domain 1      | -1,95 | -1,85 |
| SL0382 | yail         | UPF0178 protein yail                                         | 1,40  | -1,88 |
| SL0387 | rdgC         | Recombination-associated protein rdgC                        | 1,97  | 1,13  |
| SL0406 | yajD         | Uncharacterized protein yajD                                 | -1,15 | -1,30 |
| SL0408 | yaji         | Uncharacterized lipoprotein yajl                             | 1,72  | -1,93 |
| SL0439 | yajG         | Uncharacterized lipoprotein yajG                             | 1,63  | 2,34  |
|        | ,., <b>.</b> | · · · · · · · · · · · · · · · · · · ·                        | .,    | _,• . |

| SL0447                                                                                                                                                                                                                                                                               | ybaV                                                                                                                                                                                | Uncharacterized protein ybaV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,29                                                                                                                                                                                                                                                 | 1,55                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SL0449                                                                                                                                                                                                                                                                               | queC                                                                                                                                                                                | 7-cyano-7-deazaguanine synthase (putative aluminum resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,32                                                                                                                                                                                                                                                 | -1,72                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                   | protein)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                      |
| SL0450                                                                                                                                                                                                                                                                               | ybaE                                                                                                                                                                                | Uncharacterized protein ybaE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,42                                                                                                                                                                                                                                                 | 3,86                                                                                                                                                                                                                                                 |
| SL0451                                                                                                                                                                                                                                                                               | cof                                                                                                                                                                                 | HMP-PP phosphatase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,64                                                                                                                                                                                                                                                 | 1,53                                                                                                                                                                                                                                                 |
| SL0460                                                                                                                                                                                                                                                                               | ybaZ                                                                                                                                                                                | Uncharacterized protein ybaZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1,20                                                                                                                                                                                                                                                | -2,58                                                                                                                                                                                                                                                |
| SL0464                                                                                                                                                                                                                                                                               | ylaC                                                                                                                                                                                | Inner membrane protein ylaC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1,72                                                                                                                                                                                                                                                | -1,64                                                                                                                                                                                                                                                |
| SL0471                                                                                                                                                                                                                                                                               | aefA                                                                                                                                                                                | Potassium efflux system KefA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,49                                                                                                                                                                                                                                                 | -2,15                                                                                                                                                                                                                                                |
| SL0472                                                                                                                                                                                                                                                                               | yhgA                                                                                                                                                                                | putative transposase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,38                                                                                                                                                                                                                                                 | 1,68                                                                                                                                                                                                                                                 |
| SL0473                                                                                                                                                                                                                                                                               | ybaM                                                                                                                                                                                | Uncharacterized protein ybaM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,17                                                                                                                                                                                                                                                 | 1,48                                                                                                                                                                                                                                                 |
| SL0488                                                                                                                                                                                                                                                                               | ybaK                                                                                                                                                                                | Cys-tRNA(Pro)/Cys-tRNA(Cys) deacylase ybaK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,70                                                                                                                                                                                                                                                 | 1,13                                                                                                                                                                                                                                                 |
| SL0493                                                                                                                                                                                                                                                                               | ybbJ                                                                                                                                                                                | Inner membrane protein ybbJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,46                                                                                                                                                                                                                                                 | 1,51                                                                                                                                                                                                                                                 |
| SL0494                                                                                                                                                                                                                                                                               | ybbK                                                                                                                                                                                | putative inner membrane protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1,05                                                                                                                                                                                                                                                | 1,36                                                                                                                                                                                                                                                 |
| SL0507                                                                                                                                                                                                                                                                               | allS                                                                                                                                                                                | lysR family transcriptional regulator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,42                                                                                                                                                                                                                                                 | 1,77                                                                                                                                                                                                                                                 |
| SL0508                                                                                                                                                                                                                                                                               | allA                                                                                                                                                                                | Ureidoglycolate hydrolase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,24                                                                                                                                                                                                                                                 | 2,02                                                                                                                                                                                                                                                 |
| SL0516                                                                                                                                                                                                                                                                               | allB                                                                                                                                                                                | Allantoinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,03                                                                                                                                                                                                                                                 | 1,50                                                                                                                                                                                                                                                 |
| SL0518                                                                                                                                                                                                                                                                               | glxK                                                                                                                                                                                | Glycerate kinase 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1,31                                                                                                                                                                                                                                                | 1,47                                                                                                                                                                                                                                                 |
| SL0519                                                                                                                                                                                                                                                                               | ylbA                                                                                                                                                                                | Uncharacterized protein ylbA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,22                                                                                                                                                                                                                                                 | 1,46                                                                                                                                                                                                                                                 |
| SL0523                                                                                                                                                                                                                                                                               | ylbE                                                                                                                                                                                | Uncharacterized protein ylbE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,27                                                                                                                                                                                                                                                 | 1,51                                                                                                                                                                                                                                                 |
| SL0533                                                                                                                                                                                                                                                                               | ybcl                                                                                                                                                                                | Inner membrane protein ybcl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1,18                                                                                                                                                                                                                                                | -2,14                                                                                                                                                                                                                                                |
| SL0534                                                                                                                                                                                                                                                                               | ybcJ                                                                                                                                                                                | Uncharacterized protein ybcJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,69                                                                                                                                                                                                                                                 | -1,02                                                                                                                                                                                                                                                |
| SL0544                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                   | putative diguanylate cyclase/phosphodiesterase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2,80                                                                                                                                                                                                                                                | -3,69                                                                                                                                                                                                                                                |
| SL0552                                                                                                                                                                                                                                                                               | ykgC                                                                                                                                                                                | Probable pyridine nucleotide-disulfide oxidoreductase ykgC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1,27                                                                                                                                                                                                                                                | 1,55                                                                                                                                                                                                                                                 |
| SL0553                                                                                                                                                                                                                                                                               | ykgl                                                                                                                                                                                | Uncharacterized protein ykgl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1,19                                                                                                                                                                                                                                                | -1,08                                                                                                                                                                                                                                                |
| SL0554                                                                                                                                                                                                                                                                               | ykgB                                                                                                                                                                                | Inner membrane protein ykgB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1,30                                                                                                                                                                                                                                                | 1,00                                                                                                                                                                                                                                                 |
| SL0567                                                                                                                                                                                                                                                                               | ybdF                                                                                                                                                                                | Uncharacterized protein ybdF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,61                                                                                                                                                                                                                                                 | 1,08                                                                                                                                                                                                                                                 |
| SL0570                                                                                                                                                                                                                                                                               | ybdJ                                                                                                                                                                                | Uncharacterized protein ybdJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,11                                                                                                                                                                                                                                                 | -1,66                                                                                                                                                                                                                                                |
| SL0571                                                                                                                                                                                                                                                                               | ybdK                                                                                                                                                                                | Carboxylate-amine ligase ybdK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1,29                                                                                                                                                                                                                                                | 1,43                                                                                                                                                                                                                                                 |
| SL0575                                                                                                                                                                                                                                                                               | ybdZ                                                                                                                                                                                | Uncharacterized protein ybdZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,38                                                                                                                                                                                                                                                 | 1,02                                                                                                                                                                                                                                                 |
| SL0587                                                                                                                                                                                                                                                                               | ybdB                                                                                                                                                                                | Esterase ybdB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,49                                                                                                                                                                                                                                                 | 1,97                                                                                                                                                                                                                                                 |
| SL0589                                                                                                                                                                                                                                                                               | ybdD                                                                                                                                                                                | Uncharacterized protein ybdD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1,61                                                                                                                                                                                                                                                | 2,74                                                                                                                                                                                                                                                 |
| SL0592                                                                                                                                                                                                                                                                               | ybdM                                                                                                                                                                                | Uncharacterized protein ybdM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1,88                                                                                                                                                                                                                                                | 1,06                                                                                                                                                                                                                                                 |
| SL0593                                                                                                                                                                                                                                                                               | ybdN                                                                                                                                                                                | Uncharacterized protein ybdN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1,72                                                                                                                                                                                                                                                | -2,98                                                                                                                                                                                                                                                |
| SL0602                                                                                                                                                                                                                                                                               | uspG                                                                                                                                                                                | Universal stress protein G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1,24                                                                                                                                                                                                                                                | 2,00                                                                                                                                                                                                                                                 |
| SL0606                                                                                                                                                                                                                                                                               | citT                                                                                                                                                                                | Citrate carrier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,39                                                                                                                                                                                                                                                 | 4,10                                                                                                                                                                                                                                                 |
| SL0608                                                                                                                                                                                                                                                                               | citX                                                                                                                                                                                | Apo-citrate lyase phosphoribosyl-dephospho-CoA transferase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,00                                                                                                                                                                                                                                                 | 18,14                                                                                                                                                                                                                                                |
| SL0616                                                                                                                                                                                                                                                                               | pagP                                                                                                                                                                                | antimicrobial peptide resistance and lipid A acylation protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                      | 4.00                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                      | pagi                                                                                                                                                                                | and the oblat population of the lipit of a by all of protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,78                                                                                                                                                                                                                                                 | -4,69                                                                                                                                                                                                                                                |
| SL0618                                                                                                                                                                                                                                                                               | crcB                                                                                                                                                                                | Protein crcB homolog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,78<br>-1,18                                                                                                                                                                                                                                        | -4,69<br>-2,74                                                                                                                                                                                                                                       |
| SL0618<br>SL0619                                                                                                                                                                                                                                                                     |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                      | crcB                                                                                                                                                                                | Protein crcB homolog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1,18                                                                                                                                                                                                                                                | -2,74                                                                                                                                                                                                                                                |
| SL0619                                                                                                                                                                                                                                                                               | crcB<br>ybeM                                                                                                                                                                        | Protein crcB homolog<br>UPF0012 hydrolase ybeM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1,18<br>-1,77                                                                                                                                                                                                                                       | -2,74<br>1,56                                                                                                                                                                                                                                        |
| SL0619<br>SL0630                                                                                                                                                                                                                                                                     | crcB<br>ybeM<br>ybeB                                                                                                                                                                | Protein crcB homolog<br>UPF0012 hydrolase ybeM<br>Uncharacterized protein ybeB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1,18<br>-1,77<br>1,39                                                                                                                                                                                                                               | -2,74<br>1,56<br>2,09                                                                                                                                                                                                                                |
| SL0619<br>SL0630<br>SL0642                                                                                                                                                                                                                                                           | crcB<br>ybeM<br>ybeB<br>ybeQ<br>ybeR                                                                                                                                                | Protein crcB homolog<br>UPF0012 hydrolase ybeM<br>Uncharacterized protein ybeB<br>Uncharacterized protein ybeQ<br>Uncharacterized protein ybeR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1,18<br>-1,77<br>1,39<br>-1,26<br>-1,43                                                                                                                                                                                                             | -2,74<br>1,56<br>2,09<br>1,18<br>-1,23                                                                                                                                                                                                               |
| SL0619<br>SL0630<br>SL0642<br>SL0643                                                                                                                                                                                                                                                 | crcB<br>ybeM<br>ybeB<br>ybeQ<br>ybeR<br>ybeU                                                                                                                                        | Protein crcB homolog<br>UPF0012 hydrolase ybeM<br>Uncharacterized protein ybeB<br>Uncharacterized protein ybeQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1,18<br>-1,77<br>1,39<br>-1,26<br>-1,43<br>1,30                                                                                                                                                                                                     | -2,74<br>1,56<br>2,09<br>1,18<br>-1,23<br>1,40                                                                                                                                                                                                       |
| SL0619<br>SL0630<br>SL0642<br>SL0643<br>SL0645                                                                                                                                                                                                                                       | crcB<br>ybeM<br>ybeB<br>ybeQ<br>ybeR                                                                                                                                                | Protein crcB homolog<br>UPF0012 hydrolase ybeM<br>Uncharacterized protein ybeB<br>Uncharacterized protein ybeQ<br>Uncharacterized protein ybeR<br>Uncharacterized protein ybeU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1,18<br>-1,77<br>1,39<br>-1,26<br>-1,43<br>1,30<br>1,21                                                                                                                                                                                             | -2,74<br>1,56<br>2,09<br>1,18<br>-1,23<br>1,40<br>1,34                                                                                                                                                                                               |
| SL0619<br>SL0630<br>SL0642<br>SL0643<br>SL0645<br>SL0646                                                                                                                                                                                                                             | crcB<br>ybeM<br>ybeB<br>ybeQ<br>ybeR<br>ybeU<br>ybeU<br>ubiF                                                                                                                        | Protein crcB homolog<br>UPF0012 hydrolase ybeM<br>Uncharacterized protein ybeB<br>Uncharacterized protein ybeQ<br>Uncharacterized protein ybeR<br>Uncharacterized protein ybeU<br>Uncharacterized protein ybeU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1,18<br>-1,77<br>1,39<br>-1,26<br>-1,43<br>1,30<br>1,21<br>1,47                                                                                                                                                                                     | -2,74<br>1,56<br>2,09<br>1,18<br>-1,23<br>1,40<br>1,34<br>1,54                                                                                                                                                                                       |
| SL0619<br>SL0630<br>SL0642<br>SL0643<br>SL0645<br>SL0646<br>SL0660                                                                                                                                                                                                                   | crcB<br>ybeM<br>ybeQ<br>ybeQ<br>ybeU<br>ybeU<br>ubiF<br>nagD                                                                                                                        | Protein crcB homolog<br>UPF0012 hydrolase ybeM<br>Uncharacterized protein ybeB<br>Uncharacterized protein ybeQ<br>Uncharacterized protein ybeR<br>Uncharacterized protein ybeU<br>Uncharacterized protein ybeU<br>2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1,18<br>-1,77<br>1,39<br>-1,26<br>-1,43<br>1,30<br>1,21<br>1,47<br>1,73                                                                                                                                                                             | -2,74<br>1,56<br>2,09<br>1,18<br>-1,23<br>1,40<br>1,34<br>1,54<br>1,06                                                                                                                                                                               |
| SL0619<br>SL0630<br>SL0642<br>SL0643<br>SL0645<br>SL0646<br>SL0660<br>SL0663                                                                                                                                                                                                         | crcB<br>ybeM<br>ybeB<br>ybeQ<br>ybeR<br>ybeU<br>ybeU<br>ubiF<br>nagD<br>ybfM                                                                                                        | Protein crcB homolog<br>UPF0012 hydrolase ybeM<br>Uncharacterized protein ybeB<br>Uncharacterized protein ybeQ<br>Uncharacterized protein ybeR<br>Uncharacterized protein ybeU<br>Uncharacterized protein ybeU<br>2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase<br>Protein nagD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1,18<br>-1,77<br>1,39<br>-1,26<br>-1,43<br>1,30<br>1,21<br>1,47<br>1,73<br>1,00                                                                                                                                                                     | -2,74<br>1,56<br>2,09<br>1,18<br>-1,23<br>1,40<br>1,34<br>1,54<br>1,06<br>3,25                                                                                                                                                                       |
| SL0619<br>SL0630<br>SL0642<br>SL0643<br>SL0645<br>SL0646<br>SL0660<br>SL0663<br>SL0669                                                                                                                                                                                               | crcB<br>ybeM<br>ybeB<br>ybeQ<br>ybeR<br>ybeU<br>ybeU<br>ubiF<br>nagD<br>ybfM<br>ybfN                                                                                                | Protein crcB homolog<br>UPF0012 hydrolase ybeM<br>Uncharacterized protein ybeB<br>Uncharacterized protein ybeQ<br>Uncharacterized protein ybeR<br>Uncharacterized protein ybeU<br>2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase<br>Protein nagD<br>Uncharacterized protein ybfM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1,18<br>-1,77<br>1,39<br>-1,26<br>-1,43<br>1,30<br>1,21<br>1,47<br>1,73<br>1,00<br>1,16                                                                                                                                                             | -2,74<br>1,56<br>2,09<br>1,18<br>-1,23<br>1,40<br>1,34<br>1,54<br>1,06<br>3,25<br>3,37                                                                                                                                                               |
| SL0619<br>SL0630<br>SL0642<br>SL0643<br>SL0645<br>SL0646<br>SL0660<br>SL0663<br>SL0669<br>SL0670<br>SL0678                                                                                                                                                                           | crcB<br>ybeM<br>ybeQ<br>ybeR<br>ybeU<br>ybeU<br>ubiF<br>nagD<br>ybfM<br>ybfN<br>ybfF                                                                                                | Protein crcB homolog<br>UPF0012 hydrolase ybeM<br>Uncharacterized protein ybeB<br>Uncharacterized protein ybeQ<br>Uncharacterized protein ybeR<br>Uncharacterized protein ybeU<br>2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase<br>Protein nagD<br>Uncharacterized protein ybfM<br>Uncharacterized lipoprotein ybfN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1,18<br>-1,77<br>1,39<br>-1,26<br>-1,43<br>1,30<br>1,21<br>1,47<br>1,73<br>1,00<br>1,16<br>1,49                                                                                                                                                     | -2,74<br>1,56<br>2,09<br>1,18<br>-1,23<br>1,40<br>1,34<br>1,54<br>1,06<br>3,25<br>3,37<br>-2,15                                                                                                                                                      |
| SL0619<br>SL0630<br>SL0642<br>SL0643<br>SL0645<br>SL0646<br>SL0660<br>SL0663<br>SL0669<br>SL0670                                                                                                                                                                                     | crcB<br>ybeM<br>ybeB<br>ybeQ<br>ybeR<br>ybeU<br>ybeU<br>ubiF<br>nagD<br>ybfM<br>ybfN                                                                                                | Protein crcB homolog<br>UPF0012 hydrolase ybeM<br>Uncharacterized protein ybeB<br>Uncharacterized protein ybeQ<br>Uncharacterized protein ybeR<br>Uncharacterized protein ybeU<br>2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase<br>Protein nagD<br>Uncharacterized protein ybfM<br>Uncharacterized protein ybfN<br>Esterase ybfF<br>Uncharacterized protein ybgK                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1,18<br>-1,77<br>1,39<br>-1,26<br>-1,43<br>1,30<br>1,21<br>1,47<br>1,73<br>1,00<br>1,16<br>1,49<br>-1,16                                                                                                                                            | -2,74<br>1,56<br>2,09<br>1,18<br>-1,23<br>1,40<br>1,34<br>1,54<br>1,06<br>3,25<br>3,37<br>-2,15<br>1,52                                                                                                                                              |
| SL0619<br>SL0630<br>SL0642<br>SL0643<br>SL0645<br>SL0646<br>SL0660<br>SL0663<br>SL0669<br>SL0670<br>SL0678<br>SL0694                                                                                                                                                                 | crcB<br>ybeM<br>ybeQ<br>ybeR<br>ybeU<br>ybeU<br>ubiF<br>nagD<br>ybfM<br>ybfN<br>ybfF                                                                                                | Protein crcB homolog<br>UPF0012 hydrolase ybeM<br>Uncharacterized protein ybeB<br>Uncharacterized protein ybeQ<br>Uncharacterized protein ybeQ<br>Uncharacterized protein ybeU<br>2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase<br>Protein nagD<br>Uncharacterized protein ybfM<br>Uncharacterized protein ybfN<br>Esterase ybfF<br>Uncharacterized protein ybgK<br>Hypothetical                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1,18<br>-1,77<br>1,39<br>-1,26<br>-1,43<br>1,30<br>1,21<br>1,47<br>1,73<br>1,00<br>1,16<br>1,49<br>-1,16<br>1,31                                                                                                                                    | -2,74<br>1,56<br>2,09<br>1,18<br>-1,23<br>1,40<br>1,34<br>1,54<br>1,06<br>3,25<br>3,37<br>-2,15<br>1,52<br>1,02                                                                                                                                      |
| SL0619<br>SL0630<br>SL0642<br>SL0643<br>SL0645<br>SL0646<br>SL0660<br>SL0663<br>SL0669<br>SL0670<br>SL0678<br>SL0694<br>SL0698<br>SL0699                                                                                                                                             | crcB<br>ybeM<br>ybeQ<br>ybeQ<br>ybeU<br>ybeU<br>ubiF<br>nagD<br>ybfM<br>ybfN<br>ybfF<br>ybgK<br>-                                                                                   | Protein crcB homolog<br>UPF0012 hydrolase ybeM<br>Uncharacterized protein ybeB<br>Uncharacterized protein ybeQ<br>Uncharacterized protein ybeR<br>Uncharacterized protein ybeU<br>2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase<br>Protein nagD<br>Uncharacterized protein ybfM<br>Uncharacterized protein ybfN<br>Esterase ybfF<br>Uncharacterized protein ybgK<br>Hypothetical<br>Hypothetical                                                                                                                                                                                                                                                                                                                                                                                                                   | -1,18<br>-1,77<br>1,39<br>-1,26<br>-1,43<br>1,30<br>1,21<br>1,47<br>1,73<br>1,00<br>1,16<br>1,49<br>-1,16<br>1,31<br>1,27                                                                                                                            | -2,74<br>1,56<br>2,09<br>1,18<br>-1,23<br>1,40<br>1,34<br>1,54<br>1,06<br>3,25<br>3,37<br>-2,15<br>1,52<br>1,02<br>-1,07                                                                                                                             |
| SL0619<br>SL0630<br>SL0642<br>SL0643<br>SL0645<br>SL0646<br>SL0660<br>SL0663<br>SL0669<br>SL0670<br>SL0678<br>SL0694<br>SL0698                                                                                                                                                       | crcB<br>ybeM<br>ybeQ<br>ybeR<br>ybeU<br>ybeU<br>ubiF<br>nagD<br>ybfM<br>ybfN<br>ybfF                                                                                                | Protein crcB homolog<br>UPF0012 hydrolase ybeM<br>Uncharacterized protein ybeB<br>Uncharacterized protein ybeQ<br>Uncharacterized protein ybeQ<br>Uncharacterized protein ybeU<br>2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase<br>Protein nagD<br>Uncharacterized protein ybfM<br>Uncharacterized protein ybfN<br>Esterase ybfF<br>Uncharacterized protein ybgK<br>Hypothetical                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1,18<br>-1,77<br>1,39<br>-1,26<br>-1,43<br>1,30<br>1,21<br>1,47<br>1,73<br>1,00<br>1,16<br>1,49<br>-1,16<br>1,31<br>1,27<br>-1,25                                                                                                                   | -2,74<br>1,56<br>2,09<br>1,18<br>-1,23<br>1,40<br>1,34<br>1,54<br>1,06<br>3,25<br>3,37<br>-2,15<br>1,52<br>1,02<br>-1,07<br>1,22                                                                                                                     |
| SL0619<br>SL0630<br>SL0642<br>SL0643<br>SL0645<br>SL0646<br>SL0660<br>SL0663<br>SL0669<br>SL0670<br>SL0678<br>SL0694<br>SL0698<br>SL0699<br>SL0711                                                                                                                                   | crcB<br>ybeM<br>ybeQ<br>ybeQ<br>ybeU<br>ybeU<br>ubiF<br>nagD<br>ybfM<br>ybfN<br>ybfF<br>ybgK<br>-<br>-<br>abrB<br>-                                                                 | Protein crcB homolog<br>UPF0012 hydrolase ybeM<br>Uncharacterized protein ybeB<br>Uncharacterized protein ybeQ<br>Uncharacterized protein ybeR<br>Uncharacterized protein ybeU<br>2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase<br>Protein nagD<br>Uncharacterized protein ybfM<br>Uncharacterized protein ybfM<br>Uncharacterized lipoprotein ybfN<br>Esterase ybfF<br>Uncharacterized protein ybgK<br>Hypothetical<br>Protein AbrB<br>Hypothetical                                                                                                                                                                                                                                                                                                                                                               | -1,18<br>-1,77<br>1,39<br>-1,26<br>-1,43<br>1,30<br>1,21<br>1,47<br>1,73<br>1,00<br>1,16<br>1,49<br>-1,16<br>1,31<br>1,27<br>-1,25<br>-1,22                                                                                                          | -2,74<br>1,56<br>2,09<br>1,18<br>-1,23<br>1,40<br>1,34<br>1,54<br>1,06<br>3,25<br>3,37<br>-2,15<br>1,52<br>1,02<br>-1,07<br>1,22<br>2,02                                                                                                             |
| SL0619<br>SL0642<br>SL0643<br>SL0645<br>SL0646<br>SL0660<br>SL0663<br>SL0669<br>SL0670<br>SL0678<br>SL0694<br>SL0698<br>SL0699<br>SL0711<br>SL0713<br>SL0732                                                                                                                         | crcB<br>ybeM<br>ybeQ<br>ybeR<br>ybeU<br>ybeU<br>ubiF<br>nagD<br>ybfM<br>ybfN<br>ybfN<br>ybfF<br>ybgK<br>-<br>abrB<br>-<br>ybgF                                                      | Protein crcB homolog<br>UPF0012 hydrolase ybeM<br>Uncharacterized protein ybeB<br>Uncharacterized protein ybeQ<br>Uncharacterized protein ybeQ<br>Uncharacterized protein ybeU<br>2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase<br>Protein nagD<br>Uncharacterized protein ybfM<br>Uncharacterized protein ybfN<br>Esterase ybfF<br>Uncharacterized protein ybgK<br>Hypothetical<br>Hypothetical<br>Protein AbrB<br>Hypothetical<br>Uncharacterized protein YbgF                                                                                                                                                                                                                                                                                                                                                   | -1,18<br>-1,77<br>1,39<br>-1,26<br>-1,43<br>1,30<br>1,21<br>1,47<br>1,73<br>1,00<br>1,16<br>1,49<br>-1,16<br>1,31<br>1,27<br>-1,25<br>-1,22<br>1,83                                                                                                  | -2,74<br>1,56<br>2,09<br>1,18<br>-1,23<br>1,40<br>1,34<br>1,54<br>1,06<br>3,25<br>3,37<br>-2,15<br>1,52<br>1,02<br>-1,07<br>1,22<br>2,02<br>1,10                                                                                                     |
| SL0619<br>SL0630<br>SL0642<br>SL0643<br>SL0645<br>SL0646<br>SL0660<br>SL0663<br>SL0670<br>SL0670<br>SL0678<br>SL0694<br>SL0698<br>SL0699<br>SL0711<br>SL0713<br>SL0732<br>SL0761                                                                                                     | crcB<br>ybeM<br>ybeQ<br>ybeQ<br>ybeU<br>ybeU<br>ubiF<br>nagD<br>ybfM<br>ybfN<br>ybfF<br>ybgK<br>-<br>-<br>abrB<br>-<br>ybgF<br>ybhA                                                 | Protein crcB homolog<br>UPF0012 hydrolase ybeM<br>Uncharacterized protein ybeB<br>Uncharacterized protein ybeQ<br>Uncharacterized protein ybeR<br>Uncharacterized protein ybeU<br>2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase<br>Protein nagD<br>Uncharacterized protein ybfM<br>Uncharacterized protein ybfM<br>Uncharacterized protein ybfN<br>Esterase ybfF<br>Uncharacterized protein ybgK<br>Hypothetical<br>Protein AbrB<br>Hypothetical<br>Uncharacterized protein YbgF<br>Phosphatase ybhA                                                                                                                                                                                                                                                                                                               | -1,18<br>-1,77<br>1,39<br>-1,26<br>-1,43<br>1,30<br>1,21<br>1,47<br>1,73<br>1,00<br>1,16<br>1,49<br>-1,16<br>1,31<br>1,27<br>-1,25<br>-1,22<br>1,83<br>1,91                                                                                          | -2,74<br>1,56<br>2,09<br>1,18<br>-1,23<br>1,40<br>1,34<br>1,54<br>1,06<br>3,25<br>3,37<br>-2,15<br>1,52<br>1,02<br>-1,07<br>1,22<br>2,02<br>1,10<br>2,20                                                                                             |
| SL0619<br>SL0630<br>SL0642<br>SL0643<br>SL0645<br>SL0660<br>SL0663<br>SL0669<br>SL0670<br>SL0678<br>SL0694<br>SL0698<br>SL0699<br>SL0711<br>SL0713<br>SL0732<br>SL0761<br>SL0767                                                                                                     | crcB<br>ybeM<br>ybeQ<br>ybeQ<br>ybeU<br>ybeU<br>ubiF<br>nagD<br>ybfM<br>ybfN<br>ybfF<br>ybgK<br>-<br>-<br>abrB<br>-<br>ybgF<br>ybhA<br>hutU                                         | Protein crcB homolog<br>UPF0012 hydrolase ybeM<br>Uncharacterized protein ybeB<br>Uncharacterized protein ybeQ<br>Uncharacterized protein ybeR<br>Uncharacterized protein ybeU<br>2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase<br>Protein nagD<br>Uncharacterized protein ybfM<br>Uncharacterized protein ybfM<br>Uncharacterized lipoprotein ybfN<br>Esterase ybfF<br>Uncharacterized protein ybgK<br>Hypothetical<br>Protein AbrB<br>Hypothetical<br>Uncharacterized protein YbgF<br>Phosphatase ybhA<br>Urocanate hydratase                                                                                                                                                                                                                                                                                    | -1,18<br>-1,77<br>1,39<br>-1,26<br>-1,43<br>1,30<br>1,21<br>1,47<br>1,73<br>1,00<br>1,16<br>1,49<br>-1,16<br>1,31<br>1,27<br>-1,25<br>-1,22<br>1,83<br>1,91<br>3,68                                                                                  | -2,74<br>1,56<br>2,09<br>1,18<br>-1,23<br>1,40<br>1,34<br>1,54<br>1,06<br>3,25<br>3,37<br>-2,15<br>1,52<br>1,02<br>-1,07<br>1,22<br>2,02<br>1,10<br>2,20<br>23,77                                                                                    |
| SL0619<br>SL0630<br>SL0642<br>SL0643<br>SL0645<br>SL0660<br>SL0663<br>SL0669<br>SL0670<br>SL0678<br>SL0694<br>SL0698<br>SL0699<br>SL0711<br>SL0713<br>SL0732<br>SL0761<br>SL0767<br>SL0776                                                                                           | crcB<br>ybeM<br>ybeQ<br>ybeQ<br>ybeU<br>ubiF<br>nagD<br>ybfM<br>ybfN<br>ybfF<br>ybgK<br>-<br>-<br>abrB<br>-<br>ybgF<br>ybhA<br>hutU<br>slrP                                         | Protein crcB homolog<br>UPF0012 hydrolase ybeM<br>Uncharacterized protein ybeB<br>Uncharacterized protein ybeQ<br>Uncharacterized protein ybeR<br>Uncharacterized protein ybeU<br>2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase<br>Protein nagD<br>Uncharacterized protein ybfM<br>Uncharacterized protein ybfM<br>Uncharacterized protein ybfN<br>Esterase ybfF<br>Uncharacterized protein ybgK<br>Hypothetical<br>Protein AbrB<br>Hypothetical<br>Uncharacterized protein YbgF<br>Phosphatase ybhA<br>Urocanate hydratase<br>E3 ubiquitin-protein ligase slrP                                                                                                                                                                                                                                                    | $\begin{array}{c} -1,18\\ -1,77\\ 1,39\\ -1,26\\ -1,43\\ 1,30\\ 1,21\\ 1,47\\ 1,73\\ 1,00\\ 1,16\\ 1,49\\ -1,16\\ 1,49\\ -1,16\\ 1,31\\ 1,27\\ -1,25\\ -1,22\\ 1,83\\ 1,91\\ 3,68\\ -6,09\end{array}$                                                | -2,74<br>1,56<br>2,09<br>1,18<br>-1,23<br>1,40<br>1,34<br>1,54<br>1,06<br>3,25<br>3,37<br>-2,15<br>1,52<br>1,02<br>-1,07<br>1,22<br>2,02<br>1,10<br>2,20<br>23,77<br>-5,25                                                                           |
| SL0619<br>SL0630<br>SL0642<br>SL0643<br>SL0645<br>SL0660<br>SL0663<br>SL0669<br>SL0670<br>SL0678<br>SL0694<br>SL0698<br>SL0699<br>SL0711<br>SL0713<br>SL0732<br>SL0761<br>SL0767<br>SL0776<br>SL0783                                                                                 | crcB<br>ybeM<br>ybeQ<br>ybeQ<br>ybeU<br>ybeU<br>ubiF<br>nagD<br>ybfM<br>ybfN<br>ybfN<br>ybfF<br>ybgK<br>-<br>-<br>abrB<br>-<br>ybgF<br>ybhA<br>hutU<br>sIrP<br>ybhL                 | Protein crcB homolog<br>UPF0012 hydrolase ybeM<br>Uncharacterized protein ybeB<br>Uncharacterized protein ybeQ<br>Uncharacterized protein ybeR<br>Uncharacterized protein ybeU<br>2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase<br>Protein nagD<br>Uncharacterized protein ybfM<br>Uncharacterized protein ybfM<br>Uncharacterized protein ybfN<br>Esterase ybfF<br>Uncharacterized protein ybgK<br>Hypothetical<br>Protein AbrB<br>Hypothetical<br>Uncharacterized protein YbgF<br>Phosphatase ybhA<br>Urocanate hydratase<br>E3 ubiquitin-protein ligase slrP<br>Inner membrane protein ybhL                                                                                                                                                                                                                     | $\begin{array}{c} -1,18\\ -1,77\\ 1,39\\ -1,26\\ -1,43\\ 1,30\\ 1,21\\ 1,47\\ 1,73\\ 1,00\\ 1,16\\ 1,49\\ -1,16\\ 1,49\\ -1,16\\ 1,31\\ 1,27\\ -1,25\\ -1,22\\ 1,83\\ 1,91\\ 3,68\\ -6,09\\ 1,19\\ \end{array}$                                      | -2,74<br>1,56<br>2,09<br>1,18<br>-1,23<br>1,40<br>1,34<br>1,54<br>1,06<br>3,25<br>3,37<br>-2,15<br>1,52<br>1,02<br>-1,07<br>1,22<br>2,02<br>1,10<br>2,20<br>23,77<br>-5,25<br>1,75                                                                   |
| SL0619<br>SL0630<br>SL0642<br>SL0643<br>SL0645<br>SL0660<br>SL0663<br>SL0669<br>SL0670<br>SL0678<br>SL0694<br>SL0698<br>SL0699<br>SL0711<br>SL0713<br>SL0732<br>SL0761<br>SL0767<br>SL0776<br>SL0783<br>SL0787                                                                       | crcB<br>ybeM<br>ybeQ<br>ybeQ<br>ybeU<br>ubiF<br>nagD<br>ybfM<br>ybfN<br>ybfN<br>ybfF<br>ybgK<br>-<br>-<br>abrB<br>-<br>ybgF<br>ybhA<br>hutU<br>slrP<br>ybhL<br>ybhN                 | Protein crcB homolog<br>UPF0012 hydrolase ybeM<br>Uncharacterized protein ybeB<br>Uncharacterized protein ybeQ<br>Uncharacterized protein ybeR<br>Uncharacterized protein ybeU<br>2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase<br>Protein nagD<br>Uncharacterized protein ybfM<br>Uncharacterized protein ybfM<br>Uncharacterized protein ybfN<br>Esterase ybfF<br>Uncharacterized protein ybgK<br>Hypothetical<br>Protein AbrB<br>Hypothetical<br>Uncharacterized protein YbgF<br>Phosphatase ybhA<br>Urocanate hydratase<br>E3 ubiquitin-protein ligase slrP<br>Inner membrane protein ybhL<br>Inner membrane protein ybhN                                                                                                                                                                                      | $\begin{array}{c} -1,18\\ -1,77\\ 1,39\\ -1,26\\ -1,43\\ 1,30\\ 1,21\\ 1,47\\ 1,73\\ 1,00\\ 1,16\\ 1,49\\ -1,16\\ 1,49\\ -1,16\\ 1,31\\ 1,27\\ -1,25\\ -1,22\\ 1,83\\ 1,91\\ 3,68\\ -6,09\\ 1,19\\ -1,70\\ \end{array}$                              | -2,74<br>1,56<br>2,09<br>1,18<br>-1,23<br>1,40<br>1,34<br>1,54<br>1,06<br>3,25<br>3,37<br>-2,15<br>1,52<br>1,02<br>-1,07<br>1,22<br>2,02<br>1,10<br>2,20<br>23,77<br>-5,25<br>1,75<br>-2,06                                                          |
| SL0619<br>SL0630<br>SL0642<br>SL0643<br>SL0645<br>SL0660<br>SL0663<br>SL0669<br>SL0670<br>SL0678<br>SL0694<br>SL0698<br>SL0699<br>SL0711<br>SL0713<br>SL0732<br>SL0761<br>SL0767<br>SL0776<br>SL0783<br>SL0787<br>SL0791                                                             | crcB<br>ybeM<br>ybeQ<br>ybeQ<br>ybeU<br>ubiF<br>nagD<br>ybfM<br>ybfN<br>ybfF<br>ybgK<br>-<br>-<br>abrB<br>-<br>ybgF<br>ybhA<br>hutU<br>slrP<br>ybhL<br>ybhN<br>ybhR                 | Protein crcB homolog<br>UPF0012 hydrolase ybeM<br>Uncharacterized protein ybeB<br>Uncharacterized protein ybeQ<br>Uncharacterized protein ybeV<br>Uncharacterized protein ybeU<br>2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase<br>Protein nagD<br>Uncharacterized protein ybfM<br>Uncharacterized protein ybfM<br>Uncharacterized protein ybfN<br>Esterase ybfF<br>Uncharacterized protein ybgK<br>Hypothetical<br>Protein AbrB<br>Hypothetical<br>Uncharacterized protein YbgF<br>Phosphatase ybhA<br>Urocanate hydratase<br>E3 ubiquitin-protein ligase slrP<br>Inner membrane protein ybhL<br>Inner membrane protein ybhN<br>Inner membrane transport permease ybhR                                                                                                                                            | $\begin{array}{c} -1,18\\ -1,77\\ 1,39\\ -1,26\\ -1,43\\ 1,30\\ 1,21\\ 1,47\\ 1,73\\ 1,00\\ 1,16\\ 1,49\\ -1,16\\ 1,49\\ -1,16\\ 1,31\\ 1,27\\ -1,25\\ -1,22\\ 1,83\\ 1,91\\ 3,68\\ -6,09\\ 1,19\\ -1,70\\ 1,36\end{array}$                          | -2,74<br>1,56<br>2,09<br>1,18<br>-1,23<br>1,40<br>1,34<br>1,54<br>1,06<br>3,25<br>3,37<br>-2,15<br>1,52<br>1,02<br>-1,07<br>1,22<br>2,02<br>1,10<br>2,20<br>23,77<br>-5,25<br>1,75<br>-2,06<br>-1,80                                                 |
| SL0619<br>SL0630<br>SL0642<br>SL0643<br>SL0645<br>SL0660<br>SL0663<br>SL0669<br>SL0670<br>SL0678<br>SL0694<br>SL0698<br>SL0699<br>SL0711<br>SL0713<br>SL0732<br>SL0761<br>SL0767<br>SL0776<br>SL0783<br>SL0787<br>SL0791<br>SL0792                                                   | crcB<br>ybeM<br>ybeQ<br>ybeQ<br>ybeU<br>ubiF<br>nagD<br>ybfM<br>ybfN<br>ybfF<br>ybgK<br>-<br>-<br>abrB<br>-<br>ybgF<br>ybhA<br>hutU<br>slrP<br>ybhL<br>ybhR<br>ybhS                 | Protein crcB homolog<br>UPF0012 hydrolase ybeM<br>Uncharacterized protein ybeB<br>Uncharacterized protein ybeQ<br>Uncharacterized protein ybeV<br>Uncharacterized protein ybeU<br>2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase<br>Protein nagD<br>Uncharacterized protein ybfM<br>Uncharacterized protein ybfM<br>Uncharacterized protein ybfN<br>Esterase ybfF<br>Uncharacterized protein ybgK<br>Hypothetical<br>Protein AbrB<br>Hypothetical<br>Uncharacterized protein YbgF<br>Phosphatase ybhA<br>Urocanate hydratase<br>E3 ubiquitin-protein ligase slrP<br>Inner membrane protein ybhL<br>Inner membrane transport permease ybhR<br>Inner membrane transport permease ybhS                                                                                                                                 | $\begin{array}{c} -1,18\\ -1,77\\ 1,39\\ -1,26\\ -1,43\\ 1,30\\ 1,21\\ 1,47\\ 1,73\\ 1,00\\ 1,16\\ 1,49\\ -1,16\\ 1,49\\ -1,16\\ 1,31\\ 1,27\\ -1,25\\ -1,22\\ 1,83\\ 1,91\\ 3,68\\ -6,09\\ 1,19\\ -1,70\\ 1,36\\ 1,16\end{array}$                   | -2,74<br>1,56<br>2,09<br>1,18<br>-1,23<br>1,40<br>1,34<br>1,54<br>1,06<br>3,25<br>3,37<br>-2,15<br>1,52<br>1,02<br>-1,07<br>1,22<br>2,02<br>1,10<br>2,20<br>23,77<br>-5,25<br>1,75<br>-2,06<br>-1,80<br>-2,46                                        |
| SL0619<br>SL0630<br>SL0642<br>SL0643<br>SL0645<br>SL0660<br>SL0663<br>SL0669<br>SL0670<br>SL0678<br>SL0694<br>SL0698<br>SL0699<br>SL0711<br>SL0713<br>SL0732<br>SL0761<br>SL0767<br>SL0776<br>SL0776<br>SL0783<br>SL0787<br>SL0791<br>SL0792<br>SL0799                               | crcB<br>ybeM<br>ybeQ<br>ybeQ<br>ybeU<br>ubiF<br>nagD<br>ybfM<br>ybfN<br>ybfF<br>ybgK<br>-<br>-<br>abrB<br>-<br>ybgF<br>ybhA<br>hutU<br>slrP<br>ybhL<br>ybhN<br>ybhS<br>ybiJ         | Protein crcB homolog<br>UPF0012 hydrolase ybeM<br>Uncharacterized protein ybeB<br>Uncharacterized protein ybeQ<br>Uncharacterized protein ybeV<br>Uncharacterized protein ybeU<br>2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase<br>Protein nagD<br>Uncharacterized protein ybfM<br>Uncharacterized protein ybfN<br>Esterase ybfF<br>Uncharacterized protein ybgK<br>Hypothetical<br>Protein AbrB<br>Hypothetical<br>Uncharacterized protein YbgF<br>Phosphatase ybhA<br>Urocanate hydratase<br>E3 ubiquitin-protein ligase slrP<br>Inner membrane protein ybhL<br>Inner membrane transport permease ybhR<br>Inner membrane transport permease ybhS<br>Uncharacterized protein ybjJ                                                                                                                                 | $\begin{array}{c} -1,18\\ -1,77\\ 1,39\\ -1,26\\ -1,43\\ 1,30\\ 1,21\\ 1,47\\ 1,73\\ 1,00\\ 1,16\\ 1,49\\ -1,16\\ 1,31\\ 1,27\\ -1,25\\ -1,22\\ 1,83\\ 1,91\\ 3,68\\ -6,09\\ 1,19\\ -1,70\\ 1,36\\ 1,16\\ -1,42\\ \end{array}$                       | -2,74<br>1,56<br>2,09<br>1,18<br>-1,23<br>1,40<br>1,34<br>1,54<br>1,06<br>3,25<br>3,37<br>-2,15<br>1,52<br>1,02<br>-1,07<br>1,22<br>2,02<br>1,10<br>2,20<br>23,77<br>-5,25<br>1,75<br>-2,06<br>-1,80<br>-2,46<br>-5,03                               |
| SL0619<br>SL0630<br>SL0642<br>SL0643<br>SL0645<br>SL0660<br>SL0663<br>SL0669<br>SL0670<br>SL0678<br>SL0694<br>SL0698<br>SL0699<br>SL0711<br>SL0713<br>SL0732<br>SL0761<br>SL0767<br>SL0776<br>SL0776<br>SL0783<br>SL0787<br>SL0791<br>SL0792<br>SL0799<br>SL0800                     | crcB<br>ybeM<br>ybeQ<br>ybeQ<br>ybeU<br>ubiF<br>nagD<br>ybfM<br>ybfN<br>ybfF<br>ybgK<br>-<br>-<br>abrB<br>-<br>ybgF<br>ybhA<br>hutU<br>slrP<br>ybhL<br>ybhN<br>ybhS<br>ybiJ<br>ybiI | Protein crcB homolog<br>UPF0012 hydrolase ybeM<br>Uncharacterized protein ybeB<br>Uncharacterized protein ybeQ<br>Uncharacterized protein ybeV<br>Uncharacterized protein ybeU<br>2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase<br>Protein nagD<br>Uncharacterized protein ybfM<br>Uncharacterized protein ybfN<br>Esterase ybfF<br>Uncharacterized protein ybgK<br>Hypothetical<br>Protein AbrB<br>Hypothetical<br>Uncharacterized protein YbgF<br>Phosphatase ybhA<br>Urocanate hydratase<br>E3 ubiquitin-protein ligase slrP<br>Inner membrane protein ybhL<br>Inner membrane transport permease ybhR<br>Inner membrane transport permease ybhS<br>Uncharacterized protein ybiJ<br>Uncharacterized protein ybiJ                                                                                                 | $\begin{array}{c} -1,18\\ -1,77\\ 1,39\\ -1,26\\ -1,43\\ 1,30\\ 1,21\\ 1,47\\ 1,73\\ 1,00\\ 1,16\\ 1,49\\ -1,16\\ 1,31\\ 1,27\\ -1,25\\ -1,22\\ 1,83\\ 1,91\\ 3,68\\ -6,09\\ 1,19\\ -1,70\\ 1,36\\ 1,16\\ -1,42\\ -1,00\\ \end{array}$               | $\begin{array}{r} -2,74\\ 1,56\\ 2,09\\ 1,18\\ -1,23\\ 1,40\\ 1,34\\ 1,54\\ 1,06\\ 3,25\\ 3,37\\ -2,15\\ 1,52\\ 1,02\\ -1,07\\ 1,22\\ 2,02\\ 1,10\\ 2,20\\ 23,77\\ -5,25\\ 1,75\\ -2,06\\ -1,80\\ -2,46\\ -5,03\\ -1,37\\ \end{array}$               |
| SL0619<br>SL0630<br>SL0642<br>SL0643<br>SL0645<br>SL0660<br>SL0663<br>SL0669<br>SL0670<br>SL0678<br>SL0694<br>SL0698<br>SL0699<br>SL0711<br>SL0713<br>SL0732<br>SL0761<br>SL0767<br>SL0776<br>SL0776<br>SL0776<br>SL0783<br>SL0787<br>SL0791<br>SL0792<br>SL0799<br>SL0800<br>SL0801 | crcB<br>ybeM<br>ybeQ<br>ybeQ<br>ybeU<br>ubiF<br>nagD<br>ybfM<br>ybfN<br>ybfF<br>ybgK<br>-<br>-<br>abrB<br>-<br>ybgF<br>ybhA<br>hutU<br>slrP<br>ybhL<br>ybhN<br>ybiJ<br>ybiJ<br>ybiN | Protein crcB homolog<br>UPF0012 hydrolase ybeM<br>Uncharacterized protein ybeB<br>Uncharacterized protein ybeQ<br>Uncharacterized protein ybeV<br>Uncharacterized protein ybeU<br>2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase<br>Protein nagD<br>Uncharacterized protein ybfM<br>Uncharacterized protein ybfN<br>Esterase ybfF<br>Uncharacterized protein ybgK<br>Hypothetical<br>Protein AbrB<br>Hypothetical<br>Uncharacterized protein YbgF<br>Phosphatase ybhA<br>Urocanate hydratase<br>E3 ubiquitin-protein ligase slrP<br>Inner membrane protein ybhL<br>Inner membrane transport permease ybhR<br>Inner membrane transport permease ybhS<br>Uncharacterized protein ybiJ<br>Uncharacterized protein ybiJ<br>Uncharacterized protein ybiJ<br>Uncharacterized protein ybiJ<br>Uncharacterized protein ybiJ | $\begin{array}{c} -1,18\\ -1,77\\ 1,39\\ -1,26\\ -1,43\\ 1,30\\ 1,21\\ 1,47\\ 1,73\\ 1,00\\ 1,16\\ 1,49\\ -1,16\\ 1,31\\ 1,27\\ -1,25\\ -1,22\\ 1,83\\ 1,91\\ \hline 3,68\\ -6,09\\ 1,19\\ -1,70\\ 1,36\\ 1,16\\ -1,42\\ -1,00\\ 1,09\\ \end{array}$ | $\begin{array}{r} -2,74\\ 1,56\\ 2,09\\ 1,18\\ -1,23\\ 1,40\\ 1,34\\ 1,54\\ 1,06\\ 3,25\\ 3,37\\ -2,15\\ 1,52\\ 1,02\\ -1,07\\ 1,22\\ 2,02\\ 1,10\\ 2,20\\ \hline 23,77\\ -5,25\\ 1,75\\ -2,06\\ -1,80\\ -2,46\\ -5,03\\ -1,37\\ 2,03\\ \end{array}$ |
| SL0619<br>SL0630<br>SL0642<br>SL0643<br>SL0645<br>SL0660<br>SL0663<br>SL0669<br>SL0670<br>SL0678<br>SL0694<br>SL0698<br>SL0699<br>SL0711<br>SL0713<br>SL0732<br>SL0761<br>SL0767<br>SL0776<br>SL0776<br>SL0783<br>SL0787<br>SL0791<br>SL0792<br>SL0799<br>SL0800                     | crcB<br>ybeM<br>ybeQ<br>ybeQ<br>ybeU<br>ubiF<br>nagD<br>ybfM<br>ybfN<br>ybfF<br>ybgK<br>-<br>-<br>abrB<br>-<br>ybgF<br>ybhA<br>hutU<br>slrP<br>ybhL<br>ybhN<br>ybhS<br>ybiJ<br>ybiI | Protein crcB homolog<br>UPF0012 hydrolase ybeM<br>Uncharacterized protein ybeB<br>Uncharacterized protein ybeQ<br>Uncharacterized protein ybeV<br>Uncharacterized protein ybeU<br>2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase<br>Protein nagD<br>Uncharacterized protein ybfM<br>Uncharacterized protein ybfN<br>Esterase ybfF<br>Uncharacterized protein ybgK<br>Hypothetical<br>Protein AbrB<br>Hypothetical<br>Uncharacterized protein YbgF<br>Phosphatase ybhA<br>Urocanate hydratase<br>E3 ubiquitin-protein ligase slrP<br>Inner membrane protein ybhL<br>Inner membrane transport permease ybhR<br>Inner membrane transport permease ybhS<br>Uncharacterized protein ybiJ<br>Uncharacterized protein ybiJ                                                                                                 | $\begin{array}{c} -1,18\\ -1,77\\ 1,39\\ -1,26\\ -1,43\\ 1,30\\ 1,21\\ 1,47\\ 1,73\\ 1,00\\ 1,16\\ 1,49\\ -1,16\\ 1,31\\ 1,27\\ -1,25\\ -1,22\\ 1,83\\ 1,91\\ 3,68\\ -6,09\\ 1,19\\ -1,70\\ 1,36\\ 1,16\\ -1,42\\ -1,00\\ \end{array}$               | $\begin{array}{r} -2,74\\ 1,56\\ 2,09\\ 1,18\\ -1,23\\ 1,40\\ 1,34\\ 1,54\\ 1,06\\ 3,25\\ 3,37\\ -2,15\\ 1,52\\ 1,02\\ -1,07\\ 1,22\\ 2,02\\ 1,10\\ 2,20\\ 23,77\\ -5,25\\ 1,75\\ -2,06\\ -1,80\\ -2,46\\ -5,03\\ -1,37\\ \end{array}$               |

| SL0817 | ybiU  | Uncharacterized protein ybiU                            | 1,41  | 1,47  |
|--------|-------|---------------------------------------------------------|-------|-------|
| SL0818 | ybiV1 | putative hydrolase                                      | 1,48  | -1,06 |
| SL0823 | ybiK  | Isoaspartyl peptidase                                   | 1,45  | -1,36 |
| SL0841 | ybjG  | Putative undecaprenyl-diphosphatase ybjG                | -1,14 | -3,26 |
| SL0843 | ybjl  | Phosphatase ybjl                                        | 1,14  | 1,11  |
| SL0849 | ybjC  | Uncharacterized protein ybjC                            | 1,83  | 2,07  |
| SL0860 | ulaA  | Ascorbate-specific permease IIC component ulaA          | 1,00  | -1,31 |
| SL0876 | hcp   | Hydroxylamine reductase                                 | 4,19  | 2,53  |
| SL0878 | ybjD  | Uncharacterized protein ybjD                            | 1,70  | 1,74  |
| SL0879 | ybjX  | Uncharacterized protein ybjX                            | -1,29 | -3,90 |
| SL0880 | macA  | Macrolide-specific efflux protein macA                  | -1,21 | -4,80 |
| SL0888 | ycaC  | Uncharacterized protein ycaC                            | 1,06  | 2,05  |
| SL0892 | -     | Inner Membrane Protein                                  | 1,44  | -2,09 |
| SL0912 | ycaO  | UPF0142 protein ycaO                                    | 1,62  | -1,88 |
| SL0913 | ycaP  | UPF0702 transmembrane protein ycaP                      | -1,29 | -1,11 |
| SL0916 | ycaL  | Uncharacterized metalloprotease ycaL                    | -1,13 | -1,47 |
| SL0923 | ycaQ  | Uncharacterized protein ycaQ                            | 1,62  | -1,13 |
| SL0930 | mukE  | Chromosome partition protein mukE                       | 1,91  | -1,11 |
| SL0933 | ycbK  | Uncharacterized protein ycbK                            | 1,18  | 1,29  |
| SL0934 | ycbL  | Uncharacterized protein ycbL                            | 1,06  | -1,36 |
| SL1003 | pqiA  | Paraquat-inducible protein A                            | 2,63  | 1,57  |
| SL1004 | pqiB  | Paraquat-inducible protein B                            | 2,44  | 1,51  |
| SL1005 | ymbA  | Uncharacterized lipoprotein ymbA                        | 1,86  | 2,08  |
| SL1012 | yccR  | putative DNA transformation protein                     | 2,30  | 4,04  |
| SL1013 | yccS  | Inner membrane protein yccS                             | 2,04  | -1,40 |
| SL1014 | yccF  | Inner membrane protein yccF                             | 2,24  | -1,10 |
| SL1018 | yccU  | Uncharacterized protein yccU                            | 1,04  | 1,49  |
| SL1024 | tusE  | Sulfurtransferase tusE                                  | -1,01 | 1,10  |
| SL1036 | yedX  | putative periplasmic or exported protein                | -1,33 | -1,00 |
| SL1049 | iraM  | Anti-adapter protein iraM                               | -2,20 | -1,50 |
| SL1050 | cbpM  | Chaperone modulatory protein cbpM                       | -1,11 | 1,28  |
| SL1059 | ymdF  | Uncharacterized protein ymdF                            | -1,28 | 1,18  |
| SL1068 | nanM  | N-acetylneuraminate epimerase                           | 1,01  | 1,16  |
| SL1071 | yjhC  | Uncharacterized oxidoreductase yjhC                     | -2,01 | 1,14  |
| SL1073 | ycdX  | Putative hydrolase ycdX                                 | 1,51  | 1,24  |
| SL1083 | ymdA  | Uncharacterized protein ymdA                            | -2,48 | 1,64  |
| SL1085 | ymdC  | Uncharacterized protein ymdC                            | -1,47 | -1,22 |
| SL1086 | mdoC  | Glucans biosynthesis protein C                          | 1,45  | -1,99 |
| SL1093 | yceA  | UPF0176 protein yceA                                    | 1,22  | 1,17  |
| SL1099 | dinl  | DNA-damage-inducible protein I                          | 1,33  | -1,08 |
| SL1101 | yceB  | Uncharacterized lipoprotein yceB                        | 1,20  | -2,08 |
| SL1103 | mdtH  | Multidrug resistance protein mdtH                       | -1,40 | -2,23 |
| SL1105 | yceH  | UPF0502 protein yceH                                    | 1,39  | 2,06  |
| SL1123 | rluC  | Ribosomal large subunit pseudouridine synthase C        | 2,06  | 1,28  |
| SL1125 | -     | Hypothetical                                            | 1,12  | 2,83  |
| SL1139 | ycfH  | Uncharacterized deoxyribonuclease ycfH                  | 1,83  | -1,23 |
| SL1143 | ycfL  | Uncharacterized protein ycfL                            | 1,25  | 1,04  |
| SL1147 | ycfP  | UPF0227 protein KPN78578_10770                          | 1,02  | 1,21  |
| SL1150 | ycfQ  | Uncharacterized HTH-type transcriptional regulator ycfQ | 1,46  | 1,35  |
| SL1151 | bhsA  | Multiple stress resistance protein BhsA                 | -1,08 | -3,31 |
| SL1152 | ycfS  | Probable L,D-transpeptidase YcfS                        | 2,06  | -1,44 |
| SL1157 | nagK  | N-acetyl-D-glucosamine kinase                           | 1,62  | -1,12 |
| SL1165 | -     | Hypothetical Protein SL1165                             | 3,46  | 1,23  |
| SL1167 | ycfD  | Uncharacterized protein ycfD                            | 1,10  | 1,07  |
| SL1175 | rluB  | Ribosomal large subunit pseudouridine synthase B        | 2,54  | 1,54  |
| SL1197 | yhjQ  | Uncharacterized cysteine-rich protein yhjQ              | -1,35 | 2,97  |
| SL1204 | aroQ  | Monofunctional chorismate mutase                        | -3,40 | -1,13 |
| SL1209 | -     | Hypothetical                                            | 1,51  | -1,12 |
| SL1210 | yeaQ  | UPF0410 protein yeaQ                                    | -1,96 | 1,57  |
| SL1211 | yaoF  | putative hemolysin                                      | -1,38 | -1,52 |
| SL1213 | yeaO  | Uncharacterized protein yeaO                            | 1,03  | 1,02  |
| SL1216 | yeaL  | UPF0756 membrane protein yeaL                           | -1,11 | -1,56 |
| SL1218 | yeaJ  | Putative diguanylate cylase YeaJ                        | -1,01 | -2,57 |
| SL1219 | yeaH  | UPF0229 protein yeaH                                    | -3,21 | 1,15  |
| SL1222 | chuR  | Anaerobic sulfatase-maturating enzyme                   | -1,47 | -1,90 |
| SL1224 | yeaD  | Putative glucose-6-phosphate 1-epimerase                | 1,56  | -1,31 |
| SL1226 | msrB  | Peptide methionine sulfoxide reductase msrB             | 1,36  | 1,38  |
|        | -     |                                                         | ,     | , -   |

| SL1228 | pncA | Pyrazinamidase/nicotinamidase                           | 2,20   | 1,23   |
|--------|------|---------------------------------------------------------|--------|--------|
| SL1235 | ynjH | Uncharacterized protein ynjH                            | -3,19  | 1,31   |
| SL1236 | nudG | CTP pyrophosphohydrolase                                | -2,30  | 1,12   |
| SL1241 | astB | N-succinylarginine dihydrolase                          | 2,30   | 4,94   |
| SL1242 | astE | Succinylglutamate desuccinylase                         | 1,74   | 3,04   |
| SL1243 | spy  | Spheroplast protein Y                                   | -1,51  | 1,17   |
| SL1252 | celG | putative glucosidase                                    | -1,30  | -1,83  |
| SL1256 | ydjM | Inner membrane protein ydjM                             | 1,09   | -1,59  |
| SL1258 | yniB | Uncharacterized protein yniB                            | -1,03  | 1,10   |
| SL1259 | yniA | Uncharacterized protein yniA                            | -2,45  | 2,01   |
| SL1260 | ydiZ | Uncharacterized protein ydiZ                            | -2,09  | 1,08   |
| SL1262 | ydiY | Uncharacterized protein ydiY                            | -2,02  | -1,20  |
| SL1278 | cdgR | Cyclic di-GMP regulator cdgR                            | -1,31  | -5,00  |
| SL1279 | ydiU | UPF0061 protein ydiU                                    | -1,06  | -1,26  |
| SL1285 | ydiT | Ferredoxin-like protein ydiT                            | 1,16   | -1,74  |
| SL1297 | ydiL | Uncharacterized protein ydiL                            | -2,58  | -2,47  |
| SL1298 | ydiK | UPF0118 inner membrane protein ydiK                     | 1,15   | -1,54  |
| SL1303 | sufA | Protein sufA                                            | 1,08   | 1,12   |
| SL1304 | sufB | FeS cluster assembly protein sufB                       | -1,33  | -1,21  |
| SL1306 | sufD | FeS cluster assembly protein sufD                       | -1,38  | -1,80  |
| SL1307 | sufS | Cysteine desulfurase                                    | -1,42  | -1,66  |
| SL1309 | ynhG | Probable L,D-transpeptidase YnhG                        | -1,32  | 2,05   |
| SL1310 | IppB | Major outer membrane lipoprotein 2                      | 2,49   | -1,06  |
| SL1311 | IppA | Major outer membrane lipoprotein 1                      | 1,01   | 1,41   |
| SL1365 | grxD | Glutaredoxin-4                                          | 1,60   | 1,44   |
| SL1369 | nemR | HTH-type transcriptional repressor nemR                 | 2,17   | 1,11   |
| SL1370 | ydhL | Uncharacterized protein ydhL                            | -1,10  | -1,02  |
| SL1371 | ydhF | Oxidoreductase ydhF                                     | 1,73   | 3,41   |
| SL1378 | anmK | Anhydro-N-acetylmuramic acid kinase                     | 1,54   | 1,22   |
| SL1379 | mliC | Membrane-bound lysozyme inhibitor of C-type lysozyme    | 1,20   | -2,39  |
| SL1386 | rnfE | Electron transport complex protein rnfE                 | 2,55   | 1,22   |
| SL1390 | rnfB | Electron transport complex protein rnfB                 | 2,09   | -1,58  |
| SL1391 | rnfA | Electron transport complex protein rnfA                 | 1,30   | -1,67  |
| SL1392 | ydgK | Inner membrane protein ydgK                             | -1,04  | -1,48  |
| SL1396 | ydgA | Protein ydgA                                            | -1,04  | -1,36  |
| SL1406 | ydgC | Inner membrane protein ydgC                             | 1,03   | 1,23   |
| SL1408 | ydgH | Protein ydgH                                            | 1,73   | 1,40   |
| SL1411 | tqsA | AI-2 transport protein tqsA                             | -1,40  | -1,42  |
| SL1414 | yḋgD | Uncharacterized serine protease ydgD                    | -1,43  | 1,05   |
| SL1419 | ynfK | Putative dethiobiotin synthetase                        | 1,70   | 1,12   |
| SL1430 | ynfD | Uncharacterized protein ynfD                            | -1,43  | 1,68   |
| SL1433 | ynfB | UPF0482 protein CKO 01577                               | 1,37   | 1,05   |
| SL1434 | ynfA | UPF0060 membrane protein ynfA                           | -1,20  | 3,16   |
| SL1440 | ydfH | Uncharacterized HTH-type transcriptional regulator ydfH | 1,10   | -1,63  |
| SL1444 | ydeJ | Protein ydeJ                                            | -2,52  | -3,51  |
| SL1447 | eamA | Probable amino-acid metabolite efflux pump              | -1,38  | 1,39   |
| SL1456 | yneG | Uncharacterized protein yneG                            | -1,37  | 1,76   |
| SL1457 | yneE | UPF0187 protein yneE                                    | -1,57  | -2,84  |
| SL1469 | cbh  | Choloylglycine hydrolase                                | -1,41  | -1,35  |
| SL1475 | yhjG | Uncharacterized aromatic compound monooxygenase yhjG    | 1,73   | 2,79   |
| SL1478 | ујgН | UPF0076 protein yjgH                                    | -1,54  | -1,36  |
| SL1481 | -    | Hypothetical                                            | -1,39  | -1,07  |
| SL1483 | -    | Putative transposase y4bF (pseudogene)                  | -1,04  | 1,01   |
| SL1487 | patB | Cystathionine beta-lyase patB                           | 1,26   | 1,70   |
| SL1492 | hdeB | Protein hdeB                                            | 1,25   | 3,96   |
| SL1494 | bdm  | Protein bdm homolog                                     | -1,58  | -4,75  |
| SL1502 | yddG | Inner membrane protein yddG                             | -1,07  | 1,37   |
| SL1516 | ygdR | Uncharacterized lipoprotein ygdR                        | 1,92   | 1,01   |
| SL1519 | mcbR | HTH-type transcriptional regulator mcbR                 | -1,81  | 1,69   |
| SL1522 | ydcZ | Inner membrane protein ydcZ                             | 1,19   | -1,06  |
| SL1535 | ydcN | Uncharacterized HTH-type transcriptional regulator ydcN | 1,80   | -1,15  |
| SL1540 | ydcK | Uncharacterized acetyltransferase ydcK                  | -1,17  | -1,04  |
| SL1541 | rimL | Ribosomal-protein-serine acetyltransferase              | -1,06  | 1,80   |
| SL1554 | ydcJ | Uncharacterized protein ydcJ                            | 2,20   | 15,31  |
| SL1559 | steB | Secreted effector protein steB                          | -13,37 | -30,72 |
| SL1570 | ydcF | Protein ydcF                                            | 1,49   | 1,50   |
| SL1574 | ydbL | Uncharacterized protein ydbL                            | 1,86   | -1,73  |
|        |      |                                                         |        |        |

| SL1575           | ynbE         | Uncharacterized protein ynbE                                 | 1,75          | -1,60          |
|------------------|--------------|--------------------------------------------------------------|---------------|----------------|
| SL1576           | ydbH         | Uncharacterized protein ydbH                                 | 1,65          | -2,76          |
| SL1582           | uspF         | Universal stress protein F                                   | -1,35         | 2,05           |
| SL1584           | intR         | Putative lambdoid prophage Rac integrase                     | 1,58          | 2,47           |
| SL1585           | ttcA         | tRNA 2-thiocytidine biosynthesis protein TtcA                | 1,38          | 2,24           |
| SL1589           | ydaL         | Uncharacterized protein ydaL                                 | -1,85         | 1,49           |
| SL1592           | uspE         | Universal stress protein E                                   | -1,31         | 1,55           |
| SL1595           | ydcN         | XRE Family Transcriptional Regulator                         | 1,24          | 1,21           |
| SL1601           | -            | Hypothetical Protein SL1601                                  | -1,22         | -1,20          |
| SL1603           | ygdR         | Outer Membrane Lipoprotein                                   | -1,11         | -1,21          |
| SL1604           | yjgJ         | Uncharacterized HTH-type transcriptional regulator yjgJ      | 1,58          | 1,81           |
| SL1627           | ydiV         | Uncharacterized protein ydiV                                 | 1,75          | 3,11           |
| SL1634           | yciR         | putative PAS/PAC domain protein                              | 1,13          | 1,39           |
| SL1635           | yciZ         | UPF0509 protein yciZ                                         | 1,32          | -1,59          |
| SL1651           | rluB         | Ribosomal large subunit pseudouridine synthase B             | 1,20          | 1,87           |
| SL1652           | yciO         | Uncharacterized protein yciO                                 | 1,59          | -1,29          |
| SL1659           | ymdF         | Uncharacterized protein ymdF                                 | -8,50         | -1,52          |
| SL1661           | yciE         | Protein yciE                                                 | -6,89         | -1,98          |
| SL1665           | yciC         | UPF0259 membrane protein CKO_01332                           | 1,81          | -1,34          |
| SL1667           | yciA         | Acyl-CoA thioester hydrolase yciA                            | 1,61          | 1,45           |
| SL1669           | ycil         | Protein ycil                                                 | 1,16          | 1,18           |
| SL1685           | rssA         | NTE family protein rssA                                      | 1,09          | 1,79           |
| SL1688           | ybeQ         | Uncharacterized protein ybeQ                                 | 1,33          | 1,32           |
| SL1697           | ychN         | Protein ychN                                                 | -1,02         | -1,46          |
| SL1702           | sirB2        | Protein sirB2                                                | 3,29          | -2,38          |
| SL1712           | engD         | GTP-dependent nucleic acid-binding protein engD              | 1,80          | -1,77          |
| SL1722           | yccB         | Hypothetical Protein yccB                                    | -1,73         | -1,15          |
| SL1725           | ymgE         | UPF0410 protein ymge                                         | -2,80         | 1,45           |
| SL1728           | ldcA         | Murein tetrapeptide carboxypeptidase                         | 1,15          | -1,15          |
| SL1737           | gns          | Protein gns                                                  | -1,03         | 3,14           |
| SL1739           | ycgN         | UPF0260 protein CKO_01185                                    | 1,17          | 3,15           |
| SL1749           | yeaZ         | M22 peptidase homolog yeaZ                                   | 2,22          | -1,46          |
| SL1751           | yoaB         | UPF0076 protein yoaB                                         | 1,41          | -1,16          |
| SL1756           | yoaD         | Hypothetical Protein yoaD                                    | 1,58          | 1,72           |
| SL1762           | yobD         | UPF0266 membrane protein yobD                                | -3,86         | -1,41          |
| SL1763           | yebN         | UPF0059 membrane protein CKO_01156                           | 1,54          | 1,59           |
| SL1767<br>SL1770 | yobF         | Uncharacterized protein yobF                                 | -1,44         | -1,18<br>-3,58 |
| SL1776           | yobH         | Uncharacterized protein yobH                                 | -2,08         |                |
| SL1770<br>SL1777 | yebR<br>yebS | Protein yebR<br>Inner membrane protein yebS                  | 2,75<br>1,75  | 1,14<br>-1,32  |
| SL1778           | yeb3         | Uncharacterized protein yebT                                 | -1,09         | -1,87          |
| SL1780           | yebV         | Uncharacterized protein yebV                                 | -3,48         | -5,37          |
| <u> </u>         | • • • • •    |                                                              |               |                |
| SL1781<br>SL1785 | yebW<br>ycgX | Uncharacterized protein yebW<br>Uncharacterized protein ycgX | -1,85<br>1,81 | -1,64<br>-4,00 |
| SL1786           | ycyx<br>-    | Hypothetical                                                 | -1,21         | -2,77          |
| SL1787           | bls          | Blasticidin-S acetyltransferase                              | -1,45         | 1,91           |
| SL1789           | -            | Hypothetical                                                 | -2,05         | 1,19           |
| SL1797           | pagM         | virulence factor                                             | -3,45         | -1,76          |
| SL1798           | insF1        | Hypothetical Protein insF1                                   | -1,94         | -3,08          |
| SL1801           | -            | Hypothetical                                                 | 1,06          | -1,30          |
| SL1803           | rzpQ         | Uncharacterized protein rzpQ                                 | -1,34         | -1,08          |
| SL1807           | yebY         | Uncharacterized protein yebY                                 | -1,03         | -1,07          |
| SL1809           | yobA         | Protein yobA                                                 | -1,09         | 1,68           |
| SL1811           | yobB         | Uncharacterized protein yobB                                 | -1,02         | 1,46           |
| SL1812           | exoX         | Exodeoxyribonuclease 10                                      | -1,12         | 1,38           |
| SL1814           | yebE         | Inner membrane protein yebE                                  | -1,20         | -1,66          |
| SL1815           | yebF         | Protein yebF                                                 | 1,08          | 1,47           |
| SL1816           | yebG         | Uncharacterized protein yebG                                 | 1,03          | 1,01           |
| SL1821           | hexR         | HTH-type transcriptional regulator hexR                      | 1,45          | 2,52           |
| SL1827           | znuB         | High-affinity zinc uptake system membrane protein znuB       | 1,23          | -1,64          |
| SL1832           | yebB         | Uncharacterized protein yebB                                 | 1,61          | -1,24          |
| SL1837           | yecD         | Uncharacterized isochorismatase family protein yecD          | 1,57          | 1,05           |
| SL1838           | yecE         | UPF0759 protein yecE                                         | 2,13          | 1,36           |
| SL1839           | yecN         | Inner membrane protein yecN                                  | 1,51          | -1,68          |
| SL1840           | cmoA         | tRNA (cmo5U34)-methyltransferase                             | 1,42          | -1,47          |
| SL1841           | cmoB         | tRNA (mo5U34)-methyltransferase                              | 1,71          | -1,62          |
| SL1843           | yecM         | Protein yecM                                                 | 2,74          | 2,18           |
|                  | -            |                                                              | -             |                |

| SL1867 | yecR  | Uncharacterized protein yecR                                   | 1,37  | 1,31   |
|--------|-------|----------------------------------------------------------------|-------|--------|
| SL1869 | yecH  | Uncharacterized protein yecH                                   | 1,31  | 2,41   |
| SL1871 | yecA  | Uncharacterized protein yecA                                   | -1,11 | 1,46   |
| SL1878 | yec/( | Uncharacterized protein yecF                                   | -4,32 | -3,51  |
|        | fliZ  |                                                                |       |        |
| SL1884 |       | Protein fliZ                                                   | -3,07 | -1,08  |
| SL1912 | dsrB  | Protein dsrB                                                   | -1,33 | 1,22   |
| SL1913 | yodD  | Uncharacterized protein yodD                                   | -1,01 | 1,16   |
| SL1918 | yedA  | Uncharacterized inner membrane transporter yedA                | 1,16  | -1,24  |
| SL1921 | yedJ  | Uncharacterized protein yedJ                                   | -1,04 | 2,57   |
| SL1977 | mtfA  | Protein mtfA                                                   | 1,06  | 1,87   |
| SL1978 | intB  | Putative prophage P4 integrase                                 | -1,96 | -1,10  |
| SL1980 | -     | Hypothetical                                                   | 1,02  | -1,06  |
| SL1982 | ybeQ  | Uncharacterized protein ybeQ                                   | 1,04  | 1,09   |
|        | ybeQ  |                                                                |       |        |
| SL1985 | -     | Hypothetical                                                   | -1,36 | 1,03   |
| SL1988 | -     | Hypothetical Protein SL1988                                    | 1,31  | 1,40   |
| SL1989 | -     | Hypothetical                                                   | -1,56 | 1,34   |
| SL1990 | yeeO  | Uncharacterized transporter yeeO                               | -1,25 | -2,38  |
| SL2037 | gyrl  | DNA gyrase inhibitory protein homolog                          | 1,73  | 2,61   |
| SL2042 | ybjQ  | Cytoplasmic Protein                                            | 1,22  | -1,11  |
| SL2089 | wcaD  | Putative colanic acid polymerase                               | 1,08  | -1,04  |
| SL2093 | WZC   | Tyrosine-protein kinase wzc                                    | 2,06  | -1,13  |
| SL2000 |       | UPF0053 protein yegH                                           | 1,16  | -2,62  |
|        | yegH  |                                                                |       |        |
| SL2104 | mdtB  | Multidrug resistance protein mdtB                              | 1,99  | -1,74  |
| SL2105 | mdtC  | Multidrug resistance protein mdtC                              | 1,68  | -1,44  |
| SL2112 | yegQ  | Uncharacterized protease yegQ                                  | 1,09  | 1,41   |
| SL2113 | -     | Hypothetical                                                   | -1,32 | -1,23  |
| SL2116 | -     | Hypothetical                                                   | -1,04 | -1,23  |
| SL2118 | fbaB  | Fructose-bisphosphate aldolase class 1                         | -2,06 | 1,31   |
| SL2120 | yegU  | Uncharacterized protein yegU                                   | 1,45  | 2,02   |
| SL2125 | yohN  | Uncharacterized protein yohN                                   | 1,73  | -1,98  |
|        |       |                                                                |       |        |
| SL2130 | yehE  | Uncharacterized protein yehE                                   | -3,43 | -31,09 |
| SL2131 | mrp   | Protein mrp                                                    | 1,66  | -1,19  |
| SL2133 | yehR  | Uncharacterized lipoprotein yehR                               | -1,86 | -1,26  |
| SL2134 | yehR  | Uncharacterized lipoprotein Lmo0207                            | 1,03  | -1,12  |
| SL2135 | yehS  | Uncharacterized protein yehS                                   | 1,38  | -1,26  |
| SL2136 | yehT  | Uncharacterized response regulatory protein yehT               | 1,95  | 21,86  |
| SL2139 | yohO  | UPF0387 membrane protein yohO                                  | -1,36 | -1,25  |
| SL2147 | yohC  | Inner membrane protein yohC                                    | -1,39 | 1,30   |
|        | vohD  |                                                                |       |        |
| SL2148 | ,     | Inner membrane protein yohD                                    | -1,06 | 1,53   |
| SL2151 | dusC  | tRNA-dihydrouridine synthase C                                 | 1,11  | 1,09   |
| SL2158 | yohJ  | UPF0299 membrane protein CKO_00648                             | -1,52 | -9,78  |
| SL2169 | yeiB  | Uncharacterized protein yeiB                                   | -1,15 | -6,56  |
| SL2179 | yeiH  | UPF0324 inner membrane protein yeiH                            | -1,01 | 1,03   |
| SL2186 | -     | Hypothetical                                                   | 1,35  | 1,29   |
| SL2187 | yeiW  | UPF0153 protein yeiW                                           | -1,88 | 1,30   |
| SL2190 | yeiU  | Inner membrane protein yeiU                                    | 1,26  | -1,04  |
| SL2192 | rtn   | Protein rtn                                                    | 1,23  | -1,32  |
| SL2193 | yejA  | Uncharacterized protein yejA                                   | -1,18 | -2,55  |
|        |       |                                                                |       |        |
| SL2203 | ndpA  | Nucleoid-associated protein ndpA                               | 1,59  | 1,28   |
| SL2217 | sspH2 | E3 ubiquitin-protein ligase sspH2                              | 1,31  | -1,70  |
| SL2248 | yfaE  | Uncharacterized ferredoxin-like protein yfaE                   | -1,25 | -1,51  |
| SL2257 | cinA  | CinA-like protein                                              | -1,15 | -1,26  |
| SL2258 | yfaU  | 2-keto-3-deoxy-L-rhamnonate aldolase                           | -1,53 | -1,15  |
| SL2262 | cinA  | CinA-like protein                                              | 1,54  | 1,02   |
| SL2263 | yfaZ  | Uncharacterized protein yfaZ                                   | 1,27  | -1,01  |
| SL2264 | nudl  | Nucleoside triphosphatase nudl                                 | -1,46 | 1,33   |
| SL2265 | ais   | Lipopolysaccharide core heptose(II)-phosphate phosphatase      | -3,11 | -1,91  |
| 512205 |       | Probable 4-deoxy-4-formamido-L-arabinose-                      |       | -1,91  |
| SL2269 | arnD  | phosphoundecaprenol deformylase ArnD                           | -1,92 | -2,87  |
|        |       | Undecaprenyl phosphate-alpha-4-amino-4-deoxy-L-arabinose       |       |        |
| SL2270 | arnT  | arabinosyl transferase                                         | -1,85 | -2,29  |
|        |       | Probable 4-amino-4-deoxy-L-arabinose-phosphoundecaprenol       |       |        |
| SL2271 | arnE  | flippase subunit ArnE                                          | -1,61 | -1,73  |
| SL2277 | mon⊔  | 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase | 4,44  | -1,47  |
|        | menH  |                                                                |       |        |
| SL2281 | elaA  | Protein elaA                                                   | 1,19  | 2,35   |
| SL2282 | rnz   | Ribonuclease Z                                                 | 1,36  | -1,48  |
| SL2301 | yfbR  | UPF0207 protein KPK_1466                                       | 1,24  | -1,76  |
| SL2303 | yfbT  | Phosphatase yfbT                                               | -1,88 | -1,56  |
|        |       |                                                                |       |        |

| SL2304           | yfbU          | UPF0304 protein yfbU                                    | -1,46 | -1,11 |
|------------------|---------------|---------------------------------------------------------|-------|-------|
| SL2305           | yfbV          | UPF0208 membrane protein yfbV                           | 1,08  | -1,44 |
| SL2316           | yfcE          | Phosphodiesterase vfcE                                  | 1,23  | 1,10  |
| SL2317           | yfcF          | Uncharacterized GST-like protein yfcF                   | -1,74 | -1,41 |
| SL2332           | cvpA          | Colicin V production protein                            | 1,06  | 1,15  |
| SL2336           | dedA          | Protein dedA                                            | 1,70  | -2,73 |
| SL2355           | yfcN          | UPF0115 protein KPK_1418                                | 1,39  | 1,13  |
| SL2355<br>SL2368 |               |                                                         |       |       |
|                  | yfdY<br>in dC | Uncharacterized protein yfdY                            | -1,64 | 1,51  |
| SL2373           | ipdC          | Indole-3-pyruvate decarboxylase                         | -1,10 | 2,04  |
| SL2375           | ypeC          | Uncharacterized protein ypeC                            | -1,49 | -2,24 |
| SL2378           | yfeA          | Uncharacterized protein yfeA                            | 1,06  | -1,26 |
| SL2379           | yfeC          | Uncharacterized protein yfeC                            | 2,78  | 5,24  |
| SL2380           | yfeD          | Uncharacterized protein yfeD                            | 4,21  | 3,64  |
| SL2383           | -             | Hypothetical N                                          | 1,04  | 1,12  |
| SL2409           | yfeX          | putative iron-dependent peroxidase                      | 1,93  | 1,21  |
| SL2410           | yfeY          | putative outer membrane lipoprotein                     | 2,12  | -1,72 |
| SL2411           | yfeZ          | Inner membrane protein yfeZ                             | 1,35  | -1,29 |
| SL2418           | eutK          | Ethanolamine utilization protein eutK                   | -1,21 | 1,41  |
| SL2419           | eutL          | Ethanolamine utilization protein eutL                   | -1,46 | 1,04  |
| SL2430           | eutT          | Ethanolamine utilization cobalamin adenosyltransferase  | -1,79 | 2,01  |
| SL2432           | eutP          | Ethanolamine utilization protein eutP                   | -1,17 | 4,93  |
| SL2433           | eutS          | Ethanolamine utilization protein eutS                   | 1,02  | 4,42  |
| SL2439           | ypfG          | Uncharacterized protein ypfG                            | 1,63  | -2,45 |
| SL2445           | yffB          | Protein yffB                                            | 1,33  | 1,72  |
| SL2447           | · -           | UPF0370 protein YpsIP31758_1253                         | -1,19 | 1,54  |
| SL2448           | ypfl          | Uncharacterized protein ypfl                            | 1,40  | 1,15  |
| SL2454           | bcp           | Putative peroxiredoxin bcp                              | 1,28  | 1,07  |
| SL2455           | garK          | Glycerate Kinase                                        | 1,46  | -1,02 |
| SL2459           | hda           | DnaA-homolog protein hda                                | 1,19  | 1,35  |
| SL2466           | yfgF          | putative diguanylate cyclase                            | 1,88  | -1,54 |
| SL2481           | engA          | GTP-binding protein engA                                | 1,43  | -3,03 |
| SL2489           | ysaA          | Polyferredoxin                                          | 2,68  | -2,74 |
| SL2494           | yfhM          | Uncharacterized lipoprotein yfhM                        | 1,72  | 1,23  |
| SL2494<br>SL2503 | iscA          |                                                         |       |       |
| SL2503<br>SL2504 |               | Iron-binding protein iscA                               | 1,26  | -1,71 |
|                  | nifU          | NifU-like protein                                       | 1,15  | -1,72 |
| SL2506           | iscR          | HTH-type transcriptional regulator iscR                 | 1,21  | -2,77 |
| SL2509           | yfhR          | Uncharacterized protein yfhR                            | 1,19  | 1,39  |
| SL2515           | csiE          | Stationary phase-inducible protein csiE                 | 1,52  | 6,04  |
| SL2530           | tadA          | tRNA-specific adenosine deaminase                       | -1,34 | 1,01  |
| SL2533           | murQ          | N-acetylmuramic acid 6-phosphate etherase               | 1,33  | 2,27  |
| SL2534           | yfhH          | Uncharacterized HTH-type transcriptional regulator yfhH | 1,45  | 1,44  |
| SL2538           | yfhL          | Uncharacterized ferredoxin-like protein yfhL            | -2,37 | 1,02  |
| SL2545           | lepA          | GTP-binding protein lepA                                | 1,41  | -1,42 |
| SL2612           | yfiF          | Uncharacterized tRNA/rRNA methyltransferase yfiF        | 1,13  | 2,18  |
| SL2614           | yfiP          | DTW domain-containing protein yfiP                      | 1,54  | -1,36 |
| SL2615           | yfiQ          | Uncharacterized protein yfiQ                            | -1,06 | 1,38  |
| SL2626           | yvrE          | Uncharacterized protein yvrE                            | -1,09 | 1,55  |
| SL2630           | yfiN          | Probable diguanylate cyclase YfiN                       | 1,02  | -2,41 |
| SL2632           | yebY          | Hypothetical Protein yebY                               | 1,27  | 1,49  |
| SL2651           | corE          | putative cytochrome c-type biogenesis protein           | 1,41  | -1,04 |
| SL2657           | smpA          | Small protein A                                         | 1,61  | 1,20  |
| SL2661           | -             | Hypothetical                                            | -6,11 | 2,18  |
| SL2710           | yopC          | SPBc2 prophage-derived uncharacterized protein yopC     | 1,86  | 2,67  |
| SL2740           | hxlB          | 3-hexulose-6-phosphate isomerase                        | -1,22 | 1,65  |
| SL2747           | intA          | Prophage CP4-57 integrase                               | -2,24 | -1,04 |
| SL2763           | pipB2         | Secreted effector protein pipB2                         | -3,15 | -3,40 |
| SL2764           | ybjX          | Uncharacterized protein ybjX                            | -1,03 | -5,61 |
| SL2773           | csiD          | Protein csiD                                            | 1,15  | 1,04  |
| SL2774           | ygaF          | Uncharacterized protein ygaF                            | 1,38  | -1,02 |
| SL2779           | ygaU          | Uncharacterized protein ygaU                            | -4,86 | -1,14 |
| SL2781           | ygaV          | Probable HTH-type transcriptional regulator ygaV        | 1,28  | -1,24 |
| SL2782           | ygaP          | Inner membrane protein ygaP                             | -1,21 | -1,43 |
| SL2789           | -             | Hypothetical                                            | -1,06 | 1,52  |
| SL2810           | ygaD          | Protein ygaD                                            | 1,65  | 2,46  |
| SL2818           | gutQ          | Protein gutQ                                            | 1,03  | 1,76  |
| SL2818<br>SL2840 | ygbA          | Uncharacterized protein ygbA                            | 2,12  | 1,11  |
| SL2880           | ,90A<br>-     | Hypothetical                                            | -3,24 | -1,46 |
| 022000           |               |                                                         | 0,27  | 1,70  |
|                  |               |                                                         |       |       |

| SL2883           | _    | Hypothetical Protein SL2883                      | -1,22  | 1,07  |
|------------------|------|--------------------------------------------------|--------|-------|
|                  | -    |                                                  |        |       |
| SL2884           | -    | Hypothetical                                     | 1,60   | 1,87  |
| SL2885           | -    | GCN5-Related N-Acetyltransferase                 | 1,13   | 1,67  |
| SL2887           | -    | Phage Integrase Family Protein                   | 1,41   | -1,31 |
| SL2902           | bsdD | Phenolic acid decarboxylase subunit D            | -1,42  | -1,32 |
| SL2919           | ygcl | Uncharacterized protein ygcl                     | -2,86  | -1,88 |
| SL2920           |      | Uncharacterized protein ygcJ                     | -3,70  | -1,59 |
|                  | ygcJ |                                                  |        |       |
| SL2921           |      | Hypothetical                                     | -4,26  | -1,59 |
| SL2922           | ygcL | Uncharacterized protein ygcL                     | -4,47  | -1,98 |
| SL2930           | ygcF | 7-carboxy-7-deazaguanine synthase homolog        | 1,23   | -1,09 |
| SL2933           | mazG | Protein mazG                                     | 1,71   | -2,13 |
| SL2934           | -    | putative major fimbrial subunit                  | 1,55   | -1,56 |
| SL2935           | -    | Plasmid Stabilization System                     | 1,82   | -1,82 |
| SL2936           | -    | Hypothetical                                     | 1,25   | -2,30 |
|                  |      | ••                                               |        |       |
| SL2940           | garK | Glycerate kinase 2                               | 1,77   | 3,66  |
| SL2945           | truC | tRNA pseudouridine synthase C                    | 1,67   | -1,32 |
| SL2946           | yqcC | Uncharacterized protein yqcC                     | 1,17   | -2,78 |
| SL2948           | queF | NADPH-dependent 7-cyano-7-deazaguanine reductase | 1,80   | -1,05 |
| SL2955           | fucP | L-fucose-proton symporter                        | 1,14   | 1,44  |
| SL2960           | rlmM | Ribosomal RNA large subunit methyltransferase M  | -1,04  | -1,39 |
| SL2963           | ygdl | Uncharacterized lipoprotein ygdl                 | -1,97  | -1,69 |
| SL2964           | csdA | Cysteine sulfinate desulfinase                   | 1,21   | -1,66 |
| SL2964<br>SL2966 | rarD | Protein rarD                                     |        |       |
|                  |      |                                                  | 3,20   | -1,55 |
| SL2967           | ygdL | Uncharacterized protein ygdL                     | 1,25   | -1,83 |
| SL2985           | ygdR | Uncharacterized lipoprotein ygdR                 | 1,04   | 1,00  |
| SL2986           | tas  | Protein tas                                      | 1,01   | 1,47  |
| SL3002           | rcnA | Nickel/cobalt efflux system rcnA                 | 1,00   | -1,37 |
| SL3012           | -    | Uncharacterized protein CP0246                   | 1,05   | 1,28  |
| SL3024           | ygfZ | tRNA-modifying protein ygfZ                      | -1,08  | 1,66  |
| SL3035           | ygfB | UPF0149 protein ygfB                             | 1,52   | -1,21 |
| SL3048           | -    | Hypothetical                                     | 3,49   | 11,28 |
| SL3049           | _    | Permease Protein Of ABC-Type Cobalt Transporter  | 4,41   | 6,30  |
|                  | _    |                                                  |        |       |
| SL3053           | yggG | Uncharacterized metalloprotease yggG             | 1,39   | -3,11 |
| SL3056           | yjgK | Uncharacterized protein yjgK                     | 1,23   | 1,19  |
| SL3061           | -    | Hypothetical                                     | 1,04   | -1,22 |
| SL3063           | yqgB | Hypothetical                                     | -1,24  | -1,15 |
| SL3064           | yqgD | Uncharacterized protein yqgD                     | 1,10   | -1,56 |
| SL3067           | sprT | Protein sprT                                     | 1,14   | 1,96  |
| SL3078           | rḋgB | Nucleoside-triphosphatase rdgB                   | 2,01   | -1,39 |
| SL3082           | yggN | Uncharacterized protein yggN                     | 1,53   | 2,13  |
| SL3084           | trmB | tRNA (guanine-N(7)-)-methyltransferase           | 1,46   | 1,82  |
| SL3086           |      | Probable Fe(2+)-trafficking protein              |        |       |
|                  | yggX |                                                  | -1,00  | -1,24 |
| SL3093           | maoC | MaoC Domain Protein Dehydratase                  | -2,42  | 1,52  |
| SL3104           | iraD | Anti-adapter protein iraD                        | -1,43  | -1,31 |
| SL3107           | yhcX | UPF0012 hydrolase yhcX                           | -14,18 | -1,87 |
| SL3114           | yghU | Uncharacterized GST-like protein yghU            | -1,62  | 1,96  |
| SL3131           | yghA | Uncharacterized oxidoreductase yghA              | -1,37  | -1,97 |
| SL3134           | -    | Hypothetical                                     | 2,72   | 4,98  |
| SL3139           | dkgA | 2,5-diketo-D-gluconic acid reductase A           | 1,00   | 2,62  |
| SL3141           | -    | Uncharacterized HIT-like protein MJ0866          | -1,39  | -1,64 |
| SL3142           | ygiQ | UPF0313 protein ygiQ                             | 1,32   | 1,18  |
| SL3161           |      |                                                  |        |       |
|                  | ygiB | UPF0441 protein ygiB                             | 1,11   | 1,08  |
| SL3163           | ygiD | Uncharacterized protein ygiD                     | -10,82 | -6,71 |
| SL3164           | zupT | Zinc transporter zupT                            | 1,21   | 2,57  |
| SL3169           | yqiC | Uncharacterized protein yqiC                     | 1,38   | 2,04  |
| SL3175           | ygiF | Uncharacterized protein ygiF                     | 1,53   | -1,18 |
| SL3176           | ygiM | Uncharacterized protein ygiM                     | 1,92   | -1,46 |
| SL3186           | mug  | G/U mismatch-specific DNA glycosylase            | -1,13  | 1,11  |
| SL3188           | yqjI | Uncharacterized protein ygjl                     | -1,20  | 1,11  |
| SL3194           | ygjP | Uncharacterized protein ygjP                     | 2,04   | -1,33 |
| SL3195           | ygjQ | Uncharacterized protein ygjQ                     | 1,55   | -1,54 |
| SL3195<br>SL3196 |      | Uncharacterized protein ygjoc                    |        |       |
|                  | ygjR | ,                                                | -1,12  | 1,60  |
| SL3199           | yqjA | Inner membrane protein yqjA                      | -1,03  | -1,51 |
| SL3200           | yqjB | Uncharacterized protein yqjB                     | 1,02   | -1,66 |
| SL3201           | yqjC | Protein yqjC                                     | -1,14  | -1,11 |
| SL3204           | yqjF | Inner membrane protein yqjF                      | -1,12  | -1,39 |
| SL3209           | yhaL | Hypothetical Protein yhaL                        | -1,12  | 5,71  |
|                  |      |                                                  |        |       |

| SL3210           | yhaM          | UPF0597 protein yhaM                                                            | -1,36          | 1,39           |
|------------------|---------------|---------------------------------------------------------------------------------|----------------|----------------|
| SL3220           | garK          | Glycerate kinase 2                                                              | 1,70           | 2,12           |
| SL3222           | garL          | 5-keto-4-deoxy-D-glucarate aldolase                                             | 2,26           | 2,03           |
| SL3242           | yhbO          | Protein yhbO                                                                    | -1,67          | 1,17           |
| SL3243           | yhbP          | UPF0306 protein yhbP                                                            | 1,98           | 1,18           |
| SL3244           | yhbQ          | UPF0213 protein yhbQ                                                            | 1,67           | 1,22           |
| SL3248           | yhbV          | Uncharacterized protein yhbV                                                    | 3,86           | 2,68           |
| SL3249           | yhbW          | Uncharacterized protein yhbW                                                    | 1,36           | 1,16           |
| SL3273           | yhbZ          | GTPase obg                                                                      | 1,10           | -1,43          |
| SL3274           | yhbE          | Uncharacterized inner membrane transporter yhbE                                 | 1,25           | -1,31          |
| SL3280           | yrbA          | Uncharacterized protein yrbA                                                    | 1,88           | -1,53          |
| SL3281           | mlaB          | Probable phospholipid ABC transporter-binding protein mlaB                      | 1,88           | -2,04          |
| SL3282           | mlaC          | Probable phospholipid-binding protein mlaC                                      | 1,34           | -1,31          |
| SL3286           | yrbG          | Inner membrane protein yrbG                                                     | 1,46           | 1,01           |
| SL3297           | yrbL          | Uncharacterized protein yrbL                                                    | -1,05          | 1,17           |
| SL3304           | yhcG          | Uncharacterized protein yhcG                                                    | 1,24           | 6,91           |
| SL3307           | yhcH          | Uncharacterized protein yhcH                                                    | -1,40          | -1,04          |
| SL3308           | nanK          | N-acetylmannosamine kinase                                                      | -1,29          | -1,33          |
| SL3329           | ydfH          | GntR Family Transcriptional Regulator                                           | 1,28           | 1,43           |
| SL3333           | yhcN          | Uncharacterized protein yhcN                                                    | 1,41           | -2,17          |
| SL3334           | yhcN          | Uncharacterized protein yhcN                                                    | 1,27           | -1,04          |
| SL3336           | aaeB          | p-hydroxybenzoic acid efflux pump subunit AaeB                                  | 1,33           | -1,19          |
| SL3348           | yhdA          | Hypothetical Protein yhdA                                                       | -1,51          | 1,08           |
| SL3354           | yhdT          | Uncharacterized protein yhdT                                                    | 2,05           | 1,99           |
| SL3361           | yciR          | Uncharacterized signaling protein PA1727                                        | -1,07          | 1,54           |
| SL3370           | yrdD          | Uncharacterized protein yrdD                                                    | -1,19          | -1,47          |
| SL3371           | smg           | Protein smg                                                                     | -1,68          | 1,04           |
| SL3372           | smf           | Protein smf                                                                     | 1,16           | 3,26           |
| SL3378           | yhdL          | Uncharacterized protein yhdL                                                    | -1,02          | 1,65           |
| SL3380           | yhdN          | Uncharacterized protein yhdN                                                    | 1,70           | -1,07          |
| SL3411           | bfd           | Bacterioferritin-associated ferredoxin                                          | -2,24          | -4,61          |
| SL3416           | tusB          | Protein tusB                                                                    | 2,23           | -1,80          |
| SL3417           | tusC          | Protein tusC                                                                    | 2,33           | -1,64          |
| SL3418           | tusD          | Sulfurtransferase tusD                                                          | 2,23           | -1,91          |
| SL3421           | slyX          | Protein slyX                                                                    | -1,08          | -1,16          |
| SL3427           | -             | ABC Transporter ATPase                                                          | -1,05          | 2,10           |
| SL3429           | yheT          | Putative esterase yheT                                                          | -1,12          | 1,12           |
| SL3434           | yhfK          | Uncharacterized protein yhfK                                                    | 2,57           | -1,24          |
| SL3445           | bigA          | Putative surface-exposed virulence protein BigA                                 | 1,90           | 1,88           |
| SL3456           | yrfA          | Uncharacterized protein yrfA                                                    | 1,73           | 1,97           |
| SL3458           | yrfC          | Uncharacterized protein yrfC                                                    | 1,08           | 1,95           |
| SL3459           | yrfD          | Uncharacterized protein yrfD                                                    | 1,10           | 1,72           |
| SL3461           | nudE          | ADP compounds hydrolase nudE                                                    | 1,40           | -2,04          |
| SL3465           | hslO          | 33 kDa chaperonin                                                               | 2,31           | 1,55           |
| SL3471           | yhgF          | Protein yhgF                                                                    | 1,15           | -1,28          |
| SL3475           | yfcl          | Uncharacterized protein yfcl                                                    | 1,40           | 2,08           |
| SL3477           | gntX          | Protein gntX                                                                    | 1,75           | 2,48           |
| SL3484           | dinJ          | DNA-damage-inducible protein J                                                  | -1,45          | -1,60          |
| SL3486           | rtcB          | Protein rtcB                                                                    | -3,34          | -2,14          |
| SL3495           | pstS1         | Phosphate-binding protein pstS 1                                                | 1,28           | 2,05           |
| SL3497           | ttuB          | Putative tartrate transporter                                                   | -1,22          | 1,90           |
| SL3511           | yhhX          | Uncharacterized oxidoreductase yhhX                                             | -1,13          | -1,53          |
| SL3512           | yhhY          | Uncharacterized N-acetyltransferase yhhY                                        | -1,20          | -1,40          |
| SL3518           | yhhA          | Uncharacterized protein yhhA                                                    | -1,89          | 1,17           |
| SL3531           | yhhK          | Uncharacterized protein yhhK<br>Bibaaamal BNA amall aukunit matkultransfaraaa D | 1,46           | -1,41          |
| SL3537           | rsmD          | Ribosomal RNA small subunit methyltransferase D                                 | 2,66           | -1,08          |
| SL3538           | yhhL<br>vhhO  | Uncharacterized protein yhhL                                                    | 1,79           | 1,13           |
| SL3544<br>SL3545 | yhhQ<br>dorP  | Inner membrane protein yhhQ<br>Brotein derP                                     | -2,28          | -1,17          |
|                  | dcrB          | Protein dcrB                                                                    | 1,15           | -1,54          |
| SL3547           | yhhT<br>acnT  | UPF0118 inner membrane protein yhhT                                             | -1,64<br>1 30  | -1,46<br>1 16  |
| SL3548           | acpT          | 4'-phosphopantetheinyl transferase AcpT                                         | 1,30           | 1,16           |
| SL3561           | yhiR<br>yhiC  | Uncharacterized protein yhiR                                                    | 1,91<br>-1,44  | -1,77          |
| SL3575<br>SL3576 | yhjG<br>vhi⊟  | Uncharacterized protein yhjG                                                    | -1,44<br>-3,77 | -1,21<br>1,16  |
| SL3576<br>SL3578 | yhjH<br>vhi l | Cyclic di-GMP phosphodiesterase YhjH                                            |                |                |
| SL3578<br>SL3580 | yhjJ<br>yhjK  | Protein yhjJ<br>Protein YhjK                                                    | 1,42<br>1,60   | -1,44<br>-1,10 |
| SL3580<br>SL3583 | bcsB          | Cyclic di-GMP-binding protein                                                   | -1,15          | -1,64          |
| 010000           | 0030          |                                                                                 | 1,10           | 1,04           |

| SL3585           | yhjQ   | Uncharacterized protein yhjQ                                  | -1.08 | 1,00  |
|------------------|--------|---------------------------------------------------------------|-------|-------|
| SL3586           | yhjQ   | Uncharacterized protein yhjR                                  | -1,08 | 1,25  |
|                  |        |                                                               |       |       |
| SL3589           | yhjU   | Uncharacterized protein yhjU                                  | -1,32 | -1,51 |
| SL3600           | eptB   | Phosphoethanolamine transferase eptB                          | 1,57  | -1,54 |
| SL3609           | yiaC   | Uncharacterized N-acetyltransferase yiaC                      | 1,04  | 1,60  |
| SL3618           | -      | Hypothetical                                                  | 1,33  | 1,23  |
| SL3619           | yafP   | Uncharacterized N-acetyltransferase yafP                      | -1,41 | -1,22 |
| SL3622           | ysaB   | Uncharacterized lipoprotein ysaB                              | 1,06  | -1,62 |
| SL3623           | yiaH   | Inner membrane protein yiaH                                   | -1,31 | -1,28 |
| SL3628           | bax    | Protein bax                                                   | 1,07  | -2,16 |
|                  |        |                                                               |       |       |
| SL3631           | ysaA   | Putative electron transport protein ysaA                      | 1,21  | 2,22  |
| SL3634           | yiaL   | Protein yiaL                                                  | 1,11  | 1,41  |
| SL3637           | yiaN   | 2,3-diketo-L-gulonate TRAP transporter large permease protein | -1,51 | -1,12 |
| 010001           | yiai   | yiaN                                                          |       |       |
| SL3644           | -      | Hypothetical                                                  | 1,20  | 2,01  |
| SL3655           | -      | Hypothetical                                                  | 1,18  | 1,13  |
| SL3664           | -      | MFS Transporter ACS Family Glucarate Transporter              | 1,04  | 1,03  |
| SL3703           | ycbL   | Metallo-beta-lactamase L1                                     | 1,42  | 2,81  |
| SL3704           | -      | UPF0126 inner membrane protein yicG                           |       |       |
|                  | yicG   |                                                               | 3,17  | -1,74 |
| SL3711           |        | Cytoplasmic Protein                                           | 2,23  | 1,98  |
| SL3714           | yicH   | Uncharacterized protein yicH                                  | 1,38  | 1,18  |
| SL3715           | yicl   | Alpha-xylosidase                                              | 1,10  | 1,22  |
| SL3731           | yfcl   | Uncharacterized protein yfcl                                  | 1,11  | 2,34  |
| SL3739           | yicS   | Uncharacterized protein yicS                                  | 1,29  | 1,25  |
| SL3741           | nepl   | Purine ribonucleoside efflux pump nepl                        | 1,29  | 1,21  |
| SL3743           | -      |                                                               | 2,23  | 2,38  |
|                  |        | Hypothetical                                                  |       |       |
| SL3752           | yicN   | Uncharacterized protein yicN                                  | 1,10  | 3,22  |
| SL3763           | ivbL   | ilvBN operon attenuator peptide                               | 1,01  | -1,03 |
| SL3778           | yidR   | Uncharacterized protein yidR                                  | 1,35  | 1,11  |
| SL3787           | torD   | Chaperone protein torD                                        | -1,25 | -1,53 |
| SL3798           | yidA   | Phosphatase yidA                                              | 1,08  | -1,50 |
| SL3811           | intA   | Prophage CP4-57 integrase                                     | -1,47 | 1,15  |
| SL3816           |        |                                                               |       |       |
|                  | yieE   | Uncharacterized protein yieE                                  | 1,01  | -1,02 |
| SL3817           | yieF   | Uncharacterized protein yieF                                  | -1,54 | 1,25  |
| SL3818           | purP   | Probable adenine permease PurP                                | -1,50 | -1,75 |
| SL3840           | gidB   | glucose inhibited division protein                            | 1,66  | 1,59  |
| SL3841           | gidA   | glucose inhibited division protein                            | 1,16  | -1,02 |
| SL3854           | -      | Pseudogene                                                    | 1,70  | 1,36  |
| SL3857           | yieP   | Uncharacterized HTH-type transcriptional regulator yieP       | 2,01  | 1,29  |
| SL3859           | yifE   | UPF0438 protein vifE                                          | -1,78 | 7,01  |
|                  |        |                                                               |       |       |
| SL3860           | yifB   | Uncharacterized protein yifB                                  | -1,33 | 2,92  |
| SL3890           | hemY   | Protein hemY                                                  | 1,25  | -2,03 |
| SL3902           | yigA   | Uncharacterized protein yigA                                  | -1,12 | -1,99 |
| SL3908           | yigG   | Inner membrane protein yigG                                   | 1,47  | -1,41 |
| SL3909           | rarD   | Protein rarD                                                  | 1,14  | -1,95 |
| SL3910           | yigl   | Uncharacterized protein yigl                                  | -1,05 | 1,18  |
| SL3913           | rhtC   | Threonine efflux protein                                      | 1,19  | -1,35 |
| SL3913<br>SL3914 |        | Homoserine/homoserine lactone efflux protein                  |       |       |
|                  | rhtB   | •                                                             | 1,15  | 2,42  |
| SL3916           | yigL   | Uncharacterized protein yigL                                  | 1,41  | -1,29 |
| SL3925           | yigP   | Uncharacterized protein yigP                                  | 1,37  | 1,21  |
| SL3927           | tatA   | Sec-independent protein translocase protein tatA              | 1,68  | 2,05  |
| SL3929           | tatC   | Sec-independent protein translocase protein tatC              | 2,77  | -1,13 |
| SL3930           | tatD   | Deoxyribonuclease tatD                                        | 1,56  | 2,36  |
| SL3944           | rdoA   | Protein rdoA                                                  | 1,16  | -1,49 |
| SL3947           |        |                                                               | 1,01  | 1,24  |
|                  | polA   | DNA polymerase I                                              |       |       |
| SL3955           | typA   | GTP-binding protein TypA/BipA                                 | 1,07  | -2,38 |
| SL3956           | ybhA   | Phosphatase ybhA                                              | -1,11 | -1,18 |
| SL3962           | ompL   | Porin ompL                                                    | 1,42  | 2,21  |
| SL3967           | yihS   | Uncharacterized sugar isomerase yihS                          | 1,16  | 1,59  |
| SL3972           | yihX   | Phosphatase yihX                                              | -1,16 | 1,48  |
| SL3976           | ygjM   | Uncharacterized HTH-type transcriptional regulator ygjM       | 1,30  | 1,23  |
| SL3970<br>SL3979 |        | Toxin higB-2                                                  |       | 2,12  |
|                  | higB-2 |                                                               | 1,43  |       |
| SL3987           | yiiG   | Uncharacterized protein yiiG                                  | -1,34 | -2,36 |
| SL3988           | yiiG   | Uncharacterized protein yiiG                                  | 1,07  | 1,13  |
| SL3990           | azlC   | Branched-chain amino acid transport protein AzlC              | -1,19 | -2,88 |
| SL3991           | ydcN   | Uncharacterized HTH-type transcriptional regulator ydcN       | 1,51  | 1,11  |
| SL3992           | rhaM   | L-rhamnose mutarotase                                         | 1,20  | -1,11 |
|                  |        |                                                               | , -   | ,     |

| SL4009           | cpxP  | Periplasmic protein cpxP                                | -2,14  | -2,98  |
|------------------|-------|---------------------------------------------------------|--------|--------|
| SL4016           | yegU  | Uncharacterized protein yegU                            | 1,07   | 1,69   |
| SL4027           | IsrF  | Uncharacterized aldolase IsrF                           | -2,68  | -2,26  |
| SL4027<br>SL4031 | yiiQ  |                                                         |        |        |
|                  |       | Uncharacterized protein yiiQ                            | 1,96   | 1,32   |
| SL4034           | glpX  | Fructose-1,6-bisphosphatase class 2                     | 2,36   | 2,36   |
| SL4042           | ftsN  | Cell division protein ftsN                              | 1,71   | -1,91  |
| SL4057           | yijF  | Uncharacterized protein yijF                            | -3,56  | -5,09  |
| SL4068           | cptA  | Phosphoethanolamine transferase cptA                    | -1,05  | -1,13  |
| SL4076           | fabR  | HTH-type transcriptional repressor fabR                 | 1,13   | 1,20   |
| SL4084           | -     | Hypothetical                                            | 1,11   | -1,40  |
| SL4096           | -     | Cytoplasmic Protein                                     | -1,12  | -1,15  |
| SL4105           | nudC  | NADH pyrophosphatase                                    | -1,30  | -1,06  |
| SL4108           | yjaG  | Uncharacterized protein yjaG                            | 1,53   | 1,45   |
|                  |       |                                                         |        |        |
| SL4111           | zraP  | Zinc resistance-associated protein                      | -1,20  | -2,38  |
| SL4128           | rluF  | Ribosomal large subunit pseudouridine synthase F        | 1,19   | 1,26   |
| SL4129           | yjbD  | Uncharacterized protein yjbD                            | 1,10   | -1,36  |
| SL4158           | yjbE  | Hypothetical Protein yjbE                               | -1,29  | -2,54  |
| SL4160           | yjbG  | Uncharacterized protein yjbG                            | -1,28  | -3,95  |
| SL4161           | yjbH  | Uncharacterized lipoprotein yjbH                        | 1,38   | -1,36  |
| SL4162           | psiE  | Protein psiE                                            | -3,02  | -4,25  |
| SL4179           | dusA  | tRNA-dihydrouridine synthase A                          | -1,07  | 1,03   |
| SL4187           | yjbR  | Uncharacterized protein yjbR                            | 1,13   | -1,11  |
| SL4191           | -     | Cytoplasmic Protein                                     | 1,53   | -1,90  |
| SL4199           | ујсВ  | Uncharacterized protein yjcB                            | -1,14  | -20,52 |
|                  |       |                                                         |        |        |
| SL4200           | yjcC  | Uncharacterized protein yjcC                            | -7,52  | -6,40  |
| SL4204           | yjcD  | Putative permease yjcD                                  | -1,32  | 1,10   |
| SL4210           | yjcH  | Inner membrane protein yjcH                             | 4,19   | 5,66   |
| SL4212           | -     | Hypothetical                                            | 1,33   | 2,23   |
| SL4220           | yjcO  | Uncharacterized protein yjcO                            | 1,93   | -1,31  |
| SL4225           | phnB  | Protein phnB                                            | -1,41  | 2,80   |
| SL4249           | -     | Cytoplasmic Protein                                     | -49,04 | -9,33  |
| SL4251           | rtsA  | Transcriptional regulator sirC                          | -67,10 | -8,74  |
| SL4253           | -     | Hypothetical                                            | -2,09  | -3,33  |
| SL4256           | -     | Ail And OmpX Homolog                                    | 1,13   | 1,00   |
| SL4257           | -     | Hypothetical                                            | 1,09   | 2,24   |
| SL4257<br>SL4264 |       |                                                         |        |        |
|                  | fxsA  | UPF0716 protein fxsA                                    | 3,79   | 1,57   |
| SL4269           | yjeJ  | Uncharacterized protein yjeJ                            | -1,19  | -2,01  |
| SL4273           | ecnB  | Entericidin B                                           | -1,51  | 1,03   |
| SL4281           | yjeA  | Uncharacterized protein YjeA                            | 2,18   | 1,35   |
| SL4286           | rsgA  | Putative ribosome biogenesis GTPase RsgA                | 1,31   | 1,06   |
| SL4287           | orn   | Oligoribonuclease                                       | 1,05   | 1,42   |
| SL4290           | yjeF  | Uncharacterized protein yjeF                            | 1,01   | 2,49   |
| SL4306           | yjfK  | Uncharacterized protein yjfK                            | 1,45   | -1,05  |
| SL4308           | yjfM  | Uncharacterized protein yjfM                            | -1,03  | -1,88  |
| SL4311           | yjfN  | Uncharacterized protein yjfN                            | 2,38   | 9,48   |
| SL4313           | yjfP  | Esterase vifP                                           | -1,64  | 1,58   |
| SL4315           | ulaG  | Probable L-ascorbate-6-phosphate lactonase ulaG         | 1,15   | -1,09  |
| SL4328           | ydeD  | Hypothetical                                            | 1,16   | -1,17  |
|                  |       |                                                         |        |        |
| SL4329           | ytfB  | Uncharacterized protein ytfB                            | -1,16  | 1,73   |
| SL4332           | ytfE  | Regulator of cell morphogenesis and NO signaling        | 1,19   | 1,19   |
| SL4335           | ytfH  | Uncharacterized HTH-type transcriptional regulator ytfH | 1,29   | 1,30   |
| SL4343           | ytfN  | Uncharacterized protein ytfN                            | 1,04   | -1,31  |
| SL4379           | relB  | Antitoxin RelB                                          | 1,43   | 2,34   |
| SL4383           | -     | Hypothetical                                            | 1,78   | 5,18   |
| SL4385           | treB  | PTS system trehalose-specific EIIBC component           | 4,85   | 37,70  |
| SL4392           | pyrL  | PyrBI operon leader peptide                             | 1,13   | 3,07   |
| SL4398           | yjgK  | Uncharacterized protein yjgK                            | 1,67   | 2,60   |
| SL4408           | -     | Cytoplasmic Protein                                     | 1,50   | 1,44   |
| SL4410           | lptG  | Lipopolysaccharide export system permease protein lptG  | 1,70   | -1,96  |
| SL4431           | ipto  | UPF0386 protein KPN78578_02510                          | 2,02   | 5,45   |
|                  | -     |                                                         |        |        |
| SL4439           | -<br> | Hypothetical                                            | 1,36   | 1,06   |
| SL4447           | yjiN  | Uncharacterized protein yjiN                            | 1,75   | 1,18   |
| SL4449           | yfcl  | Uncharacterized protein yfcl                            | 1,88   | 2,14   |
| SL4451           | -     | Hypothetical                                            | 1,06   | 1,62   |
| SL4452           | yjiS  | Hypothetical                                            | 1,02   | 1,17   |
| SL4461           | yjiA  | Uncharacterized GTP-binding protein yjiA                | -1,04  | 1,07   |
| SL4462           | yjiX  | Uncharacterized protein yjiX                            | -1,19  | -1,52  |
|                  |       |                                                         |        |        |

| SL4481           | fhuF         | Ferric iron reductase protein fhuF                                                                             | -1,56            | -1,31            |
|------------------|--------------|----------------------------------------------------------------------------------------------------------------|------------------|------------------|
| SL4482           | ycdT         | Inner membrane protein ycdT                                                                                    | 1,01             | -1,46            |
| SL4487           | yjjG         | 5'-nucleotidase yjjG                                                                                           | 1,94             | -1,03            |
| SL4493           | yjjl         | Uncharacterized protein yjjl                                                                                   | 4,39             | 6,45             |
| SL4514           | creA         | Protein creA                                                                                                   | 2,82             | 1,36             |
| SL4526           | yjjY         | Uncharacterized protein yjjY                                                                                   | 1,17             | 1,11             |
|                  |              | Pathogenicity island                                                                                           |                  |                  |
| SL1026           | pipA         | Hypothetical                                                                                                   | -3,71            | -2,23            |
| SL1027           | pipB         | Secreted effector protein pipB                                                                                 | -26,14           | -6,51            |
| SL1028           | -            | Inner Membrane Protein                                                                                         | -77,61           | -12,86           |
| SL1029           | pipC         | cell invasion protein                                                                                          | -47,87           | -6,14            |
| SL1030           | sopB         | Inositol phosphate phosphatase sopB                                                                            | -83,07           | -7,58            |
| SL1031           | orfX         | Hypothetical                                                                                                   | 1,25             | 9,42             |
| SL1032           | -            | Hypothetical                                                                                                   | 1,04             | 7,87             |
| SL1033           | pipD         | Probable dipeptidase                                                                                           | -2,67            | 1,93             |
| SL1323           | ybgA         | Uncharacterized protein ybgA                                                                                   | -1,61            | 1,48             |
| SL1324<br>SL1325 | mlrA<br>ssrB | HTH-type transcriptional regulator mlrA<br>putative two-component response regulator                           | 1,10             | -2,05            |
| SL1325<br>SL1326 | spiR         | Sensor kinase protein                                                                                          | -8,84<br>-6,92   | -3,72<br>-5,34   |
| SL1320<br>SL1327 | spiC         | Salmonella pathogenicity island protein C                                                                      | -9,87            | -9,52            |
| SL1328           | spiA         | Yop proteins translocation protein C                                                                           | -6,97            | -7,91            |
| SL1329           | ssaD         | Type-III Secretion Protein                                                                                     | -9,89            | -8,23            |
| SL1330           | -            | Secretion System Protein                                                                                       | -6,20            | -7,09            |
| SL1331           | sseA         | Type III secretion system chaperone sseA                                                                       | -7,19            | -4,87            |
| SL1332           | sseB         | Secreted effector protein sseB                                                                                 | -6,64            | -3,85            |
| SL1333           | sscA         | Type III Secretion Low Calcium Response Chaperone LcrH/SycD                                                    | -5,80            | -3,32            |
| SL1334           | sseC         | Secreted effector protein sseC                                                                                 | -5,26            | -2,58            |
| SL1335           | sseD         | Secreted effector protein sseD                                                                                 | -4,24            | -2,53            |
| SL1336           | sseE         | Secreted Effector Protein                                                                                      | -4,41            | -2,25            |
| SL1337           | sscB         | Type III Secretion Chaperone                                                                                   | -3,57            | -3,87            |
| SL1338           | sseF         | Hypothetical                                                                                                   | -2,24            | -2,27            |
| SL1339           | sseG         | Hypothetical                                                                                                   | -1,71            | -1,96            |
| SL1340           | ssaG         | Secretion System Apparatus SsaG                                                                                | -1,59            | -1,81            |
| SL1341<br>SL1342 | ssaH         | Hypothetical Type III Secretion System Apparatus Protein                                                       | -18,51<br>-21,94 | -14,03           |
| SL1342<br>SL1343 | ssal<br>ssaJ | Secretion system apparatus lipoprotein ssaJ                                                                    | -17,06           | -15,77<br>-15,33 |
| SL1343           | -            | Type III Secretion Apparatus                                                                                   | -16,22           | -11,84           |
| SL1345           | ssaK         | Secretion system apparatus protein ssaK                                                                        | -10,15           | -9,59            |
| SL1346           | ssaL         | Secretion system apparatus protein ssaL                                                                        | -7,78            | -8,72            |
| SL1347           | ssaM         | Secretion system apparatus protein ssaM                                                                        | -8,90            | -12,72           |
| SL1348           | ssaV         | Secretion system apparatus protein ssaV                                                                        | -3,55            | -3,70            |
| SL1349           | ssaN         | Probable secretion system apparatus ATP synthase ssaN                                                          | -2,97            | -1,73            |
| SL1350           | ssaO         | Secretion system apparatus protein ssaO                                                                        | -2,05            | 1,10             |
| SL1351           | ssaP         | Secretion system apparatus protein ssaP                                                                        | -2,25            | -1,04            |
| SL1352           | ssaQ         | Secretion system apparatus protein SsaQ                                                                        | -2,22            | -1,38            |
| SL1353           | yscR         | Virulence protein yscR                                                                                         | -6,45            | -3,66            |
| SL1354           | ssaS         | Secretion system apparatus protein SsaS                                                                        | -5,53            | -6,29            |
| SL1355<br>SL1356 | ssaT<br>ssaU | Secretion system apparatus protein ssaT<br>Secretion system apparatus protein ssaU                             | -3,78<br>-2,02   | -4,26<br>-2,09   |
| SL2841           | znuA         | Uncharacterized periplasmic iron-binding protein HI_0362                                                       | -2,02<br>-1,87   | -1,50            |
| SL2842           | sitB         | Chelated iron transport system membrane protein                                                                | -1,47            | -1,16            |
| SL2843           | sitC         | Chelated iron transport system membrane protein yfeC                                                           | -1,86            | -1,28            |
| SL2844           | sitD         | Probable iron transport system membrane protein HI 0359                                                        | -5,89            | -2,82            |
| SL2845           | yopJ         | Effector protein yopJ                                                                                          | -13,68           | -5,19            |
| SL2846           | sprB         | AraC family transcriptional regulator                                                                          | -32,26           | -8,00            |
| SL2847           | sirC         | Transcriptional regulator sirC                                                                                 | -18,16           | -5,01            |
| SL2848           | -            | Hypothetical                                                                                                   | -10,65           | -10,57           |
| SL2849           | orgB         | Oxygen-regulated invasion protein orgB                                                                         | -3,84            | -4,16            |
| SL2850           | orgA         | Oxygen-regulated invasion protein orgA                                                                         | -30,38           | -8,93            |
| SL2851           | prgK         | Lipoprotein prgK                                                                                               | -21,47           | -4,18            |
| SL2852           | prgJ         | Protein prgJ                                                                                                   | -23,03           | -3,95            |
| SL2853           | prgl         | Protein prgl                                                                                                   | -12,75           | -2,47            |
| SL2854<br>SL2855 | prgH         | Protein prgH<br>Transcriptional regulator hilD                                                                 | -20,65           | -6,16            |
| SL2055<br>SL2856 | hilD<br>hilA | Transcriptional regulator hilD<br>Transcriptional regulator hilA                                               | -22,40<br>-51,51 | -3,33<br>-8,69   |
| SL2850<br>SL2857 | iagB         | Invasion protein iagB                                                                                          | -30,75           | -6,81            |
| SL2858           | sptP         | Secreted effector protein sptP                                                                                 | -13,51           | -5,70            |
|                  | 500          | and a second | 10,01            | 3,10             |

| SL2859           | sicP      | Chaperone protein sicP                                       | -16,25           | -6,65  |
|------------------|-----------|--------------------------------------------------------------|------------------|--------|
| SL2860           | iacP      | Probable acyl carrier protein iacP                           | -65,17           | -10,41 |
| SL2861           | sipA      | Cell invasion protein sipA                                   | -62,47           | -8,69  |
| SL2862           | sipD      | Cell invasion protein sipD                                   | -74,89           | -10,28 |
| SL2863           | sipC      | Cell invasion protein sipC                                   | -21,31           | -3,67  |
| SL2864           | sipB      | Cell invasion protein sipo                                   | -28,47           | -4,20  |
| SL2804<br>SL2865 | sicA      |                                                              | -20,47<br>-44,81 |        |
|                  |           | Chaperone protein sicA                                       |                  | -5,55  |
| SL2866           | spaS      | Surface presentation of antigens protein spaS                | -44,80           | -21,32 |
| SL2867           | spaR      | Surface presentation of antigens protein spaR                | -45,60           | -23,99 |
| SL2868           | spaQ      | Surface presentation of antigens protein SpaQ                | -59,09           | -33,25 |
| SL2869           | spaP      | Surface presentation of antigens protein spaP                | -59,37           | -31,82 |
| SL2870           | spaO      | Surface presentation of antigens protein SpaO                | -56,65           | -14,20 |
| SL2871           | spaN      | Surface presentation of antigens protein spaN                | -55,06           | -10,53 |
| SL2872           | spaM      | Surface presentation of antigens protein spaM                | -30,45           | -8,84  |
| SL2873           | spaL      | Probable ATP synthase spaL                                   | -34,06           | -10,05 |
| SL2874           | spaK      | Surface presentation of antigens protein spaK                | -29,33           | -5,56  |
| SL2875           | invA      | Invasion protein invA                                        | -29,45           | -12,19 |
| SL2876           | invE      | Invasion protein invE                                        | -37,53           | -18,50 |
| SL2877           | invG      | Protein invG                                                 | -15,56           | -6,34  |
| SL2878           | invF      | Invasion protein invF                                        | -16,66           | -5,21  |
| SL2879           | invH      | Invasion lipoprotein invH                                    | -23,62           | -5,38  |
| SL3717           | _         | Hypothetical                                                 | -1,07            | 1,23   |
| SL3718           | sugR      | Hypothetical                                                 | -1,05            | 1,28   |
| SL3720           | rhuM      | putative DNA-binding protein                                 | -1,23            | 1,12   |
| SL3722           | yqeH      | Uncharacterized protein yqeH                                 | 1,08             | 1,04   |
| SL3723           | misL      | putative autotransported protein                             | 1,15             | 1,72   |
| SL3723<br>SL3724 | fidL      | putative automansported protein                              |                  | 1,08   |
|                  |           |                                                              | 1,01             |        |
| SL3725           | marT      | putative transcriptional regulatory protein                  | -1,19            | -1,81  |
| SL3726           | slsA      | Hypothetical protein                                         | 1,27             | 1,64   |
| SL3727           | cigR      | putative inner membrane protein                              | -2,09            | -1,52  |
| SL3728           | mgtB      | Magnesium-transporting ATPase, P-type 1                      | -1,40            | -7,14  |
| SL3729           | mgtC      | Protein mgtC                                                 | -5,15            | -44,71 |
| SL3730           | yicL      | Uncharacterized inner membrane transporter yicL              | 1,24             | -1,17  |
| SL4193           | siiA      | Hypothetical                                                 | -58,21           | -8,63  |
| SL4194           | siiB      | Integral Membrane Protein                                    | -58,89           | -8,57  |
| SL4195           | siiC      | Outer membrane protein tolC                                  | -67,18           | -7,84  |
| SL4196           | siiD      | Proteases secretion protein prtE                             | -84,22           | -7,15  |
| SL4197           | siiiE     | Hypothetical                                                 | -42,14           | -8,49  |
| SL4198           | siiF      | Leukotoxin translocation ATP-binding protein lktB            | -46,86           | -17,32 |
|                  |           | Bacteriophages                                               |                  |        |
| SL0942           | intQ      | Putative lambdoid prophage Qin defective integrase           | -1,12            | -1,01  |
| SL0942<br>SL0943 | xisW      | Excisionase                                                  | -1,92            | 1,25   |
| SL0943<br>SL0944 |           |                                                              |                  |        |
|                  | -         | Hypothetical, regulador                                      | -2,85            | 1,33   |
| SL0944           | -         | Hypothetical, regulador                                      | -2,85            | 1,33   |
| SL0945           |           | Hypothetical                                                 | -3,24            | 1,33   |
| SL0946           | recE      | Exodeoxyribonuclease 8                                       | -3,79            | -1,15  |
| SL0947           |           | Hypothetical                                                 | -4,49            | 1,14   |
| SL0948           | ydaE      | Hypothetical                                                 | -3,19            | 1,35   |
| SL0949           | -         | Hypothetical                                                 | -2,66            | 1,03   |
| SL0950           | dicA      | Regulatory Protein                                           | -1,20            | -1,61  |
| SL0951           | C1        | Gifsy-2 Prophage CI Protein                                  | -2,85            | 1,10   |
| SL0952           | ydaU      | Gifsy-2 replication Protein O                                | -2,40            | 1,43   |
| SL0953           | ydaV      | DNA Replication Protein                                      | -1,78            | 1,72   |
| SL0954           | -         | Hypothetical                                                 | -2,18            | 1,62   |
| SL0954           | -         | Hypothetical                                                 | -2,18            | 1,62   |
| SL0955           | -         | Hypothetical                                                 | -2,23            | 1,43   |
| SL0955           | -         | Hypothetical                                                 | -2,23            | 1,43   |
| SL0956           | -         | Hypothetical                                                 | -1,19            | 1,01   |
| SL0956           | -         | Hypothetical                                                 | -1,19            | 1,01   |
| SL0957           | dinl      | DNA-damage-inducible protein I                               | -1,07            | 1,36   |
| SL0958           | -         | Hypothetical                                                 | -2,02            | -1,14  |
| SL0950<br>SL0959 | -<br>ninG | Hypothetical                                                 | -2,02            | 1,32   |
| SL0959<br>SL0960 | -         | Hypothetical                                                 | -2,57            | 1,68   |
| SL0900<br>SL0961 | -<br>quuQ | Antitermination protein Q homolog from lambdoid prophage Qin | -2,57            | 1,91   |
| SL0961<br>SL0962 | •         |                                                              |                  |        |
|                  | -         | Hypothetical<br>Restorionhago Protoin                        | -2,44            | 1,28   |
| SL0963           | -         | Bacteriophage Protein                                        | -2,01            | 1,61   |
| SL0964           | -         | Hypothetical                                                 | -1,74            | 2,25   |
|                  |           |                                                              |                  |        |

| SL068         - Hypothetical         -1.74         2.25           SL068         nucle         Probable lysozyme from lambdoid prophage DLP12         -1.62         -1.12           SL0686         nucle         Probable lysozyme from lambdoid prophage DLP12         -1.62         -1.16           SL0086         - Hypothetical         -1.12         -1.48         -1.18           SL0087         - Hypothetical         -1.65         1.02           SL0071         - Hypothetical         -1.66         1.02           SL0071         - Hypothetical         -1.63         1.03           SL0072         clpP1         ATT-dependent Co protease proteolytic subunit         -1.93         1.36           SL0073         - putative RacARada Accombinase         -2.00         -1.03           SL0076         - Minor Tal Protein Zuäke         -2.47         -1.01           SL0077         - Minor Tal Protein V         -1.75         -1.14           SL0078         - Minor Tal Protein V         -1.76         -1.14           SL0078         - Minor Tal Protein V         -1.76         -1.66           SL0078         - Minor Tal Protein L         -1.09         -1.33         -1.62           SL0080         - Hypothetical         -1.22                                                                                                                                                               |         |       |                                                              |       |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|--------------------------------------------------------------|-------|-------|
| SL0866         glgA         putative backinophage encoded virulence probein         -2,24         -1,12           SL0866         rcbab leyscyme from lambdoid prophage DLP12         -1,62         -1,16           SL0867         rcpD         Putative Rc endopeptidase from lambdoid prophage DLP12         -1,26         -1,16           SL0869         Phage Terminase Large Subunit         -1,33         -1,03           SL0870         Hypothetical         -1,03         1,36           SL0871         Phage Portal Protein Lambda Family         -1,03         1,36           SL0873         -         putative Rock/RadA recombinase         -2,00         -1,03           SL0874         -         ATP-binding sugartransporter-like protein         -2,23         -1,10           SL0876         -         Minor Tail Protein U         -2,33         -1,10           SL0877         -         Minor Tail Protein U         -1,76         -1,04           SL0879         -         Minor Tail Protein         -1,83         1,71           SL0879         -         Minor Tail Protein         -1,23         1,22         1,23           SL0879         -         Minor Tail Protein         -1,53         -1,23         1,24         1,23           SL0879 <td>SL0964</td> <td>-</td> <td>Hypothetical</td> <td>-1.74</td> <td>2.25</td>                                                                   | SL0964  | -     | Hypothetical                                                 | -1.74 | 2.25  |
| SL086         nuCD         Probable kysozyme from lambdoid prophage DLP12         -1.62         -1.62           SL0869         -         Hypothetical         -1.12         -1.48           SL0869         -         Hypothetical         -1.03         -1.03           SL0970         -         Hypothetical         -1.03         -1.03           SL0970         -         Hypothetical         -1.03         -1.03           SL0971         -         Phage Faral Protein Lambda Family         -1.30         -1.03           SL0973         -         putative RecARadA recombinase         -2.00         -1.03           SL0974         -         ATP-binding sugartansport-like protein         -2.23         -1.01           SL0975         -         Minor Tail Protein U         -2.33         -1.01           SL0976         -         Minor Tail Protein U         -2.33         -1.01           SL0977         -         Tail Protein U         -1.33         -1.55           SL0880         -         Minor Tail Protein C         -1.63         -1.29           SL0980         -         Hypothetical         -1.29         -1.21           SL0980         -         Hypothetical         -1.29         -1.22 </td <td></td> <td>ataA</td> <td></td> <td></td> <td></td>                                                                                                                                  |         | ataA  |                                                              |       |       |
| SL0567         rzpD         Putative Rz endospetidase from lambdoid prophage DLP12         -1,26         -1,16           SL0568         Hypothetical         -1,12         -1,48           SL0570         Phage Forminase Large Subunit         -1,35         -1,03           SL0571         Phage Fortal Protein Lambda Family         -1,30         1,07           SL0573         -         putative RecA/RadA recombinase         -2,00         -1,03           SL0573         -         putative RecA/RadA recombinase         -2,00         -1,03           SL0574         -         ATP-binding supatransporter-like protein         -2,25         -1,05           SL0575         -         Minor Tail Protein U         -2,33         -1,01           SL0576         -         Minor Tail Protein U         -2,33         -1,01           SL0577         -         Minor Tail Protein U         -1,53         -1,55           SL0589         -         Minor Tail Protein         -1,64         -1,22           SL0580         -         Hypothetical         -1,63         -1,21           SL0580         -         Hypothetical         -1,22         -1,21           SL0581         Su0401         -         -1,33         -1,22 <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                            |         |       |                                                              |       |       |
| 5L0688         -         Hypothetical         -1,12         -1,48           SL0690         Phage Terminase Large Subunit         -1,65         -1,03           SL070         -         Hypothetical         -1,03         1,07           SL071         -         Hypothetical         -1,03         1,36           SL073         -         putative RecARad recombinase         -2,00         -1,03           SL0373         -         putative RecARad recombinase         -2,00         -1,03           SL0375         -         Minor Tail Protein         -2,23         -1,01           SL0376         -         Minor Tail Protein         -2,23         -1,01           SL0377         -         Tail Protein         -2,33         -1,01           SL0378         -         Minor Tail Protein         -1,63         -1,55           SL0389         -         Minor Tail Protein         -1,63         -1,12           SL0389         -         Minor Tail Protein         -1,63         -1,12           SL0389         -         NupProD Protein         -1,02         -1,23           SL0389         -         NupProD Protein         -1,03         -1,13           SL0389         -                                                                                                                                                                                                                          |         |       |                                                              |       |       |
| 5L069         -         Phage Terminase Large Subunit         -1,35         -1,03           5L097         -         Phage Fortal Protein Lambda Family         -1,30         1.07           5L097         -         Putative RecA/RadA recombinase         -2,00         -1,03           5L0973         -         putative RecA/RadA recombinase         -2,00         -1,03           5L0974         -         APT-binding sugartransporter-like protein         -2,22         -1,105           5L0976         -         Minor Tail Protein U         -2,33         -1,101           5L0976         -         Minor Tail Protein V         -1,75         -1,04           5L0976         -         Minor Tail Protein V         -1,75         -1,04           5L0976         -         Minor Tail Protein V         -1,75         -1,04           5L0979         -         Minor Tail Protein L         -1,06         -1,29           5L0980         -         Hypothotical         -1,17         -1,21           5L0980         -         Hypothotical         -1,22         -1,22           5L0981         -         Hage Minor Tail Protein L         -1,03         -1,13           5L0984         -         Phage Tail Assamby Protein L <td></td> <td>-</td> <td></td> <td></td> <td></td>                                                                                                                         |         | -     |                                                              |       |       |
| SL0970         -         Hypothetical         -1,65         1,02           SL0971         c)CP14         ATP-dependent Clp protease proteolytic subunit 1         -1,93         1,36           SL0973         -         putative RecA/Rad A recombinase         -2,00         -1,03           SL0973         -         putative RecA/Rad A recombinase         -2,00         -1,05           SL0975         -         Minor Tall Protein U         -2,33         -1,01           SL0976         -         Minor Tall Protein U         -2,33         -1,01           SL0977         -         Tall Protein U         -2,33         -1,01           SL0979         -         Minor Tall Protein Component Of Putative Prophage         -1,22         -1,07           SL0980         -         Hypothetical         -1,86         -1,25           SL0981         -         Minor Tall Protein Cu         -2,38         -1,21           SL0985         -         Phage Minor Tall Protein Cu         -2,38         -1,22           SL0984         -         Phage Tal Assembly Protein         -1,29         -1,22           SL0985         -         Phage Tal Assembly Protein         -1,33         -1,43           SL0986         -         Ph                                                                                                                                                                         |         |       |                                                              |       |       |
| SL097         -         Phage Portal Protain Lambda Family         -1,30         1,07           SL0973         -         Putative RecARadA recombinase         -2,00         -1,03           SL0973         -         Putative RecARadA recombinase         -2,00         -1,03           SL0974         -         ATP-binding sugartansporter-like protein         -2,25         -1,05           SL0975         -         Minor Tail Protein U         -2,33         -1,01           SL0976         -         Minor Tail Protein U         -2,33         -1,04           SL0978         -         Minor Tail Component Of Putative Prophage         -1,22         -1,07           SL0980         -         Hypothetical         -1,66         -1,29           SL0982         ail         Attachment invasion locus protein         -1,89         -1,21           SL0984         -         Phage Minor Tail Protein L         -1,99         -1,22           SL0986         -         NLP/P60 Protein         -1,29         -1,22           SL0986         -         NLP/P60 Protein         -1,12         -1,49           SL0989         ycdC1         Steptersembly Protein         -1,12         -1,49           SL0980         -         Hyp                                                                                                                                                                         |         | -     |                                                              |       |       |
| SL0972         c)PP1         ATP-dependent Clp protease proteolytic subunit 1         -1,93         1.36           SL0973         -         putative Reac/Rada recombinase         -2,00         -1,03           SL0974         -         ATP-binding sugartrasporter-like protein         -2,25         -1,05           SL0975         -         Minor Tall Protein U         -2,33         -1,01           SL0976         -         Minor Tall Protein U         -2,33         -1,01           SL0977         -         Tall Protein U         -2,33         -1,01           SL0979         -         Minor Tall Protein U         -1,75         -1,65           SL0980         -         Hyporthetical         -1,55         -1,55           SL0981         -         Minor Tall Protein         -1,28         -1,21           SL0983         sodC1         Superoxide dismutase [Cu-Zn] 1         -2,28         -1,21           SL0985         -         Phoge Minor Tall Protein L         -1,09         -1,13           SL0986         -         Phoge Minor Tall Protein L         -1,02         -1,22           SL0985         -         Phoge Minor Tall Protein L         -1,03         -1,22           SL0984         -         Phog                                                                                                                                                                         | SL0970  | -     | Hypothetical                                                 | -1,65 | 1,02  |
| SL0973         -         putative Rea/RadA recombinase         -2,00         -1,03           SL0974         -         ATP-binding sugartansporter-like protein         -2,25         -1,05           SL0975         -         Minor Tall Protein U         -2,33         -1,01           SL0976         -         Minor Tall Protein U         -2,33         -1,01           SL0977         -         Tall Protein V         -1,25         -1,04           SL0978         -         Minor Tall Protein         -1,26         -1,04           SL0978         -         Minor Tall Protein         -1,26         -1,04           SL0981         -         Minor Tall Protein         -1,26         -1,29         -1,21           SL0980         -         Hypothetical         -1,53         -1,29         -1,21           SL0980         -         Hypothetical         -1,29         -1,21         -1,49           SL0980         -         Hypothetical         -1,21         -1,49         -1,21         -1,49           SL0980         -         Hypothetical (seudo)         -1,21         -1,49         -1,21         -1,49         -1,22         SL099         -1,22         SL099         -1,31         SL099 <t< td=""><td>SL0971</td><td>-</td><td>Phage Portal Protein Lambda Family</td><td>-1,30</td><td>1,07</td></t<>                                                                                     | SL0971  | -     | Phage Portal Protein Lambda Family                           | -1,30 | 1,07  |
| SL0973         -         putative Rea/RadA recombinase         -2,00         -1,03           SL0974         -         ATP-binding sugartansporter-like protein         -2,25         -1,05           SL0975         -         Minor Tall Protein U         -2,33         -1,01           SL0976         -         Minor Tall Protein U         -2,33         -1,01           SL0977         -         Tall Protein V         -1,25         -1,04           SL0978         -         Minor Tall Protein         -1,26         -1,04           SL0978         -         Minor Tall Protein         -1,26         -1,04           SL0981         -         Minor Tall Protein         -1,26         -1,29         -1,21           SL0980         -         Hypothetical         -1,53         -1,29         -1,21           SL0980         -         Hypothetical         -1,29         -1,21         -1,49           SL0980         -         Hypothetical         -1,21         -1,49         -1,21         -1,49           SL0980         -         Hypothetical (seudo)         -1,21         -1,49         -1,21         -1,49         -1,22         SL099         -1,22         SL099         -1,31         SL099 <t< td=""><td>SL0972</td><td>clpP1</td><td>ATP-dependent Clp protease proteolytic subunit 1</td><td>-1,93</td><td>1,36</td></t<>                                                                   | SL0972  | clpP1 | ATP-dependent Clp protease proteolytic subunit 1             | -1,93 | 1,36  |
| SL0973         -         putative Rea/Rad/ recombinase         2.00         -1.03           SL0975         -         Minor Tall Protein U         2.25         -1.05           SL0975         -         Minor Tall Protein U         2.23         -1.01           SL0977         -         Tall Protein U         2.23         -1.01           SL0978         -         Minor Tall Protein U         -1.25         -1.04           SL0979         -         Minor Tall Protein U         -1.26         -1.06         -1.29           SL0980         -         Hypothetcal         -1.16         -1.29         -1.25           SL0980         -         Hypothetcal         -1.23         -1.21         -1.22           SL0980         -         Hypothetcal         -1.29         -1.22         -1.03         -1.22         -1.03         -1.13         -1.26         -1.03         -1.13         -1.26         -1.03         -1.13         -1.26         -1.03         -1.13         -1.26         SU0980         -         Hypothetcal (Decudo Protein         -1.29         -1.21         -1.44         -1.53         -1.34         -1.34         -1.34         -1.34         -1.34         -1.34         -1.34         -1.34         -                                                                                                                                                                              | SL0973  |       | putative RecA/RadA recombinase                               |       |       |
| SL0974         -         ATP-binding sugartransporter-like protein         -2,25         -1,05           SL0975         -         Minor Tail Protein J         -2,33         -1,01           SL0976         -         Minor Tail Protein J         -2,33         -1,01           SL0977         -         Tail Protein V         -1,75         -1,04           SL0978         -         Minor Tail Protein V         -1,22         -1,07           SL0979         -         Minor Tail Protein V         -1,23         -1,24         -1,26           SL0980         -         Hypothetical         -1,53         -1,29         -1,22         -1,03           SL0982         ail Attachment invasion locus protein         -1,63         -1,13         -1,29         -1,22           SL0986         -         NLP/PEO Protein         -1,63         -1,13         SL0986         -         NLP/PEO Protein J         -1,11         -1,26           SL0986         -         NLP/PEO Protein J         -1,11         -1,26         -1,34           SL0989         stfQ         Side at Assembly Protein homolog from lambdoid prophage Cin         -1,72         -1,49           SL0989         self         Side assembly protein homolog from lambdoid prophage Cin                                                                                                                                                     |         | -     | •                                                            |       |       |
| SL0975         -         Minor Tail Protein U         -2,33         -1,10           SL0976         -         Tail Protein V         -1,75         -1,04           SL0977         -         Tail Protein V         -1,75         -1,04           SL0978         -         Minor Tail Protein         -1,44         -1,25           SL0980         -         Hypothetical         -1,53         -1,55           SL0980         -         Hypothetical         -1,66         -1,29           SL0982         ail         Attachment invision locus protein         -1,68         -1,29           SL0984         -         Phage Minor Tail Protein L         -1,09         -1,03           SL0984         -         Nue/Pole Protein         -1,29         -1,22           SL0986         -         Nue/Pole Protein         -1,29         -1,22           SL0989         ytCO         Tail Resembly Protein homolog from lambdoid prophage Cin         -1,72         -1,49           SL0999         -         Hypothetical (pseudo)         -1,44         -1,53           SL0999         ytelk         Uncharacterized protein yetk (gtpD)         -1,38         -1,34           SL0999         ytelk         Uncharacterized protein yetk (gtpD)<                                                                                                                                                                         |         | _     | •                                                            |       |       |
| SL0976         -         Minor Tail Protein U         -2,33         -1,01           SL0977         -         Minor Tail Component Of Putative Prophage         -1,22         -1,07           SL0979         -         Minor Tail Protein         -1,23         -1,153         -1,153           SL0980         -         Hypothetical         -1,153         -1,153         -1,153           SL0981         -         Minor Tail Protein         -1,89         1,17           SL0982         ail Attachment invasion locus protein         -1,89         1,17           SL0985         -         NLP/P60 Protein L         -1,09         -1,03           SL0985         -         NLP/P60 Protein J         -1,11         -1,22           SL0986         -         Phage full Assembly Protein full mathdoid prophage Clin         -1,72         -1,49           SL0989         ycdD         Tail fiber assembly protein homolog from lambdoid prophage Clin         -1,55         -1,34           SL0989         -         Hypothetical (seudo)         -1,44         -1,53           SL0989         sell         Scoreted effector protein sel (tglf / srfH)         1.05         -1,34           SL0989         sell         Scoreted effector protein sel (tglf / srfH)         1.06 <td></td> <td></td> <td></td> <td>•</td> <td></td>                                                                              |         |       |                                                              | •     |       |
| SL0977         -         Tail Protein V         -1,75         -1,04           SL0978         -         Minor Tail Component Of Putative Prophage         -1,22         -1,07           SL0980         -         Hypothetical         -1,54         -1,25           SL0980         -         Hypothetical         -1,66         -1,29           SL0982         ail         Attachment invision locus protein         -1,66         -1,29           SL0984         -         Phage Minor Tail Protein L         -1,09         -1,22           SL0984         -         Phage Minor Tail Protein L         -1,09         -1,22           SL0986         -         NLP/PC Protein         -1,11         -1,26           SL0986         -         Ntpage Tail Assembly Protein homolog from lambdoid prophage Cin         -1,72         -1,49           SL0998         stfQ         Side tail fiber protein homolog from lambdoid prophage         -1,55         -1,34           SL0999         ycdD         Fels-1         -1,43         -1,53           SL0990         -         Hypothetical (pseudo)         -1,44         -1,53           SL0990         gtgE         Prophage Encoded Virulence Factor         -3,13         -3,35           SL0999                                                                                                                                                                    |         |       |                                                              |       |       |
| SL0978         -         Minor Tail Component Of Putative Prophage         -1,24         -1,07           SL0979         Minor Tail Protein         -1,144         -1,26           SL0980         -         Hypothetical         -1,53         -1,55           SL0981         -         Hitor Tail Protein         -1,89         1,17           SL0983         sodC1         Superoxide dismutase [Cu-Zn] 1         -2,38         -1,21           SL0984         -         Phage Minor Tail Protein L         -1,09         -1,03           SL0985         -         NLP/P60 Protein         -         -1,22         -1,22           SL0986         -         NLP/P60 Protein         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                            |         |       |                                                              |       |       |
| SL0979         -         Minor Tail Protein         -1,4.4         -1,2.6           SL0980         -         Minor Tail Protein         -1,66         -1,2.9           SL0982         ail         Attachment invasion locus protein         -1,69         -1,17           SL0984         -         Phage Minor Tail Protein L         -1,09         -1,03           SL0986         -         NLP/P60 Protein         -1,29         -1,22           SL0986         -         Phage Tail Assembly Protein         -1,63         -1,13           SL0986         -         Phage Tail Assembly Protein         -1,63         -1,13           SL0986         -         Hooffictry Protein J         -1,11         -1,22           SL0986         -         Hypothetical (pseudo)         -1,14         -1,53           SL0989         ycdD         Tail fiber assembly protein homolog from lambdoid prophage         -1,55         -1,34           SL0989         ycdD         -         1,35         -1,33         -1,39           SL0989         ycdE         Hopothetical (pseudo)         -1,31         -1,33         -3,35           SL0989         gtgE         Prophage Encoded Virulence Factor         -3,13         -3,35           SL098                                                                                                                                                                         |         | -     |                                                              |       |       |
| SL0980         -         Hypothetical         -1,55           SL0981         -         Minor Tail Protein         -1,86         -1,29           SL0982         ail         Attachment invasion locus protein         -1,89         -1,11           SL0984         -         Phage Minor Tail Protein L         -1,09         -1,03           SL0985         -         NLP/P60 Protein L         -1,29         -1,22           SL0986         -         NLP/P60 Protein J         -1,11         -1,26           SL0986         StUQ         Site and lifter protein in ambdoid prophage Qin         -1,11         -1,26           SL0988         stQ         Site and lifter protein sel (gtgB / srfH)         1,05         -1,31           SL0989         -         Hypothetical (pseudo)         -1,44         -1,53           SL0989         -         Hypothetical (pseudo)         -1,43         -1,33           SL0989         -         Hypothetical (pseudo)         -1,31         -1,33           SL0989         gtgE         Prophage Encoded Virulence Factor         -3,13         -3,35           SL0989         gtgE         Prophage Encoded Virulence Factor         -3,13         -3,367           SL1929         Cytoplasmic Protein                                                                                                                                                                   |         | -     |                                                              |       |       |
| SL0981         -         Minor Tail Protein         -1.6.6         -1.2.9           SL0982         ail         Attachment invasion locus protein         -1.89         -1.17           SL0983         sodC1         Superoxide dimutase [Cu-Zn] 1         -2.38         -1.21           SL0984         -         Phage Minor Tail Protein L         -1.03         -1.13           SL0986         -         Phage Tail Assembly Protein         -1.29         -1.22           SL0986         -         Phage Tail Assembly Protein form lambdoid prophage Qin         -1.11         -1.26           SL0987         -         Montor Tail Protein homolog from lambdoid prophage Qin         -1.72         -1.49           SL0989         ycdD         Tail fiber assembly protein homolog from lambdoid prophage         -1.44         -1.53           SL0990         -         Hypothetical (pseudo)         -1.44         -1.53           SL0994         -         Hypothetical (pseudo)         -1.38         -1.39           SL0995         gtgE         Prophage Encoded Virulence Factor         -3.13         -3.35           SL0995         gtgE         Prophage Encoded Virulence Factor         -3.13         -3.36           SL1927         -         Hypothetical         -1.20                                                                                                                             | SL0979  | -     | Minor Tail Protein                                           | -1,44 |       |
| SL0982         ail         Attachment invasion locus protein         -1,89         1,17           SL0983         sodC1         Supervoide dismutase [Cu-Zn] 1         -2,38         -1,21           SL0985         -         NLP/P60 Protein L         -1,09         -1,03           SL0985         -         NLP/P60 Protein J         -1,13         -1,22           SL0986         Phage Tail Assembly Protein         -1,63         -1,13           SL0987         -         Hooffetty Protein J         -1,11         -1,26           SL0988         Studit fiber assembly protein homolog from lambdoid prophage Cin         -1,12         -1,44           SL0989         -         Hypothetical (pseudo)         -1,144         -1,53           SL0989         -         Hypothetical (pseudo)         -1,06         -1,31           SL0989         -         Hypothetical (pseudo)         -1,06         -1,31           SL0989         -         Hypothetical (pseudo)         -1,33         -3,35           SL0989         gtgE         Prophage Encoded Virulence Factor         -3,13         -3,35           SL1929         ycdD         Tail fiber assembly protein homolog from lambdoid prophage         1,31         1,13           SL1929         ycdD <td>SL0980</td> <td>-</td> <td>Hypothetical</td> <td>-1,53</td> <td>-1,55</td>                                                                  | SL0980  | -     | Hypothetical                                                 | -1,53 | -1,55 |
| SL0982         ail         Attachment invasion locus protein         -1,89         1,17           SL0983         sodC1         Supervoide dismutase [Cu-Zn] 1         -2,38         -1,21           SL0985         -         NLP/P60 Protein L         -1,09         -1,03           SL0985         -         NLP/P60 Protein J         -1,13         -1,22           SL0986         Phage Tail Assembly Protein         -1,63         -1,13           SL0987         -         Hooffetty Protein J         -1,11         -1,26           SL0988         Studit fiber assembly protein homolog from lambdoid prophage Cin         -1,12         -1,44           SL0989         -         Hypothetical (pseudo)         -1,144         -1,53           SL0989         -         Hypothetical (pseudo)         -1,06         -1,31           SL0989         -         Hypothetical (pseudo)         -1,06         -1,31           SL0989         -         Hypothetical (pseudo)         -1,33         -3,35           SL0989         gtgE         Prophage Encoded Virulence Factor         -3,13         -3,35           SL1929         ycdD         Tail fiber assembly protein homolog from lambdoid prophage         1,31         1,13           SL1929         ycdD <td>SL0981</td> <td>-</td> <td>Minor Tail Protein</td> <td>-1,66</td> <td>-1,29</td>                                                            | SL0981  | -     | Minor Tail Protein                                           | -1,66 | -1,29 |
| SL0983         sodC1         Superoxide dismutase [Cu-Zn] 1         -2,38         -1,21           SL0984         -         Phage Minor Tail Protein L         -1,09         -1,03           SL0985         -         NLP/P60 Protein         -1,29         -1,22           SL0986         -         Phage Tail Assembly Protein         -1,63         -1,13           SL0987         -         Hodficity Protein J         -1,72         -1,49           SL0988         stfQ         Side tail fiber protein homolog from lambdoid prophage Qin         -1,72         -1,34           SL0989         -         Hypothetical (pseudo)         -1,00         -1,41         -1,53           SL0989         -         Hypothetical (pseudo)         -1,38         -1,39         -1,34           SL0984         -         Hypothetical (pseudo)         -1,38         -1,39         -1,31         -3,35           SL0996         gtgE         Prophage Encoded Virulence Factor         -3,13         -3,35         -1,97         -2,69         -2,83           SL1928         -         Cytoplasmic Protein msgA (gtgF)         -2,69         -2,83         -1,13         -1,32         1,24           SL1929         ycdf         Tail fiber assembly protein homolog from lambdoid                                                                                                                                        | SL0982  | ail   | Attachment invasion locus protein                            |       |       |
| SL0984         -         Priage Minor Tail Protein L         -1.09         -1.03           SL0985         -         NLP/P60 Protein         -1.29         -1.22           SL0986         -         NLP/P60 Protein         -1.63         -1.13           SL0987         -         Hoofficity Protein         -1.11         -1.26           SL0988         YCD         Sile fail fiber protein homolog from lambdoid prophage Qin         -1.72         -1.49           SL0980         -         Hypothetical (pseudo)         -1.44         -1.53           SL0990         -         Hypothetical (pseudo)         -1.44         -1.33           SL0990         -         Hypothetical (pseudo)         -1.05         -1.31           SL0995         gtgE         Prophage Encoded Virulence Factor         -3.13         -3.35           SL0995         gtgE         Prophage Encoded Virulence Factor         -3.13         -3.35           SL1927         -         Hypothetical         -1.36         -1.97           SL1929         ycdD         Tail fiber assembly protein homolog from lambdoid prophage         -1.31         -3.43           SL1928         -         -         -1.97         -1.97           SL1928         - <t< td=""><td></td><td></td><td>•</td><td>•</td><td></td></t<>                                                                                                                 |         |       | •                                                            | •     |       |
| SL0985         -         NLP/P60 Protein         -1,29         -1,22           SL0986         -         Phage Tail Assembly Protein         -1,63         -1,13           SL0987         -         Hodificity Protein J         -1,11         -1,26           SL0988         StfQ         Side tail fiber protein homolog from lambdoid prophage Qin         -1,72         -1,44           SL0990         -         Hypothetical (pseudo)         -         -1,44         -1,53           SL0991         Seel         Secreted effector protein seel (gtB / srfH)         1,05         -1,34           SL0993         -         Hypothetical (pseudo)         -1,38         -1,39           SL0994         -         Hypothetical (pseudo)         -1,38         -1,39           SL0994         -         Hypothetical (pseudo)         -2,69         -2,83           SL0995         gtgE         Prophage Encoded Virulence Factor         -3,13         -3,35           SL1928         -         Cytoplasmic Protein         -2,69         -2,83           SL1929         ycdD         Tail fiber assembly protein homolog from lambdoid prophage         1,31         1,13           SL1929         ycdD         Tail fiber assembly protein profe         -2,61         -3,87<                                                                                                                                      |         |       |                                                              |       |       |
| SL0986       -       Phage Tail Assembly Protein       -1.63       -1.13         SL0987       -       Hocificity Protein Jone of from lambdoid prophage Qin       -1.72       -1.49         SL0988       ytCd       Stid fail fiber assembly protein homolog from lambdoid prophage       -1.55       -1.34         SL0980       -       Hypothetical (pseudo)       -1.44       -1.53         SL0991       -       Hypothetical (pseudo)       1.00       -1.41         SL0982       -       Hypothetical (pseudo)       1.00       -1.41         SL0994       yedK       Uncharacterized protein yedK (gtgD)       -1.38       -1.39         SL0995       gtgE       Prophage Encoded Virulence Factor       -3.13       -3.35         SL1927       -       Hypothetical       -1.66       -1.97         SL1928       ycdk       Uncharacterized protein yedK       -2.08       -2.69       -2.83         SL1929       ycdb       Tail fiber assembly protein homolog from lambdoid prophage       -1.36       -1.97         SL1929       ycdb       Tail fiber assembly protein ymfX       1.31       1.13         SL1928       ycfK       Uncharacterized protein ymfX       1.32       1.24         SL1930       ycfK       <                                                                                                                                                                                      |         |       |                                                              |       |       |
| SL0987         -         Hodificity Protein J         -1,11         -1,26           SL0988         stid all fiber protein homolog from lambdoid prophage Qin         -1,72         -1,49           SL0989         ycdD         Tail fiber assembly protein homolog from lambdoid prophage         -1,55         -1,34           SL0990         -         Hypothetical (pseudo)         -1,44         -1,53           SL0991         Ssel         Scoreted effector protein seel (gtgB / srfH)         1,05         -1,31           SL0992         -         Hypothetical (pseudo)         -1,38         -1,39           SL0994         -         Hypothetical (pseudo)         -3,13         -3,35           SL0995         gtgE         Prophage Encoded Virulence Factor         -3,13         -3,35           SL0996         msgA         Virulence protein msgA (gtgF)         -2,66         -2,83           SL1927         -         Hypothetical         -1,36         -1,97           SL1928         -         Cytoplasmic Protein         -1,36         -1,97           SL1929         ycdD         Tail fiber assembly protein homolog from lambdoid prophage         -1,31         -1,36           SL1930         ymfQ         Uncharacterized protein ycfK         1,34         1,29                                                                                                                         |         |       |                                                              |       |       |
| SL0988         stfQ         Side tail fiber protein homolog from lambdoid prophage Qin         -1,72         -1,49           SL0989         ycdD         Tail fiber assembly protein homolog from lambdoid prophage         -1,55         -1,34           SL0990         -         Hypothetical (pseudo)         -1,44         -1,53           SL0991         -         Hypothetical (pseudo)         1,00         -1,31           SL0992         -         Hypothetical (pseudo)         -1,38         -1,39           SL0994         yedK         Uncharacterized protein yedK (gtpD)         -1,38         -1,31           SL0995         gtgE         Prophage Encoded Virulence Factor         -3,13         -3,35           SL0996         msgA         Virulence protein msgA (gtgF)         -2,69         -2,83           SL1927         -         Hypothetical         -1,36         -1,97           SL1928         -         Cytoplasmic Protein mGO in lambdoid prophage         1,31         1,13           SL1929         ycdK         Uncharacterized protein ymfQ in lambdoid prophage         1,32         1,24           SL1931         -         Hypothetical         1,96         -1,07           SL1933         -         Hypothetin ymfP         1,29         -1,02 <td></td> <td>-</td> <td></td> <td></td> <td></td>                                                                             |         | -     |                                                              |       |       |
| SL0989         ycdD         Tail fiber assembly protein homolog from lambdoid prophage         -1,55         -1,34           SL0990         -         Hypothetical (pseudo)         -1,44         -1,53           SL0991         Ssel         Secreted effector protein ssel (gtg B / sfH)         1,00         -1,41           SL0993         yedK         Uncharacterized protein yedK (gtgD)         -1,38         -1,39           SL0994         -         Hypothetical         -2,08         -2,56           SL0995         gtgE         Prophage Encoded Virulence Factor         -3,13         -3,35           SL0996         gtgE         Prophage Encoded Virulence Factor         -3,66         -2,83           SL1927         -         Hypothetical         -1,36         -1,97           SL1928         -         Cytoplasmic Protein         -2,60         -2,83           SL1928         ycdD         Tail fiber assembly protein homolog from lambdoid prophage         1,31         1,13           SL1929         ycdD         Tail fiber assembly protein momolog from lambdoid prophage         1,31         1,13           SL1929         ycdD         Tail fiber assembly protein momolog from lambdoid prophage         1,31         1,42           SL1930         ymfP         Putativ                                                                                                           |         |       |                                                              |       |       |
| SL0999         - Hypothetical (pseudo)         -1,34         -1,35           SL0991         - Hypothetical (pseudo)         -1,44         -1,53           SL0992         - Hypothetical (pseudo)         -1,31         -1,34           SL0992         - Hypothetical (pseudo)         -1,38         -1,39           SL0994         - Hypothetical protein yedK (gtgD)         -1,38         -1,39           SL0995         gtgE         Prophage Encoded Virulence Factor         -3,13         -3,35           SL1992         yedK         Uncharacterized protein msgA (gtgF)         -2,69         -2,83           SL1927         - Hypothetical         -2,01         -3,87         -1,97           SL1929         ycdK         Uncharacterized protein ymgK         -1,34         1,29           SL1929         ycdK         Uncharacterized protein ymgK         1,34         1,29           SL1929         ycdK         Uncharacterized protein ymgK         1,34         1,29           SL1930         ycfK         Uncharacterized protein ymgK         1,32         1,24           SL1933         ymfP         Putative protein ymfP         1,29         1,107           SL1935         Mu-like prophage FluMu DNA circulation protein         1,55         1,07                                                                                                                                             | SL0988  | stfQ  | Side tail fiber protein homolog from lambdoid prophage Qin   | -1,72 | -1,49 |
| SL0990         - Hypothetical (pseudo)         -1,44         -1,53           SL0991         ssel         Secreted effector protein ssel (gtgB / srH)         1,05         -1,31           SL0992         - Hypothetical (pseudo)         1,00         -1,41           SL0994         - Hypothetical (pseudo)         -1,38         -1,39           SL0994         - Hypothetical (pseudo)         -2,08         -2,56           SL0995         gtgE         Prophage Encoded Virulence Factor         -3,13         -3,35           SL0996         msgA         Virulence protein msgA (gtgF)         -2,69         -2,83           SL1927         - Hypothetical         -1,36         -1,97           SL1928         - Cytoplasmic Protein         -2,01         -3,87           SL1929         ycdD         Fels-1         -1,34         1,29           SL1920         ycdK         Uncharacterized protein ymG in lambdoid prophage e14 region         1,32         1,24           SL1931         ymfQ         Uncharacterized protein ymfQ in lambdoid prophage e14 region         1,32         1,24           SL1933         ymfP         Putative protein ymfP         1,52         1,03           SL1934         - Hypothetical         1,96         -1,07         SL1934 </td <td>SI 0080</td> <td>vedD</td> <td>Tail fiber assembly protein homolog from lambdoid prophage</td> <td>_1 55</td> <td>_1 3/</td> | SI 0080 | vedD  | Tail fiber assembly protein homolog from lambdoid prophage   | _1 55 | _1 3/ |
| SL0991         Ssel         Secreted effector protein ssel (gtgB / srfH)         1,05         -1,31           SL0992         -         Hypothetical (pseudo)         1,00         -1,41           SL0993         yedK         Uncharacterized protein yedK (gtgD)         -1,38         -1,39           SL0995         gtgE         Prophage Encoded Virulence Factor         -3,13         -3,35           SL0996         msgA         Virulence protein msgA (gtgF)         -2,69         -2,83           SL1927         Hypothetical         -1,36         -1,97           SL1928         -         Cytoplasmic Protein         -2,01         -3,87           SL1929         ycdK         Uncharacterized protein ymfQ         -2,01         -3,87           SL1929         ycdK         Uncharacterized protein ymfQ         -1,34         1,29           SL1931         ymfQ         Uncharacterized protein ymfQ         1,32         1,24           SL1932         ymfP         Putative protein ymfP         1,52         1,03           SL1933         ymfP         Putative protein ymfP         1,52         1,02           SL1934         -         Hypothetical         1,96         -1,07           SL1935         -         Mu-like proph                                                                                                                                                                | 320303  | ycub  | Fels-1                                                       | -1,55 | -1,04 |
| SL0992         -         Hyothetical (pseudo)         1,00         -1,41           SL0993         yedK         Uncharacterized protein yedK (gtgD)         -1,38         -1,39           SL0994         Hypothetical         -2,08         -2,56           SL0995         gtgE         Prophage Encoded Virulence Factor         -3,13         -3,35           SL0996         msgA         Virulence protein msgA (gtgF)         -2,69         -2,88           SL1927         -         Hypothetical         -1,36         -1,97           SL1928         -         Cytoplasmic Protein         -2,01         -3,87           SL1929         ycdD         Tail fiber assembly protein homolog from lambdoid prophage         1,31         1,13           SL1930         ycfK         Uncharacterized protein ymfV         1,29         1,15           SL1933         ymfP         Putative protein ymfP         1,29         1,16           SL1934         -         Hypothetical         1,96         -1,07           SL1934         -         Hypothetical         1,96         -1,07           SL1935         -         Tail Protein         1,29         -1,02           SL1936         -         Tail Protein         1,29 <t< td=""><td>SL0990</td><td>-</td><td>Hypothetical (pseudo)</td><td>-1,44</td><td>-1,53</td></t<>                                                                                      | SL0990  | -     | Hypothetical (pseudo)                                        | -1,44 | -1,53 |
| SL0992         -         Hyothetical (pseudo)         1,00         -1,41           SL0993         yedK         Uncharacterized protein yedK (gtgD)         -1,38         -1,39           SL0994         Hypothetical         -2,08         -2,56           SL0995         gtgE         Prophage Encoded Virulence Factor         -3,13         -3,35           SL0996         msgA         Virulence protein msgA (gtgF)         -2,69         -2,88           SL1927         -         Hypothetical         -1,36         -1,97           SL1928         -         Cytoplasmic Protein         -2,01         -3,87           SL1929         ycdD         Tail fiber assembly protein homolog from lambdoid prophage         1,31         1,13           SL1930         ycfK         Uncharacterized protein ymfV         1,29         1,15           SL1933         ymfP         Putative protein ymfP         1,29         1,16           SL1934         -         Hypothetical         1,96         -1,07           SL1934         -         Hypothetical         1,96         -1,07           SL1935         -         Tail Protein         1,29         -1,02           SL1936         -         Tail Protein         1,29 <t< td=""><td>SL0991</td><td>ssel</td><td>Secreted effector protein ssel (gtgB / srfH)</td><td>1,05</td><td>-1,31</td></t<>                                                             | SL0991  | ssel  | Secreted effector protein ssel (gtgB / srfH)                 | 1,05  | -1,31 |
| SL0993         yedK         Uncharacterized protein yedK (gtgD)         -1,38         -1,39           SL0994         -         Hypothetical         -2,08         -2,56           SL0995         gtgE         Prophage Encoded Virulence Factor         -3,13         -3,35           SL0996         gtgE         Prophage Encoded Virulence Factor         -3,13         -3,35           SL0996         msgA         Virulence protein msgA (gtgF)         -2,69         -2,83           SL1927         -         Hypothetical         -1,36         -1,97           SL1928         -         Cytoplasmic Protein         -2,01         -3,87           SL1929         ycdD         Fels1         1         1,13         1,13           SL1930         ycfK         Uncharacterized protein ymfQ         1,34         1,29           SL1933         ymfP         Putative protein ymfP         1,52         1,03           SL1934         -         Hypothetical         1,96         -1,07           SL1935         -         Mu-like prophage FluMu protein gp45         1,42         -1,05           SL1936         Tail Protein         1,52         1,03         -1,07           SL1936         -         Hujke prophage FluMu p                                                                                                                                                                                  | SL0992  | -     | Hypothetical (pseudo)                                        | 1.00  |       |
| SL0994         -         Hypothetical         -2,08         -2,56           SL0995         gtgE         Prophage Encoded Virulence Factor         -3,13         -3,35           SL0996         msgA         Virulence protein msgA (gtgF)         -2,69         -2,83           SL1927         -         Hypothetical         -1,36         -1,97           SL1928         - Cytoplasmic Protein         -2,01         -3,87           SL1929         ycdD         Tail fiber assembly protein homolog from lambdoid prophage Fels-1         1,32         1,13           SL1930         ycfK         Uncharacterized protein ymfQ in lambdoid prophage e14 region         1,32         1,24           SL1933         ymfP         Putative protein ymfP         1,52         1,03         1,15           SL1933         ymfP         Putative protein gp45         1,42         -1,05         SL1936         -         1,29         -1,02           SL1936         -         Tail Protein         Tail Protein         1,29         -1,02           SL1935         Mu-ike prophage FluMu protein gp45         1,42         -1,05         SL1936         -         1,72         1,77           SL1936         -         Tail Protein         1,57         1,70         1,                                                                                                                                                |         | vedK  |                                                              |       |       |
| SL0995         gtgE         Prophage Encoded Virulence Factor         -3,13         -3,35           SL0996         gtgE         Prophage Encoded Virulence Factor         -3,13         -3,35           SL0996         msgA         Virulence protein msgA (gtgF)         -2,69         -2,83           SL1927         -         Hypothetical         -1,36         -1,97           SL1928         -         Cytoplasmic Protein         -2,01         -3,87           SL1929         ycdD         Tail fiber assembly protein homolog from lambdoid prophage         -2,01         -3,87           SL1930         ycfK         Uncharacterized protein ymfQ in lambdoid prophage e14 region         1,32         1,24           SL1932         ymfQ         Putative protein ymfP         1,52         1,03           SL1934         -         Hypothetical         1,96         -1,07           SL1935         -         Mu-like prophage FluMu protein gp45         1,42         -1,05           SL1936         -         Tail Protein         1,57         1,70           SL1936         -         Tail Protein         1,57         1,70           SL1937         Mu-like prophage FluMu DNA circulation protein         1,55         1,07           SL1939                                                                                                                                                        |         | -     |                                                              |       |       |
| SL0995         gtgE         Prophage Encoded Virulence Factor         -3,13         -3,35           SL0996         msgA         Virulence protein msgA (gtgF)         -2,69         -2,83           SL1927         -         Hypothetical         -1,36         -1,97           SL1928         -         Cytoplasmic Protein         -2,01         -3,87           SL1929         ycdD         Tail fiber assembly protein homolog from lambdoid prophage         1,31         1,13           SL1930         ycfK         Uncharacterized protein ymfQ in lambdoid prophage e14 region         1,32         1,24           SL1933         ymfP         Putative protein ymfP         1,52         1,03           SL1934         -         Hypothetical         1,96         -1,07           SL1935         -         Mu-like prophage FluMu protein gp45         1,42         -1,05           SL1936         -         Tail Protein         1,29         -1,02           SL1936         -         Phage Tail Protein gp45         1,42         -1,05           SL1937         -         Mu-like prophage FluMu DNA circulation protein         1,50         -1,07           SL1939         -         Hypothetical         1,77         1,77           SL1939                                                                                                                                                            |         |       | ••                                                           | ,     |       |
| SL0996         msgA         Virulence protein msgA (gtgF)         -2.69         -2.83           SL1927         -         Hypothetical         -1.36         -1.97           SL1928         -         Cytoplasmic Protein         -2.01         -3.87           SL1929         ycdD         Tail fiber assembly protein homolog from lambdoid prophage         1.31         1.13           SL1929         ycdD         Uncharacterized protein ycfK         1.34         1.29           SL1930         ycfK         Uncharacterized protein ymfP         1.29         1.15           SL1932         ymfP         Putative protein ymfP         1.52         1.03           SL1934         -         Hypothetical         1.96         -1.07           SL1936         -         Mu-like prophage FluMu protein gp45         1.42         -1.05           SL1936         -         Mu-like prophage FluMu DNA circulation protein         1.50         -1.07           SL1938         -         Phage Tail Tape Measure Protein         1.49         1.18           SL1939         -         Hypothetical         1.77         1.77           SL1940         -         Hypothetical         1.57         1.77           SL1940         -         H                                                                                                                                                                         |         |       |                                                              |       |       |
| SL1927       -       Hypothetical       -1,36       -1,97         SL1928       -       Cytoplasmic Protein       -2,01       -3,87         SL1929       ycdD       Tail fiber assembly protein homolog from lambdoid prophage<br>Fels-1       1,31       1,13         SL1930       ycfK       Uncharacterized protein ycfK       1,34       1,29         SL1931       ymfQ       Putative protein ymfQ in lambdoid prophage e14 region       1,32       1,24         SL1932       ymfP       Putative protein ymfP       1,52       1,03         SL1933       ymfP       Putative protein ymfP       1,52       1,03         SL1935       Mu-like prophage FluMu protein gp45       1,42       -1,05         SL1936       Tail Protein       1,29       -1,17         SL1937       Mu-like prophage FluMu DNA circulation protein       1,49       1,18         SL1938       Phage Tail Tape Measure Protein       1,49       1,18         SL1939       Hypothetical       1,77       1,77         SL1940       Hypothetical       1,70       1,04         SL1942       Hypothetical       1,77       1,07         SL1943       Hypothetical       1,77       1,07         SL1944       Hypothe                                                                                                                                                                                                                         |         |       |                                                              |       |       |
| SL1928         Cytoplasmic Protein         -2.01         -3.87           SL1929         ycdD         Tail fiber assembly protein homolog from lambdoid prophage<br>Fels-1         1,31         1,13           SL1930         ycfK         Uncharacterized protein ycfK         1,34         1,29           SL1931         ymfQ         Uncharacterized protein ymfQ in lambdoid prophage e14 region         1,32         1,24           SL1932         ymfP         Putative protein ymfP         1,52         1,03         1,15           SL1933         -         Hypothetical         1,96         -1,07         1,15           SL1934         -         Hypothetical         1,60         -1,07           SL1935         -         Mu-like prophage FluMu protein gp45         1,42         -1,05           SL1936         -         Tail Protein         1,50         -1,07           SL1938         -         Phage Tail Tape Measure Protein         1,49         1,18           SL1939         -         Hypothetical         1,57         1,70           SL1940         -         Hypothetical         1,57         1,70           SL1944         -         Hypothetical         1,85         -1,04           SL1944         -                                                                                                                                                                                 |         | msgA  |                                                              |       |       |
| SL1929         ycdD         Tail fiber assembly protein homolog from lambdoid prophage<br>Fels-1         1,31         1,13           SL1930         ycfK         Uncharacterized protein ycfK         1,34         1,29           SL1931         ymfQ         Uncharacterized protein ymfQ in lambdoid prophage e14 region         1,32         1,24           SL1932         ymfP         Putative protein ymfP         1,52         1,03           SL1933         -         Hypothetical         1,96         -1,07           SL1935         -         Mu-like prophage FluMu protein gp45         1,42         -1,05           SL1936         -         Tail Protein         1,50         -1,07           SL1936         -         Tail Protein         1,50         -1,07           SL1936         -         Tail Protein         1,42         -1,05           SL1937         Mu-like prophage FluMu DNA circulation protein         1,50         -1,07           SL1938         -         Phage Tail Tape Measure Protein         1,72         1,77           SL1940         -         Hypothetical         1,57         1,70           SL1941         Mu-like prophage FluMu tail sheath protein         1,31         1,43           SL1944         Hypothetical                                                                                                                                                  |         | -     |                                                              |       |       |
| St.1929         ycdb         Fels-1         1,13         1,13           St.1930         ycfK         Uncharacterized protein ymfQ in lambdoid prophage e14 region         1,34         1,29           St.1931         ymfP         Putative protein ymfP         1,29         1,15           St.1933         ymfP         Putative protein ymfP         1,29         1,15           St.1933         ymfP         Putative protein ymfP         1,52         1,03           St.1933         ymfP         Putative protein gp45         1,42         -1,07           St.1936         Tail Protein         1,29         -1,02         -1,07           St.1937         Mu-like prophage FluMu DNA circulation protein         1,50         -1,07           St.1938         Phage Tail Tape Measure Protein         1,49         1,18           St.1939         Hypothetical         1,77         1,70           St.1939         Hypothetical         1,57         1,70           St.1940         Hypothetical         1,57         1,70           St.1944         Hypothetical         1,85         -1,04           St.1944         Hypothetical         1,77         1,07           St.1944         Hypothetical         2,50         1,24                                                                                                                                                                                 | SL1928  | -     | Cytoplasmic Protein                                          | -2,01 | -3,87 |
| SL1930       yofk       1,34       1,29         SL1931       ymfQ       Uncharacterized protein ymfQ in lambdoid prophage e14 region       1,32       1,24         SL1932       ymfP       Putative protein ymfP       1,52       1,03         SL1933       ymfP       Putative protein ymfP       1,52       1,03         SL1934       -       Hypothetical       1,96       -1,07         SL1935       -       Mu-like prophage FluMu protein gp45       1,42       -1,05         SL1936       -       Tail Protein       1,29       -1,02         SL1937       -       Mu-like prophage FluMu DNA circulation protein       1,50       -1,07         SL1938       -       Phage Tail Tape Measure Protein       1,49       1,18         SL1939       -       Hypothetical       1,72       1,77         SL1940       -       Hypothetical       1,57       1,70         SL1944       -       Hypothetical       1,85       -1,04         SL1943       -       Hypothetical       1,85       -1,04         SL1944       -       Hypothetical       1,77       1,07         SL1944       -       Hypothetical       1,77       1,04                                                                                                                                                                                                                                                                                    | SI 1020 | vedD  | Tail fiber assembly protein homolog from lambdoid prophage   | 1 31  | 1 13  |
| SL1931       ymfQ       Uncharacterized protein ymfQ in lambdoid prophage e14 region       1,32       1,24         SL1932       ymfP       Putative protein ymfP       1,29       1,15         SL1933       ymfP       Putative protein ymfP       1,52       1,03         SL1934       -       Hypothetical       1,96       -1,07         SL1935       -       Mu-like prophage FluMu protein gp45       1,42       -1,05         SL1936       -       Tail Protein       1,29       -1,02         SL1937       -       Mu-like prophage FluMu DNA circulation protein       1,50       -1,07         SL1938       -       Phage Tail Tape Measure Protein       1,49       1,18         SL1939       -       Hypothetical       1,72       1,77         SL1940       -       Hypothetical       1,57       1,70         SL1941       -       Mu-like prophage FluMu tail sheath protein       1,31       1,43         SL1942       -       Hypothetical       1,57       1,70         SL1943       -       Hypothetical       1,70       1,07         SL1944       -       Hypothetical       1,85       -1,04         SL1945       -       Hypothetical <t< td=""><td>0L1929</td><td></td><td>Fels-1</td><td></td><td>1,15</td></t<>                                                                                                                                                                                | 0L1929  |       | Fels-1                                                       |       | 1,15  |
| SL1932       ymfP       Putative protein ymfP       1,29       1,15         SL1933       ymfP       Putative protein ymfP       1,52       1,03         SL1934       -       Hypothetical       1,96       -1,07         SL1935       -       Mu-like prophage FluMu protein gp45       1,42       -1,05         SL1936       -       Tail Protein       1,29       -1,02         SL1937       -       Mu-like prophage FluMu DNA circulation protein       1,50       -1,07         SL1938       -       Phage Tail Tape Measure Protein       1,49       1,18         SL1939       -       Hypothetical       1,72       1,77         SL1941       -       Mu-like prophage FluMu tail sheath protein       1,31       1,43         SL1942       -       Hypothetical       1,57       1,70         SL1943       -       Hypothetical       1,70       1,07         SL1944       -       Hypothetical       1,85       -1,04         SL1945       -       Hypothetical       1,77       1,07         SL1944       -       Hypothetical       1,77       1,07         SL1945       -       Hypothetical       1,77       1,07      S                                                                                                                                                                                                                                                                                   | SL1930  | ycfK  | Uncharacterized protein ycfK                                 | 1,34  | 1,29  |
| SL1932       ymfP       Putative protein ymfP       1,29       1,15         SL1933       ymfP       Putative protein ymfP       1,52       1,03         SL1934       -       Hypothetical       1,96       -1,07         SL1935       -       Mu-like prophage FluMu protein gp45       1,42       -1,05         SL1936       -       Tail Protein       1,29       -1,02         SL1937       -       Mu-like prophage FluMu DNA circulation protein       1,50       -1,07         SL1938       -       Phage Tail Tape Measure Protein       1,49       1,18         SL1939       -       Hypothetical       1,72       1,77         SL1941       -       Mu-like prophage FluMu tail sheath protein       1,31       1,43         SL1942       -       Hypothetical       1,57       1,70         SL1943       -       Hypothetical       1,70       1,07         SL1944       -       Hypothetical       1,85       -1,04         SL1945       -       Hypothetical       1,77       1,07         SL1944       -       Hypothetical       1,77       1,07         SL1945       -       Hypothetical       1,77       1,07      S                                                                                                                                                                                                                                                                                   | SL1931  | ymfQ  | Uncharacterized protein ymfQ in lambdoid prophage e14 region | 1,32  | 1,24  |
| SL1933       ymfP       Putative protein ymfP       1,52       1,03         SL1934       -       Hypothetical       1,96       -1,07         SL1935       -       Mu-like prophage FluMu protein gp45       1,42       -1,05         SL1936       -       Tail Protein       1,29       -1,02         SL1937       -       Mu-like prophage FluMu DNA circulation protein       1,50       -1,07         SL1938       -       Phage Tail Tape Measure Protein       1,49       1,18         SL1939       -       Hypothetical       1,72       1,77         SL1940       -       Hypothetical       1,57       1,70         SL1941       -       Mu-like prophage FluMu tail sheath protein       1,31       1,43         SL1942       -       Hypothetical       1,70       1,07         SL1943       -       Hypothetical       1,77       1,07         SL1944       -       Hypothetical       1,77       1,07         SL1945       -       Hypothetical       1,77       1,07         SL1944       -       Hypothetical       1,77       1,07         SL1945       -       Hypothetical       1,77       1,07         SL1                                                                                                                                                                                                                                                                                           | SL1932  |       | Putative protein ymfP                                        |       |       |
| SL1934       -       Hypothetical       1,96       -1,07         SL1935       -       Mu-like prophage FluMu protein gp45       1,42       -1,05         SL1936       -       Tail Protein       1,29       -1,02         SL1937       -       Mu-like prophage FluMu DNA circulation protein       1,50       -1,07         SL1938       -       Phage Tail Tape Measure Protein       1,49       1,18         SL1939       -       Hypothetical       1,72       1,77         SL1940       -       Hypothetical       1,57       1,70         SL1941       -       Mu-like prophage FluMu tail sheath protein       1,31       1,43         SL1942       -       Hypothetical       1,70       1,07         SL1943       -       Hypothetical       1,85       -1,04         SL1944       -       Hypothetical       1,85       -1,04         SL1945       -       Hypothetical       1,77       1,07         SL1944       -       Hypothetical       2,50       1,24         SL1944       -       Hypothetical       1,77       1,07         SL1944       -       Hypothetical       1,77       1,07         SL1949                                                                                                                                                                                                                                                                                                  |         |       |                                                              | ,     |       |
| SL1935       -       Mu-like prophage FluMu protein gp45       1,42       -1,05         SL1936       -       Tail Protein       1,29       -1,02         SL1937       -       Mu-like prophage FluMu DNA circulation protein       1,50       -1,07         SL1938       -       Phage Tail Tape Measure Protein       1,49       1,18         SL1939       -       Hypothetical       1,72       1,77         SL1940       -       Hypothetical       1,57       1,70         SL1941       -       Mu-like prophage FluMu tail sheath protein       1,31       1,43         SL1942       -       Hypothetical       1,57       1,70         SL1943       -       Hypothetical       1,85       -1,04         SL1944       -       Hypothetical       1,85       -1,04         SL1945       -       Hypothetical       1,85       -1,04         SL1944       -       Hypothetical       1,77       1,07         SL1945       -       Hypothetical       1,77       1,07         SL1944       -       Hypothetical       1,77       1,07         SL1945       -       Hypothetical       1,47       1,39         SL1946                                                                                                                                                                                                                                                                                                  |         | -     |                                                              |       |       |
| SL1936       -       Tail Protein       1,29       -1,02         SL1937       -       Mu-like prophage FluMu DNA circulation protein       1,50       -1,07         SL1938       -       Phage Tail Tape Measure Protein       1,49       1,18         SL1939       -       Hypothetical       1,72       1,77         SL1940       -       Hypothetical       1,57       1,70         SL1941       -       Mu-like prophage FluMu tail sheath protein       1,31       1,43         SL1942       -       Hypothetical       1,70       1,07         SL1943       -       Hypothetical       1,70       1,07         SL1944       -       Hypothetical       1,85       -1,04         SL1944       -       Hypothetical       1,85       -1,04         SL1945       -       Hypothetical       1,77       1,07         SL1944       -       Hypothetical       1,77       1,04         SL1945       -       Hypothetical       1,77       1,07         SL1945       -       Hypothetical       1,77       1,07         SL1947       -       Phage Prohead Protease       2,30       1,45         SL1948       -                                                                                                                                                                                                                                                                                                         |         |       | 51                                                           |       |       |
| SL1937       -       Mu-like prophage FluMu DNA circulation protein       1,50       -1,07         SL1938       -       Phage Tail Tape Measure Protein       1,49       1,18         SL1939       -       Hypothetical       1,72       1,77         SL1940       -       Hypothetical       1,57       1,70         SL1941       -       Mu-like prophage FluMu tail sheath protein       1,31       1,43         SL1942       -       Hypothetical       1,70       1,07         SL1943       -       Hypothetical       1,70       1,07         SL1944       -       Hypothetical       1,85       -1,04         SL1945       -       Hypothetical       1,86       -1,04         SL1944       -       Hypothetical       1,98       -1,04         SL1945       -       Hypothetical       1,98       -1,04         SL1944       -       Hypothetical       1,77       1,07         SL1945       -       Hypothetical       1,77       1,07         SL1946       -       Hypothetical       1,47       1,39         SL1947       -       Phage Prohead Protease       2,30       1,45         SL1948       - <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                      |         |       |                                                              |       |       |
| SL1938       -       Phage Tail Tape Measure Protein       1,49       1,18         SL1939       -       Hypothetical       1,72       1,77         SL1940       -       Hypothetical       1,57       1,70         SL1941       -       Mu-like prophage FluMu tail sheath protein       1,31       1,43         SL1942       -       Hypothetical       1,70       1,07         SL1943       -       Hypothetical       1,70       1,07         SL1944       -       Hypothetical       1,85       -1,04         SL1945       -       Hypothetical       2,50       1,24         SL1946       -       Hypothetical       1,77       1,07         SL1947       -       Phage Capsid Protein       1,47       1,39         SL1948       -       Phage Prohead Protease       2,30       1,45         SL1949       ymfO       Putative uncharacterized protein ymfO       1,84       -1,14         SL1950       ymfN       Uncharacterized protein ymfN       1,73       1,02         SL1951       -       P27 Family Phage Terminase Small Subunit       1,54       1,03         SL1952       -       Hypothetical       1,96       1,25                                                                                                                                                                                                                                                                                 |         |       |                                                              |       |       |
| SL1939       -       Hypothetical       1,72       1,77         SL1940       -       Hypothetical       1,57       1,70         SL1941       -       Mu-like prophage FluMu tail sheath protein       1,31       1,43         SL1942       -       Hypothetical       1,70       1,07         SL1943       -       Hypothetical       1,85       -1,04         SL1944       -       Hypothetical       1,85       -1,04         SL1944       -       Hypothetical       1,85       -1,04         SL1944       -       Hypothetical       1,98       -1,04         SL1945       -       Hypothetical       1,77       1,07         SL1946       -       Hypothetical       1,77       1,07         SL1947       -       Phage Capsid Protein       1,47       1,39         SL1948       -       Phage Prohead Protease       2,30       1,45         SL1949       ymfO       Putative uncharacterized protein ymfO       1,84       -1,14         SL1950       ymfN       Uncharacterized protein ymfN       1,73       1,02         SL1951       -       P27 Family Phage Terminase Small Subunit       1,54       1,03         <                                                                                                                                                                                                                                                                                       |         | -     |                                                              |       |       |
| SL1940       -       Hypothetical       1,57       1,70         SL1941       -       Mu-like prophage FluMu tail sheath protein       1,31       1,43         SL1942       -       Hypothetical       1,70       1,07         SL1943       -       Hypothetical       1,85       -1,04         SL1944       -       Hypothetical       1,85       -1,04         SL1944       -       Hypothetical       1,77       1,07         SL1945       -       Hypothetical       1,77       1,07         SL1946       -       Hypothetical       1,77       1,07         SL1947       -       Phage Capsid Protein       1,47       1,39         SL1948       -       Phage Prohead Protease       2,30       1,45         SL1949       ymfO       Putative uncharacterized protein ymfO       1,84       -1,14         SL1950       ymfN       Uncharacterized protein ymfN       1,73       1,02         SL1951       -       P27 Family Phage Terminase Small Subunit       1,54       1,03         SL1952       -       Hypothetical       1,96       1,25         SL1953       -       Hypothetical       1,19       1,17 <td< td=""><td></td><td>-</td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                   |         | -     |                                                              |       |       |
| SL1941       -       Mu-like prophage FluMu tail sheath protein       1,31       1,43         SL1942       -       Hypothetical       1,70       1,07         SL1943       -       Hypothetical       1,85       -1,04         SL1944       -       Hypothetical       1,98       -1,04         SL1945       -       Hypothetical       2,50       1,24         SL1946       -       Hypothetical       1,77       1,07         SL1947       -       Phage Capsid Protein       1,47       1,39         SL1948       -       Phage Prohead Protease       2,30       1,45         SL1949       ymfO       Putative uncharacterized protein ymfO       1,84       -1,14         SL1950       ymfN       Uncharacterized protein ymfN       1,73       1,02         SL1951       -       P27 Family Phage Terminase Small Subunit       1,54       1,03         SL1952       -       Hypothetical       1,96       1,25         SL1953       -       Hypothetical       1,94       1,23         SL1954       -       Hypothetical       1,19       1,17         SL1955       rzpD       Putative Rz endopeptidase from lambdoid prophage DLP12       1,31                                                                                                                                                                                                                                                                 | SL1939  | -     | Hypothetical                                                 |       | 1,77  |
| SL1942       -       Hypothetical       1,70       1,07         SL1943       -       Hypothetical       1,85       -1,04         SL1944       -       Hypothetical       1,98       -1,04         SL1945       -       Hypothetical       2,50       1,24         SL1946       -       Hypothetical       1,77       1,07         SL1947       -       Phage Capsid Protein       1,47       1,39         SL1948       -       Phage Prohead Protease       2,30       1,45         SL1949       ymfO       Putative uncharacterized protein ymfO       1,84       -1,14         SL1950       ymfN       Uncharacterized protein ymfN       1,73       1,02         SL1951       -       P27 Family Phage Terminase Small Subunit       1,54       1,03         SL1952       -       Hypothetical       1,96       1,25         SL1953       -       Hypothetical Protein SL1953       1,94       1,23         SL1954       -       Hypothetical       1,17       1,17         SL1955       rzpD       Putative Rz endopeptidase from lambdoid prophage DLP12       1,31       1,03         SL1956       -       Uncharacterized protein HI_1415       1,76                                                                                                                                                                                                                                                             | SL1940  | -     | Hypothetical                                                 | 1,57  | 1,70  |
| SL1942       -       Hypothetical       1,70       1,07         SL1943       -       Hypothetical       1,85       -1,04         SL1944       -       Hypothetical       1,98       -1,04         SL1945       -       Hypothetical       2,50       1,24         SL1946       -       Hypothetical       1,77       1,07         SL1947       -       Phage Capsid Protein       1,47       1,39         SL1948       -       Phage Prohead Protease       2,30       1,45         SL1949       ymfO       Putative uncharacterized protein ymfO       1,84       -1,14         SL1950       ymfN       Uncharacterized protein ymfN       1,73       1,02         SL1951       -       P27 Family Phage Terminase Small Subunit       1,54       1,03         SL1952       -       Hypothetical       1,96       1,25         SL1953       -       Hypothetical Protein SL1953       1,94       1,23         SL1954       -       Hypothetical       1,17       1,17         SL1955       rzpD       Putative Rz endopeptidase from lambdoid prophage DLP12       1,31       1,03         SL1956       -       Uncharacterized protein HI_1415       1,76                                                                                                                                                                                                                                                             | SL1941  | -     | Mu-like prophage FluMu tail sheath protein                   | 1,31  | 1,43  |
| SL1943       -       Hypothetical       1,85       -1,04         SL1944       -       Hypothetical       1,98       -1,04         SL1945       -       Hypothetical       2,50       1,24         SL1946       -       Hypothetical       1,77       1,07         SL1947       -       Phage Capsid Protein       1,47       1,39         SL1948       -       Phage Prohead Protease       2,30       1,45         SL1949       ymfO       Putative uncharacterized protein ymfO       1,84       -1,14         SL1950       ymfN       Uncharacterized protein ymfN       1,73       1,02         SL1951       -       P27 Family Phage Terminase Small Subunit       1,54       1,03         SL1952       -       Hypothetical       1,96       1,25         SL1953       -       Hypothetical Protein SL1953       1,94       1,23         SL1954       -       Hypothetical       1,17       1,17         SL1955       rzpD       Putative Rz endopeptidase from lambdoid prophage DLP12       1,31       1,03         SL1956       -       Uncharacterized protein HI_1415       1,76       1,24                                                                                                                                                                                                                                                                                                                  | SL1942  | -     | Hypothetical                                                 |       |       |
| SL1944       -       Hypothetical       1,98       -1,04         SL1945       -       Hypothetical       2,50       1,24         SL1946       -       Hypothetical       1,77       1,07         SL1947       -       Phage Capsid Protein       1,47       1,39         SL1948       -       Phage Prohead Protease       2,30       1,45         SL1949       ymfO       Putative uncharacterized protein ymfO       1,84       -1,14         SL1950       ymfN       Uncharacterized protein ymfN       1,73       1,02         SL1951       -       P27 Family Phage Terminase Small Subunit       1,54       1,03         SL1952       -       Hypothetical       1,96       1,25         SL1953       -       Hypothetical Protein SL1953       1,94       1,23         SL1954       -       Hypothetical       1,19       1,17         SL1955       rzpD       Putative Rz endopeptidase from lambdoid prophage DLP12       1,31       1,03         SL1956       -       Uncharacterized protein HI_1415       1,76       1,24                                                                                                                                                                                                                                                                                                                                                                                   |         | _     | ••                                                           |       |       |
| SL1945       -       Hypothetical       2,50       1,24         SL1946       -       Hypothetical       1,77       1,07         SL1947       -       Phage Capsid Protein       1,47       1,39         SL1948       -       Phage Prohead Protease       2,30       1,45         SL1949       ymfO       Putative uncharacterized protein ymfO       1,84       -1,14         SL1950       ymfN       Uncharacterized protein ymfN       1,73       1,02         SL1951       -       P27 Family Phage Terminase Small Subunit       1,54       1,03         SL1952       -       Hypothetical       1,96       1,25         SL1953       -       Hypothetical Protein SL1953       1,94       1,23         SL1954       -       Hypothetical       1,17       1,17         SL1955       rzpD       Putative Rz endopeptidase from lambdoid prophage DLP12       1,31       1,03         SL1956       -       Uncharacterized protein HI_1415       1,76       1,24                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |       |                                                              |       |       |
| SL1946       -       Hypothetical       1,77       1,07         SL1947       -       Phage Capsid Protein       1,47       1,39         SL1948       -       Phage Prohead Protease       2,30       1,45         SL1949       ymfO       Putative uncharacterized protein ymfO       1,84       -1,14         SL1950       ymfN       Uncharacterized protein ymfN       1,73       1,02         SL1951       -       P27 Family Phage Terminase Small Subunit       1,54       1,03         SL1952       -       Hypothetical       1,96       1,25         SL1953       -       Hypothetical Protein SL1953       1,94       1,23         SL1954       -       Hypothetical       1,17       1,17         SL1955       rzpD       Putative Rz endopeptidase from lambdoid prophage DLP12       1,31       1,03         SL1956       -       Uncharacterized protein HI_1415       1,76       1,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |       |                                                              |       |       |
| SL1947       -       Phage Capsid Protein       1,47       1,39         SL1948       -       Phage Prohead Protease       2,30       1,45         SL1949       ymfO       Putative uncharacterized protein ymfO       1,84       -1,14         SL1950       ymfN       Uncharacterized protein ymfN       1,73       1,02         SL1951       -       P27 Family Phage Terminase Small Subunit       1,54       1,03         SL1952       -       Hypothetical       1,96       1,25         SL1953       -       Hypothetical Protein SL1953       1,94       1,23         SL1954       -       Hypothetical       1,17       1,17         SL1955       rzpD       Putative Rz endopeptidase from lambdoid prophage DLP12       1,31       1,03         SL1956       -       Uncharacterized protein HI_1415       1,76       1,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |       |                                                              |       |       |
| SL1948-Phage Prohead Protease2,301,45SL1949ymfOPutative uncharacterized protein ymfO1,84-1,14SL1950ymfNUncharacterized protein ymfN1,731,02SL1951-P27 Family Phage Terminase Small Subunit1,541,03SL1952-Hypothetical1,961,25SL1953-Hypothetical Protein SL19531,941,23SL1954-Hypothetical1,191,17SL1955rzpDPutative Rz endopeptidase from lambdoid prophage DLP121,311,03SL1956-Uncharacterized protein HI_14151,761,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       |                                                              |       |       |
| SL1949ymfOPutative uncharacterized protein ymfO1,84-1,14SL1950ymfNUncharacterized protein ymfN1,731,02SL1951-P27 Family Phage Terminase Small Subunit1,541,03SL1952-Hypothetical1,961,25SL1953-Hypothetical Protein SL19531,941,23SL1954-Hypothetical1,191,17SL1955rzpDPutative Rz endopeptidase from lambdoid prophage DLP121,311,03SL1956-Uncharacterized protein HI_14151,761,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |       |                                                              |       |       |
| SL1950         ymfN         Uncharacterized protein ymfN         1,73         1,02           SL1951         -         P27 Family Phage Terminase Small Subunit         1,54         1,03           SL1952         -         Hypothetical         1,96         1,25           SL1953         -         Hypothetical Protein SL1953         1,94         1,23           SL1954         -         Hypothetical         1,19         1,17           SL1955         rzpD         Putative Rz endopeptidase from lambdoid prophage DLP12         1,31         1,03           SL1956         -         Uncharacterized protein HI_1415         1,76         1,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |       | •                                                            |       |       |
| SL1951         -         P27 Family Phage Terminase Small Subunit         1,54         1,03           SL1952         -         Hypothetical         1,96         1,25           SL1953         -         Hypothetical Protein SL1953         1,94         1,23           SL1954         -         Hypothetical         1,19         1,17           SL1955         rzpD         Putative Rz endopeptidase from lambdoid prophage DLP12         1,31         1,03           SL1956         -         Uncharacterized protein HI_1415         1,76         1,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SL1949  |       |                                                              |       |       |
| SL1951         -         P27 Family Phage Terminase Small Subunit         1,54         1,03           SL1952         -         Hypothetical         1,96         1,25           SL1953         -         Hypothetical Protein SL1953         1,94         1,23           SL1954         -         Hypothetical         1,19         1,17           SL1955         rzpD         Putative Rz endopeptidase from lambdoid prophage DLP12         1,31         1,03           SL1956         -         Uncharacterized protein HI_1415         1,76         1,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SL1950  | ymfN  | Uncharacterized protein ymfN                                 | 1,73  | 1,02  |
| SL1952         -         Hypothetical         1,96         1,25           SL1953         -         Hypothetical Protein SL1953         1,94         1,23           SL1954         -         Hypothetical         1,19         1,17           SL1955         rzpD         Putative Rz endopeptidase from lambdoid prophage DLP12         1,31         1,03           SL1956         -         Uncharacterized protein HI_1415         1,76         1,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | •     |                                                              |       |       |
| SL1953         -         Hypothetical Protein SL1953         1,94         1,23           SL1954         -         Hypothetical         1,19         1,17           SL1955         rzpD         Putative Rz endopeptidase from lambdoid prophage DLP12         1,31         1,03           SL1956         -         Uncharacterized protein HI_1415         1,76         1,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | -     |                                                              |       |       |
| SL1954-Hypothetical1,191,17SL1955rzpDPutative Rz endopeptidase from lambdoid prophage DLP121,311,03SL1956-Uncharacterized protein HI_14151,761,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |       | ••                                                           |       |       |
| SL1955rzpDPutative Rz endopeptidase from lambdoid prophage DLP121,311,03SL1956-Uncharacterized protein HI_14151,761,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |       |                                                              |       |       |
| SL1956 - Uncharacterized protein HI_1415 1,76 1,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |       | ••                                                           |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | •     |                                                              |       |       |
| SLIPS $r$ - Phage Holin Lambda Family $1,58$ $1,15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |       |                                                              |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SL195/  | -     | Fnaye Holin Lambua Family                                    | ŏC, I | 1,15  |

| SL1958  | _    | Hypothetical Protein SL1958                                | 1,45  | 1,02  |
|---------|------|------------------------------------------------------------|-------|-------|
| SL1959  | -    | Hypothetical                                               | 1,18  | 1,49  |
| SL1960  |      | Uncharacterized protein ydfU                               |       |       |
|         | ydfU |                                                            | -1,02 | 1,40  |
| SL1961  | -    | Hypothetical                                               | -1,17 | 1,85  |
| SL1962  | yfdM | Putative uncharacterized protein yfdM                      | -1,18 | 1,69  |
| SL1963  | yfdN | Uncharacterized protein yfdN                               | -1,04 | 1,62  |
| SL1964  | yfdO | Hypothetical                                               | 1,19  | 1,60  |
| SL1965  | -    | Hypothetical                                               | -1,18 | 1,48  |
| SL1966  | ymfL | Uncharacterized protein ymfL                               | -1,21 | 1,82  |
| SL1967  | -    | Phage Repressor                                            | 1,33  | 1,07  |
| SL1968  | yfdP | Uncharacterized protein yfdP                               | -1,59 | 1,90  |
|         |      |                                                            |       |       |
| SL1969  | yfdQ | Uncharacterized protein yfdQ                               | -1,18 | 1,90  |
| SL1970  | yfdR | Uncharacterized protein yfdR                               | -1,61 | 2,68  |
| SL1971  | -    | Hypothetical                                               | -1,52 | 2,10  |
| SL1972  | -    | Hypothetical                                               | -1,68 | 2,08  |
| SL1973  | -    | Hypothetical                                               | -1,53 | 2,55  |
| SL1974  | -    | Endodeoxyribonuclease                                      | -1,14 | 1,89  |
| SL1975  | _    | Phage Protein                                              | -1,01 | 1,73  |
|         |      |                                                            |       |       |
| SL1976  | intE | Phage Integrase Family Protein                             | -1,34 | 1,22  |
| SL2546  | gogB | Hypothetical                                               | -1,22 | -2,04 |
| SL2547  | -    | Gifsy-1 Prophage Protein                                   | -4,37 | -1,70 |
| SL2548  | -    | Hypothetical Protein SL2548                                | -1,90 | -2,00 |
| SL2549  | -    | PagK-Like Protein                                          | -5,61 | -4,06 |
| 01.0550 |      | Tail fiber assembly protein homolog from lambdoid prophage |       |       |
| SL2550  | ycdD | Fels-1                                                     | -3,34 | -1,49 |
| SL2551  | -    | Appr-1-P Processing Domain-Containing Protein              | -4,04 | -1,52 |
| SL2552  | stfQ | Side tail fiber protein homolog from lambdoid prophage Qin | -2,87 | -1,38 |
| SL2553  | -    | Hocificity Protein J                                       | -3,07 | -1,84 |
|         |      |                                                            |       |       |
| SL2554  | -    | Phage Tail Assembly Protein                                | -1,43 | -1,78 |
| SL2555  | -    | NLP/P60 Protein                                            | -1,73 | -1,38 |
| SL2556  | -    | Phage Minor Tail Protein L                                 | -1,82 | -1,11 |
| SL2557  | -    | Minor Tail Protein                                         | -1,36 | -1,15 |
| SL2558  | -    | Hypothetical                                               | -1,48 | -1,17 |
| SL2559  | -    | Minor Tail Protein                                         | -2,52 | -1,70 |
| SL2560  | _    | Minor Tail Component Of Putative Prophage                  | -2,60 | -1,50 |
| SL2561  |      | Tail Protein V                                             |       |       |
|         | -    |                                                            | -2,48 | -1,27 |
| SL2562  |      | Minor Tail Protein U                                       | -2,14 | -1,37 |
| SL2563  | gipA | Putative transposase in snaA-snaB intergenic region        | -1,26 | -1,31 |
| SL2564  | -    | Phage Tail Component                                       | -2,57 | -1,14 |
| SL2565  | -    | Tail Attachment Protein                                    | -2,99 | -1,20 |
| SL2566  | -    | DNA Packaging-Like Protein                                 | -3,19 | -1,25 |
| SL2567  | _    | P21 prophage-derived major head protein                    | -4,38 | -1,34 |
| SL2568  | _    | Head Decoration Protein                                    | -4,37 | -1,25 |
|         | -    |                                                            |       |       |
| SL2569  | sppA | Putative signal peptide peptidase sppA                     | -4,78 | -1,10 |
| SL2570  | -    | Lambda Family Phage Portal Protein                         | -3,24 | 1,01  |
| SL2571  | -    | Lambda prophage-derived head-to-tail joining protein W     | -1,69 | 1,45  |
| SL2572  | tfaD | Putative tail fiber assembly protein homolog from lambdoid | -2,31 | 1,39  |
| OLLOIL  | uab  | prophage DLP12                                             | 2,01  | 1,00  |
| SL2573  | nohA | P21 prophage-derived terminase small subunit               | -2,91 | -1,00 |
| SL2574  | ycgK | Uncharacterized protein ycgK                               | -1,71 | 1,92  |
| SL2575  | rzpD | Putative Rz endopeptidase from lambdoid prophage DLP12     | -2,54 | -1,01 |
| SL2576  | arrD | Probable lysozyme from lambdoid prophage DLP12             | -1,64 | 1,01  |
| SL2576  | arrD | Probable lysozyme from lambdoid prophage DLP12             | -1,64 | 1,01  |
| SL2577  |      |                                                            | -2,34 |       |
|         | -    | Hypothetical                                               |       | -1,13 |
| SL2578  | -    | Hypothetical                                               | -1,42 | 1,52  |
| SL2579  | -    | Phage Antitermination Protein Q                            | -1,89 | 1,09  |
| SL2580  | ylcG | Hypothetical                                               | -2,26 | 1,14  |
| SL2581  | -    | Hypothetical                                               | -1,64 | 1,33  |
| SL2582  | -    | Hypothetical                                               | -2,19 | -1,13 |
| SL2583  | -    | Hypothetical                                               | -1,25 | 1,73  |
| SL2585  | _    | Hypothetical Protein SL2585                                | -1,57 | -1,04 |
|         |      |                                                            |       |       |
| SL2586  | -    | Hypothetical                                               | -1,88 | -1,06 |
| SL2587  | -    | Hypothetical                                               | -1,17 | 1,27  |
| SL2588  | -    | Methyltransferase                                          | -2,11 | 1,51  |
| SL2589  | -    | Hypothetical                                               | -1,86 | 1,52  |
| SL2590  | gpP  | Hypothetical                                               | -2,36 | 1,44  |
| SL2591  | gpO  | Uncharacterized protein                                    | -2,15 | 1,36  |
| SL2592  | - 96 | Gifsy-1 Prophage CI Protein                                | -2,61 | -1,05 |
|         |      | · · · · · · · · · · · · · · · · · · ·                      | _,• • | .,    |
|         |      |                                                            |       |       |

| SL2593           | -             | Hypothetical                                                  | 1,12   | -1,13 |
|------------------|---------------|---------------------------------------------------------------|--------|-------|
| SL2594           | -             | ATPase Domain-Containing Protein                              | -1,30  | -1,60 |
| SL2595           | -             | Hypothetical                                                  | -1,97  | -3,18 |
| SL2596           | -             | Hypothetical                                                  | -2,66  | -1,08 |
| SL2597           | recE          | Exodeoxyribonuclease 8                                        | -4,45  | -1,49 |
| SL2598           | -             | Hypothetical                                                  | -2,90  | 1,32  |
| SL2599           | _             | Excisionase-Like Protein                                      | -2,86  | 1,05  |
| SL2600           | intB          | Putative prophage P4 integrase                                | 1,43   | -1,03 |
| SL2000<br>SL2665 |               | Prophage P2 OGR protein                                       | -1,26  | -2,05 |
| SL2005<br>SL2666 | ogrK<br>b2083 | Late Control D Family Protein                                 | 1,08   | -2,03 |
| SL2000<br>SL2667 |               |                                                               |        |       |
| SL2668           | gpU           | P2 GpU Family Protein                                         | 1,31   | 1,37  |
|                  | -<br>         | Hypothetical                                                  | 1,16   | -1,04 |
| SL2669           | gpE'          | Hypothetical                                                  | 1,45   | 1,01  |
| SL2670           | gpE           | Phage Tail Protein                                            | 1,77   | 1,21  |
| SL2671           | -             | Phage Tail Tube Protein                                       | 1,27   | 1,12  |
| SL2672           |               | Phage Tail Sheath Protein                                     | 1,43   | 1,02  |
| SL2673           | pinE          | DNA-invertase from lambdoid prophage e14                      | -3,97  | -3,29 |
| SL2674           | sopE          | Guanine nucleotide exchange factor sopE                       | -47,15 | -4,85 |
| SL2675           | ycdD          | Tail fiber assembly protein homolog from lambdoid prophage    | -2,94  | -1,27 |
|                  | -             | Fels-1                                                        |        |       |
| SL2676           | -             | Hypothetical                                                  | -1,17  | 1,15  |
| SL2677           | gpl           | Phage Tail Protein I                                          | 1,30   | 1,11  |
| SL2678           | gpJ           | Baseplate J Family Protein                                    | 1,58   | 1,30  |
| SL2679           | gpW           | GPW/Gp25 Family Protein                                       | 1,51   | 1,16  |
| SL2680           | -             | Phage Baseplate Assembly Protein V                            | 1,16   | 1,09  |
| SL2681           | -             | Phage Virion Morphogenesis Protein                            | 1,51   | 1,17  |
| SL2682           | -             | P2 Phage Tail Completion R Family Protein                     | 2,01   | 1,79  |
| SL2683           | -             | Fels-2 Prophage Protein                                       | 1,92   | 1,93  |
| SL2684           | -             | Hypothetical                                                  | 1,28   | 1,71  |
| SL2685           | -             | Hypothetical                                                  | 1,32   | 2,39  |
| SL2686           | nucD2         | Probable lysozyme from lambdoid prophage DLP12                | 1,35   | 1,38  |
| SL2687           | nucE2         | Secretion Protein                                             | 1,25   | -1,01 |
| SL2688           | -             | Tail X Family Protein                                         | -1,08  | -1,07 |
| SL2689           | -             | Head Completion Protein                                       | 1,16   | 1,22  |
| SL2690           | -             | Phage Small Terminase Subunit                                 | 1,62   | 1,15  |
| SL2691           | _             | P2 Family Phage Capsid Protein                                | 1,56   | 1,36  |
| SL2692           | _             | Phage Capsid Scaffolding Protein                              | 1,46   | 1,31  |
| SL2693           | _             | Hypothetical                                                  | 1,10   | 1,23  |
| SL2694           | _             | Putative uncharacterized protein ORF5 in retron EC67          | -1,21  | -1,32 |
| SL2695           | smf           | Protein smf                                                   | -1,30  | 1,17  |
| SL2696           | -             | Hypothetical                                                  | 1,01   | 1,92  |
| SL2697           | -             | Hypothetical                                                  | 1,40   | -1,51 |
| SL2698           | -             | Hypothetical                                                  | 2,03   | 1,71  |
|                  | -             | Dinl-like protein in retron EC67                              |        |       |
| SL2699           | -             | •                                                             | 2,09   | 1,87  |
| SL2700           | -             | Hypothetical                                                  | 2,00   | 1,80  |
| SL2701           | -             | Probable replication endonuclease from prophage-like region   | 1,16   | 1,21  |
| SL2702           | dam           | Retron EC67 DNA adenine methylase                             | -1,69  | -1,05 |
| SL2703           | ybil          | Hypothetical (similar a P2p38)                                | -1,35  | 1,39  |
| SL2704           | -             | Putative uncharacterized protein ORFC-like in prophage region | -1,30  | 1,29  |
| SL2705           | -             | Hypothetical                                                  | 1,10   | 1,38  |
| SL2706           | CII           | Putative uncharacterized protein ORFB in retron EC67          | -1,09  | -1,32 |
| SL2707           | apl           | Phage Regulatory Protein                                      | -1,12  | 1,02  |
| SL2708           | CI            | Putative uncharacterized protein ORFI in retron EC67          | 1,51   | 1,32  |
| SL2709           | xerD          | Tyrosine recombinase xerD                                     | 1,40   | 1,42  |
| SL2712           | intA          | Prophage CP4-57 integrase                                     | 2,32   | 1,36  |
| SL2713           | -             | Hypothetical                                                  | 1,02   | 1,25  |
| SL2714           | -             | Hypothetical Protein SL2714                                   | 1,26   | 1,71  |
| SL2715           | -             | Hypothetical Protein SL2715                                   | 1,49   | 2,11  |
| SL2716           | -             | Phage Polarity Suppression Protein                            | 1,10   | -1,10 |
| SL2717           | ogrK          | Prophage P2 OGR protein                                       | -1,08  | -1,16 |
| SL2718           | -             | Hypothetical                                                  | 1,39   | 1,05  |
| SL2719           | -             | Hypothetical                                                  | 1,38   | 3,48  |
| SL2720           | -             | Hypothetical                                                  | 1,27   | 3,25  |
| SL2721           | -             | P4 prophage-derived uncharacterized protein t2655             | -1,03  | 2,62  |
| SL2722           | traC          | DNA primase traC                                              | 1,01   | 2,56  |
| SL2723           | intA          | Prophage CP4-57 integrase                                     | 1,13   | 5,32  |
| SL2724           | intA          | Integrase                                                     | -1,01  | 2,89  |
|                  |               | -                                                             | ,      | ,     |

| SL4130 | yocS | Uncharacterized sodium-dependent transporter yocS            | -2,00   | -2,23  |
|--------|------|--------------------------------------------------------------|---------|--------|
| SL4131 | -    | Hypothetical                                                 | 1,60    | -1,33  |
| SL4132 | -    | Inner Membrane Protein                                       | 1,45    | 1,15   |
| SL4133 | -    | Hypothetical                                                 | -1,40   | 1,23   |
| SL4134 | -    | Cytoplasmic Protein                                          | -1,28   | 1,66   |
| SL4135 | stfR | Tail Fiber Protein                                           | -1,23   | 1,29   |
| SL4136 | _    | Phage Tail Protein                                           | -1,04   | -1,14  |
| SL4137 | -    | Baseplate J Family Protein                                   | 1,10    | -1,20  |
| SL4138 | -    | Phage Baseplate Protein                                      | 1,08    | 1,02   |
| SL4139 | -    | Hypothetical                                                 | 1,68    | -1,78  |
| SL4140 | gtrB | Sfll prophage-derived bactoprenol glucosyl transferase       | 1,34    | -2,02  |
| SL4141 | -    | Bactoprenol-linked glucose translocase homolog from prophage | 1 1 1   | -1,07  |
|        | gtrA | CPS-53                                                       | 1,14    |        |
| SL4142 | -    | Phage Baseplate Assembly Protein V                           | 1,26    | 2,41   |
| SL4143 | -    | Late Control D Family Protein                                | 1,68    | 1,50   |
| SL4144 | -    | Bacteriophage Tail Fibre Protein                             | 1,55    | 1,38   |
| SL4145 | -    | Hypothetical                                                 | 1,27    | 1,35   |
| SL4146 | -    | Phage Tail Protein                                           | 1,75    | 1,66   |
| SL4147 | -    | Hypothetical                                                 | -1,09   | 1,81   |
| SL4148 | -    | Phage Tail Tube Protein                                      | -1,11   | 1,36   |
| SL4149 | -    | Phage Tail Sheath Protein                                    | -1,28   | 1,66   |
| SL4150 | -    | Cytoplasmic Protein                                          | -1,42   | 1,62   |
| SL4151 | -    | Hypothetical                                                 | 1,13    | 1,08   |
| SL4152 | -    | Hypothetical                                                 | -1,31   | -1,39  |
| SL4153 | -    | Lytic Transglycosylase Catalytic                             | -1,27   | -1,08  |
| SL4154 | -    | Phage-Related Membrane Protein                               | -1,06   | 1,33   |
| SL4155 | rdgB | DNA-binding protein rdgB                                     | -1,94   | -1,09  |
| SL4156 | lysC | Lysine-sensitive aspartokinase 3                             | -1,28   | -1,04  |
|        |      | cob/pdu operon                                               |         |        |
| SL1992 | cobT | Nicotinate-nucleotidedimethylbenzimidazole                   | -2,04   | -2,32  |
|        |      | phosphoribosyltransferase                                    |         |        |
| SL1993 | cobS | Cobalamin synthase                                           | -1,40   | -2,58  |
| SL1994 | cobU | Bifunctional adenosylcobalamin biosynthesis protein cobU     | -1,39   | -2,83  |
| SL1995 | cbiP | Cobyric acid synthase                                        | -1,40   | -2,17  |
| SL1996 | cbiO | Cobalt import ATP-binding protein CbiO                       | -1,31   | -2,14  |
| SL1997 | cbiQ | Cobalt transport protein cbiQ                                | -1,46   | -2,17  |
| SL1998 | cbiN | Cobalt transport protein cbiN                                | -1,47   | -2,00  |
| SL1999 | cbiM | Protein cbiM                                                 | -1,51   | -1,98  |
| SL2000 | cbiL | Cobalt-precorrin-2 C(20)-methyltransferase                   | -1,30   | -2,33  |
| SL2001 | cbiK | Sirohydrochlorin cobaltochelatase                            | -1,27   | -2,04  |
| SL2002 | cbiJ | Cobalt-precorrin-6A reductase                                | -1,23   | -1,88  |
| SL2003 | cbiH | Cobalt-precorrin-3B C(17)-methyltransferase                  | -1,18   | -1,86  |
| SL2004 | cbiG | Protein cbiG                                                 | -1,42   | -1,63  |
| SL2005 | cbiF | Cobalt-precorrin-4 C(11)-methyltransferase                   | -1,39   | -1,61  |
| SL2006 | cbiT | Probable cobalt-precorrin-6Y C(15)-methyltransferase         | -1,15   | -1,98  |
|        |      | [decarboxylating]                                            |         |        |
| SL2007 | cbiE | Probable cobalt-precorrin-6Y C(5)-methyltransferase          | -1,16   | -1,97  |
| SL2008 | cbiD | Putative cobalt-precorrin-6A synthase [deacetylating]        | -1,31   | -1,55  |
| SL2009 | cbiC | Cobalt-precorrin-8X methylmutase                             | -1,47   | -1,14  |
| SL2010 | cbiB | Cobalamin biosynthesis protein cbiB                          | -1,37   | -1,69  |
| SL2011 | cbiA | Cobyrinic acid A,C-diamide synthase                          | -1,08   | 1,18   |
| SL2012 | pocR | Regulatory protein pocR                                      | -2,48   | 2,87   |
| SL2013 | pduF | Propanediol diffusion facilitator                            | -5,80   | -1,60  |
| SL2014 | pduA | Propanediol utilization protein pduA                         | -46,70  | -1,26  |
| SL2015 | pduB | Propanediol utilization protein pduB                         | -63,82  | -1,93  |
| SL2017 | pduD | Propanediol dehydratase medium subunit                       | -61,45  | -4,45  |
| SL2018 | pduE | Propanediol dehydratase small subunit                        | -100,77 | -6,69  |
| SL2019 | pduG | propanediol utilization protein                              | -66,07  | -8,05  |
| SL2020 | pduH | propanediol utilization protein                              | -66,77  | -12,58 |
| SL2021 | pduJ | propanediol utilization protein                              | -27,09  | -11,89 |
| SL2022 | pduK | propanediol utilization protein                              | -28,47  | -12,06 |
| SL2023 | pduL | propanediol utilization protein                              | -25,01  | -14,23 |
| SL2024 | pduM | propanediol utilization protein                              | -21,47  | -13,88 |
| SL2025 | pduN | propanediol utilization protein                              | -18,79  | -11,06 |
| SL2026 | pduO | propanediol utilization protein                              | -20,45  | -10,59 |
| SL2027 | pduP | putative CoA-dependent proprionaldehyde dehydrogenase        | -13,64  | -4,51  |
| SL2028 | pduQ | putative propanol dehydrogenase                              | -14,08  | -4,82  |
|        |      |                                                              |         |        |

| SL2029                 | pduS         | propanediol utilization ferredoxin                             | -6,39          | -2,90          |
|------------------------|--------------|----------------------------------------------------------------|----------------|----------------|
| SL2030                 | pduT         | putative propanediol utilization protein                       | -5,08          | -2,19          |
| SL2031                 | pduU         | putative propanediol utilization protein PduU                  | -6,92          | -2,04          |
| SL2032                 | pduV         | putative propanediol utilization protein PduV                  | -4,77          | -2,07          |
| SL2033                 | pduW         | Acetokinase                                                    | -4,63          | -1,80          |
| SL2034                 | pduX         | putative propanediol utilization protein                       | 1,24           | 1,39           |
|                        |              | Plasmids                                                       |                |                |
| SLP1_0001              | finO         | Fertility inhibition protein                                   | 1,13           | -1,13          |
| SLP1_0002              | traX         | Protein traX                                                   | 1,52           | -1,28          |
| SLP1_0003              | tral         | Protein tral                                                   | 1,33           | -1,13          |
| SLP1_0004              | trbH         | Protein trbH                                                   | 1,21           | -1,88          |
| SLP1_0005              | -            | Uncharacterized protein CP0246                                 | 1,41           | 1,21           |
| SLP1_0006              | -<br>tra D   | Uncharacterized protein HI_0947                                | -1,05          | -1,00          |
| SLP1_0007              | traD<br>traT | Protein traD<br>TraT complement resistance protein             | -2,15<br>-1,61 | -2,34<br>-1,18 |
| SLP1_0008<br>SLP1_0009 | uai<br>-     | Surface Exclusion Inner Membrane Protein TraS                  | -1,56          | 1,25           |
| SLP1_0010              | traG         | Protein traG                                                   | -1,25          | 1,20           |
| SLP1_0011              | traH         | Protein traH                                                   | 1,03           | -1,21          |
|                        | trbB         | Protein trbB                                                   | -1,31          | -1,14          |
| SLP1_0013              | traQ         | Protein traQ                                                   | -1,04          | -1,08          |
| SLP1_0014              | traF         | Protein traF                                                   | 1,05           | 1,17           |
| SLP1_0015              | trbE         | Conjugative Transfer Protein                                   | 1,07           | 1,20           |
| SLP1_0016              | traN         | Protein traN                                                   | 1,21           | 1,06           |
| SLP1_0017              | trbC         | Periplasmic protein trbC                                       | 1,21           | -1,10          |
| SLP1_0018              | -            | Conjugative Transfer Protein                                   | 1,19           | -1,01          |
| SLP1_0019              | traU         | Protein traU                                                   | 1,31           | 1,40           |
| SLP1_0020              | traW         | Protein traW                                                   | 1,24<br>1,29   | 1,33           |
| SLP1_0021<br>SLP1_0022 | trbl<br>traC | Protein trbl<br>Protein traC                                   | 1,29           | 1,58<br>1,08   |
| SLP1_0022<br>SLP1_0023 | -            | Conjugative Transfer                                           | 1,15           | -1,03          |
| SLP1_0024              | traR         | Protein TraR                                                   | -1,14          | -1,09          |
|                        | traV         | Protein TraV                                                   | -1,75          | 1,02           |
| SLP1_0026              | trbD         | Conjugal Transfer Protein TrbD                                 | -1,23          | 1,26           |
| SLP1_0027              | traP         | Protein traP                                                   | -1,19          | -1,16          |
| SLP1_0028              | traB         | Protein traB                                                   | -1,04          | -1,18          |
| SLP1_0029              | traK         | TraK lipoprotein                                               | -1,30          | -1,42          |
| SLP1_0030              | traE         | Protein traE                                                   | -1,28          | -3,15          |
| SLP1_0031<br>SLP1_0032 | traL<br>traA | Protein traL<br>Pilin                                          | -1,29<br>-1,65 | -3,38<br>-1,93 |
| SLP1_0032<br>SLP1_0033 | traY         | Protein traY                                                   | -1,60          | -2,05          |
| SLP1_0034              | traJ         | Protein traJ                                                   | 1,05           | 1,03           |
| SLP1_0035              | traM         | Protein traM                                                   | -1,61          | 1,71           |
| SLP1_0036              | Х            | X polypeptide                                                  | -2,36          | 1,90           |
| SLP1_0037              | psiA         | Protein psiA                                                   | 1,72           | 1,74           |
| SLP1_0038              | psiB         | Protein psiB                                                   | 1,64           | 2,29           |
| SLP1_0039              | yubM         | Uncharacterized protein yubM                                   | 1,29           | 1,68           |
| SLP1_0040              | yubL         | UPF0401 protein yubL                                           | -1,11          | -1,26          |
| SLP1_0041              | ssb2         | Single-stranded DNA-binding protein 2                          | 1,22           | 1,02           |
| SLP1_0042<br>SLP1_0043 | holE<br>-    | DNA polymerase III subunit theta<br>Hypothetical               | -1,03<br>-1,26 | 1,33<br>1,46   |
| SLP1_0043              | yubl         | Putative antirestriction protein Yubl                          | -1,18          | 1,14           |
| SLP1_0045              | -            | Uncharacterized protein yubG                                   | -1,22          | 1,70           |
| SLP1 0047              | -            | Hypothetical                                                   | 1,00           | 2,33           |
|                        | yubE         | Uncharacterized protein YubE                                   | 1,28           | 2,02           |
| SLP1_0049              | yubD         | Putative methylase yubD                                        | 1,06           | 1,58           |
| SLP1_0050              | -            | Cytoplasmic Protein                                            | 1,14           | 1,45           |
| SLP1_0051              | -            | Hypothetical                                                   | 1,14           | 1,00           |
| SLP1_0052              | samA         | Protein samA                                                   | 1,28           | 2,03           |
| SLP1_0053              | samB         | Protein samB                                                   | 1,12           | 2,04           |
| SLP1_0054              | parB         | Plasmid Partition par B protein                                | 1,19           | 3,01           |
| SLP1_0055<br>SLP1_0056 | parA<br>yfcl | Plasmid partition protein A<br>Uncharacterized protein pSLT051 | 1,73<br>1,18   | 3,75<br>-1,02  |
| SLP1_0050<br>SLP1_0057 | -<br>-       | Cytoplasmic Protein                                            | 1,10           | 1,45           |
| SLP1_0058              | -            | Uncharacterized protein pSLT049                                | 1,20           | 1,43           |
| SLP1_0059              | -            | Myosin Heavy Chain Gizzard Smooth                              | 1,54           | 1,21           |
|                        | -            | Hypothetical                                                   | 1,20           | 1,68           |
| SLP1_0061              | yadF         | Carbonic anhydrase                                             | -1,06          | -1,87          |
|                        |              |                                                                |                |                |

| SLP1_0062              | pinE         | Integrase-like protein y4IS                                     | 1,12         | -1,22        |
|------------------------|--------------|-----------------------------------------------------------------|--------------|--------------|
| SLP1_0063              | -            | Transposase                                                     | 1,63         | 1,02         |
| SLP1_0064              | -            | AAA ATPase                                                      | 1,02         | 1,23         |
| SLP1_0065              | -            | Insertion element IS630 uncharacterized 39 kDa protein          | -1,23        | -2,13        |
| SLP1_0066              | vsdA         | Virulence genes transcriptional activator                       | -1,29        | 2,00         |
| SLP1_0067              | spvA         | 28.1 kDa virulence protein                                      | -17,29       | 1,16         |
| SLP1_0068              | vsdC         | 65 kDa virulence protein                                        | -20,52       | 1,35         |
| SLP1_0069              | spvC         | 27.5 kDa virulence protein                                      | -31,40       | -1,61        |
| SLP1_0070              | vsdE         | Virulence protein vsdE                                          | -11,61       | -2,05        |
| SLP1_0071              | -            | Transposase                                                     | 1,16         | -2,23        |
| SLP1_0072              | vsdF         | Virulence protein vsdF                                          | 1,12         | 1,01         |
| SLP1_0073              | yeeJ         | Uncharacterized protein yeeJ                                    | 1,29         | -1,58        |
| SLP1_0074              | -            | Hypothetical                                                    | 1,07         | -1,27        |
| SLP1_0075              | yahA         | Cyclic di-GMP phosphodiesterase yahA                            | 1,35         | 1,40         |
| SLP1_0076              | resD         | Resolvase                                                       | 1,31         | 1,69         |
| SLP1_0077              | -            | Cytoplasmic Protein                                             | 1,44         | 1,97         |
| SLP1_0078              | -            | Hypothetical                                                    | 1,20         | 1,82         |
| SLP1_0079              | ccdB         | Cytotoxic protein CcdB                                          | 1,31         | 2,24         |
| SLP1_0080              | ccdA         | Protein CcdA                                                    | 1,64         | 2,99         |
| SLP1_0081              | -            | Hypothetical                                                    | -1,29        | -1,31        |
| SLP1_0082              | -            | Cytoplasmic Protein                                             | -1,99        | -2,19        |
| SLP1_0083              | -            | Replication Protein                                             | -1,17        | -1,30        |
| SLP1_0084              | repA         | RepFIB replication protein A                                    | -1,17        | -1,38        |
| SLP1_0085              | ygiW         | Protein ygiW                                                    | -1,46        | 1,31         |
| SLP1_0086              | papB         | Major pilu subunit operon regulatory protein papB               | -1,57        | -1,14        |
| SLP1_0087              | fedA         | F107 fimbrial protein                                           | 1,08         | 2,07         |
| SLP1_0088              | pefC         | Outer membrane usher protein pefC                               | 1,30         | 1,68         |
| SLP1_0089              | fanE         | Chaperone protein fanE                                          | 1,24         | 1,90         |
| SLP1_0090              | -            | Outer Membrane Protein                                          | -1,29        | 1,93         |
| SLP1_0091              | -            | Hypothetical<br>Regulatory Protein                              | -1,33        | 1,15         |
| SLP1_0092              | -<br>rocB    | Regulatory Protein                                              | 1,05         | -1,24        |
| SLP1_0093              | rcsB         | GerE Family Regulatory Protein                                  | 1,24<br>1,82 | -1,19        |
| SLP1_0094              | dsbA         | Thiol:disulfide interchange protein DsbA                        |              | -1,17        |
| SLP1_0095<br>SLP1_0096 | yjiK         | Uncharacterized protein yjiK<br>Virulence membrane protein pagC | 2,15<br>1,27 | 1,15<br>2,33 |
| SLP1_0090<br>SLP1_0097 | pagC<br>gadX | HTH-type transcriptional regulator gadX                         | 1,24         | 2,33<br>1,84 |
| SLP1_0097<br>SLP1_0098 | yjiK         | Outer Membrane Protein                                          | 1,24         | 1,16         |
| SLP1_0098<br>SLP1_0099 | repA         | Replication initiation protein                                  | -1,22        | -1,29        |
| SLP1_0099<br>SLP1_0100 | терд<br>-    | Hypothetical Protein SLP1_0100                                  | 1,09         | -1,07        |
| SLP1_0100              | _            | DNA Replication Protein                                         | 1,32         | 1,09         |
| SLP1_0101              | repA2        | Replication regulatory protein repA2                            | 2,25         | 1,36         |
| SLP1_0102              | -            | Endonuclease                                                    | -1,17        | -1,35        |
| SLP1_0104              | -            | DSBA Oxidoreductase                                             | 1,27         | -1,03        |
| SLP2_0001              | _            | Hypothetical Protein SLP2_0001                                  | -1,24        | 1,46         |
| SLP2_0002              | repA         | Replication initiation protein                                  | -1,42        | 1,15         |
| SLP2_0003              | -            | Hypothetical                                                    | 1,50         | 3,16         |
| SLP2_0004              | _            | Addiction Module Antitoxin                                      | 1,14         | 2,74         |
| SLP2_0005              | dnaQ         | Uncharacterized protein pSLT049                                 | 1,28         | 5,21         |
| SLP2_0006              | -            | Hypothetical                                                    | -1,21        | 1,48         |
| SLP2_0007              | -            | Hypothetical Protein SLP2 0007                                  | -2,74        | 1,71         |
| SLP2_0008              | -            | Hypothetical                                                    | -3,04        | 2,42         |
|                        | -            | Hypothetical                                                    | -3,10        | 2,78         |
| SLP2_0010              | -            | Hypothetical                                                    | -4,02        | 2,36         |
|                        | -            | Uncharacterized protein in cib 5'region                         | -3,00        | 1,88         |
| SLP2_0012              | cib          | Colicin-Ib                                                      | -3,13        | 1,63         |
| SLP2_0013              | _            | Colicin-Ib immunity protein                                     | -1,25        | -1,22        |
| SLP2_0014              | -            | Hypothetical                                                    | -1,73        | -1,19        |
|                        | -            | Hypothetical                                                    | -1,28        | 1,71         |
|                        | -            | Hypothetical                                                    | -1,19        | 2,48         |
|                        | resD         | Resolvase                                                       | -1,06        | 2,08         |
| SLP2_0018              | -            | Hypothetical Protein SLP2_0018                                  | 1,42         | 1,25         |
| SLP2_0019              | -            | Hypothetical                                                    | 1,16         | 1,11         |
| SLP2_0020              | -            | Hypothetical                                                    | 1,03         | 1,43         |
| SLP2_0021              | parM         | Plasmid segregation protein parM                                | 1,20         | 1,44         |
|                        | -            | Plasmid Stability Protein                                       | -1,05        | 1,40         |
|                        | impC         | Protein impC                                                    | 1,16         | 1,21         |
| SLP2_0024              | yuaZ         | Uncharacterized protein yuaZ                                    | 1,30         | 1,22         |
|                        | -            | -                                                               |              |              |

| SLP2_0025              | yubA      | Uncharacterized protein YubA                              | 1,06         | 1,50         |
|------------------------|-----------|-----------------------------------------------------------|--------------|--------------|
|                        | yubC      | Uncharacterized protein yubC                              | 1,12         | 1,30         |
|                        | yubD      | Putative methylase yubD                                   | 1,15         | 1,52         |
| SLP2_0028              | yubE      | Uncharacterized protein YubE                              | 1,56         | 1,94         |
| SLP2_0029              | yubF      | Uncharacterized protein yubF                              | 1,27         | 2,26         |
| SLP2_0030              | -         | Uncharacterized protein yubG                              | -1,33        | 2,50         |
| SLP2_0031              | yubH      | Uncharacterized protein yubH                              | 1,53         | 2,45         |
| SLP2_0032              | yubl      | Putative antirestriction protein Yubl                     | 2,42         | 3,23         |
| SLP2_0033              | yubJ      | Uncharacterized protein yubJ                              | 1,81         | 2,54         |
| SLP2_0034              | -         | Hypothetical                                              | -1,23        | 1,06         |
| SLP2_0035              | ssb       | Plasmid-derived single-stranded DNA-binding protein       | 1,11         | 1,76         |
| SLP2_0036              | yubM      | Uncharacterized protein yubM                              | -1,05        | 1,98         |
| SLP2_0037              | psiB      | Protein psiB                                              | 1,20         | 2,79         |
| SLP2_0038              | psiA      | Protein psiA                                              | 1,23         | 3,67         |
| SLP2_0039              | -         | Hypothetical                                              | 1,22         | 3,30         |
| SLP2_0040              | yubH      | Uncharacterized protein yubH                              | -1,01        | 1,14         |
| SLP2_0041              | -         | Antirestriction Protein                                   | -1,11        | -1,05        |
| SLP2_0042              | -         | Hypothetical                                              | -1,45        | -1,69        |
| SLP2_0043              | -         | Hypothetical                                              | 1,34         | 1,55         |
| SLP2_0044              | yfcl      | Uncharacterized protein pSLT051                           | 1,42         | 2,26         |
| SLP2_0045              | -         | Hypothetical                                              | -1,31        | -1,02        |
| SLP2_0047              | -         | Hypothetical                                              | -1,13        | -1,09        |
| SLP2_0048              | -         | Hypothetical                                              | 1,60         | -1,20        |
| SLP2_0049              | tral      | Protein tral                                              | 1,05         | 1,03         |
| SLP2_0050              | -         | Hypothetical                                              | -1,02        | 1,06         |
| SLP2_0051              | -         | Hypothetical                                              | 1,16         | 1,16         |
| SLP2_0052              | -         | Hypothetical                                              | -1,11        | 1,31         |
| SLP2_0053              | -         | Plasmid Stability Protein                                 | -1,94        | -1,55        |
| SLP2_0054              | pndA      | Protein pndA                                              | -1,88        | -1,37        |
| SLP2_0055              | exc       | Exclusion-determining protein                             | -2,03        | 1,40         |
| SLP2_0056              | -         | Hypothetical                                              | -1,00        | 1,54         |
| SLP2_0057              | -         | TraX-Like Protein                                         | -1,28        | 1,32         |
| SLP2_0058              | -         | Hypothetical                                              | 1,01         | 2,44         |
| SLP2_0059              | -         | Conjugal Transfer Protein                                 | 1,07         | 2,25         |
| SLP2_0060              | -         | Hypothetical                                              | 1,35         | 1,70         |
| SLP2_0061              | -         | Hypothetical                                              | -1,08        | 1,43         |
| SLP2_0062              | -         | Hypothetical                                              | 1,01         | 1,58         |
| SLP2_0063              | -         | Hypothetical                                              | -1,07        | 1,36         |
| SLP2_0064              | -         | TraQ Protein                                              | -1,07        | 1,38         |
| SLP2_0065              | -         | TraP Protein                                              | -1,04        | 1,44         |
| SLP2_0066              | -         | Hypothetical                                              | 1,17         | 1,20         |
| SLP2_0067              | -         | Hypothetical                                              | 1,14         | 1,49         |
| SLP2_0068              | -         | Hypothetical                                              | 1,21         | 1,95         |
| SLP2_0069              | -         | TraL Protein                                              | 1,23         | 2,07         |
| SLP2_0070              | -<br>nld  | DNA Primase                                               | -1,00        | 1,93         |
| SLP2_0072              | pld       | Phospholipase D                                           | 1,71         | 2,55         |
| SLP2_0073<br>SLP2_0074 | -         | Hypothetical<br>Uncharacterized protein yggR              | 1,60<br>1,23 | 2,28<br>2,07 |
| SLP2_0074<br>SLP2_0075 | yggR<br>- | Hypothetical                                              | 1,23         | 1,63         |
| SLP2_0075<br>SLP2_0076 | -         | TraH Protein                                              | 1,42         | 1,35         |
| SLP2_0070<br>SLP2_0077 | ais       | Lipopolysaccharide core heptose(II)-phosphate phosphatase | 1,64         | -1,26        |
| SLP2_0078              | -         | Hypothetical                                              | -1,37        | 1,11         |
| SLP2 0079              | -         | Hypothetical                                              | 1,85         | 1,63         |
| SLP2_0080              | rci       | Shufflon-specific DNA recombinase                         | 1,16         | 2,05         |
| SLP2_0080<br>SLP2_0081 | -         | Shufflon protein B'                                       | -1,07        | -1,15        |
| SLP2_0082              | -         | Shufflon protein B                                        | -1,09        | -1,19        |
| SLP2_0083              | _         | Shufflon protein A                                        | 1,05         | 1,11         |
| SLP2_0085              | _         | Shufflon protein A'                                       | 1,09         | 1,07         |
| SLP2_0086              | -         | Prepilin Peptidase                                        | 1,51         | 1,07         |
| SLP2_0087              | pbl       | Peptidoglycan-binding-like protein                        | 1,45         | 1,41         |
| SLP2_0087<br>SLP2_0088 | -<br>-    | Type IV Prepilin                                          | 1,19         | 1,79         |
| SLP2_0088<br>SLP2_0089 | -         | Type II Secretion System Protein                          | 1,34         | 1,65         |
| SLP2_0009<br>SLP2_0090 | tcpT      | Toxin coregulated pilus biosynthesis protein T            | 1,18         | 1,80         |
| SLP2_0090<br>SLP2_0091 | -         | Pilus Assembly Protein                                    | 1,17         | 1,67         |
| SLP2_0091<br>SLP2_0092 | -         | Hypothetical                                              | -1,03        | 1,37         |
| SLP2_0093              | bfpB      | Outer membrane lipoprotein BfpB                           | 1,01         | 1,55         |
| SLP2_0094              | -         | PilM Protein                                              | 1,07         | 1,81         |
|                        |           |                                                           | 1,07         | .,           |

| SLP2_0095        | -     | Hypothetical                                                              | -1,06         | 1,85  |
|------------------|-------|---------------------------------------------------------------------------|---------------|-------|
| SLP2_0096        | -     | Hypothetical                                                              | 1,36          | 2,44  |
| SLP2_0097        | -     | Hypothetical                                                              | 1,20          | 2,81  |
| SLP2_0098        | -     | Hypothetical                                                              | 1,04          | 1,66  |
| SLP2_0100        | -     | Hypothetical                                                              | 1,51          | 1,83  |
|                  | -     | Conjugal Transfer Protein                                                 | -1,58         | 1,51  |
|                  | -     | Transcription Antitermination Factor                                      | -1,65         | -1,12 |
| SLP2_0103        | -     | Hypothetical Protein SLP2_0103                                            | -2,42         | -2,07 |
| SLP3_0001        | sulll | Dihydropteroate synthase type-2                                           | 1,13          | 1,04  |
| SLP3_0002        | -     | Hypothetical                                                              | -1,16         | 1,45  |
| SLP3_0003        | -     | Replication C Family Protein                                              | -1,04         | 1,25  |
| SLP3_0004        | repA  | Regulatory protein repA                                                   | -1,10         | 1,92  |
| SLP3_0005        | -     | Hypothetical Protein SLP3_0005                                            | -1,07         | 1,84  |
| SLP3_0006        | -     | Hypothetical Protein SLP3_0006                                            | -1,15         | 1,87  |
| SLP3_0007        | mobA  | Mobilization protein A                                                    | 1,15          | 1,54  |
| SLP3_0008        | mobA  | Mobilization protein A                                                    | 1,18          | 1,07  |
|                  | mobB  | Mobilization protein B                                                    | 1,13          | 1,40  |
|                  | -     | Uncharacterized mobilization operon protein F                             | -1,02         | 1,02  |
| SLP3_0011        | mobC  | Mobilization protein C                                                    | 1,05          | 1,44  |
|                  | -     | Transposase                                                               | 1,28          | 1,21  |
| SLP3_0013        | str   | Streptomycin 3"-kinase                                                    | 1,23          | 1,03  |
|                  | aphE  | Streptomycin 3"-kinase                                                    | -1,02         | -1,00 |
|                  |       | Not found                                                                 | .,            | .,    |
| 01.0000          |       |                                                                           | 4.00          | 4.44  |
| SL0269           | -     | Hypothetical Protein SL0269                                               | 1,96          | -1,11 |
| SL0321           | -     |                                                                           | 1,23          | -1,20 |
| SL0514           | ybbV  |                                                                           | 1,24          | 1,06  |
| SL0851           | -     |                                                                           | 2,00          | 2,08  |
| SL1178           | -     | Hypothetical Protein SL1178                                               | -8,51         | -6,61 |
| SL1399           | -     | Hypothetical Protein SL1399                                               | 1,34          | 2,13  |
| SL1758           | -     | Cytoplasmic Protein                                                       | 1,56          | 1,26  |
| SL1831           | -     | Hypothetical                                                              | 1,45          | 1,17  |
| SL1984           | -     | Hypothetical                                                              | -1,07         | 1,02  |
| SL2476           | -     | Invasin<br>Decidence in Decide                                            | 1,34          | 1,03  |
| SL2528           | -     | Periplasmic Protein                                                       | 2,74          | 1,53  |
| SL2711           | -     | Hypothetical Protein SL2711                                               | -1,02         | 1,12  |
| SL2748           | -     | Hypothetical Protein SL2748                                               | -1,69         | -1,23 |
| SL2749           | -     | Hypothetical Protein SL2749                                               | -1,06         | 1,31  |
| SL2766           | -     | Hypothetical                                                              | -1,77         | -3,68 |
| SL3181           | -     | Hypothetical                                                              | 1,12          | -1,03 |
| SL3218           | -     | Hypothetical                                                              | 1,12          | 1,11  |
| SL3219           | -     | Hypothetical                                                              | -2,39         | -1,46 |
| SL3347           | -     | Conserved Hypothetical Protein                                            | 1,78          | -1,19 |
| SL3719<br>SL3721 | -     | Hypothetical                                                              | 1,42          | -1,23 |
|                  | -     | Hypothetical Protein SL3721                                               | 1,07          | -1,21 |
| SL3742           | -     | Hypothetical Dratain SI 2764                                              | 1,40          | -3,40 |
| SL3764           | -     | Hypothetical Protein SL3764                                               | 1,66          | 1,27  |
| SL3855<br>SL3856 | -     |                                                                           | 1,45          | -1,31 |
|                  | -     | I han that i and                                                          | 1,90          | -1,08 |
| SL3949<br>SL4067 | -     | Hypothetical<br>Hypothetical Protein SI 4067                              | -2,37         | -1,40 |
| SL4067<br>SL4165 | -     | Hypothetical Protein SL4067                                               | 1,50<br>-3,64 | 1,72  |
|                  | -     | Hypothetical Protein SL4165                                               |               | 11,67 |
| SL4428           | -     | Molybdopterin-Guanine Dinucleotide Biosynthesis Protein A<br>Hypothetical | -1,45         | -1,62 |
| SL4524           | -     | пуропыса                                                                  | 2,21          | -1,07 |
|                  |       |                                                                           |               |       |