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Abstract: We give a general description of pattern forming systems and describe the linear
stability analysis that allows to determine whether a system in a uniform state will spontaneously
evolve to a patterned state. Such an analysis is performed on Turing systems and conditions for
pattern formation are derived. As an example of a Turing system, we consider the Brusselator
model, for which a variety of patterns are found numerically for different values of the bifurcation
parameters.

I. INTRODUCTION

A quick look around us reveals that, far from being
uniform, the world we live in exhibits a complex struc-
ture: galaxies, stars, convection cells on the sun’s surface,
sand dunes in the desert, the electric impulses through
the heart, the Earth as a whole... Clearly all these sys-
tems are not in equilibrium, because systems in equilib-
rium exhibit no structure whatsoever.

The study of pattern forming systems is still quite
young. Analytical methods have recently been developed
[1–3], and research at an experimental level is also being
carried out, but still a lot remains to be done.

The aim of this undergraduate thesis is to describe
briefly the theoretical background for understanding such
systems and to introduce some of the analytical meth-
ods used to study them. In order to get some insight
into these techniques we will discuss the Turing model.
Although first proposed in 1952 as a model for morpho-
genesis [4, 5], many examples of it have been found in
other fields [7] such as chemistry [6], optics [8, 9], biology
[10, 11] or the study of quantum fluids [12, 13].

II. CONCEPTUAL FRAMEWORK

Let us consider a system whose dynamics may be de-
scribed with a system of m (nonlinear) partial differential
equations

∂u(x, t)

∂t
= f

(
u,

∂u

∂xi
,
∂2u

∂x2i
, . . . , p

)
(1)

where x ∈ Rn (n = 1, 2, 3) is a vector in space, u(x, t) =
(u1(x, t), . . . , um(x, t)) encodes the state of the system
and f is a certain function of u, its spatial derivatives
and one or more control parameters. For the sake of
simplicity, let us assume the presence of only one control
parameter p, which we can freely tune.

As a starting point, we assume the system to exhibit
no structure, i.e., to be in a time-independent spatially-
uniform base solution u = ub. We assume this solution
to be stable, in the sense that any small perturbations
would be damped after a certain transient time. By ex-
perimentally increasing (or decreasing) the value of p we

may reach a critical value pc above which the uniform so-
lution ub becomes unstable to small perturbations, and
the system may evolve to a new state. A pattern is said
to form if u exhibits a structured dependence on x.

A. The role of boundaries

As we are looking for patterns arising naturally from
uniform states, it is suitable to consider translationally
invariant systems in the extended directions and min-
imise the effect of boundaries. To attain such an ideali-
sation we can consider infinitely wide systems or periodc
boundary conditions in the extended directions. The lat-
ter is chosen for mathematical simplicity.

III. LINEAR STABILITY ANALYSIS

It is our goal to be able to determine under which con-
ditions patterns will form, that is to say, to determine
the critical value pc. Our starting point will be the uni-
form solution ub around which we will perform a linear
stability analysis.

For every t and for every j ∈ {1, . . . ,m}, uj is peri-
odic in each spatial direction (let us say 2π-periodic for
simplicity). Therefore if we denote the set of 2π-periodic
functions in every spatial direction with P , we can con-
clude that as time varies uj evolves in P , and u evolves
in P ⊗Rn. It is known that P is a Hilbert space and that
it is spanned by the countably infinite basis

{eiqx}q∈Zn , (2)

and P ⊗ Rn is spanned by

{~ejeiqx}q∈Zn,j=1,...,m, (3)

where {~ej} is the canonical basis in Rm. We may then
write the Fourier series

uj(t) =
∑
q∈Zn

ajq(t)eiqx, (4)

which virtually allows to rewrite (1) as a count-
ably infinite system of ODEs in the variables
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{ajq(t)}q∈Zn,j=1,...,m. In practice, however, this may be
very difficult or even impossible to do due to f being non-
linear. However, we can still take advantage of the ideas
stated above. Let L be the linearization of f about the
base state ub, which is obtained by performing a Tay-
lor expansion around the base state and retaining only
linear terms in ui and its spatial derivatives. As usual
in finite-dimensional dynamics, we must solve the eigen-
value problem for L:

L[u] = σu. (5)

Eigenvectors with Re(σ) > 0 will determine unstable di-
rections and eigenvectors with Re(σ) < 0 will be stable.

Here we may still take advantage of another fact. Con-
sider the following subspace of P :

Hq = 〈~ejeiqx, j = 1, . . . ,m〉, (6)

where 〈·〉 means spanned by. It is clear, since L is a linear
operator on P , that Hq is invariant under L. Therefore
we may solve the eigenvalue problem in each subspace
independently. This highly simplifies our study, since no
different Fourier modes need to be mixed to solve the
problem exhaustively.

Let us now take u ∈ Hq, that is u = u0e
iqx, for

u0 ∈ Rm, and consider L[u0e
iqx] = Lq[u0]eiqx, where

Lq is the corresponding linear operator on Rm. We must
solve the eigenvalue problem

Lq[u0] = σu0, (7)

which, for every q, yields at most m different eigenvalues
σq and eigenvectors u0q. The functional relation between
σq and q is the so-called dispersion relation1: σq = σ(q)
and in fact there is a different dispersion relation for ev-
ery value of the control parameter p. In figure 1 three
possible examples of such a dispersion relation are shown.

If Re(σ(q)) < 0 for every q then ub is stable. But for
a certain value p = pc, Re(σ(q)) may cross 0 and become
positive for some values of q as p is further increased.
A bifurcation has occurred. The value of q for which
Re(σ(q)) first becomes positive is called the critical wave
vector and will be denoted by qc.

Furthermore, if p is only slightly above the threshold
value pc, only a small range of wave vectors around qc
will have Re(σ(q)) > 0. Let us call qm the wave vector
for which Re(σ(q)) has its maximum value (which may
not necessarily be qc itself). If the system is exposed to
a perturbation2, after a transient time only the Fourier

1 It must be carefully observed that not all the values of q are
allowed. However, if the function is L-periodic, each component
of q can take values 2πd

L
for d ∈ Z and if L is large enough (as

in our examples), q may be considered to be continuous, rather
than discrete.

2 Real systems are permanently exposed to fluctuations due to the
non-existence of a perfect isolation. A random fluctuation may
be decomposed in a superposition of the different Fourier modes.

modes with Re(σ(q)) > 0 will survive. The dynamics
of the linearised problem will then be dominated by qm,
that will evolve as

u0qm
eσqmteiqmx. (8)

This mode varies periodically in x. The length λ = 2π
qm

determines the characteristic scale of the pattern. It
is exponentially growing in time with a growth rate of
Re(σqm

). Furthermore, if ωm = Im(σqm
) = 0, the pat-

tern will only grow in time, but if ωm 6= 0 the grow-
ing pattern will be modulated by oscillations of period
T = 2π

ωm
.

A. Types of instabilities

FIG. 1: Schematic representation of the linear growth
rate as a function of the wave vector around the
threshold value pc. Classification of instabilities.

Source: [2]

A first classification is based on whether the maximum
growth rate passes through zero at a zero or a non zero
value of the wave number. Figure 1 is self-explanatory.
Note that in the type-III instability patterns with very
large length scale develop since qc = 0, which corre-
sponds to an infinitely long wavelength. Note also that
above pc the uniform system is unstable over a band of
wave numbers. The growing non-dominating modes will
appear as spatial modulations of the main mode. Addi-
tionally an instability can be stationary (ωm = 0), de-
noted by -s, or oscillatory (ωm 6= 0), denoted by -o.

B. The importance of nonlinearities

It is worth noting that stable uniform solutions are
controled by the linear terms of the system. Thus such
solutions hide the rich complexity of the system being
studied. The linear analysis performed in this section
shows that when the uniform solution becomes unsta-
ble, a certain mode will grow exponentially in time. It is
then, when this mode is sufficiently large, that the nonlin-
earities of the system come into action by stopping the
growth. The mode has saturated and a stable pattern
may have formed.
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IV. TURING INSTABILITY

In [4], Turing proposed a mathematical model of
the growing embryo, in which two chemical substances
(called morphogens) with stabilising reaction kinetics
can form spatial patterns autonomously when diffusion
(which is thought of as smoothening spatial differences)
is added! Cells would then differentiate depending on the
concentration of the morphogens, thus resulting in bio-
logical structures such as fingers or the spotted or striped
skins of fishes or zebras. Nowadays such patterns are
named after Turing and although there is no biological
evidence [5] of his model, diffusion-driven instability was
shown to be true for chemical systems and it provides a
general theoretical framework for many disciplines.

Consider a reaction-diffusion system consisting of two
chemicals with concentrations u and v in one dimension3:

∂tu1 = f(u1, u2) +D1∂
2
xu1,

∂tu2 = g(u1, u2) +D2∂
2
xu2, (9)

where f and g are the reaction rates and D1, D2, the dif-
fusion coefficients. The system is assumed to have a uni-
form solution ub = (u1b, u2b), which is stable in the ab-
sence of diffusion. Small perturbations δub = (δu1, δu2)
around it are governed by the linearized equation

∂tδu = Aδu+D∂2xδu (10)

where A =
(
f1 f2
g1 g2

)
=
(
∂u1

f ∂u2
f

∂u1
g ∂u2

g

)
|u=ub , and D =(

D1 0
0 D2

)
. If a perturbation of the form δu = δu0qe

σqteiqx

is introduced in (10) we obtain the eigenvalue problem
Aqδu0q = σqδu0q, with Aq = A−q2D, which yields the
dispersion relation

σq1,2 =
1

2
trAq ±

1

2

√
(trAq)2 − 4 detAq, (11)

For each q if the real part of at least one of the σq is
positive the corresponding mode will be unstable, oth-
erwise it will be stable. Figure 2 shows the regions of
stability in the trAq − detAq plane, with

trAq = trA− (D1 +D2)q2, (12)

detAq = detA− (f1D2 + g2D1)q2 +D1D2q
4 (13)

For the uniform solution to be stable if diffusion is 0:

trA = f1 + g2 < 0, (14)

detA = f1g2 − f2g1 > 0 (15)

The former implies that trAq < trA < 0. The right
half of figure 2 is therefore prohibited and no oscillatory

3 For n ≥ 2, ∂2x is replaced by ∇2. The results are the same since
the dispersion relation involves only q2, which becomes |q|2.

FIG. 2: Stability regions for a fixed q in the
trAq − detAq plane. Source: [1]

patterns will develop. However, a stationary pattern may
develop if the minimum value of detAq is negative. This

minimum value is attained at q2c = D1g2+D2f1
2D1D2

and the

value of the determinant is detAqc = detA − D1D2q
4
c ,

which is negative if

D1g2 +D2f1 > 2
√
D1D2(f1g2 − f2g1) (16)

Condition (16) must be satisfied for a Turing pattern to
form. Together with (14) and (15) they imply that f1 > 0
and g2 < 0, which means that an increase of u1 over
the uniform state induces its own production while u2
inhibits its own production. We might call them activator
and inhibitor, respectively.

Also, f2g1 < 0. If f2 < 0 and g1 > 0, u1 is a global
activator and u2 a global inhibitor. Additionally, from
(16), D2/D1 >> (−g2)/f1 > 1, so that the inhibitor
diffuses much faster than the activator. The expression
”local activation with long-range inhibition” was coined
in 1972 by Gierer and Meinhardt [14] for this property,
which plays a key role in Turing patterns. If u1 is locally
increased over u1b, the local production of u1 and u2 will
be enhanced. The inhibitor will diffuse much faster to
the surrounding areas, thus inhibiting the production of
both. A pattern will form. The spatial variation of u2 will
be smoother than that of u1 and maxima of both will be
colocalised. If f2 > 0 and g1 < 0, a similar reasoning can
be applied to see that in the resulting pattern maxima of
u1 and minima of u2 will be colocalised.

V. BRUSSELATOR MODEL

Consider the following reaction-diffusion model in two
dimensions:

∂tu = a− (b+ 1)u+ u2v +Du∇2u,

∂tv = bu− u2v +Dv∇2v, (17)

with a, b,Du, Dv > 0. This model is known as the Brus-
selator [6], which is a portmanteau of oscillator and Brus-
sels, where it was first proposed by Prigogine [3].

We consider Dv = 10 and a = 3 to be fixed and take b
to be the bifurcation parameter as a function of Du. A
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FIG. 3: Bifurcation diagram for the Brusselator model
for a = 3, Dv = 10. Hopf bifurcation: bH = 1 + a2,

Turing bifurcation: bT = (1 + a
√
Du/Dv)

2.

uniform solution exists for (u, v) = (a, b/a). The matrix

for the linear stability analysis (10) is A =
(
b−1 a2

−b −a2

)
.

From (16) the condition for a Turing bifurcation is

b > bT = (1 + a
√
Du/Dv)

2 (18)

In the previous section we considered the system to
be stable in the absence of diffusion, which yielded equa-
tions (14) and (15). If these conditions is removed, os-
cillatory patterns may arise if some q enters the right
half-plane in figure 2, i.e., if trAq becomes positive for
some q. But trAq is a parabola (12) with its maximum
at q = 0, which means that only instabilities of type-III-o
may arise, i.e., uniform oscillations around the uniform
stationary state. This is a Hopf bifurcation and the con-
dition can be derived from trA0 = trA = 0:

b > bH = 1 + a2 (19)

As now only two parameters are considered we can do
a bifurcation diagram (figure 3), on which some points
have been selected for further study. Four regions are
indentified in this diagram. In S the uniform state is
stable. In T, the uniform state becomes unstable in front
of Turing instabilities. Region H is unstable in front of
Hopf instabilities. In domain TH both Hopf (for q = 0)
and Turing instabilities (for q 6= 0) can occur. In figure 4
we have plotted the growing rate (Re(σq)) as a function
of q2 for points 1, 2, 3 and 4 along Du = 4 in figure 3.
Point 1 is clearly stable, point 2 is Turing-unstable and
points 3 and 4 are in the TH domain, but the Turing
mode dominates over Hopf. This has been checked on
a computer simulation, performed on a square of size
128× 128 with periodic boundary conditions.

A simulation has also been performed for points 5, 6,
3, 7 and 8 on the line b = 10.5. The growing rate and
the behaviour after a transient time are shown in figure
5. Again, 5 and 6 are also in the domain TH, but the
Turing instability dominates (figure 5a). This is checked
in the simulations. Even in point 7 a stationary pattern
is obtained. Note that for Du = 1 (figure 5b) a very
organised lattice of maxima-spots is created. As we in-
crease Du the diameter of this spots increases (figure 5c)
until they finally collide destroying the spotted pattern
and forming a labyrinth-type pattern (figure 5d). Then a

0 0.5 1 1.5
−2

0

2

1

2

3

4

Re(σq)

q2

FIG. 4: Dispersion relation for points in fig. 3

spotted pattern is formed again (figure 5e), but the spots
are minima of concentration. Point 8 is expected to ex-
hibit uniform oscillations, but neither periodic nor uni-
form behaviour is observed. However if examined care-
fully a background oscillation with period T ≈ 2 is seen.
This is in accordance with what was predicted at the end
of section III: ω = Im(σ0) =

√
4 detA− (trA)2/2 =√

36− b2 − 100 + 20b/2 ≈ 3, where equation (11) and
a = 3 have been used. We have also checked that the
frequency of the oscillations does not depend on Du.

Another important observation can be made. Consider
for example point 3. In figure 5a we can see that the
maximum value of the growth rate is attained at |q| ≈
0.7, which, as deduced at the end of section III yields a
characteristic length of λ ≈ 9, which is also a fairly good
approximation. The same can be checked for point 7.
On the other hand as Du is decreased the maximum of
the growth rate is attained at larger values of q2 and the
characteristic scale of the pattern should decrease, which
accords perfectly well with the numerical simulation.

VI. CONCLUSIONS

• Pattern formation analysis may be applied to any
research field. Rather than a new discipline, it is a
new perspective under which any system should be
considered again to discover new properties.

• Turing systems show how the interaction of two
stabilising processes can result into an unstable sit-
uation. This is a good example of an emerging
property, which results in the formation of a self-
sustained pattern.

• The Brusselator model is quite simple and yet we
have seen that it exhibits a rich set of solutions.
Linear stability analysis has proven to be a very
powerful tool, for it can predict not only whether
a pattern will form, but also some characteristic
features of the forming pattern.

• Linear stability analysis cannot predict the specific
shape of the pattern and some solutions are not in
accordance with what the theory would predict. A
more advanced tool can be derived. The so-called
amplitude equation retains the information of non-
linear terms and can do more accurate predictions.
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(a) Dispersion relation. See fig. 3 (b) Point 5, Du = 1, b = 10.5 (c) Point 6, Du = 2.5, b = 10.5

(d) Point 3, Du = 4, b = 10.5 (e) Point 7, Du = 5.4, b = 10.5 (f) Point 8, Du = 6, b = 10.5

FIG. 5: Dispersion relation and patterns obtained in the Brusselator model for b = 10.5 and Du = 1, 2.5, 4, 5.4, 6.

Acknowledgments

I would like to express my gratitude to Oleg Bu-
lashenko for his orientation and help, and for the mo-

tivation for ”interesting things” that one gets soaked in
with him. I would also like to thank my family for his
support during the research and Clara for her interest on
understanding what I was working on.

[1] M. Cross and H. Greenside, Pattern formation and Dy-
namics in Nonequilibrium systems, (Cambridge Univer-
sity Press, 2009).

[2] Cross, M. C. and Hohenberg, P. C., ”Pattern formation
outside of equilibrium”. Rev. Mod. Phys. 65(3): 262
(1993).

[3] G. Nicolis, I. Prigogine, Self-Organization in Non-
Equilibrium Systems, (Wiley, 1977).

[4] Turing, A. M., ”The Chemical Basis of Morphogenesis”.
Phil. Trans. R. Soc. London B 237, 37-72 (1952)

[5] Maini, P. K., ”The Impact of Turing’s Work on Pattern
Formation in Biology”. Mathematics Today, 140 (August
2004)

[6] Yang, L., Zhabotinsky, A. M. and Epstein, I. R., ”Sta-
ble Squares and Other Oscillatory Turing Patterns in a
Reaction-Diffusion Model”. Phys. Rev. Lett. 92:198303
(2004).

[7] Tildi, M. et al., ”Localized structures in dissipative me-
dia: from optics to plant ecology”. Phil. Trans. R. Soc.
London A372:20140101 (2014)

[8] Staliunas, K., ”Three-dimensional Turing structures and
spatial solitons in optical parametric oscillators”. Phys.

Rev. Lett. 81: 8184 (1998).
[9] Oppo, G.-L., ”Formation and control of Turing patterns

and phase fronts in photonics and chemistry”. J. Math.
Chem. 45: 95112 (2009).

[10] Koch, A. J., Meinhardt, H. ”Biological pattern forma-
tion: from basic mechanisms to complex structures”.
Rev. Mod. Phys. 66: 14811507 (1994).

[11] J. D. Murray, Mathematical Biology - II: Spatial Mod-
els and Biomedical Applications, (Springer, New York,
2003).

[12] Schweikhard, V., Coddington, I., Engels, P., Tung, S.
and Cornell, E. A., ”Vortex-lattice dynamics in rotat-
ing spinor Bose-Einstein condensates”. Phys. Rev. Lett.
93:210403 (2010).

[13] Ardizzone, V. et al., ”Formation and control of Turing
patterns in a coherent quantum fluid”. Scientific Reports,
3:3016 (2013).

[14] Gierer, A. and Meinhardt, H., ”A theory of biological
pattern formation”. Kybernetik 12, 30-39 (1972).

Treball de Fi de Grau 5 Barcelona, January 2015


