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ABSTRACT. This study evaluates whether modelling the existing common trends in 
tourist arrivals from all visitor markets to a specific destination can improve tourism 
predictions. While most tourism forecasting research focuses on univariate methods, we 
compare the performance of three different Artificial Neural Networks in a multivariate 
setting that takes into account the correlations in the evolution of inbound international 
tourism demand to Catalonia (Spain). We find that the multivariate multiple-output 
approach does not outperform the forecasting accuracy of the networks when applied 
country by country, but it significantly improves the forecasting performance for total 
tourist arrivals. 
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1. Introduction 

 

Tourism demand forecasting has become essential in one of today’s fastest growing 

economic activities. Song and Li (2008) have acknowledged the importance of applying 

new approaches to tourism demand forecasting in order to improve the accuracy and the 

performance of the methods of analysis. Whilst most research efforts focus on 

conventional tourism forecasting methods (Gounopoulos, Petmezas, & Santamaria, 

2012) or a combination of them (Chan, Witt, Lee, & Song, 2010), in recent years the 

availability of more advanced forecasting techniques and the requirement for more 

accurate forecasts of tourism demand have led to a growing interest in Artificial 

Intelligence (AI) techniques (Wu, Law, & Xu, 2012; Cang, 2013; Pai, Hung, & Lin 

2014). The suitability of AI models to handle nonlinear behaviour is one of the reasons 

why Artificial Neural Networks (ANNs) are increasingly used for forecasting purposes. 

In spite of the increasing interest in AI methods for time series forecasting, very few 

studies compare the accuracy of different ANN architectures for tourism demand 

forecasting. This study seeks to break new ground by comparing the performance of 

three different ANN models in a multivariate setting that takes into account the common 

trends in inbound international tourism demand shared by all visitor markets to a 

specific destination. We use three ANNs: the multi-layer perceptron (MLP) network, 

the radial basis function (RBF) network and the Elman network. ANNs are able to learn 

from experience. Each ANN architecture handles information in a different manner, so 

by comparing the different models we can evaluate the impact of alternative ways of 

processing data on forecast accuracy. 

Given that univariate specifications are limited and unable to capture dynamic 

interrelationships between different countries of origin, we analyse whether a 

multivariate approach, in which information about tourist arrivals from all origin 

countries is simultaneously used, provides useful for forecasting purposes. With this 

aim, we design a multiple-output setting and compare the performance of three different 

ANN models. In order to evaluate the forecasting performance of the multivariate 

ANNs we also compare the forecasting accuracy of multiple-output predictions to those 

obtained country by country. To our knowledge, this is the first study to model tourism 

demand incorporating the common trends in international tourist arrivals form all visitor 

markets to a specific destination and to analyse whether this approach allows to improve 

the forecasting performance of ANN models. 
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The present study deals with tourist arrivals to Catalonia, which is a region of Spain. 

After France and the United States, Spain is the third most important destination of the 

world with almost 65 million tourist arrivals in 2014. Catalonia received 25% of all 

inbound tourist demand to Spain. Tourist spending in Catalonia grew by 14% in 2014. 

Barcelona is the capital of Catalonia, and the third most important destination in Europe 

in terms of tourist spending after London and Paris. It follows that tourism is one of the 

fastest growing industries in Catalonia, accounting for 12% of GDP and providing 

employment for 15% of the working population. These figures show the importance of 

accurate forecasts of tourism volume at the destination level for policy makers and 

professionals in the tourism industry. Capó, Riera, and Rosselló (2007) and Balaguer 

and Cantavella-Jordá (2002) have shown the important role of tourism in the Spanish 

long-run economic development. 

The article proceeds as follows. The next section reviews the literature on tourism 

demand forecasting with AI-based techniques. Then we present the different NN 

architectures used in the analysis and describe the data. In the next section, results of the 

out-of-sample forecasting competition are discussed. Finally, the last section provides a 

summary, a discussion of the implications, and potential lines for future research. 

 

 

2. Tourism demand forecasting with AI-based techniques 

 

A growing body of literature has focused on tourism demand forecasting, but most 

research efforts apply conventional forecasting methods, either casual econometric 

models (Cortés-Jiménez & Blake, 2011; Page, Song, & Wu, 2012, Lin, Liu & Song, 

2015), time series models (Chu, 2008, 2011; Assaf, Barros, & Gil-Alana, 2011; 

Gounopoulos, Petmezas, & Santamaria, 2012), or a combination of them (Shen, Li, & 

Song, 2008; Coshall & Charlesworth 2010). See Song, Dwyer, Li and Cao (2012) and 

Peng, Song, and Crouch (2014) for a thorough review of tourism economics research 

and tourism demand forecasting studies. Nevertheless, the need for more accurate 

forecasts has led to an increasing use of AI techniques, such as fuzzy time series models 

and support vector machines (SVMs), or a mix of them (Pai, Hung, & Lin 2014; Cang 

& Yu 2014), in order to obtain more refined predictions of tourist arrivals at the 

destination level. 
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Yu and Schwartz (2006) and Huarng, Moutinho and Yuo (2007) use fuzzy time 

series models in predicting annual U.S. tourist arrivals and monthly tourism demand in 

Taiwan respectively. Law, Goh and Pine (2008) apply a rough sets algorithm to forecast 

Japanese tourism demand for Hong Kong. The use of genetic algorithms for parameter 

selection has led to increased use of support vector machines (SVMs) (Pai & Hong, 

2005) and their regression version (Chen & Wang, 2007; Chen, 2011; Hong, Dong, 

Chen, & Wei, 2011). In a recent meta-analysis of published tourism forecasting studies, 

Kim and Schwartz (2013) find that forecast accuracy is closely associated with data 

characteristics. The fact that ANNs are data-driven procedures that learn from past 

experience explain the growing interest in ANNs for tourism demand forecasting (Lin, 

Chen, & Lee, 2011; Teixeira & Fernandes, 2012; Claveria & Torra, 2014). 

ANNs can be classified into two major types of architectures: feed-forward networks 

and recurrent networks. MLP networks are the most widely used feed-forward topology 

in tourism demand forecasting (Pattie & Snyder, 1996; Uysal & El Roubi, 1999; Law, 

2000, 2001; Tsaur, Chiu, & Huang 2002; Zhang & Qi, 2005). A class of multi-layer 

feed-forward architecture with two layers of processing is the radial basis function 

(Broomhead & Lowe, 1988). RBF networks have the advantage of not suffering from 

local minima in the same way as MLP networks, which explains their increasing use in 

many fields. The first study to implement a RBF ANN for forecasting tourism demand 

is that of Kon and Turner (2005), who use a RBF network to forecast arrivals to 

Singapore. Cang (2014) generates predictions of UK inbound tourist arrivals and 

combines them in non-linear models. Çuhadar, Cogurcu, and Kukrer (2014) compare 

the forecasting performance of RBF and MLP NNs to predict cruise tourist demand at 

the destination level (Izmir, Turkey). 

Recurrent networks are models with bidirectional data flow which allow for a 

temporal feedback from the outer layers to the lower layers. This feature is specially 

suitable for time series modelling. A special case of recurrent network is the Elman 

network (Elman, 1990). Whilst MLP networks are increasingly used with forecasting 

purposes, Elman neural networks have been scarcely used with forecasting purposes. 

The first study that uses Elman ANNs for tourism demand forecasting is that of Cho 

(2003), who applies the Elman architecture to predict the number of arrivals from 

different countries to Hong Kong. 
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Multivariate approaches to tourist demand forecasting are also few and have yielded 

mixed results. Athanasopoulos and Silva (2012) compare the forecasting accuracy of 

exponential smoothing methods in a multivariate setting against univariate alternatives. 

They use international tourist arrivals to Australia and New Zealand and find that 

multivariate models improve on forecast accuracy over the univariate alternatives. 

Contrary to what could be expected, du Preez and Witt (2003) find that multivariate 

time series models did not generate more accurate forecasts than univariate time series 

models. 

With regard to studies on tourism in Spain at regional level, there have been several 

articles published in recent years (Aguiló & Rosselló, 2005; Roselló, Aguiló, & Riera, 

2005; Garín-Muñoz & Montero-Marín, 2007; Bardolet & Sheldon, 2008; Santana-

Jiménez & Hernández, 2011; Nawijn & Mitas, 2012; Andrades-Caldito, Sánchez-

Rivero, & Pulido-Fernández, 2013; Cirer-Costa, 2014). 

Concerning tourism demand forecasting, Palmer, Montaño, and Sesé (2006) design a 

MLP neural network to forecast tourism expenditure in the Balearic Islands. Medeiros, 

McAleer, Slottje, Ramos, and Rey-Maquieira. (2008) develop a NN-GARCH model to 

estimate demand for international tourism also in the Balearic Islands. Bermúdez, 

Corberán-Vallet, and Vercher (2009) calculate prediction intervals for hotel occupancy 

in three provinces in Spain by means of a multivariate exponential smoothing. Gil-

Alana (2010) models international monthly arrivals in the Canary Islands using different 

time-series approaches to analyse the degree of persistence of the series. Claveria and 

Datzira (2010) use consumer expectations derived from tendency surveys to improve 

forecasts of tourism demand for Catalonia. Guizzardi and Stacchini (2015) also make 

use of business sentiment indicators form tendency surveys for real-time forecasting of 

hotel arrivals at a regional level, improving the forecasting accuracy of structural time 

series models. 

 

3. Methodology 

 

3.1. Neural Network Models 

 

ANNs emulate the processing of human neurological system to identify related 

spatial and temporal patterns from historical data. ANNs learn from experience and are 

able to capture functional relationships among the data when the underlying process is 
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unknown. The data generating process of tourist arrivals is too complex to be specified 

by a single linear algorithm, which explains the great interest that ANNs have aroused 

for tourism demand forecasting. 

ANNs are composed of interconnected processing units called neurons and can also 

be classified into feed-forward networks and recurrent networks depending on the 

connecting patterns of the different layers of neurons. In feed-forward networks the 

information runs only in one direction, whilst in recurrent networks there are feedback 

connections from outer layers of neurons to lower layers of neurons. ANNs can also be 

classified according to their learning paradigm: supervised learning and non-supervised 

learning. MLP networks are supervised learning models, while RBF networks, combine 

both learning methods (hybrid learning). The MLP network is the most widely used 

feed-forward topology in tourism demand forecasting. 

In this study we use three ANN models: MLP, RBF and Elman networks. Equations 

(1), (2) and (3) respectively describe the input/output relationship of the three 

architectures: 
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Elman 
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Where ty  is the output vector of the MLP at time t ; g  is the nonlinear function of 

the neurons in the hidden layer; itx   is the input value at time it   where i  stands for 

the number of lags that are used to introduce the context of the actual observation; q  is 

the number of neurons in the hidden layer; ijφ  are the weights of neuron j  connecting 

the input with the hidden layer; and jβ  are the weights connecting the output of the 

neuron j  at the hidden layer with the output neuron. 

In the RBF specification jg  is the activation function, which usually has a Gaussian 

shape; jμ  is the centroid vector for neuron j ; and the spread jσ  is a scalar that 

measures the width over the input space of the Gaussian function and it can be defined 

as the area of influence of neuron j  in the space of the inputs. In the Elman network, 

tjz ,  is the output of the hidden layer neuron j  at the moment t  and ijδ  are the weights 

that correspond to the output layer and connect the activation at moment t . Further 

information about these three ANN architectures can be found in Bishop (1995) and 

Haykin (1999). 

Once the topology of the neural network is decided, the parameters of the network 

are estimated by means of the Levenberg-Marquardt algorithm. Another aspect to be 

taken into account, is the fact that the training is done by iteratively estimating the value 

of the parameters by local improvements of the cost function. To avoid the possibility 

that the search for the optimum value of the parameters finishes in a local minimum, we 

have used a multi-starting technique that initializes the neural network several times for 

different initial random values and returns the best result. 

In order to assure a correct performance of the RBF models, the number of centroids 

and the spread of each centroids have to be selected before the training phase. In this 

study the training was done by adding the centroids iteratively with the spread 
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parameter fixed. Then a regularized linear regression was estimated to compute the 

connections between the hidden and the output layer. Finally, the performance of the 

network was computed on the validation data set. This process was repeated until the 

performance on the validation database ceased to decrease. 

There are different strategies for estimating the parameters of the Elman neural 

network. In this study, the training of the network was done by back-propagation 

through time, which is a generalization of back-propagation for feed-forward networks. 

The parameters of the Elman neural network are estimated by minimizing an error cost 

function. In order to minimize total error, we use gradient descent. A potential problem 

with gradient descent for standard recurrent architectures is that error gradients vanish 

exponentially quickly with the size of the time lag. Therefore recurrent NN cannot be 

easily trained for large numbers of neuron units. 

 

3.2. Data 

 

Data on tourists arrivals (first destinations) are provided by the Institute of Tourism 

Studies (IET) and are available at the Statistical Institute of Catalonia (IDESCAT). Data 

include the monthly number of tourists arriving from each visitor market over the time 

period 2001:01 to 2012:07. Table 1 shows a descriptive analysis of the data. It can be 

seen that the first four visitor markets (France, the United Kingdom, Belgium and the 

Netherlands and Germany) account for more than half of the total number of tourist 

arrivals to Catalonia. Nevertheless, when comparing the growth rates (Fig. 1), Russia 

and the Scandinavian countries experienced the highest growth in tourist arrivals during 

this period. Russia is also the country that presents the highest relative dispersion and 

the highest levels of Skewness and Kurtosis. 

We use the year-on-year rates of the seasonally adjusted series to eliminate both 

linear trends as well as seasonality. These series are obtained using a Census X12 filter. 

Given the common patterns displayed by most countries we test for multicointegration 

using Johansen’s (1988, 1991) maximum eigenvalue test. The maximum eigenvalue test 

tests the null hypothesis of r  cointegrating vectors against the alternative hypothesis of 

1r  cointegrating vectors. In Table 2 we present the results of the unrestricted 

cointegration eigenvalue test. It can be seen that all different markets present correlated 

accelerations. The fact that the evolution of tourist arrivals is multicointegrated led us to 
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use the correlations in the evolution of tourist arrivals between all different visitor 

markets. 

 

Table 1. Descriptive analysis of tourist arrivals (levels) 

Country Minimum Maximum Mean 
Standard 
deviation 

Skewness Kurtosis 

France 59,886 869,535 300,137 161,364 1.22 4.35 

United Kingdom  34,128 293,005 152,223 70,762 0.10 1.78 

Belgium and NL 23,818 467,505 118,974 100,198 1.74 5.61 

Germany 26,588 258,600 112,126 53,834 0.37 2.26 

Italy 24,077 271,975 83,805 42,335 1.96 7.76 

US and Japan 20,984 131,089 60,795 22,869 0.80 3.53 

Scandinavian 
countries 

7,439 99,879 38,155 19,790 0.74 3.27 

Switzerland  8,867 98,924 28,120 14,173 1.42 6.83 

Russia 1,687 162,505 23,486 27,998 2.38 9.64 

Other countries  101,894 442,597 246,241 76,311 0.36 2.38 

Total 360,281 2,302,855 1,164,061 496,152 0.55 2.45 

 
 
Table 2. Cointegration test results. Unrestricted Cointegration Rank Test – Maximum eigenvalue 

Hypothesized 

number of CE(s) 

Type of test 

Allow for linear deterministic trend in data 

Intercept in CE Intercept in CE 

Test VAR No trend in VAR 

 Maximum 
Eigenvalue 

Critical value 
Maximum 
Eigenvalue 

Critical value 

0:0 rH * 227.2916 64.50472 227.4935 68.81206 

1:0 rH * 152.9724 58.43354 181.3408 62.75215 

2:0 rH * 133.6029 52.36261 134.5977 56.70519 

3:0 rH * 105.6646 46.23142 129.6588 50.59985 

4:0 rH * 86.6518 40.07757 97.79509 44.4972 

5:0 rH * 77.79057 33.87687 86.65054 38.33101 

6:0 rH * 65.28306 27.58434 77.78193 32.11832 

7:0 rH * 49.773 21.13162 64.52919 25.82321 

8:0 rH * 36.80542 14.2646 49.7264 19.38704 

9:0 rH * 10.98843 3.841466 35.64879 12.51798 

1. Estimation period 2001:01-2012:07. 
2. * Denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values. 
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Figure 1. Growth rates of tourists coming to Catalonia: from each visitor country vs. total arrivals 

France United Kingdom 

Belgium and the Netherlands Germany 

Italy United States and Japan 

Scandinavian countries Switzerland 

Russia Other countries 

1. Source: Compiled by the author. The black line represents the year-on-year growth rates of the trend-cycle component of 
tourist arrivals to Catalonia from each visitor country. The dotted line represents the year-on-year growth rates of the trend-
cycle component of total inbound tourism demand to Catalonia. 
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4. Empirical results 

 

In this section we design a multivariate multiple-output setting in which forecasts of 

tourist arrivals for all countries are obtained simultaneously, and we compare the results 

to those of a single-output approach, in which models are estimated country by country. 

To do so we carry out an out-of-sample forecasting competition between three different 

ANN models (MLP, RBF and Elman) using both a univariate (single-output) and a 

multivariate (multiple-output) architectures. 

Following Bishop (1995) and Ripley (1996), we divided the collected data into three 

sets: training, validation and test sets. This division is done in order to assess the 

performance of the network on unseen data. Based on these considerations, the first sixty 

monthly observations (from January 2001 to January 2006) are selected as the initial 

training set, the next thirty-six (from January 2007 to January 2009) as the validation set 

and the last 20% as the test set. 

To summarize the results of the out-of-sample competition and rank the methods 

according to their forecasting performance for different forecast horizons (1, 3 and 6 

months) we compute the Mean Absolute Error (MAE) statistic for forecast accuracy. 

The results of our forecasting out-of-sample competition are shown in Table 3. We also 

apply the Diebold-Mariano test (Table 4) for significant differences between each two 

competing series (single vs. multiple-output) for each forecast horizons in order to 

assess the value of the different models and settings. 

When comparing the forecasting performance of the different neural architectures, 

RBF networks show lower MAE values than MLP and Elman networks. An explanation 

for the better forecasting performance of RBF networks has to do with the fact that in 

this type of architecture, data are clustered. On the other extreme, Elman networks 

systematically obtain the highest MAE values. This result suggests that the feedback 

topology of the Elman network could not capture the specificities of the time series. The 

fact that the number of training periods had to be low in order to maintain the stability 

of the network suggests that the Elman architecture requires longer time series. 
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Table 3. MAE (2010:04-2012:02). 

 Univariate ANN models Multiple-output ANN models 

France MLP RBF Elman MLP RBF Elman 
1 month 0.42    0.38* 19.49 4.31 4.60 20.32 
3 months 2.72 1.26 16.00 7.89 2.04 30.99 
6 months 5.40 2.92 12.66 6.44    1.48* 22.11 

United Kingdom        
1 month 2.77 5.15 17.40 8.60 4.58 24.66 
3 months 8.48 7.48 15.59 22.59 9.85 33.27 
6 months 17.22 8.54 13.38 16.77 11.68 23.41 

Belgium and the NL       

1 month 7.96 5.86 15.52 4.19 3.89 14.43 
3 months 5.46 3.29 13.72 6.96 6.63 15.37 
6 months 9.86 4.02 11.91 10.49 8.05 12.39 

Germany       

1 month 7.95 7.48 15.03 2.85 4.77 10.43 
3 months 5.07 4.12 16.96 5.34 5.81 13.82 
6 months 5.68 3.36 9.25 7.71 6.41 11.34 

Italy       

1 month 1.45 1.60 10.12 15.49 4.33 20.37 
3 months 4.11 4.31 14.12 19.79 4.48 25.01 
6 months 7.80 8.88 13.53 25.27 3.96 32.49 

US and Japan       

1 month 5.12 4.09 12.94 8.45 6.78 17.50 
3 months 8.28 7.62 20.39 14.02 10.00 19.29 
6 months 10.01 9.78 13.79 15.90 10.06 19.40 
Scandinavian 
countries       

1 month 4.10 3.90 18.84 16.36 6.26 26.34 
3 months 9.85 8.99 16.70 26.95 14.15 30.29 
6 months 13.38 12.75 23.33 30.20 14.42 34.02 

Switzerland        

1 month 11.49 10.63 21.44 5.38 6.00 17.03 
3 months 6.81 5.27 11.94 9.21 9.92 13.56 
6 months 7.26 5.05 22.77 12.20 10.00 16.82 

Russia       

1 month 29.74 26.96 34.59 23.39 13.45 41.46 
3 months 34.47 29.33 32.57 39.12 35.81 48.67 
6 months 35.39 33.68 49.63 50.01 43.01 60.74 

Other countries        

1 month 2.64 2.44 11.11 9.73 4.09 13.51 
3 months 5.88 4.59 13.24 14.40 4.98 17.93 
6 months 8.02 6.92 12.03 17.27 5.90 18.35 

Total       

1 month 3.27 3.41 15.64 6.64 2.52 8.25 
3 months 5.98 3.75 13.37 10.49 2.53 11.07 
6 months 14.72 3.45 10.88 8.68 2.67 9.78 
1. Italics: best model for each country 
2. * Best model 
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Table 4. Diebold-Mariano loss-differential test statistic for predictive accuracy 

 MLP RBF Elman 

 
Single vs.  

Multiple-output
Single vs.  

Multiple-output 
Single vs.  

Multiple-output 
France    
1 month -6.58 -5.79 -0.14 
3 months -4.03 -2.95 -2.46 
6 months -0.47 2.82 -1.87 

United Kingdom     
1 month -5.45 0.62 -2.04 
3 months -2.99 -2.97 -2.16 
6 months 0.08 -2.50 -3.08 

Belgium and the NL    

1 month 2.41 2.12 2.12 
3 months -0.86 -2.92 -2.92 
6 months -0.19 -2.97 -2.97 

Germany    

1 month 3.46 2.10 1.64 
3 months -0.23 -2.63 0.73 
6 months -0.99 -1.71 -0.93 

Italy    

1 month -5.03 -4.86 -2.50 
3 months -4.85 -0.18 -2.88 
6 months -3.96 2.56 -3.54 

US and Japan    

1 month -2.77 -1.33 -1.71 
3 months -1.55 -0.93 0.36 
6 months -2.88 -0.13 -1.12 

Scandinavian countries    

1 month -4.07 -1.57 -1.28 
3 months -2.35 -2.58 -4.27 
6 months -3.74 -0.74 -2.09 

Switzerland     

1 month 4.06 3.52 0.81 
3 months -1.27 -3.02 -0.29 
6 months -1.99 -9.98 1.53 

Russia    

1 month 1.08 3.13 -0.91 
3 months -0.64 -2.17 -1.65 
6 months -1.59 -2.31 -1.04 

Other countries     

1 month -3.81 -2.42 -0.85 
3 months -4.10 -0.28 -2.22 
6 months -3.86 1.08 -2.21 

Total    

1 month -3.84 1.05 4.38 
3 months -2.50 1.42 0.88 
6 months 1.46 0.95 0.67 
1. Diebold-Mariano test statistic with NW estimator. Null hypothesis: the difference between the two competing series is 

non-significant. A negative sign of the statistic implies that the second model has bigger forecasting errors. 
2. Italics: Significant at the 5% level (2.028 critical value). 
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When analyzing the differences between countries, the lowest MAE value is always 

obtained for France, while Russia displays the highest MAE values for all models. This 

result can be explained by the fact that France is the main visitor market, while Russian 

visitors only account for a small percentage of total arrivals and present high levels of 

dispersion. Countries can be grouped according to their forecasting performance as the 

horizon increases: while France, Germany and Switzerland show low MAE values for 6 

months forecasts, forecasts for Scandinavian countries, Italy, UK, US and Japan worsen 

as the forecasting horizon increases. These clusters can be explained by the common 

patterns in the evolution of tourism demand for certain groups of countries. This result 

also highlights the importance of the origin-destination distance as an explanatory 

variable for the differences between groups of visitor markets. 

When testing for significant differences between a multivariate and a univariate 

approach for each two competing series (Table 4), we find that the multivariate analysis 

does not outperform the single-output approach country by country. On the contrary, 

83% of the cases in which there is a significant difference between single and multiple-

output approaches (half of the 198 cases), the sign is negative, indicating that the 

multiple-output approach presents higher forecasting errors. Nevertheless for short 

horizons, we find that for Germany, Switzerland, Russia and Belgium and the 

Netherlands the multiple-output approach presents significantly better results. For total 

arrivals, MAE values are lower for RBF and Elman networks with the multivariate 

approach, but the differences are not statistically significant. 

 

5. Summary and conclusions 

 

The increasing importance of the tourism sector worldwide has led to a growing 

interest in new approaches to tourism demand forecasting. New methods provide more 

accurate estimations of anticipated tourist arrivals for effective policy planning. 

Artificial intelligence techniques such as Artificial Neural Networks have attracted 

increasing interest to refine the predictions of tourist arrivals at the destination level. 

From the wide array of neural network models, we have focused on three different 

architectures that represent three alternative ways of handling information: the multi-

layer perceptron neural network, the radial basis function neural network and the Elman 

recursive neural network. 
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The main purpose of this study is to assess whether forecasts of tourism demand can 

be improved by incorporating the existing common trends in tourist arrivals form all 

visitor markets to a specific destination. Given that the evolution of tourist arrivals form 

origin countries to Catalonia presents a significant cross-correlation structure, we have 

test if a multivariate approach that takes into account the correlations in the evolution of 

tourist arrivals from different countries of origin has a significant effect on forecast 

accuracy. 

When comparing the forecasting accuracy of univariate versus multivariate models 

country by country, we obtain better forecasting results with a univariate approach. 

Nevertheless, for total tourist arrivals we obtain lower forecasting errors with a 

multivariate approach. This result shows that a multiple-output setting proves useful to 

forecast the total inbound international demand to a destination when the evolution of 

tourist arrivals form all visitor markets share a common trend. 

When comparing the forecasting accuracy of the different techniques, we find that 

radial basis function neural networks outperform multi-layer perceptron and Elman 

neural networks, being the Elman model the one showing the poorest forecasting 

performance. This result suggests that issues related with the divergence of the Elman 

neural network may arise when using dynamic networks with forecasting purposes. 

Recurrent neural networks are not easy to train for large numbers of input units and may 

present scaling issues. These results reveal the suitability of hybrid models such as 

radial basis functions for tourism demand forecasting. 

This study contributes to the tourism forecasting literature and to the tourism 

industry by presenting a way of using the common trends in tourist arrivals from 

different visitor markets and assessing its performance. The proposed forecasting setting 

may prove useful for planning purposes, providing managers and practitioners with a 

new and practical forecasting approach. This research also highlights the suitability of 

applying radial basis function neural networks to improve forecasting accuracy. 

Nevertheless, the study is not without its limitations. First, a comparison between 

different tourist destinations would allow to analyze whether regional differences have a 

significant influence on forecasting accuracy. Another question to be considered in 

further research is whether the implementation of supervised learning models such as 

support vector regressions, or the combination of the forecasts of different topologies 

and different time aggregations, may improve the forecasting performance of practical 

neural network-based tourism demand forecasting. 
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