Critical thinking in nursing: scoping review of the literature

Esperanza Zuriguel Pérez, RN, PhD student
Hospital Vall d’Hebron, School of Nursing, University of Barcelona, Spain.

Mª Teresa Lluch Canut, RN, PhD
Professor, School of Nursing, University of Barcelona, Spain.

Anna Falcó-Pegueroles RN, MHSc, PhD
Professor, School of Nursing, University of Barcelona, Spain.

Montserrat Puig-Llobet RN, PhD
Professor, School of Nursing, University of Barcelona, Spain.

Carmen Moreno-Arroyo RN
Professor, School of Nursing, University of Barcelona, Spain.

Juan Roldán-Merino RN, PhD
Professor, Campus Docent-Fundació Privada, Sant Joan de Deu School of Nursing (Affiliated with the University of Barcelona), Spain.
Professor, Associate, Faculty University of Rovira I Virgili, Tarragona, Spain
Professor, Associate, School of Nursing, University Autonoma of Barcelona, Spain.

Correspondence:
Esperanza Zuriguel Pérez, Hospital Vall d’Hebron,
Passeig de la Vall d’Hebron, 119-129 08035 Barcelona, Spain.
Tel. + 34 659 832 191
Email: ezurigue@vhebron.net

Running title: Critical thinking in nursing
ABSTRACT
This article seeks to analyze the current state of scientific knowledge concerning critical thinking in nursing. The methodology used consisted of a scoping review of the main scientific databases using an applied search strategy. A total of 1518 studies published from January, 1999, to June, 2013, were identified, of which 90 met the inclusion criteria. The main conclusion drawn is that critical thinking in nursing is experiencing a growing interest both in the study of its concepts and its dimensions, as well as in the development of training strategies to further its development among both students and professionals. Furthermore, the analysis reveals that critical thinking has been investigated principally in the university setting independent of conceptual models, with a variety of instruments used for its measurement. We recommend the (i) investigation of critical thinking among working professionals, (ii) the designing of evaluative instruments linked to conceptual models, and (iii) the identification of strategies to promote critical thinking in the context of providing nursing care.

Keywords: critical thinking, nursing, nursing education, nurses, systematic review

INTRODUCTION
Critical thinking (CT) is a cognitive process that includes rational analysis of information to facilitate clinical reasoning, judgment, and decision-making\(^1\). The complexity and ever-changing nature of the healthcare workplace, along with the need for care centered on the patient in tandem with practice based on evidence, combine to highlight CT as a competence of great importance in education and in professional practice.

Several international organizations have put forward initiatives to pay greater attention to CT. For example, the National League for Nurses\(^2\) included critical thinking as a specific criterion in the accreditation of academic programs. For its part, the Joint Commission for Accreditation for Healthcare Organisations\(^3\) included CT among its norms, as a key skill in nursing.

Critical thinking is particularly important in the nursing profession, given its potential impact upon the care that patients receive. The capacity of the nursing professional
to achieve improvements in the quality of care depends, in large measure, upon
developing critical thinking skills so as to improve diagnostic decisions. CT is a process that may be explored and then assimilated during both the
educational period and the professional career that follows. Nevertheless, some
problems associated with it remain to be resolved, such as the ambiguous nature of
the concept, measurement of it, and strategies for better developing it.
The present article reports on a review of studies published in the past fourteen
years, with the aim of analyzing the current state of knowledge regarding CT in
nursing.

METHOD
We carried out a scoping review of the scientific literature on CT in nursing and
related concepts, following the guidelines set forth in the PRISMA standard (Preferred Reporting Items for Systematic reviews and Meta-Analyses). Studies were
identified principally by means of systematic conventional searches of electronic
databases. Various combinations of the following medical subject headings (MeSH)
were used: critical thinking, problem solving, decision-making, judgment, competence
and nursing. The search strategy was carried out in MEDLINE, CINAHL, LILACS,
and Cochrane Library Plus. Table 1 presents the search strategy that was used.
In addition, a secondary search was carried out by reviewing the bibliographic
references cited in the studies that were included. The language for the review was
English, and the publications considered ran from January, 1999, to June, 2013. The
review was limited to original articles. The search strategy was not restricted by any
particular research design. Figure 1 illustrates the search procedure that was
followed.
Some 1518 references were obtained, of which 93 were eliminated as duplicates. A
process of discrimination was then carried out by means of analysis of the titles and
abstracts of the remaining 1425 citations. The 155 documents that passed this filter
were then subjected to further screening based on a reading of the complete text,
which led to the elimination of an additional 50 papers. In the end 90 articles were
included in the review.
Analysis was carried out in two stages. First, descriptive aspects of the studies were
analyzed, and then a topical analysis of the studies was carried out.
The variables studied were the following:

The productivity characteristics of the publications:

- Number of articles, by annual distribution.
- Country of origin of the study, with 13 categories: the United States, Sweden, the United Kingdom, Turkey, the Netherlands, Canada, Australia, China, Korea, Iran, South Africa, Mexico, and Jordan.

The methodological characteristics of the studies:

- Study design type, with 6 categories: descriptive, quasi-experimental, experimental, qualitative, mixed methodology, and analysis.
- Sample type, with 4 categories: nursing students, working nurses, nursing teachers, and nursing managers.
- Sample size, defined by the range between lowest and highest values.
- Aim of the study, with 4 categories according to the main topic of the study: evaluation of the strategies for advancing CT, evaluation of the components of CT in nursing students and working nurses, perception of CT in students, and analysis of the factors that influence CT. For this last category the following subcategories were identified: workplace, clinical competence, nursing process, self-sufficiency, clinical judgment, and diagnostic precision.

RESULTS

Description of the studies

Analysis of the annual distribution of publications on CT revealed increasing interest in this subject in recent years, with a notable surge of production in the year 2010, as may be seen in the details of the MEDLINE search by publication date (Fig. 2).

In terms of the country of origin of the studies, the majority were carried out in the United States (n = 66; 73.3%). Europe was the second source of articles (n = 20; 22.2%), divided among Sweden (n = 7; 7.7%), the United Kingdom (n = 6; 6.6%), Turkey (n = 5; 5.5%), and the Netherlands (n = 2; 2.2%). Other studies were carried out in Canada (n = 7; 7.7%), Australia (n = 4; 4.4%), and China (n = 5; 5.5%). The rest were in Korea (n = 1; 1.1%), Iran (n = 1; 1.1%), South Africa (n = 1; 1.1%), Mexico (n = 1; 1.1%), and Jordan (n = 1; 1.1%).
In terms of the type of study design, the percentages were as follows: the greatest number were descriptive (n = 32; 35.5%), geared toward evaluating educational strategies for advancing CT, measuring CT skills in students, and analyzing factors related with CT. In lesser numbers were quasi-experimental studies (n = 10; 11.5%), experimental studies (n = 6; 6.6%), and studies with mixed methodology (n = 5; 5.5%). This design type was used to evaluate the impact of educational initiatives on the CT skills of students. Next were qualitative studies (n = 17; 18.8%), which focused principally on exploring the perception of CT in students. Finally, analytical articles (n = 20; 22.2%) explored various aspects of CT.

As to the populations under study, CT was examined mainly in nursing student samples at various stages of training (n = 42; 48.8%), and less so in samples of working nurses (n = 16; 17.7%), nursing teachers (n = 3; 3.3%), and nursing managers (n = 1; 1.1%).

Sample size ranged from 6 to 2144, in accordance with the research design.

Regarding the main topic of the studies, the following focuses of interest were identified: (i) evaluation of strategies for promoting CT in the field of education, (ii) evaluation of the CT of students or nurses by means of various measuring instruments, (iii) exploration of the perception of CT in students, and (iv) analysis of several factors related to CT and their influence upon the results, such as the workplace, clinical competence, nursing procedure, self-sufficiency perceived in students, and clinical judgment. Table 2 presents the classification of the articles by the main topic under study and the research design type.

Topical analysis

Topical analysis of the contents of the articles examined led to grouping them into three main areas: (i) conceptualization of CT, (ii) measurement of CT, and (iii) strategies for promoting CT.

Conceptualization of critical thinking

CT in nursing is seen as specific and distinct from CT in other disciplines owing to the dynamics of the clinical process, the affective dimension of nursing practice, and the incorporation of nursing knowledge\(^6\). The definitions of CT found in the literature are diverse\(^7\),\(^8\) although one of the most often cited is that of Facione\(^9\). This author defines
CT as the intellectual process that decidedly, deliberately, and in a self-regulated manner tries to arrive at a reasonable judgment. There is general recognition of the fact that CT is a complex process whose components include cognitive abilities and attitudinal dispositions.10–13

CT has been defined as controlled, useful thinking that requires strategies in order to obtain the desired results.1 According to other authors it is the process of searching, obtaining, evaluating, analyzing, synthesizing, and conceptualizing information; its attributes are reflection, context, dialogue, and time.14

For a number of authors there is at present a continuing lack of clarity about the concept.6,15,16 The complexity is owing to the fact that CT requires various types of knowledge—abstract, generalizable, and applicable in different situations. It depends upon experience and contextual factors (the work flow, and social and political factors).

The definition of CT in nursing has been supplemented by alternative terms: clinical reasoning, clinical judgment, problem-solving, clinical decision-making, and nursing process.17,18 The process of clinical reasoning appears in the literature linked to the making of professional judgments, resolution of problems, and making of diagnostic decisions. It has been described as the cognitive process of application of critical thinking, knowledge, and experience in clinical practice.19–21

Another term related to CT, clinical judgment, is defined as the result attained by means of clinical reasoning.22 While CT is not centered upon the search for a response, the resolution of problems seeks to obtain a result.13,23–25 CT facilitates the making of decisions, understood as the systematic process of evaluating and deciding that contributes to obtaining a desired result.19

Another concept linked with CT is the nursing process. This is a cognitive process that involves the use of CT skills to obtain desired results. The nursing process constitutes the basis of CT skills in nursing.26,27

Measuring critical thinking

Six standardized instruments for evaluating CT in nursing students and working nurses have been identified: the California Critical Thinking Disposition Inventory (CCTDI), the California Critical Thinking Skills Test (CCTST), the Health Science Reasoning Test (HSRT), the Watson Glaser Critical Thinking Appraisal (WGCTA),
the Performance Based Development System (PBDS), and the Critical Thinking Diagnostic (CTD). Table 3 presents the measuring instruments.

In the studies using a quantitative methodology (n=53; 5.8%), the CCTDI28 was the most frequently used instrument (n = 8; 15.0%) for examining the disposition of nursing students29-32, working nurses33,34, nursing managers7, and nursing teachers35. The CCTST36 (n = 4; 7.5%) was used to measure the CT skills of nursing students37,38, post-graduate nursing students39, and recently graduated nurses40. The HSRT41, designed to evaluate the CT skills of students and professionals in the health sciences, was used in one study (n = 1; 1.8%) for construct validation21. Other research studies (n = 4; 7.5%) have employed the WGCTA42 as an instrument in the evaluation of the CT skills of student samples43 and of working nurse samples24,44,45.

With the aim of jointly analyzing disposition and CT skill, some authors have used the CCTDI and the CCTST15,35,46-48 (n = 5; 9.4%), offering as a result the positive correlation between the two instruments. Others have used the CCTDI and the WGCTA49,50 (n = 2; 3.7%) without, however, finding statistically significant relations. The studies that used the CCTDI and the HSRT51-53 (n = 3; 9.6%) did not provide information on the correlation between the two instruments.

Finally, there are two instruments that were used to evaluate nursing competence by means of CT skills, the PBDS54 (n = 1; 1.8%) and the CTD55 (n = 1; 1.8%).

It will be noted that several instruments are frequently combined in the same study in order to analyze influencing factors in CT such as expertise56, educational level24,57,58, failure to rescue57, self-confidence58,59, learning style19, self-esteem53, work complexity59, level of anxiety60, job satisfaction61, and diagnostic precision33,62.

Faced with the choice of instruments, some authors have opted for using alternative methods of evaluation, such as the rubric63,64, the concept map65, the case study66,67, and the questionnaire59,68,69.

From the year 2000 onward, various researchers focused their attention on an evaluation of CT by means of qualitative methods, using semi-structured interviews70-72, group discussions64, on-line discussions73, and questionnaires74,75.

Strategies for promoting critical thinking
There is interest in developing post-graduate and master’s training programs that include specific strategies for the development of CT skills in nursing students. The most frequently analyzed strategies are simulations using anatomical models, questioning, group dynamics, reflective diaries, the creating of concept maps, and teaching models focused on reasoning.

Studies that have used simulation as a didactic technique have posted good results in the development of CT skills and dispositions in nursing students76–80 and in working nurses57, with the exception of two studies that failed to find significant results following exposure to simulation81. Other studies have linked simulation with the development of clinical judgment82, especially following post-simulation debriefings83.

The use of questioning as a didactic technique encourages reflection and stimulates CT in students84–86 and in inexperienced nurses67,87.

Group dynamics encourages the development of CT skills in students88 without, however, showing any improvement among working nurses37.

The reflective diary is reported to be an effective strategy for increasing CT skills in students6,59,89, in that it encourages reflection, the assimilation of newly learned material, and the creation of new knowledge.

The concept map is an analytical tool that helps in the synthesizing, organizing, and prioritizing of data in a logical sequence. Some studies opted for using the concept map to encourage the development of CT skills, which bore positive results both among students38,69,90 and beginning nurses91.

The use of educational models focused on reasoning proved effective in developing CT skills. Examples include Developing Nurses’ Thinking82, Structured Observation and Assessment of Practice92, Paul’s model critical thinking93, and Clinical Judgment Model94.

Learning based on problems95,96 was introduced into nurse training as a method for promoting the development of CT, the acquisition of knowledge, and the development of the ability to resolve problems and make decisions. However, the results of a recent systematic review yielded no evidence of improvement in CT among nursing students97.

Furthermore, orientation programs have yielded satisfactory results in the development of CT skills among nurses starting out in their careers61.
Finally, some studies have provided evidence of the contribution of information technology and communication technology in fostering CT73,98,99.

DISCUSSION

The present scoping review of the concept of CT in nursing, and related concepts, has clearly shown this to be an area of interest in nursing, even though it has turned up a number of difficulties in researching the topic.

Regarding the conceptualization of CT, we found, as have other previous reviews100,101, that there is no universally accepted conceptual framework for describing and evaluating CT in nursing. The studies suggest that the conceptualization of CT needs to be consolidated and adapted, beyond the merely theoretical, to the current healthcare system and the clinical environment. There is a need for clarification of the terminology related with CT used in the literature.

As for the measurement of CT, we found, as did prior reviews102,103, that the currently available standardized instruments are not sensitive to measurement in the nursing discipline.

CT has been identified as an essential element in nursing practice, yet there is little evidence that there is regular evaluation of CT competence. CT applied to clinical practice encourages professional activity based on evidence and advances those aspects of the profession related to competence. The acquisition of CT skills, in bringing about safer, more competent care, may serve to improve diagnostic precision and decision-making, yielding more favorable outcomes for patients. Nevertheless, our review of the literature has shown there to be only a limited number of studies exploring CT in clinical practice. It may be the case that optimized CT skills improve the quality of patients care, but the exact relation between CT and outcomes remains unclear.

Finally, as to the strategies for advancing CT, we found, as have other researchers, inconsistent conclusions when it comes to presenting results regarding the evaluation of teaching and learning strategies for nursing students104. This may be owing to the complexity of the construct and to the lack of a conceptual model of CT that would permit its evaluation in all its dimensions. The nursing profession has not adopted an evaluation standard for CT, which makes it extremely difficult to generalize results. In
order to be able to improve CT skills in the clinical setting specific strengths and weaknesses need to be identified.

The challenge for the future of research into CT lies in focusing on the development of models and evaluation instruments that are specific to the discipline of nursing, and in analyzing those factors that encourage and those that inhibit the acquisition of CT, so as to develop strategies to foster CT in clinical practice.

REFERENCES

Figure 1. Flow chart of the results of the search according to the PRISMA standard.
Figure 2. Distribution of the recovered bibliographic references, by year of publication (January 1999-June 2013). Source: Medline.
Table 1. Strategy for bibliographic search.

<table>
<thead>
<tr>
<th>Medline</th>
<th>CINHAL</th>
<th>Cochrane Library Plus</th>
<th>LILACS</th>
</tr>
</thead>
<tbody>
<tr>
<td># 1 “critical thinking”</td>
<td># 1 (critical thinking)</td>
<td># 1 (Critical thinking and nurs*)</td>
<td># 1 “critical thinking”</td>
</tr>
<tr>
<td># 2 nursing</td>
<td># 2 (nursing care)</td>
<td># 2 “nursing”</td>
<td></td>
</tr>
<tr>
<td># 3 (# 2) and # 3</td>
<td># 3 (clinical competence)</td>
<td># 3 “critical thinking and nursing”</td>
<td></td>
</tr>
<tr>
<td># 4 “Nursing” [Majr]</td>
<td># 4 (1 and 2)</td>
<td># 4 (Judgment clinic and nurs*)</td>
<td></td>
</tr>
<tr>
<td># 5 (“Thinking” [Majr]) or “Clinical Competence/standards” [Mesh]) or “Nursing Care/standard” [Mesh]</td>
<td># 5 (1 and 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td># 6 (# 5) and # 4</td>
<td># 6 (1 and 2 and 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#7 (“Thinking”[Mesh]) or “Clinical Competence/standards” [Mesh]) or “Nursing Care/standard”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># 8 “Nurses” [Mesh]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># 9 (# 7) and # 8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Classification of the selected articles, by research design and object of the study.

<table>
<thead>
<tr>
<th>Research Design and Object of Study</th>
<th>Descriptive (n = 32)*</th>
<th>Quasi-experimental (n = 10)*</th>
<th>Experimental (n = 6)*</th>
<th>Qualitative (n = 17)*</th>
<th>Mixed methodology (n = 5)*</th>
<th>Analytical articles (n = 20)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation strategy for the promotion of CT</td>
<td>14 (43.7)</td>
<td>8 (80.0)</td>
<td>3 (50.0)</td>
<td>9 (52.9)</td>
<td>5 (100)</td>
<td>16 (80.0)</td>
</tr>
<tr>
<td>Evaluation of CT in students</td>
<td>8 (25.0)</td>
<td>2 (20.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation of CT in nurses</td>
<td>1 (3.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perception of CT in students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8 (47.0)</td>
</tr>
<tr>
<td>Workplace and CT</td>
<td>4 (12.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical competence and CT</td>
<td>4 (12.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nursing process and CT</td>
<td>1 (3.0)</td>
<td></td>
<td></td>
<td></td>
<td>1 (5.0)</td>
<td></td>
</tr>
<tr>
<td>Self-sufficiency in students and CT</td>
<td></td>
<td></td>
<td>1 (16.6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostic precision and CT</td>
<td></td>
<td></td>
<td>2 (33.3)</td>
<td></td>
<td>2 (10.0)</td>
<td></td>
</tr>
<tr>
<td>Clinical judgment and CT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 (5.0)</td>
<td></td>
</tr>
</tbody>
</table>

*Number of studies, by design.
CT: critical thinking; n = number of studies; % = percentage of studies
Table 3. Type of population studied and range of simple size, by research design.

<table>
<thead>
<tr>
<th></th>
<th>Descriptive (n = 27)*</th>
<th>Quasi-experimental (n = 10)*</th>
<th>Experimental (n = 6)*</th>
<th>Qualitative (n = 17)*</th>
<th>Mixed methodology (n = 5)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%)</td>
<td>SR</td>
<td>n (%)</td>
<td>SR</td>
<td>n (%)</td>
</tr>
<tr>
<td>Nursing studentsa</td>
<td>19 (70.3)</td>
<td>120-350</td>
<td>9 (90.0)</td>
<td>13-163</td>
<td>3 (50.0)</td>
</tr>
<tr>
<td>Working nursesb</td>
<td>7c (2.5)</td>
<td>14-2144</td>
<td>1 (10.0)</td>
<td>58</td>
<td>3 (50.0)</td>
</tr>
<tr>
<td>Nursing teachers</td>
<td></td>
<td></td>
<td></td>
<td>2 (12.5)</td>
<td>6-12</td>
</tr>
<tr>
<td>Nursing managers</td>
<td>1d (3.7)</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Number of studies in which sample type is specified.

n = number of studies; % = percentage of studies; SR: Sample range

a Students at different levels of studies.

b Nurses with varying levels of expertise.

c In one study the sample included students and working nurses.

d In one study the sample included working nurses and nursing managers.
<table>
<thead>
<tr>
<th>Instrument/Author/Year</th>
<th>Dimensions/Items</th>
<th>Scoring scale</th>
<th>Means of administering</th>
<th>Time (min) to administer</th>
<th>Psychometric characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>California Critical Thinking Disposition Inventory (CCTDI), Facione & Facione (1992)</td>
<td>7 dimensions: 75 items - Search for truth - Mental breadth - Willingness to analyze - Willingness to systematize - Self-confidence in reasoning - Curiosity - Cognitive maturity</td>
<td>6-point Likert</td>
<td>Self-reporting</td>
<td>15-20</td>
<td>Internal consistency $\alpha=.90 ,^{28} \alpha=.71 ,^{105-106}$ $\alpha=.74 ,^{107}$ (Danish) $\alpha=.87 ,^{108}$ (Arabic) Panel of experts content validity 28</td>
</tr>
<tr>
<td>Watson Glaser Critical Thinking Appraisal (WGCTA) Form A/B, Watson & Glaser, (1980)</td>
<td>5 dimensions: 80 items and 40 items (shorter version) - Inference - Recognition of assumptions - Deduction - Interpretation - Evaluation of arguments</td>
<td>Multiple choice</td>
<td>Self-reporting</td>
<td>45</td>
<td>Internal consistency $\alpha=.45-.69 ,^{42}$ $\alpha=.85, ,^{109}, .71^{45}$ (Taiwan version) Correlation coefficient .21, .5042</td>
</tr>
<tr>
<td>Performance Based Development System (PBDS), Del Bueno (1990)</td>
<td>3 dimensions - CT skills - Interpersonal skills - Technical skills</td>
<td>Responses in narrative form</td>
<td>Vignettes</td>
<td>240</td>
<td>Equivalence reliability 94% 54</td>
</tr>
<tr>
<td>Critical Thinking Diagnostic (CTD), Berkow et al. (2011)</td>
<td>5 dimensions: 25 items</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Problem recognition</td>
<td>- Clinical decision-making</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Prioritization</td>
<td>- Clinical application</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Reflection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-point Likert</td>
<td>Self-reporting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internal consistency $\alpha = .97$ 55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Correlation coefficient $.93$ 55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Panel of experts content validity 55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>