Universitat
de Barcelona

Treball de Fi de Grau

GRAU D'ENGINYERIA INFORMATICA

Facultat de Matematiques
Universitat de Barcelona

Q[9! wbLbD Lb w¢{MANAGEMENT al/ v

Angel Camilo Palacios Garzén

Directors. Mike Preuss & Jesus Cerquides

Realitzat a: Departamele Matematica
Aplicada i AnalisUB

Abstract

The purpose of this Project is implementthe one-step Q-Learningalgorithmand a
similar version using linear function approximatiorin a combat scenario in th&salTime
Srategy game Starcraft: Broodwar. First there isa brief description oRealTime Strategy
gamesandparticularly about Starcraft, and some of the work done in the field offBeement
Learning After the introduction and previous worlare covered, a description of the
Reinforcemat Learningoroblem inReal Time Strategygamess shown Then the development
of the Reinforcement Learningagens using GLearning and Approximate -Qearningis
explained Itis divided imo three phases: e first phase consistsf defining the task tht the
agentsmustsolve as a Markov Decision Process iamalementing the Reinforcement Learning
agents. The second phase is the training peritlde agens have to learn how to destroy the
rival units and avoid being destroyed a set oftraining maps This will be donethrough
exploration becausthe agenshaveno prior knowledge of the outcome tie availableactions.
Thethird and lastphase is testing thegent<knowledgeacquired inthe training periodin a
different set of mapsobserving the reultsand finally comparing which agent has performed
better. The expected behavior is thbth Q-Learning agentsiill learnhow to kite (attack and
flee) in any combat scenaritlltimately, his behavior could b@wmethe micromanagement
portion of a newBot or could beadded to an existing bot

Keywords:Q-Learning, Reinforcement Learning, R€ahe StrategyStarcraft, BWAPI, Micro
Management.

Index

1.

2.
3.
4.

[a1 oo [0 o i o] o BT P PR PPPPRRI 4
1.1 ReAITIME SIrAEOY ... ueeeiieee ittt e e e e s e e e e e e 4
] v (o] - | APPSR PPPPPPPPPPPRR 4
I L= o (] o] L=1 o o 5
State Of the At .eeiiiiieiee e 6
Motivation and Goal Of thiS PrOJECE..........euviiiiiiiiiiieeee e 6
4.1 The reinforcement learning Proli@&............covviiieiiiiiii e 6
4.2 MarkoVv DECISION PrOCESSES........cuuiieiiiiiieeiiiiie ettt 7
4.3 Definition Of @ STALE.....ccoiiiiiiiiiiie e 8
44 POSSIDIE BCHONS.......ciiiiiiiiiiiiii et 9
4.5 REWAITS....ciiiiiiiiiii ettt e e e e e e e e et e e e e r e e e e e e ae s 9
4.6 Q-LBAIMING. ... ttiiiiee ettt e et e e e e e e e e e e e e e e e e e e e 10
4.7 Approximae QLearning (features basedi(@arning)...........ccoceeeecnvvvrnennennnnnne. 10
BV AP L e a e e e e e r s 12
5.1 INEEITACES. ..cei it 12
51.1 AIMOAUIE.....ceeeeeeeeeeeee e e e e e e e aaaaaaeeeas 12
51.2 LCT- 1 0[PP PPPPPPPP 12
B3 PlAYL. . e a e e e e e 12
51.4 o T OO UEEP PP 12
5.2 EVBINES .ttt e 12
521 10015 r= T A PP PP P PP U P PP PP TP 12
522 (@] = o o SRR UPRSPP 13
523 ONFTAME....c i e e e e 13
5,24 ONUNIIDESIIOYEA.....ceiiiiiiiiiiiiiiee e 13
5.3 FTAIMES. i 13
5.4 THES & PIXELS.....eeiiiiiiiiiiiii e 13
[aT o] (=70 L= o1 = Vi {0 o PP 14
6.1 SerialiZAtION........eiieiieeeii s 14
6.2 GHAWOII. ... 14
(T B 11 o PP P PPPP PSPPI 15
6.3.1 EXACT QLEAINING ...eieiieiiiitiiii ettt e e e e e e e e e 16
6.3.1.1. AIMOAUIE ... a e e e e e e e e e e 16
6.3.1.2. AQENIMANAGEL.... ...t 16

6.3.1.3. QAN .. e 16
B.3. 1.4, QTaAbDIE...cceiiiii e a e e e 16
6.3.1.5. L@ 15 = | (= J PPN 16
6.3.1.6.] t= LTSRS 16
6.3.1.7. FIEEMANAGEL.........eeieeiei ettt 17
6.3.1.8. EXPIOreMANAQEL... ..ottt e e e e e e e e e e e e e e e e e 17
6.3.1.9. BIOCKeiiiiiiiieiiiiiie e 17
6.3.2. ApproxXimate QLEAINING..........ccoeiiiiiiiiiinriitr e e e e e reaaaaaaaaaaaaaaaaaeaas 17
6.3.2.1. AIMOAUIE.....cc oo a e e e e e e aaaeeas 17
6.3.2.2. (O 1= o] [PPSR 17
R A Y/ = =T] PSPPI 18
6.4.1 FIEE MANAGEL.........ccc o e 18
6.4.2 AUHACK MANAGEL......coi s 19
6.4.3 EXPlOre MANAGEL.........uuiiiiieiiiiiiiiee ettt 20

T RESUITS ..o 21
0 S = Vo B O Y A o3 PR 22
A = Vo O Y G YA o) 24
7.3 MAP RCIABVBZ.SCX e iiieeiiie ettt ettt e e e e e e e e bbb e e e e e e aeeeeenns 25
7.4 MaP RCIALVOZG.SCX eeeiiiiiiiieeieeee et e e e e e e e e e e e e 26
S T O] o Tox 11 5] (0] o [OO PP P PPPPPPPPN 28
9. FULUIE WOTK ...ttt e e e e e et e e 29
10, REIEIEINCES.ciiiiiiiiiie ettt s e e e e 30

1. Intro duction

Since tleir first appearance in the 198@®eaiTime Srategy (hereafter, RTSjJameshave
representd a big challenge forificial Intelligence (hereafter, Ajevelopersandit remains
an open problentoday. There has been aleatherof researchand improvemens, especially
after Buros call for Al research in RTS gamedjf] unlike other games like chessatreckers
eventhe state of the art RTS game agents are far from playing at human level. Some of the
problems faced by Al developers in RTS gamesararge statespaceof the game, incomplete
information, decision making undemcertaintyand adversarial planning heseproblemscan
alsobe foundin real lifesituations such as air traffaontrolling automated vehicles, exploration
with drones or wather predictionto mention just a few. Thus,RTS gameare useful adinite
discrete smplificatiors of the real world and the achievements in RTS games research
beneficial to other fields.

The goal of this project is tdevelop an Ahgent(also knom asa Bot) that can learn an
efficient way of engaging the enenig a small combat scenarigsing Reinforcementearning
(hereafter,RL) algorithm QLearningand itssimilarversion with linear function approximation
In particular,the Botshouldlearnthe WithgQ G SOKY AljdzS o f a2 arhigo2 6y I a W
technique consistingf attackingthe enemyand fleeing repeatedlyThis technique should
improve thesurvivalrate of rangeunits comparedto the builtin Alsurvival rate

Once the bot is implmented it will play several maps dividedartwo parts, the training
period and the test periodAll of the learning process occurs during the training periaadit is
done in a set of triming mapsin each map there are hundreds of episodaster this training
period, the Bot will play a set of test maps exploiting the acquiletbwledge The results are
then observedThe behavior after the training period should be more efficient than that of the
built-in Al By trial and error the agen$ expectedo learn how tokite. It will decide when to
attack and when to fleenakingits units becomemore challengingargets

1.1RealTime Strategy

RealTime Strategy is a genre of video gamésch originated in the 1980s¢hat became
very popular in the 199 Today ithas many adepts and theere manycompanies developing
new games with important franchises like Company of Hercasd Total Wan. Most of the
games of thiggenre are published for PGenerally in an RTS gametwo or more players
compete in a mp where they must gather resources to improve their economy, build bases and
create armies to attacthe adversariesind defendrom their attacks In this projectg S Qf f ¥ 2 Odza
onlyin the combat aspects of a mat@fivolving small groups of unit3his isknown as Micre
management

1.2 Starcraft

StaCraftn is an RTS game developed by Blizzard Entertainment and publishigiduain 31,
1998pl® LG Qa aSid Aiyadistanfsedbi of thehgalamith thiretzspdziedBghting

4

for dominance Each 6 them with unique units, technologies, attributes and abilitiethe
Terrans,humans with veryersatileandgooddefensiveunits;the Zerg, a race of insectaadiens
that can produce cheggbut rather weak units in vast numbersand the Protoss, an adnced
alien speciewith very powerful butmoreexpensive unitsOnNovember30" 1998 an expansion
pack was released, StarCraft: Brood Wancluding new units and game updatédthough the
three playable factions are very asymmetric, the game is wetlybalanced so that none of the
factions have advantagever another.Figure 1shows a battle between a Protoss army and a
Terran army.

Figure 1. Combat between Protoss (left) and Terran (right) forces.

Starcrafthas become a very extene test-bed for Al researcharound the world. Mny
universities have developdsbts thatcompete against each other internationalcompetitions
like the Artificial Intelligence and Interactive Digital Entertainin@iIDE) 3] and the Student
Starcaft Al Tarnament (SSCAHI [4]. Thereis a very activecommunity of developers and
researchersvorking on mangifferent approacheof Al.

2. The problem

RTSgamesinvolve many poblems in Al. The environment is dynamic and stochastic, it
constantly changes and agtis have a probability of success. The informatadrout the
environmentis incomplete;playeis only have information about the areas arountheir units.
TKAAd Aad 1y26y FLa GKS WF23 2F 4 NR® | AFK GSNNFAY

Perhapsthe most obvious problens thevery largestate and action spacesanw ¢ { I YSQa
match As estimatedby Ontafion et al.j], the number of possible states in an average map in
Starcraftismany orders of magnitude bigger than ttwal states of board gamdsge Chess or
Ga The number of actions possible at each state is also hard to estimate due spdoél
abilities, different contexts and the internal state of a unit (healthgaponscool down,
paralyzed, etc.), to tackle this problem some abstract®necessary to reduce the states and
actionsspace

3. State of the art:

Reinforcement Learning has been successfully applied in RTS games, not only in Starcraft
but in other games like Wargu$] or Glest [/].

The QLearning algorithnalong with the SARS#gorithmwere studied in a combat scenario
in Starcraft bywender and Watsor}]. They compared the ongtepversion of both algorithms
andtheir more sophisticated versions using eligibility traces.

Q-Learning was also studied by Mestr8kif a combatcenario in Starcraft. He applied the
algorithm simultaneously at two levelsquad and unitevel It allowed the units to perform
complex actions that requirenitsto work together (e.g.surrounding an enemy unit).

Both Wender and Watsong] and Mestes P] did their experimentsn small custom maps
against the builin Al, which had aimple and highly deterministizehavior When the builtin
Al engages in a fighit selectsa target(generally the closest enemy unityalks towards the
targetuntiA & Aa Ay aiARS (Kiflyatiekdddig BeuniNgémaidsSnside yhR
6 S L2y QoiuntNit hfssh&en destroyed. If thenemyunit leaves the weapaR kange the
unit controlled by the builin Al willchaseit. A kiting unit can explt that behavior by fleeing
repeatedy and only stopping to attackhit technique is particularly efficient when it is used by
range units against melee unitise(, unitswith no range weapons).

A full StarCraft & generally mixes more than one Al teitjue assigned to different tasks,
such as economgnanagementplacingbuildings, exploration andoson. A good example of a
full Bot is the UAIbertaBotl[0] by Churchill, which separates tasks into modules that are handled
by different managers.

4. Motivation and Goal of this project

Theaim of this project is taest whichof these two approaches would be more suitable for
the micromanagement of range units on a full Starcraft Bot: the simplesiap QLearning or
the Approximate GLearningusinglinearfunction approximationThe final result is measured in
terms of total accumulated reward, time required to learn amid-rate.

4.1 The reinforcement learning problem:

In both versions of the algorithntike in any other RL problem, the agewill interact wih
the environment in order to achieve a goal.

4:[AGENT J

state reward
S¢ T

action
Qg

:[ENVIRONMENT

Figure 2 Interaction between agent and environment in RL.

As seen iffigure 2 at every time step phcfofB the agent lands in a stafe ¥ Y where
"Yis the set of all possible stateSrom this state lie agent takesn actionw N i, where
' { is the set of actions available at stdte As a result, the agent ree®is an immediate
rewardi N Tandlandsinanewstae "YW ¢KS 3SydQa 3I21t Aa (2
reward received alongll the time steps.

AlthoughRTS games are perceiviegd human playerso be RealTime, they have discrete
time steps In Starcraft, for example, the game state changearatverage o4 Framegper
Secondlfereafter,FPS)It means that the state of the game is updatapproximatelyevery 42
milliseconds.An important difference between Starcraft andgimple RL problemss that in
Starcraft some actions takaeorethan one time stepto finish. Even the same action, for example
firing a range weapon, mighake longer fosome units tharfor others

4 2Markov DecisionProcesss

The definition of the task that the agent had t a4 2 f @S AXodgyafhiteesiidd@stuk | @
learning the signals perceived by the agemit a given time stepnust retain the important
information necessary to make its decisionfall the relevant informatiorirom previous states
is retained inth@® dzNNBy G a0 GS atie Mgikod Propertyd §. InBuchhcBse,in2 K @S
nextstatei and the immediate reward obtaindd depend only on the current state and
the currentaction®, not onall the sequence of states and actions prior to séep

0 Oi i A i si R

An RL task that satisfies thdarkov propertyis said to bea Markov Decision Process
(hereafter, MDP).An MDP is defined by the set of stat&he set of actions , the transition
probabilities v (the probability to landfrom statei to state i adaking actionc) and the
expected value of the nexinmediaterewardT

4 3Definition of a state

The state signal is key because that is the only information that the agent will perceive and
use h order to make its decisionsn@K S 2 1 KSNJ K YR AdGQa y20 LI2&aaArof
available from the game because the state space would be too large. That would require an
enormous amount of memory space for storage and the time necessary to explore each state
would increase xponentially S me abstraction is necessarihis is why e representationof
the state isa tradeoff between simplifying the states to reduce the state spacel avoid
missing valuable information.

In this project, the state happens tite unit level, neaning that eah of the units owned by
the Bot have their own current statéDuring the development of the projegome information
about the stateof a unitwas dismissed ansbome informatong & I RRSR o6l A4SR 2y @K
behaviorand performance in theéests. Thereason to usdhresholds to categorize the values
instead of using the real values iskeep the state spac® areasonablesize

Thestateinformation kept in the final versiois:

- HP hit points ofour unit. The possible values afeligh Normal, Low, Critical}.

- HP_ENEMIESuUm of the hit points oflathe enemies around our unith€& possible
values argHigh, Normal, Low, Critical}.

- DPSthe damage per seconithat our unit can inflict, calculated as:

0 QAONENM OQAQ GO AR Qb é & Q

Qnbe Qo
d VQwnwefa v ¢

The possible values afkligh, Normal, Low, Critical}.

- DPS_ENEMIESe sum of the damage per second that the enemies around our unit
can inflict calculated as:

Qn QniQe Qa w
The possible values afkligh, Normal, Low, Critical}.
- SPEED (i KS dzy A.GHe dossibe tdluds lafBaStRMedium, Slow}.
- DISTANCHhe distance between our unit and the closest enemy uHite possile
values ardFar, Medium, Close}.

- COOLDOWK g KSGKSN) GKS dzy Al Qa & STheJpogsibld & NBI R
values argYes, No}.

- ATTACKEDvhether the unit is under attack or nothe possible values af¥es,
No}.

As a result, the total size dii¢ space state i&r 1 o ¢ Wwepo

4.4Possible actions

Something similar to the state space problem happens with the action space. The game gives
many possible actiorn® each unit at a given moment. Thegry depending on the context, the
unit type or its internaktate at that time.Theseactions ned to be explored several timdar
each state to let the Qearning algorithm converge effectively to the optimal policy.

To keep things simpleonly three actions are possibler each unit. Thseactions are not
always available depending on the context of the unit at a given time. The possible actions are:

- Explore this is the only action available when there are no enemies around. The

purpose of this action is to encourage the unit to find the enemies.

- Attack thisk OG A2y > €f &fEdhe anly ackonsPossible when there are
enemies around the unit. It callgpon the Attack Manager that decides which
enemy to attack.

- Fleer GKAa I Ol AtagkQarelthie 8ny Actiahdi ppgsiblédvhen there are
enemies around the unit. It callsponthe FleeManager that decides where to flee.

A further explanation of what #seactions do is found later in secti@¥4.

4 5Rewards

The last main component of the MDP are the rewards. A reward is a signal, it comes as a
number perceived from the environment by the agent at each time steppr . The goal of
RL agent is to maximize the accumulated rewards in the londRewwards can also be negative
in which case are usually referremaspenalties.

Like defininghe state, the rewards were modified, added and removed while testing the
agent.These are the rewards in the final version and their values

- Win (100} isreceivedwhen thematchends in victoryor our RL agent.
- Lose(-100). is received when the matamds in defeat for our RL agent.

- Alive (-0.01) is received every time step until the match ends, its purpose is to
encourage the agent to finish the match as soon as possible.

- EnemyDestroyed(50). when an enemy unit is destroyed, this reward is recgive
the unit who destroyed it.

- Unit Lost(-20): is received when our unit is destroyed.

- Unit Damaged-5): is received when our unit has been hit since the last time step
but has not been destroyed yet.

The values are not necessarily optimal and cambeified depending on thdesiredpriorities
(e.g, finishing the match fast vs. surviving as long as possible).

4.6Q-Learning

The QLearning algorithm was introduced by Watkins in 198%8[®> L i QdlicyTDy 2 ¥ F
control algorithm COff-policy means it is idependent from thepolicy being followed, with
enough exploration (i.eall the pairs continue to be updated)i Q& 3Jdzl NIF y i QER G2 O2y
the optimal actionvalue function A policy, denoted , is a map that shows the agent which
action to take atany state.TemporalDifference fiereafter, TD) means that it approximates its
current estimate based on previous estimates without waiting for a final outcome (also known
as bootstrapping).

Q-Learninguses stateaction pairs and calculates thgualityQof these mirs, named Q-
ValuesThat is, the expected return of taking actidrirom statei and thereafter following the
optimal policy” . The simpleone-step update formula for @earnings:

OihdO NOiRy | i I ADDi Ry Oihd

A QLearningagent is not a ritex agentmeaning, itR2 Sa y Qi isrkidBledgeyaBout LINJ
theenvirorment,A G R2Say QiA KIRSSay 0t A\WORE GKS G(GNIyairAldAzy
function. It has to learn by trial and error.

To keep the numbebnf possibleactions very shorttK S | 3Sy 4G R2Say Qi ySSR {3
attack,where to fleeor how to explore the terrainlt just needs todarn when to attack, flee or
explore, and lhe manager mdules transform this decision tpecific enemies or positions on
the map The managerare describedn section6.4.

4.7 Approximate Q-Learning (features based @Learning)

In ome casesvhen the state space is too largebecomes impossible to keep a table with
all the Q+ I £ dz§ad LGEQa | faz2 AYLadienApaifeSoudiitines3dE LI 2 NB ¢
guaranteethat the QLearning algorithm will converge to the optimal polidhe algorithm
treats every pait & dzy Alj dzS I y R { KS NBiSrégargiedss oW dimilarthegy 06 S 6 S
might seem. The idea of the ApproximateL@arning is to gearalize over all this similar states
action pairsand use this knowledge when the agent lands in a new state that has never been
explored.This means that the learning becomes faster, since the agent uses the knowledge from
the visited states to make de@®s in the new ones.

'dal

To generalize over statection pairssome relevant featuresnust be extracted, thee
featuresare real numbers (e.g.number of enemies around the unit). Similarly to the state
representation in exact Qearning, selecting the feates that represent a stataction pairis

10

key because this is the only information that the algorithm will use to le@dhe result of
extracting these featuresis a vector of real numbers (to simplify thingdl features are integer
numbers in this projes.

The goal is to give thedeatures a wajht, so that we have a weights vector with the same
length as the features vector. After every time stephem a feature is present
(QQ® 0.6 &6 M the weight of this featurés updated. They area measure of how good
or badthat featureis, if the rewards are high, the features that lead to that reward are increased,
if the rewards are negative, the features are decrehse

Instead of updating the Qalues, like in exact -Qearning, only the weights vector is
updated.

ONO | 1 T ABIR O iRd "Qihd

The QValue of a stateaction pair is calculated as the dot produétioe features vector and
the weights vector.

OiRON O QIR U QIR E 0 "Qihkd

The features are extracted from stagetion pairs, which means they have information not
only about the state but also about the pdss outcome of the action take Those features
are generally binary, their value is 1 if theme present and 0 otherwise. Téeare the features
defined for this project:

Thesefeatures are extracted from the current state:

<

FRpFFFFFigH

: the Hit Pointsof our unit.

: the sum ofHit Pointsof all the enemies around our unit.

: the Damage per Secorillat our unit can inflict.

: the Damage per Secoraf all the enemies around our unit.
: the speed obur unit.

: the distance to the closest enemy.

: the number of enemies around the unit.

: the number of allied units around our unit.

Y (KS dzy sobldawnranses. L2 Y

: whether theunit is under attack or not.

Thesefeatures are assumptions based on the current state and the action taken:

: action=|=takesour unitmost likely closer to an enemy.

: action=|=takesour unitmost likely away from an engm

: action=|=wi|| most likely hurt an enemy.

: action=|=wi|l most likely destroy an enemy.

: action=|=wi|| most likely cause us damage from an enemy.
: action=|=wi|l most likely cause udeath from an enemy.

: action=|=takesour unitmost likely closer to an enemy.

--l--
23223332

11

5. BWAPI

The Brood War Application Programming Interfaberéafter, BWAPI)is an API for
interacting withStacraft: Broodwa(1.16.1)[12]. It is a free and opesource C++ framework
that allows developers to interact with the game and control its units like a human player
would do. The cheating options, such as human input or complete map visibility, are disabled
by default so that the Al agents have to work engartial information conditions.

The Brood War Application Programmimgs become very popular for Al researchers and
Al developersas it 5 well documented and has a very active commurAtyist of academic
works using BWAPI can be found irB[1ThisProject has been developed using BWARI14.
and MS Visual studio 2013. The Project is written in the C++ programming language.

OurRLagea 32| t apréblerii i forindfa®DP. This is a brief description of
some of the most relevant aspectEBWAPUsed in this projectlt helps to show howhe MDP
can be modeled using this framework.

5.1Interfaces

5.1.1 AlModule: is the mainclass that initializes BWAPi hias to be implemented or
inherited by a custom class. Its member functions are used to hahdlgame
events. A description of the events is found in secbdh

5.1.2 Game contains all the information available from the game state, including units,
players, terrain, fog of war, regions, etc.

5.1.3 Player represents a player in the match, every plahes aPlayerinstance. This
interface allows us to get all the information about our own units and control
them (when player self) or to get all the information available about the enemy
(when player =enemy).

5.1.4 Unit: is used to issue commands to indivadwnits, like attack or move, and
provides all the information about specificunit, like ID, exists, hit points, unit
type, position, etc.

5.2Events

There are many events that trBWAPExtracts from the gameTheAlModule catches thee
events and theyan be handledvriting their respective callback methodall the events should
be handled in a fulbtarcraftBot to benefit from their information. Here, only the events used
in this project are describedror a list of all the events, please check the!BWL Q& Of I 84 RA I 3
available in 14].

52.1 OnStarti KA & S@Syid Aa GNARIISNBR 2yte 2y0S I
possible to keep information in memory from one match to the next so this
event is ideal to load files from disk (eipe table comaining the Qvalues).

12

5.2.2 OnEndthis event is triggered only once at the end of the match. It is ideal to store
information to diskIn our MDRthis eventrepresents the final statand itsonly
possible action i€XIT It has a Boolean paramete&Winnerwhich istrue when
our agent has won the match afalseotherwise. This event is very useful to give
our agent a final reward.

5.2.3 OnFramethis happens every game frame. It could be considered as a time step
in our MDP but further considerations need to beng becauseiot all actions
require the same time to be finishedreating every frame as a time step has
another complication explained in sectiérB.

5.2.4 OnUnitDestroyed this event is triggered every time a unit is destroyed,
regardless of whits ownerwas TheUnit interface can there used to know the
former owner. Itisuseful to return positive rewards when the unit was an enemy
and negative rewards when our agent lost a unit.

5.3Frames

Usually, the game runs at 24 frames per second, which meandheagtate of the game
changesapproximatelyevery 42 millisecond#t seemseasonabldo treat every game frame as
a time step of our MDP but there is anothiBrportant concepto takeinto account, the_atency
Frames

The Latency Frameare the number bframes before a command can be processed. Issuing
commands to soond WO Q& WOl HRQO 6 & GO QLA RE ada hE QO haQ
would result inundesired behavior of thanits (e.g, units get blockeand areunable to mwe
orattackk GKAa A& (1y26y | & hisUpiobmycdm be Jolv&liZby SirplyRa Q@ ¢
skipping tle frames in between.

Q01 GAQEE B &HO QE Ow O XD B i £

5.4Tiles & Pixels
The map coordinates can be represented ixefs (Position) or in tiles (TilePositionhieh
are squares of 32x32 pixelBhe pixels are very useful to calculate the exact distance between
two positions or to meas@ | dzy AU Q& A LISSRey aré 2ot ety géod | FS g
NB LINB & Sy i I (i sta@ 3hadugie The averade/sikdiofedmapStarcraft: Broodwais 128
x 128 pixels. It means that there aapproximatelyl6384 different positions where a unit can
0SS 4 I 3IAGSY GAYSP ¢KA& Ay T2NYEéaknRyybedauss Qi IS NE
there are too many different values. Usitigs could be a way to reduce thgossiblevalues.
Section 6.2 describes the implementation of a simple MQBing BWAPI. The state is
represented as the& andy coordinates (in tiles) of a unifs desribed h section6.4.1, the flee
manager also uses tiles, named blodkscalculate an influence map around the unit and pick
the safestblockto escape

13

6. Implementation

6.1 Serialization

LiQa y20G LkRaaroftsS FT2NJ .21 tL (z2znchS. FHodewrrt, G Ay Y
AlQa LRraaraofsS G2 t2FR GKAA RFGl haRtothetiskTAE S |0
when the match endsThis is done respectively when the evemtsStart and onEnd are
triggered.

The QValues are the only information levant to the agent that needs to be storefl. Q-
Value is just a real numbénked to a stateaction pairas explained in sectioch6. A map seerad
like a good choice for thtask TheBoost C++ Librari¢k5] contains many useful data structures
including unordered maps that accept custom clasas&ey. So, he QValues are stored ia
unordered_mapthe key isa custom class that contains the stagetion pairand the value is
simplythe Q-Valueof this pait The map is created during the first matatethen serialized and
saved tathe disk when the match ends, ready to be loaded at the beginning of the next match.

6.2 Gridworld

This first experiment was made to test thiability of theQ-Learning algorithm using BWAPI.
As shown irFigure3. the agent ha to learn the path to a goal statghere a big positive reward
awaits (100) the other final stategthe blue areas north, south and westiusethe agent to
lose and receive aegative reward-100). Apart from the final rewards, there is a livipgnalty
(-0.5) every time step that the agent makes a transitontoafohy I £ adGlF G6So LIQa |
reward that encourages the agent to finish the task as quickly as possible.

North pit

West pit

Goal state

South pit

ot o A2
&Sk LS o XA % Ex
A S : “f’v'.‘ 1.(‘-'
\; > Ny /

Figure3. Gridworld experiment.

In this simple taskhe stateof our only unit can be representedytits postion on the map.
Using tilesinstead of pixelsthe state space is reduced to approximately 60 different stafes.

14

the agent updates the @aluesthe one with the highesvalue is displayed on the maip;K I (i Q &
the vale of the stateaction pair that the greedy agent would choose.

Figure4. Explorationthe highest @/alue of each state is displayed in the grid

After 500 episodes with an exploration rate @& (meaning that 40% of the time the agent
acts greedy and 60% randomly) theM@lues have propagated enough throughout the map.
Assuming that the values are optimtle agent camow follow an optimal policy . by setting
- p (acting greedy), th agent becomes a reflex agesmd exploits the knowledge from the
learning episodesThe experiment worked as planned and proved thate@rning can be
applied in Starcraft using BWARe implementation of this experiment can beised as a
starting pointfor more complex MDPs.

Figure5. Following the optimal policy. in the grildworld.

6.3Kiting

YAGAY3I A& | GSOKYAI dosanadein&R It donSistsiatthckirglandSa Q YA O
FESSAY3 NBLISIGSREE Ay 2NRSNI G2 F@2AR 08Ay3 SEL
LI NI A Odzf I NI & dza ST dNI yoKSS ydzyAAG(BA | dZFSARy adieé a% 12&G Y St
performed, a single unit could deal with a much bigger force and remain unharmed.

The definition of the states, actions and rewards of an MDP to learn hditeton Starcraft
have been explained in secti®4.3, 4.4and4.5. Here we can see the resultant class diagram
of the two different implementations of a Kiting Bot and a short description of their classes.

15

6.3.1 Exact QLearning

agentMgr aAgents expMgr

AlModule 3 : 7 r QAgent g 1
-agentMgr: AgentManager -gAgents: set<QAgents*> -id: int
-match: int -qTable: QTable -fleeMgr: FleeManager ExporeManager()
~victories: int ~totalReward: double -expMgr: ExploreManager Smove(unit Lnt): veid
lareate It + AgentManager() suniUnt, +trackEnemy(unit: Unit, foes: Un
+onStart(): void + getQTable(): QTable ~killCounter: int +exploreTerrain(unit: Unit): void
+onEnd(isWinner: bool): void +getQAgents(): set<QAgents™> -lastHP: int
+onFrame(): void +init(qt QTable): void -qTable: QTable
+onUnitDestroy(unit: Unit): void +initAgents(): void -accumulatedReward: double
+init(): void +step(isFinalState: bool, isWinner: bool): void -currentState: State fleeMgr
+finish(): void +update(state: State, action: int, nextState: St -nextState: State FleeManager
; 1
+drawlnfo(): void +getinstantRewardOnDefeat(): double -currentAction: int blocks: Set<Block™>
+loadQTable(): QTable +getTotalReward(): double -followCounter. int
+saveQTable(qt: QTable): void +terminate(u: Unit): void +QAgent(u: Unit, gTable: QTable) +FleeManager() .
+loadMatchStats(): void +getUnit(): Unit +getBlocks(): set<Block">
+saveMatchStats(): void 1 +getiD(): int +getBestBlock(): Block
+boostGame(boost: bool):void +getAccumulatedReward(): double +erase(b: Block): void
+restartMatch(): void +getQTable(): QTable +updateBlock(u: Unit): void
+getCurrentState(): State :checkclomers(t int, j: int, u: Unil
+getCurrentAction(): int insertBlocks(i int, J: int, u: Unit)
Qstate +isAttacking(): bool
-state: Stat qTable +getFollowCounter(): int
ot +setQTable(at: QTable): void
; : ,
+init(): void
+QState()

+QState(s: State, a: int)
+getState(): State
+getAction(): int

State

-hp: int
-hpEnemies: int
-allies: int
-enemies: int
-distance: int
~dps: int
~dpsEnemies: int
~coolDown: bool
-attacked: bool
-speed: int

+State()
+State(hp: int, hpEnemies: int, all
+ (getters)

+step(isFinalState: bool, isWinner: bool): double
+updateQValue(state: State, action: int, nextState: Sta
+getState(u: Unit): State

y +getAction(state: State, unit: Unit): int blocks
qTable +getPolicy(state: State, unit: Unit): int
QTable 1 | *getRandomAction(state: State, unit: Unit): int
“Q: unordered_map +performAction(state: State, unit: Unit): void
~ClassAttribute: Long +getinstantReward(isWinner: bool): double
+attack(unit: Unit): void

:g;aob('f(jmmersd map +flee(unit: Unit): void Blotic
+insert{qState: QState, value: double): void +explore(unit: Unit): void ':é’:f:t Position
+update(state: State, action: int, nextState: St ~value: dolible
+getMaxValue(state: State, isFinalState: bool
+getQValue(state: State, action: int): double +Block()

+getFirstQState(): QState ‘:}ocl;:l- "S-L(”’l))
+Block(p: Position)
+getTopLeft(): Position
+getBottomRight(): Position
Unit +getCenter(): Position

+): double

Serializable

Figure6. Class diagram of the-Qearning Kiting Bot.

6.3.1.1.AlModule: inherits fromBWAPI::AlIModulghis is the main class of theB It

handles the events, loads and saves the information from disk and initializes
the AgentManager

6.3.1.2.AgentManager is the owner of theQTable a custom class that contains the

map with all the QValues. It initializes a set of agents associated to each
existing own unit in the game.

6.3.1.3.QAgent is associated to a unit in the game, it has a reference taQfable

passed by its parent claggentManage® LG AYGSNIINBG& (KS
actions and updates the-alue of the last stataction pair visited. Note: due

to the simplicity of the attack method this class also includes the instructions

of the AttackManageE (i K S NB Q amayager raosluldlfaNthelatack.

6.3.1.4.QTable is a custm class that contains the unordered map with all the Q

Values. The keyare the visited stateaction pairs and the values are the
current estimated value of that stataction pair, the values are initialized to
0. It provides theQAgentclass with method$o update, insert and access the
Q-Values in the map.

6.3.1.5.QState represents a stat@ction pair.

6.3.1.6.State is the representation of the current state of a unit in the game.

16

dzy”

6.3.1.7.FleeManageris called by theQAgentOf I aa&8 ¢ KSyYy GKS WFt SSQ | «
executes the instructions to flee from the enemy units. Seciios.1 has more
details about how the agent flees.

6.3.1.8.ExploreManageris called by theQAgentOf I a4 6KSy (GKS WSELJX 21
taken. It executes the instructions to perform the exploration of theder.

Section6.4.3has more details about the way the exploration is performed.

6.3.1.9.Block is a class used by tfideeManageclass to create a grid around the unit
and estimate which cell, or block, is the safest at a given time.

6.3.2. Approximate Q-Learning

entMgr Agents expMgr
AlModule 7 ety 1 AgentManager 7 g 7 QAgent 7 e 1 ExploreManager
~agentMgr: AgentManager ~gAgents: set<QAgents™> ~idzint
-mateh: int ~qTable: QTable ~fleeMgr: FleeManager ExploreManager()
~victories: int ~totalReward: double -expMgr: ExploreManager +move{unit: Unit): vold
sgeiaatsint + AgentManager() it Uit +trackEnemy(unit: Unit, foes: Un|
+onStart(): void +getQTable(): QTable -killCounter: int +exploreTerrain(unit: Unit): void
+onEnd(isWinner: bool): void +getQAgents(): set<QAgents*™> stHP int
+onFrame(): void +init(gt QTable): void -qTable: QTable
+onUnitDestroy(unit: Unit): void +initAgents(): void -accumulatedReward: double
+init(): void +step(isFinalState: boal, isWinner: bool): void itenbils tials fleeMgr
+finish(): void +update(state: State, action: int, nextState: St -nextState: State 7 FleeManag:
+drawlnfo(): void +getinstantRewardOnDefeat(): double aureniAcion int 3 <Block™>
: ~followCounter: int blacks: set<Block’
+loadQTable(): QTable +getTotalReward(): double
+saveQTable(qt: QTable): void +terminate(u: Unit): void +QAgent(u: Unit, gTable: QTable) +FleeManager() .
+loadMatchStats(): void +getUnit(): Unit +getBlocks(): set<Block*™>
+saveMatchStats(): void 1 +getiD(): int +getBestBlock(): Block
+boostGame(boost booljvoid +getAccumulatedReward(): double +erase(b: Blook): void
+restartMatch(): void +getQTable(): QTable +updateBlock(u: Unit): void
qTable +getCumentState(): State +checkComers(: int, : int, u: Uni
+getGurrentAction(): int +insertBlocks(i int, j int, u: Unity
5 +isAttacking(): bool
ki +getFollowCounter(): int
aTable | +setQTable(qt: QTable) void
o ' qState - QTable 7] +ini(: void 1
oo Sae -weights: vector<double> +step(isFinalState: bool, isWinner: bool): double
~ClassAttribute: Long +updateQValue(state: State, action: int, nextState: Stat
-action: int
+QTable() +getState(u: Unit): State
+QState() +getQ(): unordered_map “+getAction(state: State, unit: Unit): int bl
+Qblalafe: Shte, aint) +insertigState: QState, value: double): void +getPolicy(state: State, unit: Unit): int
tgatSiatal): State +update(state: State, action: int, nextState: State, reward: +getRandomAction(state: State, unit: Unit): int
#gathction(): int +getMax\Value(state: State, isFinalState: bool): double +performAction(state: State, unit: Unit): void
+getQUalue(state: State, action: int) double +getinstantReward(isWinner: bool): double
1 +getFirstQState(): QState +attack(unit: Unit): void ook
+extractF eatures(state: State, action: int): vectoredouble> +flee(unit: Unit): void
state +eatureD(state: State, action: int): int +explore(unit: Unit): void - topLeft: Position
+feature1 (state: State, action: int): int - size: int
1 - value: double
+feature1 4(state: State, action: int): int +Block()
State +Block((: int, j:int)
“heint +Block(p: Position)
-hpEnemies: int fii +getTopLeft(): Position
-allies: int +getBottomRight(): Position
-enemies: int +getCenter(): Position
~distance: int +getValue(): double
~dps: int
~dpsEnemies: int
~coolDown: bool
-attacked: bool
-speed: int
+State()
+State(hp: int, hpEnemies: int, alli
+ (getters)

Figure?. Class diagram of the Approximatel®arning Kiting Bot

6.3.2.1.AIModule: instead of loading the unordered map, it loads the weights vector
at the beginning of the match and saves it to a file at the end.

6.3.2.2.QTable no longerhasa map ofall the QValues visited. Instead it has mette
to extract the features frona State It also keeps the vector with the weights
of the features and methods to update them, as explained in sedtién

All the other classes are the same as in the exace&rning implementatioin section6.3.1

17

6.4Managers
Themanagers are the codexecuted when the RL agent wants to perform an action, (i.e.

attack, flee and explore). Their purpose is to release the RL agent from the details of those
actions, so that thetate space of the MDP stays small.

6.4.1 Flee Manager

This module is called by the agents when the achta®is selected Initially the idea was to
use a simple fleeing method. The method originally tested was to run from the enemy whose
position was the clsest toour unit. Thismethod proved to perform very poorly and thait

usually ended up running straigto another enemy or getting it¢etrapped between the enemy
and obstacles.

Figure 8 Fail case of fleeing from the enemy to the opposite digtt

The Next appryach tested was to calculate the mepaint of all the enemy positions near
the agent, then run away from this point. There are many counter examples where this solution
62y Qi 62 NJ betadse ®dinfintatios about the currenbgition of the enemy units
is lost, many enemy distributions can compute the same mean point and be completely
different. Finally, the solution that proved to perform better than the others and still remain
simple in concept and computational cost was gsinfluence Maps to calculate the safest
position around the agent in a given stafd.everytime step the safest position is updated while
the agent continues to flee.

18

