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1. SUMMARY 

A study on the enzyme kinetics of L-lactate dehydrogenase, which catalyses the reduction 

of pyruvate to lactate oxidizing NADH, is presented. This reaction occurs when a lack of oxygen 

is present and is related to muscular fatigue. LDH is one of the most important biomarkers of 

injuries and disease, because it is released during tissue breakdown. 

General concepts of enzyme kinetics have been reviewed and some models to explain the 

kinetics of the enzyme have been proposed. L-lactate dehydrogenase is a tetrameric protein, an 

enzyme formed by four subunits, and the presence of a possible cooperativity, i.e., different 

affinity in each active centre, must be considered. Besides, macromolecular crowding, the 

alteration of the behaviour of molecules with the presence of highly concentrated 

macromolecules, and its possible effects on enzyme kinetics have been presented. 

A series of experiments, measuring the initial velocity of the reaction by spectrophotometric 

means and using a stopped-flow methodology, have been performed. The experiments have 

been carried out varying the pyruvate and the enzyme concentration and working in solution 

conditions. A series of experiments in crowded media, at high macromolecules concentration, 

have been performed. The crowded media experiments have been carried out using different 

obstacle sizes, using dextran polymer to simulate the cellular crowding, and with different 

enzyme concentrations. 

A surface plot of initial velocity as a function of substrate and enzyme concentrations, for the 

solution media data, has been obtained. The data has been fitted to the proposed models and 

the results have suggested an ideal behaviour without cooperativity. In crowded media, a higher 

decrease in the reaction velocity has been found when using the bigger dextran and the higher 

enzyme concentration. An auto-crowding hypothesis, the enzyme acts itself as a crowding 

agent, is presented to possibly explain the results.  

 

Keywords: Enzyme kinetics, Macromolecular crowding, Cooperativity, L-lactate dehydrogenase.
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2. RESUM 

Sôha realitzat un estudi sobre la cinètica enzimàtica que presenta la L-lactat deshidrogenasa 

quan catalitza la reducci· de transformaci· de piruvat a lactat mitjanant lôoxidaci· de NADH. 

Aquesta reacci· es d·na quan hi ha un d¯ficit dôoxigen i est¨ relacionada amb la fatiga 

muscular. La LDH és un dels biomarcadors més importants ja que permet identificar malalties i 

lesions perqu¯ sôallibera durant el trencament de teixits. 

Sôhan revisat els principals conceptes de cinètica enzimàtica i sôhan proposat uns models 

per explicar el comportament cin¯tic de lôenzim. La L-lactat deshidrogenasa és un tetràmer, un 

enzim format per quatre subunitats, i sôha estudiat la possibilitat de que presenti un 

comportament cooperatiu, i.e., diferent afinitat en cada centre actiu. Tamb® sôha introduït el 

concepte del crowding macromolecular: la alteració del comportament de les molècules en 

presència de macromolècules altament concentrades; i els seus possibles efectes en la cinètica 

enzimàtica. 

Sôhan dut a terme un seguit dôexperiments en els quals sôha obtingut la velocitat de reacció 

mitjançant mesures espectrofotomètriques amb un sistema de Stopped-Flow. Aquests 

experiments sôhan realitzat variant les concentracions de piruvat i dôenzim, treballant en 

dissoluci·. Tamb® sôhan realitzat experiments en medi crowding: amb una alta concentració de 

macromolècules; utilitzant mides diferents dextrans, que són els agents que simularan el 

crowding celĿlular, i amb concentracions diferents dôenzim. 

Sôha obtingut un gr¨fic de superf²cie de la velocitat inicial en funci· de les concentracions 

dôenzim i de substrat, per les dades en dissoluci·, i sôhan ajustat les dades als models 

proposats. Els resultats suggereixen un comportament ideal sense cooperativitat. Pel que fa als 

experiments en medi crowding, sôha obtingut un descens en la velocitat de reacció més gran 

amb el dextr¨ de major mida amb lôenzim m®s concentrat. Sôha proposat una hip¸tesi per 

explicar els resultats: lôauto-crowding, en el qual el propi enzim actua com a crowder. 

Paraules clau: Cinètica enzimàtica, Crowding macromolecular, Cooperativitat, L-lactat 

deshidrogenasa.
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3. INTRODUCTION 

The enzyme that we are going to study is L-lactate dehydrogenase (LDH). A 

dehydrogenase is an enzyme that transfers hydrides. L-lactate dehydrogenase catalyses the 

reaction to convert pyruvate into lactate by oxidizing NADH into NAD+, as we can see at 

Scheme 1. When a tissue is injured, LDH is released into the bloodstream[1] and this effect can 

be used as biomarker of tissue breakdown. LDH converts pyruvate to lactate when there is a 

lack of oxygen and catalyses the reverse reaction during the Cori cycle in the liver[1]. L-lactate 

dehydrogenase has been related to muscular fatigue[2], which is caused by the accumulation of 

lactic acid during intense exercise periods.  

The reaction can be followed by spectrophotometric measurements due to a change in its 

absorbance when NADH, which absorbs at 340 nm, is converted in NAD+, which no longer 

absorbs at 340 nm. [3] 

 
Scheme 1. The reaction of pyruvate with NADH catalysed by L-lactate dehydrogenase. 

L-lactate dehydrogenase is known to be oligomeric[4]: it is formed by more than one subunit 

of protein. Oligoproteins are formed by different subunits connected by non-covalent bonds: 

monomers, dimers, tetramers... LDH can be a homo or hetero tetramer composed by all 

possible combinations of M (muscle) or H (heart) subunits. The LDH isoenzyme that has been 

used in our experiments is formed by four M subunits and this kind of LDH is found in the liver 

and in the muscles.  [4] 

It is usually considered that all the catalytic centres in oligomeric proteins have the same 

activity and that they follow the Michaelis-Menten model. But some of them present 
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cooperativity; they have different enzymatic activity depending on the number of substrates 

united. Cooperativity influences the effect of these proteins in cell metabolism.  

Enzyme kinetics data have been usually obtained working in dilute solutions but, inside the 

living cell, we find high concentrations of macromolecules of different sizes and shapes up to 

40% of the volume[5] of cytosol. This means that almost all the biochemical data do not reflect 

the in vivo conditions. Certainly, performing the experiments in in vivo media would be the best 

solution but obtaining reproducible data without interferences of other species would be difficult 

and even more if the reaction is fast, as in the present case. Besides, in our case, NADH is a 

coenzyme that is used in a lot of biochemical reactions at a time and its fluctuation in the cell 

depends on a high number of variables and different reactions. It would be nearly impossible to 

follow the change in the absorbance caused by NADH of this reaction in in vivo media. 

To facilitate the understanding of enzyme kinetics and to obtain plausible values of the 

kinetic parameters, studies that simulate the macromolecular crowding in the cell were 

proposed[6-13]. Macromolecular crowding studies the modification of diffusive processes, 

reactions and interactions inside the cell, due to high concentrations of neighbouring 

macromolecules present in the intracellular medium[14]. It is important to study biochemical 

processes in nature-like environments, trying to recreate the effect of such concentrations; to 

obtain accurate rates for enzymatic reactions.  

The aim of performing experiments in crowded media is to find a middle ground between 

performing experiments in in vivo or in vitro media. This is supposed to renew the kinetic 

databases because as said previously: until recently, all the enzyme kinetics experiments were 

performed in diluted solution media. It can also be useful, for example, to drug design or 

systems biology.   

As an introduction, we are going to briefly summarize some related enzyme kinetics theories 

and equations and some important aspects of macromolecular crowding on enzyme kinetics. 

The aim of this work is the study of the kinetics of L-lactate dehydrogenase, varying 

systematically the enzyme concentration. Furthermore, variations in the kinetic parameters as 

experimental conditions change, when a crowding agent is added, will be interpreted. We are 

going to compare the variation of these parameters when we work in dilute solution and when 

we add increasing amounts of excluded volume, provided by dextran polymers. We will try to 

find out if there is some type of cooperativity in our enzyme, we will try to fit the experimental 



Effect of macromolecular crowding on the kinetics of enzymatic reactions. The LDH dimer-tetramer case. 9 

 

data to a novel model based on the Michaelis-Menten theory and the steady-state assumption 

and we will compare the value of some kinetic parameters when working in solution and when 

working under crowding conditions. 

3.1. ENZYME KINETICS 

Enzymes are proteins that catalyse biological reactions; they increase the rate of these 

reactions by making them kinetically favourable. Enzymatic catalysis is essential for living 

systems: metabolic processes need enzymes and it is indispensable to know its operation and 

how they affect the kinetics of the reactions they catalyse. 

In the present section we are going to review a general kinetic model that will be useful to 

explain the behaviour of our enzyme, L-lactate dehydrogenase. 

3.1.1. The Michaelis-Menten equation 

 Leonor Michaelis and Maud Menten in 1913[15, 16] postulated a model to explain the kinetics 

of most of the enzyme catalysed reactions. The Michaelis-Menten equation relates the initial 

velocity with the substrate concentration and it is usually expressed like:  

ὺ                                                       (Eq. 1) 

The model is based on this scheme: 

 
Scheme 2. Representation of a Michaelis-Menten enzymatic reaction. The enzyme (E) reacts with the 
substrate (S) to form a reversible complex (ES) that decomposes into the enzyme and the product (P). 

The enzyme (E) is first combined with the substrate (S) forming a reversible complex (ES) in 

a fast step. The complex is decomposed in a slower second step to form the product (P) and 

liberate the enzyme. The constant k2 is also called catalytic constant, kcat, or turnover number. 

To deduce the Michaelis-Menten expression (Eq. 1) we must make several assumptions. 

First, we are measuring initial rates, our system is under initial conditions and it can be assumed 

that the reaction of the decomposition of the complex to form the product is irreversible; no 

equilibrium is established in the decomposition reaction. 
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Another benefit of measuring initial rates is that, provided that the substrate concentration is 

much higher than enzyme concentration, we can consider that the enzyme is saturated. Usually 

initial substrate concentration is five or six orders of magnitude greater than enzyme 

concentration so if we only measure initial rates the variation in substrate concentration can be 

neglected and we can consider that it remains constant. 

Now we need to define the rate equation, which will be expressed as the rate of product 

formation, described as: 

ὺ Ὧ ὉὛ                                               (Eq. 2) 

The problem that appears is that it is difficult to know the complexed enzyme concentration, 

as well as knowing the free enzyme concentration at a given time of the reaction, so we need to 

find a new species of which we know its exact concentration throughout the reaction. 

The enzyme exists in its free form and in its complex form all over the reaction. In lower 

substrate concentrations, enzyme will be in its free form majorly and it will be forced to form the 

complex. However, in higher substrate concentrations, a significant part of the enzyme will be in 

its complex form and an increase in substrate concentration will have no effect on rate: we will 

be on the plateau of the reaction.  

If we write the mass balance for the enzyme: 

Ὁ Ὁ ὉὛ                                               (Eq. 3) 

We can now relate the complex concentration to the enzyme total concentration ([E]t) which 

is the enzyme concentration on the reacting mixture initially, and therefore its exact 

concentration is known. Now we need to express the rate equation in terms of [E]t, and 

substrate concentration, [S], which will be the magnitude with a measurable variation.   

Next, we need to make the assumption that the complex intermediate concentration reaches 

a stationary regime: its concentration remains constant. Otherwise, Equation 4, which is the 

kinetic rate law considering Scheme 2, would not be analytically resoluble. 

π Ὧ Ὁ Ὓ Ὧ ὉὛ Ὧ ὉὛ                         (Eq. 4) 
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Equalling Equation 4 to zero, which is known as the steady-state approximation, and 

rearranging terms we obtain: 

Ὧ Ὁ Ὓ Ὧ Ὧ ὉὛ                                       (Eq. 5) 

This leads us to the next expression, which is known as the Michaelis constant. 

ḳὑ                                             (Eq. 6) 

This constant is equivalent to the equilibrium constant of the decomposition of the complex 

in substrate and free enzyme. 

If we isolate the free enzyme concentration and substitute it in the enzyme mass balance, 

we will have an expression for the complex concentration in terms of [E]t and [S].  

Ὁ ὉὛO ὉὛ                              (Eq. 7) 

As stated before, E concentration is known only initially, when all the enzyme is in its free 

form, and S concentration, by means of substrate depletion or product formation, can be 

monitored during the course of the reaction by a wide range of experimental techniques.  

Finally, if we substitute the equation for [ES] in the rate equation we get: 

ὺ                                                       (Eq. 8) 

Now, the only difference between Equation 1 and Equation 8 is vmax. To introduce the 

maximum velocity term (vmax), we need to think that the rate of the reaction at a given instant t 

will be given by the expression ὺ Ὧ ὉὛ. Therefore, the maximum velocity that the reaction 

could hypothetically achieve would occur when [ES] value reaches its maximum, which cannot 

be higher than [E]t. This cannot be achieved experimentally in a real situation, but rather 

represents an asymptotic value as [S] approaches an infinite value.  

ὺ ÌÉÍO ὺ Ὧ Ὁ                                     (Eq. 9) 
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Now the rate equation can be expressed as: 

ὺ                                                    (Eq. 1) 

This is the most usual form of the Michaelis-Menten equation. This expression can be 

represented as: 

 

 
Figure 1. The variation of initial rate with substrate concentration following a Michaelis-Menten curve 

(hyperbola). 

In Figure 1 we can see how initial rate varies with substrate concentration in a typical 

enzyme reaction. In lower substrate concentrations, initial rate increases linearly with substrate 

concentration. In higher substrate concentrations, initial rate increases more and more slowly 

until it reaches a plateau; this plateau is the maximum rate, vmax. The shape of this curve is a 

hyperbola with an asymptote which has the value of vmax. 

In the experimental data analysis we will represent the initial rate against substrate 

concentration and, if the curve is of a Michaelis-Menten type, we will fit it to this equation. Once 

is fitted, we will find vmax and Km and this values we will used to be compared with the ones 

obtained with different enzyme concentrations.  
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3.2. MACROMOLECULAR CROWDING 

As defined previously, the macromolecular crowding phenomenon is based on some 

alterations of the physicochemical properties of macromolecules due to the existence of high 

concentrations of unrelated macromolecules in the solution. This effect usually appears in 

cellular environments where biopolymers present in the cell cytosol act as crowders reducing 

the volume of solvent available, which increases the effective concentration of all the species 

involved in a reaction process. [14] 

We say that the media is crowded rather than concentrated because in cellular 

environments there is not a high concentration of a single macromolecule but a lot of different 

macromolecules that taken together occupy between 5% and 40%[5] of the total volume in the 

cell. If we compare the macromolecular concentration in crowded media, 50-400 mg/mL, 

against in vitro conditions, 1-10 mg/mL, we will see that performing enzymatic experiments in 

vitro is not representing real cellular conditions at all[5]. Thus, all processes that take place in the 

cell are quite afar from ideality.  

  
Figure 2. The difference between in vivo and in vitro systems.  

(Extracted image from Ellis & Hartl. FASEBJ . 1996 10: 20-26.)  

The number of published studies of macromolecular interactions has increased in the past 

years. However, most of them are aimed at the characterization of attractive interactions that 

result in the formation of protein complexes or protein and other macromolecules complexes. 

Repulsive interactions may not be observed directly because they do not form complexes. The 

presence and significance of these interactions in crowded media may be observed indirectly 

through their effects on a variety of macromolecular reactions.  

Most of the effects produced by repulsive interactions may be predicted qualitatively, and 

sometimes quantitatively, using simple statistical-thermodynamic models and observed 
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experimentally. To this end we can measure the dependence of thermodynamic solution 

properties and reaction kinetics and equilibria on the concentration and composition of the 

crowders, macromolecular cosolutes that are nominally inert with respect to the reaction of 

interest. [17] 

The excluded volume of a molecule is the volume that is inaccessible to other molecules in 

the system as a result of the presence of the first molecule[18]. We can see how the excluded 

volume of macromolecular crowders can affect our reaction in Figure 3. The excluded volume 

interactions are important because they are universal and nonspecific and they have the 

potential to significantly modulate the kinetics and equilibria of a large number of 

macromolecular reactions that take place in physiological fluid media.  

 
Figure 3. An schematic representation of the excluded volume phenomenon in our reaction. The green 

round is our enzyme, the blue rounds are unrelated macromolecules or supramolecular structures, orange 
rounds are unrelated macromolecules, yellow and purple rounds are substrates and the indicated radius is 

the excluded volume, the paths were the enzyme cannot pass. 
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Another volume exclusion phenomenon present in the cell and related to macromolecular 

crowding is macromolecular confinement. It is defined as the conjunct of effects of excluded 

volume on the free energy and reactivity of a macromolecule situated in a cavity bounded by 

impenetrable walls having a smallest interior dimension only slightly larger than the largest 

dimension of the macromolecule. [17] 

The difference between macromolecular crowding and confinement is that macromolecular 

crowding is referred to the volume exclusion effect of one soluble macromolecule to another and 

macromolecular confinement is attributed to the volume exclusion effect of a fixed boundary to a 

soluble macromolecule. 

3.2.1. General aspects of macromolecular crowding 

Macromolecular crowding can affect in a unique manner on some variables contributing to 

the enzymatic rate such as: diffusion, binding, thermodynamic activity and enzyme stability.  

Under the effect of excluded volume, macromolecules tend to rearrange themselves to their 

most compact conformation, so as to minimize steric repulsions. Then if we consider an 

enzyme with multiple conformations, excluded volume will shift the equilibrium toward the most 

compact conformation. In this regard, macromolecular crowding enhances the stability of 

enzymes by favouring they folded conformation. Equally, if an enzyme presents an equilibrium 

between individual monomers and a more compact dimer, crowding will favour the dimer. [17, 19] 

Crowding can change the value of Michaelis constant (Km) as well as the k2 value. The k2 

value, as well as the vmax value, is expected to decrease in crowded media because crowding 

usually hinders diffusion and difficult enzyme and substrates encounters[11, 13]. The Km change 

cannot be predicted. 

The nature of the macromolecule used to simulate the crowding effect often affects the 

results. A protein crowding agent can increase the activity of some enzyme whereas a synthetic 

crowding polymer, such as dextran, can decrease the enzymatic activity of the same enzyme. 

Crowding by synthetic polymers promotes protein folding, self-association and binding by 

stabilizing the enzyme. [12] 

Macromolecular crowding is expected to affect diffusion and transport phenomena, 

decreasing the diffusion coefficient and hindering transport[6]. Crowding also enhances protein 

stability and favours folded conformations. [19] 
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3.2.2. Effects of macromolecular crowding on some prototypical reactions 

We are going to summarize some experimental effects of macromolecular crowding on 

some prototypical macromolecular reactions such as bimolecular association, association of a 

soluble macromolecule ligand with a specific surface binding site and two-state protein folding. 

3.2.2.1. Bimolecular association 

Bimolecular association reaction can be described as: 

! "ᵶ!" 

Scheme 3. Representation of the bimolecular association of A and B to form the complex AB. 

About equilibria, crowding can substantially enhance the dimerization of A and B when AB is 

compact but it can also inhibit the tendency of A and B to dimerize when the dimer obtained is 

so spherical that it excludes more volume to crowder than the two monomers.  

The effect of crowding on the equilibrium constant for the association of some monomers 

increases dramatically as the number of monomers that takes part increases. [17] 

In the reaction or transition state control, the rate constant is determined by the energy 

barrier resulting from the conformational changes that are necessary to form the product. As the 

transition state for association is generally nearly as compact as the product complex, crowding 

is expected to lower this energy barrier and increase the association rate. A small effect on the 

dissociation constant is expected. [20] 

Because fast associations are typically under diffusion control and slow associations are 

under reaction control, crowding is expected to decelerate fast associations and accelerate slow 

associations. 

3.2.2.2. Site-binding 

The association of a soluble macromolecular ligand with a specific surface binding site can 

be described as: 

, 3ᵶ,3 

Scheme 4. Representation of the site-binding of a ligand, L, to a site, S. 

Crowding affects only the free ligand because the bounded ligand is buried and inaccessible 

to crowders. 
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Theoretical calculations[17] demonstrate that the enhancement of association by crowding 

can be much more significant for site-binding than for bimolecular associations. 

3.2.2.3. Two-state protein folding 

The two-state folding of a protein can be represented as: 

5ᵶ. 

Scheme 5. Representation of the folding of a protein: U is the unfolded form and N is the native form 
(folded). 

The presence of crowder influences this equilibrium between conformational states by 

favouring the conformations that exclude less volume to the crowder. 

In this case, with proteins, the unfolded conformations exclude more volume to the crowder 

because they are more expanded than the folded ones. Therefore, crowding is expected to 

enhance the presence of the native state. [17] 

When the transition state is less compact than the reactant state, crowding is expected to 

decrease the rate constant. 

3.2.3. Previous enzyme kinetics in macromolecular crowding media experiments 

3.2.3.1. L-lactate dehydrogenase 

A study on the effect of macromolecular crowding on the oxidation of NADH by pyruvate 

catalysed by L-lactate dehydrogenase[8], the same enzyme that we are studying, found that the 

reaction rate of the reaction is determined by both the occupied volume and the relative size of 

the obstacles. 

The reaction rate decreased as dextran size increase when it was at high concentrations 

(100 mg·mL-1). It means that the reaction depends not only on the occupied volume but also on 

the dimension of the obstacles present in the reaction media. This behaviour can be related to 

the effect of the relative size of the enzyme respect to the size of the crowder. Only high 

concentrations of large dextrans affected vmax and Km while smaller sizes of dextrans had a 

lower decreasing effect. 

The reduction in vmax can be explained by a decrease of kcat (k2) as a result of changes in 

the conformation of the catalytic centre due to the crowded media. But in this case, the catalytic 

centre is protected from the bulk solution. The other reasonable explaining is that the encounter 
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between enzymes and substrates is reduced by large dextrans because they have similar size 

to LDH. And for small dextrans, the decrease in vmax is inferior because the crowding effect is 

partially compensated by an enhancing of the enzymatic activity by a cage effect that is, as 

defined previously, macromolecular confinement.  

The effective diffusion coefficient is lower in crowded media than in dilute solution, and a 

decrease in this coefficient may decrease k1. Km value should increase because of the decrease 

in k1, but it remains constant until high concentration of large dextrans. The decrease in Km with 

high concentrations of large dextrans can be attributed to a modification on the chemical activity 

of the substrate due to the non-ideal conditions in crowded media and also by an increase of the 

activity coefficients relation between the free enzyme and the complex. Besides, the water 

activity can also affect because the substrate and the active site must be dehydrated for the 

process of binding, then k2 must be affected.  

3.2.3.2. Other enzymes 

A study about the crowding effect on the reaction initial velocity of the hydrolysis of N-

succinyl-L-phenyl-Ala-p-nitroanilide catalysed by alpha-chymotrypsin[7] showed that the volume 

occupied by the dextran (equivalent to its concentration) but not its size had a great effect on 

the initial rate of this reaction. vmax decreased and Km increased with increasing dextran 

concentrations. The rise in Km could be explained by a slower diffusion of the enzyme because 

of the crowding presence. The decrease in vmax could be attributed to the effect of mixed 

inhibition by the product, which is enhanced in crowded media. 

Another studied enzyme: horseradish peroxidase[9] (HRP), which catalyses the oxidation of 

2,2ô-azino-bis(3-ethylbenzothiazoline-6-sulfonate) by hydrogen peroxide, showed an influence 

by the crowding agent concentration (excluded volume) but not its size. The enzyme kinetics 

parameters vmax and Km both decreased with an increasing obstacle concentration. It suggested 

an activation control of the enzymatic reaction, which means that the catalytic constant, kcat 

(equivalent to k2), is affected by the crowding environment and has a significant contribution in 

Km. The contribution could be explained by an increase in the ratio of activity coefficients of the 

nature enzyme and the complex due to the presence of crowders, an increase in chemical 

activity of water because of crowding, a conformational change in the active site of the enzyme 

induced by crowding or a combination of some of these factors. 
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A study on malate dehydrogenase[12], which catalyses the oxidation of malate to 

oxaloacetate reducing NAD+ to NADH, was performed. One the many experiments that were 

carried out in that study, showed that the kinetics parameters depend on the size and amount of 

dextran. In general, any size of dextran decreased the value of vmax but dextrans with similar 

size to MDH size. The Km values also decreased with any size of dextran but they showed no 

clear tendency with the dextran sizes.  

The hydrolysis of p-nitrophenyl phosphate catalysed by alkaline phosphatase[10] (ALKP) was 

studied and it presented similar behaviour to the reported study of LDH. The reaction rate 

depended on the excluded volume and the crowder size. The reaction rate showed a 

pronounced decrease with an increase of excluded volume with larger dextrans. For smaller 

dextrans the reduction on the initial rate was moderate. This is in concordance with the reported 

LDH results: larger dextrans reduce the frequency of the enzyme-substrate encounters.  

It is necessary to note that ALKP and MDH are active as dimers[10,12], alpha-chymotrypsin 

and HRP are monomers[7,9] and LDH is a tetramer. [4] 

 
Figure 4. A size scheme including the size of the enzymes reviewed and the dextrans sizes.  

(Extracted image from Pastor. et al.. Biophysical Chemistry. 2014 185: 8ï13) 

Considering the size of the enzymes, which can be seen in Figure 4, it has been found that 

small enzymes, like HRP and alpha-chymotrypsin, depend only on the excluded volume of the 

solution, in other words: of the dextran concentration but not its size. Large enzymes present 

dependence on the excluded volume and the dextran size. This behaviour can be interpreted as 

follows: the smaller enzymes are affected only by the excluded volume because they are 
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smaller than the crowders used and they see them as cell walls; larger enzymes, in contrast, 

have similar sizes to the crowder sizes and see them as obstacles that diminish its diffusion, 

reducing the encounters between enzymes and substrates. [11] 

In addition to this interpretation, with small obstacles the excluded volume effect is partially 

offset by a caging effect (related to macromolecular confinement) that enhances the enzyme 

activity, resulting in a minor decrease of the initial velocity of the reaction. 

Other effect that has been appearing is that, for large oligomeric enzymes, the effect of 

dextrans with similar size is higher than with the other dextran sizes. This effect has been seen 

on MDH[12] or ALKP[10]. However, the origin of the difference between the effect of obstacle size 

on this two enzymes and on LDH is not clear yet.  

3.2.3.3. Alternative methods  

Crowding effects on enzyme kinetics can also be studied by computational simulations. 

Diffusion-controlled and mixed activation-diffusion reactions in crowded media can be studied 

performing either Monte Carlo simulations in a three dimensional lattice[21, 22], or Brownian 

Dynamics simulation for the diffusion process coupled to Monte Carlo simulation for the reaction 

process, in an off-lattice scheme. [23] 

For example, a study on the effect of the enzyme-obstacle relative size revealed that the 

rate coefficient depends on time for diffusion-controlled bimolecular reactions in crowded media, 

which is known as a fractal kinetics[24]. And that, in mixed activation-diffusion reactions, the 

fractality of the reaction decreases as the activation control increases. [22] 

Another technique is fluorescence recovery after photobleaching (FRAP) which is a 

common technique to study diffusion processes of macromolecules. A study on the diffusion of 

alpha-chymotrypsin[6] in crowded media was performed using a confocal laser scanning 

microscope. Their results showed that the enzyme present anomalous diffusion depending on 

the size and concentration of dextrans, until a high concentration of large dextrans is reached. 

When large dextrans are in high concentrations other phenomena such as microviscosity, 

hydrodynamics interactions or interplay between branches of dextran should be considered. 

Both of these techniques were used in parallel to study diffusion in crowding media and 

agreed in their results. They both found that enzyme diffusion in alpha-chymotrypsin and in 

Monte Carlo simulation experiments, presented an anomalous diffusion in crowded media. [25] 



Effect of macromolecular crowding on the kinetics of enzymatic reactions. The LDH dimer-tetramer case. 21 

 

4. OBJECTIVES 

The aim of this work is to study the enzyme kinetics of the oxidation of NADH by pyruvate, 

catalysed by L-lactate dehydrogenase (LDH). We want to characterize the kinetics of the 

reaction and find if the enzyme, LDH, presents any type of cooperativity or not and which model 

follows. The initial hypothesis of cooperativity arises from a work by Saito, M.[26]. Firstly, different 

models of cooperativity have been developed, taking into account the possibility of a dimer-

tetramer equilibrium. We also want to perform some experiments in crowded media, in order to 

analyse the effect of crowding on vmax and Km. 

All the experiments will consist on measuring the variation of initial rate of the reaction in 

different concentrations of substrate by spectrophotometric measures of the NADH absorbance 

during the first seconds. Then, we will estimate the best model that fits the plots of the initial 

rates against substrate concentration in order to elucidate the best mechanism to explain the 

experimental results. 

First, we will measure in in vitro conditions, all solutions will be diluted in pH=7.5 buffer with 

adjusted ionic strength, and changing systematically enzyme and substrate concentrations. We 

want to obtain a 3D surface graph with initial rate, substrate concentration and enzyme 

concentration on the axis. From the surface and other plots related we can fit our data to the 

models that we have proposed and see which one of them fits the data better. Once we find a 

model that fits our data properly, we will try to explain the behaviour of our enzyme.  

Finally, we will measure in crowded conditions, in comparable conditions to diluted solution. 

We will prepare our solutions with two different enzyme concentrations, the same substrate 

concentrations that in dilute solution experiments and adding a certain concentration of dextrans 

of two determined sizes, one similar to the enzyme and one significantly larger than the enzyme. 

We will compare the data obtained with the data from the previous experiment to have a 

comparative plot of solution against dextrans and see how the dextran affects the kinetic 

parameters
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5. EXPERIMENTAL SECTION 

5.1. MATERIALS AND METHODS 

5.1.1. Reaction 

The reaction that we are going to study is the oxidation of NADH by pyruvate, catalysed by 

L-lactate dehydrogenase (LDH). This reaction was chosen by some reasons: first, it is a well-

known reaction; second, there is an absorbance change in the course of the reaction so it can 

be followed by UV-spectroscopy; third, there is no significant variation in the excluded volume 

because substrates and products are small; fourth, the enzyme and the type of macromolecular 

crowder that we are using, dextrans, do not interact; and fifth, the enzyme size is intermediate 

between the available dextrans. 

Due to these many reasons, we can interpret the kinetic parameters to study cooperativity 

and the effect of macromolecular crowding on this reaction only in terms of the crowding agent 

presence. 

5.1.2. Macromolecular Crowder 

In this study we need to simulate cellular conditions and it is reasonable to think of using cell 

extracts. Nevertheless, obtaining reproducible data without interferences of other species would 

be very difficult because of the complex media, heterogeneity in geometrical and physical 

properties of the cell environment. In our case, using a spectrophotometer, it would be nearly 

impossible to measure only NADH absorbance because a lot of other species absorb and 

interfere. And besides, NADH depletion could not be accounted only to LDH activity using cell 

extracts, but also to a great number of other dehydrogenases present in the media. 

Instead of that, we are going to use dextrans as crowding agents. There are other 

substances that can be used on our purpose such as polyethylene glycol, polyvinyl alcohol, 

Ficolls, ovalbumin, serum album and haemoglobin. We have chosen dextrans due to their 



Effect of macromolecular crowding on the kinetics of enzymatic reactions. The LDH dimer-tetramer case. 23 

 

optimal properties and their widespread use in similar studies which will allow us to compare our 

results.  

 

 
Figure 5. The chemical structure of dextran polymer. 

Dextrans are purified macromolecules with no reactivity and highly soluble in water. Its 

flexibility and random coil shape in solution makes them suitable for modelling many 

macromolecules present in the natural state of the cell. They are also available in many different 

sizes and in large quantities.  

5.1.3. Stopped-Flow 

The Stopped-Flow method is the most widely used method for studying fast reactions. It is 

essentially composed by: two drive syringes that contain the reacting species, a mixing device, 

an observation cell, a stopping syringe and a detecting and recording system that can detect 

changes in a measurable magnitude in a fast way and in small increments of time. [16]  

The reaction starts when we push the plungers of the two drive syringes simultaneously. 

The reactants mix, and the mixture is forced through the observation cell. When we push again 

the mixture that is in the observation cell is forced into the stopping syringe. A short movement 

of the plunger of the stopping syringe brings it to a mechanical stop, which prevents further 

mixing.  

The time between the first mixing of reactants and the arrival of the mixture in the 

observation cell is of the order of 1 ms, and it is called dead time. 

In its usual form, the stopped-flow method requires a spectrophotometer for following the 

course of reaction. This makes it useful for reactions that have large changes of absorbance at 

a convenient wavelength, such as our case: the oxidation of NADH by pyruvate. However, the 
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method is not restricted to such cases. It can include and pH indicator, a fluorescence detector, 

etc. 

 
Figure 6. A scheme from the stopped-flow system used. 

 

 
Figure 7. The stopped-flow system used. 

In our case we will place a solution with twice the final concentration on cuvette of pyruvate 

and another solution with twice the concentration of the enzyme plus NADH. The mixing 

chamber and the measuring cell are thermostatted at 25ºC.  

All the system is cleaned with water and ethanol. The samples are injected from less 

concentrated to the most concentrated in order to minimize error.  
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5.1.4. Chemicals 

Rabbit muscle L-lactate dehydrogenase (E.C.; 140 U mg-1), was received as a purified and 

lyophilized powder. The enzyme, imidazole (for buffer solution) sodium pyruvate, and ɓ-

nicotinamide adenine dinucleotide, reduced dipotassium salt (NADH) were acquired from 

Sigma-Aldrich Chemical (Milwaukee, WI, USA). Dextran 150 kDa and dextran 500 kDa were 

acquired from Pharmacosmos (Hoelbrak, Denmark) and used without any further purification. 

All of the chemicals were of analytical or spectroscopic reagent grade. 

5.1.5. Oxidation of NADH 

The reaction was performed at 25 ºC in imidazole-acetic acid buffer. The buffer contained 

30 mM of imidazole, 60 mM of CH3COOK and 30 mM of MgCl2 and was adjusted to pH=7.5. 

Each sample contains the same concentration of NADH, 1.17·10-4 M, and different LDH 

concentrations in a range between 1.06·10-7 and 6.36·10-7 M. 

Michaelis-Menten plots were obtained by measuring the initial velocity of the reaction at 

different pyruvate concentrations, in a range between 6.80·10-5 and 7.50·10-4 M. This process 

was first done without the addition of a crowding agent. 

Samples with dextrans content 100 g ·L-1 of 150 or 500 kDa dextran. The pyruvate solutions 

were prepared by weighing the required amount of dextran and dissolving it with the 

corresponding solution. For the enzyme solutions, they were prepared as the dilute solutions but 

diluting them to the mark with a buffer solution containing 100 g ·L-1 of 150 or 500 kDa dextran. 

The experiment was performed with a stopped-flow valve system; it introduces 100 µL of 

the solution with enzyme and NADH and 100 µL of the pyruvate solution, it mixes them in a 

mixing chamber and, after that, it leads them to the measure semi micro cuvette, with a total 

reaction volume of 200 µL. We observe the change of absorbance that occurs as NADH, which 

absorbs at 340 nm[3], is oxidized to NAD+, which no longer absorbs at 340 nm.  

The initial reaction rate, v0, was obtained by linear fitting the initial data points in the 

absorbance-time plot. A blank solution containing only buffer or buffer with dextran solution was 

measured in each case. 

For each concentration of enzyme we have measured at least two times (three times when 

performing on solution conditions) the initial velocity in different days and with different enzyme 

and pyruvate solutions. Every day the initial velocity for one enzyme concentration was 
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measured at least three times under the same conditions, and same enzyme with NADH 

solutions and same pyruvate solution in different concentrations. 

The NADH solution was prepared daily since it is photosensitive and is degraded easily. 

The enzyme with NADH solution was prepared for each data set (that is a Michaelis-Menten 

curve). For each data set, three replicas of each data point were acquired. We have controlled 

the enzyme activity by measuring frequently a fixed enzyme concentration with the same NADH 

and pyruvate concentration and comparing the obtained enzyme activity with previous data. We 

used different batches of enzyme and NADH. 

5.2. DATA TREATMENT 

The reaction was followed by the spectrophotometric means using a UV-1603 Shimadzu 

spectrophotometer.   

 
Figure 8. An example of the obtained absorbance curves for a 4.24·10-4 mM enzyme concentration. 

Pyruvate concentrations: 6.8·10-5 M (green), 2·10-4 M (orange), 3.2·10-4 M (purple), 5·10-4 M (red) and 
7.5·10-4 M (blue). 

First, we plot the curves in the spectrophotometer data program (UV Probe ver. 2.50), which 

allow us to see if the curve is valid; an example is presented in Figure 8. That is, the initial linear 

slope can be clearly seen and there is no noise due to lack of homogeneity (only seen 

unfrequently in dextran media 100 g/L). Then, if the curves are valid we import them to a data 

treatment program (Origin ver. 7.0). We plot them again, select the linear section, which is 

equivalent to the initial rate and is usually between 0.2 and 2 seconds, and perform a linear 
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fitting of data points. The slope of that line is the initial rate for that pyruvate and enzyme 

concentrations.  

Once we have all the initial rates from different pyruvate solutions on one enzyme 

concentration for triplicate, we plot them and obtain an average value for each data point. We 

plot the average value of the initial velocities with its error. We always have obtained Michaelis-

Menten curves so we fit the curves to a hyperbolic regression and determine the kinetic 

parameters. There is an example of a Michaelis-Menten fit in Figure 9, Appendix 1 and the list 

of Michaelis-Menten fits used in Appendix 2. 

 
Figure 9. An example of a Michaelis-Menten fitting. Enzyme concentration=2.12·10-4 mM. 

Now we plot the average values of the initial velocities, the substrate concentrations and the 

enzyme concentration using Gnuplot (ver. 4.6); obtaining a 3D surface plot. We will try to fit our 

data to a kinetic model in order to obtain the values of the constants that influence our reaction. 

As can be seen, the initial velocities are presented, as derivatives in the absorbance, in s-1 

units. To convert them into M·s-1 units, we need to divide them among the molar absorptivity (Ů), 

which has a 6220 M-1cm-1 value for the NADH[3], and multiply them by the optical path, which in 

our case is 1 cm.  
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6. THEORETICAL BACKGROUND: OLIGOMERIC 

ENZYME KINETICS 

There are many enzymes that are formed by a certain number of subunits or monomers. 

The subunits are often identical, and each subunit has its catalytic centre. If every site is 

identical and independent of the rest of sites, the union of a substrate in one catalytic centre will 

have no effect on the binding properties of the other sites; neither if they are vacant or occupied. 

This means that an n-site enzyme behaves equal to n molecules of a one-site enzyme. [27] 

Although there is no obvious interaction between the sites of an enzyme, the isolated 

monomers are usually found completely inactive. The association to a tetramer may cause 

changes in the tertiary structure of each monomer, causing changes in the substrate binding. 

Oligomerization can also contribute to the stability of enzymes in vivo. 

If the presence of substrate on one site modifies the substrate binding to the vacant sites or 

the rate of product formation of the other occupied sites, we have the substrate acting itself as a 

modifier. These modifications can be substrate activation or substrate inhibition, and are usually 

known as cooperativity. 

Cooperativity is a phenomenon displayed by systems that involve identical o similar 

molecules that act no-independently of each other. Some enzymes or receptors with multiple 

binding sites present cooperativity: the affinities for their binding sites vary with the binding of a 

ligand to a binding site. The word cooperativity arises from ñcooperationò between the active 

sites of polymeric enzymes. [16] 

In the enzyme case, we have positive cooperativity when the binding of a substrate 

molecule helps the binding of another molecule by increasing the affinities of the rest of binding 

sites. When the binding of a substrate molecule difficult the binding of another molecule by 

decreasing the affinities of the rest of binding sites we say that the enzyme presents negative 

cooperativity. [16] 

Now we are going to study some cases that are relevant to our reaction and enzyme. 
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6.1. General case 

First, we need to define our enzyme, Es,j, s is the number of sites of the enzyme: s=1 

monomer, s=2 dimer, s=4 tetrameré; and j is the number of occupied sites independently of 

their distribution.  

Defining the kinetics constants: Ὧ
ȟ

 for the formation of the substrate-enzyme complex, 

Ὧ
ȟ
 for the dissociation of the complex into the substrate and enzyme and Ὧ

ȟ
 for the formation 

of the product. The general Michaelis-Menten scheme will be: 

 
Scheme 6. Representation of a Michaelis-Menten enzymatic reaction. The enzyme (Es,j-1), with s sites and 

j-1 occupied sites, reacts with the substrate (S) to form a reversible complex (Es,j), with s sites and j 
occupied sites, that decomposes into the enzyme and the product (P). 

Michaelis constants, which are in fact dissociation pseudo-constants of the complexes, will 

be: 

ὑ
ȟ

ȟ ȟ

ȟ                                                     (Eq. 10)  

We need to define the intrinsic and the macroscopic or stoichiometric constants. An intrinsic 

constant is a constant for the site without regard to its association with other sites on the same 

molecule. It describes the equilibrium between the free substrate, the free site and the site-

substrate complex. However, a macroscopic dissociation constant describes the equilibrium 

between the free substrate, the available enzyme and the enzyme-substrate complex. [27] 

When an enzyme contains more than two sites, writing the equilibrium, in terms of 

macroscopic constants showing each site separately, becomes too difficult. But is relatively 

easy to write the equilibrium between the various complexes replacing the macroscopic 

constants by intrinsic constants. 

To convert macroscopic constants into intrinsic constants we must consider an entropic 

term that includes the different distribution ways of the substrate in the free sites. To take into 

account the distribution of the j occupied sites in the s total sites, is necessary to define the 

intrinsic constants, which do not depend on the distribution of the occupied sites. To define the 



30 Vilaplana Lopera, Núria 

 

intrinsic constants we need to introduce an entropic term in the equilibrium constant. This term 

takes into account the relation of distributions between the initial (j-1) occupied sites and the j 

sites, when a site will be filled by a substrate. 

We can calculate the entropic term as logarithm of the different combinations of occupied 

sites (j-1, j) over s total sites: 

ὰὲ ὰὲ

Ȧ

Ȧ Ȧ
Ȧ

Ȧ Ȧ

ὰὲ
ίὮρ

Ὦ
                    (Eq. 11) 

From the relationship between equilibrium constant and Gibbs energy (ὑ

ÅØÐЎὋ ὙὝϳ ÅØÐЎὌ ὙὝϳ ЎὛ Ὑϳ  and to the fact that in the Michaelis-

Menten scheme, ὑ
ȟ

 is a dissociation pseudo-constant, we are going to use reciprocal 

constants: 

ὑ
ȟ

ὑ
ȟ

                                        (Eq. 12) 

And Ὧ
ȟ
 that is a dissociation of a product, P, out of the j occupied sites, and there will be j 

possibilities that the dissociation happens: 

Ὧ
ȟ
ὮὯ

ȟ
                                               (Eq. 13) 

The velocity equation will be: 

ὺ В ὮὯ
ȟ

Ὁȟ                                (Eq. 14) 

Applying the stationary state on every intermediate we can obtain a general velocity 

equation: 

ὺ Ὁ

В
ȟ

Б ȟ

В

Б ȟ

                              (Eq. 15) 
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We consider an ideal case when the intrinsic constants are equal: 

Ὧ
ȟ ḳὯ Ƞ ὑȟ ḳὑ  

ὺ ίὯ Ὁ                                               (Eq. 16) 

В
  

Б

В
Б

                                   (Eq. 17) 

6.2. Dimer-Tetramer without equilibrium case 

Now we are going to study three different cases that are related to our enzyme (LDH): 

monomer, dimer and tetramer. 

The monomer (s=1) is always ideal; Its velocity equation is a Michaelis-Menten type of 

equation and we can define it with one Michaelis constant, ὑ , and one dissociation constant, 

Ὧ : 

                                                  (Eq. 18) 

where:  

ὺ Ὧ ὓ                                             (Eq. 19) 

For the ideal dimer case (s=2), we have also a Michaelis-Menten type velocity equation. 

With one Michaelis constant, ὑ , and one dissociation constant, Ὧ :  

                                             (Eq. 20) 

where: 

ὺ ςὯ Ὀ                                     (Eq. 21) 
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And if it is not ideal, we will have two Michaelis constants: ὑ , as a decomposition 

constant of the ES1 complex and ὑ , for the ES2 complex; and two dissociation constants: 

Ὧ , for the ES1 complex dissociation and, Ὧ , for the ES2 dissociation. 

                                           (Eq. 22) 

where: 

Ὧ
Ὀρ

Ὀς
                                                     (Eq. 23)  

ὺ ςὯ Ὀ                                          (Eq. 24) 

For the tetramer case (s=4), if it is ideal we will have also a Michaelis-Menten equation with 

ὑ  and Ὧ , as a Michaelis constant and dissociation constant, respectively: 

                                        (Eq. 25) 

where: 

ὺ τὯ Ὕ                                   (Eq. 26)  

And if it is not ideal, we will have four Michaelis constants for the decomposition of the four 

complexes: ὑ , ὑ , ὑ , ὑ ; and four dissociation constants: Ὧ , Ὧ , Ὧ , Ὧ : 

ȟ ȟ ȟ

                (Eq. 27) 

where: 

Ὧ ȟ
Ὕρ

Ὕτ
ȠὯ ȟ

Ὕς

Ὕτ
ȠὯ ȟ

Ὕσ

Ὕτ
                         (Eq. 28) 
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ὺ τὯ Ὕ                                           (Eq. 29) 

We can conclude that whether the enzyme is ideal or not, vmax is always lineal with the total 

enzyme concentration. 

6.3. Dimer-Tetramer equilibrium case 

It has been suggested that the LDH enzyme presents a dimer-tetramer equilibrium[26]. We 

are going to include this condition on the velocity equation deduction and study some cases. 

First, we need to define the dimer-tetramer equilibrium: 

 
Scheme 7. Representation of the equilibrium between the dimer and the tetramer form of the enzyme. 

The first case is the most general and considers an ideal dimer and an ideal tetramer with 

different values of Km and k2. Applying the hypothesis of stationary state and writing the 

equations in terms of intrinsic constants, we arrive at this expression: 

ὺ Ὓ ρ Ὀ Ὓ ρ Ὀ                (Eq. 30) 

ὺ ρ ρ ψὑὈ ςὯ Ὀ                   (Eq. 31) 

Which gives a non-linear variation on vmax with total enzyme concentration. 

From balance mass equation for the enzyme: 

Ὀ                           (Eq. 32) 

Now we are going to consider a particular case with KmD=KmT and different k2. The velocity 

equation follows a Michaelis-Menten curve with a maximum apparent velocity, vmaxapp, which is 

non-linear with the total enzyme concentration: 

ὺ                                                (Eq. 33) 
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ὺ ρ ψὑὈ ὺ                (Eq. 34) 

Finally, if KmD=KmT and k2D=k2T then vmaxapp= vmaxid, and the velocity equation follows a n 

ideal Michaelis-Menten curve: 

ὺ                                                  (Eq. 35) 
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7. ENZYME KINETICS IN DILUTED SOLUTION 

RESULTS 

First, we are going to examine the v0 ([pyruvate], [enzyme]) function as a surface in a three 

dimensional plot, in diluted solution conditions. This surface was obtained by plotting all the data 

points in diluted solution using Gnuplot (ver. 4.6). 

 
Figure 10. Surface of v0 ([pyruvate], [enzyme]) of the data obtained working in diluted solution conditions. 

Note that data is displayed in line-points but no fitting of the data has been performed on this figure. 

We have enforced that at [LDH] = 0 and/or [Pyruvate] = 0, the initial velocity is 0. 

Now, we are going to examine the surface by plotting the substrate concentration against 

the initial velocity and the enzyme concentration also against the initial velocity. 

First, if we plot the pyruvate concentration against the initial velocity: 
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Figure 11. Plot of [Pyruvate] against v0 of the data obtained working in solution conditions. The different 

curves are for increasing enzyme concentrations. Note that data is displayed in line-points but no fitting of 
the data has been performed on this figure.  

In Figure 11 we can see that v0 response against pyruvate concentration is of hyperbolic 

type for all the enzyme concentrations studied. 

The pyruvate concentration in half of the slope (Michaelis constant) of the [Pyruvate] against 

v0 curves is practically the same for all the enzyme concentrations. If we examine the Km values 

obtained by fitting the curves for different enzyme concentrations in table 1 (all the fittings can 

be found in Appendix 2), we can see that they are of the same order. 

 

[LDH] (mM) Km (mM) 

1.06·10-4 0.47±0.08 

2.12·10-4 0.37±0.06 

2.54·10-4 0.45±0.03 

3.18·10-4 0.39±0.05 

4.24·10-4 0.50±0.06 

6.36·10-4 0.44±0.06 

Table 1. Values of Km at different enzyme concentrations. Average value: 0.44±0.06 mM. 

 

The Km values obtained are very similar and they do not present any tendency with 

increasing values of enzyme. The average value for Km is 0.44±0.06 mM. These results are in 

agreement with other experimental data reported[8] and with the BRENDA[28] database. 
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Now, if we examine the dependence of vmax with the enzyme concentration: 

 
Figure 12. Plot of [LDH] against vmax of the data obtained working in solution conditions. The values for 

vmax were obtained from the Michaelis-Menten fittings. The linear fitting was made using Gnuplot: 
vmax=a+b·[LDH] and R=0.98717. 

In figure 12 we can see that vmax increases with linear tendency with increasing enzyme 

concentrations. According to 3.1.2.1, a linear dependence suggests that it is not necessary to 

take into account the equilibrium between its dimer and tetramer forms. Therefore, we need to 

fit our data to the cases without dimer-tetramer equilibrium. 

First, from the cases without equilibrium, we started with the ideal cases for the monomer, 

dimer o tetramer. All of them follow a Michaelis-Menten velocity equation; the expression that is 

needed for the fitting can be easily deduced from the equations in 3.1.2.2: 

ὺ                                                     (Eq. 36) 

Now, fitting all the data represented in Figure 10 to Eq. 36, we have obtained: 

 

 

Table 2. Constants (Km, k2) values obtained by fitting the data in solution media using Gnuplot(ver. 4.6). 

 

Constants Error (%) 

╚□ (mM) 0.44±0.06 13.7 

▓ (s-1) 209±14 6.8 
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As we can see in Table 2, the Michaelis constant value is in agreement with the value 

obtained averaging the Km values obtained by fitting individual curves, Table 1. The value is 

also in agreement to the general Km values reported in a recent review[29] and with the 

BRENDA[28] database. 

The value of k2 is in agreement to the general values of catalytic constants reported[29] and 

to the BRENDA[28] database. 

Second, we fitted the non-ideal cases, starting with the non-ideal dimer. The expression 

used can also be deduced from the equations presented for this case in 3.1.2.2: 

ὺ                                            (Eq. 37) 

The data does not properly fit this equation with assumable errors, and that suggests that 

our enzyme does not behave like a non-ideal dimer. 

Finally, we fitted our data to the expression for a non-ideal tetramer, which can be deduced 

from the equations described in 3.1.2.2: 

ὺ                    (Eq. 38) 

In this case also, the data does not fit properly this equation with assumable errors, and that 

suggest that our enzyme does not behave like a non-ideal tetramer.  

These results reveal that our enzyme seems to not present cooperativity, because the 

enzyme concentration has a lineal dependence on vmax, and our data can be fitted to an ideal 

model. In conclusion, the results obtained suggest that our enzyme behaves like an ideal non-

cooperative tetramer. 

  



Effect of macromolecular crowding on the kinetics of enzymatic reactions. The LDH dimer-tetramer case. 39 

 

8. ENZYME KINETICS IN CROWDED MEDIA RESULTS 

We have studied the kinetics in crowded media with two different enzyme concentrations 

and two sizes of dextran polymer. The aim of this study was to see how crowding can affect our 

enzyme kinetics. We have chosen two enzyme concentration and performed experiments 

adding 100 g·L-1 dextran concentration using two dextran sizes: 150 kDa and 500 kDa.  

We plotted the v0 against pyruvate concentration curves obtained working in solution and 

with the two dextran sizes in order to compare the effect of the presence and size of the 

crowders. The crowding effect will be compared using the variation of the kinetics constants Km 

and vmax. We are also comparing our results with the one previously obtained[8] in a similar study.  

First, for a 2.12·10-4 mM enzyme concentration we have obtained: 

 
Figure 13. Plot of [pyruvate] against v0 of the data obtained for a 2.12·10-4 mM enzyme concentration 

working in solution conditions (black squares), with a 150 kDa dextran (red circles) and 500 kDa (green 
triangles). The dextran concentration for all sizes were 100 g·L-1. The hyperbolic fittings to Michaelis-

Menten equation were made using Origin, they can also be found in Appendix 2. 
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For a 4.24·10-4 mM enzyme concentration: 

 
Figure 14. Plot of [pyruvate] against v0 of the data obtained for a 4.24·10-4 mM enzyme concentration 

working in solution conditions (black squares), with a 150 kDa dextran (red circles) and 500 kDa (green 
triangles). The dextran concentration for all sizes were 100 g·L-1. The hyperbolic fittings to Michaelis-

Menten equation were made using Origin, they can also be found in Appendix 2. 

For both enzyme concentrations, 150 kDa dextran does not seem to have an appreciable 

effect the initial velocity. However, 500 kDa dextran does have a significant effect.  

 

Conditions [LDH] (mM) vmax (M·s-1) Km (mM) k2 (M·s-1) 

Solution 2.12·10-4 (4.2±0.3)·10-5 0.37±0.06 198±14 

150 kDa dextran 2.12·10-4 (4.2±0.5)·10-5 0.4±0.1 198±24 

500 kDa dextran 2.12·10-4 (3.7±0.3)·10-5 0.52±0.07 174±14 

Solution 4.24·10-4 (9.5±0.5)·10-5 0.50±0.06 224±12 

150 kDa dextran 4.24·10-4 (8.8±0.6)·10-5 0.46±0.05 207±14 

500 kDa dextran 4.24·10-4 (7.6±0.5)·10-5 0.49±0.07 179±12 

Table 3. Values of vmax, Km and k2 at different enzyme concentrations and in different conditions.  
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From Table 3, we see that Km did not significantly change with the presence of any size of 

dextran and, in average, its value remains practically the same as in the diluted experiments. 

Dextran size (kDa) [LDH] (mM) Relative decrease in vmax 
150 2.12·10-4 0.0±0.2 

500 2.12·10-4 11.9±0.2 

150 4.24·10-4 7.4±0.4 

500 4.24·10-4 20.0±0.3 

Table 4. Values of the decrease in vmax, in respect to the solution vmax values, for different dextran sizes 
and enzyme concentrations. 

As we can see in Table 3, 150 kDa dextran has not an appreciable effect in 2.12·10-4 mM 

LDH concentration. However, for an enzyme concentration of 4.24·10-4 mM it has a slightly 

appreciable diminish effect.  

We have obtained similar results with 500 kDa dextran, it has an appreciable effect in both 

of the enzyme concentrations but it has a higher effect on the most concentrated enzyme 

concentration, 4.24·10-4 mM. 

A hypothesis that could explain this behaviour would be the presence of an auto-crowding 

effect. Considering a reaction carried out with crowding, with the same substrate concentration 

and the same crowder concentration: if we increase the enzyme concentration, the velocity of 

the reaction decreases. It happens because the enzyme itself excludes volume and hinders the 

diffusion. 

 
Figure 15. A scheme of the auto-crowding effect. The enzyme concentration increases from left to right 

images. 
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If the enzyme concentration increases, the excluded volume increases and the diffusion is 

hindered, this induces a decrease in the initial velocity. The decrease in the initial velocity 

causes a decrease in vmax.  

This hypothesis cannot be guaranteed with only two different enzyme concentrations and 

two different dextran sizes. To corroborate this effect we would need to repeat our experiments 

using higher and different enzyme concentrations and different dextran sizes. 

Our results are in contrast with the ones reported previously[8]. They obtained that the initial 

velocity (and vmax in consequence) decrease with all the dextran sizes they used, and 

specifically with the ones that we have used.  

This disagreement could be explained by the use of another experimental method. The 

reported results[8] were obtained by measuring the change in absorbance without a stopped-flow 

system: by adding the enzyme solution into the measuring cuvette full of pyruvate solution, 

mixing it manually and measuring. This procedure is not comparable to the stopped-flow 

method because the mixing of the two solutions is not complete and the enzyme has to diffuse 

through the solution. In the stopped-flow method, the enzyme and the substrate solutions mix 

perfectly in the mixing chamber and the dead time in the mixing procedure is within the 

millisecond scale.  
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9. CONCLUSIONS 

A review on the general enzyme kinetics concepts has been presented and enzyme kinetics 

models relevant to our case have been discussed. The macromolecular crowding effect and its 

usual effects on enzyme kinetics have been presented. Some studies related to macromolecular 

crowding and enzyme kinetics have been reviewed.  

A series of experiments spectrophotometrically measuring initial velocity have been 

conducted varying pyruvate and enzyme concentration. Some experiments have been carried 

out in solution media and some other experiments have been performed using dextrans with 

different sizes as a crowding agent. 

A surface plot has been obtained for the data working in solution. All the pyruvate against 

initial velocity curves obtained follow a Michaelis-Menten equation with a similar value for the 

Michaelis constant. The enzyme concentration against vmax plot reveals a linear tendency, 

suggesting that it is not necessary to take into account dimer-tetramer equilibrium. The data has 

been fitted to the dimer-tetramer non-equilibrium models proposed and an ideal non-cooperative 

behaviour has been suggested. 

The experiments carried out in crowding media show a higher decrease in the reaction 

velocity when the bigger dextran and higher enzyme concentration are used. The disagreement 

with previous experiments has been explained by the change in the methodologies used. An 

auto-crowding hypothesis is presented but corroboration by performing more experiments is 

needed.
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11. ACRONYMS 

LDH: L-lactate dehydrogenase 

NADH: Nicotinamide adenine dinucleotide (reduced form) 

NAD+: Nicotinamide adenine dinucleotide (oxidized form) 

ALKP: Alkaline phosphatase 

MDH: Malate dehydrogenase 

HRP: Horseradish peroxidase 

FRAP: Fluorescence Recovery After Photobleaching 
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APPENDIX 1: EXAMPLE OF THE OBTAINING OF A 

MICHAELIS-MENTEN FITTING 

First, with the initial velocity values obtained from the absorbance curves, for [LDH]= 

4.24·10- 4 mM in solution:  

Day [Pyruvate] (M) v0 (s-1) 

16/04/2015 

0 0 0 0 

6.80E-05 0.05132 0.05148 0.05803 

2.00E-04 0.15418 0.16029 0.16158 

3.20E-04 0.21193 0.21762 0.221 

5.00E-04 0.27132 0.27789  - 

7.50E-04 0.3442 0.3432 0.33974 

17/04/2015 

0 0 0 0 

6.80E-05 0.05483 0.05927 0.06433 

2.00E-04 0.17215 0.1919 0.18216 

3.20E-04 0.25703 0.25323 0.24045 

5.00E-04 0.29873 0.31022 0.2966 

7.50E-04 0.35142 0.34865 0.34988 

14/05/2015 

0 0 0 0 

6.80E-05 0.05943 0.05875 0.06284 

2.00E-04 0.16871 0.17755 0.18299 

3.20E-04 0.2569 0.25366 0.24129 

5.00E-04 0.29813 0.31018 0.31583 

7.50E-04 0.3647 0.36707 0.37808 

Table 5. Values of the initial velocity for different pyruvate concentrations and 4.24·10-4 enzyme 
concentration measured in different days and in solution media. 

We need to average the initial velocities: 

[Pyruvate] (M) Average v0 (s-1) 

0 0 

6.80E-05 0.058±0.005 

2.00E-04 0.17±0.01 

3.20E-04 0.24±0.02 

5.00E-04 0.30±0.02 

7.50E-04 0.35±0.01 

Table 6. Values of the average initial velocities for different pyruvate concentrations and its corresponding 
error. 
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Now, we are going to plot the average initial velocities with its error against the pyruvate 

concentration and fit them to a hyperbola. The fitting gives us Km and vmax: 

 
Figure 16. A Michaelis-Menten fitting and plot of the initial velocity against pyruvate concentration for 

4.24·10-4 mM enzyme concentration. Km=0.59±0.04 mM, vmax=0.50±0.06 s-1. 

A crowded media example is also presented. 

Day [Pyruvate] (M) v0 (s-1) 

19/05/2015 

0 0 0 0 

6.80E-05 0.04053 0.04533 0.05466 

2.00E-04 0.13067 0.1243 0.14823 

3.20E-04 0.19307 0.19578 0.21258 

5.00E-04 0.24829 0.24177 0.2554 

7.50E-04 0.27492 0.27742 0.29035 

20/05/2015 

0 0 0 0 

6.80E-05 0.03425 0.0456 - 

2.00E-04 0.11681 0.14119 0.1338 

3.20E-04 0.18478 0.17226 0.19144 

5.00E-04 0.22372 0.24044 0.2474 

7.50E-04 0.26826 0.29607 0.27476 

Table 7. Values of the initial velocity for different pyruvate concentrations and 4.24·10-4 enzyme 
concentration measured in different days and in crowded media: 500 kDa dextran, 100 g/L. 

 

 


