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ABSTRACT 

Conjugates of a Pt(IV) derivative of picoplatin with monomeric (Pt-c(RGDfK), 5) and tetrameric 

(Pt-RAFT-{c(RGDfK)}4, 6) RGD-containing peptides were synthesized with the aim of exploiting 

their selectivity and high affinity for αVβ3 and αVβ5 integrins for targeted delivery of this anticancer 

metallodrug into tumor cells overexpressing these receptors. Solid- and solution-phase approaches in 

combination with click chemistry were used for the preparation of the conjugates, which were 

characterized by high resolution ESI MS and NMR. αVβ3 and αVβ5 integrins expression was 

evaluated in a broad panel of human cancer and non-malignant cells. SK-MEL-28 melanoma cells 

were selected based on the high expression levels of both integrins, while CAPAN-1 pancreatic 

cancer cells and 1BR3G fibroblasts were selected as negative control. Internalization experiments 

revealed a good correlation between integrin expression and the cellular uptake of the corresponding 

fluorescein-labeled peptides, and that the internalization capacity of the tetrameric RGD-containing 

peptide was considerably higher than that of the monomeric one. Cytotoxic experiments indicated 

that the antitumor activity of picoplatin in melanoma cells was increased by 2.6-fold when its Pt(IV) 

derivative was conjugated to c(RGDfK) (IC50 = 12.8 + 2.1 µM) and by 20-fold when conjugated to 

RAFT-{c(RGDfK)} 4 (IC50 = 1.7 + 0.6 µM). In contrast, the cytotoxicity of the conjugates was 

inhibited in control cells lacking αVβ3 and αVβ5 integrin expression. Finally, cellular uptake studies 

by ICP-MS confirmed a good correlation between the level of expression of integrins, intracellular 

platinum accumulation and antitumor activity. Indeed, accumulation and cytotoxicity were much 

higher in SK-MEL-28 cells than in CAPAN-1, being particularly higher in the case of the tetrameric 

conjugate. The overall results highlight that the great ability of RAFT-{c(RGDfK)}4 to bind to and to 

be internalized by integrins overexpressed in SK-MEL-28 cells results in higher accumulation of the 

Pt(IV) complex, leading to a high antitumor activity. These studies provide new insights into the 

potential of targeting αVβ3 and αVβ5 integrins with Pt(IV) anticancer pro-drugs conjugated to tumor-

targeting devices based on RGD-containing peptides, particularly on how multivalency can improve 

both the selectivity and potency of such metallodrugs by increasing cellular accumulation in tumor 

tissues. 
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INTRODUCTION 

A key challenge in the fight against cancer disease is to develop therapeutic agents that target tumor 

tissues specifically. Although cancer cells share many common characteristics with normal cells, 

certain receptors are overexpressed on their surface (e.g. folate receptors, somatostatin receptors, 

epidermal growth factor receptors, integrins, transferring receptors, etc.), thereby offering an 

opportunity to deliver cytotoxic agents into human tumors by attachment to a carrier agent.1 This 

targeted anticancer strategy can lead to drugs with reduced toxic side effects due to increased tumor 

selectivity, as well as with improved solubility, biodistribution and ability to cross cell membranes, 

which are also relevant issues from a therapeutic point of view.  

Among receptors overexpressed on tumor cells, integrins are particularly attractive pharmacological 

targets.2 These heterodimeric transmembrane cell adhesion glycoproteins have a fundamental role in 

increasing migration, invasion, proliferation and survival of tumor cells. In addition, integrins have 

been linked to tumor angiogenesis, which is an essential process for tumor growth and metastasis. 

Among integrins, the αVβ3 and αVβ5 integrins are particularly interesting since they are frequently 

overexpressed in tumor endothelial cells as well as on various tumor cells including lung, breast, 

melanoma, prostate, ovarian carcinoma and brain tumors.2a,3 The fact that αVβ3 and αVβ5 integrins 

recognize the consensus tripeptide motif RGD (Arg-Gly-Asp) with high affinity offers the possibility 

of using carriers based on RGD-containing peptides or peptidomimetics to deliver chemotherapeutic 

drugs or radionuclides into cancer cells or for tumor imaging purposes.1b,4 Several studies have 

demonstrated that the efficiency of the RGD motif to target angiogenic endothelial cells is higher 

when using constrained peptides embedding the RGD sequence within a cyclic structure.5 For 

example, the cyclic pentapeptide c(RGDf[N-Me]V) (Cilengitide)6, an αVβ3 and αVβ5 antagonist, is 

currently in phase III clinical trials as an angiogenesis inhibitor for patients with glioblastoma 

multiforme. These results have prompted researchers to develop RGD derivatives to be used as 

tumor-targeting devices of cytotoxic drugs, such as doxorubicin,7 camptothecin,8 paclitaxel,9 or 

metal-based anticancer drugs.10 Furthermore, the principle of multivalency11 has been applied to 

RGD-containing molecules12 not only to enhance binding affinity of the ligand to its receptor but 
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also to promote an active integrin-mediated internalization of the bound entity. In this context, the 

regioselectively addressable functionalized template (RAFT) cyclodecapeptide scaffold13 decorated 

with four copies of the conjugable version of Cilengitide, c(RGDfK), provides a good example on 

how multivalency can increase the potential of these compounds. Indeed, the tetrameric RAFT-RGD 

binds 10 times more strongly to the αVβ3 integrin than the monomeric RGD peptide, being 

internalized through an active clathrin-dependent mechanism.14 Besides offering the possibility to 

oligomerize four RGD monomers, the well-defined architecture of this cyclodecapeptide scaffold 

provides a possibility for introducing other substituents such as fluorescent dyes, radionuclide 

chelators or cytotoxic compounds. In fact, tetrameric RGD-containing derivatives have been used for 

tumor imaging15 and for targeted drug delivery16 by the convenient functionalization of the labeling 

domain. 

Although cisplatin (1, Fig. 1) and its derivatives are used in about 50% of all chemotherapeutic 

regimens administered in the clinic, they cause severe toxic side-effects, mainly owing to their lack 

of selectivity for cancer cells, which limits the dose that can be administered to patients.17 Intrinsic or 

acquired resistance can also limit the scope of the application of Pt(II) metallodrugs in cancer 

chemotherapy.18 A promising approach to circumvent these problems consists on increasing the 

selectivity of platinum drugs against cancer cells by tagging them with carrier molecules whose 

receptors are overexpressed in the membrane of tumor cells. This targeted approach has the capacity 

of overcoming some of the problems associated with current metallodrugs by increasing drug 

efficacy and reducing toxic side-effects.19 In this context, platinum(IV) complexes,20 which are 

considered pro-drugs from a medicinal chemistry point of view, are very attractive compounds since 

in vivo reduction by gluthathione, ascorbate or metallothioneins generates an active square planar 

Pt(II) complexes by releasing of the axial positions.21 Attachment of carrier molecules at these 

positions is particularly interesting since they will be lost upon reduction, thereby avoiding any 

interference with the mechanism of action of the active Pt(II) species (e.g. interaction with DNA). 

For this purpose, a Pt(IV) derivative of cisplatin has been derivatized in the detachable axial 

positions with targeting compounds such as estradiol to target estrogen receptors,22 folic acid to 
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target folate receptor,23 or monomeric RGD-containing peptides to target angiogenic tumors through 

integrin receptors.10a,24 The use of pro-drugs based on Pt(IV) complexes offers additional advantages 

over their Pt(II) congeners, including higher stability in blood which might avoid undesirable 

interactions with proteins or other biomolecules in blood circulation and results in reduced side-

effects, as well as the possibility of oral administration. 

Based on the potential of multimeric RGD-containing molecules for tumour imaging and for targeted 

drug delivery, we wanted to investigate the ability of a tetrameric RAFT-RGD peptide25 to 

specifically deliver Pt(IV) complexes into cancer cells through αVβ3 and αVβ5 cell-surface integrins 

and to compare it with that of its monomeric version. We reasoned that the higher binding affinity of 

the RAFT-RGD for the αVβ3 and αVβ5 integrins may result in higher platinum accumulation in 

cancer cells compared to the same monomeric ligand and, for instance, in higher cytotoxicity. As a 

platinum complex, we selected cis-ammine(2-methylpyridine)dichloridoplatinum(II) (picoplatin, 2 in 

Fig. 1), a sterically-hindered platinum compound that was designed to overcome cisplatin resistance 

mediated by enhanced levels of gluthathione.26 To this end, the 2-methylpyridine ligand was chosen 

to hinder the axial approach of nucleophiles such as gluthathione to the platinum center. In recent 

years, the synthesis and biological evaluation of Pt(IV) derivatives of picoplatin has been explored in 

an attempt to overcome some of the problems encountered by this compound in phase III clinical 

trials for the treatment of lung cancer.27 The oxidation of picoplatin (compound 3 in Fig. 1) resulted 

in a highly reactive compound28 whereas the introduction of carboxylato ligands of increasing length 

resulted in Pt(IV) complexes with activity against drug resistant cell lines.29 Here, we describe the 

synthesis, characterization and biological evaluation of the first conjugates between a Pt(IV) 

derivative of picoplatin and monomeric and tetrameric RGD-containing peptides (Pt-c(RGDfK), 5, 

and Pt-RAFT-{c(RGDfK)}4, 6,  respectively; see Fig. 1).  

 



 

6

Asp

D-Phe

Lys

Arg

Gly

O

O

O

NH

O

Pt

OH
N

Cl

Lys
Ala

Lys

Gly

Pro

Lys

Lys

Lys

Gly

Pro

Asp

D-Phe

Lys

Arg

Gly

O

N

N
N

O

Asp

D-Phe

Lys

Arg

Gly

O

N

N
N

O

Asp

D-Phe

Lys

Arg

Gly

N

N
N

O

O

Asp

D-Phe

Lys

Arg

Gly

N

N
N

O

O

O

O

O

HN

O

O

NH3

Cl Pt

OH
N

Cl NH3

Cl

Pt

N

Cl NH3

Cl

Pt

NH3

Cl NH3

Cl

cisplatin, 1

picoplatin, 2

Pt

OH
N

Cl

OR

NH3

Cl

Pt-c(RGDfK) conjugate, 5 Pt-RAFT-{c(RGDfK)}4 conjugate, 6

R = H 3

R =
OH

O

O

4

 

Fig. 1 Structure of cisplatin (1), picoplatin (2), cis,cis,trans-[PtCl2(2-methylpyridine)(NH3)(OH)2] (3), 

cis,cis,trans-[PtCl2(2-methylpyridine)(NH3)(OH)(succinate)] (4) and of the Pt(IV)-peptide conjugates 

synthesized (5 and 6). 
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RESULTS AND DISCUSSION 

Synthesis and characterization of conjugates between a Pt(IV) derivative of picoplatin and 

monomeric and tetrameric RGD-containing peptides. 

The conjugation of the Pt(IV) derivative of picoplatin was planned via the formation of an amide 

bond with the peptides, which required the incorporation of a carboxylic function in the Pt complex. 

In our case, we used cis,cis,trans-[PtCl2(2-methylpyridine)(NH3)(OH)(succinate)] (4) as the 

precursor for the synthesis of the conjugates. Since we wanted to compare the effect of monomeric 

and tetrameric RGD-containing moieties in the biological activity of the resulting conjugates with 

the picoplatin-based pro-drug, only one axial position was derivatized with a succinate group. 

Picoplatin was prepared from cisplatin following previously reported procedures.28,29 The key step 

involved the preparation of K[PtCl3(NH3)] which was reacted successively in water with KI and 2-

methylpyridine to afford cis-[PtI2(2-methylpyridine)(NH3)]. This intermediate was easily 

transformed into picoplatin (2).28 Oxidation of 2 with an excess of hydrogen peroxide (15 mol 

equiv.) in a 1:10 mixture of water/heptane at 80ºC for 2 h afforded the dihydroxidoplatinum(IV) 

derivative of picoplatin (3) in 51% yield (Scheme 1A). Finally, compound 3 was reacted with 

succinic anhydride (1.2 mol equiv.) in anhydrous DMF at 40ºC for 2 days. The target complex 4 was 

obtained as a pale yellow solid after purification by recrystallization (26% yield), and was 

characterized by 1H NMR and high resolution ESI MS. The homogeneity of the compound was also 

tested by reversed-phase HPLC analysis. 

A solid-phase approach in combination with solution-phase reactions and click chemistry was used 

for the synthesis of the monomeric (c(RGDfK), 8 in Scheme 1) and tetrameric (RAFT-{c(RGDfK)4}, 

11 in Scheme 2)25 RGD-containing peptides. The linear cyclopentapeptide was assembled on 2-

chlorotrityl chloride resin using standard Fmoc/tBu chemistry, cleaved under mild acidic conditions 

(1% AcOH for 30 min) and cyclized with PyBOP to afford the protected peptide, c[-Arg(Pbf)-Gly-

Asp(tBu)-D-Phe-Lys(Alloc)-] (7). After removal of the Alloc group by treatment with phenylsilane 

and Pd(PPh3)4,
25 the free ε-NH2 of the lysine residue was used to derivatize the peptide with a 

polyethyleneglycol spacer. Finally, the Fmoc group and the remaining side chain protecting groups 
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(tBu and Pbf) were successively eliminated by treatment with 5% piperidine in DMF and 

TFA/TIS/H2O 95:2.5:2.5, respectively. Peptide 8 was purified by reversed-phase HPLC and 

characterized by HR ESI-MS.  
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Scheme 1. Schematic representation of the approach used for the synthesis of the Pt(IV) derivative of 

picoplatin (4) (A) and of its conjugation to the monomeric c(RGDfK) peptide (8) to afford conjugate 5 (B). 

For the synthesis of the tetrameric RAFT-RGD peptide (11), an elegant approach recently reported 

by Galibert et al. was chosen, which makes use of copper(I)-catalyzed azide-alkyne [3+2] 

cycloaddition for the assembly of the four RGD peptides onto the RAFT cyclopeptide scaffold.25,30 

Following the procedure reported for peptide 7, the cyclic decapeptide c[-Lys(alkyne)-Lys(Boc)-

Lys(alkyne)-Pro-Gly-Lys(alkyne)-Ala-Lys(alkyne)-Pro-Gly-] (9) was prepared by using a Fmoc-Lys-

OH derivative whose ε-NH2 function had been derivatized with an alkyne group. This RAFT 

scaffold was reacted with cyclo-pentapeptide 10, c[-Arg(Pbf)-Gly-Asp(tBu)-D-Phe-Lys(COCH2N3-

],25 bearing the required azide function for click chemistry assembly (Scheme 2). Taking into account 

previous results reported by Galibert et al.,25 we used copper nanosize powder as a catalyst for the 

azido-alkyne cycloaddition during 18 h at room temperature. After elimination of the Boc group and 



 

9

HPLC purification, the desired RAFT-{c(RGDfK)}4 (11) was obtained as a white solid and 

characterized by HR ESI-MS. 

 

Scheme 2. Schematic representation of the approach used for the synthesis of RAFT-{c(RGDfK)4} (11) and 

its conjugation to the Pt(IV) derivative of picoplatin to afford conjugate 6. 

For the synthesis of the conjugates, the Pt(IV) derivative of picoplatin (4) was activated with HATU 

and DIPEA in anhydrous DMF for 2 min, and allowed to react with the corresponding RGD-

containing peptides (8 or 11) for 2 h at room temperature. In both cases, analysis by reversed-phase 

HPLC showed main peaks (see Figures S5 and S7 in the Supporting Information) which were 

isolated and unambiguously characterized by high-resolution ESI mass spectrometry as the expected 

products. After purification by semipreparative HPLC and lyophilization, the trifluoroacetate salts of 

conjugates 5 (overall yield from 8: 52%) and 6 (overall yield from 11: 27%) were obtained as white 

solids.  

High-resolution ESI MS analysis of both conjugates afforded m/z values that were consistent with 

the calculated value of the charged species ([M+H]+ for 5, and [M+3H]3+, [M+4H]4+ and [M+5H]5+ 

for 6) and with the proper isotopic mass distribution patterns of platinum (see Fig. 2 and Fig. S6 and 

S8 in the Supporting Information). In addition, the monomeric conjugate 5 was characterized by 1H 

NMR spectroscopy by using 1D and 2D experiments (TOCSY). The aromatic region of the 1H NMR 

spectra is shown in Fig. 2, where some diagnostic signals from the platinum complex (2-
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methylpyridine) and from the peptide moiety (NH protons of amide bonds and aromatic protons of 

D-phenylalanine residue) are indicated.  
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Fig. 2 1H NMR spectra of conjugate 5 (A) in H2O/D2O 9:1, showing the region between 6.7 and 9.1 ppm. 

Expanded HR ESI mass spectrum of the molecular peak of 5 ([M+H] +), experimental (B) and calculated (C). 

 

Selection of cell lines overexpressing ααααVββββ3 and ααααVββββ5 integrins. 

To assess the capacity of the monomeric and tetrameric RGD-containing peptides to selectively 

deliver the Pt(IV) pro-drug into cancer cells, we first focused on studying the level of expression of 

αVβ3 and αVβ5 integrins in a wide panel of cell lines, including cancer cells of different origins and 

non-malignant cells. The integrin’s expression level on the cell surface was characterized by flow 

cytometry using specific monoclonal antibodies (Fig. 3 and Fig. S14 in the Supporting Information). 

We found that SK-MEL-28 cells expressed high levels of both αVβ3 and αVβ5 integrins (mean cell 

fluorescence intensity of 156.0 and 13.8, respectively), which is in good agreement with literature 

reporting that integrin αVβ3 is strongly induced on metastatic melanoma cells, while is expressed at 

low levels on normal melanocytes.31 In contrast, we detected a very low αVβ3 and αVβ5 integrin 

expression in CAPAN-1 cells (mean cell fluorescence intensity of 4.7 and 5.0, respectively) and in 

1BR3G non-malignant cells (mean cell fluorescence intensity of 6.2 and 6.7, respectively). These 

results indicate that the melanoma cancer cell line is a good model to evaluate the biological activity 
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of the conjugates. In addition, human fibroblast cells and pancreatic cancer cells can be used as 

negative control since the expression of both integrins is very low. 
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Fig. 3 Expression of αVβ3 and αVβ5 integrins on SK-MEL-28, CAPAN-1 and 1BR3G cell lines. 

Representative flow cytometry histograms obtained after the indirect immunofluorescence staining of the 

cells. Solid lines represent the fluorescence intensity of the cells after the incubation with monoclonal 

antibodies against αVβ3 and αVβ5 integrins followed by the incubation with secondary antibody conjugated to 

Alexa-Fluor 488. Dotted lines indicate the background staining with the secondary antibody alone.  

 

Intracellular uptake of fluorescein-labeled RGD-containing peptides (12 and 13). 

As previously stated, binding affinity of multimeric RGD-containing peptides toward αVβ3 integrin 

is considerably higher than that of the monomeric versions. For example, a tetrameric RAFT-RGD 

peptide assembled by oxime ligation and labeled with Cy5 dye binds specifically to αVβ3 integrin 

with a ten-fold higher affinity than c(RGDfK), as measured by fluorescence correlation 

spectroscopy.12 In addition, RAFT-RGD is actively and efficiently internalized with αVβ3 integrin 

via clathrin-mediated endocytosis, whereas the monomeric peptide is internalized without modifying 
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αVβ3 internalization. In order to check the capacity of internalization of c(RGDfK) and of its 

tetrameric version assembled by click chemistry, RAFT-{c(RGDfK)4},
25 in the selected cell lines, 

we labeled them with fluorescein. Reaction of the N-hydroxysuccinimide ester of 6-[fluorescein-

5(6)-carboxamido]hexanoic acid with peptides 8 or 11 in a 1:1 mixture of ACN and aqueous 

phosphate buffer afforded the expected fluorescein-labelled derivatives in high purity, Fluo-

c(RGDfK) (12) and Fluo-RAFT-{c(RGDfK)}4 (13), respectively, which were purified by reversed-

phase HPLC (see Fig. S-2 and S-4 in the Supporting Information) and characterized by HR ESI-MS. 

Next, flow cytometry was used to obtain quantitative data on the internalization capacity of both 

peptides. As expected from the higher affinity of the tetrameric RAFT-RGD peptides for integrins, 

the intracellular uptake of 13 by SK-MEL-28 cells was more elevated compared with that observed 

in cells incubated with 12, by 5.1-fold when incubated at 10 µM (mean fluorescence intensity of 

74.67 + 10.0 vs 14.6 + 1.8) and by 5.9-fold at 25 µM (128.86 + 17.3 vs 21.7 + 2.08) (Fig. 4A). As 

represented in Fig. 4B, a similar trend was observed in CAPAN-1 and 1BR3G cells, which showed a 

2.2-fold (34.1 + 3.2 vs 15.6 + 0.1) and a 6.0-fold (78.3 + 1.8 vs 13.0 + 1.5) higher uptake efficiency 

for 13 than for 12 (at 25 µM), respectively. Interestingly, the internalization of peptides 12 and 13 

was higher in the integrin overexpressing SK-MEL-28 cells than in CAPAN-1 (by 1.4-fold and by 

3.7-fold, respectively) or in 1BR3G cells (by 1.6-fold for both peptides). All together, these results 

demonstrate that RGD-containing peptides, particularly the RAFT-RGD derivative, display the 

internalization properties required to deliver the cytotoxic metallodrugs into αVβ3 and αVβ5 integrin 

overexpressing cancer cells in a selective manner. 
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Fig. 4 Intracellular delivery efficiencies of fluorescein-labelled RGD-containing peptides, Fluo-c(RGDfK) 

(12) and Fluo-RAFT-{c(RGDfK)}4 (13), in SK-MEL-28, CAPAN-1 and 1BR3G cells. Cells were incubated 

with the peptides for 1 h or medium alone (control). The fluorescence intensity of the cells, corresponding to 

the intracellular uptake of the peptides, was determined by flow cytometry. A: Comparison of the 

intracellular uptake of 12 and 13 in SK-MEL-28 at two different concentrations (10 or 25 µM). B: 

Comparison of the intracellular uptake of 12 and 13 at 25 µM in SK-MEL-28, CAPAN-1 and 1BR3G cells. 

Each column in the graphs represents the mean fluorescence intensity of three independent experiments + 

SD. 
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Cytotoxicity studies. 

Our next objective was to evaluate the cytotoxicity of the Pt(IV)-peptide conjugates, Pt-c(RGDfK) 

(5) and Pt-RAFT-{c(RGDfK)}4 (6), to determine their potential as anticancer agents. Their anti-

proliferative activity was determined in SK-MEL-28, CAPAN-1 and 1BR3G cell lines by using the 

MTT assay that measures mitochondrial dehydrogenase activity as an indication of cell viability. The 

cytotoxicities of cisplatin, picoplatin and the unconjugated peptides (8 and 11) were also determined 

as a control. As indicated in Table 1, the cytotoxic activity of picoplatin in SK-MEL-28 cells was 

enhanced by conjugation to both peptides. Conjugate 5 displayed an IC50 value of 12.8 + 2.1 µM, 

what represents a 2.6-fold increase of the picoplatin cytotoxicity in this cell line (IC50 = 33.6 + 6.6). 

This effect was considerably higher for conjugate 6 (IC50 = 1.7 + 0.7) since the cytotoxicity against 

SK-MEL-28 cells was increased by approximately 20-fold when compared to the unconjugated 

picoplatin. Despite the fact that picoplatin cytotoxicity in SK-MEL-28 cells is lower than that of 

cisplatin (about 2-fold), conjugation of the Pt(IV) derivative of picoplatin to the tetrameric RAFT-

RGD peptide leads to a compound with a much higher cytotoxic activity than cisplatin (IC50 = 17.0 + 

5.4 for cisplatin vs IC50 = 1.7 + 0.7 for 6). This result is particularly relevant since SK-MEL-28 

malignant melanoma cell line is notoriously resistant to many chemotherapeutic drugs, including 

cisplatin.32 Hence, conjugation of the Pt(IV) pro-drug to the tetrameric RAFT-RGD results in a 

compound with much higher antitumor activity than its parent Pt(II) complex or cisplatin. In 

addition, comparison of the cytotoxic activity of conjugates 5 and 6 in SK-MEL-28 cells 

demonstrates that four copies of the RGD-containing motif assembled on the RAFT 

cyclodecapeptide scaffold are preferred over a single copy (IC50 = 12.8 + 2.1 vs IC50 = 1.7 + 0.7, 

respectively) from a chemotherapeutic drug efficacy point of view. These effects were not observed 

in CAPAN-1 or 1BR3G cells, selected as negative control based on the low the expression of αVβ3 

and αVβ5 integrins. In these cell lines, the conjugation of the Pt(IV) derivative of picoplatin to the 

carrier peptides resulted in a marked reduction of the cytotoxic activity when compared with 

picoplatin. IC50 values for 5 were over 50 µM in both cell lines whereas the IC50 value for 6 was also 

over 50 µM in 1BR3G cells and reduced by half in CAPAN-1 cells (IC50 of 27.2 + 5.7). The fact that 
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the antitumor activity of the conjugates was inhibited in the absence of αVβ3 and αVβ5 integrin 

expression supports the suitability of using RGD-containing peptides, particularly a multimeric 

version of this scaffold, to selectively deliver metallodrugs in cancer cells. 

Table 1. Sensitivity of SK-MEL-28, CAPAN-1 and 1BR3G cells to cisplatin, picoplatin, conjugates 

5-6 and control peptides. 

IC50 (µM)a 

Compound Cell line 

 SK-MEL-28 CAPAN-1 1BR3G 

Cisplatin 17.0 + 5.4 2.25 + 0.3 3.9 + 0.2 

Picoplatin  33.6 + 6.6 13.8 + 1.0 23.2 + 3.5 

Pt-c(RGDfK) 5 12.8 + 2.1 > 50 > 50 

Pt-RAFT-{c(RGDfK)}4 6 1.7 + 0.6 27.2 + 5.7 > 50 

c(RGDfK) 8 18.5 + 5.5 > 50 > 50 

RAFT-{c(RGDfK)} 4 11  2.1 + 0.7 > 50 > 50 

a The concentration of the compounds that inhibits cells viability by 50% (IC50) after 72 h was determined by 

means of the MTT assay. Each value represents the mean of three independent experiments + SD.  

MTT assays also revealed a marked effect of the unconjugated peptides on SK-MEL-28 cell 

viability. It is well described that RGD-containing peptides and derivatives can display 

antiproliferative properties by interacting with the cell surface integrins, which leads to the cells 

detachment from the extracellular matrix and conformational changes that induce an anchorage 

dependent apoptosis, named anoikis.33 We observed that exposure of the cells to the unconjugated 

peptides at 10 µM induced morphologic changes followed by cell detachment from the plate surface. 

Changes were greater in cells exposed to the tetrameric peptide (RAFT-{c(RGDfK)}4, 11) compared 

to the monomeric version (c(RGDfK), 8) (Fig. S15, see the Supporting Information). Similar effects 

on the cell morphology and adhesion were detected for the unconjugated RAFT-{c(RGDfK)}4 and 

for its platinum conjugate, Pt-RAFT-{c(RGDfK)}4 at 5 µM, while no changes on the cell 
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morphology were observed after picoplatin treatment. Thus, unconjugated RGD-containing peptides 

seem to exert some antiproliferative effects in SK-MEL-28 cells by disrupting the integrin mediated 

cell adhesion. In this sense, the tetrameric RAFT-RGD peptide, with higher binding affinity for 

integrins than the monomeric RGD peptide, showed the highest antiproliferative activity (IC50 of 2.1 

+ 0.8 µM for 11 vs 18.5 + 5.5 µM for 8). Our results are in accordance with a previous report 

describing pro-apoptotic activity of RGD-analogues in melanoma cells, although they describe that 

the biological effects may be independent from their antiadhesive properties.34 Notably, the 

concentration-response curves, plotted in Fig. 5, revealed that the cytotoxic activities of both Pt-

peptide conjugates were higher than those determined for the corresponding unconjugated peptides, 

although only small differences were detected between Pt-RAFT-{c(RGDfK)}4 and RAFT-

{c(RGDfK)} 4. These results seem to indicate that in addition to the proapoptotic effects of the 

peptides, the Pt(IV) pro-drug contributes to the antitumor activity of the conjugates. 

 
 

Fig. 5 Cytotoxic effect of picoplatin, conjugates 5-6 and control peptides in the SK-MEL-28 cells. Cells were 

treated for 72 h with the indicated concentrations of each compound. Cell viability was determined by the 

MTT assay. Each point in the graphs represents the mean of three independent experiments ± SD. 
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Intracellular uptake of Pt-peptide conjugates by ICP-MS. 

Since metal accumulation into cells is essential for the cytotoxicity of metal-based anticancer drugs, 

the investigation of the cellular uptake efficiency is of high relevance to determine the potential 

activity of the compounds as well as to understand their mechanism of action. This is particularly 

relevant when using biological carrier compounds,35 such as peptides whose receptors are 

overexpressed on the membrane of cancer cells, since the uptake of the metal-peptide conjugate 

might be conditioned by the level of expression of the receptors and by the binding affinity between 

the resulting conjugate and the target receptor. In our case, according to internalization studies with 

fluorescein-labeled peptides 12 and 13, the internalization of Pt-RAFT-{c(RGDfK)}4 was expected 

to be much higher than that of the monomeric conjugate Pt-c(RGDfK), which is in good agreement 

with its higher cytotoxicity, attributable to a greater intracellular Pt accumulation. However, the 

proapoptotic effects of the unconjugated peptides, particularly of the tetrameric RAFT-

{c(RGDfK)} 4, led us to investigate the cellular uptake of the two Pt(IV)-peptide conjugates, Pt-

c(RGDfK) (5) and Pt-RAFT-{c(RGDfK)}4 (6) in the melanoma cancer cell line, as well as that of the 

parent platinum(II) complex, picoplatin. The pancreas adenocarcinoma cell line was also included in 

the study as negative control for integrin expression. Intracellular levels of platinum in both cancer 

cell lines were quantified by inductively-coupled plasma mass spectrometry (ICP-MS) using 196Pt 

detection36 after a 24 h exposure to the compounds at the same concentration (0.5 µM), which was in 

all cases below their IC50 values in both cell lines.  

As shown in Fig. 6, the accumulation of platinum (determined as the net effect of influx and efflux 

of Pt) after exposure of SK-MEL-18 cells to Pt-c(RGDfK) conjugate (5) (12.64 + 1.13 pmol Pt/106 

cells) was higher than that of the parent picoplatin complex (8.44 + 1.53 pmol Pt/106 cells), which 

indicates that the RGD-containing peptide has a positive effect on the intracellular accumulation of 

the Pt(IV) pro-drug. Interestingly, the tetrameric conjugate, Pt-RAFT-{(cRGDfK)}4, was 

accumulated in the melanoma cells (22.41 + 0.07 pmol Pt/106 cells) at a much higher amount than 

the parent Pt(II) complex (about 2.7-fold) or the monomeric conjugate (about 1.8-fold). Such a 

significant differences between these compounds highlight again the potential of multivalency in 
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targeted anticancer strategies since conjugation of the Pt(IV) complex to the RAFT cyclodecapeptide 

moiety containing four copies of the RGD motif results in higher accumulation than when the pro-

drug was conjugated to a single RGD-containing peptide. These results are also in good agreement 

with our internalization experiments by flow cytometry with peptides 12 and 13 as well as with those 

previously reported in the literature with similar RGD-containing macroestructures, and indicate that 

the capacity of integrin-mediated internalization of RGD peptides was not substantially modified by 

the attachment of the metallodrug. 

 

Fig. 6 Cell accumulation of platinum in SK-MEL-28 and CAPAN-1 cells after exposure to picoplatin and 

conjugates 5 and 6 (0.5 µM, 24 h). The platinum content is related to the cell number. Errors bars represent 

the standard deviation of three replicates 

Platinum accumulation in CAPAN-1 cells after exposure to conjugates 5 (3.69 + 1.37 pmol Pt/106 

cells) and 6 (4.27 + 0.29 pmol Pt/106 cells) was similar and substantially lower than in SK-MEL-28 

cells (about 3.4-fold and 5.2-fold, respectively). This result agrees with the internalization studies 

and with the lower level of expression of αVβ3 and αVβ5 integrins in CAPAN-1 cells compared with 

SK-MEL-28 cells, and confirms the selectivity of RGD-containing peptides, particularly the 

tetrameric RAFT-{c(RGDfK)}4 peptide, against cells overexpressing these receptors.  
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It is worth highlighting the existence of a clear correlation between the internalization and 

accumulation of the conjugates (Figs. 4 and 6) and their antitumor activity (Table 1 and Fig. 5). 

Effectively, the cytotoxic activity of conjugates 5 and 6 was much higher in SK-MEL-28 cells than 

in CAPAN-1 cells, and cytotoxicity of the tetrameric conjugate was even higher than that of the 

monomeric conjugate. This indicates that the great ability of RAFT-{c(RGDfK)} 4 to bind to and to 

be internalized by αVβ3 and αVβ5 integrins overexpressed in SK-MEL-28 results in greater 

accumulation of the Pt(IV) complex when conjugated, thereby leading to a higher antitumor efficacy. 

By contrast, the lower expression of integrins in CAPAN-1 cells hinders the internalization of the 

Pt(IV) pro-drug conjugated to the RGD-containing peptides and, as a consequence, a reduced 

platinum accumulation leads to lower or even null cytotoxic activity. Surprisingly, this correlation 

was not found in the case of the parent platinum(II) complex. Indeed, despite the higher 

accumulation of picoplatin in SK-MEL-28 cells (8.44 + 1.53 pmol Pt/106 cells) compared with 

CAPAN-1 (3.65 + 1.53 pmol Pt/106 cells), the antitumor efficacy was about 2.4-fold lower in the 

melanoma cancer cell line than in the pancreas cancer cell line (e.g. IC50 = 33.6 + 6.6 in SKMEL-28 

vs IC50 = 13.8 + 1.0 in CAPAN-1), which agrees with the known resistance of SK-MEL-28 cell line 

to Pt-based drugs. 

Activation by reduction of the Pt-peptide conjugates 

As previously stated, the greater inertness of Pt(IV) complexes in blood compared with their Pt(II) 

precursors makes this family of compounds very attractive as chemotherapeutic agents with the aim 

of reducing toxic side-effects of Pt(II) metallodrugs. In addition, the functionalization of the axial 

positions of the Pt(IV) complex with carrier molecules offers the possibility to target cancer cells in a 

selective manner. Despite these advantages, after internalization and accumulation, Pt(IV) pro-drugs 

need to be intracellularly activated by reduction to generate the cytotoxic Pt(II) species. In the case of 

functionalizing one or two axial positions of the Pt(IV) complex with a carrier, such as in the Pt-

peptide conjugates 5 and 6 reported in this work, the release of the carrier will occur during the 

reduction step. Among possible biological reducing agents, ascorbate, glutathione and some 

cysteine-containing proteins have been postulated to participate in the activation of Pt(IV) 
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complexes.20a,21b,37 In order to gain some insight on the capacity of the Pt(IV) derivative of picoplatin 

to be activated by reduction when conjugated to RGD-containing peptides, we selected ascorbate as 

reducing agent. For this purpose, Pt-c(RGDfK) conjugate (5) was allowed to react in water (0.25 

mM) with an excess of ascorbate (5 mol equiv.). 5’-Guanosine monophosphate (5 mol equiv.) was 

also added to act as a simple model of DNA for capturing the Pt(II) species generated upon reduction 

(Scheme 3).  

 

Scheme 3. Reaction between Pt-peptide conjugates and 5’-GMP mediated by ascorbate reduction. 

The monitoring of the reduction process was carried out by reversed-phase HPLC coupled to a ESI 

mass spectrometer. As shown in Figs. S16-S18 (see the Supporting Information), the peak 

corresponding to conjugate 5 (Rt = 9.9 min) disappeared completely after incubation at 37ºC for 24 

h, while some new peaks appeared, including a major peak at Rt = 6.7 min. Most of those 

intermediate peaks evolved into that major peak after 72 h. This compound was characterized by MS 

as the adduct between the platinum(II) moiety {Pt(NH3)(2-pic)}2+ and two GMP. The fact that the 

maximum wavelength absorption of cis-[Pt(GMP)2(NH3)(2-pic)]2+ (the charge on the GMP is 

ignored in the formula) was shifted by 4 nm (259 nm) with respect that of GMP (255 nm) indicates 

coordination of platinum to the N7 of guanosine. The release of the succinate derivative of the 

peptide (Rt = 9.5 min) was also confirmed by MS. 

The overall results indicate that the Pt(IV) derivative of picoplatin conjugated to RGD-containing 

peptides can be activated by typical intracellular reducing agents leading to an activated Pt(II) species 

with capacity to react with DNA nucleobases, as inferred by the main adduct generated upon reaction 

with GMP. This indicates that the covalent attachment of the RGD-containing peptide to the Pt(IV) 

complex does not seem to interfere with the reduction process. Hence, we can envisage from cellular 

uptake studies by ICP-MS in SK-MEL-28 cells that the intact Pt-peptide conjugates are internalized 
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and accumulated in the cancer cell, where they are expected to be activated by reduction to generate 

their antitumor effect. Otherwise, a premature reduction of the Pt(IV) complex conjugated to the 

peptides prior to the integrin-mediated internalization would lead to similar or even lower Pt 

accumulation ratios than those obtained with the reference complex, picoplatin. Although we have 

observed a participation of the RGD-containing peptides in the cytotoxic activity of the conjugates, 

particularly that of the tetrameric RAFT-{c(RGDfK)}4 peptide in the melanoma cancer cell line, the 

overall results seem to point out to an important contribution of the Pt(IV) complex derived from 

picoplatin in the antitumor activity of the Pt-peptide conjugates.  

 

CONCLUSIONS 

In summary, in this work we have explored the use of RGD-containing peptides, particularly a 

RAFT-{c(RGDfK)} 4 derivative that contains four copies of the RGD motif, to deliver Pt(IV) 

anticancer metallodrugs into tumor cells overexpressing αVβ3 and αVβ5 integrins in a selective 

manner. By using solid- and solution-phase approaches, a Pt(IV) derivative of cis-ammine(2-

methylpyridine)dichloridoplatinum(II) (picoplatin) was conjugated to monomeric (Pt-c(RGDfK), 5) 

and tetrameric (Pt-RAFT-{c(RGDfK)}4, 6) RGD-containing peptides. In order to evaluate the 

biological activity of the compounds, the SK-MEL-28 malignant melanoma cell line was selected on 

the basis of a high expression level of αVβ3 and αVβ5 integrins. The use of the corresponding 

fluorescein-labeled peptides revealed a good correlation between integrin expression and their 

cellular uptake and, more importantly, that the internalization capacity of the tetrameric RGD-

containing peptide was considerably higher than that of the monomeric one. As expected, cellular 

uptake was substantially reduced in CAPAN-1 pancreatic cancer cells and 1BR3G fibroblasts, which 

were selected as negative control due to a very low αVβ3 and αVβ5 integrin expression. Interestingly, 

a good correlation was found between the cytotoxic activity of the conjugates and their intracellular 

accumulation, which was determined by ICP-MS. On the one hand, the antitumor efficacy of 

picoplatin in SK-MEL-28 cells was increased by 2.6-fold when its Pt(IV) derivative was conjugated 

to c(RGDfK) (IC50 = 12.8 + 2.1 µM) and, more importantly, by 20-fold when conjugated to RAFT-
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{c(RGDfK)} 4 (IC50 = 1.7 + 0.6 µM). However, the cytotoxicity of the conjugates was inhibited in 

CAPAN-1 and 1BR3G cells lacking αVβ3 and αVβ5 integrin expression. On the other hand, cellular 

uptake studies after exposure to both conjugates indicated that platinum accumulation was much 

higher in SK-MEL-28 cells than in CAPAN-1, being particularly higher in the case of the tetrameric 

conjugate (6) compared with that of the monomeric one (5). The overall results highlight the great 

capacity of RAFT-{c(RGDfK)}4 to bind to and to be internalized by integrins overexpressed in SK-

MEL-28 cells, which results in higher intracellular accumulation of the platinum pro-drug and, 

consequently, in a higher antitumor activity. Importantly, the Pt(IV) pro-drug can be activated by 

typical intracellular reducing agents such as ascorbate even when conjugated to the peptide to 

generate the cytotoxic Pt(II) species. To our surprise, the tetrameric RAFT-RGD peptide showed an 

intrinsic antiproliferative activity in the melanoma cancer cell line. Although the overall results seem 

to indicate that the Pt(IV) derivative of picoplatin contritubes to the antitumor activity of the Pt-

peptide conjugates, further studies will be necessary to evaluate the impact of this multivalent RGD-

containing peptide in other cancer cell lines overexpressing αVβ3 and αVβ5 integrins.  

These studies provide new insights into the potential of exploiting specific alterations found in 

human tumor cells, such as the overexpression of αVβ3 and αVβ5 integrins, to develop new 

chemotherapeutic drugs with reduced side-effects and reduced toxicity in normal cells. The potential 

of this receptor-targeted anticancer strategy is expected to be increased by conjugating 

photoactivatable Pt(IV) anticancer pro-drugs38 to tumor-targeting devices based on RGD-containing 

sequences, particularly on multivalent derivatives, or other receptor-binding peptides, with the aim of 

improving their selectivity and potency by increasing intracellular accumulation in tumor tissues. 

Work is in progress in this direction. 
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