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1. Introduction

Economic growth in developed economies is characterized by two prominent
facts, namely, a constant capital-output ratio and changes in the relative
sectoral shares in GDP as well as in the sectoral composition of the aggregate
labor force. These are the so-called Kaldor-Kuznets stylized facts. The modern
literature on structural change and economic growth encompasses these facts
in the framework of multi-sectoral sectoral growth models (see Kongsamut,
Rebelo and Xie, 2001; Meckl, 2002; Foellmi and Zweimuller, 2002; Ngai and
Pissarides, 2007 and Acemoglu and Guerrieri, 2008).

A relevant explanation of structural change is sector biased technical
change. According to this explanation, differences in rates of sectoral
technical progress induce labor mobility from the progressive sectors (those
with the highest productivity growth) to the stagnant sectors (those with
the lowest productivity growth). This explanation goes back to Baumol
(1967), while Ngai and Pissarides (2007) provide a modern formalization of
the idea. They build a three-sector growth model where sectoral production
functions differ only in total factor productivity (TFP) growth rates. Besides
the assumptions of complementary goods and higher productivity growth in
agriculture than in manufacturing and services, they assume that differences
in TFP growth rates across sectors are constant. We refer to this assumption
as constant biased technical change. As a consequence of these assumptions,
this model replicates the main characteristic of the sectoral transformation:
the fall of the agricultural sector and the rise of the service sector. However,
the assumption of constant biased technical change is at odds with empirical
evidence.

According to Dennis and Iscan (2007), and Alvarez-Cuadrado and Poshke
(2011), technological progress at the sectoral level is not characterized by
constant growth rates. Dennis and Iscan (2007) find that the differences in
the respective rate of technological progress of the farm and non-farm sectors
have been non-constant in the U.S. economy since the late 19th century. In
particular, they show that sectoral technological progress is biased in favor of
the non-farm sector at an early stage of development, which is followed by a
shift in the bias of technological progress in favor of the farm sector. Alvarez-
Cuadrado and Poshke (2012) find a similar pattern of sectoral technological
progress across countries. They analyze available data for the relative prices
of farm and non-farm goods for 11 advanced countries over the last two
centuries. They find that changes in relative prices are related to changes
in the bias of sectoral technological progress after controlling for the effects of
international trade.

In this paper, we build a model based on Ngai and Pissarides’s (2007) that
introduces a non-constant bias of sectoral technological progress. Our aim is
to analyze the economic implications of non-constant biased technical change
for structural change. In order to address this aim, we assert that sectoral
technological progress occurs via two channels. First, we assume that a
constantly increasing stock of knowledge is generated exogenously, as in Ngai
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and Pissarides (2007). This channel captures the idea that technological
progress can occur at the sector level based only on the available stock
of knowledge in each sector. The second channel is technology adoption.
We assume that a part of the sectoral technological progress is due to the
adoption of new knowledge from the technological frontier. This frontier
represents the maximum stock of new knowledge and ideas that is available
in the economy and which can be adopted by the sectors. Adapting new
techniques for the production process increases the stock of knowledge in
each sector, which leads to an increase in sectoral technological progress. As
in models of technology adoption, the distance or gap between the frontier and
the sectoral technological level accounts for the stock of knowledge remaining
to be adopted. This implies that relatively backward sectors, in the sense of
having a higher gap relative to the frontier than others, tend to grow faster as
long as there is a large stock of knowledge to be adopted.

To keep the model simple, we assert that the adoption rate of remaining
knowledge occurs at an exogenous constant rate, which may differ between
sectors. Under these assumptions, the growth rates of sectoral technological
progress are not constant. We assume a functional form, in the spirit of the
literature on technology adoption, for the sectoral productivity growth that
is supported by data on agriculture, manufacturing and services TFP growth
rates.

In the line with Ngai and Pissarides (2007), structural change in our
model will be driven by differences in technological progress across sectors,
whereas aggregated GDP, total expenditure consumption and capital grow
at the same constant rate. Following Kongsamut et, al. (2001), we define
this equilibrium path as a generalized balanced growth path (henceforth,
GBGP). However, we show that the assumption of non-constant biased
technical change introduces a relevant property in the patterns of structural
change: sectoral composition can be degenerated or non-degenerated. The
former characterizes an economy where the dominant sector is services
and the weight of the remaining sectors is zero in the long run. The
latter characterizes an economy where sectoral composition is asymptotically
constant and with positive employment shares in all sectors.

We show that the nature of long-run sectoral composition depends on
the sectoral ability to adopt knowledge. On the one hand, when all sectors
can adopt technologies, sectoral composition is non-degenerated. This result
arises because of our assumption regarding the adoption of knowledge from
a common technological frontier. In this case, all sectoral TFP growth rates
converge to the growth rate in the frontier and, consequently, asymptotic
sectoral technology progress is unbiased. On the other hand, sectoral
composition is degenerated if at least one sector producing only consumption
goods cannot adopt new knowledge. We use this case to show that our model
coincides with Ngai and Pissarides’s model when no sector is able to adopt
knowledge. Moreover, given the assumption of knowledge adoption, we show
that the pace of structural change depends on technological backwardness in
the agriculture sector. In particular, we show that a more marked degree of

4



backwardness in agriculture causes labor to move rapidly from this sector to
other sectors, thereby accelerating the pace of structural change.

In order to analyze how well a model based on non-constant biased
technical change fits the features of the structural transformation, we
conduct a numerical analysis of the model. To this end, we calibrate our
model and a model based on the assumption of constant biased technical
change to match the development process of the U.S. economy between 1870
and 2005. We use the second model as a benchmark for comparison. Based
on these models, we simulate the time paths of the level of employment
shares in agriculture, manufacturing and services. We compute the annual
growth rates of the ratio between employment shares (RES, henceforth) in
the agriculture and services sectors, and the RES between agriculture and
manufacturing, where annual growth rates of these ratios represent the pace
of industrialization in the economy. We then study the performance of both
models in replicating these growth rates.

We evaluate the performance using two criteria. First, we examine
the accuracy of both models when explaining the employment shares in
agriculture, manufacturing and services over the period. To this end, we
regress the actual values of employment shares on the simulated employment
shares, and we then analyze how well these simulations fit the actual data on
sectoral composition. As is standard in the literature, we report the root-
mean-square error (RMSE), and the Akaike statistic for each regression, as
measurements of accuracy. The second criterion is based on the value of the
average annual growth rate of the RES obtained from numerical simulations.
We compare the actual average annual growth rates of the RES with the
growth rates obtained with our calibrated models. In particular, we compare
the predicted with the actual average growth rates for three periods: 1870-
1930, 1930-1950, and 1950-2005.

We focus on these periods because of the shifts in the sector biased
technical change suggested by the data. According to Dennis and Iscan
(2007), over these periods sectoral technical change shifts from being biased
towards the non-farm sector to a bias in favor of the farm sector. These
shifts in the bias of sectoral technical progress may accelerate the pace
of industrialization in line with the technological explanation of structural
change. By analyzing the performance of both models in predicting this
change in the pace of industrialization over those periods, we can infer
the importance of the shift in the bias of technical progress for explaining
structural change.

Our numerical results show that a non-constant biased model fits the
data better than a constant biased model. On the one hand, the numerical
simulations based on our model fits the data better on the level of employment
shares in agriculture, manufacturing and services than the benchmark
model. This conclusion is robust to different values of the elasticity of
substitution across goods.1 In particular, we calibrate both models by

1The value of the elasticity of substitution has a significant role in the direction of structural
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setting the value of the elasticity of substitution at 0.1, 0.5 and 0.9, and
we obtain the simulated employment shares. Under these three scenarios,
we highlight that the performance of the benchmark model increases as the
utility function approaches a Leontief utility function. However, the accuracy
is lower than that obtained with our model for the same values of the elasticity
of substitution. That is, the model with non-constant technical bias provides
a robust and better performance in replicating the structural change given
the changes in the elasticity of substitution.

On the other hand, our model also provides a good fit with the data on
the actual average growth growth rates of the RES. The numerical simulation
based on our model replicates accurately the annual average growth rate of
the RES before 1950. Indeed, our model explains 88 and 62 percent of the
annual average growth of the RES between agriculture and manufacturing
in the periods 1870-1930 and 1930-1950, respectively. In contrast, the
benchmark model explains only 47 and 38 percent for the same periods.
Interestingly, the accuracy of our model increases slightly when the elasticity
of substitution increases to 0.90. In this case, our model explains 90 and 63
percent of the annual average growth rate of the RES for the same periods,
whereas the accuracy of our benchmark model collapses to just 4 and 3
percent.

These numerical exercises show two interesting results. The first result
is related to the discussion on how to model the process of sectoral
transformation. Herrendorf et, al. (2014) show that if the aim is to obtain
a good fit with the data using a consumption value-added specification, then
the functional form of the utility that should be opted for is the Leontief utility
function and assuming constant biased technical change. Our first result
contributes to this discussion by showing that if the sectoral technological
progress is modeled with exponential growth rates, then the Leontief utility
function should be adopted in order to fit with the data, as Herrendorf et, al.
(2014) point out. In contrast, if the utility function is assumed to differ from
the Leontief specification, the performance of the model to fit the data will
be poor under the assumption of constant biased technical change. Thus,
our result suggests that a non-constant sectoral biased technological process
is a necessary condition to model accurately structural change when a non-
Leontief utility function is assumed.

The second result is related to the implications of non-exponential growth
rates of sectoral TFP for structural change. When differences in rates of
technological progress are time-variant, we show that a model in which
sectoral production functions differ only in TFP growth is able to provide a
good fit to the data on structural change not only after World War II (WWII),
but also prior to it. This crucially depends on assuming a technological
backwardness of the agricultural sector. If the initial backwardness in
agriculture is higher than in manufacturing and services, then the agriculture

change (see Ngai and Pissarides, 2007; and Herrendorf, et, al. 2014). In particular, a low value
of the elasticity of substitution across goods is required in order to replicate the rise of the
services sector (see Boppart, 2014).
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TFP growth rate increases inducing a non-constant decrease in the growth of
relative prices of agricultural goods. This change in relative price implies that
labor is rapidly pushed toward the stagnant sectors. In the case of constant
technical biased change, growth rate of relative prices are constant, and
therefore, it is also constant the pace at which labor moves from agriculture
to other sectors. We show numerically that relaxing constant biased technical
change, Baumol’s effect can account for the process of industrialization in the
early stage of development. In this regard, our results suggest that a purely
technological approach to structural change is able to account for sectoral
transformations in the U.S. economy prior to WWII.

The structure of the paper is as follows. In Section 2, we present empirical
evidence of non-constant biased technological change. In Section 3, we build
a model based on the assumption of non-constant biased technical change. In
Section 4, we solve the model and characterize structural change. In Section
5, we present the main results of the numerical simulation. Finally, in Section
6, we present some concluding remarks and future lines of research, while the
Appendix section contains the proofs of all the results of the paper.

2. The technology

We assert that sectoral technological progress occurs via two channels. The
first channel is a stock of knowledge that increases at a constant rate and
is generated exogenously. The second channel operates via the adoption of
new knowledge from the technological frontier. This frontier encapsulates
the maximum stock of new knowledge and ideas that are available for
adoption by the sectors in the economy. These channels capture the idea
that technological progress can occur both at the sector level, based on the
available stock of knowledge in the sector, and based also on adoption from
the technology frontier common to all sectors. In order to keep the model
simple, we assume that adoption is costless. Furthermore, we assume that
the stock of knowledge available in the technological frontier increases at an
exogenous growth rate as follows

_A

A
= 
; (2.1)

where 
 > 0 is the growth rate and A denotes the technology level in the
frontier.2 We then pose the law of motion of productivity in i sector as follows

_Ai
Ai
= �i + !i ln

�
A

Ai

�
; (2.2)

where !i > 0 measures the rate of adoption, �i > 0 measures the exogenous
growth progress that takes place without adoption of knowledge, Ai is the level
of TFP in the sector i and A=Ai measures the technological gap between sector

2In order to facilitate the notation we omit the time argument of all the variables.
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i and the frontier. This gap accounts for the stock of knowledge remaining to
be adopted.

To gain some intuition on the effect of the technological gap, let us
suppose that A > Ai and there is no exogenous technology growth in each
sector, �i = 0. In this case, sectoral technological progress depends only
on the ability of each sector to adopt the remaining knowledge. Thus,
differences in sectoral TFP growth rates or sectoral biased technical change
will be determined by the magnitude of the technological gap and the rate at
which technology is adopted across sectors. For simplicity, let us assume
that all sectors can adopt knowledge from the frontier at the same rate,
that is !i = ! for all i. Therefore, sectoral biased technical change is due
to differences in technological gaps. Those sectors with a lower stock of
knowledge tend to grow faster than sectors that are closer to the frontier
level. Although to the extent that backward sectors increase their TFP growth
because of the adoption process, the growth rate decreases because fewer
and fewer technologies from the frontier remain to be adopted. Eventually,
both backward and advanced sectors converge to the frontier level, and this
source of biased technological progress will vanish. On the contrary, the
polar extreme case is when the source of biased technological progress lies
on constant differences in exogenous growth rate, �i > 0. If technology
adoption is not possible, !i = 0 for all i, sectoral biased technical change is
due only to differences in �i across sectors, as in Ngai and Pissarides (2007).
Hereinafter, we assume that !i � 0, �i > 0 for all i in order to analyze the
implications of non-constant biased technical change for structural change.
It is therefore convenient to derive the law of motion of technological gaps.
Following Acemoglu (2008), we define the distance between sectors and the
frontier as follows

vi =
Ai
A
: (2.3)

Taking the log-derivative of (2:3), and substituting (2:1) and (2:2), we obtain
that the law of motion of technological gaps is

_vi
vi
= �i � 
 � !i ln (vi) : (2.4)

Once we solve (2:4),3 it is easy to show that the long-run technological gap is

v�i =

8>><>>:
1 if �i = 


exp
�
�i�

!i

�
< 1; if �i < 


exp
�
�i�

!i

�
> 1; if �i > 


; (2.5)

where v�i is the long-run gap in sector i. Note that there are three possible
values that the technological gap can take in the long run. The first one,
when the technological gap is equal to one, arises because exogenous sectoral
technical progress is equal to the growth rate of the frontier, �i = 
. This is

3See the Appendix B.
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the case when the sectoral TFP level catches up the frontier level in the long
run. The second value is less than one. This occurs when the exogenous
sectoral technical progress is lower than 
 at the frontier, �i < 
. The third
value occurs when exogenous sectoral technical progress is higher than 

at the frontier, �i > 
. In this case, the sectoral TFP level is larger than the
frontier level. Next, we show that this case is not possible given our estimation
of the technology in (2:2).

To analyze whether the technology proposed can explain the time path of
sectoral TFP, we estimate the parameters in equation (2:2) using sectoral data
on productivity for the U.S. economy provided by the EUKLEMS project.4 In
particular, we estimate equation (2:2) using the growth rates of three broad
sectors, namely agriculture, manufacturing and services.5 We choose these
three broad sectors since the analysis of structural change is commonly
performed at this level.

Figure 1 shows both the level and growth rates of the technological gaps
between the agriculture and services sectors, and between the agriculture and
manufacturing sectors, as well as the trend in these series obtained with the
Hodrick-Prescott filter. These gaps are measured by the ratios between the
TFP in agriculture and services and the TFP in manufacturing. These ratios
are defined as relative TFP. A superficial exploration of the plot shows that
both relative TFPs have not been constant over the period 1970-2005 (see
Figure 1; panel a, and b). Figure 1 points out that TFP in agriculture grew
faster than TFP in manufacturing, meanwhile TFP in services grew at a lower
rate than in manufacturing. These results are in line with those reported by
Herrendorf et, al. (2014). Although a more careful inspection of data reveals
that the trend of this relative sectoral TFP is not constant. In particular, both
series show changes in trend around 1980 that have narrowed sectoral biased
technical change. Despite variability in the growth rate of these series, shifts
in the long-run trend of growth rates reveal the observed change in trend in
relative TFP levels (see Figure 1, panels c and d).

[Insert Figure 1]

Table 1 shows the result of estimating the growth rates of TFP in equation
(2:2) for the agriculture, manufacturing and services sectors. In order to
estimate the parameters, we solve the differential equations in (2:2) under
the assumption of exogenous growth of the technology frontier. Given the
solution of (2:2) in Appendix B, we estimate the following system of equations

lnAi = �i + �it+ e
��i(t�ni); (2.6)

where
�i =

�i � 

!i

; �i = 
; and �i = !i; (2.7)

4This project has information about TFP growth across 74 sectors of the economy for the
United States, Japan, and many countries in Europe for the period 1970-2005. For a summary
overview of the methodology and construction of the EU KLEMS database, see O’Mahony, Mary
and Marcel P. Timmer (2009).

5These broad sectors are defined as in Herrendorf et, al. (2014).
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and ni is the constant of integration. We estimate (2:6) imposing the
constraints (2:7) by using non-linear squares.6 The results are in Table 1. The
point estimates for the rate of adoption, !̂i and the exogenous growth progress
�̂i in agriculture and services are statistically different from zero. These
results show that there exists a positive relation between the technological gap
and the TFP growth in agriculture and services. In particular, the estimated
rate of adoption !̂i in agriculture is 0.026, whereas the estimated rate of
adoption in services is, on average, 0.017. The point estimates for the
rate of the exogenous growth progress �̂i in agriculture and services are
similar and statistically different from zero. Notably, the rate of adoption
in the manufacturing sector is not statistically different from zero, and the
estimated value of the exogenous growth progress �̂m is close to the estimated
growth rate of the technology frontier, 
̂. Given the estimated parameters, we
calculate the growth rate of the technological gap in agriculture and services.

[Insert Table 1]

These results suggest the existence of non-constant biased technical
change in the U.S. economy across the agriculture, manufacturing and
services sectors. We acknowledge that our results cover only a short period
of time, nevertheless the reported results are in line with those reported by
Dennis and Iscan (2009), who point out the existence of changes in relative
TFP in farm and non-farm sectors over the period 1800-2000. Our results
suggest that the bias in favor of technological progress in agriculture has
declined over the period 1970-2005, converging to the growth rate of the
manufacturing sector. This suggests again that biased technological progress
is not constant.

In order to analyze the implications of non-constant biased technological
progress on structural change, in the following section we build a three-sector
growth model, based on the seminal work of Ngai and Pissarides (2007), which
is characterized by non exponential sectoral TFP growth, as the empirical
evidence indicates.

3. The model

We build a three-sector growth model in which the output in each sector
is obtained from combining capital, K, and labor, L: We adopt the notation
a; s; and m to denote the agriculture, services, and manufacturing sectors,
respectively. To facilitate the notation, we omit the time argument in all the
variables. Following Ngai and Pissarides (2007), we assume that all sectors
have the same capital intensity and produce an amount Yi of commodity using
the following production function:

Yi = Ai (siK)
� (uiL)

1��; for i = a; s;m; (3.1)

6In Appendix B, we show the empirical strategy to estimate (2:4) :
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where si and ui are the shares of capital and labor allocated in sector i, Ai
is the sectoral total factor productivity (TFP), and � 2 (0; 1) is the intensity of
capital in this sector. Obviously, both capital and labor shares satisfy

sa + ss + sm = 1; (3.2)

and
ua + us + um = 1: (3.3)

We also assume that population is constant and we normalize it to one. We
refer to Ca and Cs as the amount of agricultural and service goods devoted to
consumption, so that the following equation is satisfied

Yi = Ci for i = a; s: (3.4)

We assume that the commodity Ym, namely the manufacturing good, can be
either consumed or added to the stock of aggregate capital. Thus, the law of
motion of the capital stock is given by

_K = Ym � �K � Cm; (3.5)

where Cm is the amount of good Ym devoted to consumption, and � 2 [0; 1] is
the depreciation rate of the capital stock.

The representative agent obtains utility from the consumption of
agricultural, manufacturing and service commodities. In particular, we
assume that the representative agent is characterized by the instantaneous
utility function

U
�
~C
�
= ln

�
~C
�
; (3.6)

where ~C denotes a composite consumption good, which satisfies

~C =

�
�aC

��1
�

a + �sC
��1
�

s + �mC
��1
�

m

� �
��1
; (3.7)

where �a; �s; and �m measure the relative preference for sectoral commodities,
which are assumed to satisfy �a + �s + �m = 1. The elasticity of substitution
among commodities is denoted by the parameter � > 0.

4. The equilibrium

In this section, we obtain the system of differential equations characterizing
the equilibrium. We use these equations to find the long-run equilibrium and
to study how the introduction of technology adoption across sectors modifies
the sectoral composition of the economy.

The representative agent maximizes the discounted sum of utilitiesZ 1

0
e��tU

�
~C
�
dt; (4.1)
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subject to (3:2) ; (3:3), (3:4) ; and (3:5), where � > 0 is the subjective discount
rate. In the Appendix, we obtain the following equations:

si = ui, for i = a; s;m; (4.2)

and

pa =
Am
Aa
; (4.3)

ps =
Am
As
; (4.4)

where (4:2) is a set of static efficiency conditions for the allocation of factors,
and (4:3) and (4:4) shows that relative prices, pa and ps, are functions of the
ratio between the manufacturing sector productivity (the numeraire good) and
agriculture and services, respectively.

To characterize the aggregate economy, we combine (3:4) and (4:3) to
obtain the aggregate consumption expenditure, which is defined as C =
paCa + psCs + Cm. As in Ngai and Pissarides (2007), we define the ratio
of consumption expenditure on good i to consumption expenditure on the
manufacturing good as

xi �
piCi
Cm

=

�
�i
�m

��
p1��i ; (4.5)

and using xi, consumption expenditure can be rewritten as

C = Cm (1 + xa + xs) : (4.6)

Note that (4:5) only depends on relative prices. By combining (3:1), (4:2) and
(4:3), we obtain the gross domestic product (GDP) as

Y = AmK
�: (4.7)

Having obtained the equations that define the aggregate economy, we
now characterize the sectoral employment share. In Appendix A, we show
that substituting the market clearing condition (3:4) in (4:6) and taking into
account the optimal capital shares and (4:9) ; the efficiency labor shares in the
agriculture and services sector are

ua =

�
xa

1 + xa + xs

�
C

Y
; (4.8)

and

us =

�
xs

1 + xa + xs

�
C

Y
: (4.9)

Equation (4:8) and (4:9) together with (3:3) define the sectoral composition of
the economy.

12



We next obtain the system of differential equations that characterizes the
equilibrium. In Appendix A, we obtain that the growth rate of consumption
expenditure is

_C

C
= �AmK

��1 � (�+ �) ; (4.10)

and using (3:5) and (4:7), we can express the law of motion of the capital stock
in terms of total consumption expenditure as follows

_K

K
= AmK

��1 � C

K
� �: (4.11)

Equation (4:10) tells us that the growth rate of total consumption expenditure
is independent of relative prices effects. This result is attributed to our
preferences being represented by a logarithmic utility function.

In order to characterize the equilibrium path, we rewrite (4:10) and (4:11) by

using the following transformed variables z = KA
1

��1
m and c = CA

1
��1
m ; where

z and c denote, respectively, capital and total consumption expenditure in
efficiency units. By taking log-derivatives of z and c; and using (4:10), (4:11)
and (2:4) ; we rewrite the dynamic system as follows

_z

z
= z��1 � c

z
� � � _vm + 
vm

(1� �) vm
; (4.12)

_c

c
= �z��1 � �� � � _vm + 
vm

(1� �) vm
; (4.13)

and
_vm
vm

= (�m � 1) 
 � !m ln vm: (4.14)

Following Ngai and Pissarides (2007), we define structural change as the
change in the employment shares. By taking log-derivatives of (4:3), (4:5),
(4:8), (4:9); and taking into account (2:4), we obtain that the growth rate of the
employment share are

_ua
ua
=
C _=Y

C=Y
+(1� �)

�
_vm
vm

� _va
va

�
�(1� �)

�
xa

�
_vm
vm

� _va
va

�
+ xs

�
_vm
vm

� _vs
vs

��
; (4.15)

and

_us
us
=
C _=Y

C=Y
+(1� �)

�
_vm
vm

� _vs
vs

�
� (1� �)

�
xs

�
_vm
vm

� _vs
vs

�
+ xa

�
_vm
vm

� _va
va

��
: (4.16)

The dynamic equilibrium is thus characterized by a set of paths fz; c; vmg
such that, given z (0) and vm (0), solves equations (4:12) ; (4:13) and (4:14), and
satisfies the transversality condition

lim
t!1

�m

�
zvme



1�� t

�
= 0:

We define a balanced growth path (BGP, henceforth) equilibrium as
an equilibrium path along which the efficiency units of capital, z; and
total consumption expenditure, c; remain constant. The following result
characterizes the steady-state equilibrium.
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Proposition 4.1. There exists an unique BGP, and the long-run values of the
transformed variables are

z� =

�
�


� + �+ �

� 1
1��

;

c� =

�
(1� �) (� + 
�) + �

�

��
�


� + �+ �

� 1
1��

;

v�m = exp

�
�m � 

!m

�
;

where the long-run growth rate of GDP is


� =

8<:


1�� if !m > 0

�m
1�� if !m = 0

:

Note that the GDP growth rate is higher if there is technology adoption
in the manufacturing sector. Given the assumption of equal capital intensity
across sectors, aggregate TFP is equal to the TFP in manufacturing. When
technology adoption occurs in the manufacturing sector, the growth rate of
technological progress in this sector increases and, consequently, so does the
GDP growth rate. On the other hand, when there is not technology adoption
in the manufacturing sector, the GDP growth rate increases proportionally
at the rate �m. The following propositions and definitions characterize the
equilibrium path and the structural transformations in our economy.

Proposition 4.2. The BGP is saddle-path stable.

As Ngai and Pissarides (2007) pointed out, equations (4.12) and (4.13) are
similar to the two differential equations in the one-sector Ramsey economy.
Our model shows similar transitional dynamics to those of the Ramsey model
if we assume that !m = 0 or Am = A in the initial period. Obviously, in
this case, the transitional dynamics are governed only by equation (4.12)
and (4.13). In contrast, if !m > 0 and Am 6= A, the transitional dynamics
are characterized by equations (4.12), (4.13), and (4.14); and the equilibrium
dynamics are different from those obtained in Ngai and Pissarides model.
And yet, in both cases, the patterns of structural change are not necessarily
the same as those reported by Ngai and Pissarides (2007). For instance,
when technology adoption occurs both in the agriculture and services sectors,
the growth rates of sectoral TFP are not constant. This implies that the
bias of sectoral technical progress is time varying and, therefore, the rate
of reallocation of labor out of agriculture is not constant. This affects the
pace and the patterns of structural transformation in the transitional and
dynamics.

As is usual in this literature, we analyze the structural change that
arises when aggregate variables are in the BGP i.e. the model satisfies the
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Kaldor facts. We, therefore, focus on characterizing the structural change
that arises when the economy is in the BGP, and technology adoption
occurs in manufacturing. At this point, we highlight that this assumption
only has implications for the stationary solutions (z�; c�; v�m) outlined in the
previous propositions, and not for the structural changes that we characterize
next. The following definition and propositions characterize the process of
structural change of the economy along the equilibrium path and the sectoral
composition in the long run.

Definition 4.3. Sectoral composition is degenerated if the asymptotic
employment share of at least one sector is zero. Otherwise, sectoral
composition is non-degenerated.

Proposition 4.4. Necessary and sufficient conditions for the existence of a
non-degenerated sectoral composition are !a 6= 0 and !s 6= 0: Otherwise, the
sectoral composition is degenerated.

Proposition 4.5. In the BGP with non-degenerated sectoral composition,
employment shares in the agriculture and services sectors are asymptotically:

u�a =
(1� �̂)

1 +
�
�m
�a

�� �
v�a
v�m

�1��
+
�
�s
�m

�� �
v�m
v�s

�1�� ;
u�s =

(1� �̂)

1 +
�
�a
�m

�� �
v�m
v�a

�1��
+
�
�m
�s

�� �
v�s
v�m

�1�� ;
and

u�m = 1� u�a � u�s > 0:

In the asymptotic BGP with degenerated sectoral composition, employment
shares in the agriculture and services sectors are u�m = �̂; u�s = 1 � �̂; and
u�a = 0; where

�̂ = �
� + 
�

� + �+ 
�

is the savings rate along the aggregate balanced growth path, and v�i , i=a,s,m
are defined in (2:5) :

Proposition (4:4) shows the conditions under which the economy converges
to a non-degenerated sectoral composition. These conditions require that
sectors producing consumption goods adopt knowledge from the technological
frontier. When these conditions are fulfilled, the rates of TFP growth in the
agriculture and services sectors converge to the growth rate of the frontier.
This implies that (4:15) and (4:16) are equal to zero in the long run, when both
technology gaps in agricultural technology and services reach their stationary
values. In contrast, a degenerated sectoral composition arises when one of
the sectors that produces consumption goods (agriculture or services) is not
able to adopt any knowledge from the frontier. It is important to note that
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these results are independent of whether technology adoption occurs in the
manufacturing sector or not. That is, in our model, sectoral composition
is determined by the technological characteristics of sectors producing only
consumption goods. The extreme case of a degenerated economy occurs when
no sector adopts knowledge. In that case, the implications of our model are
the same as those in Ngai and Pissarides model (2007).

The results shown in Proposition (4:4) characterize the sectoral
composition in the long run, whereas one of the main features of economic
development is the structural transformations in the short run. To
characterize this structural change, we focus on studying changes in the
ratio between agriculture and services, and the ratio between agriculture
and manufacturing employment shares (RES, henceforth), as a measure of
the relative importance of agriculture in the economy. The annual relative
variation in these ratios indicates the changes in the number of farm workers
per worker engaged in non-agricultural activities. Thus, the growth rates of
the RES show the pace of industrialization. Kuznets (1973) emphasized that
a rapid decline in the RES (a higher growth rate) is one of the main features
of structural transformations across countries. The following proposition
characterizes the growth rate of the RES in our economy.

From using (4.15) and (4.16), the growth rate of the RES between
agriculture and service is:

_ua
ua
� _us
us
= (1� �) (�s � �a)| {z }

Constant biased effect

� (1� �) (!s ln vs � !a ln va)| {z }
Backwardness effect

:

This equation shows that the RES growth rates are functions of
technological gaps between agriculture and other sectors, if technology
adoption is possible in at least one of these sectors.7 In this case, the RES
growth rates depend on two components. The first component, the constant
biased effect, is equal to the constant differences in the rate of exogenous
technological progress between the service and agriculture sectors. The
second component, the backwardness effect, depends on the difference in the
distances of each sector to the technology frontier. To understand the effect
of each component on the RES growth rate, let us assume that adoption
of knowledge in agriculture and services is not possible. In this case, the
constant biased effect determines the magnitude and direction of the RES
growth rate. To replicate the observed structural change, a decreasing relative
employment share in agriculture, a model with no adoption will require that
�s < �a: In contrast, when knowledge adoption in both sectors is possible and
we assume that there is no biased effect, the RES growth rate is determined by
the backwardness effect. In this case, the RES growth rates are not constant
because the technological gaps vary over time. To gain some intuition about

7For the sake of clarity, we present only the growth rate of the RES between agriculture and
services. Despite the fact that the main feature of sectoral change is the polarization in the
distribution of labor between agriculture and services, we also report numerically the growth
rate of the RES between agriculture and manufacturing.
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the effect of the backwardness effect on RES growth rate, we assume that
�s = �a. If the technological gap in agriculture is larger than the gap in
the services, then the RES growth rate rises (the larger the magnitude of
the difference). Otherwise, the change in the RES growth rate is lower, if
agriculture is closer than the services sector to the frontier (the lower the
magnitude of the difference). That is, the second component measures the
effect of backwardness in the agriculture sector on structural transformation.
To analyze whether the effects of non-constant biased technical change is
an important factor accounting for structural transformations, we conduct a
numerical analysis of our model.

5. Numerical analysis

In this section we analyze the accuracy of the model for replicating the
patterns of structural change observed in the United States during the
period 1870-2005. Structural change is characterized by using both the
employment shares in agriculture, manufacturing and services, and also by
using the annual growth rates of the RES between agriculture and services,
and between agriculture and manufacturing. To this end, we calibrate both
the model based on non-constant biased technical change and the model
built on the constant biased technical assumption to match the development
process of the US economy in the period 1870-2005. We use both models to
simulate the time path of the levels of sectoral employment shares, and we use
them to calculate the growth rate of the RES. We then study the performance
of both models in replicating these features of the structural change by taking
into account two different criteria.

We first compare the accuracy of the non-constant biased model
and the constant biased model’s (our benchmark model) predictions on
sectoral employment allocation by regressing actual employment shares in
agriculture, and services on simulated data. We analyze how well these
simulations fit actual data by reporting the root mean square error (RMSE),
and the Akaike statistic for each regression. The second criterion is based
on the value of the average annual growth rate of the RES obtained from
numerical simulations. We compare the actual average annual growth rates
of the RES with those growth rates obtained with our calibrated models. In
particular, we compare the actual average growth rates of the RES for the
periods 1870-1930; 1930-1950 and 1950-2005; and we then compare them to
those predicted by our model and the benchmark. We focus on these periods
because of the shifts in the sector biased technical change suggested by the
data.

According to Dennis and Iscan (2007), over these periods sectoral technical
change shifted from being biased towards the non-farm sector to being in
favor of the farm sector. These changes affect the actual average growth
rates of the RES and, therefore, comparing the performance of both models
in predicting these changes provides a measure of the feasibility of the
assumptions on which they are based for replicating the structural change
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in the U.S. economy. Based on these two criteria, we determine which model
is more suitable for replicating the main patterns in the data. In what follows,
we describe the strategy for calibrating both models and we present the main
results.

5.1. Calibration strategy

To calibrate both non-constant and constant biased models, we first set
the values of the parameters that are common in both frameworks. These
parameters are �; 
; �; �; �a; �s; �: From the The Economic Report of the
President (2007), we set the value of � = 0:315 to match the average labor
income share for the period 1959-2005. We set the value of 
, � and � so that
they match the value of the average rate of GDP growth, the average capital-
out ratio for the period of 1929-1998, and the interest rate. According to Ngai
and Pissarides (2004), the average rate of GDP growth is around 2 percent,
and the value of the capital-out ratio is 3. We set the interest rate equal to
5.2% in the steady-state as in Alonso-Carrera and Raurich (2010). Thus, we
obtain that � = 0:03, � = 0:05 and the growth rate of the technology frontier

 = 0:0137. In the literature, there is not a specific estimation for the value
of �. Its value ranges from 0:002 to 0:89, depending on the calibration strategy
and the estimation procedures applied (see Boppart, 2014). We perform three
numerical simulations of both models by setting the value of � equal to 0:1,
0:5, and 0:90 in order to cover the range of values reported in the literature.
These values let us examine how our results change in response to shifts in
the value of the elasticity of substitution. Obviously, these changes affect the
values of �a, �s, va, and vs. Therefore, in the case of the non-constant biased
technical change, we set the value of the parameters �a, and �s; so that they
match the expenditure consumption share in the agriculture and services
sectors, at 2005 for given values of �. Simultaneously, for each value of �,
we set initial values for technological gaps va, and vs so that they match the
employment labor shares in agriculture and services in 1870, respectively,
and we normalize vm = 1:8 In the case of the constant biased technical change
model, we follow Ngai and Pissarides’s procedure. We set the values of �i
and the initial values of the sectoral TFPs to match the values of sectoral
employment shares in 1870 (see Ngai and Pissarides, 2004).

Finally, we set the values of !a; !s; !;m; �a; �s; �m as follows. In the case
of our benchmark model, constant biased technical change implies that
!a = !s = !m = 0, so that we then need to set the values of �a; �s, and
�m so that they match TFP growth rates in agriculture, manufacturing and
services according to equation (2:2) : Ngai and Pissarides (2004) set the value
for TFP growth in agriculture, manufacturing and services at 2.4%, 1.4% and
0.4% for the period 1870-2000. Accordingly, we set �a = 0:024, �s = 0:04,
and �m = 0:014. In the case of non-constant bias, both the rate of adoptions
(!a; !s; !m) and the exogenous growth rates (�a; �s; �m) are obtained by using

8This assumption implies that the manufacturing sector have reached the technological
frontier. In this way, we do not need to impose a value for !m:
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the growth rate of relative prices (4.3). As our aim is to analyze a long period of
sectoral transformation, we estimate the value of these parameters using the
information available on relative prices, rather than the estimated parameter
values in Section 2. Limited availability of data for sectoral TFP growth would
mean our having to use estimated values of these parameters for a short
period (1970-2005). We exploit the fact that, given our assumptions, relative
prices are linked to sectoral productivity, and hence to their growth rates
by using equations (2.2) and (4.3). Thus, we overcome this data limitation by
using time series of relative prices for the period 1929-2005.9 The econometric
procedure to estimate these parameters is shown in the Appendix B and
results are in Table 2.10 Table 3 summarizes the parameter values for the
simulation of the two models.

[Insert Table 2 and Table 3]

5.2. Sectoral employment shares

Figure 2 shows the goodness of fit of our simulation based on both models.
As can be seen with the naked eye, both models reproduce the main patterns
of sectoral change: the decline of the agriculture sector and the rise of the
services sector. However, the accuracy of such predictions differs between the
models. At first glance, it is evident that constant-biased model predictions
change as the degree of elasticity varies. In particular, the predictions
based on this model differ greatly from the actual values of labor shares in
agriculture and services as elasticity increases. By contrast, the robustness of
predictions based on a non-constant biased model is notorious to changes in
this parameter. To analyze the degree of accuracy of the simulations further,
we report three measurements of accuracy.

[Insert Figure 2]

Table 4 reports three measures that allow us to compare the accuracy
of the models, and the robustness of these simulations to variations in the
elasticity and the rate of adoption. Specifically, Table 4 reports the the
root-mean-square error (RMSE), and the Akaike information criterion (AIC).11

We calculate these accuracy measures by regressing actual labor shares in

9Relative prices for 1929-1970 are from the Historical Statistics of the United States:
Colonial Times to 1970, Part 1 and 2. The implicit price deflator for services in series E17,
and the wholesale price index for industrial commodities and farm products in series E23-25,
E42, E52-E53. Relative prices for 1970-2005 are from: Economic Report of the President,
2013. Price index for industrial commodities and farm products in table B-67. Price indexes
for services, table B-62.

10Our simulated series are based on point estimated parameters (!̂a; !̂s; !̂;m; �̂a; �̂s; �̂m). We
also show the simulation series based on the confidence intervals that allow us to measure the
model’s robustness to a variation in the rates of adoption.

11RMSE is the standard deviation of the differences between observed and predicted values
values. Finally, the AIC provides a measure for comparing models. AIC allows us to determine
the probability that a model is the best model to replicate the data given the set of information
and alternative models.
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agriculture, manufacturing and services on those shares predicted by our
non-constant biased model and the benchmark.12

[Insert Table 4]

Table 4 shows that both models are able to explain the dynamics
of sectoral change. However, there are quantitative differences in their
performance. On the one hand, reading from left to right, Table 4 shows
the differences in accuracy across the models based on these statistics. The
simulations based on the non-constant biased model provide a better fit
than those based on the benchmark model. In the case of agriculture, for
instance, changes in the RMSE are minimal in our model compared with those
obtained by the benchmark model for three different values in the elasticity.
In particular, the accuracy of the benchmark model decreases as the value
of the elasticity increases, whereas the simulation based on the non-constant
biased model is robust to replicate observed data. In the case of services,
Table 4 shows similar results as in previous case, except in the case of low
elasticity (� = 0:1). In this case, the benchmark model reports a lower RMSE
value than shown by our model. The results show that both models are able
to explain qualitatively the structural change in the U.S. economy. However,
they also show that the performance of the benchmark model decreases as
the elasticity increases.

5.3. The growth rate of the RES

Tables 5 and 6 show the actual average growth rate of the RES between
agriculture and services, and between agriculture and manufacturing,
respectively, for three periods: 1870-1930; 1930-1950; and 1950-2005.
Tables 5 and 6 also report the average growth rate of the RES that are
calculated based on the simulation of non-constant biased and benchmark
models for different values of the elasticity. Thus, Tables 5 and 6 allow us
to compare the robustness of the models to replicate the structural change
for variations of this parameter. From these tables, we can observe two
interesting results.

[Insert Table 5 and Table 6]

First, we highlight the accuracy of the non-constant biased model for
simulating the relative annual changes in the RES. In general, over the
entire period considered, the non-constant biased model can account for most
of the growth in the RES between agriculture and services, and between
agriculture and manufacturing, whereas the benchmark model replicates
poorly the observed growth rates. In particular, the non-constant biased
model replicates the actual average annual growth rate in the RES in

12Alternately, we use the filtered data of the labor shares in agriculture and services to make
the regressions. Actual data were filtered by using the Hodrick-Prescott method to reduce
fluctuations in actual data due to the business cycle. This approach does not change the
results in the main text.
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the early stage of development. For the periods 1870-1930 and 1930-
1950, our model replicates 88 and 62 percent of the relative change in
the RES between agriculture and services, and between agriculture and
manufacturing, respectively. By contrast, the benchmark model replicates
42 and 25 percent, respectively. That is, the non-constant biased model
improves the explanation for the relative change in the RES by around two
times compared to the prediction from a model based on constant biased
technical change.

Second, we highlight the robustness of the non-constant biased model
respect to the benchmark model. Tables 5 and 6 also show the sensitivity
of results to variations in the elasticity. On the one hand, our model can
explain a large part of the labor reallocation in the post-war U.S. economy,
regardless of the value of the elasticity. Herrendorf, Rogerson, and Valentinyi
(2009) calibrate utility function parameters to be consistent with the sectoral
transformation and consumption data in the post-war U.S. economy under
the assumption of constant biased technical change. They find that a Leontief
utility specification (� = 0) is necessary to provide a good fit for both the value-
added sectoral consumption and the sectoral labor shares data. Given our
results, a non-constant sectoral technical progress can explain the sectoral
transformation without imposing a Leontief utility function. We interpret
these results as a measure of the importance of the technological explanation
for the structural change in the United States during the post-war period.

Moreover, the literature points out that both technological and demand
factors affect structural change throughout the development process in the
United States (see Dennis and Iscan, 2007; Buera and Kaboski, 2009; and
Herrendorf et, al., 2014). These papers highlight that a technological factor,
such as the constant biased technical change, plays a major role in explaining
the sectoral shift observed after WWII, whereas the income effect is the
dominant factor in accounting for the structural transformation prior to 1950.
Our findings show that if we move away from the assumption of constant
biased technical change, a purely technological explanation could account for
the sectoral transformations in the U.S. economy prior to WWII.

6. Concluding remarks

In this paper, we present a multi-sectoral sectoral growth model based on
Ngai and Pissarides’ model. In their model, sectoral technological progress is
assumed to be a constant process. This implies that differences in TFP growth
rates across sectors are constant over time. According to the literature,
however, this assumption is at odds with empirical evidence.

We relax the constant biased technical assumption by asserting that
sectoral TFP growth rates change due to technology adoption. We assert
that a sector benefits from adopting new technologies or ideas (knowledge)
available at the technological frontier. This process prompts their sectoral
technological progress and induces non-constant sectoral TFP growth. Based
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on our proposed model, we analyze the implications for structural change
when sectoral technological progress is not constant.

We find that predicted patterns of sectoral labor allocation across sectors
are affected by the non-constant biased technical progress in two major ways.
First, we find that labor allocation over time and sectoral composition in the
long run are determined by a sector’s ability to adopt knowledge. We show
that if technology adoption occurs in every sector, then sectoral composition
is constant in the long run, while the dynamic path of employment share is
affected by the rate of technology adoption. Second, in our model, the pace
of industrialization depends on the relative technology level in each sector. In
contrast with a constant biased model, the growth rate of the RES depends
on the technological gap between the agriculture, services and manufacturing
sectors and to the frontier. We show that as long as the technological gap in
the agriculture sector remains large, the pace of industrialization increases.

We analyze numerically the importance of non-constant biased technical
change in explaining the structural change observed in the US economy in the
period 1870-2005. We show that the patterns of sectoral labor allocation and
the pace of industrialization are better explained by a model based on non-
constant TFP growth than by a model based on constant biased technical
change.

Our findings show that if we move away from the assumption of constant
biased technical change, a purely technological explanation could account for
part of the sectoral transformations in the U.S. economy prior to WWII. In our
model, the relative backwardness of the agricultural sector at an early stage of
development fosters the rate at which labor moves from this sector to the rest
of the economy. We interpret this result as a suggestion for reconsidering
the role of the technology in explaining structural transformation. In this
regard, our results suggest that economic factors that promote technology
adoption would foster the pace of industrialization and structural change. In
this regard, a natural extension of our paper is to analyze in-depth those
factors that promote sectoral technology progress, such as technological
adoption, human capital, and R&D as possible future lines of research on
the determinants of structural change.
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Appendix

A. Equilibrium properties

Solution to the representative consumer optimization problem.
The Hamiltonian function associated with the maximization of (4:1) subject

to (3:2) ; (3:3), (3:4) ; and (3:5) is

H = ln ~C +
X
i=a;s

�i (Yi � Ci) + �m (Ym � �K � Cm) ;

where �a; �s and �m are the co-state variables corresponding to the
constraints (3:4) and (3:5), respectively. The first order conditions are

�a ~C
1��
� C

� 1
�

a = �a; (A.1)

�2 ~C
1��
� C

� 1
�

s = �s; (A.2)

�3 ~C
1��
� C

� 1
�

m = �m; (A.3)

(1� �)�a
Ya
la

= (1� �)�m
Ym
lm
; (A.4)

(1� �)�s
Ys
ls

= (1� �)�m
Ym
lm
; (A.5)

��a
Ya
�a

= ��m
Ym
�m
; (A.6)

��s
Ys
�s

= ��m
Ym
�m
; (A.7)

and

� _�m + �m� = �a�
Ya
K
+ �s�

Ys
K
+ �m

�
�
Ym
K
� �
�
: (A.8)

The sectoral allocation of capital and relative prices
From combining (A:4) and (A:6), we obtain

�a = �m
la
lm
;

and combining (A:5) and (A:7) ; we obtain

�s = �m
ls
lm
:

We substitute ��a and ��s in (3:2) ; and taking into account (3:3) ; the optimal
capital share in the manufacturing sector is

�m = lm; (A.9)
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which implies

�a = la; (A.10)

�s = ls: (A.11)

By assuming that the manufacturing good is the numerarie and dividing
equations (A:4) by (A:5) ; and combining (3:3), (A:9), (A:10) and (A:11), we
obtain the relative prices

pa � �a
�m

=
Ymla
Yalm

=
Am
Aa
; (A.12)

ps � �s
�m

=
Ymls
Yslm

=
Am
As
: (A.13)

Note that the relative prices are the ratio between the co-state variables.
The GDP is obtained by substitution of (4:2) and (4:3) in (A:1) : Firstly, we

substitute (4:2) in (3:1) to obtain

Yi = AiK
�li; (A.14)

and GDP
Y = paYa + psYs + Ym: (A.1)

By combining with (4:3), (A:14) and (A:1), we obtain

Y = Am K
� (la + lm + lm) ;

and, given (3:3), we obtain that

Y = Am K
�:

The Euler equation
From (4:5) ; we obtain Ca and Cs as functions of Cm and the relative prices

Ci =

�
�i
�m

��
p��i Cm for i = a; s:

We then substitute these equation in (3:7) and combining with (A:3), we obtain

(1 + xa + xs)Cm = �
�1
m : (A.2)

Substituting (A:2) in (4:6) we obtain

C = ��1m ;

where total expenditure is a function of the co-state variable corresponding to
the constraint (3:5) : By substituting (4:2) in (3:1), and combining with (A:8),
we obtain the growth rate of the co-state variables �m as follows

��̂m = �AmK��1 � (�+ �) : (A.3)
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We then log-differentiate C = ��1m and combine with (A:3) ; we obtain (4:10) :
Proof of Proposition 4.1. If !m > 0, then the dynamic system is

ẑ = z��1 � c

z
� � � 
�m � !m lnum

(1� �) ;

ĉ = �z��1 � (�+ �)� 
�m � !m lnum
(1� �) ;

v̂m = (�m � 1) 
 � !m ln vm;

From equation v̂m; it follows that there is a unique steady value such that

vm = exp

�
�(1� �m) 


!m

�
;

and substituting in ẑ and ĉ, we obtain

ẑ = z��1 � c

z
� � � 


(1� �) ;

ĉ = �z��1 � (�+ �)� 


(1� �) :

The steady state, it must be satisfied that ẑ = ĉ = 0; implying that

0 = z��1 � c

z
� � � 


(1� �) ;

0 = �z��1 � (�+ �)� 


(1� �) :

Solving the system for z and c; we obtain

z� =

�
�

(1� �)

 + (1� �) (�+ �)

� 1
1��

;

c� =
(
 + �+ (1� �) �)

�

�
� (1� �)


 + (1� �) (� + �)

� 1
1��

:

If $m = 0, then the dynamic system at the steady state is

ẑ = z��1 � c

z
� � � �m


(1� �) ;

ĉ = �z��1 � (�+ �)� �m


(1� �) :

At the steady state, we obtain

z� =

�
�

(1� �)
�m
 + (1� �) (�+ �)

� 1
1��

;

c� =
(�m
 + �+ (1� �) �)

�

�
� (1� �)

�m
 + (1� �) (� + �)

� 1
1��

:
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Proof of Proposition 4.2. If !m > 0; there are two state variables and
one variable control. Using (4:12), (4:13), and (4:14), we obtain the following
Jacobian matrix evaluated at the steady state

J =

0@a11 a12 a13
a21 a22 a23
0 0 a33

1A ;
where

a11 � @ẑ
@z = �; a12 � @ẑ

@c = �1; a13 � @ẑ
@vm

= !m
1��

z�

v�m
;

a21 � @ĉ
@z = � (�� 1) z

���2c�; a23 � !m
1��

c�

v�m
; a33 � @v̂m

@vm
= �!m:

It is immediate to see that the eigenvalues are �1 = �!m, and the two roots
�2 and �3 are the solution of the following equation

Q (�) = �2 � � (�) + a21 = 0;

where the solutions are

�2; �3 =
��

p
�2 � 4a21
2

:

Insofar as a21 < 0 and � > 0, it follows that one of the roots, for example �2
is always negative and the other one, �3, is positive. So, �1; �2 < 0 and �3 > 0:
This result implies that there is a two-dimensional stable manifold in (z; c; v3)
space.

On the other hand, If !m = 0; there is one state variable and one
control variable. Using (4:12), (4:13) ; we obtain the following Jacobian matrix
evaluated at the steady state

J =

�
b11 b12
b21 b22

�
;

where
b11 � @ẑ

@z = �; b12 � @ẑ
@c = �1;

b21 � @ĉ
@z = � (�� 1) z

���2c�; b22 � @ĉ
@c = 0:

As
det J = �1�2 = � (b21) (b12) < 0;

the eigenvalues of the system are real numbers of opposite signs, and the
steady state is saddle path stable.
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B. Estimation of the technology

Solution of differential equation
We then pose the law of motion of productivity in the i sector as follows

_Ai
Ai
= �i + !i ln

�
1

vi

�
;

where we define the inverse of the distance across sectors and the frontier as
follows

vi =
Ai
A
: (B.1)

By taking the log-derivative of (B:1), we obtain that the law of motion of
technological gaps is

_vi = (�i � 
) vi � !i ln (vi) vi: (B.2)

We rewrite (B:2) as follows

dvi
(�i � 
) vi � !i ln (vi) vi

= dt; (B.3)

then (B:3) can be integrated after a single substitution. Let

m = �i � 
 � !i ln (vi) ;

where
dm

dvi
=
�!i
vi

! dvi
vi
=
dm

�!i
:

Substituting in(B:3), integrating and solving the integral equation,

1

�!i

Z
1

mi
dmi =

Z
dt;

we obtain

mi = e
�!i(t+c);

We substitute back into the mi to obtain

vi = exp

�
�i � 

!i

+ e!i(c�t)
�
; (B.4)

and substituting (B:4) in (B:1),we finally obtain

Ai = exp

�
�i � 

!i

+ e!i(c�t)
�
A: (B.5)

Estimation Procedures: Using EUKLEMS (1970-2005)
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From the definition of (B:5) ; we can estimate !i and �i using the data on
the TFP growth rates of the agriculture, manufacturing, and services sectors
from the EUKLEMS database that covers 1970-2005. To this end, we estimate
the following equation which derives from (B:5) and our assumption that the
technology frontier grows at a constant rate in equation (2:1) : Taking logs in
(B:5) we obtain

lnAi =
�i � 

!i

+ lnA0 + e
!i(c�t) + 
t;

and normalizing the initial stock in the frontier to one, A0 = 1, we can estimate
the following system of equations

lnAa = �a + �at+ e
��a(t�ca);

lnAm = �m + �mt+ e
��m(t�cm); (B.6)

lnAs = �s + �st+ e
��s(t�cs);

where
�i =

�i � 

!i

; �i = 
; and �i = !i:

We estimate the parameters in (B:6) constrained to �i = 
 for all sector. We
use non-linear squares to estimate (B:6) : We report the results in Table 1.

Estimation Procedures: Relative prices (1929-2005)
In order to have an estimation of !i and �i prior to 1970, we estimate the

parameters in (2:2) by using relative prices as long as these are related to
the dynamic of relative productivity in (4:3) : The major problem in estimating
adoption rates arises from the empirical specification of our law of motions,
which depends on an unobservable factor (the technological frontier). In order
to use relative prices as a proxies of sectoral TFP, here, we assume that the
manufacturing sector is a proxy for the frontier.13 Given this assumption, we
know from Kruguer (2008) that the annual manufacturing TFP growth rate for
the period 1870-2000 is around 0.014. Therefore,

_Am
Am

� �m = 0:014:

From (4:3) ; we know that

_pa
pa
=

_Am
Am

�
_Aa
Aa

= �m � �a � !a ln (pa) ; (B.7)

and
_ps
ps
=

_Am
Am

�
_As
As

= �m � �s � !s ln (ps) : (B.8)

We solve (B:7) and (B:8) to obtain

13In terms of our model, we can assume that the manufacturing sector is in the frontier.
That is, TFP in manufacturing has reached the technology frontier.

30



ln pa =
�m � �a
!a

+ e�!a(Ca+t); (B.9)

and
ln ps =

�m � �s
!s

+ e�!s(Cs+t) (B.10)

where Ca and Cs are constants of integration. We use nonlinear seemingly
unrelated regression to estimate Ca and Cs; �a and �s; !a, and !s from (B.9)
and (B.10) by fitting the following system of equations:

ln pi = �i + e
�i(Ci+t) for i = a; s;

where
�i =

�m � �i
!i

; and �i = �!i;

and the constant Ca and Cs subject to the constraint �m = 0:0140: Tables 2
reports the estimated values of !a, and !s and the values of �a and �s, which
are obtained by nonlinear combinations of the estimated parameters �̂i and
�̂i using nlcom (nonlinear combination) command in STATA.
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Figure 1: Relative Sectoral TFP ( Levels and Growth). Panel (a) plots the ratio
of TFP levels between agriculture and manufacturing sectors. Panel (b) plots the ratio of TFP
levels between agriculture and services sectors. Panel (c) an (d) plot the actual and smoothed
growth rates of these TFP ratios, respectively. We use the Hodrick-Prescott to filter actual data
to obtain a trend component. We set the smooth parameter, lambda, equal to 6.25
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Figure 2: Patterns of Structural Change. Figure 2 shows the simulated patters
of labor shares obtained by assuming three different values of the elasticity of substitution.
Thus, this figure shows the robustness of both models to changes in the elasticity. Here,
Figure 2 also plots the predicted labor shares in the 95 percent confidence intervals values for
the point estimates (shaded area).
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Tables

Table 1:
Estimation of adoption rates EUKLEMS 1970-2005.

 ω

 φ

γ

R2

Standard errors in parentheses
* p<0.05, ** p<0.01, *** p<0.001

0.012*** 0.012***

0.93

0.012***
(0.002) (0.002) (0.002)

Agriculture

0.034***
(0.002)

0.011***

0.017***
(0.003)

0.026***
(­0.002)

Services

0.039***
(0.007)

0.63 0.76

(0.002)

Manufacturing

­0.001
(0.002)
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Table 2: Estimation of adoption rates. Relative Agricultural and Services
Prices

 ω 0.004 0.006 0.005 0.021

 φ 0.017 0.019 0.024 0.026

R2

* p<0.05, ** p<0.01, *** p<0.001

Agriculture
(a)      (b)

Services
(a)      (b)

0.025***

0.005***
(0.001)

Services
(mean)

0.42

Agriculture
(mean)

0.019***
(0.001)

Standard errors in parentheses. (a) and (b) are the lower and upper values in the confidence
interval.

(0.0005)

0.84

0.013***
(0.004)
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Table 3: Calibration

0.315 Labor income share 0.685

0.0137 GDP growth rate (1870­2005) 0.02

0.03 Capital­output ratio 3

0.05 Interest rate 0.052

0.5 By assumption

0.01 Consumption expenditure share in food 0.03

0.9 Consumption expenditure share in services 0.75

0.0013 Labor share in agriculture (1870) 50%

0.1803 Labor share in services (1870) 25%

1 Normalized

0.004 Estimation from relative agricultural price

0.01 Estimation from relative services price

0 By assumption

0.019 Estimation from relative agricultural price

0.025 Estimation from relative services price

1 Normalized

ε

va

vs

Note: We perform three numerical simulations for three different values of the elasticity,
and accordingly, the initial values of technological gap were set. Reported values in Table 3
are set by assuming ε=0.5. For the values of the elasticity equal to 0.1, and 0.9, we set the
initial gaps in agriculture sector equal to 0.000005, and 0.001; and the initial gaps in the
services sector are 0.053 and 0.000012, respectively. Finally, the values of ηa are 0.00001
and 0.0082 and  the values of ηs are 0.9999 and 0.77 for ε=0.1 and ε=0.9, respectively.

 ωa

 ωs

ηs

vm

 φs

φm

 ωm

φa

Parameters Values Targets

γ
ρ
δ

ηa

data

α
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Table 4: Accuracy Measures of Simulated Structural Change.

(a) (b) (a) (b) (a) (b)
ε = 0.10 RMSE 0.032 0.071 0.044 0.044 0.046 0.030

AIC ­546 ­328 ­459 ­457 ­446 ­559

ε = 0.50 RMSE 0.032 0.123 0.030 0.039 0.048 0.054

AIC ­546 ­183 ­566 ­494 ­438 ­406

ε = 0.90 RMSE 0.035 0.157 0.037 0.039 0.050 0.119

AIC ­518 ­116 ­504 ­493 ­426 ­191

We calculate these accuracy­measures by regressing actual labor shares in agriculture, manufacturing
and services on those predicted shares by our non­constant biased model and the benchmark for the
period 1870­2005. Here, we report the results for three values of the elasticity of substitution. Column
(a) reports the statistical measures for the non­constant biased model. Column (b) reports the
statistical measures for the benchmark model...........................................................................

Case Accuracy
measure

Agriculture Manufacturing Services

Observations 135 135 135

Table 5: Average growth rate: RES between Agriculture and Services

ε = 0.10 1870­1930 ­2.32 ­2.78 ­1.78 1.20 0.77
1930­1950 ­2.30 ­2.35 ­1.78 1.02 0.77
1950­2005 ­3.98 ­2.03 ­1.78 0.51 0.45

ε = 0.50 1870­1930 ­2.32 ­2.67 ­0.96 1.15 0.41
1930­1950 ­2.30 ­2.21 ­0.96 0.96 0.42
1950­2005 ­3.98 ­1.86 ­0.96 0.47 0.24

ε = 0.90 1870­1930 ­2.32 ­2.60 ­0.19 1.12 0.08
1930­1950 ­2.30 ­2.18 ­0.19 0.95 0.08
1950­2005 ­3.98 ­1.97 ­0.19 0.49 0.05

(a) (b) (c) (d) (e)

Column (a) reports the actual average annual growth rates. Columns (b) and
(c) report the predicted average growth rates based on the non­constant and
the benchmark model, respectively. Columns (d) and (e) report the fraction of
actual growth rate that is replicated by the model (b) and (c), respectively.
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Table 6: Average growth rate: RES between Agriculture and Manufacturing

ε = 0.10 1870­1930 ­1.74 ­1.53 ­0.82 0.88 0.47
1930­1950 ­2.87 ­1.77 ­1.09 0.62 0.38
1950­2005 ­2.44 ­1.72 ­1.31 0.71 0.54

ε = 0.50 1870­1930 ­1.74 ­1.52 ­0.39 0.88 0.22
1930­1950 ­2.87 ­1.70 ­0.47 0.59 0.16
1950­2005 ­2.44 ­1.59 ­0.54 0.65 0.22

ε = 0.90 1870­1930 ­1.74 ­1.57 ­0.07 0.90 0.04
1930­1950 ­2.87 ­1.78 ­0.07 0.62 0.03
1950­2005 ­2.44 ­1.79 ­0.08 0.73 0.03

Column (a) reports the actual average annual growth rates. Columns (b) and
(c) report the predicted average growth rates based on the non­constant and
the benchmark model, respectively. Columns (d) and (e) report the fraction of
actual growth rate that is replicated by the model (b) and (c), respectively.

(a) (d) (e)(c)(b)
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