

Authors:

Manuel Carmona

José María Gómez

José Bosch

Manel López

Óscar Ruiz

July/2015

Barcelona, Spain.

This work is licensed under a Creative Commons Attribution-NonCommercial-

NoDerivs 3.0 Unported License

http://creativecommons.org/licenses/by-nc-nd/3.0

http://creativecommons.org/licenses/by-nc-nd/3.0/es/deed.ca

Table of contents
I. Introduction to Elmer .. 5

II. Elmer GUI ... 6

III. Elmer commands .. 10

III.1. Header section .. 11

III.2. Constants section ... 12

III.3. Simulation section .. 12

III.4. Body section .. 13

III.5. Material section .. 14

III.6. Body Force section .. 14

III.7. Initial Condition section ... 14

III.8. Boundary Condition section .. 14

III.9. Equation section ... 15

III.10. Solver section ... 15

III.11. Examples .. 16

i) Flow through a circular tube ... 16

IV. Solvers... 19

IV.1. SaveScalars .. 19

IV.2. SaveLine .. 20

IV.3. Fluidic Force .. 21

IV.4. Particle Dynamics .. 22

V. Examples ... 25

V.1. Obstructed artery (axi-symmetric) ... 25

VI. ElmerPost .. 26

VI.1. Graphics window ... 26

VI.2. Commands window ... 27

VI.3. Commands line .. 32

VII. Types of simulations ... 35

VII.1. Transient .. 35

VII.2. Coupled simulations .. 36

VII.3. Axisymmetric models-simulations .. 36

VIII. UDFs and Solver Code .. 37

VIII.1. Defining a solver .. 38

I. Introduction to Elmer

Elmer [1] is a combination of different softwares aimed at the simulation of multiphysics problems

using the Finite Element Method (FEM). Three of these softwares are: ElmerGUI, ElmerSolver,

ElmerPost. Elmer is an open source software, released under the GNU General Public License

(GPL).

Elmer can be used in two different ways (or combining both):

 By using its Graphical User Interface (GUI). (A command text file can be generated after a

GUI session).

 By using a command text file.

Elmer has not good capabilities for geometry generation and meshing. Therefore, as a general

procedure, the geometry and mesh should be imported into Elmer. It accepts different geometry and

mesh formats. Among them, it accepts the GMSH mesh format.

II. Elmer GUI

Most of the things that can be done in Elmer can be accessed by its GUI. Nevertheless, there are

some specific things that will have to be done by manipulating its input script (explained in later

chapters).

This chapter is going to explain the most common options used to define the boundaries and loads,

and the definition of the simulation parameters (type of simulation and its options).

We will assume that the geometry and the mesh of the problem has been generated by an external

software. Indeed, it will be assumed that Gmsh
2
 was used for this purpose.

Before running ElmerGUI, the best thing is to create a directory, where we will create the Elmer

project and put there the mesh file from Gmsh. We will import this mesh in Elmer, although once

imported this file will never be used again by Elmer. Now, we can run ElmerGUI. It will appear the

GUI, like shown in Figure 1.

Figure 1. Elmer GUI.

First, we will import the mesh file, with File  Open. You should be able to view the mesh that

was generated with Gmsh:

Figure 2. Importing mesh.

By using the mouse, we can change the view of the model: Left (rotation), center (pan), wheel

(zoom). You can reset the view parameters in View  Model reset view.

In order to define all the boundaries and loads of the model, we will have to go through the option

of the Model section of the menu, as shown in Figure 3.

Figure 3. Model submenu.

First of all, we will go to Model  Setup. There are several parameters that we will have to set, but

most of them we will see them at the end of this section. By now we will just change the names of

the files: 'Solver input file' and 'Post file':

Figure 4. Setup.

The parameters in the simulation options are:

 Max. output level: Refer to the quantity of information provide by Elmer during simulation.

A high level means more information.

 Coordinate system: Here we can also select axi-symmetric axis.

 Coordinate mapping: To change the relationship between the axis and the associated

numbers.

 Simulation type: For selecting steady-state or transient simulations.

 Steady state max. iter: Máximum number of iterations for obtaining convergence for every

steady state or time point. It should be bigger than 1 for nonlinear and bi-directional coupled

problems.

 Timestepping method: Here we can choose which timestepping method to use in transient

simulations.

 BDF order (Backward Difference Formula): We can choose the order of the BDF method

(approximation of the derivatives).

 Timestep intervals: Number of timesteps to be run.

 Timestep sizes: The value of the time increments in transient simulation.

 Output intervals: Frequency of the simulated timesteps to be saved to the results file.

Maybe now it is a good moment to save the project, and we will repeat this action at the end of the

process. For this, just go to File  Save Project and select the directory we already created

previously.

The next step consists in defining which equations we want to solve in every part (body) of our

model. We have to go to Model  Equation Add. It appears a window with different tabs

corresponding each one to a specific equation of a specific field (fluidic, thermal, etc.). We have to

activate each equation we want to solve, specifying to which body applies these activated equations.

More than one equation can be solved in the same body.

Figure 5. Equations setup.

In this case, we have shown the application of the fluidic equation to Body 3 (the fluidic volume).

We activate the solve for Body 3, set an appropriate name for this equation setup and change the

solver parameters that apply in each case (for example, we have set the priority number to 1). We

have to apply this also to the Body 4, but with another equations (like 'NonLinear elasticity', for

example).

Now we can set the material properties of our bodies: blood and membrane. We have to go to

Model  Material Add. In general, we have to set the corresponding properties in the General

tab and in those corresponding to the activated equations tabs.

Figure 6. Materials setup.

Next two steps are the definition of body forces and initial conditions. In our case, we are not going

to set them.

And now we set the boundary conditions. We have to go to Model  Boundary Add. If we have

some doubts on the number of the surfaces, we can double-click to show at the bottom of the

window which surface number has been selected.

Figure 7. Boundaries setup.

Here we have to apply the boundaries in all the appropriate tabs, depending on the ones that were

selected for the equations for each body.

Once we have defined all these steps, we can generate the Sif file (Elmer script file) (states for

Solver Input File) with Sif  Generate and save again the project.

And finally, we could already start running the solution with Run  Start solver.

If we have to modify the Sif file manually, we will have to avoid generating the SIF file again and

even save the project (because it generates also the Sif file). When you open the project, try also to

have de Sif file open with an editor to avoid overriding it.

III. Elmer commands

The Elmer commands file (named Solver Input File (SIF)) has a defined structure for defining the

different aspects related to the simulation of a defined mesh. Therefore, these commands define

aspects like:

 Boundary conditions.

 Loads.

 Solvers.

 Simulation parameters.

This file can be generated from zero, modified from another already existing file or create it

graphically with ElmerGUI after specifying all needed options. We will make an introduction to

ElmerGUI in the next chapter. In this chapter we will show some of the commands that we will find

in this file.

The command file has a default extension SIF (Solver Input File). This file is organized in sections.

Each section starts with the name of the section (header), followed by the commands applied to this

section and it is ended by and End command. The different headers can be:

 Header: Generally just used for indicating the location of the mesh files.

 Constants: For defining constants.

 Simulation: To provide parameters related to simulation, like the type of simulation, name of

output file, etc.

 Body n: Provides the material, body forces, equation, solver, boundary conditions and initial

conditions used for simulating the body number n. This n number identifies the body in the

mesh file.

 Material n: For defining material properties.

 Body Force n: For defining body forces.

 Initial Condition n: For defining initial conditions.

 Boundary Condition n: For defining a boundary condition.

 Equation n: For defining an equation set to be solved.

 Solver n: For defining a solver to be used.

All headers containing 'n' can be found multiple times. For distinguishing each one, we have to

provide a different integer number (n).

There are only a few things that can be put outside a section:

 Line Comments: They must start with a '!' symbol.

 MATC expressions: MATC allows to define mathematical expressions in Elmer. They are

also used to define variables that will be used afterwards in sections. In general, MATC

expressions start with a '$' symbol.

 Check Keywords "Warn": This commands activates outputting warning messages.

 echo on and echo off.

Many commands in Elmer consist of assigning a value to an Elmer keyword, by using the equal

sign ('='). For the assigned value, we can specify the type of variable (Real, Integer, Logical, String

or File) before the value is given. The value can also be a vector (example: temps(3)= 300 320 340)

or a 2D array (example: cond(2,3) = Real 3.0 2.0 1.0 \

 4.0 3.0 2.0).

(The slash is not needed in last versions of Elmer)

Each value of the vector can be obtained with round brackets: temps(2).

In some occasions, parameters can depend on variables like time, position, temperature, or on a

variable that we want to solve for. These dependencies can be defined by a table or by a MATC

expression. An example using a table for defining a thermal conductivity as function of temperature

is the following:

Conductivity = Variable Temperature

 Real

 273 95.2

 273 1000

 300 1020

 400 1000

 End

We could do a similar thing by using a MATC expression:

Conductivity = Variable Temperature

 MATC "k0*(1+alpha*tx)"

'tx' is used for the independent variable (in this case the temperature). We could have more than one

variable. In that case, we use the vector notation (example: tx(1) or tx(2))

Examples of variables that can be used are: Time, Temperature, Pressure, Displacement 1,

Coordinate 1, Electric Current 1, Magnetic Field 1, etc.

Other language aspects:

 '::': Two semicolons are used for separating two instructions in the same line.

 RUN: Instruction for executing the FEM solution.

The mesh is divided in parts called bodies. For GMSH, these bodies are related to the physical

groups created during the mesh generation.

Let's see more specific commands for each section.

III.1. Header section

In this section we will define the location and names of the different files related with Elmer. We

can just put a command for declaring the location of the mesh files:

Header

Mesh DB "directory" "meshfilename"

End

Another example:

Header

 CHECK KEYWORDS Warn

 Mesh DB "." "."

 Include Path ""

 Results Directory ""

End

We can define more things in this section, but we will not use it. Just for mentioning them, we can

indicate how many of the other sections exist in this file, we can also indicate another directory for

placing the results (Results Directory "directory") and include other paths if needed (Include Path

"directory"). We can also place here the command CHECK KEYWORDS Warn.

III.2. Constants section

In this section we define constants if we need it. The specific model that we want to solve can

require the definition of some constants. This is explained in the Models Manual of Elmer for each

specific simulation field (fluidic, thermal, etc).

Constants

 Gravity(4) = 0 -1 0 9.82

 Stefan Boltzmann = 5.67e-08

 Permittivity of Vacuum = 8.8542e-12

 Boltzmann Constant = 1.3807e-23

 Unit Charge = 1.602e-19

End

III.3. Simulation section

In this section we provide some parameters defining general aspects of the simulation procedure

itself (independently of the specific field: thermal, mechanical, etc.) that we want to perform. For

example, if the simulation is transient of stationary, coordinate system, time steps, etc. More

specifically, we can define:

 Simulation Type: With the keywords Transient or Steady State.

 Coordinate Mapping: It is a vector of numbers providing the relation between the

coordinates in the mesh file and the coordinates in the simulation. If they are the same, we

will use 1, 2 and 3. for a 3-dimensional case.

 Coordinate System: With a text keyword for defining the type of coordinate system

(Cartesian 1D, Cartesian 2D, Cartesian 3D, Polar 2D, Polar 3D, Cylindric, Cylindric

Symmetric, Axi Symmetric).

 Timestepping Method: String with five possible options: BDF, Newmark, Implicit Euler,

Explicit Euler and Crank-Nicolson.

 Timestep Intervals: Vector of integers defining the number of intervals (or substeps) inside

every time step.

 Timestep Sizes: Vector providing the size in the time units of every time step.

 Output File: Name of the results output file (.dat).

 Output Intervals: Vector of integers providing the frequency of the obtained results that will

be saved to the output file.

 Post File: Name of the results file that is understood by Elmer Post. (.ep)

 Steady State Max Iterations: Maximum number of iterations of every time calculation in

order to get a converged solution.

Simulation

 Max Output Level = 5

 Coordinate System = Cartesian

 Coordinate Mapping(3) = 1 2 3

 Simulation Type = Steady state

 Steady State Max Iterations = 1

 Output Intervals = 1

 Timestepping Method = BDF

 BDF Order = 1

 Solver Input File = tube.sif

 Post File = tube.ep

End

III.4. Body section

It is used to define, for each body of the mesh file (or created with Elmer), which other sections

apply for it. We have to specify which Equation, Material, Body Force and Initial Condition

sections applies.

Body 1

 Target Bodies(1) = 1

 Name = "Body 1"

 Equation = 1

 Material = 1

End

III.5. Material section

Here we define the properties of the material. The properties that we have to define depends on the

kind of simulation that we want to perform, like for example thermal or fluidic. These properties

have to be checked on the Elmer Models Manual.

Material 1

 Name = "Fluido"

 Viscosity = 1.0

 Density = 1e3

End

III.6. Body Force section

In this section we specified the loads applied. The loads that we have to specify depends on the kind

of simulation. We have to obtain this information from the Elmer Models Manual.

III.7. Initial Condition section

Similary to body forces, we have to check the Elmer Models Manual to obtain the initial conditions

that can be applied to our specific simulation.

III.8. Boundary Condition section

In this section, we define first the boundary where it will be applied (assigning their number to the

vector Target Boundaries). And afterwards, we define the boundaries conditions that apply to them.

The possible options have to be found in the Elmer Models Manual.

Boundary Condition 1

 Target Boundaries(1) = 2

 Name = "Output P"

 Pressure 1 = 0

 Pressure 3 = 0

 Pressure 2 = 0

End

III.9. Equation section

Each equation is related to a specific physical model (thermal, fluidic, etc). In this section we have

to indicate which equation(s) will apply to a body. It can be one, or more than one. We refer to each

equation by using the number(s) of the respective solver sections. We associate these numbers to

the Active Solvers vector.

Equation 1

 Name = "Fluidic equation"

 NS Convect = False

 Active Solvers(1) = 1

End

III.10. Solver section

Here we specify one physical model to be solved and some options related to this physical model

and which method will be used to solve it (solver). The name of each equation and the different

options can be obtained in the Elmer Models Manual. The options for solvers and their options can

be found in the Solvers Manual.

General options in this section are:

 Variable = Variable_name: For defining a variable with name Variable_name. A vector can

also be defined with names of subcomponents. Example: Variable = vp[Vel:3, P:1]

(defines a variable called vp with four components, the first three are called Vel and the

fourth component is called P).

If we only need to specify a variable with three components: Variable = -dofs 3 vp.

 We can define when to execute a solver. By default, if we have more than one solver, they

are executed in the order that they are defined. With the command Exec Solver order we can

change this. order is a string that can have values of: never, always, before timestep, after

timestep, before all, after all, before saving and after saving.

Solver 1

 Equation = Navier-Stokes

 Procedure = "FlowSolve" "FlowSolver"

 Variable = Flow Solution[Velocity:3 Pressure:1]

 Exec Solver = Always

 Stabilize = True

 Bubbles = False

 Lumped Mass Matrix = False

 Optimize Bandwidth = True

 Steady State Convergence Tolerance = 1.0e-5

 Nonlinear System Convergence Tolerance = 1.0e-7

 Nonlinear System Max Iterations = 20

 Nonlinear System Newton After Iterations = 3

 Nonlinear System Newton After Tolerance = 1.0e-3

 Nonlinear System Relaxation Factor = 1

 Linear System Solver = Iterative

 Linear System Iterative Method = BiCGStab

 Linear System Max Iterations = 500

 Linear System Convergence Tolerance = 1.0e-10

 Linear System Preconditioning = ILU0

 Linear System ILUT Tolerance = 1.0e-3

 Linear System Abort Not Converged = False

 Linear System Residual Output = 1

 Linear System Precondition Recompute = 1

End

III.11. Examples

i) Flow through a circular tube

Header

 CHECK KEYWORDS Warn

 Mesh DB "." "."

 Include Path ""

 Results Directory ""

End

Simulation

 Max Output Level = 5

 Coordinate System = Cartesian

 Coordinate Mapping(3) = 1 2 3

 Simulation Type = Steady state

 Steady State Max Iterations = 1

 Output Intervals = 1

 Timestepping Method = BDF

 BDF Order = 1

 Solver Input File = tube.sif

 Post File = tube.ep

End

Constants

 Gravity(4) = 0 -1 0 9.82

 Stefan Boltzmann = 5.67e-08

 Permittivity of Vacuum = 8.8542e-12

 Boltzmann Constant = 1.3807e-23

 Unit Charge = 1.602e-19

End

Body 1

 Target Bodies(1) = 1

 Name = "Body 1"

 Equation = 1

 Material = 1

End

Solver 1

 Equation = Navier-Stokes

 Procedure = "FlowSolve" "FlowSolver"

 Variable = Flow Solution[Velocity:3 Pressure:1]

 Exec Solver = Always

 Stabilize = True

 Bubbles = False

 Lumped Mass Matrix = False

 Optimize Bandwidth = True

 Steady State Convergence Tolerance = 1.0e-5

 Nonlinear System Convergence Tolerance = 1.0e-7

 Nonlinear System Max Iterations = 20

 Nonlinear System Newton After Iterations = 3

 Nonlinear System Newton After Tolerance = 1.0e-3

 Nonlinear System Relaxation Factor = 1

 Linear System Solver = Iterative

 Linear System Iterative Method = BiCGStab

 Linear System Max Iterations = 500

 Linear System Convergence Tolerance = 1.0e-10

 Linear System Preconditioning = ILU0

 Linear System ILUT Tolerance = 1.0e-3

 Linear System Abort Not Converged = False

 Linear System Residual Output = 1

 Linear System Precondition Recompute = 1

End

Equation 1

 Name = "Fluidic equation"

 NS Convect = False

 Active Solvers(1) = 1

End

Material 1

 Name = "Fluido"

 Viscosity = 1.0

 Density = 1e3

End

Boundary Condition 1

 Target Boundaries(1) = 2

 Name = "Output P"

 External Pressure = 0

End

Boundary Condition 2

 Target Boundaries(1) = 3

 Name = "wall"

 Noslip wall BC = True

End

Boundary Condition 3

 Target Boundaries(1) = 1

 Name = "Input vz"

 Velocity 3 = 1.0e-3

End

IV. Solvers

IV.1. SaveScalars

[Equation = SaveScalars

 Procedure = "SaveData" "SaveScalars]

It is used for two purposes: saving results to a file and calculating derived quantities (those that

depend on the results variables). Data is saved in ASCII format.

The main options for this solver are:

 Name of the file to be written: Filename = filename.

 Specify the variables to be saved: Variable i = namevar.

 Operator to be applied to variable i: Operator i = op.

 Specify a factor applied to the operator i: Coefficient i = coef.

 Restrict the n nodes (points list) to be saved: Save Points(n)= points list.

If we need to perform a calculation (like fluxes) over a boundary, we have to activate the option of

Save Scalars in the respective Boundary section (Save Scalars = True).

The different operators that we can use are: max, min, max abs, min abs, mean, variance, deviation;

volume, int mean, int variance; boundary sum, boundary dofs, boundary mean, boundary max,

boundary min, boundary max abs, boundary min abs, area, boundary int, boundary int mean;

diffusive energy, convective energy, potential energy; diffusive flux, convective flux, boundary int,

boundary int mean, area; dofs, norm, nonlinear change, steady state, nonlin iter, nonlin converged,

coupled converged, bounding box, partitions.

The same file, but adding the extension .names is created indicating the meaning of each column of

the saved data file.

This would be an example for saving all degrees of freedom at node 4:

Solver 4

 Exec Solver = After Timestep

 Equation = SaveScalars

 Procedure = "SaveData" "SaveScalars"

 Filename = "ss_d01.dat"

 Save Points(1) = 4

End

Equation 3

 Name = "Save scalar values"

 Active Solvers(1) = 4

End

This another example is for obtaining the volume flow at a boundary:

Solver 4

 Exec Solver = After Timestep

 Equation = SaveScalars

 Procedure = "SaveData" "SaveScalars"

 Filename = "ss_d02.dat"

 Moving Mesh = logical True

 Variable 1 = Velocity 2

 Operator 1 = boundary int

End

Boundary Condition 2

 Target Boundaries(1) = 2

 Name = "Po"

 Mesh Update 2 = 0

 External Pressure = 0

 Save Scalars = True

End

IV.2. SaveLine

[Equation = SaveLine

 Procedure = "SaveData" "SaveLine"]

It is used for saving result values along a line to a file, in ASCII format.

The main options for this solver are:

 Name of the file to be written: Filename = filename.

 Specify the variables to be saved: Variable i = namevar.

 Definition of the lines: Polyline Coordinates(n,dim) = pointscoordinates.

n is the number of points of the lines and dim the spatial dimensions (1, 2 or 3). n must be

even, as each line is defined by two points.

We can also indicate to do this calculation for already defined boundaries. In that case, we have to

activate the option of Save Line in the respective Boundary section (Save Line = True).

As in the case of SaveScalars, an additional file with extension .names is created.

This example shows how to save the velocity profile on a fluidic channel as function of the

position:

Solver 5

 Exec Solver = After Simulation

 Equation = SaveLine

 Procedure = "SaveData" "SaveLine"

 Filename = "sl_d01.dat"

 Variable 1 = Coordinate 1

 Variable 2 = Velocity 2

 Polyline Coordinates(2,2) = 0.0 0.0 0.5e-3 0

End

IV.3. Fluidic Force

[Equation = Fluidic Force

 Procedure = "FluidicForce" "ForceCompute"]

It is used to compute the fluidic forces applied by fluids to solid boundaries. We can obtain two

forces: the normal force and the tangential (shear) force. Additional, we can also ask for saving the

shear stresses in a file.

The main options for this solver are:

 Calculate also the viscous forces: Calculate Viscous Force = True.

 Calculate also shear stresses: Shear Stress Output = True.

For those boundaries where we want to compute these forces, we have to specify it in the

corresponding Boundary section activating the variable Calculate Fluidic Force (Calculate Fluidic

Force = True).

A file for the shear stresses is created in case it is activated. By default, its name is "shearstress.dat".

This example shows how to define this solver to get these forces:

Solver 6

 Exec Solver = After Simulation

 Equation = Fluidic Force

 Procedure = "FluidicForce" "ForceCompute"

 Calculate Viscous Force = True

 Shear Stress Output = True

End

Boundary Condition 6

Target Boundaries(1) = 7

Name = "FSI"

Fsi BC = True

Mesh Update 1 = Equals Displacement 1

Mesh Update 2 = Equals Displacement 2

Noslip wall BC = True

Calculate Fluidic Force = True

End

IV.4. Particle Dynamics

[Equation = Particle Dynamics

Procedure = "ParticleDynamics" "ParticleDynamics"]

It is used to compute the trajectories of particles taking into account their dynamics. This means that

it is taken into account their inertia, and also it is possible to take into account the interaction

between particles (collision and contact models). An application example could be the trajectory of

particles within a fluid (without explicitly modeling the particles in the fluid). The forces that are

taken into account are: gravity, electrostatic, viscous force () and buoyancy.

The main options for this solver are:

Particles: The number of particles and their spatial distribution can be indicated in several

different ways.

 Number of particles to be considered: Number of Particles = nparticles.

 Initial spatial distribution of particles: Coordinate Initialization Method = method.

Possible methods are: nodal ordered, elemental ordered, sphere random, box random and

box random cubic. For box options, we have to indicate Min Initial Coordinate i= imin and

Max Initial Coordinate i = imax. For the sphere option we have to specify Particle Cell

Radius = rad.

 Specify initial velocity of particles: Initial Velocity(n,dim) = velocities.

Random velocity distributions can be indicated with different methods: Velocity

Initialization Method = method (where we can choose thermal random, even random and

constant random). We have also to provide a random amplitude: Initial Velocity Amplitude

= amp.

 To indicate to reinitialize the position of the particles at each call, use: Reinitialize

Particles = True.

 Eliminate particles on the walls (stuck): Delete Wall Particles = True.

 We can set up: Timestep Size, Max Timestep Size, Min Timestep Size, Timestep Distance,

Timestep Courant Number, Max Characteristic Speed, Max Timestep Intervals, Max

Cumulative Time, Simulation Timestep Sizes.

Particle interaction parameters:

 Activate particle collisions and contact: Particle Particle Collision = True, Particle

Particle Contact = True.

 Activate particle box collisions and contact: Box Particle Collision = True, Box Particle

Contact = True.

Physical properties particle interaction parameters:

 Related to particle: Particle Mass, Particle Radius, Particle Gravity = True, Particle

Lift=True, Particle Damping, Particle Drag Coefficient, Particle Bounciness, Particle

Spring, Particle Charge, Particle Decay Distance.

 Related to wall-particle interaction: Wall Particle Radius, Wall Particle Spring, Wall

Particle Bounciness.

As an example, we have just obtained the bouncing of particles on the floor, with a free fall. The

domain is simply a box domain:

$tsv=0.001

Simulation

 Max Output Level = 5

 Coordinate System = Cartesian

 Coordinate Mapping(3) = 1 2 3

 Simulation Type = transient

 Output Intervals = 1

 Timestepping Method = BDF

 BDF Order = 1

 Timestep intervals = 200

 Timestep Sizes = $tsv

 Solver Input File = pd_tc01.sif

 Post File = pd_tc01.ep

End

Constants

 Gravity(4) = 0 -1 0 9.82

End

 Activate calculation of distance from particle to walls: Particle Distance = Logical True.

 For boundaries, activate the particle-wall contact: Particle Reflect = Logical True.

Timestepping for calculation of trajectories:

 Max Initial Coordinate 1 = Real 0.1

 Min Initial Coordinate 2 = Real 0

 Max Initial Coordinate 2 = Real 0.05

 Simulation Timestep Sizes = Logical True

 Timestep Size = Real $tsv

 Time Order = Integer 2

 Particle Gravity = Logical True

 Particle Mass = Real 0.1

 Particle Radius = Real 0.01

 Box Particle Periodic = Logical False

 Particle Accurate At Face = Logical True

 Particle Accurate Always = Logical True

 Particle To Field Reset = Logical True

 Statistical Info = Logical True

 Particle Info = Logical True

 Box Particle Collision = Logical True

 Wall Particle Spring = Real 100000

 Wall Particle Bounciness = Real 1

 Vtu Format = Logical True

End

Solver 2

 Equation = String "ResultOutput"

 Procedure = File "ResultOutputSolve" "ResultOutputSolver"

 Output File Name = File "kinetic"

 Output Format = String "vtu"

 Show Variable = Logical True

End

Solver 3

 Equation = String "ParticleOutput"

 Procedure = File "SaveGridData" "ParticleOutputSolver"

 Filename Prefix = String "particles"

 Output Format = String "vtu"

End

Equation 1

 Navier-Stokes = FALSE

 Active Solvers(3) = 1 2 3

End

Solver 1

 Equation = ParticleDynamics

 Procedure = "ParticleDynamics" "ParticleDynamics"

 Number of Particles = Integer $ 10

 Coordinate Initialization Method = String "box random"

 Min Initial Coordinate 1 = Real 0

V. Examples

V.1. Obstructed artery (axi-symmetric)

Animation (avi)

Note: These files can also be found at http://hdl.handle.net/2445/66496.

// Axisymmetric model of a simple artery with a membrane inside

//****************

//** Parameters **

//****************

rart=0.5e-3;	//Inner radius of the artery

Lart=10e-3;	//Length of the artery

hm=0.1e-3;	//Thickness of the external membrane

Lmb=rart*3.0/4.0;	//Length of the membrane from the artery wall.

thmb=hm;		//Thickness of the membrane.

Lc=hm/5;	//Characteristic length for elements. (We will take 2 element on the membrane thickness)

xs[]={0,rart-Lmb,rart,(rart+hm)};	//Positions of the two lines for generating the surfaces.

nxs=#xs[];			// Number of divisions in xs

ys[]={0,(Lart-thmb)/2.0,(Lart+thmb)/2.0,Lart};

nys=#ys[];			// Number of divisions in ys

ndivsy[]={25,4,25};

nnds=#ndivsy[];			// Number of elements in y direction

//**************

//** Geometry **

//**************

//Points - 4

np=newp;

p0=np;

For xval In {0:nxs-1}

	Point(np)={xs[xval],0,0,Lc};

	np=newp;

EndFor

//Lines

For xval In {0:nxs-2}

	nl=newl;

	Line(nl)={p0+xval,p0+xval+1};

EndFor

//Areas

lines0[]={1,2,3};

linesact[]={lines0[]};

areas={};

lines={};

lslatd={};

lslati={};

For dv In {0:nnds-1}

	For ln In {0:#linesact[]-1}

		//ss[]=Extrude {0,ys[dv+1]-ys[dv],0} {Line{linesact[ln]}; Layers{ndivsy[dv]}; Recombine;};

		ss[]=Extrude {0,ys[dv+1]-ys[dv],0} {Line{linesact[ln]};};

		linesact[ln]=ss[0];

		areas[] +={ss[1]};

		lslatd[] += {ss[2]};

		lslati[] += {ss[3]};

		If (ln==0)

			axis[] +={ss[3]};

		EndIf

	EndFor

	membs[] += {ss[1]};

	lext[] += {ss[2]};

EndFor

membs[] +={areas[4]};

blood[]={areas[]};

blood[] -={membs[]};

lsfsi[]={10,8,18,20,34};

//Between two bodies, the normal vector is directed towards the body with lower ID number

Physical Surface(1)={blood[]};	//Blood

Physical Surface(2)={membs[]};	//Membrane

Physical Line(1)={1,2};		//Input fluid

Physical Line(2)={linesact[0],linesact[1]};		//Output fluid

Physical Line(3)={3};		//Fixed position at input

Physical Line(4)={linesact[2]};		//Fixed position at output

Physical Line(5)={axis[]};

Physical Line(6)={lext[]};

Physical Line(7)={lsfsi[]};

Mesh.CharacteristicLengthFromPoints=0;

Mesh.CharacteristicLengthFromCurvature=0;

Mesh.CharacteristicLengthExtendFromBoundary=0;

//Attractor

Field[1]=Attractor;

Field[1].EdgesList={lsfsi[]};

Field[1].NNodesByEdge=1000;

//Minimum mesh + exponentially increasing from the distance to the curve (Attractor Field)

Field[2]=MathEval;

fv=rart/50;

Field[2].F=Sprintf("%g+F1*0.1",fv);

Background Field=2;

RefineMesh;

Archivo adjunto
Geo file

$tsv=5e-4
$Vips=4.0e-3

$PI=3.1415926
$Visc=20e-3
$Ray=1e-3
$Drag=6*PI*Visc*Ray*1e3

Header
 CHECK KEYWORDS Warn
 Mesh DB "." "."
 Include Path ""
 Results Directory ""
End

Simulation
 Max Output Level = 5
 Coordinate System = Axi Symmetric
 Coordinate Mapping(3) = 1 2 3
 Simulation Type = Transient
 Steady State Max Iterations = 3
 Output Intervals = 1
 Timestepping Method = BDF
 BDF Order = 1
 !Timestep intervals = 10
 Timestep intervals = 400
 Timestep Sizes = $tsv
 Solver Input File = awm_pd_02.sif
 Post File = awm_pd_02.ep
End

Constants
 Gravity(4) = 0 -1 0 9.82
 Stefan Boltzmann = 5.67e-08
 Permittivity of Vacuum = 8.8542e-12
 Boltzmann Constant = 1.3807e-23
 Unit Charge = 1.602e-19
End

Body 1
 Target Bodies(1) = 1
 Name = "Body 1"
 Equation = 1
 Material = 1
End

Solver 1
 Equation = Navier-Stokes
 Procedure = "FlowSolve" "FlowSolver"
 Variable = Flow Solution[Velocity:2 Pressure:1]
 Exec Solver = Always
 Stabilize = True
 Bubbles = False
 Lumped Mass Matrix = False
 Optimize Bandwidth = True
 Steady State Convergence Tolerance = 1.0e-5
 Nonlinear System Convergence Tolerance = 1.0e-7
 Nonlinear System Max Iterations = 20
 Nonlinear System Newton After Iterations = 3
 Nonlinear System Newton After Tolerance = 1.0e-3
 Nonlinear System Relaxation Factor = 1
 Linear System Solver = Iterative
 Linear System Iterative Method = BiCGStab
 Linear System Max Iterations = 500
 Linear System Convergence Tolerance = 1.0e-10
 BiCGstabl polynomial degree = 2
 Linear System Preconditioning = Diagonal
 Linear System ILUT Tolerance = 1.0e-3
 Linear System Abort Not Converged = False
 Linear System Residual Output = 1
 Linear System Precondition Recompute = 1
End

Solver 2
 Equation = ParticleDynamics
 Procedure = "ParticleDynamics" "ParticleDynamics"
 Exec Solver = Always

 Number of Particles = Integer $ 50

 Coordinate Initialization Method = String "box random"
 Min Initial Coordinate 1 = Real 0
 Max Initial Coordinate 1 = Real 0.49e-3
 Min Initial Coordinate 2 = Real 0
 Max Initial Coordinate 2 = Real 4.8e-3

 Initial Velocity(1,2) = Real 0.0 $Vips

 Simulation Timestep Sizes = Logical True
 Timestep Size = Real $tsv
 Time Order = Integer 2

 Particle Gravity = Logical False
 Particle Mass = Real 1.0e-4
 Particle Radius = Real 1.0e-5
 Particle Drag Coefficient = Real $Drag

 Box Particle Periodic = Logical False
 Particle Accurate At Face = Logical True
 Particle Accurate Always = Logical True

 !Particle To Field = Logical True
 !Particle To Field Mode = String "kinetic energy"

 Statistical Info = Logical True
 Particle Info = Logical True

 Velocity Variable Name = String "Flow Solution"
 Velocity Gradient Correction = Logical True

 Box Particle Collision = Logical False
 Wall Particle Spring = Real 100000
 Wall Particle Bounciness = Real 1
 !Wall Particle Radius = Real 0.00001

 Particle Distance = Logical True

 Particle To Field = Logical True
 Particle To Field Weight = String "distance"

 Delete Wall Particles = Logical True

 Vtu Format = Logical True
End

Solver 3
 Equation = String "ResultOutput"
 Procedure = File "ResultOutputSolve" "ResultOutputSolver"
 Exec Solver = Always
 Output File Name = File "zz_kinetic"
 Output Format = String "vtu"
 Show Variable = Logical True
End

Solver 4
 Equation = String "ParticleOutput"
 Procedure = File "SaveGridData" "ParticleOutputSolver"
 Exec Solver = Always
 Filename Prefix = String "zz_particles"
 Output Format = String "vtu"
End

Equation 1
 Name = "blood_eq"
 Active Solvers(1) = 1
End

Equation 2
 Name = "particles"
 Active Solvers(3) = 2 3 4
End

Material 1
 Name = "Blood_mat"
 Viscosity = 3e-3
 Mesh Elastic Modulus = 1
 Mesh Poisson ratio = 0.3
 Density = 1.06e3
End

Material 2
 Name = "Vessel_mat"
 Poisson ratio = 0.45
 Youngs modulus = 3e6
 Density = 1.05e3
End

Boundary Condition 1
 Target Boundaries(1) = 1
 Name = "Pi"
 Mesh Update 2 = 0
 External Pressure = -1e2
End

Boundary Condition 2
 Target Boundaries(1) = 2
 Name = "Po"
 Mesh Update 2 = 0
 External Pressure = 0
 Particle Outlet = Logical True
End

Boundary Condition 3
 Target Boundaries(1) = 3
 Name = "Axi_Symmetry"
 Velocity 1 = 0
End

Boundary Condition 4
 Target Boundaries(1) = 4
 Name = "Wall"
 Noslip wall BC = True
 Wall Particle Collision = Logical True
 Particle Reflect = Logical True

End

Archivo adjunto
Sif file

rbc_restch02.avi

Archivo adjunto
Animation

VI. ElmerPost

Although Elmer comes with two post-processors (ElmerPost and VTK), we will just keep viewing

results with ElmerPost. We can run ElmerPost through the ElmerGUI (Run  Start postprocessor)

or directly through its icon. In the first case, the current results file will be read directly, while in the

second case we will have to read the results file (.ep). After running the postprocessor, we will get

two windows: the graphics window and the commands window (Figure 8). Here we are just going

to explain some key aspects about using ElmerPost. Additionally, we can see results in other post-

processing softwares, like ParaView [3].

Figure 8. Post-processor windows.

VI.1. Graphics window

In this window, we can do the typical mouse actions that can be expected: rotation (right), zoom

(left & right), Pan (left).

In the commands window, we have some buttons controlling the view (Graphics commands),

shown in Figure 9.

Figure 9. Graphics commands.

Rotation

x-axis

Rotation

y-axis

Rotation

z-axis Unzoom zoom Reset view

Pan x-axis Pan y-axis Pan z-axis

(zoom)

Rotating

priority

Transformation priority:

translate (t), rotate (r), scale (s).

By default, when something is plotted in the graphics window, the view is rescaled in order to fit it

in the window (this is referred as 'Update Normals'). With the 'Freeze Scaling' option, we can avoid

changing the scale, keeping the last used scaling factor.

VI.2. Commands window

We have several regions on this commands window, as shown in .

Figure 10. Commands window.

In the bar menu, we can access most of the ElmerPost functionalities and configuration parameters.

The different submenus are shown in Figure 11.

Figure 11. Bar submenus.

Bar menu

Plot commands

Graphics commands

Commands history

Message console

Commands line

Refresh

In the plot commands buttons, we have mainly different ways to visualize the obtained results from

simulation. Nevertheless, the first button corresponds to the reading of the results file (generally

with extension ep, although other formats are also accepted). The options for reading the file is

shown in Figure 12.

Figure 12. Read model.

The first way to visualize results is called 'Color Mesh'. Basically, it paints the mesh with colors

depending on the values of the results obtained from a variable. In Figure 13, it is shown the

different options. In 'Color Variable', we can choose which variable to use for painting.

Figure 13. Color mesh.

An example is shown in Figure 14.

Figure 14. Color mesh example (pressure distribution).

With isocontours, we can observe lines having the same value of a certain variable. With

isosurfaces, we can obtain surfaces having the same variable value. Isosurfaces can be used for

obtained cross-sections of the model, defining the contour variable as position and another variable

for 'Color Variable'.

Figure 15. Isocontours.

Figure 16. Isosurface.

An example for isosurfaces can be seen in Figure 17.

Figure 17. Isosurface example (absolute velocity).

Many times, we will want to draw vector magnitudes as vectors. This can be done with the 'Vectors'

button.

Figure 18. Vectors.

An example is shown in Figure 19, showing the velocity vectors.

Figure 19. Vectors example (velocity).

The particles button allows us to obtain the trajectories of particles within a fluid. For this purpose

we have to set a variable ('Particle Variable') containing the initial positions of the particles to be

considered. This variable is a matrix, where the second index is referred to the particle number

(starting from 0). The first index is for the different parameters that have to be provided for each

particle. This parameters are: x, y, z, initial color guess (for example, 0), guess of the initial element

number containing the particle (for example 0).

Figure 20. Particles.

As an example, we have used a simple 2D axisymmetric fluidic problem. We have defined the

'Particle Variable' named as part in the following way:

 math nps=5;

 math rad=5e-4;

 do i 0 (nps-1) {

 math posx=$i*rad/nps;

 math part(0,$i)=posx;

 math part(1,$i)=0;

 math part(2,$i)=0;

 math part(3,$i)=0;

 math part(4,$i)=0;

 }

Click 'Apply' and then 'Advance' repeatedly in order to obtain the particle positions as time goes on.

One intermediate result is shown in Figure 21.

Figure 21. Particles position after some time, starting all at the input.

The color scale, provided with the colored bar in the graphics window, can be setup with the 'Color

Scale' button.

Figure 22. Color scale.

The graphics commands are used to change orientation, pan, zoom, etc. We can also fix the scale of

the plotted results (with the 'Freeze Scaling' button).

We have a commands line. We can introduce commands in the TCL/TK language and also in the

MATC language. MATC is used for managing mathematical calculations using matrices (generally

filled with the results data). In this last case (MATC) we have to start the command with 'math'. We

are just going to use it for creating some plots. A more detailed explanation is given in a next

section.

Additionally, we have a console where the commands history is plotted and another console for

messages.

VI.3. Commands line

As mentioned previously, we have a commands line where we can add instructions in TCL/TK

language and also in MATC language. These commands can be entered manually, or included in a

file, executing it with the command 'source file'. The first language (TCL/TK) is an "external"

language, quite used in some other softwares. Detailed information can be found in books and

through internet. The second language (MATC) is a quite specific language for Elmer, that is used

for performing calculations with matrices. Elmer documentation comes with a MATC tutorial. We

are just going to comment some of the most important aspects of these two languages and apply it

to some examples.

In the Time Step Control Window, we can refer to the current time step with the variable t. And the

vector position for a given current time step can be obtained with time(t).

Before starting looking at these two languages, we have to know that, when results are read by

ElmerPost, the results are saved in matrices. The names of the variables can be seen in the "Read

Model" window. As an example, for a fluidic simulation we will have the variables Velocity and

Pressure. Obviously, these matrices contains the velocity and pressure results. They have as many

rows as components (Velocity has three rows, each corresponding to the velocities in directions x, y

and z respectively, while Pressure only have one row). And they have as many columns as nodes

we have in the model. In a transient simulation, the second index corresponds to the time point (we

can obtain it with the function time(time step)). Depending on the type of simulation (for example,

for transient simulations) there can be more indexes. The relationship between the nodes and the

column index is given by another matrix called nodes. This matrix contains the position of the

nodes of our model. It has three rows corresponding to the x, y and z positions. And it has as many

columns as nodes in our model. If we modify the nodes matrix, we will change the position of the

nodes, and so it will be shown in the graphics windows. This can be useful sometimes for a more

convenient visualization of the model/results, as we will see later.

With the display command, we can refresh the graphics window.

Let's see some basics of the TCL/TK programming language:

 Comments: #

 Command syntax: command arg1 arg2 arg3

 Variables:

 Not declared.

 Assign a value: set var val.

 In order to obtain the value of a variable, we have to use $var.

 Command info to obtain information about variables (among other things).

 Text strings can be grouped with quotes ("") or rounded brackets ({}).

 All variables are strings. If not, they have to be indicated explicitly with the

command expr.

 Expressions can be grouped with square brackets ([]).

 Mathematical functions: abs(x), acos(x), asn(x), atan(x), atan2(y,x), ceil (x), cos(x), cosh(x),

double(x), exp (x), floor(x), fmod(x,y), hypot(x,y), int(x), log(x), log10(x), pow(x,y), rand(),

round(x), sin(x), sinh(x), sqrt(x), srand(arg), tan(x), tanh(x).

 Conditional: if condition then action.

 For loop: for {inicialization} {condition} {increment} instruction.

 Foreach loop: foreach variable list instruction.

 While loop: while condition instruction.

MATC is a library used for evaluating mathematical expressions with matrices. These expressions

can be used in the SIF file, also can be evaluated during simulation, and it can also be used in

ElmerPost. When a MATC expression is going to be used in ElmerPost, we have to include the

word math at the beginning of the expression. Some basic aspects of MATC are:

 Two types of variables: matrices and strings.

 Ranges can be specified: Examples: 0:5, 5:0.

 Conditional if: if (expr) expr; else expr;.

 For loop: for (i=vector) expr;.

 While loop: while(expr) expr;.

 Function:

 function name(arg1,arg2,...)
 ! Optional function description (seen with help("name"))
 import var1 #import global variable
 export var2 #convert a local variable to global
 expr;
 _name = value #Returned value

 Operators: ’, @, ~, ^, *, #, /, +, -, ==, <>, <, >, <=, >=, :, &, |, ?, %, =.

 Functions: funcdel(name), funclist(name), sprintf(fmt[,vec]), sscanf(str,fmt), matcvt(matrix,

type), cvtmat(special,type), eval(str), source(name), help or help(”symbol”), fread(fp,n),

fscanf(fp,fmt), fgets(fp), fwrite(fp,buf,n), fprintf(fp,fmt[,vec]), fputs(fp,str), fopen(name,

mode), freopen(fp,name,mode), fclose(fp), save(name,a[,ascii_flag]), load(name),

min(matrix), max(matrix), sum(matrix), trace(matrix), det(matrix), inv(matrix), tril(x),

triu(x), eig(matrix), jacob(a,b,eps), lud(matrix), hesse(matrix), eye(n), zeros(n,m), ones(n,

m), rand(n,m), diag(matrix) or diag(vector), vector(start,end,inc), size(matrix),

resize(matrix,n,m), where(a), exists(name), who, format(precision).

 Mathematical functions: abs(x), acos(x), asin(x), atan(x), ceil(x), cos(x), cosh(x), exp(x),

floor(x), ln(x), log(x), pow(x,y), sin(x), sinh(x), sqrt(x), tan(x), tanh(x).

VII. Types of simulations

VII.1. Transient

In Elmer we can specify how many points in time we want to simulation what is the time increment

between these points in time. Each point in time is a time step (TimeStep variable, taking values

from 1 until the number of time steps) and the time increment is the time size. The number of time

steps is defined with the 'Timestep Intervals' option. For defining the time increment between

timesteps we use the 'Timestep Sizes' option. Both options are vectors, allowing us to define

different "time sections" during the simulation. As an example, if we want to make a transient

simulation that is lasting 10s in total but with two different time sections: the first one lasting 1s

second (solved every 0.1s) and the second one arriving up to 10s (solved every 1s) we could set:

Timestep Sizes(2) = 0.1 1

Timestep Intervals(2) = 10 9

We can set a non-uniform time distribution by using the command 'Timestep Size' with TimeStep as

variable (this variable takes the values from 1 up to the number of intervals, as mentioned before).

Example:

Timestep Size = Variable TimeStep

 Real MATC "t0*1.05^(tx-1)"

tx in the MATC expressions refers to the variable TimeStep.

In the previous expression, the first time point simulated is at t0. The second at t0+t0·1.5. The third

at t0+t0·1.5+t0·1.5·1.5. And so on. If we want to start the simulation at a given t0, and starting from

this time point a logarithmic scale, we could use a function in the SIF file in order to provide the

time increments to 'Timestep Size'. For example, we can include at the beginning of the SIF file

(outside of any section) the following code:

$ti=1e-4

$tf=1e-1

$nps=60

$a=ti

$b=(tf/ti)^(1.0/(nps-1))

$ function calctsize(cts) import ti,tf,nps,a,b {\

 if (cts==1) {\

 _calctsize=ti;\

 }\

 else {\

 _calctsize=a*(b^(cts-1))*(1-1/b);\

 }\

 }

And then we can specify in the Simulation section:

Timestep intervals = $nps

Timestep Size = Variable TimeStep

 Real MATC "calctsize(tx)"

For setting parameters depending on time, we have to create tables, with the variable Time.

Body Force 1

 Stress Bodyforce 2 = Variable Time

 Real

 0.0 -1.0

 4.0 -1.0

 4.01 0.0

 5.0 0.0

 End

End

Initial conditions are generally needed for transient simulation. Nevertheless, usually these

conditions are taken zero.

VII.2. Coupled simulations

Coupled simulations refer to the problems where more than one field interacting each other has to

be solved in a common domain or in the boundary between two domains. They are specified in

solvers and boundary conditions.

We have to mention the difference in one-directional coupling and bi-directional coupling. In case

of a directional coupling, we will have to set (in Setup) the “Steady state max. iter” to a sufficiently

high number to be sure that the whole coupling problem converges.

VII.3. Axisymmetric models-simulations

In Elmer, the axis of rotation is always the y axis. We have to take it into account for building the

model. Also, we have to add the boundary conditions associated with the rotation axis.

VIII. UDFs and Solver Code

Elmer allows to incorporate compiled functions as simple functions and as new solvers. This code

have to be implemented in Fortran 90, compiled alone and incorporated to Elmer as an executable

of a shared object. To incorporate this functions in Elmer, we will have to write the following line

in the sif file:

Procedure "filename" "procedure"

The shared object file (filename) can have different functions (procedures). With this instruction,

we select the specific function of the file.

Most of the functions provided by Elmer are located in the DefUtils module. Moreover, the main

data structure is an element, and not a node. The type Element_t contains the element information.

The data in each section of the sif file is accessed through a pointer of the type ValueList_t. The

functions providing these pointers have a name starting with Get, followed by a name related to the

section. For example, GetSimulation(). Similarly, we can also get the information for a specific

element, by using, for example, GetMaterial(Element, Found). Found (optional) will be set to

TRUE if the requested information was obtained successfully. If Element is not provided, it is used

the ‘current’ element. For getting constants, we use functions like val=GetInteger(List, Name,

Found).

If we want to obtain values at specific mesh locations, we have to use the function val(:) =

GetReal(List, Name, Found, Element). It returns a real array with the values for all nodes of the

indicated element.

The real variable Time can be used in the sif file.

The information from within Elmer solver can be obtained through the type Solver_t. Different

functions are: GetElementNOFNodes(Element), GetActiveElement(ElementNumber),

GetBoundaryElement(ElementNumber), GetElementNodes(ElementNodes, Element, Solver)

(ElementNodes is a pointer of type Nodes_t; ElementNodes%x(i) is the x coordinate of the indicated

node by i), U = Element % Type % NodeU(i) (local coordinates) (similarly for V and W), Normal =

NormalVector(BoundaryElement, Nodes, U, V, CheckDirection).

For obtaining the nodal values of field variables we use the functions GetScalarLocalSolution(vals,

name, Element, Solver), GetVectorLocalSolution(vals, name, Element, Solver).

For obtaining the values, as before, but for the complete mesh, we have to use the function

VariableGet(Solver % Mesh % Variables, ’Variable’). It returns a pointer of the Variable_t type.

In Elmer, the time is obtained from a pointer of type Time_t, and considering it as a variable.

Therefore, we can get it with the command Tv => VariableGet(Solver % Mesh % Variables,

’Time’) and Tmp = Tv % Values(1).

We can show messages by using three functions: Info(’FunctionName’,’The displayed message’,

level=levelnumber), Warn(’FunctionName’,’The displayed warning’), Fatal(’FunctionName’,’The

displayed error message’). For defining the message to be displayed, we can use the function

WRITE.

We can write user defined functions for obtaining nodal values. The format is the following:

FUNCTION name_func (model, n, var) RESULT(result)

END FUNCTION name_func

n is the node, var are input variables and result is the returned value of the function.

VIII.1. Defining a solver

First of all, we have to distinguish between the solver code itself and the solver interface. Evidently,

the most important part for a solver is the code development. But you can also build an interface in

Elmer in order to introduce the different parameters of the solver. This interface is not compulsory

(all solver information can be given in the sif file), but it is desirable.

For defining a solver, first of all we have to obtain the linearized partial differential equations

(PDEs) of our problem. The general expression for these equations is given by:

where uj is the degree of freedom (DOF) of our problem in the j direction (for example, fluid

velocity along x direction), Mij is the mass matrix, Kij is the stiffness matrix and Fi is the force

vector in the i direction. Basically, we have to provide the different matrices and vectors of this

equation.

The solver subroutine has to include the following sections:

 Initialization.

 Start non-linear iterations.

 Matrix assembly for domain (or bulk) elements (through element loop).

 Matrix assembly for von Neumann and Newton conditions at boundary element (boundary

elements loop).

 Specify Dirichlet boundary conditions.

 Solve the problem.

 Check relative change of norms < Nonlinear Tolerance or nonlinear max. iterations within

the nonlinear loop.

You can find many examples of the already implemented solvers in the Elmer source code, in the

directory elmerfem-devel\fem\src\modules. Here, we are just going to provide a rough view of the

code structure. It is important to divide the different tasks in subroutines.

We are just going to explain a simple solver, provided by Elmer, mostly for educational purposes. It

is the advection-diffusion-reaction solver, with file name ‘ModelPDE.F90’. First, we provide the

code, and then we will explain the different sections. As it is stated in the file, it can also be used as

a starting point to generate more complex solvers. The code is the following:

!---

!> A prototype solver for advection-diffusion-reaction equation,

!> This equation is generic and intended for education purposes

!> but may also serve as a starting point for more complex solvers.

!--

SUBROUTINE AdvDiffSolver(Model,Solver,dt,TransientSimulation)

!--

 USE DefUtils

 IMPLICIT NONE

!--

 TYPE(Solver_t) :: Solver

 TYPE(Model_t) :: Model

 REAL(KIND=dp) :: dt

 LOGICAL :: TransientSimulation

!--

! Local variables

!--

 TYPE(Element_t),POINTER :: Element

 REAL(KIND=dp) :: Norm

 INTEGER :: n, nb, nd, t, active

 INTEGER :: iter, maxiter

 LOGICAL :: Found

!--

 maxiter = ListGetInteger(GetSolverParams(),&

 'Nonlinear System Max Iterations',Found,minv=1)

 IF(.NOT. Found) maxiter = 1

 ! Nonlinear iteration loop:

 !--------------------------

 DO iter=1,maxiter

 ! System assembly:

 !----------------

!Initialize the system and do the assembly:

 CALL DefaultInitialize()

 Active = GetNOFActive()

 DO t=1,Active

 Element => GetActiveElement(t)

 n = GetElementNOFNodes()

 nd = GetElementNOFDOFs()

 nb = GetElementNOFBDOFs()

 CALL LocalMatrix(Element, n, nd+nb)

 END DO

 CALL DefaultFinishBulkAssembly()

 Active = GetNOFBoundaryElements()

 DO t=1,Active

 Element => GetBoundaryElement(t)

 IF(ActiveBoundaryElement()) THEN

 n = GetElementNOFNodes()

 nd = GetElementNOFDOFs()

 nb = GetElementNOFBDOFs()

 CALL LocalMatrixBC(Element, n, nd+nb)

 END IF

 END DO

 CALL DefaultFinishBoundaryAssembly()

 CALL DefaultFinishAssembly()

The first step in the subroutine is to declare

some needed constants and variables and

their types, and also the libraries to be used.

Start nonlinear iterations.

Matrix assembly for domain elements.

Matrix assembly for von Neumann and

Newton conditions at boundary element.

Solver subroutine. dt: timestep size,

TransientSimulation: logical value.

 CALL DefaultDirichletBCs()

 ! And finally, solve:

 !--------------------

 Norm = DefaultSolve()

 IF(Solver % Variable % NonlinConverged == 1) EXIT

 END DO

CONTAINS

! Assembly of the matrix entries arising from the bulk elements

!--

 SUBROUTINE LocalMatrix(Element, n, nd)

!--

 INTEGER :: n, nd

 TYPE(Element_t), POINTER :: Element

!--

 REAL(KIND=dp) :: diff_coeff(n), conv_coeff(n),react_coeff(n), &

 time_coeff(n), D,C,R, rho,Velo(3,n),a(3), Weight

 REAL(KIND=dp) :: Basis(nd),dBasisdx(nd,3),DetJ,LoadAtIP

 REAL(KIND=dp) :: MASS(nd,nd), STIFF(nd,nd), FORCE(nd), LOAD(n)

 LOGICAL :: Stat,Found

 INTEGER :: i,t,p,q,dim

 TYPE(GaussIntegrationPoints_t) :: IP

 TYPE(ValueList_t), POINTER :: BodyForce, Material

 TYPE(Nodes_t) :: Nodes

 SAVE Nodes

!--

 dim = CoordinateSystemDimension()

 CALL GetElementNodes(Nodes)

 MASS = 0._dp

 STIFF = 0._dp

 FORCE = 0._dp

 LOAD = 0._dp

 BodyForce => GetBodyForce()

 IF (ASSOCIATED(BodyForce)) &

 Load(1:n) = GetReal(BodyForce,'field source', Found)

 Material => GetMaterial()

 diff_coeff(1:n)=GetReal(Material,'diffusion coefficient',Found)

 react_coeff(1:n)=GetReal(Material,'reaction coefficient',Found)

 conv_coeff(1:n)=GetReal(Material,'convection coefficient',Found)

 time_coeff(1:n)=GetReal(Material,'time derivative coefficient',Found)

 Velo = 0._dp

 DO i=1,dim

 Velo(i,1:n)=GetReal(Material,&

 'convection velocity '//TRIM(I2S(i)),Found)

 END DO

 ! Numerical integration:

 !-----------------------

 IP = GaussPoints(Element)

 DO t=1,IP % n

 ! Basis function values & derivatives at the integration point:

 !--

 stat = ElementInfo(Element, Nodes, IP % U(t), IP % V(t), &

 IP % W(t), detJ, Basis, dBasisdx)

 ! The source term at the integration point:

 !--

 LoadAtIP = SUM(Basis(1:n) * LOAD(1:n))

Specify Dirichlet boundary conditions.

Solve the problem.

Check relative change of norms < Nonlinear

Tolerance or nonlinear max. iterations

within the nonlinear loop.

 rho = SUM(Basis(1:n)*time_coeff(1:n))

 a = MATMUL(Velo(:,1:n),Basis(1:n))

 D = SUM(Basis(1:n)*diff_coeff(1:n))

 C = SUM(Basis(1:n)*conv_coeff(1:n))

 R = SUM(Basis(1:n)*react_coeff(1:n))

 Weight = IP % s(t) * DetJ

 ! diffusion term (D*grad(u),grad(v)):

 ! -----------------------------------

 STIFF(1:nd,1:nd) = STIFF(1:nd,1:nd) + Weight * &

 D * MATMUL(dBasisdx, TRANSPOSE(dBasisdx))

 DO p=1,nd

 DO q=1,nd

 ! advection term (C*grad(u),v)

 ! -----------------------------------

 STIFF (p,q) = STIFF(p,q) + Weight * &

 C * SUM(a(1:dim)*dBasisdx(q,1:dim)) * Basis(p)

 ! reaction term (R*u,v)

 ! -----------------------------------

 STIFF(p,q) = STIFF(p,q) + Weight * R*Basis(q) * Basis(p)

 ! time derivative (rho*du/dt,v):

 ! ------------------------------

 MASS(p,q) = MASS(p,q) + Weight * rho * Basis(q) * Basis(p)

 END DO

 END DO

 FORCE(1:nd) = FORCE(1:nd) + Weight * LoadAtIP * Basis(1:nd)

 END DO

 IF(TransientSimulation) CALL Default1stOrderTime(MASS,STIFF,FORCE)

 CALL LCondensate(nd-nb, nb, STIFF, FORCE)

 CALL DefaultUpdateEquations(STIFF,FORCE)

!--

 END SUBROUTINE LocalMatrix

!--

! Assembly of the matrix entries arising from the Neumann and Robin conditions

!--

 SUBROUTINE LocalMatrixBC(Element, n, nd)

!--

 INTEGER :: n, nd

 TYPE(Element_t), POINTER :: Element

!--

 REAL(KIND=dp) :: Flux(n), Coeff(n), Ext_t(n), F,C,Ext, Weight

 REAL(KIND=dp) :: Basis(nd),dBasisdx(nd,3),DetJ,LoadAtIP

 REAL(KIND=dp) :: STIFF(nd,nd), FORCE(nd), LOAD(n)

 LOGICAL :: Stat,Found

 INTEGER :: i,t,p,q,dim

 TYPE(GaussIntegrationPoints_t) :: IP

 TYPE(ValueList_t), POINTER :: BC

 TYPE(Nodes_t) :: Nodes

 SAVE Nodes

!--

 BC => GetBC()

 IF (.NOT.ASSOCIATED(BC)) RETURN

 dim = CoordinateSystemDimension()

 CALL GetElementNodes(Nodes)

 STIFF = 0._dp

 FORCE = 0._dp

 LOAD = 0._dp

 Flux(1:n) = GetReal(BC,'field flux', Found)

 Coeff(1:n) = GetReal(BC,'robin coefficient', Found)

 Ext_t(1:n) = GetReal(BC,'external field', Found)

 ! Numerical integration:

 !-----------------------

 IP = GaussPoints(Element)

 DO t=1,IP % n

 ! Basis function values & derivatives at the integration point:

 !--

 stat = ElementInfo(Element, Nodes, IP % U(t), IP % V(t), &

 IP % W(t), detJ, Basis, dBasisdx)

 Weight = IP % s(t) * DetJ

 ! Evaluate terms at the integration point:

 !--

 ! Given flux:

 ! -----------

 F = SUM(Basis(1:n)*flux(1:n))

 ! Robin condition (C*(u-u_0)):

 ! ---------------------------

 C = SUM(Basis(1:n)*coeff(1:n))

 Ext = SUM(Basis(1:n)*ext_t(1:n))

 DO p=1,nd

 DO q=1,nd

 STIFF(p,q) = STIFF(p,q) + Weight * C * Basis(q) * Basis(p)

 END DO

 END DO

 FORCE(1:nd) = FORCE(1:nd) + Weight * (F + C*Ext) * Basis(1:nd)

 END DO

 CALL DefaultUpdateEquations(STIFF,FORCE)

!--

 END SUBROUTINE LocalMatrixBC

!--

! Perform static condensation in case bubble dofs are present

!--

 SUBROUTINE LCondensate(N, Nb, K, F)

!--

 USE LinearAlgebra

 INTEGER :: N, Nb

 REAL(KIND=dp) :: K(:,:),F(:),Kbb(Nb,Nb), &

 Kbl(Nb,N), Klb(N,Nb), Fb(Nb)

 INTEGER :: m, i, j, l, p, Ldofs(N), Bdofs(Nb)

 IF (Nb <= 0) RETURN

 Ldofs = (/ (i, i=1,n) /)

 Bdofs = (/ (i, i=n+1,n+nb) /)

 Kbb = K(Bdofs,Bdofs)

 Kbl = K(Bdofs,Ldofs)

 Klb = K(Ldofs,Bdofs)

 Fb = F(Bdofs)

 CALL InvertMatrix(Kbb,nb)

 F(1:n) = F(1:n) - MATMUL(Klb, MATMUL(Kbb, Fb))

 K(1:n,1:n) = K(1:n,1:n) - MATMUL(Klb, MATMUL(Kbb, Kbl))

!--

 END SUBROUTINE LCondensate

!--

!--

END SUBROUTINE AdvDiffSolver

!--

The format of the solver interface xml file is:

<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE edf>

<edf version="1.0" >

 <PDE Name=" AdvDiff" >

 <Name>AdvDiff</Name>

 <BodyForce>

 <Parameter Widget="Label" > <Name> Properties </Name> </Parameter>

 <Parameter Widget="Edit" >

 <Name> Source </Name>

 <Type> String </Type>

 <Whatis> Give the source term. </Whatis>

 </Parameter>

 </BodyForce>

 <Solver>

 <Parameter Widget="Edit" >

 <Name> Procedure </Name>

 <DefaultValue> "AdvDiff" "AdvDiffSolver" </DefaultValue>

 </Parameter>

 <Parameter Widget="Edit">

 <Name> Variable </Name>

 <DefaultValue> Potential</DefaultValue>

 </Parameter>

 </Solver>

 <BoundaryCondition>

 <Parameter Widget="Label" > <Name> Dirichlet conditions </Name> </Parameter>

 <Parameter Widget="Edit">

 <Name> Potential </Name>

 <Whatis> Give potential value for this boundary. </Whatis>

 </Parameter>

 </BoundaryCondition>

 </PDE>

</edf>

Acronyms:

2D: Two-dimensional

3D: Three-dimensional

CAD: Computer Aided Design

DOF: Degree of Freedom

FEM: Finite Element Method

GPL: General Public License

PDE: Partial Differential Equation

[1] http://www.csc.fi/english/pages/elmer.

[2] M. Carmona, J.M. Gómez, J. Bosch, M. López, "GMSH - Guide for mesh generation v02",

Universitat de Barcelona, 2014.

 http://hdl.handle.net/2445/63888.

[3] http://www.paraview.org.

