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Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.

Advisor: Fèlix Ritort
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Abstract: In this paper we explain the unzipping experiment as well as the basic theory of
hidden Markov models (HMM). Using a specific type of HMMs, variable step-size HMM, in which
the quantized distance variable is represented by a large number of states of the Markov model we
try to determine the size distribution of the steps in the unzipping process.

I. INTRODUCTION

Using atomic force microscope, magnetic tweezers and
optical tweezers it is possible to apply external forces to
biomolecules. Since these tools let us experiment with
forces of some pN and very low energies, measuring bio-
molecules’mechanical response we are able to determine
molecular free energy and kinetic rates with good ac-
curacy. One of the experiments carried out with optical
tweezers is Unzipping.

Unzipping consists on pulling a DNA molecule for each
strand measuring the force and the distance between the
ends, which increases with the number of opened base
pairs (bp) (see Fig. 1). Representing force vs distance
curve (FDC) we obtain a very characteristic sawtooth
pattern near 15pN (see Fig.2). The strong dependen-
ce of this pattern can be used to determine the DNA
sequence[1]. Moreover, it can be used to find the speci-
fic places where proteins and enzymes are fixed to the
DNA. It is really interesting since it is very useful in a
lot of fields, for example, finding the selectivity of some
anticancer drugs.

In this experiments we find cooperative unzipping-
zipping regions (CUR). This regions are zones where se-
veral base-pairs of different length are involved in the
transition, behaving like an all or nothing. This compli-
cates the determination of the individual sequence.

The length of the CUR that separates contiguous in-
termediate states along the unzipping pathway have been
determined adopting a Bayesian approach where at each
experimental data point of distance-force they assign the
intermediate state with more probabilities of containing
it [10].

In these paper we are going to find the CUR length
treating the problem as a variable step-size Hidden Mar-
kov Model (VS-HMM). Markov models assume that
when we have different possible states, what state we go
to next depends only on what state we are in. If we only
have observations which are probabilistic functions of the
state we are in, it is known as a Hidden Markov Model
(HMM). HMMs have been widely used for speech recog-
nition and in computational molecular biology, among
others [2], [3], [7]. VS-HMM is a HMM improved in order
to describe at the same time the molecular state and the
position of a processive molecular motor [4].

We supppose treating the problem as a VS-HMM is
going to make the study quicker and more automatic,
giving the experimental data and obtaining directly the
probability of every transition length. Moreover, I am
going to use it as a initial point of my next project (Mat-
hematics Treball fi de Grau) where we want to implement
an algorithm that let us determine, using VS-HMM, the
places where proteins and enzymes bind the DNA.

II. UNZIPPING EXPERIMENT

The data we are going to analyze is obtained from DNA
unzipping experiments that have been done with a short
DNA hairpin (490 bp).

DNA hairpin is formed by a single-stranded DNA se-
quence where the first n bases on one end are comple-
mentary to the last n bases on the other end taken in
reverse order. In the middle of the strand, we have some
more bases not complementary that are going to form
the loop region. This structure is present in DNA and
RNA molecules in vivo as well as in vitro. The experi-
ments are done with hairpins because that allows us to
do, undo and redo optical trapping experiments with the
same molecule [6].

The experimental setup is formed by de DNA molecu-
le we want to unzip, two doble-stranded DNA (dsDNA)
called handles and two dielectric beads.

Each end of the DNA molecule is coupled to one of
the handles and each handle is attached to a dielectric
bead. One of these beads is sucked with a micropipette
and the other is confined in an optical trap with poten-
cial Vb(x) generated by the laser beams. The position of
the micropipette is considered fixed while the hairpin is
pulled by moving the optical trap along the x axis at a
constant speed v and the distance between two beams is
measured (see Fig. 1).

As you can see in Fig. 1, Rb1 and Rb2 are the beads ra-
dius, xh is the extension of dsDNA handles, d the hairpin
end-to-end distance, xn the released ssDNA length and
xb the position of the bead with respect to the center of
the optical trap.

We can measure the distance between beads

λ(f, n) = 2xh(f)+2xn(f, n)+d+xb(f)+Rb1 +Rb2 (1)
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Fig. 1: Scheme of the experimental unzipping setup (not to scale).
Configurational parameters are included in the picture: xh, xn, d, xb,
Rb1, Rb2, as the projection along the x axis of each element. Moreover,

when the optical trap is moved we measure a force f = kbxb.

Moreover, optical trap can be considered harmonic, with
Vb(xb) = 1

2kbx
2
b and the corresponding force is f(xb) =

kbxb, where kb is the stiffness of the optical trap.

This pulling experiments give the force distance curves
(FDC), corresponding to the force, f as a function of λ
(see Fig.2).

Different contributions to Eq.1 can be obtained by
using elastic models for biopolymers:

1. Taking Rb1, Rb2 and d as a constants.

2. Released ssDNA xn. We consider d = 0, 59nm and
assume a Freely Jointed Chain (FJC), the simplest
model of polymer conformation. It treats the chain
formed by rigid subunits of identical length joined
by perfectly flexible hinges.

3. Handles, xh. We assume an elastic model, Worm
Like Chain (WLC). Here dsDNA is treated as a
continuum elastic body, describing its configuration
as function of the position vector and the contour
length.

4. Optical trap. xb = f
kb

, kb = 0, 066 pNnm .

Since in the range of unzipping forces xh is almost
constant and what we want to measure is xn,t − xn,t+1,
in the following sections we are going to work with λ−xb.

Fig. 2: FDC diagram obtained with force vs λ− xb, the data we are
going to use int he following sections. You can see the characteristic

sawtooth pattern around 15 pN.

III. MARKOV CHAINS

A. discrete-time Markov Model

A discrete-time Markov Model is a collection of
random variables {Xt}t t ∈ {0, 1, 2...}, taking values in
the countable state space E and having the following
property:

∀t ≥ 0 and ∀ i0, i1, · · · , it−1, i, j ∈ E

P (Xt+1 = j|Xt = i,Xt−1 = it−1, · · · , X0 = i0) =

P (Xt+1 = j|Xt = i)
(2)

We are going to consider only processes where
P (Xt+1 = j|Xt = i) is independent of t, called Homoge-
neous Markov Chain (HMC)[8].

Each system is determined by:

The countable state space formed by the N possible
states the system could be, E = {S1, S2, · · · , SN}.

The transition probabilities: aij = P (Xt+1 =
j|Xt = i), 1 ≤ i, j ≤ N .

Transition coefficients must obey standard stochas-
tic constraints, so that ∀1 ≤ i, j ≤ N : aij ≥ 0 and∑N
j=1 aij = 1.

B. Hidden Markov Model

The data recollected with the experiments described
above, is affected by important fluctuations. We are going
to treat this noise using HMM.

1. Definition

A Hidden Markov Model is a doubly stochastic pro-
cess. It has an underlying stochastic process that is not
observable, but can only be observed through another
set of stochastic processes that produce the sequence of
observed symbols. It has two defining properties[9]:

1. Yt, the observation at time t, was generated by some
process whose state Xt is hidden for the observer.
Here we are assuming the observations are sampled
at discrete and equal-spaced time intervals, so t can
be an integer-valued time index.

2. The state of this hidden process satisfies the Mar-
kov property (Eq.2). And the observations also sa-
tisfy a Markov property with respect to the states:
given Xt, Yt is independent of the states and ob-
servations at all other time indexes.
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2. Elements

The elements of a hidden Markov model are:

N , the number of states in the model. The indivi-
dual states are denoted S = {S1, S2, · · · , SN} and
the state at time t as qt.

M , the number of distinct observation symbols per
state. We denote the individual symbols as V =
{v1, v2, · · · , vM}.

The state transition probability distribution A =
aij where

aij = P [qt+1 = Sj |qt = Si], 1 ≤ i, j ≤ N. (3)

The observation symbol probability distribution in
state j, B = {bj(k)}, where bj(k) = P [vk at t|qt =
Sj ], 1 ≤ j ≤ N and 1 ≤ k ≤M .

The initial distribution, π = {πi}, where πi =
P [q1 = Si], 1 ≤ i ≤ N .

The compact notation λ = (A,B, π) is used to desig-
nate the complete parameter set of the model.

3. Variable step-size HMM

In order to obtain the chemical-kinetic model of a mo-
lecular motor’s reaction cycle, a special implementation
of HMM have been presented [4]. The particularity of
molecular motors is that transitions are among a small
number of molecular states (the equivalent to Si) but the
observable quantity is the molecule’s position, Xk. The
variable position reflects the accumulation of elementary
steps of random size.

Variable step-size HMM (VS-HMM) describes both the
molecular state and the position of a processive molecular
motor.

Now, we consider a discret-time Markov model, too,
t ∈ {1, 2, · · · , T}. Moreover, the position is discretized,
taking equidistant points with smaller separation than
the noise standard deviation. xt ∈ {1, 2, ...,M}, an in-
teger representing the position. The molecular states,
which for example can describe if the motor has ligands
or not, are represented by st ∈ {1, 2, ..., N}. The cha-
racteristic of VS-HMM is that the molecular state and
the position are taken together forming a composite sta-
te (st, xt). The transition probability (Eq. 3) from the
composite state (i, u) to (j, u+ w), in that model is:

aij(w) = P (st+1 = j, xt+1 = u+ w|st = i, xt = u) (4)

Satisfying
∑
j,w aij(w) = 1.

IV. DETERMINATION OF STEP-SIZE
DISTRIBUTION

We have programmed, in C++ the forward-backward
algorithm, that allows us to compute the log likelihood
L = logP (O|λ) and do the reestimation of the parame-
ters. We have needed to do some approximations in order
to accelerate the computational time.

A. Adaptation and initial parameters

As we have said in the introduction, we want to de-
termine the step-size distribution on the unzipping expe-
riments. Our data have been obtained doing unzipping
experiments with hairpins without ligands. Moreover, we
consider the step-size is independent of the type of conti-
guous bases (A, C, T or G). So that we have a VS-HMM
with a single state: N = 1 and multiple positions M ≥ 1,
where position represents the distance at time t.

The data we have corresponds, in each time, to the
distance between beads with the correction of the optical
trap,( λ − xb from Fig.1). We have seen, in section II,
that all the items from eq. 1 can be considered constant
except xn. So that, we are going to treat the data without
more modifications.

We represent the observed position variable as yt =
ut + gt, where ut represents the real position and gt is a
random variable having a distributionN (0, σ2), represen-
ting additive noise. So, the probability of the observation
y have the following Gaussian probability density :

b(yt, ut) = (2πσ2)−1/2exp

(
−(yt − ut)2

2σ2

)
(5)

In order to reduce the time of iterations, we have
considered b(y, u) = 0 for u s.t. |y − u| > 15. For
this, if min = mint([yt]) and max = maxt([yt]) (whe-
re [x] means round x) true positions, u(t), are taken in
{min− 15,min− 14, · · · ,max+ 14,max+ 15}.
The step-sizes allowed are ω ∈ {−W · · · 0 · · ·W} where
W = (maxt|yt − yt+1|) + 30 + 1.

Our initial parameters are λ = (π,A, σ):

πu = 1
115−min for u < 100

πu = 0 otherwise.

Using the results of [10]:

A[ω] = p ∗ 0,056|ω|−0,4exp

(
−
(
|ω|
60

)3
)

where:

p = 0,2 if ω < 0
p = 0,8 if ω > 0
A[0] = 1−

∑
ω 6=0A[ω]

σ2 = 17

We design our observation by O = y1, y2, · · · , yT .
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B. Forward-backward algorithm

The forward variable is the probability of the observa-
tions up to time t and the molecule being in a particular
state u, given the model lambda.

αt(u) = P (y1, y2, · · · , yt and xt = u|λ)

As we are working with very low numbers, we need to
scale αt(u)′s and βt(u)′s in order to prevent underflow in
computation [11]. To do that, we use c(t) = 1∑

u αt(u) . The

forward variable is obtained with the following recursion:

1. α1(u) = πub(y1, u)c(1), u s.t. |y1 − u| ≤ 15

2. αt+1(v) = bt+1(v)
∑[yt]+15
u=[yt]−15 αt(u)A(v−u)c(t+ 1)

t = 1, 2, · · · , T − 1

With that information we can obtain:

log[P (O|λ)] = −
∑
t

c(t) (6)

The backward variable is the probability of the obser-
vations from times t+1 to T , given the position u at time
t and the model λ:

βt(u) = P (yt+1, yt+2, · · · , yT |xt = u, λ)

.
We obtain β as follows:

1. βT (u) = c(T ) ∀u.

2. βt(u) = c(t)
∑[yt+1]+15
v=[yt+1]−15A(v−u)b(yt+1, v)βt+1(v)

∀u, t = T − 1, T − 2, · · · , 1

Using α and β we can define another useful quantity:

γt(u) =
αt(u)βt(u)∑
u αt(u)βt(u)

That gives us the probability of the distance to be u at
time t.

Finally, we define ξt(ω), the probability of make a chan-
ge of ω at time t:

ξt(w) =

∑[ot+15]
u=[ot]−15 αt(u)A(ω)b(yt+1, u+ ω)βt+1(u+ ω)∑[ot]+15

u=[ot]−15

∑
w αt(u)A(ω)b(yt+1, u+ ω)βt+1(u+ ω)

C. Reestimation of model parameters

We want to obtain the distribution of ω that best fits
our model, so optimize A(ω). It is not an easy problem,
there is no known way to solve this problem analytically.
What we are going to do, is find λ = (π,A, σ2) that
maximises Eq. 6 locally using the Baum-Welch method
[9].

Using our parameters λ = (π,A, σ2) we compute the
new ones:

πru = γ1(u)

Ar(ω) =

∑
t ξt(ω)∑
t,ω ξt(ω)

σr
2

=

∑
t,u γt(u)(yt − u)2

T

Now we define the reestimated model as λr =
(πr, Ar, σr

2

). It has been proven that P (O|λr) > P (O|λ),
so, we have found a model that is more likely to have pro-
duced our observations.

If we iteratively use λr in place of λ and repeat the
reestimations, we then can improve the probability of
O being observed from the model until we reach some
limiting point. However, we should note that forward-
backward algorithm leads to a local maxima only, and
that there can be many local maxima.

Fig. 3: One of the distribution obtained with the Baum-Welch
algorithm. It is very high at 0, corresponding to no-movement and

practically null for the rest.

Fig. 4: Represents log(P (O|λ) as a function of the iteration. It starts
growing very quickly an then stabilizes.

V. RESULTS

We have data obtained from three unzipping experi-
ments and we have done 500 iterations of Baum-Welch
algorithm in each one.

Effectively, with every iteration we obtain a λ that
fits better our observation (see Fig. 4).In the reestima-
tion of A, we expected to have something similar to

Treball de Fi de Grau 4 Barcelona, January 2014



Determination of unzipping step-size distribution using HMM Laia Montraveta

A[ω] = a|ω|bexp
(
−
(
|ω|
c

)D)
, a power law with a su-

perexponential cut off [10]. However, we have found the
distribution of Fig. 3.It is near 1 for step of 0nm, fo-
lowed by 0.1 for ±10-step and some other little pics in
±5,±15,±20. It is almost zero for the rest. Moreover,
we have reestimated σ2, the variance corresponding to
the noise measured in our observations. We have found a
value between 9,5nm2 and 10,4 depending on the expe-
rimental data processed.

Fig. 5: Represents the evolution of σ2 as number of iterations grow,
like before, it starts growing quickly but at 150 iterations it is

stabilized.

We have represented only the results obtained with
one unzipping data because of clarity. The other two gi-
ves more or less the same: A(0) almost 1, an decrea-
sing pics around A(±10,±15,±5,±20). The variance is
around 9,5nm2 for both.

VI. CONCLUSIONS

The results obtained have been unexpected. Our goal
was to find the distribution of the step-sizes in DNA un-
zipping experiments. We expected high probabilities for
small step-sizes, rapidly decreasing to zero as the step-
sizes raise following a power law with a superexponential
cut off[10]. However, we have found a probability of al-
most zero for all possible values of these steps, except for
zero that is practically one and some other little pics in

±10,±5,±15± and 20nm.

Taking into account previous studies, steps of less than
10bp are hardly detected, so we couldn’t hope to find a
good prediction on the interval [−10 : 10]. Moreover, our
hairpin is shorter (490 bp vs. 2.2 kbp or 6.8 kpbs) so
that we expect shorter jumps and dispose of less data
(there are less jumps in total). However, we have worked
with the distribution of the difference between consecuti-
ve measurements while [10] has worked with the distribu-
tion of CUR sizes (using the distance between following
Gaussians that fit the histogram of opened bp). So that,
we have expected to have lower probabilities. It would
be great to try to do the same study taking absolute va-
lues and longer hairpins, trying to find the distribution of
CUR lengths using VS-HMM. Moreover, we need to take
into account we are working with continuous distribution
but we have discretized the possible distance values ar-
bitrarily, taking 1nm each time because it is comparable
with the distance of two bp. In next studies should be
great do the histograms of distance measurements and
use them to determine true position values (the u′s co-
rresponding to eq. 5).

We have obtained σ2 between 9,5nm and 10nm. It is
a good value if we consider we are treating fluctuations
but it could have had a big influence in our results. An
improvement could be adjust the measurement before,
with another method, and then treat the problem as a
Markov model.
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