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A proper understanding of nucleation is crucial in several natural and industrial processes. However,
accurate quantitative predictions of this phenomenon have not been possible. The most popular tool
for calculating nucleation rates, classical nucleation theory (CNT), deviates by orders of magnitude
from experiments for most substances. We investigate whether part of this discrepancy can be
accounted for by the curvature-dependence of the surface tension. To that end, we evaluate the
leading order corrections for water, the Tolman length and the rigidity constants, using square gradient
theory coupled with the accurate cubic plus association equation of state. The Helfrich expansion
is then used to incorporate them into the CNT-framework. For water condensation, the modified
framework successfully corrects the erroneous temperature dependence of the nucleation rates
given by the classical theory and reproduces experimental nucleation rates. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4919689]

Nucleation is the rate limiting step in most first order
phase transitions, such as boiling, condensation, and crystalli-
zation. The process starts with the formation of a small embryo
of the new phase in the bulk of the metastable phase, which
will continue to grow spontaneously only if its size exceeds a
certain threshold.1

Nucleation of water is perhaps the most popular example
in the literature, due to its relevance in the industry, for
instance, in boilers or turbines, in biological systems, or in
atmospheric sciences and climate modelling.2

Despite of several extensions and theoretical advances,
Classical Nucleation Theory (CNT) is still the most widely
used theoretical tool to predict nucleation rates.1,3–5 Even
though CNT provides a qualitatively correct picture of
nucleation, its quantitative predictions are often orders of
magnitude away from experiments. For instance, for the
simple case of Argon condensation, CNT deviates more than
20 orders of magnitude from experiments.6 For homogeneous
water condensation, the deviations are significantly smaller,
but CNT still predicts the wrong temperature dependence of
the nucleation rates. Similar to many other substances, CNT
predicts nucleation rates for water that are too low at low
temperatures, but overpredicts them at high temperatures.1,7

One of the crudest assumptions of CNT is the so-
called capillary approximation, which considers the surface
of droplets or bubbles to be sharp and to have the same
surface tension as the planar interface. Thus, incorporating
the curvature dependence of the surface tension is expected
to improve CNT-predictions, accounting for parts of the large
discrepancies. Many works in the literature have attempted
different routes of evaluating and including the contribution
from curvature in CNT.8–17 However, taking into account
these curvature effects in real systems is not an easy task.

a)Electronic mail: oivind.wilhelmsen@ntnu.no

The leading order correction in the curvature expansion
of the surface tension is the Tolman length. Neither the
magnitude nor the sign of the Tolman length is known for
most substances. Even for the simple Lennard-Jones fluid,
molecular dynamics (MD) simulations have only recently
given a negative value, consistent with predictions from
density functional theory.15,17–22

Curvature contributions to the surface tension up to
second order can be taken into account through the Helfrich
expansion,23

σ(H,K) = σ0 − δσ0H +
k
2

H2 + k̃K + · · ·, (1)

where σ0 is the surface tension of the flat surface, H = κ1 + κ2
is the total curvature, and K = κ1κ2 is the Gaussian curvature,
with κ1 and κ2 being the principal curvatures. The magnitude
of the curvature corrections in this expansion is defined by
the Tolman length δ, the bending rigidity k, and the rigidity
constant k̃ associated with the Gaussian curvature.

We recently calculated these constants for the Lennard-
Jones fluid, combining Square Gradient Theory (SGT) with
a very accurate equation of state, and showed that we could
then reproduce the Tolman length and surface tension obtained
from MD-simulations.22 The work also showed that the second
order terms, the rigidity constants, were crucial to correctly
predict the surface tension of small droplets and bubbles.
For water, there are only a few recent (and usually indirect)
estimates of the Tolman length and the rigidity constants, often
based on simulation models having properties that differ much
from real water.24–27

In this work, we use SGT combined with the accurate
cubic plus association (CPA) equation of state28–30 to evaluate
the Tolman length and the rigidity constants of water. Fur-
thermore, we show that by properly including the curvature-
dependence of the surface tension in CNT, it is possible to

0021-9606/2015/142(17)/171103/5/$30.00 142, 171103-1 © 2015 AIP Publishing LLC

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

161.116.80.61 On: Wed, 13 May 2015 10:06:52

http://dx.doi.org/10.1063/1.4919689
http://dx.doi.org/10.1063/1.4919689
http://dx.doi.org/10.1063/1.4919689
http://dx.doi.org/10.1063/1.4919689
http://dx.doi.org/10.1063/1.4919689
http://dx.doi.org/10.1063/1.4919689
http://dx.doi.org/10.1063/1.4919689
http://dx.doi.org/10.1063/1.4919689
http://dx.doi.org/10.1063/1.4919689
http://dx.doi.org/10.1063/1.4919689
mailto:oivind.wilhelmsen@ntnu.no
mailto:oivind.wilhelmsen@ntnu.no
mailto:oivind.wilhelmsen@ntnu.no
mailto:oivind.wilhelmsen@ntnu.no
mailto:oivind.wilhelmsen@ntnu.no
mailto:oivind.wilhelmsen@ntnu.no
mailto:oivind.wilhelmsen@ntnu.no
mailto:oivind.wilhelmsen@ntnu.no
mailto:oivind.wilhelmsen@ntnu.no
mailto:oivind.wilhelmsen@ntnu.no
mailto:oivind.wilhelmsen@ntnu.no
mailto:oivind.wilhelmsen@ntnu.no
mailto:oivind.wilhelmsen@ntnu.no
mailto:oivind.wilhelmsen@ntnu.no
mailto:oivind.wilhelmsen@ntnu.no
mailto:oivind.wilhelmsen@ntnu.no
mailto:oivind.wilhelmsen@ntnu.no
mailto:oivind.wilhelmsen@ntnu.no
mailto:oivind.wilhelmsen@ntnu.no
mailto:oivind.wilhelmsen@ntnu.no
mailto:oivind.wilhelmsen@ntnu.no
mailto:oivind.wilhelmsen@ntnu.no
mailto:oivind.wilhelmsen@ntnu.no
mailto:oivind.wilhelmsen@ntnu.no
mailto:oivind.wilhelmsen@ntnu.no
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4919689&domain=pdf&date_stamp=2015-05-04


171103-2 Wilhelmsen, Bedeaux, and Reguera J. Chem. Phys. 142, 171103 (2015)

provide quantitatively accurate predictions of the experimental
water nucleation rates with the correct temperature trend.
Thus, at least for water, the proper incorporation of curvature
corrections seems to correct some of the problems in CNT and
brings hope that the same is possible for other substances.

Nucleation is an activated process where the phase
transition takes place through the formation of critically sized
bubble/droplet (embryo) in a metastable phase. In the context
of CNT, the nucleation rate is given by

J = J0 exp
(
−∆W ∗

kBT

)
, (2)

where∆W ∗ is the nucleation barrier (i.e., the work of formation
of the critical embryo), kB is Boltzmann’s constant, T is the
temperature, and J0 is the kinetic prefactor which can be
calculated from kinetic gas theory, using, for instance, the
prescription by Becker and Döring,31

J0 =
1
ρl


2σ0

πm

(
Pg

kBT

)2

, (3)

where ρl is the liquid-phase molecular density, m is the
mass of a water molecule, and Pg is the pressure of the
gas. Since the nucleation rate depends exponentially on the
nucleation barrier, it is crucial to predict this correctly to obtain
quantitative nucleation rates.

We will focus our analysis on the homogeneous nucle-
ation of a perfectly spherical embryo of radius r in a single-
component fluid in the N PT ensemble (i.e., constant total
number of molecules N , pressure P, and temperature, T). The
subtle thermodynamics of bubble/droplet formation in CNT
has been worked out nicely in several references, especially
by Abraham32 and by Ono and Kondo,33 and we refer to them
for details, since we will only provide the main results. We
will use the equimolar as our choice of dividing surface. In that
case, the properties of the critical embryo, which is a stationary
solution of the Gibbs energy, are given by the equality of the
chemical potential for all phases and the generalized Laplace
relation,1,32

Pi − Po =
2σ(r∗e)

r∗e
+

(
∂σ(r)
∂r

)
r=r∗e

, (4)

where subscript “i” denotes the bubble/droplet, subscript “o”
denotes the exterior phase, and r∗e is the radius of the critical
embryo using the equimolar dividing surface. Following
Abraham,32 the work of formation for the critical embryo is
given by

∆W ∗ =
4πr∗2e

3
*
,
σ(r∗e) − r∗e

(
∂σ(r)
∂r

)
r=r∗e

+
-
. (5)

The curvature dependence of the surface tension is then
assumed to follow the Helfrich-expansion (Eq. (1)), which
for a perfectly spherical droplet/bubble is

σ(r) = σ0 −
2δσ0

r
+

ks

r2 + O
�
r−3� , (6)

where ks = 2k + k̃, r is the radius which, by definition, is
positive for a droplet and negative for a bubble, and terms
beyond second order are neglected. Using Eq. (6) in Eq. (4),

we obtain

Pi − Po =
2σ0

r∗e

(
1 − δ

r∗e

)
. (7)

For the equimolar dividing surface, the second order terms in
the Helfrich expansion in Eq. (7) cancel out. Using Eq. (6) in
Eq. (5), the nucleation barrier becomes

∆W ∗ =
4πσ0r∗2e

3

(
1 − 4δ

r∗e

)
+ 4πks (8)

which agrees with and generalizes the work by McGraw and
Laaksonen,12 where they implicitly assumed δ = 0. We can
simplify further by introducing r∗CNT = 2σ0/ (Pi − Po). Solving
Eq. (7) for r∗e and expanding gives

r∗e = rCNT *
,
1 − δ

rCNT
− δ2

r2
CNT

+ O
�
r∗−3

CNT

�+
-

(9)

which can be introduced in Eq. (8). The final expression for
the nucleation barrier is then

∆W ∗ =
4πσ0r∗2CNT

3

(
1 − 6δ

r∗CNT

)
+ 4π

�
ks + δ2σ0

�
. (10)

The above equation is also valid for bubbles, but the radius
is then negative according to the convention of the Helfrich
expansion. With the common assumptions in CNT of ideal
vapor and an incompressible droplet, we get the following
approximate formulas for the CNT-radii:1,32

r∗CNT = 2σ0/(ρl,eqkBT ln S), droplet, (11)

r∗CNT = 2σ0/(Peq − Po), bubble, (12)

where subindex “eq” refers to properties along the coexistence-
line and S is the supersaturation, S = Po/Peq. To distinguish
Eq. (10) from the standard expressions in CNT with the capil-
larity approximation, we shall call the modified framework
curvature corrected-CNT, or simply c-CNT, and we will inves-
tigate to what extent these curvature corrections affect the
predictions from CNT and bring them closer to experiments.

We demonstrated in previous work that it was crucial to
use an accurate equation of state to get accurate estimates of
the coefficients in the Helfrich expansion with square gradient
theory.22 Unfortunately, we cannot combine square gradient
theory with the most accurate equation of state for water,34

since it fails for densities between the spinodals. We shall
instead use the CPA equation of state,28–30 which provides
an accurate representation of the equilibrium properties of
water away from the critical point, as shown and discussed
in the supplementary material.35 We have also included in
the supplementary material a comparison of SGT with MD-
simulations made using the water models TIP4P/2005 and
SPC/E (Fig. S1).35 The results are not expected to coincide
since only TIP4P/2005 gives surface tensions which agree
with experiments, and both water-models fail to predict the
equilibrium vapor-pressure accurately.

The CPA equation of state consists of a cubic part
(subscript C), which accounts for the physical forces, and an
association part (subscript A), which accounts for hydrogen
bonding and other chemical forces.29 This gives the Helmholtz
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energy density,

feos = feos,C + feos,A (13)

from which other relevant properties such as pressure,
entropies, and enthalpies can be derived. We used the same
CPA-formulation and parameters as Queimada et al.30 The
square gradient model solution is a stationary state of the
following functional of the density profile ρ(r):

Ωsgm =


dr


feos(T, ρ(r)) − µρ(r) + η (T)

2
|∇ρ(r)|2


,

(14)

where r is the position and η is the temperature-dependent
influence parameter. The stationary density-profiles across
the interface are found by solving the corresponding Euler-
Lagrange equations. Furthermore, the coefficients in the
Helfrich-expansion can be defined analytically in terms of
density expansion functions,36 which can be found by solving
a coupled set of differential equations. We have solved these
equations for water using a methodology presented previously
and refer to that work for further information about the explicit
equations and the numerical routines.22

The resulting Tolman length and rigidity constants for
water are reported in Fig. 1, and their values are also
tabulated in the supplementary material (Table S1).35 A
linear extrapolation was used to obtain the coefficients below
T = 273.15 K (red dashed line) where many of the nucleation
experiments for water have been performed (supplementary
material35). Most of the non-linearity in Fig. 1(b) comes from
the normalization with kBT .

Our results indicate that the Tolman length of water is
negative and weakly temperature-dependent, having a small
value of about −0.05 nm. This result compares well with
previous estimates in the literature.24–26 For instance, as shown
in Fig. 1(a), the Tolman length from SGT is within the error
bars of the Tolman length from recent Monte Carlo/MD-
simulations using the TIP4P/2005 model.26 Sedlmeier and
Netz found a negative Tolman length about twice that value,
using the SPC/E water model to investigate water interfaces
in the presence of hydrophobic solutes.24 Even though the
exact value of the Tolman length from the SPC/E model is
expected to be inaccurate since the model fails to reproduce
the experimental surface tension, it is interesting to note that
its magnitude increases with temperature similar to Fig. 1(a).24

Other indirect estimates of the Tolman length for water have
been obtained from nucleation experiments. In particular,
Holten et al. estimated it using nucleation experiments in
an expansion wave tube and reported positive values.37 El
Mekki Azouzi et al. using cavitation experiments in quartz
inclusions at ∼320 K obtained an estimate of the Tolman
length of −0.047 nm, a value which agrees well with our
results.25 However, in both cases, the contribution from the
rigidity constants is ignored, and their inclusion would change
their estimates significantly. For small bubbles/droplets, it is
crucial to include also the rigidity constants in the analysis to
obtain the correct surface tension, since both density functional
theory and MD-simulations agree that the surface tension is a
concave parabolic function of the curvature.17,24

FIG. 1. The coefficients in the Helfrich expansion for water from square
gradient theory combined with the CPA equation of state (solid lines) and
from a linear extrapolation (red dashed lines), where kx is used to denote
all the rigidity constants. The Tolman length for TIP4P/2005-water is also
included (square).26

Arguably, the most important application of the Tolman
length and the rigidity constants is in the context of nucleation.
We analyze their influence on water nucleation rates, by
comparing to a large amount of experimental data from
different experimental techniques covering a wide range of
temperatures, supersaturations, and nucleation rates.7,38–43

An excellent overview of the available experiments on
homogeneous water-nucleation was recently given by Wölk
et al.44 Moreover, based on their experiments from 2001, Wölk
and Strey devised an empirical formula for water to correct
the predictions from CNT.7 This formula, which we will use
for comparison, has been found to correspond well with most
of the experiments and has been adopted as a benchmark for
homogeneous-water-nucleation.44

While the standard CNT typically predicts the correct
dependence of nucleation rates on supersaturation, it gives the
wrong temperature-dependence. For substances such as water
and 1-pentanol, this has been well documented,1,7,45 and it is
also evident from comparing the red dashed lines in Fig. 2
with the experimental results. The figure shows that c-CNT
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FIG. 2. Experimental nucleation rates from Wölk and Strey (blue dia-
monds),7 Manka et al. (red circles),38 Brus et al. (pink and green trian-
gles),39,40 Manka (yellow squares),41 and from Wyslouzil et al.42 for the
temperatures T(K)= {320,310,300,270,260,250,240,230,220}, compared
to CNT (red dashed lines) and c-CNT (solid lines).

(solid line) gives results which are closer to experiments, both
at low and high nucleation rates, where the magnitude of the
rates spans 20 orders of magnitude.

To have a clearer picture of the quality of agreement
between the predictions and the experiments at different
temperatures, Fig. 3 compares the average ratio between the
different approaches and the experimental nucleation rates.
As expected, the mean deviation between CNT (red circles)
and experiments increases nearly linearly with temperature.
However, both the empirical formula and c-CNT are close to
experiments and seem to have the correct temperature trend,
at least up to T = 280 K. The slightly higher deviations at 300
K, 310 K, and 320 K are probably due to inaccuracies in the
experiments. This claim is supported by a comparison between
the nucleation rates obtained by Brus et al. using two different
experimental techniques, showing similar deviations.39,40 It
is quite remarkable that the empirical formula by Wölk and
Strey (crosses), which has been fitted to experiments, displays
almost the same deviations with experimental results as a
function of temperature, as c-CNT (diamonds); specially,
taking into account that the curvature corrected CNT depends
only on the Tolman length and the rigidity constants from
SGT and has no a priori information about experimental
nucleation rates. This strongly suggests that including the
curvature dependence of the surface tension corrects the wrong
temperature-dependence given by the classical theory, at least
for the case of water. At the lowest temperatures, c-CNT gives
a slightly too steep curve for the nucleation rates as a function
of supersaturation (see Fig. 2), which is most likely due to

FIG. 3. The average deviation between experiments in Refs. 7, 38–40, and
43 (Jexp < 1010 ) and nucleation rates predicted from the empirical formula
by Wölk and Strey (black crosses),7 CNT (red circles) and c-CNT (blue
diamonds).

the linear extrapolation of the Tolman length and the rigidity
constants below T = 273.15 K.

As commonly occurring in the context of nucleation,
the excellent quantitative agreement between the c-CNT
predictions and the experimental rates may be partially
accidental, since the actual values of the nucleation rates might
change slightly if one takes into account non-idealities, the
compressibility of the liquid phase, or uses a different model
for the kinetic prefactor. However, all these modifications
typically shift the rates by an approximately constant factor.7,46

The really important outcome of this work is thus that
including the curvature dependence of the surface tension
corrects the wrong temperature-dependence given by the
classical theory, at least for water.

In summary, we have calculated the Tolman length and
rigidity constants of water using SGT combined with the
accurate CPA equation of state. Using these constants, it
is then possible to incorporate the curvature-dependence of
the surface tension into the CNT-framework. The resulting
predictions correct the wrong temperature dependence of
the nucleation rates given by the classical theory and also
improve the agreement with experiments. Thus, this procedure
offers a promising way to alleviate the problems of CNT and
obtain quantitatively accurate predictions, which hopefully is
possible also for other substances.

This work has been partially supported by the MINECO
of the Spanish government through Grant No. FIS2011-22603.
We thank J. Wölk, B. E. Wyslouzil, and D. Brus for sending
us their experimental data.
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