

Treball de Fi de Grau

GRAU D'ENGINYERIA INFORMÀTICA

Facultat de Matemàtiques

Universitat de Barcelona

Q-[9!wbLbD Lb w¢{ D!a9Ω{ aL/wh-MANAGEMENT

Angel Camilo Palacios Garzón

Directors: Mike Preuss & Jesús Cerquides

Realitzat a: Departament de Matemàtica

Aplicada i Anàlisi. UB

1

Abstract

The purpose of this Project is to implement the one-step Q-Learning algorithm and a

similar version using linear function approximation in a combat scenario in the Real-Time

Strategy game Starcraft: Broodwarϰ. First, there is a brief description of Real-Time Strategy

games, and particularly about Starcraft, and some of the work done in the field of Reinforcement

Learning. After the introduction and previous work are covered, a description of the

Reinforcement Learning problem in Real-Time Strategy games is shown. Then, the development

of the Reinforcement Learning agents using Q-Learning and Approximate Q-Learning is

explained. It is divided into three phases: the first phase consists of defining the task that the

agents must solve as a Markov Decision Process and implementing the Reinforcement Learning

agents. The second phase is the training period: the agents have to learn how to destroy the

rival units and avoid being destroyed in a set of training maps. This will be done through

exploration because the agents have no prior knowledge of the outcome of the available actions.

The third and last phase is testing the agentsΩ knowledge acquired in the training period in a

different set of maps, observing the results and finally comparing which agent has performed

better. The expected behavior is that both Q-Learning agents will learn how to kite (attack and

flee) in any combat scenario. Ultimately, this behavior could become the micro-management

portion of a new Bot or could be added to an existing bot.

Keywords: Q-Learning, Reinforcement Learning, Real-Time Strategy, Starcraft, BWAPI, Micro-

Management.

2

Index
1. Introduction .. 4

1.1 Real-Time Strategy .. 4

1.2 Starcraft ... 4

2. The problem .. 5

3. State of the art: ... 6

4. Motivation and Goal of this project .. 6

4.1 The reinforcement learning problem: ... 6

4.2 Markov Decision Processes ... 7

4.3 Definition of a state ... 8

4.4 Possible actions ... 9

4.5 Rewards ... 9

4.6 Q-Learning ... 10

4.7 Approximate Q-Learning (features based Q-Learning) ... 10

5. BWAPI .. 12

5.1 Interfaces ... 12

5.1.1 AIModule ... 12

5.1.2 Game ... 12

5.1.3 Player ... 12

5.1.4 Unit .. 12

5.2 Events .. 12

5.2.1 OnStart .. 12

5.2.2 OnEnd .. 13

5.2.3 OnFrame .. 13

5.2.4 OnUnitDestroyed .. 13

5.3 Frames ... 13

5.4 Tiles & Pixels .. 13

6. Implementation ... 14

6.1 Serialization ... 14

6.2 Gridworld .. 14

6.3 Kiting.. 15

6.3.1 Exact Q-Learning ... 16

6.3.1.1. AIModule ... 16

6.3.1.2. AgentManager ... 16

3

6.3.1.3. QAgent... 16

6.3.1.4. QTable ... 16

6.3.1.5. QState .. 16

6.3.1.6. State .. 16

6.3.1.7. FleeManager.. 17

6.3.1.8. ExploreManager .. 17

6.3.1.9. Block .. 17

6.3.2. Approximate Q-Learning ... 17

6.3.2.1. AIModule ... 17

6.3.2.2. QTable ... 17

6.4 Managers ... 18

6.4.1 Flee Manager ... 18

6.4.2 Attack Manager ... 19

6.4.3 Explore Manager ... 20

7. Results ... 21

7.1 Map RC1-A-VZ.scx ... 22

7.2 Map RC1-A-V6Z.scx ... 24

7.3 Map RC1-A-3V6Z.scx ... 25

7.4 Map RC1-A-1V9Zg.scx ... 26

8. Conclusions ... 28

9. Future work ... 29

10. References ... 30

4

1. Intro duction

Since their first appearance in the 1980s Real-Time Strategy (hereafter, RTS) games have

represented a big challenge for Artificial Intelligence (hereafter, AI) developers, and it remains

an open problem today. There has been a pleather of research and improvements, especially

after Buro's call for AI research in RTS games [1], but, unlike other games like chess or checkers,

even the state of the art RTS game agents are far from playing at human level. Some of the

problems faced by AI developers in RTS games are the large state space of the game, incomplete

information, decision making under uncertainty and adversarial planning. These problems can

also be found in real life situations such as air traffic controlling, automated vehicles, exploration

with drones or weather prediction to mention just a few. Thus, RTS games are useful as finite

discrete simplifications of the real world and the achievements in RTS games research are

beneficial to other fields.

The goal of this project is to develop an AI agent (also known as a Bot) that can learn an

efficient way of engaging the enemy in a small combat scenario using Reinforcement Learning

(hereafter, RL) algorithm Q-Learning and its similar version with linear function approximation.

In particular, the Bot should learn the ΨYitingΩ ǘŜŎƘƴƛǉǳŜ όŀƭǎƻ ƪƴƻǿƴ ŀǎ ΨƘƛǘ ŀƴŘ ǊǳƴΩύ, a micro-

technique consisting of attacking the enemy and fleeing repeatedly. This technique should

improve the survival rate of range units compared to the built-in AI survival rate.

Once the bot is implemented it will play several maps divided into two parts; the training

period and the test period. All of the learning process occurs during the training period, and it is

done in a set of training maps. In each map there are hundreds of episodes. After this training

period, the Bot will play a set of test maps exploiting the acquired knowledge. The results are

then observed. The behavior after the training period should be more efficient than that of the

built-in AI. By trial and error the agent is expected to learn how to kite. It will decide when to

attack and when to flee, making its units become more challenging targets.

1.1 Real-Time Strategy

Real-Time Strategy is a genre of video games which originated in the 1980s that became

very popular in the 1990s. Today it has many adepts and there are many companies developing

new games with important franchises like Company of Heroesϰ and Total Warϰ. Most of the

games of this genre are published for PC. Generally, in an RTS game, two or more players

compete in a map where they must gather resources to improve their economy, build bases and

create armies to attack the adversaries and defend from their attacks. In this project, ǿŜΩƭƭ ŦƻŎǳǎ

only in the combat aspects of a match involving small groups of units. This is known as Micro-

management.

1.2 Starcraft

StarCraftϰ is an RTS game developed by Blizzard Entertainment and published on March 31,

1998 [2]Φ LǘΩǎ ǎŜǘ ƛƴ ŀ ŦƛŎǘƛǘƛƻǳǎ ŦǳǘǳǊŜ in a distant sector of the galaxy with three species fighting

5

for dominance. Each of them with unique units, technologies, attributes and abilities: the

Terrans, humans with very versatile and good defensive units; the Zerg, a race of insectoid aliens

that can produce cheap, but rather weak, units in vast numbers; and the Protoss, an advanced

alien species with very powerful but more expensive units. On November 30th 1998 an expansion

pack was released, StarCraft: Brood Warϰ, including new units and game updates. Although the

three playable factions are very asymmetric, the game is very well balanced so that none of the

factions have advantages over another. Figure 1 shows a battle between a Protoss army and a

Terran army.

Figure 1. Combat between Protoss (left) and Terran (right) forces.

Starcraft has become a very extensive test-bed for AI research around the world. Many

universities have developed Bots that compete against each other in international competitions

like the Artificial Intelligence and Interactive Digital Entertainment (AIIDE) [3] and the Student

Starcraft AI Tournament (SSCAIT) [4]. There is a very active community of developers and

researchers working on many different approaches of AI.

2. The problem

RTS games involve many problems in AI. The environment is dynamic and stochastic, it

constantly changes and actions have a probability of success. The information about the

environment is incomplete: players only have information about the areas around their units.

TƘƛǎ ƛǎ ƪƴƻǿƴ ŀǎ ǘƘŜ ΨŦƻƎ ƻŦ ǿŀǊΩΦ IƛƎƘ ǘŜǊǊŀƛƴ ƛǎ ŀƭǎƻ ƴƻǘ ǾƛǎƛōƭŜ ŦǊƻƳ ŀ ƭƻǿŜǊ ǇƻǎƛǘƛƻƴΦ

Perhaps the most obvious problem is the very large state and action spaces of an w¢{ ƎŀƳŜΩǎ

match. As estimated by Ontañon et al. [5], the number of possible states in an average map in

Starcraft is many orders of magnitude bigger than the total states of board games like Chess or

Go. The number of actions possible at each state is also hard to estimate due to the special

abilities, different contexts and the internal state of a unit (health, weapons cool down,

paralyzed, etc.), to tackle this problem some abstraction is necessary to reduce the states and

actions space.

6

3. State of the art:

Reinforcement Learning has been successfully applied in RTS games, not only in Starcraft

but in other games like Wargus [6] or Glest [7].

The Q-Learning algorithm along with the SARSA algorithm were studied in a combat scenario

in Starcraft by Wender and Watson [8]. They compared the one-step version of both algorithms

and their more sophisticated versions using eligibility traces.

Q-Learning was also studied by Mestres [9] in a combat scenario in Starcraft. He applied the

algorithm simultaneously at two levels: squad and unit level. It allowed the units to perform

complex actions that require units to work together (e.g., surrounding an enemy unit).

Both Wender and Watson [8] and Mestres [9] did their experiments in small custom maps

against the built-in AI, which had a simple and highly deterministic behavior. When the built-in

AI engages in a fight, it selects a target (generally the closest enemy unit), walks towards the

target until ƛǘ ƛǎ ƛƴǎƛŘŜ ǘƘŜ ǿŜŀǇƻƴΩǎ ǊŀƴƎŜ ŀƴŘ finally, attacks while the unit remains inside the

ǿŜŀǇƻƴΩǎ ǊŀƴƎŜ or until it has been destroyed. If the enemy unit leaves the weaponΩǎ range, the

unit controlled by the built-in AI will chase it. A kiting unit can exploit that behavior by fleeing

repeatedly and only stopping to attack. This technique is particularly efficient when it is used by

range units against melee units (i.e., units with no range weapons).

A full StarCraft Bot generally mixes more than one AI technique assigned to different tasks,

such as economy management, placing buildings, exploration and so on. A good example of a

full Bot is the UAlbertaBot [10] by Churchill, which separates tasks into modules that are handled

by different managers.

4. Motivat ion and Goal of this project

The aim of this project is to test which of these two approaches would be more suitable for

the micro-management of range units on a full Starcraft Bot: the simple one-step Q-Learning or

the Approximate Q-Learning using linear function approximation. The final result is measured in

terms of total accumulated reward, time required to learn and win-rate.

4.1 The reinforcement learning problem:

In both versions of the algorithm, like in any other RL problem, the agent will interact with

the environment in order to achieve a goal.

7

Figure 2. Interaction between agent and environment in RL.

As seen in Figure 2, at every time step ὸ ρȟςȟσȟȣ the agent lands in a state ίᶰὛ, where

Ὓ is the set of all possible states. From this state the agent takes an action ὥᶰꜝ ί , where

ꜝ ί is the set of actions available at state ί. As a result, the agent receives an immediate

reward ὶ ᶰד and lands in a new state ί ᶰὛΦ ¢ƘŜ ŀƎŜƴǘΩǎ Ǝƻŀƭ ƛǎ ǘƻ ƳŀȄƛƳƛȊŜ ǘƘŜ ǘƻǘŀƭ

reward received along all the time steps.

Although RTS games are perceived by human players to be Real-Time, they have discrete

time steps. In Starcraft, for example, the game state changes at an average of 24 Frames per

Second (hereafter, FPS). It means that the state of the game is updated approximately every 42

milliseconds. An important difference between Starcraft and simple RL problems is that in

Starcraft some actions take more than one time step to finish. Even the same action, for example

firing a range weapon, might take longer for some units than for others.

4.2 Markov Decision Processes

The definition of the task that the agent has tƻ ǎƻƭǾŜ ƛǎƴΩǘ ǘǊƛǾƛŀƭΦ To guarantee successful

learning, the signals perceived by the agent at a given time step must retain the important

information necessary to make its decisions. If all the relevant information from previous states

is retained in the ŎǳǊǊŜƴǘ ǎǘŀǘŜ ǎƛƎƴŀƭ ƛǘΩǎ ǎŀƛŘ ǘƻ ƘŀǾŜ the Markov Property [11]. In such case, the

next state ί and the immediate reward obtained ὶ depend only on the current state ί and

the current action ὥ, not on all the sequence of states and actions prior to step ὸ.

0Ò ί ίȟὶ ὶȿ ίȟὥ ȟ

An RL task that satisfies the Markov property is said to be a Markov Decision Process

(hereafter, MDP). An MDP is defined by the set of states Ὓ, the set of actions ꜝ , the transition

probabilities ע (the probability to land from state ί to state ίᴂ taking action ὥ) and the

expected value of the next immediate reward ד .

8

4.3 Definition of a state

The state signal is key because that is the only information that the agent will perceive and

use in order to make its decisions. On tƘŜ ƻǘƘŜǊ ƘŀƴŘΣ ƛǘΩǎ ƴƻǘ ǇƻǎǎƛōƭŜ ǘƻ ƪŜŜǇ ŀƭƭ ǘƘŜ ƛƴŦƻǊƳŀǘƛƻƴ

available from the game because the state space would be too large. That would require an

enormous amount of memory space for storage and the time necessary to explore each state

would increase exponentially. Some abstraction is necessary. This is why the representation of

the state is a trade-off between simplifying the states to reduce the state space and avoid

missing valuable information.

In this project, the state happens at the unit level, meaning that each of the units owned by

the Bot have their own current state. During the development of the project, some information

about the state of a unit was dismissed and some information ǿŀǎ ŀŘŘŜŘ ōŀǎŜŘ ƻƴ ǘƘŜ ŀƎŜƴǘΩǎ

behavior and performance in the tests. The reason to use thresholds to categorize the values

instead of using the real values is to keep the state space to a reasonable size.

 The state information kept in the final version is:

- HP: hit points of our unit. The possible values are {High, Normal, Low, Critical}.

- HP_ENEMIES: sum of the hit points of all the enemies around our unit. The possible

values are {High, Normal, Low, Critical}.

- DPS: the damage per second that our unit can inflict, calculated as:

ὨὴίόὲὭὸ
ύὩὥὴέὲ ὨὥάὥὫὩ ὪὶὥάὩί ὴὩὶ ίὩὧέὲὨ

ύὩὥὴέὲ ὧέέὰ Ὠέύὲ

The possible values are {High, Normal, Low, Critical}.

- DPS_ENEMIES: the sum of the damage per second that the enemies around our unit

can inflict, calculated as:

Ὠὴί ὨὴίὩὲὩάώ

The possible values are {High, Normal, Low, Critical}.

- SPEEDΥ ǘƘŜ ǳƴƛǘΩǎ ǘƻǇ ǎǇŜŜŘ. The possible values are {Fast, Medium, Slow}.

- DISTANCE: the distance between our unit and the closest enemy unit. The possible

values are {Far, Medium, Close}.

- COOLDOWNΥ ǿƘŜǘƘŜǊ ǘƘŜ ǳƴƛǘΩǎ ǿŜŀǇƻƴ ƛǎ ǊŜŀŘȅ ǘƻ ǎƘƻƻǘ ƻǊ ƴƻǘ. The possible

values are {Yes, No}.

9

- ATTACKED: whether the unit is under attack or not. The possible values are {Yes,

No}.

As a result, the total size of the space state is Ὓ τ σ ς ωςρφ.

4.4 Possible actions

Something similar to the state space problem happens with the action space. The game gives

many possible actions to each unit at a given moment. They vary depending on the context, the

unit type or its internal state at that time. These actions need to be explored several times for

each state to let the Q-Learning algorithm converge effectively to the optimal policy.

To keep things simple, only three actions are possible for each unit. These actions are not

always available depending on the context of the unit at a given time. The possible actions are:

- Explore: this is the only action available when there are no enemies around. The

purpose of this action is to encourage the unit to find the enemies.

- Attack: this ŀŎǘƛƻƴΣ ŀƭƻƴƎ ǿƛǘƘ ΨCƭŜŜΩ, are the only actions possible when there are

enemies around the unit. It calls upon the Attack Manager that decides which

enemy to attack.

- FleeΥ ǘƘƛǎ ŀŎǘƛƻƴΣ ŀƭƻƴƎ ǿƛǘƘ ΨAttackΩ, are the only actions possible when there are

enemies around the unit. It calls upon the Flee Manager that decides where to flee.

A further explanation of what these actions do is found later in section 6.4.

4.5 Rewards

The last main component of the MDP are the rewards. A reward is a signal, it comes as a

number perceived from the environment by the agent at each time step ὶᶰᴘ. The goal of an

RL agent is to maximize the accumulated rewards in the long run. Rewards can also be negative,

in which case are usually referred to as penalties.

Like defining the state, the rewards were modified, added and removed while testing the

agent. These are the rewards in the final version and their values:

- Win (100): is received when the match ends in victory for our RL agent.

- Lose (-100): is received when the match ends in defeat for our RL agent.

- Alive (-0.01): is received every time step until the match ends, its purpose is to

encourage the agent to finish the match as soon as possible.

- Enemy Destroyed (50): when an enemy unit is destroyed, this reward is received by

the unit who destroyed it.

- Unit Lost (-20): is received when our unit is destroyed.

10

- Unit Damaged (-5): is received when our unit has been hit since the last time step

but has not been destroyed yet.

The values are not necessarily optimal and can be modified depending on the desired priorities

(e.g., finishing the match fast vs. surviving as long as possible).

4.6 Q-Learning

The Q-Learning algorithm was introduced by Watkins in 1989 [11ϐΦ LǘΩǎ ŀƴ ƻŦŦ-policy TD

control algorithm. Off-policy means it is independent from the policy being followed, with

enough exploration (i.e., all the pairs continue to be updated) ƛǘΩǎ ƎǳŀǊŀƴǘŜŜŘ ǘƻ ŎƻƴǾŜǊƎŜ ǘƻ Q*,

the optimal action-value function. A policy, denoted “, is a map that shows the agent which

action to take at any state. Temporal-Difference (hereafter, TD) means that it approximates its

current estimate based on previous estimates without waiting for a final outcome (also known

as bootstrapping).

Q-Learning uses state-action pairs and calculates the ΨqualityΩ of these pairs, named Q-

Values. That is, the expected return of taking action ὥ from state ί and thereafter following the

optimal policy “. The simple one-step update formula for Q-Learning is:

ὗίȟὥ ᴺὗίȟὥ ὶ ÍÁØὗί ȟὥ ὗίȟὥ

A Q-Learning agent is not a reflex agent, meaning, it ŘƻŜǎƴΩǘ ƘŀǾŜ ŀƴȅ ǇǊior knowledge about

the environment, ƛǘ ŘƻŜǎƴΩǘ ƘŀǾŜ ŀ ǇƻƭƛŎȅΣ ƛǘ ŘƻŜǎƴΩǘ ƪƴƻǿ ǘƘŜ ǘǊŀƴǎƛǘƛƻƴ ŦǳƴŎǘƛƻƴ ƴƻǊ ǘƘŜ ǊŜǿŀǊŘ

function. It has to learn by trial and error.

To keep the number of possible actions very short, tƘŜ ŀƎŜƴǘ ŘƻŜǎƴΩǘ ƴŜŜŘ ǘƻ ƭŜŀǊƴ ǿƘƻ ǘƻ

attack, where to flee or how to explore the terrain. It just needs to learn when to attack, flee or

explore, and the manager modules transform this decision to specific enemies or positions on

the map. The managers are described in section 6.4.

4.7 Approximate Q-Learning (features based Q-Learning)

In some cases when the state space is too large, it becomes impossible to keep a table with

all the Q-±ŀƭǳŜǎΦ LǘΩǎ ŀƭǎƻ ƛƳǇƻǎǎƛōƭŜ ǘƻ ŜȄǇƭƻǊŜ ŜǾŜǊȅ ǎǘŀǘŜ-action pair enough times to

guarantee that the Q-Learning algorithm will converge to the optimal policy. The algorithm

treats every pair ŀǎ ǳƴƛǉǳŜ ŀƴŘ ǘƘŜǊŜΩǎ ƴƻ ǊŜƭŀǘƛƻƴ ōŜǘǿŜŜƴ pairs regardless of how similar they

might seem. The idea of the Approximate Q-Learning is to generalize over all this similar states-

action pairs and use this knowledge when the agent lands in a new state that has never been

explored. This means that the learning becomes faster, since the agent uses the knowledge from

the visited states to make decisions in the new ones.

To generalize over state-action pairs some relevant features must be extracted, these

features are real numbers (e.g., number of enemies around the unit). Similarly to the state

representation in exact Q-Learning, selecting the features that represent a state-action pair is

11

key because this is the only information that the algorithm will use to learn. The result of

extracting these features is a vector of real numbers (to simplify things, all features are integer

numbers in this project).

The goal is to give these features a weight, so that we have a weights vector with the same

length as the features vector. After every time step, when a feature is present

(ὪὩὥὸόὶὩὺͅὥὰόὩ π) the weight of this feature is updated. They are a measure of how good

or bad that feature is, if the rewards are high, the features that lead to that reward are increased,

if the rewards are negative, the features are decreased.

Instead of updating the Q-Values, like in exact Q-Learning, only the weights vector is

updated.

ύ ᴺύ ὶ ÍÁØὗίȟὥ ὗίȟὥ Ὢίȟὥ

The Q-Value of a state-action pair is calculated as the dot product of the features vector and

the weights vector.

ὗίȟὥᴺύὪίȟὥ ύὪίȟὥ Ễ ύὪίȟὥ

The features are extracted from state-action pairs, which means they have information not

only about the state but also about the possible outcome of the action taken. Those features

are generally binary, their value is 1 if they are present and 0 otherwise. These are the features

defined for this project:

These features are extracted from the current state:

- █ ▼ȟ╪: the Hit Points of our unit.

- █ ▼ȟ╪: the sum of Hit Points of all the enemies around our unit.

- █ ▼ȟ╪: the Damage per Second that our unit can inflict.

- █ ▼ȟ╪: the Damage per Second of all the enemies around our unit.

- █ ▼ȟ╪: the speed of our unit.

- █ ▼ȟ╪: the distance to the closest enemy.

- █ ▼ȟ╪: the number of enemies around the unit.

- █ ▼ȟ╪: the number of allied units around our unit.

- █ ▼ȟ╪Υ ǘƘŜ ǳƴƛǘΩǎ ǿŜŀǇƻƴ cool down frames.

- █ ▼ȟ╪: whether the unit is under attack or not.

These features are assumptions based on the current state and the action taken:

- █ ▼ȟ╪: action ╪ takes our unit most likely closer to an enemy.

- █ ▼ȟ╪: action ╪ takes our unit most likely away from an enemy.

- █ ▼ȟ╪: action ╪ will most likely hurt an enemy.

- █ ▼ȟ╪: action ╪ will most likely destroy an enemy.

- █ ▼ȟ╪: action ╪ will most likely cause us damage from an enemy.

- █ ▼ȟ╪: action ╪ will most likely cause us death from an enemy.

- █ ▼ȟ╪: action ╪ takes our unit most likely closer to an enemy.

12

5. BWAPI

The Brood War Application Programming Interface (hereafter, BWAPI) is an API for

interacting with Stacraft: Broodwar (1.16.1) [12]. It is a free and open source C++ framework

that allows developers to interact with the game and control its units like a human player

would do. The cheating options, such as human input or complete map visibility, are disabled

by default so that the AI agents have to work under partial information conditions.

The Brood War Application Programming has become very popular for AI researchers and

AI developers as it is well documented and has a very active community. A list of academic

works using BWAPI can be found in [13]. This Project has been developed using BWAPI 4.1.1

and MS Visual studio 2013. The Project is written in the C++ programming language.

Our RL agentΩǎ Ǝƻŀƭ ƛǎ ǘƻ ǎƻƭǾŜ a problem in form of an MDP. This is a brief description of

some of the most relevant aspects of BWAPI used in this project. It helps to show how the MDP

can be modeled using this framework.

5.1 Interfaces

5.1.1 AIModule: is the main class that initializes BWAPI. It has to be implemented or

inherited by a custom class. Its member functions are used to handle the game

events. A description of the events is found in section 5.2.

5.1.2 Game: contains all the information available from the game state, including units,

players, terrain, fog of war, regions, etc.

5.1.3 Player: represents a player in the match, every player has a Player instance. This

interface allows us to get all the information about our own units and control

them (when player = self) or to get all the information available about the enemy

(when player = enemy).

5.1.4 Unit: is used to issue commands to individual units, like attack or move, and

provides all the information about a specific unit, like ID, exists, hit points, unit

type, position, etc.

5.2 Events

There are many events that the BWAPI extracts from the game. The AIModule catches these

events and they can be handled writing their respective callback methods. All the events should

be handled in a full Starcraft Bot to benefit from their information. Here, only the events used

in this project are described. For a list of all the events, please check the BW!tLΩǎ Ŏƭŀǎǎ ŘƛŀƎǊŀƳ

available in [14].

5.2.1 OnStart: ǘƘƛǎ ŜǾŜƴǘ ƛǎ ǘǊƛƎƎŜǊŜŘ ƻƴƭȅ ƻƴŎŜ ŀǘ ǘƘŜ ōŜƎƛƴƴƛƴƎ ƻŦ ǘƘŜ ƳŀǘŎƘΦ LǘΩǎ ƴƻǘ

possible to keep information in memory from one match to the next so this

event is ideal to load files from disk (e.g., the table containing the Q-Values).

13

5.2.2 OnEnd: this event is triggered only once at the end of the match. It is ideal to store

information to disk. In our MDP, this event represents the final state and its only

possible action is EXIT. It has a Boolean parameter isWinner which is true when

our agent has won the match and false otherwise. This event is very useful to give

our agent a final reward.

5.2.3 OnFrame: this happens every game frame. It could be considered as a time step

in our MDP but further considerations need to be done because not all actions

require the same time to be finished. Treating every frame as a time step has

another complication explained in section 5.3.

5.2.4 OnUnitDestroyed: this event is triggered every time a unit is destroyed,

regardless of who its owner was. The Unit interface can then be used to know the

former owner. It is useful to return positive rewards when the unit was an enemy

and negative rewards when our agent lost a unit.

5.3 Frames

Usually, the game runs at 24 frames per second, which means that the state of the game

changes approximately every 42 milliseconds. It seems reasonable to treat every game frame as

a time step of our MDP but there is another important concept to take into account, the Latency

Frames.

The Latency Frames are the number of frames before a command can be processed. Issuing

commands to soon ὒὥὸὩὲὧώὊὶὥάὩί ὔὩὼὸὅέάὥὲὨὊὶὥάὩὰὥίὸὅέάάὥὲὨὊὶὥάὩ

would result in undesired behavior of the units (e.g., units get blocked and are unable to move

or attack)Σ ǘƘƛǎ ƛǎ ƪƴƻǿƴ ŀǎ ΨǎǇŀƳƳƛƴƎ ŎƻƳƳŀƴŘǎΩΦ ¢his problem can be solved by simply

skipping the frames in between.

ὭὪ ὊὶὥάὩὅέόὲὸ Ϸ ὒὥὸὩὲὧώὊὶὥάὩίπ ὶὩὸόὶὲȠ

5.4 Tiles & Pixels

The map coordinates can be represented in pixels (Position) or in tiles (TilePosition) which

are squares of 32x32 pixels. The pixels are very useful to calculate the exact distance between

two positions or to measurŜ ŀ ǳƴƛǘΩǎ ǎǇŜŜŘΣ ǘƻ ƴŀƳŜ ŀ ŦŜǿ. They are not very good

ǊŜǇǊŜǎŜƴǘŀǘƛǾŜǎ ƻŦ ŀ ǳƴƛǘΩǎ state, though. The average size of a map in Starcraft: Broodwar is 128

x 128 pixels. It means that there are approximately 16384 different positions where a unit can

ōŜ ŀǘ ŀ ƎƛǾŜƴ ǘƛƳŜΦ ¢Ƙƛǎ ƛƴŦƻǊƳŀǘƛƻƴ ƛǎƴΩǘ ǾŜǊȅ ǇǊŀŎǘƛŎŀƭΣ ŀǘ ƭŜŀǎǘ ƴƻǘ ƛƴ ŜȄŀŎǘ v-Learning, because

there are too many different values. Using tiles could be a way to reduce the possible values.

Section 6.2 describes the implementation of a simple MDP using BWAPI. The state is

represented as the x and y coordinates (in tiles) of a unit. As described in section 6.4.1, the flee

manager also uses tiles, named blocks, to calculate an influence map around the unit and pick

the safest block to escape.

14

6. Implementation

6.1 Serialization

LǘΩǎ ƴƻǘ ǇƻǎǎƛōƭŜ ŦƻǊ .²!tL ǘƻ ƪŜŜǇ Řŀǘŀ ƛƴ ƳŜƳƻǊȅ ŦǊƻƳ ƻƴŜ ƳŀǘŎƘ ǘƻ another. However,

ƛǘΩǎ ǇƻǎǎƛōƭŜ ǘƻ ƭƻŀŘ ǘƘƛǎ Řŀǘŀ ŦǊƻƳ ŀ ŦƛƭŜ ŀǘ ǘƘŜ ōŜƎƛƴƴƛƴƎ ƻŦ ŀ ƳŀǘŎƘ ŀƴŘ ǎŀǾŜ ƛǘ back to the disk

when the match ends. This is done respectively when the events onStart and onEnd are

triggered.

The Q-Values are the only information relevant to the agent that needs to be stored. A Q-

Value is just a real number linked to a state-action pair as explained in section 4.6. A map seemed

like a good choice for this task. The Boost C++ Libraries [15] contains many useful data structures

including unordered maps that accept custom classes as key. So, the Q-Values are stored in a

unordered_map: the key is a custom class that contains the state-action pair and the value is

simply the Q-Value of this pair. The map is created during the first match and then serialized and

saved to the disk when the match ends, ready to be loaded at the beginning of the next match.

6.2 Gridworld

This first experiment was made to test the viability of the Q-Learning algorithm using BWAPI.

As shown in Figure 3. the agent has to learn the path to a goal state where a big positive reward

awaits (100), the other final states (the blue areas north, south and west) cause the agent to

lose and receive a negative reward (-100). Apart from the final rewards, there is a living penalty

(-0.5) every time step that the agent makes a transition to a non-Ŧƛƴŀƭ ǎǘŀǘŜΦ LǘΩǎ ŀ ǎƳŀƭƭ ƴŜƎŀǘƛǾŜ

reward that encourages the agent to finish the task as quickly as possible.

Figure 3. Gridworld experiment.

In this simple task the state of our only unit can be represented by its position on the map.

Using tiles, instead of pixels, the state space is reduced to approximately 60 different states. As

15

the agent updates the Q-Values, the one with the highest value is displayed on the map; ǘƘŀǘΩǎ

the value of the state-action pair that the greedy agent would choose.

Figure 4. Exploration, the highest Q-Value of each state is displayed in the grid.

After 500 episodes with an exploration rate ‐ πȢτ (meaning that 40% of the time the agent

acts greedy and 60% randomly) the Q-Values have propagated enough throughout the map.

Assuming that the values are optimal, the agent can now follow an optimal policy “z by setting

‐ ρ (acting greedy), the agent becomes a reflex agent and exploits the knowledge from the

learning episodes. The experiment worked as planned and proved that Q-Learning can be

applied in Starcraft using BWAPI. The implementation of this experiment can be used as a

starting point for more complex MDPs.

Figure 5. Following the optimal policy “z in the grildworld.

6.3 Kiting

YƛǘƛƴƎ ƛǎ ŀ ǘŜŎƘƴƛǉǳŜ ǳǎŜŘ ƛƴ w¢{ ƎŀƳŜǎΩ ƳƛŎǊƻ-management. It consists of attacking and

ŦƭŜŜƛƴƎ ǊŜǇŜŀǘŜŘƭȅ ƛƴ ƻǊŘŜǊ ǘƻ ŀǾƻƛŘ ōŜƛƴƎ ŜȄǇƻǎŜŘ ǘƻ ǘƘŜ ŜƴŜƳȅ ǿŜŀǇƻƴǎ ŦƻǊ ǘƻƻ ƭƻƴƎΦ LǘΩǎ

ǇŀǊǘƛŎǳƭŀǊƭȅ ǳǎŜŦǳƭ ǿƘŜƴ ƛǘΩǎ ǳǎŜŘ ōȅ Ŧŀǎǘ ǊŀƴƎŜ ǳƴƛǘǎ ŀƎŀƛƴǎǘ ǎƭƻǿ ƳŜƭŜŜ ǳƴƛǘǎΦ LŦ ƛǘΩǎ ǿŜƭƭ

performed, a single unit could deal with a much bigger force and remain unharmed.

The definition of the states, actions and rewards of an MDP to learn how to kite in Starcraft

have been explained in sections 4.3, 4.4 and 4.5. Here, we can see the resultant class diagram

of the two different implementations of a Kiting Bot and a short description of their classes.

16

6.3.1 Exact Q-Learning

Figure 6. Class diagram of the Q-Learning Kiting Bot.

6.3.1.1. AIModule: inherits from BWAPI::AIModule, this is the main class of the Bot. It

handles the events, loads and saves the information from disk and initializes

the AgentManager.

6.3.1.2. AgentManager: is the owner of the QTable, a custom class that contains the

map with all the Q-Values. It initializes a set of agents associated to each

existing own unit in the game.

6.3.1.3. QAgent: is associated to a unit in the game, it has a reference to the QTable

passed by its parent class AgentManagerΦ Lǘ ƛƴǘŜǊǇǊŜǘǎ ǘƘŜ ǳƴƛǘΩǎ ǎǘŀǘŜΣ ǘŀƪŜs

actions and updates the Q-Value of the last state-action pair visited. Note: due

to the simplicity of the attack method this class also includes the instructions

of the AttackManagerΣ ǘƘŜǊŜΩǎ ƴƻ ǎŜǇŀǊŀǘŜ manager module for the attack.

6.3.1.4. QTable: is a custom class that contains the unordered map with all the Q-

Values. The keys are the visited state-action pairs and the values are the

current estimated value of that state-action pair, the values are initialized to

0. It provides the QAgent class with methods to update, insert and access the

Q-Values in the map.

6.3.1.5. QState: represents a state-action pair.

6.3.1.6. State: is the representation of the current state of a unit in the game.

17

6.3.1.7. FleeManager: is called by the QAgent Ŏƭŀǎǎ ǿƘŜƴ ǘƘŜ ΨŦƭŜŜΩ ŀŎǘƛƻƴ ƛǎ ǘŀƪŜƴΦ Lǘ

executes the instructions to flee from the enemy units. Section 6.4.1 has more

details about how the agent flees.

6.3.1.8. ExploreManager: is called by the QAgent Ŏƭŀǎǎ ǿƘŜƴ ǘƘŜ ΨŜȄǇƭƻǊŜΩ ŀŎǘƛƻƴ ƛǎ

taken. It executes the instructions to perform the exploration of the terrain.

Section 6.4.3 has more details about the way the exploration is performed.

6.3.1.9. Block: is a class used by the FleeManager class to create a grid around the unit

and estimate which cell, or block, is the safest at a given time.

6.3.2. Approximate Q-Learning

Figure 7. Class diagram of the Approximate Q-Learning Kiting Bot.

6.3.2.1. AIModule: instead of loading the unordered map, it loads the weights vector

at the beginning of the match and saves it to a file at the end.

6.3.2.2. QTable: no longer has a map of all the Q-Values visited. Instead it has methods

to extract the features from a State. It also keeps the vector with the weights

of the features and methods to update them, as explained in section 4.7.

All the other classes are the same as in the exact Q-Learning implementation in section 6.3.1.

18

6.4 Managers

The managers are the code executed when the RL agent wants to perform an action (i.e.,

attack, flee and explore). Their purpose is to release the RL agent from the details of those

actions, so that the state space of the MDP stays small.

6.4.1 Flee Manager

This module is called by the agents when the action Flee is selected. Initially the idea was to

use a simple fleeing method. The method originally tested was to run from the enemy whose

position was the closest to our unit. This method proved to perform very poorly and the unit

usually ended up running straight to another enemy or getting itself trapped between the enemy

and obstacles.

Figure 8. Fail case of fleeing from the enemy to the opposite direction.

The Next approach tested was to calculate the mean point of all the enemy positions near

the agent, then run away from this point. There are many counter examples where this solution

ǿƻƴΩǘ ǿƻǊƪ ŀǎ ŜȄǇŜŎǘŜŘ because the information about the current position of the enemy units

is lost, many enemy distributions can compute the same mean point and be completely

different. Finally, the solution that proved to perform better than the others and still remain

simple in concept and computational cost was using Influence Maps to calculate the safest

position around the agent in a given state. At every time step the safest position is updated while

the agent continues to flee.

