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Abstract:Granular matter is fundamentally different from other, more conventional, phases of
matter, such as solids and simple liquids. We propose a simple scalar model to study the distribution
of weight and the formation of arches in a granular pile subject to gravity. This model simulates
dense packaging conditions and introduces the usual heterogeneity observed in these systems. So
far, this model was used to study grains in a silo. Here we focus our attention on granular piles
in order to avoid the effects of walls and boundary conditions on the contact force distributions.
In this pile geometry we can clearly identify a second order phase transition for a given value of
the parameter that simulates the presence of slip events in the granular pile. This second order
transition is akin to a percolation transition, since some of the critical exponents computed are
similar to critical percolation exponents. Similar phenomena were observed in the model of a silo,
but in this case wall effects appeared to have significant consequences for the behaviour of weight
and slip fluctuations.

I. INTRODUCTION

Sand, gravel, powders, and pharmaceutical pills, are
large aggregates of macroscopic particles or grains. Far
from being simple materials with simple properties, they
display an incredible range of complex behavior that de-
fies their categorization as solid, liquid, or gas. The in-
teraction of these grains is only contact between them,
however, it’s sufficient to produce unexpected effects.
Phenomenology in these systems is very rich. Patterns,
oscillations, segregation, avalanches, etc, at the macro-
scopic level, and long range correlations, lack of gaus-
sianity in velocity distributions, violation of fluctuation-
dissipation, etc at the microscopic level, are examples
of some of the phenomenology in these systems. Con-
tact between particles is very heterogeneous , thus we
can’t extrapolate results from the study of a pair of par-
ticles to the rest of them. Every particle has different
form, and they aren’t distributed equally in space. Any
particle experiences interactions with a finite number of
other particles, each of which defines a different direc-
tion. Therefore, the local environment of a particle is
not isotropic. The existence of the preferred directions
on the particle scale implies the possible emergence of
force chains, chains of contacts along which the forces
are transmitted. We call these chains with the name
of arches. When we have a system where grains have
contact with walls, these walls can absorb part of the
weight and, if it is large enough, the absorbed weight can
bring the failure of the system’s walls. At Figure 1 , we
can see the structure of these arches in experiment made
by Iker Zuriguel and coworkers. These arches are com-
pletely different from one realization to another, leading
to very different values of thr weight collected at the bot-
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tom of the granular pile. Furthermore, the geometry of
these arches can be easily rearranged under small pertur-
bations. Building upon this information, we can assert
the importance of granular materials in applications as
diverse as pharmaceutical industry, agriculture, and en-
ergy production. For this reason, the study of granular
material is an excellent example of collaboration between
various branches of science , from engineers to biologists
, through physicists, chemists,... The system is far from
equilibrium, and it has its own dynamic, but ordinary
temperature has no effect on grain motion, because ex-
ternal forces such as gravity dominate the materials’ be-
havior. So far, the silo is the most studied structure for
its industrial utility, but here we focus on piles, such as
the one illustrated in Figure 1 to avoid the weight loss
caused by absorption at the walls. In this work, we will
focus on the weight distribution and arch formations in
a static granular pile. With this purpose in mind, we
use a simple scalar model which accounts for disorder
and arch formation, , as well as for the existence of slip
events in the system. The model is an extension of the
Scalar Arching Model (SAM in the following) proposed
by Liu and Coppersmith ([1], [2]).

FIG. 1: Pile of round grains. Arches are showed using red
lines. Image courtesy of Iker Zuriguel.
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II. THE MODEL

The SAM model describes weight transmission in a
discrete 2D lattice which represents static configurations
of high dense granular matter .The only force that ap-
pears in this model is gravity and the corresponding
weight is heterogeneously distributed in space through
grain contacts. We consider a stack of round particles
(or grains) rows of monotonous increasing lenght in the
downward (or gravity) direction. Each particle in the
bulk has two particles over it and two particles under
it. We can observe a characteristic local configuration in
Figure 2. Each grain is labeled by two integer (i,j) giv-
ing its horizontal and vertical positions within the pile.
In a real pile, the stacking of particles is heterogeneous,
that is, contact between particles depends on a lot of pa-
rameters, like form, area, material,... Each particle has
its own mass (m), and supports the weight of its two
upstairs neighbors. Furthermore it shares its total load
randomly between its two downstairs neighbors, as illus-
trated in Figure 2. Nevertheless, as stated before, not all

FIG. 2: Local structure of the SAM model and of the weight
transmissions rules (arrows).

contacts are equal. When particle passes its load to its
immediate neighbors at the row below, one has to include
these differences (due to randomness in the local pack-
ing, size and shape of the grains, etc). For that reason,
we introduce the random coefficients q+(i, j) and q−(i, j)
, independently thrown from a uniform distribution for
each particle. These coefficients represents the portion of
the weight that is passed to the left neighbor (q−) and to
right neighbor(q+) particles below. Thus the coefficients
are random variables between zero and one, subject to
the mass conservation constraint q+(i, j) + q−(i, j) = 1.
As a result, each particle supports a weight (W) (or force)
due to its own mass and to the weight received from its
upstairs neighbor particles (see eq.(1)).

W (i, j) = mg+q+W (i−1, j−1)+q−W (i−1, j+1) (1)

Moreover, the SAM model also accounts for slip events,
i.e. if a particle receives a bigger force from one side

than from the other, this particle will be forced to pass its
weight mostly in the same direction of the big force. This
process can be justified because the bigger force bias the
particle to have more contact with its downstairs neigh-
bor along the same direction. Whenever the difference
among the forces acting on one particle is bigger than a
given slip condition, slip is produced. Slip implies pass-
ing all the weight to a single particle in the next row
and the removal of the weight portion that should have
been passed to the other neighbor particle. The slip con-
dition is expressed in eqs. (2) and (3), i.e. when the
difference between left and right contact forces is bigger
than the total weight at a given particle multiplied by
an arbitrary threshold, and slip event takes place. In the
SAM model, heterogeneity is accounted for using a tun-
able threshold value R (related to the friction coefficient
between grains). This parameter can be between 0 and
1, and for the rest af the analysis, it will be our control
parameter. If it is bigger than 1, slip condition can’t hap-
pen (the difference of portions can’t be greater than the
addition of portions and intrinsic mass). When the slip
condition occurs, we make 0 and 1 the correspondingly q
coefficients (eqs. (4) and ( 5)).

q+W (i− 1, j − 1)− q−W (i− 1, j + 1) > RW (i, j) (2)

q−W (i− 1, j + 1)− q+W (i− 1, j − 1) > RW (i, j) (3)

q+ = 0 q− = 1 (4)

q+ = 1 q− = 1 (5)

When the slip condition occurs continually, a chain is
formed. This chain is also known as arch. These arches
are important for weight distribution and avalanches.
Originally this model was proposed for silo configura-
tions, that is a stack of equivalent rows of granular ma-
terial confined by rigid walls that, in generally, absorb
part of the weight. In this article, we have focused our
attention to the study of piles, where each row has one
more particle than the previous one, and there is no need
of walls.

III. SIMULATION RESULTS

A. Weight transmission and distribution

First, we describe the distribution of weight at the bot-
tom of pile in function of R, the parameter which appears
in slip condition (Figure 3). As we can see at Figure 3 ,
there are two main behaviors of the distribution of total
weight at the bottom. Convex behavior, which is pro-
duced when the value of R is high, and accumulates the
weight at the central part of the base. Concave behav-
ior, which is produced when the value of R is low, and
accumulates the weight at the sides of the base. Fur-
thermore, there are a behaviour that can’t be included
in the previous two: when R is near 0.7 . In this case,
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FIG. 3: Weight at each base particle normalized by total
weight. Each data series represents a different R ,between
0.2-0.9. The pile has 51 rows. Every point is average of 1000
samples

we see the weight is equally distributed. This motivated
us to make a closer study around this point (it’s repre-
sented in Figure 4). Figure 3 and Figure 4 suggested to

FIG. 4: Weight at each base particle normalized by total
weight. Each data series represents a different R, between
0.6-0.8 The pile has 51 rows. It is an enlargement of Fig.
3, to show phase transition. Every point is average of 1000
samples.

us the possibility of continuous change of the total weight
distribution at the bottom of the pile in function of R, be-
tween convex and concave behaviors. Furthermore, SAM
model was proposed to study silos, and we wanted to ex-
plore the effect of walls on the distribution of weight at
the bottom of this different structure. In pile, weight
at the bottom is the addition of the weights of grains,
but in silo we have rigid walls, which can absorb part of
this weight. At Figure 5, where the total weight at the
bottom is represented in function of R, we see that the
walls absorb some of the weight, and that portion is a
function of R. A property of this system are fluctuations
, which become twice the average value. More accurate
description of this system can be found in [5].

FIG. 5: Weight at the bottom in 51x101 silo in function of
threshold, Rc, normalized by the weight of all grains. Each
point is sn average of 1000 samples.

B. Critical point properties

Since the transition between the two behaviors appears
to be smooth and continuous, one possible reason to ob-
serve this gradual changing is that we are in the neighbor-
hood of a critical point or 2nd order transition. First, we
had to find a good candidate for an order parameter that
distinguishes the two phases. Inspired by the antiferro-
magnetic case, we thought of decomposing the lattice in
two parts. We take only the left side of the pile , and
separate the two lattices: the particles that achieve the
slip condition and pass its weight to the left , and those
who do to the right. Order parameter (m) is the average
of the difference between the total number of particles in
each lattice. It’s calculated by using eq.(6). Nsleft and
Nsright represents, respectively, slips to the left and to
the right on the left side of the pile.

m = < Nsleft −Nsright > (6)

At Figure 6 , we represent order parameter (m) in func-
tion of R in a pile with 301 particles of base. We see
the expected behavior of the order parameter, being dif-
ferent from zero below the critical point and zero above
the critical point. In a second order phase transition,
it is very important to study the fluctuations near the
critical point, characterized by response function. In this
case, in analogy to magnetism, we use χ as response func-
tion (susceptibility). In the neighborhood of the critical
point, we expect the divergence of the response function.
Actually, this divergence is infinite when we are in ther-
modynamic limit (infinite system), which is where the
true phase transition occurs. When we study finite sys-
tems, we expect a finite divergence, which it grows with
increasing system size. At Figure 7, we see the expected
growth of maximum susceptibility as a function of sys-
tem size. In view of these results, we now estimate the
critical exponents of phase transition, which characterize
the behavior at the critical point. To find these expo-
nents, we use finite size scaling, that is a method to find
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FIG. 6: Order parameter (m) in function of threshold (R) for
pile with 301 particles on the base.

FIG. 7: (susceptibility) in function of R for different sizes. It
shows the grown of maximum at critical point with the size of
the system. It is according to theory, which in critical point
the maximum is a discontinuity.

the values for the critical exponents and the transition
threshold by observing how measured quantities vary for
different lattice sizes. In analogy with usual 2nd order
phase transitions, we use eqs. (7),(8) and (9) to find
critical exponents.

m ∝ (R−Rcrit)β (7)

L ∝ (R(∞)−Rcrit(L))−ν (8)

χ ∝  L
γ
ν (9)

To improve the results, we use Maximum Likely Hood-
Newmann method approximations to fit the exponents
of power law distributions. Derivation of this method is
explained with detail in [3]. The equation that we use
to fit is eq. (10), where α is the critical exponent that we
want to find, n is the number of different size data and
x is order parameter or response function (it depends on

the exponent we want to find) for every size data.

α = 1 + n[

n∑
i=1

ln
xi
xmin

]

−1

(10)

Exponents found are in Table 1. Critical point (when
thermodynamic limit is valid) is located at R = 0.7415.
To validate these exponents we do the collapse. Col-

Exponents Our system Percolation 2D

β 0.14 ± 0.01 0.14

ν 1.32 ± 0.08 1.33

γ 4.9 ± 0.3 2.39

TABLE I: Comparison between critical exponents of studied
system and percolation 2d

lapse is based on theory mentioned above (finite size scal-
ing),and using different scale relations, we obtain equa-
tion (11). In the collapse, data of different sizes have to
overlap. We see at Figure 8 that the collapse is better in
the neighborhood of the critical point, and smallest sys-
tem (51 particles of base) is the worse fit of the collapse.
Bigger sizes collapse better, it was expectable, because
big systems are closer to infinite length, the real phase
transition.

χ

L
γ
ν

∝ [Rc(L)−R(L)]L
1
ν (11)

We observe exponents similar to percolation exponents.

FIG. 8: Collapse of phase transition for different pile sizes.
Exponents used are Table 1 exponents.

It shows us that there is some kind of relation among our
system and the percolation propagation. Percolation is
the measure of clusters and propagation in lattice struc-
ture. We observe we have two exponents very close to
percolation ( β , ν) and one (γ) that differs greatly. The
next step is to applicate a force at the top of pile (besides
gravity). We studied this new system, and we discovered
the force applied conceals the phase transition. Effects
are similar to applying magnetic field in magnetic phase
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transition. When the force applied is approximately 10
times the weight of the pile, we are be able to say there
isnt phase transition.

IV. CONCLUSION

We have analyzed the distribution and transmission of
weight on high density 2D lattice. Using SAM model,
we discovered phase transition in pile geometry in fun-
cion of R parameter, that represents the randomness
that characterize these granular systems. We explain
the phase transition like the competition among disorder
and shape. When R is low, arches are easy to form, and
shape leads them to go left on the left side and to go right

on the right side. This accumulates weight at the ends.
When R is high, disorder beats the design of the system
and doesnt produce arches. The weight is distributed
randomly, and there are more particles over the base at
the center of pile, which provides more weight accumula-
tion at this place. The transition is continuous (second
order) and it has similarities with percolation 2d. Ap-
plying a force at the top conceals the phase transition.
We are going to continue with the study of these sys-
tems. The distribution of forces at the low lines of piles
of active particles will be analyzed because they guide
the avalanches. These avalanches and distributions are
function of the disorder and randomness, and concepts
analyzed in this work is the basis from which we start.

[1] C.-h. Liu et al., Science 269, 513 (1995)
[2] S.N. Coppersmith et al., Phys. Rev. E 53, 4673 (1996
[3] Aaron Clauset,Cosma Rohilla ,and M. Newman,

Power law distributions in empirical data, 0706.1062v2
physics.data-an 2 Feb 2009

[4] P. Claudin and J.-P. Bouchaud, A scalararching model,
arXiv:cond-mat/9711134 v1 14 Nov 1997

[5] P. Claudin, J.-P. Bouchaud, Static Avalanches and Giant

Stress Fluctuations in Silos, Volume 78, Nunmber 2 Phys-
ical Review Letters 13 January 1997

[6] P. Claudin, J.-P. Bouchaud, Stick-slip transition in
the Scalar Arching Model, Granular Matter 1, 7174 c
Springer-Verlag 1998

[7] Srdjan Ostojic, Statistical Mechanics of Static Granular
Matter

Javier Crist́ın 5 Barcelona, June 2015


