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I. Introduction to Elmer 

Elmer [1] is a combination of different softwares aimed at the simulation of multiphysics problems 

using the Finite Element Method (FEM). Three of these softwares are: ElmerGUI, ElmerSolver, 

ElmerPost. Elmer is an open source software, released under the GNU General Public License 

(GPL). 

Elmer can be used in two different ways (or combining both): 

 By using its Graphical User Interface (GUI). (A command text file can be generated after a 

GUI session). 

 By using a command text file.  

Elmer has not good capabilities for geometry generation and meshing. Therefore, as a general 

procedure, the geometry and mesh should be imported into Elmer. It accepts different geometry and 

mesh formats. Among them, it accepts the GMSH mesh format. 

 

  



    

 

II. Elmer GUI 

Most of the things that can be done in Elmer can be accessed by its GUI. Nevertheless, there are 

some specific things that will have to be done by manipulating its input script (explained in later 

chapters). 

This chapter is going to explain the most common options used to define the boundaries and loads, 

and the definition of the simulation parameters (type of simulation and its options). 

We will assume that the geometry and the mesh of the problem has been generated by an external 

software. Indeed, it will be assumed that Gmsh 
2
 was used for this purpose. 

Before running ElmerGUI, the best thing is to create a directory, where we will create the Elmer 

project and put there the mesh file from Gmsh. We will import this mesh in Elmer, although once 

imported this file will never be used again by Elmer. Now, we can run ElmerGUI. It will appear the 

GUI, like shown in Figure 1. 

 

Figure 1. Elmer GUI. 

First, we will import the mesh file, with File  Open. You should be able to view the mesh that 

was generated with Gmsh: 

 

Figure 2. Importing mesh. 



    

 

 

By using the mouse, we can change the view of the model: Left (rotation), center (pan), wheel 

(zoom). You can reset the view parameters in View  Model reset view. 

In order to define all the boundaries and loads of the model, we will have to go through the option 

of the Model section of the menu, as shown in Figure 3. 

 

Figure 3. Model submenu. 

 

First of all, we will go to Model  Setup. There are several parameters that we will have to set, but 

most of them we will see them at the end of this section. By now we will just change the names of 

the files: 'Solver input file' and 'Post file': 

 

Figure 4. Setup. 

The parameters in the simulation options are: 

 Max. output level: Refer to the quantity of information provide by Elmer during simulation. 

A high level means more information. 

 Coordinate system: Here we can also select axi-symmetric axis. 



    

 

 Coordinate mapping: To change the relationship between the axis and the associated 

numbers. 

 Simulation type: For selecting steady-state or transient simulations. 

 Steady state max. iter: Máximum number of iterations for obtaining convergence for every 

steady state or time point. It should be bigger than 1 for nonlinear and bi-directional coupled 

problems. 

 Timestepping method: Here we can choose which timestepping method to use in transient 

simulations. 

 BDF order (Backward Difference Formula): We can choose the order of the BDF method 

(approximation of the derivatives). 

 Timestep intervals: Number of timesteps to be run.  

 Timestep sizes: The value of the time increments in transient simulation. 

 Output intervals: Frequency of the simulated timesteps to be saved to the results file. 

Maybe now it is a good moment to save the project, and we will repeat this action at the end of the 

process. For this, just go to File  Save Project and select the directory we already created 

previously. 

The next step consists in defining which equations we want to solve in every part (body) of our 

model. We have to go to Model  Equation Add. It appears a window with different tabs 

corresponding each one to a specific equation of a specific field (fluidic, thermal, etc.). We have to 

activate each equation we want to solve, specifying to which body applies these activated equations. 

More than one equation can be solved in the same body. 

 

Figure 5. Equations setup. 

In this case, we have shown the application of the fluidic equation to Body 3 (the fluidic volume). 

We activate the solve for Body 3, set an appropriate name for this equation setup and change the 

solver parameters that apply in each case (for example, we have set the priority number to 1). We 

have to apply this also to the Body 4, but with another equations (like 'NonLinear elasticity', for 

example). 

Now we can set the material properties of our bodies: blood and membrane. We have to go to 

Model  Material Add. In general, we have to set the corresponding properties in the General 

tab and in those corresponding to the activated equations tabs. 



    

 

 

Figure 6. Materials setup. 

Next two steps are the definition of body forces and initial conditions. In our case, we are not going 

to set them. 

And now we set the boundary conditions. We have to go to Model  Boundary Add. If we have 

some doubts on the number of the surfaces, we can double-click to show at the bottom of the 

window which surface number has been selected. 

 

Figure 7. Boundaries setup. 

Here we have to apply the boundaries in all the appropriate tabs, depending on the ones that were 

selected for the equations for each body. 

Once we have defined all these steps, we can generate the Sif file (Elmer script file) (states for 

Solver Input File) with Sif  Generate and save again the project. 

And finally, we could already start running the solution with Run  Start solver. 

If we have to modify the Sif file manually, we will have to avoid generating the SIF file again and 

even save the project (because it generates also the Sif file). When you open the project, try also to 

have de Sif file open with an editor to avoid overriding it. 

 



    

 

III. Elmer commands 

The Elmer commands file (named Solver Input File (SIF)) has a defined structure for defining the 

different aspects related to the simulation of a defined mesh. Therefore, these commands define 

aspects like: 

 Boundary conditions. 

 Loads. 

 Solvers. 

 Simulation parameters. 

This file can be generated from zero, modified from another already existing file or create it 

graphically with ElmerGUI after specifying all needed options. We will make an introduction to 

ElmerGUI in the next chapter. In this chapter we will show some of the commands that we will find 

in this file. 

The command file has a default extension SIF (Solver Input File). This file is organized in sections. 

Each section starts with the name of the section (header), followed by the commands applied to this 

section and it is ended by and End command. The different headers can be: 

 Header: Generally just used for indicating the location of the mesh files. 

 Constants: For defining constants. 

 Simulation: To provide parameters related to simulation, like the type of simulation, name of 

output file, etc. 

 Body n: Provides the material, body forces, equation, solver, boundary conditions and initial 

conditions used for simulating the body number n. This n number identifies the body in the 

mesh file. 

 Material n: For defining material properties. 

 Body Force n: For defining body forces. 

 Initial Condition n: For defining initial conditions. 

 Boundary Condition n: For defining a boundary condition. 

 Equation n: For defining an equation set to be solved. 

 Solver n: For defining a solver to be used. 

All headers containing 'n' can be found multiple times. For distinguishing each one, we have to 

provide a different integer number (n). 

There are only a few things that can be put outside a section: 

 Line Comments: They must start with a '!' symbol. 

 MATC expressions: MATC allows to define mathematical expressions in Elmer. They are 

also used to define variables that will be used afterwards in sections. In general, MATC 

expressions start with a '$' symbol. 

 Check Keywords "Warn": This commands activates outputting warning messages. 

 echo on and echo off. 



    

 

Many commands in Elmer consist of assigning a value to an Elmer keyword, by using the equal 

sign ('='). For the assigned value, we can specify the type of variable (Real, Integer, Logical, String 

or File) before the value is given. The value can also be a vector (example: temps(3)= 300 320 340) 

or a 2D array (example: cond(2,3) = Real 3.0 2.0 1.0 \ 

             4.0 3.0 2.0). 

(The slash is not needed in last versions of Elmer) 

Each value of the vector can be obtained with round brackets: temps(2). 

In some occasions, parameters can depend on variables like time, position, temperature, or on a 

variable that we want to solve for. These dependencies can be defined by a table or by a MATC 

expression. An example using a table for defining a thermal conductivity as function of temperature 

is the following: 

Conductivity = Variable Temperature 

 Real 

  273    95.2 

  273 1000 

  300 1020 

  400 1000 

 End 

 

We could do a similar thing by using a MATC expression: 

Conductivity = Variable Temperature 

 MATC "k0*(1+alpha*tx)" 

 

'tx' is used for the independent variable (in this case the temperature). We could have more than one 

variable. In that case, we use the vector notation (example: tx(1) or tx(2)) 

Examples of variables that can be used are: Time, Temperature, Pressure, Displacement 1, 

Coordinate 1, Electric Current 1, Magnetic Field 1, etc. 

Other language aspects: 

 '::': Two semicolons are used for separating two instructions in the same line. 

 RUN: Instruction for executing the FEM solution. 

The mesh is divided in parts called bodies. For GMSH, these bodies are related to the physical 

groups created during the mesh generation. 

Let's see more specific commands for each section. 

 

III.1. Header section 

In this section we will define the location and names of the different files related with Elmer. We 

can just put a command for declaring the location of the mesh files: 



    

 

Header 

Mesh DB "directory" "meshfilename" 

End 

 

Another example: 

Header 

  CHECK KEYWORDS Warn 

  Mesh DB "." "." 

  Include Path "" 

  Results Directory "" 

End 

 

We can define more things in this section, but we will not use it. Just for mentioning them, we can 

indicate how many of the other sections exist in this file, we can also indicate another directory for 

placing the results (Results Directory "directory") and include other paths if needed (Include Path 

"directory"). We can also place here the command CHECK KEYWORDS Warn. 

 

III.2. Constants section 

In this section we define constants if we need it. The specific model that we want to solve can 

require the definition of some constants. This is explained in the Models Manual of Elmer for each 

specific simulation field (fluidic, thermal, etc). 

 

Constants 

  Gravity(4) = 0 -1 0 9.82 

  Stefan Boltzmann = 5.67e-08 

  Permittivity of Vacuum = 8.8542e-12 

  Boltzmann Constant = 1.3807e-23 

  Unit Charge = 1.602e-19 

End 

 

III.3. Simulation section 

In this section we provide some parameters defining general aspects of the simulation procedure 

itself (independently of the specific field: thermal, mechanical, etc.) that we want to perform. For 

example, if the simulation is transient of stationary, coordinate system, time steps, etc. More 

specifically, we can define: 

 Simulation Type: With the keywords Transient or Steady State. 



    

 

 Coordinate Mapping: It is a vector of numbers providing the relation between the 

coordinates in the mesh file and the coordinates in the simulation. If they are the same, we 

will use 1, 2 and 3. for a 3-dimensional case. 

 Coordinate System: With a text keyword for defining the type of coordinate system 

(Cartesian 1D, Cartesian 2D, Cartesian 3D, Polar 2D, Polar 3D, Cylindric, Cylindric 

Symmetric, Axi Symmetric). 

 Timestepping Method: String with five possible options: BDF, Newmark, Implicit Euler, 

Explicit Euler and Crank-Nicolson. 

 Timestep Intervals: Vector of integers defining the number of intervals (or substeps) inside 

every time step. 

 Timestep Sizes: Vector providing the size in the time units of every time step. 

 Output  File: Name of the results output file (.dat). 

 Output Intervals: Vector of integers providing the frequency of the obtained results that will 

be saved to the output file. 

 Post  File: Name of the results file that is understood by Elmer Post. (.ep) 

 Steady State Max Iterations: Maximum number of iterations of every time calculation in 

order to get a converged solution. 

 

Simulation 

  Max Output Level = 5 

  Coordinate System = Cartesian 

  Coordinate Mapping(3) = 1 2 3 

  Simulation Type = Steady state 

  Steady State Max Iterations = 1 

  Output Intervals = 1 

  Timestepping Method = BDF 

  BDF Order = 1 

  Solver Input File = tube.sif 

  Post File = tube.ep 

End 

 

 

III.4. Body section 

It is used to define, for each body of the mesh file (or created with Elmer), which other sections 

apply for it. We have to specify which Equation, Material, Body Force and Initial Condition 

sections applies. 

 

Body 1 

  Target Bodies(1) = 1 



    

 

  Name = "Body 1" 

  Equation = 1 

  Material = 1 

End 

 

III.5. Material section 

Here we define the properties of the material. The properties that we have to define depends on the 

kind of simulation that we want to perform, like for example thermal or fluidic. These properties 

have to be checked on the Elmer Models Manual. 

 

Material 1 

  Name = "Fluido" 

  Viscosity = 1.0 

  Density = 1e3 

End 

 

III.6. Body Force section 

In this section we specified the loads applied. The loads that we have to specify depends on the kind 

of simulation. We have to obtain this information from the Elmer Models Manual. 

 

III.7. Initial Condition section 

Similary to body forces, we have to check the Elmer Models Manual to obtain the initial conditions 

that can be applied to our specific simulation. 

 

III.8. Boundary Condition section 

In this section, we define first the boundary where it will be applied (assigning their number to the 

vector Target Boundaries). And afterwards, we define the boundaries conditions that apply to them. 

The possible options have to be found in the Elmer Models Manual. 

 

Boundary Condition 1 

  Target Boundaries(1) = 2 

  Name = "Output P" 



    

 

  Pressure 1 = 0 

  Pressure 3 = 0 

  Pressure 2 = 0 

End 

 

III.9. Equation section 

Each equation is related to a specific physical model (thermal, fluidic, etc). In this section we have 

to indicate which equation(s) will apply to a body. It can be one, or more than one. We refer to each 

equation by using the number(s) of the respective solver sections. We associate these numbers to 

the Active Solvers vector. 

 

Equation 1 

  Name = "Fluidic equation" 

  NS Convect = False 

  Active Solvers(1) = 1 

End 

 

III.10. Solver section 

Here we specify one physical model to be solved and some options related to this physical model 

and which method will be used to solve it (solver). The name of each equation and the different 

options can be obtained in the Elmer Models Manual. The options for solvers and their options can 

be found in the Solvers Manual. 

General options in this section are: 

 Variable = Variable_name: For defining a variable with name Variable_name. A vector can 

also be defined with names of subcomponents. Example: Variable = vp[Vel:3, P:1] 

(defines a variable called vp with four components, the first three are called Vel and the 

fourth component is called P). 

If we only need to specify a variable with three components: Variable = -dofs 3 vp. 

 We can define when to execute a solver. By default, if we have more than one solver, they 

are executed in the order that they are defined. With the command Exec Solver order we can 

change this. order is a string that can have values of: never, always, before timestep, after 

timestep, before all, after all, before saving and after saving. 

 

Solver 1 

  Equation = Navier-Stokes 

  Procedure = "FlowSolve" "FlowSolver" 



    

 

  Variable = Flow Solution[Velocity:3 Pressure:1] 

  Exec Solver = Always 

  Stabilize = True 

  Bubbles = False 

  Lumped Mass Matrix = False 

  Optimize Bandwidth = True 

  Steady State Convergence Tolerance = 1.0e-5 

  Nonlinear System Convergence Tolerance = 1.0e-7 

  Nonlinear System Max Iterations = 20 

  Nonlinear System Newton After Iterations = 3 

  Nonlinear System Newton After Tolerance = 1.0e-3 

  Nonlinear System Relaxation Factor = 1 

  Linear System Solver = Iterative 

  Linear System Iterative Method = BiCGStab 

  Linear System Max Iterations = 500 

  Linear System Convergence Tolerance = 1.0e-10 

  Linear System Preconditioning = ILU0 

  Linear System ILUT Tolerance = 1.0e-3 

  Linear System Abort Not Converged = False 

  Linear System Residual Output = 1 

  Linear System Precondition Recompute = 1 

End 

 

 

III.11. Examples 

 

i) Flow through a circular tube 

Header 

  CHECK KEYWORDS Warn 

  Mesh DB "." "." 

  Include Path "" 

  Results Directory "" 

End 

 

Simulation 

  Max Output Level = 5 

  Coordinate System = Cartesian 

  Coordinate Mapping(3) = 1 2 3 

  Simulation Type = Steady state 

  Steady State Max Iterations = 1 



    

 

  Output Intervals = 1 

  Timestepping Method = BDF 

  BDF Order = 1 

  Solver Input File = tube.sif 

  Post File = tube.ep 

End 

 

Constants 

  Gravity(4) = 0 -1 0 9.82 

  Stefan Boltzmann = 5.67e-08 

  Permittivity of Vacuum = 8.8542e-12 

  Boltzmann Constant = 1.3807e-23 

  Unit Charge = 1.602e-19 

End 

 

Body 1 

  Target Bodies(1) = 1 

  Name = "Body 1" 

  Equation = 1 

  Material = 1 

End 

 

Solver 1 

  Equation = Navier-Stokes 

  Procedure = "FlowSolve" "FlowSolver" 

  Variable = Flow Solution[Velocity:3 Pressure:1] 

  Exec Solver = Always 

  Stabilize = True 

  Bubbles = False 

  Lumped Mass Matrix = False 

  Optimize Bandwidth = True 

  Steady State Convergence Tolerance = 1.0e-5 

  Nonlinear System Convergence Tolerance = 1.0e-7 

  Nonlinear System Max Iterations = 20 

  Nonlinear System Newton After Iterations = 3 

  Nonlinear System Newton After Tolerance = 1.0e-3 

  Nonlinear System Relaxation Factor = 1 

  Linear System Solver = Iterative 

  Linear System Iterative Method = BiCGStab 

  Linear System Max Iterations = 500 

  Linear System Convergence Tolerance = 1.0e-10 

  Linear System Preconditioning = ILU0 

  Linear System ILUT Tolerance = 1.0e-3 

  Linear System Abort Not Converged = False 

  Linear System Residual Output = 1 



    

 

  Linear System Precondition Recompute = 1 

End 

 

Equation 1 

  Name = "Fluidic equation" 

  NS Convect = False 

  Active Solvers(1) = 1 

End 

 

Material 1 

  Name = "Fluido" 

  Viscosity = 1.0 

  Density = 1e3 

End 

 

Boundary Condition 1 

  Target Boundaries(1) = 2 

  Name = "Output P" 

  External Pressure = 0 

End 

 

Boundary Condition 2 

  Target Boundaries(1) = 3 

  Name = "wall" 

  Noslip wall BC = True 

End 

 

Boundary Condition 3 

  Target Boundaries(1) = 1 

  Name = "Input vz" 

  Velocity 3 = 1.0e-3 

End 

 

 

  



    

 

IV. Solvers 

 

IV.1. SaveScalars 

[ Equation = SaveScalars 

 Procedure = "SaveData" "SaveScalars] 

 

It is used for two purposes: saving results to a file and calculating derived quantities (those that 

depend on the results variables). Data is saved in ASCII format. 

The main options for this solver are: 

 Name of the file to be written: Filename = filename. 

 Specify the variables to be saved: Variable i = namevar. 

 Operator to be applied to variable i: Operator i = op. 

 Specify a factor applied to the operator i: Coefficient i = coef. 

 Restrict the n nodes (points list) to be saved: Save Points(n)= points list. 

If we need to perform a calculation (like fluxes) over a boundary, we have to activate the option of 

Save Scalars in the respective Boundary section (Save Scalars = True). 

The different operators that we can use are: max, min, max abs, min abs, mean, variance, deviation; 

volume, int mean, int variance; boundary sum, boundary dofs, boundary mean, boundary max, 

boundary min, boundary max abs, boundary min abs, area, boundary int, boundary int mean; 

diffusive energy, convective energy, potential energy; diffusive flux, convective flux, boundary int, 

boundary int mean, area; dofs, norm, nonlinear change, steady state, nonlin iter, nonlin converged, 

coupled converged, bounding box, partitions. 

The same file, but adding the extension .names is created indicating the meaning of each column of 

the saved data file. 

This would be an example for saving all degrees of freedom at node 4: 

Solver 4 

 Exec Solver = After Timestep 

 Equation = SaveScalars 

 Procedure = "SaveData" "SaveScalars" 

 Filename = "ss_d01.dat" 

 Save Points(1) = 4 

End 

 

Equation 3 

 Name = "Save scalar values" 

 Active Solvers(1) = 4 

End 



    

 

 

This another example is for obtaining the volume flow at a boundary: 

Solver 4 

 Exec Solver = After Timestep 

 Equation = SaveScalars 

 Procedure = "SaveData" "SaveScalars" 

 Filename = "ss_d02.dat" 

 Moving Mesh = logical True 

 Variable 1 = Velocity 2 

 Operator 1 = boundary int 

End 

 

Boundary Condition 2 

 Target Boundaries(1) = 2 

 Name = "Po" 

 Mesh Update 2 = 0 

 External Pressure = 0 

 Save Scalars = True 

End 

 

 

IV.2. SaveLine 

[ Equation = SaveLine 

 Procedure = "SaveData" "SaveLine"] 

 

It is used for saving result values along a line to a file, in ASCII format. 

The main options for this solver are: 

 Name of the file to be written: Filename = filename. 

 Specify the variables to be saved: Variable i = namevar. 

 Definition of the lines: Polyline Coordinates(n,dim) = pointscoordinates. 

n is the number of points of the lines and dim the spatial dimensions (1, 2 or 3). n must be 

even, as each line is defined by two points. 

We can also indicate to do this calculation for already defined boundaries. In that case, we have to 

activate the option of Save Line in the respective Boundary section (Save Line = True). 

As in the case of SaveScalars, an additional file with extension .names is created. 



    

 

This example shows how to save the velocity profile on a fluidic channel as function of the 

position: 

Solver 5 

 Exec Solver = After Simulation 

 Equation = SaveLine 

 Procedure = "SaveData" "SaveLine" 

 Filename = "sl_d01.dat" 

 Variable 1 = Coordinate 1 

 Variable 2 = Velocity 2 

 Polyline Coordinates(2,2) = 0.0 0.0 0.5e-3 0 

End 

 

 

IV.3. Fluidic Force 

[ Equation = Fluidic Force 

 Procedure = "FluidicForce" "ForceCompute"] 

 

It is used to compute the fluidic forces applied by fluids to solid boundaries. We can obtain two 

forces: the normal force and the tangential (shear) force. Additional, we can also ask for saving the 

shear stresses in a file. 

The main options for this solver are: 

 Calculate also the viscous forces: Calculate Viscous Force = True. 

 Calculate also shear stresses: Shear Stress Output = True. 

For those boundaries where we want to compute these forces, we have to specify it in the 

corresponding Boundary section activating the variable Calculate Fluidic Force (Calculate Fluidic 

Force = True). 

A file for the shear stresses is created in case it is activated. By default, its name is "shearstress.dat". 

This example shows how to define this solver to get these forces: 

Solver 6 

 Exec Solver = After Simulation 

 Equation = Fluidic Force 

 Procedure = "FluidicForce" "ForceCompute" 

 Calculate Viscous Force = True 

 Shear Stress Output = True 

End 

 



Boundary Condition 6 

Target Boundaries(1) = 7 

Name = "FSI" 

Fsi BC = True 

Mesh Update 1 = Equals Displacement 1 

Mesh Update 2 = Equals Displacement 2 

Noslip wall BC = True 

Calculate Fluidic Force = True 

End 

IV.4. Particle Dynamics 

[ Equation = Particle Dynamics 

Procedure = "ParticleDynamics" "ParticleDynamics"] 

It is used to compute the trajectories of particles taking into account their dynamics. This means that 

it is taken into account their inertia, and also it is possible to take into account the interaction 

between particles (collision and contact models). An application example could be the trajectory of 

particles within a fluid (without explicitly modeling the particles in the fluid). The forces that are 

taken into account are: gravity, electrostatic, viscous force (           ) and buoyancy. 

The main options for this solver are: 

Particles: The number of particles and their spatial distribution can be indicated in several 

different ways. 

 Number of particles to be considered: Number of Particles = nparticles. 

 Initial spatial distribution of particles: Coordinate Initialization Method = method. 

Possible methods are: nodal ordered, elemental ordered, sphere random, box random and 

box random cubic. For box options, we have to indicate Min Initial Coordinate i= imin and 

Max Initial Coordinate i = imax. For the sphere option we have to specify Particle Cell 

Radius = rad. 

 Specify initial velocity of particles: Initial Velocity(n,dim) = velocities. 

Random velocity distributions can be indicated with different methods: Velocity 

Initialization Method = method (where we can choose thermal random, even random and 

constant random). We have also to provide a random amplitude: Initial Velocity Amplitude 

= amp. 

 To indicate to reinitialize the position of the particles at each call, use: Reinitialize 

Particles = True. 

 Eliminate particles on the walls (stuck): Delete Wall Particles = True. 



 We can set up: Timestep Size, Max Timestep Size, Min Timestep Size, Timestep Distance, 

Timestep Courant Number, Max Characteristic Speed, Max Timestep Intervals, Max 

Cumulative Time, Simulation Timestep Sizes. 

Particle interaction parameters: 

 Activate particle collisions and contact: Particle Particle Collision = True, Particle 

Particle Contact = True. 

 Activate particle box collisions and contact: Box Particle Collision = True, Box Particle 

Contact = True. 

Physical properties particle interaction parameters: 

 Related to particle: Particle Mass, Particle Radius, Particle Gravity = True, Particle 

Lift=True, Particle Damping, Particle Drag Coefficient, Particle Bounciness, Particle 

Spring, Particle Charge, Particle Decay Distance. 

 Related to wall-particle interaction:  Wall Particle Radius, Wall Particle Spring, Wall 

Particle Bounciness. 

As an example, we have just obtained the bouncing of particles on the floor, with a free fall. The 

domain is simply a box domain: 

$tsv=0.001 

Simulation 

  Max Output Level = 5 

  Coordinate System = Cartesian 

  Coordinate Mapping(3) = 1 2 3 

  Simulation Type = transient 

  Output Intervals = 1 

  Timestepping Method = BDF 

  BDF Order = 1 

  Timestep intervals = 200 

  Timestep Sizes = $tsv 

  Solver Input File = pd_tc01.sif 

  Post File = pd_tc01.ep 

End 

Constants 

  Gravity(4) = 0 -1 0 9.82 

End 

 Activate calculation of distance from particle to walls: Particle Distance = Logical True.

 For boundaries, activate the particle-wall contact: Particle Reflect = Logical True.

Timestepping for calculation of trajectories: 



  Max Initial Coordinate 1 = Real 0.1 

  Min Initial Coordinate 2 = Real 0 

  Max Initial Coordinate 2 = Real 0.05 

  Simulation Timestep Sizes = Logical True 

  Timestep Size = Real $tsv 

  Time Order = Integer 2 

  Particle Gravity = Logical True 

  Particle Mass = Real 0.1  

  Particle Radius = Real 0.01  

  Box Particle Periodic = Logical False 

  Particle Accurate At Face = Logical True 

  Particle Accurate Always = Logical True 

  Particle To Field Reset = Logical True 

  Statistical Info = Logical True 

  Particle Info = Logical True 

  Box Particle Collision = Logical True 

  Wall Particle Spring = Real 100000 

  Wall Particle Bounciness = Real 1 

  Vtu Format = Logical True 

End 

Solver 2 

  Equation = String "ResultOutput" 

  Procedure = File "ResultOutputSolve" "ResultOutputSolver" 

  Output File Name = File "kinetic"  

  Output Format = String "vtu" 

  Show Variable = Logical True 

End 

Solver 3 

  Equation = String "ParticleOutput" 

  Procedure = File "SaveGridData" "ParticleOutputSolver" 

  Filename Prefix = String "particles"  

  Output Format = String "vtu" 

End 

Equation 1 

  Navier-Stokes = FALSE 

  Active Solvers(3) = 1 2 3 

End 

Solver 1 

  Equation = ParticleDynamics 

  Procedure = "ParticleDynamics" "ParticleDynamics" 

  Number of Particles = Integer $ 10 

  Coordinate Initialization Method = String "box random" 

  Min Initial Coordinate 1 = Real 0 



V. Examples 

V.1. Obstructed artery (axi-symmetric) 

Animation (avi)

Note: These files can also be found at http://hdl.handle.net/2445/66496. 




// Axisymmetric model of a simple artery with a membrane inside





//****************

//** Parameters **

//****************



rart=0.5e-3;	//Inner radius of the artery 

Lart=10e-3;	//Length of the artery

hm=0.1e-3;	//Thickness of the external membrane



Lmb=rart*3.0/4.0;	//Length of the membrane from the artery wall.

thmb=hm;		//Thickness of the membrane.





Lc=hm/5;	//Characteristic length for elements. (We will take 2 element on the membrane thickness)





xs[]={0,rart-Lmb,rart,(rart+hm)};	//Positions of the two lines for generating the surfaces.

nxs=#xs[];			// Number of divisions in xs



ys[]={0,(Lart-thmb)/2.0,(Lart+thmb)/2.0,Lart};

nys=#ys[];			// Number of divisions in ys

ndivsy[]={25,4,25};

nnds=#ndivsy[];			// Number of elements in y direction





//**************

//** Geometry **

//**************

//Points - 4

np=newp;

p0=np;

For xval In {0:nxs-1}

	Point(np)={xs[xval],0,0,Lc};

	np=newp;

EndFor



//Lines

For xval In {0:nxs-2}

	nl=newl;

	Line(nl)={p0+xval,p0+xval+1};

EndFor





//Areas

lines0[]={1,2,3};



linesact[]={lines0[]};

areas={};

lines={};

lslatd={};

lslati={};

For dv In {0:nnds-1}

	For ln In {0:#linesact[]-1}

		//ss[]=Extrude {0,ys[dv+1]-ys[dv],0} {Line{linesact[ln]}; Layers{ndivsy[dv]}; Recombine;};

		ss[]=Extrude {0,ys[dv+1]-ys[dv],0} {Line{linesact[ln]};};

		linesact[ln]=ss[0];

		areas[] +={ss[1]};

		lslatd[] += {ss[2]};

		lslati[] += {ss[3]};

		If (ln==0)

			axis[] +={ss[3]};

		EndIf

	EndFor

	membs[] += {ss[1]};

	lext[] += {ss[2]};

EndFor





membs[] +={areas[4]};

blood[]={areas[]};

blood[] -={membs[]};



lsfsi[]={10,8,18,20,34};





//Between two bodies, the normal vector is directed towards the body with lower ID number

Physical Surface(1)={blood[]};	//Blood

Physical Surface(2)={membs[]};	//Membrane





Physical Line(1)={1,2};		//Input fluid

Physical Line(2)={linesact[0],linesact[1]};		//Output fluid

Physical Line(3)={3};		//Fixed position at input

Physical Line(4)={linesact[2]};		//Fixed position at output



Physical Line(5)={axis[]};

Physical Line(6)={lext[]};

Physical Line(7)={lsfsi[]};





Mesh.CharacteristicLengthFromPoints=0;

Mesh.CharacteristicLengthFromCurvature=0;

Mesh.CharacteristicLengthExtendFromBoundary=0;



//Attractor

Field[1]=Attractor;

Field[1].EdgesList={lsfsi[]};

Field[1].NNodesByEdge=1000;



//Minimum mesh + exponentially increasing from the distance to the curve (Attractor Field)

Field[2]=MathEval;

fv=rart/50;

Field[2].F=Sprintf("%g+F1*0.1",fv);



Background Field=2;



RefineMesh;





Archivo adjunto
Geo file





$tsv=5e-4
$Vips=4.0e-3

$PI=3.1415926
$Visc=20e-3
$Ray=1e-3
$Drag=6*PI*Visc*Ray*1e3



Header
  CHECK KEYWORDS Warn
  Mesh DB "." "."
  Include Path ""
  Results Directory ""
End

Simulation
  Max Output Level = 5
  Coordinate System = Axi Symmetric
  Coordinate Mapping(3) = 1 2 3
  Simulation Type = Transient
  Steady State Max Iterations = 3
  Output Intervals = 1
  Timestepping Method = BDF
  BDF Order = 1
  !Timestep intervals = 10
  Timestep intervals = 400
  Timestep Sizes = $tsv
  Solver Input File = awm_pd_02.sif
  Post File = awm_pd_02.ep
End

Constants
  Gravity(4) = 0 -1 0 9.82
  Stefan Boltzmann = 5.67e-08
  Permittivity of Vacuum = 8.8542e-12
  Boltzmann Constant = 1.3807e-23
  Unit Charge = 1.602e-19
End

Body 1
  Target Bodies(1) = 1
  Name = "Body 1"
  Equation = 1
  Material = 1
End

Solver 1
  Equation = Navier-Stokes
  Procedure = "FlowSolve" "FlowSolver"
  Variable = Flow Solution[Velocity:2 Pressure:1]
  Exec Solver = Always
  Stabilize = True
  Bubbles = False
  Lumped Mass Matrix = False
  Optimize Bandwidth = True
  Steady State Convergence Tolerance = 1.0e-5
  Nonlinear System Convergence Tolerance = 1.0e-7
  Nonlinear System Max Iterations = 20
  Nonlinear System Newton After Iterations = 3
  Nonlinear System Newton After Tolerance = 1.0e-3
  Nonlinear System Relaxation Factor = 1
  Linear System Solver = Iterative
  Linear System Iterative Method = BiCGStab
  Linear System Max Iterations = 500
  Linear System Convergence Tolerance = 1.0e-10
  BiCGstabl polynomial degree = 2
  Linear System Preconditioning = Diagonal
  Linear System ILUT Tolerance = 1.0e-3
  Linear System Abort Not Converged = False
  Linear System Residual Output = 1
  Linear System Precondition Recompute = 1
End


Solver 2
  Equation = ParticleDynamics
  Procedure = "ParticleDynamics" "ParticleDynamics"
  Exec Solver = Always
  
  Number of Particles = Integer $ 50
  
  Coordinate Initialization Method = String "box random"
  Min Initial Coordinate 1 = Real 0
  Max Initial Coordinate 1 = Real 0.49e-3
  Min Initial Coordinate 2 = Real 0
  Max Initial Coordinate 2 = Real 4.8e-3
  
  Initial Velocity(1,2) = Real 0.0 $Vips
  
  Simulation Timestep Sizes = Logical True
  Timestep Size = Real $tsv
  Time Order = Integer 2
  
  Particle Gravity = Logical False
  Particle Mass = Real 1.0e-4 
  Particle Radius = Real 1.0e-5
  Particle Drag Coefficient = Real $Drag 

  
  Box Particle Periodic = Logical False
  Particle Accurate At Face = Logical True
  Particle Accurate Always = Logical True
  
  !Particle To Field = Logical True
  !Particle To Field Mode = String "kinetic energy"

  Statistical Info = Logical True
  Particle Info = Logical True

  Velocity Variable Name = String "Flow Solution"
  Velocity Gradient Correction = Logical True
  
  Box Particle Collision = Logical False
  Wall Particle Spring = Real 100000
  Wall Particle Bounciness = Real 1
  !Wall Particle Radius = Real 0.00001
  
  Particle Distance = Logical True
  
  Particle To Field = Logical True
  Particle To Field Weight = String "distance"
  
  Delete Wall Particles = Logical True
  
  Vtu Format = Logical True
End

Solver 3
  Equation = String "ResultOutput"
  Procedure = File "ResultOutputSolve" "ResultOutputSolver"
  Exec Solver = Always
  Output File Name = File "zz_kinetic" 
  Output Format = String "vtu"
  Show Variable = Logical True
End

Solver 4
  Equation = String "ParticleOutput"
  Procedure = File "SaveGridData" "ParticleOutputSolver"
  Exec Solver = Always
  Filename Prefix = String "zz_particles" 
  Output Format = String "vtu"
End


Equation 1
  Name = "blood_eq"
  Active Solvers(1) = 1
End

Equation 2
  Name = "particles"
  Active Solvers(3) = 2 3 4
End


Material 1
  Name = "Blood_mat"
  Viscosity = 3e-3
  Mesh Elastic Modulus = 1
  Mesh Poisson ratio = 0.3
  Density = 1.06e3
End

Material 2
  Name = "Vessel_mat"
  Poisson ratio = 0.45
  Youngs modulus = 3e6
  Density = 1.05e3
End

Boundary Condition 1
  Target Boundaries(1) = 1 
  Name = "Pi"
  Mesh Update 2 = 0
  External Pressure = -1e2
End

Boundary Condition 2
  Target Boundaries(1) = 2 
  Name = "Po"
  Mesh Update 2 = 0
  External Pressure = 0
  Particle Outlet = Logical True
End

Boundary Condition 3
  Target Boundaries(1) = 3 
  Name = "Axi_Symmetry"
  Velocity 1 = 0
End

Boundary Condition 4
  Target Boundaries(1) = 4 
  Name = "Wall"
  Noslip wall BC = True
  Wall Particle Collision = Logical True
  Particle Reflect = Logical True

End


Archivo adjunto
Sif file




rbc_restch02.avi



Archivo adjunto
Animation



VI. ElmerPost

Although Elmer comes with two post-processors (ElmerPost and VTK), we will just keep viewing 

results with ElmerPost. We can run ElmerPost through the ElmerGUI (Run  Start postprocessor) 

or directly through its icon. In the first case, the current results file will be read directly, while in the 

second case we will have to read the results file (.ep). After running the postprocessor, we will get 

two windows: the graphics window and the commands window (Figure 8). Here we are just going 

to explain some key aspects about using ElmerPost. Additionally, we can see results in other post-

processing softwares, like ParaView [3]. 

Figure 8. Post-processor windows. 

VI.1. Graphics window 

In this window, we can do the typical mouse actions that can be expected: rotation (right), zoom 

(left & right), Pan (left). 

In the commands window, we have some buttons controlling the view (Graphics commands), 

shown in Figure 9. 

 

Figure 9. Graphics commands. 
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By default, when something is plotted in the graphics window, the view is rescaled in order to fit it 

in the window (this is referred as 'Update Normals'). With the 'Freeze Scaling' option, we can avoid 

changing the scale, keeping the last used scaling factor. 

VI.2. Commands window 

We have several regions on this commands window, as shown in . 

Figure 10. Commands window. 

In the bar menu, we can access most of the ElmerPost functionalities and configuration parameters. 

The different submenus are shown in Figure 11. 

Figure 11. Bar submenus. 
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In the plot commands buttons, we have mainly different ways to visualize the obtained results from 

simulation. Nevertheless, the first button corresponds to the reading of the results file (generally 

with extension ep, although other formats are also accepted). The options for reading the file is 

shown in Figure 12. 

Figure 12. Read model. 

The first way to visualize results is called 'Color Mesh'. Basically, it paints the mesh with colors 

depending on the values of the results obtained from a variable. In Figure 13, it is shown the 

different options. In 'Color Variable', we can choose which variable to use for painting. 

Figure 13. Color mesh. 

An example is shown in Figure 14. 



    

 

 

Figure 14. Color mesh example (pressure distribution). 

With isocontours, we can observe lines having the same value of a certain variable. With 

isosurfaces, we can obtain surfaces having the same variable value. Isosurfaces can be used for 

obtained cross-sections of the model, defining the contour variable as position and another variable 

for 'Color Variable'. 

 

Figure 15. Isocontours. 

 

Figure 16. Isosurface. 

An example for isosurfaces can be seen in Figure 17. 



    

 

 

Figure 17. Isosurface example (absolute velocity). 

Many times, we will want to draw vector magnitudes as vectors. This can be done with the 'Vectors' 

button. 

 

Figure 18. Vectors. 

An example is shown in Figure 19, showing the velocity vectors. 

 

Figure 19. Vectors example (velocity). 



    

 

The particles button allows us to obtain the trajectories of particles within a fluid. For this purpose 

we have to set a variable ('Particle Variable') containing the initial positions of the particles to be 

considered. This variable is a matrix, where the second index is referred to the particle number 

(starting from 0). The first index is for the different parameters that have to be provided for each 

particle. This parameters are: x, y, z, initial color guess (for example, 0), guess of the initial element 

number containing the particle (for example 0). 

 

Figure 20. Particles. 

As an example, we have used a simple 2D axisymmetric fluidic problem. We have defined the 

'Particle Variable' named as part in the following way: 

 math nps=5; 

 math rad=5e-4; 

 do i 0 (nps-1) {  

  math posx=$i*rad/nps; 

  math part(0,$i)=posx; 

  math part(1,$i)=0; 

  math part(2,$i)=0; 

  math part(3,$i)=0; 

  math part(4,$i)=0; 

  } 

Click 'Apply' and then 'Advance' repeatedly in order to obtain the particle positions as time goes on. 

One intermediate result is shown in Figure 21. 

 

Figure 21. Particles position after some time, starting all at the input. 



    

 

 

The color scale, provided with the colored bar in the graphics window, can be setup with the 'Color 

Scale' button. 

 

Figure 22. Color scale. 

The graphics commands are used to change orientation, pan, zoom, etc. We can also fix the scale of 

the plotted results (with the 'Freeze Scaling' button). 

We have a commands line. We can introduce commands in the TCL/TK language and also in the 

MATC language. MATC is used for managing mathematical calculations using matrices (generally 

filled with the results data). In this last case (MATC) we have to start the command with 'math'. We 

are just going to use it for creating some plots. A more detailed explanation is given in a next 

section. 

Additionally, we have a console where the commands history is plotted and another console for 

messages. 

 

VI.3. Commands line 

As mentioned previously, we have a commands line where we can add instructions in TCL/TK 

language and also in MATC language. These commands can be entered manually, or included in a 

file, executing it with the command 'source file'. The first language (TCL/TK) is an "external" 

language, quite used in some other softwares. Detailed information can be found in books and 

through internet. The second language (MATC) is a quite specific language for Elmer, that is used 

for performing calculations with matrices. Elmer documentation comes with a MATC tutorial. We 

are just going to comment some of the most important aspects of these two languages and apply it 

to some examples. 

In the Time Step Control Window, we can refer to the current time step with the variable t. And the 

vector position for a given current time step can be obtained with time(t). 



    

 

Before starting looking at these two languages, we have to know that, when results are read by 

ElmerPost, the results are saved in matrices. The names of the variables can be seen in the "Read 

Model" window. As an example, for a fluidic simulation we will have the variables Velocity and 

Pressure. Obviously, these matrices contains the velocity and pressure results. They have as many 

rows as components (Velocity has three rows, each corresponding to the velocities in directions x, y 

and z respectively, while Pressure only have one row). And they have as many columns as nodes 

we have in the model. In a transient simulation, the second index corresponds to the time point (we 

can obtain it with the function time(time step)). Depending on the type of simulation (for example, 

for transient simulations) there can be more indexes. The relationship between the nodes and the 

column index is given by another matrix called nodes. This matrix contains the position of the 

nodes of our model. It has three rows corresponding to the x, y and z positions. And it has as many 

columns as nodes in our model. If we modify the nodes matrix, we will change the position of the 

nodes, and so it will be shown in the graphics windows. This can be useful sometimes for a more 

convenient visualization of the model/results, as we will see later.  

With the display command, we can refresh the graphics window. 

Let's see some basics of the TCL/TK programming language: 

 Comments: # 

 Command syntax: command arg1 arg2 arg3 ... . 

 Variables:  

 Not declared. 

 Assign a value: set var val. 

 In order to obtain the value of a variable, we have to use $var. 

 Command info to obtain information about variables (among other things). 

 Text strings can be grouped with quotes ("") or rounded brackets ({}). 

 All variables are strings. If not, they have to be indicated explicitly with the 

command expr. 

 Expressions can be grouped with square brackets ([]). 

 Mathematical functions: abs(x), acos(x), asn(x), atan(x), atan2(y,x), ceil (x), cos(x), cosh(x), 

double(x), exp (x), floor(x), fmod(x,y), hypot(x,y), int(x), log(x), log10(x), pow(x,y), rand(), 

round(x), sin(x), sinh(x), sqrt(x), srand(arg), tan(x), tanh(x). 

 Conditional: if condition then action. 

 For loop: for {inicialization} {condition} {increment} instruction. 

 Foreach loop: foreach variable list instruction. 

 While loop: while condition instruction. 

 

MATC is a library used for evaluating mathematical expressions with matrices. These expressions 

can be used in the SIF file, also can be evaluated during simulation, and it can also be used in 

ElmerPost. When a MATC expression is going to be used in ElmerPost, we have to include the 

word math at the beginning of the expression. Some basic aspects of MATC are: 

 Two types of variables: matrices and strings. 

 Ranges can be specified: Examples: 0:5, 5:0. 



    

 

 Conditional if: if (expr) expr; else expr;. 

 For loop: for (i=vector) expr;. 

 While loop: while(expr) expr;. 

 Function: 

 function name(arg1,arg2,...) 
 ! Optional function description (seen with help("name")) 
  import var1 #import global variable 
  export var2 #convert a local variable to global 
  expr; 
  _name = value #Returned value 

 Operators: ’, @, ~, ^, *, #, /, +, -, ==, <>, <, >, <=, >=, :, &, |, ?, %, =. 

 Functions: funcdel(name), funclist(name), sprintf(fmt[,vec]), sscanf(str,fmt), matcvt(matrix, 

type), cvtmat(special,type), eval(str), source(name), help or help(”symbol”), fread(fp,n), 

fscanf(fp,fmt), fgets(fp), fwrite(fp,buf,n), fprintf(fp,fmt[,vec]), fputs(fp,str), fopen(name, 

mode), freopen(fp,name,mode), fclose(fp), save(name,a[,ascii_flag]), load(name), 

min(matrix), max(matrix), sum(matrix), trace(matrix), det(matrix), inv(matrix), tril(x), 

triu(x), eig(matrix), jacob(a,b,eps), lud(matrix), hesse(matrix), eye(n), zeros(n,m), ones(n, 

m), rand(n,m), diag(matrix) or diag(vector), vector(start,end,inc), size(matrix), 

resize(matrix,n,m), where(a), exists(name), who, format(precision). 

 Mathematical functions: abs(x), acos(x), asin(x), atan(x), ceil(x), cos(x), cosh(x), exp(x), 

floor(x), ln(x), log(x), pow(x,y), sin(x), sinh(x), sqrt(x), tan(x), tanh(x). 

  

 

  



    

 

VII. Types of simulations 

 

VII.1. Transient 

In Elmer we can specify how many points in time we want to simulation what is the time increment 

between these points in time. Each point in time is a time step (TimeStep variable, taking values 

from 1 until the number of time steps) and the time increment is the time size. The number of time 

steps is defined with the 'Timestep Intervals' option. For defining the time increment between 

timesteps we use the 'Timestep Sizes' option. Both options are vectors, allowing us to define 

different "time sections" during the simulation. As an example, if we want to make a transient 

simulation that is lasting 10s in total but with two different time sections: the first one lasting 1s 

second (solved every 0.1s) and the second one arriving up to 10s (solved every 1s) we could set: 

Timestep Sizes(2) = 0.1 1 

Timestep Intervals(2) = 10 9 

We can set a non-uniform time distribution by using the command 'Timestep Size' with TimeStep as 

variable (this variable takes the values from 1 up to the number of intervals, as mentioned before). 

Example: 

Timestep Size = Variable TimeStep 

  Real MATC "t0*1.05^(tx-1)" 

tx in the MATC expressions refers to the variable TimeStep. 

In the previous expression, the first time point simulated is at t0. The second at t0+t0·1.5. The third 

at t0+t0·1.5+t0·1.5·1.5. And so on. If we want to start the simulation at a given t0, and starting from 

this time point a logarithmic scale, we could use a function in the SIF file in order to provide the 

time increments to 'Timestep Size'. For example, we can include at the beginning of the SIF file 

(outside of any section) the following code: 

$ti=1e-4 

$tf=1e-1 

$nps=60 

$a=ti 

$b=(tf/ti)^(1.0/(nps-1)) 

 

$ function calctsize(cts) import ti,tf,nps,a,b {\ 

 if (cts==1) {\ 

  _calctsize=ti;\ 

  }\ 

 else {\ 

  _calctsize=a*(b^(cts-1))*(1-1/b);\ 

  }\ 



    

 

 } 

And then we can specify in the Simulation section: 

Timestep intervals = $nps 

Timestep Size = Variable TimeStep 

  Real MATC "calctsize(tx)" 

 

For setting parameters depending on time, we have to create tables, with the variable Time. 

Body Force 1 

  Stress Bodyforce 2 = Variable Time 

    Real 

     0.0  -1.0 

     4.0  -1.0 

     4.01  0.0 

     5.0   0.0 

    End  

End 

 

Initial conditions are generally needed for transient simulation. Nevertheless, usually these 

conditions are taken zero. 

 

VII.2. Coupled simulations 

Coupled simulations refer to the problems where more than one field interacting each other has to 

be solved in a common domain or in the boundary between two domains. They are specified in 

solvers and boundary conditions. 

We have to mention the difference in one-directional coupling and bi-directional coupling. In case 

of a directional coupling, we will have to set (in Setup) the “Steady state max. iter” to a sufficiently 

high number to be sure that the whole coupling problem converges. 

 

VII.3. Axisymmetric models-simulations 

In Elmer, the axis of rotation is always the y axis. We have to take it into account for building the 

model. Also, we have to add the boundary conditions associated with the rotation axis. 

 

  



    

 

VIII. UDFs and Solver Code 

Elmer allows to incorporate compiled functions as simple functions and as new solvers. This code 

have to be implemented in Fortran 90, compiled alone and incorporated to Elmer as an executable 

of a shared object. To incorporate this functions in Elmer, we will have to write the following line 

in the sif file: 

Procedure "filename" "procedure" 

The shared object file (filename) can have different functions (procedures). With this instruction, 

we select the specific function of the file. 

Most of the functions provided by Elmer are located in the DefUtils module. Moreover, the main 

data structure is an element, and not a node. The type Element_t contains the element information. 

The data in each section of the sif file is accessed through a pointer of the type ValueList_t. The 

functions providing these pointers have a name starting with Get, followed by a name related to the 

section. For example, GetSimulation(). Similarly, we can also get the information for a specific 

element, by using, for example, GetMaterial(Element, Found). Found (optional) will be set to 

TRUE if the requested information was obtained successfully. If Element is not provided, it is used 

the ‘current’ element. For getting constants, we use functions like val=GetInteger(List, Name, 

Found). 

If we want to obtain values at specific mesh locations, we have to use the function val(:) = 

GetReal(List, Name, Found, Element). It returns a real array with the values for all nodes of the 

indicated element. 

The real variable Time can be used in the sif file. 

The information from within Elmer solver can be obtained through the type Solver_t. Different 

functions are: GetElementNOFNodes(Element), GetActiveElement(ElementNumber), 

GetBoundaryElement(ElementNumber), GetElementNodes(ElementNodes, Element, Solver) 

(ElementNodes is a pointer of type Nodes_t; ElementNodes%x(i) is the x coordinate of the indicated 

node by i), U = Element % Type % NodeU(i) (local coordinates) (similarly for V and W), Normal = 

NormalVector(BoundaryElement, Nodes, U, V, CheckDirection). 

For obtaining the nodal values of field variables we use the functions  GetScalarLocalSolution(vals, 

name, Element, Solver), GetVectorLocalSolution(vals, name, Element, Solver). 

For obtaining the values, as before, but for the complete mesh, we have to use the function  

VariableGet(Solver % Mesh % Variables, ’Variable’). It returns a pointer of the Variable_t type. 

In Elmer, the time is obtained from a pointer of type Time_t, and considering it as a variable. 

Therefore, we can get it with the command Tv => VariableGet(Solver % Mesh % Variables, 

’Time’) and Tmp = Tv % Values(1). 

We can show messages by using three functions: Info(’FunctionName’,’The displayed message’, 

level=levelnumber), Warn(’FunctionName’,’The displayed warning’), Fatal(’FunctionName’,’The 



    

 

displayed error message’). For defining the message to be displayed, we can use the function 

WRITE. 

We can write user defined functions for obtaining nodal values. The format is the following: 

FUNCTION name_func ( model, n, var ) RESULT(result) 

 

END FUNCTION name_func 

n is the node, var are input variables and result is the returned value of the function. 

 

VIII.1. Defining a solver 

First of all, we have to distinguish between the solver code itself and the solver interface. Evidently, 

the most important part for a solver is the code development. But you can also build an interface in 

Elmer in order to introduce the different parameters of the solver. This interface is not compulsory 

(all solver information can be given in the sif file), but it is desirable. 

For defining a solver, first of all we have to obtain the linearized partial differential equations 

(PDEs) of our problem. The general expression for these equations is given by: 

    
   

  
           

where uj is the degree of freedom (DOF) of our problem in the j direction (for example, fluid 

velocity along x direction), Mij is the mass matrix, Kij is the stiffness matrix and Fi is the force 

vector in the i direction. Basically, we have to provide the different matrices and vectors of this 

equation. 

The solver subroutine has to include the following sections: 

 Initialization. 

 Start non-linear iterations. 

 Matrix assembly for domain (or bulk) elements (through element loop). 

 Matrix assembly for von Neumann and Newton conditions at boundary element (boundary 

elements loop). 

 Specify Dirichlet boundary conditions. 

 Solve the problem. 

 Check relative change of norms < Nonlinear Tolerance or nonlinear max. iterations within 

the nonlinear loop. 

You can find many examples of the already implemented solvers in the Elmer source code, in the 

directory elmerfem-devel\fem\src\modules. Here, we are just going to provide a rough view of the 

code structure. It is important to divide the different tasks in subroutines. 



    

 

We are just going to explain a simple solver, provided by Elmer, mostly for educational purposes. It 

is the advection-diffusion-reaction solver, with file name ‘ModelPDE.F90’. First, we provide the 

code, and then we will explain the different sections. As it is stated in the file, it can also be used as 

a starting point to generate more complex solvers. The code is the following: 

!----------------------------------------------------------------------------- 

!> A prototype solver for advection-diffusion-reaction equation, 

!> This equation is generic and intended for education purposes 

!> but may also serve as a starting point for more complex solvers. 

!------------------------------------------------------------------------------ 

SUBROUTINE AdvDiffSolver( Model,Solver,dt,TransientSimulation ) 

!------------------------------------------------------------------------------ 

  USE DefUtils 

 

  IMPLICIT NONE 

!------------------------------------------------------------------------------ 

  TYPE(Solver_t) :: Solver 

  TYPE(Model_t) :: Model 

  REAL(KIND=dp) :: dt 

  LOGICAL :: TransientSimulation 

!------------------------------------------------------------------------------ 

! Local variables 

!------------------------------------------------------------------------------ 

  TYPE(Element_t),POINTER :: Element 

  REAL(KIND=dp) :: Norm 

  INTEGER :: n, nb, nd, t, active 

  INTEGER :: iter, maxiter 

  LOGICAL :: Found 

!------------------------------------------------------------------------------ 

   

  maxiter = ListGetInteger( GetSolverParams(),& 

      'Nonlinear System Max Iterations',Found,minv=1) 

  IF(.NOT. Found ) maxiter = 1 

 

  ! Nonlinear iteration loop: 

  !-------------------------- 

  DO iter=1,maxiter 

    ! System assembly: 

    !---------------- 

!Initialize the system and do the assembly: 

    CALL DefaultInitialize() 

    Active = GetNOFActive() 

    DO t=1,Active 

      Element => GetActiveElement(t) 

      n  = GetElementNOFNodes() 

      nd = GetElementNOFDOFs() 

      nb = GetElementNOFBDOFs() 

      CALL LocalMatrix(Element, n, nd+nb) 

    END DO 

 

    CALL DefaultFinishBulkAssembly() 

 

    Active = GetNOFBoundaryElements() 

    DO t=1,Active 

      Element => GetBoundaryElement(t) 

      IF(ActiveBoundaryElement()) THEN 

        n  = GetElementNOFNodes() 

        nd = GetElementNOFDOFs() 

        nb = GetElementNOFBDOFs() 

        CALL LocalMatrixBC(Element, n, nd+nb) 

      END IF 

    END DO 

 

    CALL DefaultFinishBoundaryAssembly() 

    CALL DefaultFinishAssembly() 

The first step in the subroutine is to declare 

some needed constants and variables and 

their types, and also the libraries to be used. 

Start nonlinear iterations. 

Matrix assembly for domain elements. 

Matrix assembly for von Neumann and 

Newton conditions at boundary element. 

Solver subroutine. dt: timestep size, 

TransientSimulation: logical value. 



    

 

    CALL DefaultDirichletBCs() 

 

    ! And finally, solve: 

    !-------------------- 

    Norm = DefaultSolve() 

 

    IF( Solver % Variable % NonlinConverged == 1 ) EXIT 

 

  END DO 

 

CONTAINS 

 

! Assembly of the matrix entries arising from the bulk elements 

!------------------------------------------------------------------------------ 

  SUBROUTINE LocalMatrix( Element, n, nd ) 

!------------------------------------------------------------------------------ 

    INTEGER :: n, nd 

    TYPE(Element_t), POINTER :: Element 

!------------------------------------------------------------------------------ 

    REAL(KIND=dp) :: diff_coeff(n), conv_coeff(n),react_coeff(n), & 

                     time_coeff(n), D,C,R, rho,Velo(3,n),a(3), Weight 

    REAL(KIND=dp) :: Basis(nd),dBasisdx(nd,3),DetJ,LoadAtIP 

    REAL(KIND=dp) :: MASS(nd,nd), STIFF(nd,nd), FORCE(nd), LOAD(n) 

    LOGICAL :: Stat,Found 

    INTEGER :: i,t,p,q,dim 

    TYPE(GaussIntegrationPoints_t) :: IP 

    TYPE(ValueList_t), POINTER :: BodyForce, Material 

    TYPE(Nodes_t) :: Nodes 

    SAVE Nodes 

!------------------------------------------------------------------------------ 

 

    dim = CoordinateSystemDimension() 

 

    CALL GetElementNodes( Nodes ) 

    MASS  = 0._dp 

    STIFF = 0._dp 

    FORCE = 0._dp 

    LOAD = 0._dp 

 

    BodyForce => GetBodyForce() 

    IF ( ASSOCIATED(BodyForce) ) & 

       Load(1:n) = GetReal( BodyForce,'field source', Found ) 

 

    Material => GetMaterial() 

    diff_coeff(1:n)=GetReal(Material,'diffusion coefficient',Found) 

    react_coeff(1:n)=GetReal(Material,'reaction coefficient',Found) 

    conv_coeff(1:n)=GetReal(Material,'convection coefficient',Found) 

    time_coeff(1:n)=GetReal(Material,'time derivative coefficient',Found) 

 

    Velo = 0._dp 

    DO i=1,dim 

      Velo(i,1:n)=GetReal(Material,& 

          'convection velocity '//TRIM(I2S(i)),Found) 

    END DO 

 

    ! Numerical integration: 

    !----------------------- 

    IP = GaussPoints( Element ) 

    DO t=1,IP % n 

      ! Basis function values & derivatives at the integration point: 

      !-------------------------------------------------------------- 

      stat = ElementInfo( Element, Nodes, IP % U(t), IP % V(t), & 

              IP % W(t), detJ, Basis, dBasisdx ) 

 

      ! The source term at the integration point: 

      !------------------------------------------ 

      LoadAtIP = SUM( Basis(1:n) * LOAD(1:n) ) 

Specify Dirichlet boundary conditions. 

Solve the problem. 

Check relative change of norms < Nonlinear 

Tolerance or nonlinear max. iterations 

within the nonlinear loop. 



    

 

 

      rho = SUM(Basis(1:n)*time_coeff(1:n)) 

      a = MATMUL(Velo(:,1:n),Basis(1:n)) 

      D = SUM(Basis(1:n)*diff_coeff(1:n)) 

      C = SUM(Basis(1:n)*conv_coeff(1:n)) 

      R = SUM(Basis(1:n)*react_coeff(1:n)) 

 

      Weight = IP % s(t) * DetJ 

 

      ! diffusion term (D*grad(u),grad(v)): 

      ! ----------------------------------- 

      STIFF(1:nd,1:nd) = STIFF(1:nd,1:nd) + Weight * & 

             D * MATMUL( dBasisdx, TRANSPOSE( dBasisdx ) ) 

 

      DO p=1,nd 

        DO q=1,nd 

          ! advection term (C*grad(u),v) 

          ! ----------------------------------- 

          STIFF (p,q) = STIFF(p,q) + Weight * & 

             C * SUM(a(1:dim)*dBasisdx(q,1:dim)) * Basis(p) 

 

          ! reaction term (R*u,v) 

          ! ----------------------------------- 

          STIFF(p,q) = STIFF(p,q) + Weight * R*Basis(q) * Basis(p) 

 

          ! time derivative (rho*du/dt,v): 

          ! ------------------------------ 

          MASS(p,q) = MASS(p,q) + Weight * rho * Basis(q) * Basis(p) 

        END DO 

      END DO 

 

      FORCE(1:nd) = FORCE(1:nd) + Weight * LoadAtIP * Basis(1:nd) 

    END DO 

 

    IF(TransientSimulation) CALL Default1stOrderTime(MASS,STIFF,FORCE) 

    CALL LCondensate( nd-nb, nb, STIFF, FORCE ) 

    CALL DefaultUpdateEquations(STIFF,FORCE) 

!------------------------------------------------------------------------------ 

  END SUBROUTINE LocalMatrix 

!------------------------------------------------------------------------------ 

 

 

! Assembly of the matrix entries arising from the Neumann and Robin conditions 

!------------------------------------------------------------------------------ 

  SUBROUTINE LocalMatrixBC( Element, n, nd ) 

!------------------------------------------------------------------------------ 

    INTEGER :: n, nd 

    TYPE(Element_t), POINTER :: Element 

!------------------------------------------------------------------------------ 

    REAL(KIND=dp) :: Flux(n), Coeff(n), Ext_t(n), F,C,Ext, Weight 

    REAL(KIND=dp) :: Basis(nd),dBasisdx(nd,3),DetJ,LoadAtIP 

    REAL(KIND=dp) :: STIFF(nd,nd), FORCE(nd), LOAD(n) 

    LOGICAL :: Stat,Found 

    INTEGER :: i,t,p,q,dim 

    TYPE(GaussIntegrationPoints_t) :: IP 

 

    TYPE(ValueList_t), POINTER :: BC 

 

    TYPE(Nodes_t) :: Nodes 

    SAVE Nodes 

!------------------------------------------------------------------------------ 

    BC => GetBC() 

    IF (.NOT.ASSOCIATED(BC) ) RETURN 

 

    dim = CoordinateSystemDimension() 

 

    CALL GetElementNodes( Nodes ) 



    

 

    STIFF = 0._dp 

    FORCE = 0._dp 

    LOAD = 0._dp 

 

    Flux(1:n)  = GetReal( BC,'field flux', Found ) 

    Coeff(1:n) = GetReal( BC,'robin coefficient', Found ) 

    Ext_t(1:n) = GetReal( BC,'external field', Found ) 

 

    ! Numerical integration: 

    !----------------------- 

    IP = GaussPoints( Element ) 

    DO t=1,IP % n 

      ! Basis function values & derivatives at the integration point: 

      !-------------------------------------------------------------- 

      stat = ElementInfo( Element, Nodes, IP % U(t), IP % V(t), & 

              IP % W(t), detJ, Basis, dBasisdx ) 

 

      Weight = IP % s(t) * DetJ 

 

      ! Evaluate terms at the integration point: 

      !------------------------------------------ 

 

      ! Given flux: 

      ! ----------- 

      F = SUM(Basis(1:n)*flux(1:n)) 

 

      ! Robin condition (C*(u-u_0)): 

      ! --------------------------- 

      C = SUM(Basis(1:n)*coeff(1:n)) 

      Ext = SUM(Basis(1:n)*ext_t(1:n)) 

 

      DO p=1,nd 

        DO q=1,nd 

          STIFF(p,q) = STIFF(p,q) + Weight * C * Basis(q) * Basis(p) 

        END DO 

      END DO 

 

      FORCE(1:nd) = FORCE(1:nd) + Weight * (F + C*Ext) * Basis(1:nd) 

    END DO 

    CALL DefaultUpdateEquations(STIFF,FORCE) 

!------------------------------------------------------------------------------ 

  END SUBROUTINE LocalMatrixBC 

!------------------------------------------------------------------------------ 

 

! Perform static condensation in case bubble dofs are present 

!------------------------------------------------------------------------------ 

  SUBROUTINE LCondensate( N, Nb, K, F ) 

!------------------------------------------------------------------------------ 

    USE LinearAlgebra 

    INTEGER :: N, Nb 

    REAL(KIND=dp) :: K(:,:),F(:),Kbb(Nb,Nb), & 

         Kbl(Nb,N), Klb(N,Nb), Fb(Nb) 

 

    INTEGER :: m, i, j, l, p, Ldofs(N), Bdofs(Nb) 

 

    IF ( Nb <= 0 ) RETURN 

 

    Ldofs = (/ (i, i=1,n) /) 

    Bdofs = (/ (i, i=n+1,n+nb) /) 

 

    Kbb = K(Bdofs,Bdofs) 

    Kbl = K(Bdofs,Ldofs) 

    Klb = K(Ldofs,Bdofs) 

    Fb  = F(Bdofs) 

 

    CALL InvertMatrix( Kbb,nb ) 

 



    

 

    F(1:n) = F(1:n) - MATMUL( Klb, MATMUL( Kbb, Fb  ) ) 

    K(1:n,1:n) = K(1:n,1:n) - MATMUL( Klb, MATMUL( Kbb, Kbl ) ) 

!------------------------------------------------------------------------------ 

  END SUBROUTINE LCondensate 

!------------------------------------------------------------------------------ 

 

!------------------------------------------------------------------------------ 

END SUBROUTINE AdvDiffSolver 

!------------------------------------------------------------------------------ 

  

The format of the solver interface xml file is: 

<?xml version='1.0' encoding='UTF-8'?>  

<!DOCTYPE edf>  

<edf version="1.0" >  

   <PDE Name=" AdvDiff" >  

      <Name>AdvDiff</Name>  

  

      <BodyForce>  

      <Parameter Widget="Label" > <Name> Properties </Name> </Parameter>  

          <Parameter Widget="Edit" >  

            <Name> Source </Name>  

            <Type> String </Type>  

            <Whatis> Give the source term. </Whatis>  

         </Parameter>      

      </BodyForce>     

  

      <Solver>  

         <Parameter Widget="Edit" >  

           <Name> Procedure </Name>  

           <DefaultValue> "AdvDiff" "AdvDiffSolver" </DefaultValue>  

         </Parameter>  

        <Parameter Widget="Edit">  

           <Name> Variable </Name>  

           <DefaultValue> Potential</DefaultValue>  

         </Parameter>  

       </Solver>  

  

      <BoundaryCondition>  

         <Parameter Widget="Label" > <Name> Dirichlet conditions </Name> </Parameter>  

         <Parameter  Widget="Edit">  

           <Name> Potential </Name>  

           <Whatis> Give potential value for this boundary. </Whatis>  

         </Parameter>  

      </BoundaryCondition>  

   </PDE>  

</edf> 

 

 

  



    

 

Acronyms: 

2D: Two-dimensional 

3D: Three-dimensional 

CAD: Computer Aided Design 

DOF: Degree of Freedom 

FEM: Finite Element Method 

GPL: General Public License 

PDE: Partial Differential Equation 
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