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(Dated: June 3, 2015)

Abstract: Spin transfer torque allows excitation of magnetization dynamics in ferromagnetic
thin films. An electric current flowing through a nanocontact to a ferromagnetic thin film can
create spin waves, which are governed by the Landau-Lifschitz-Gilbert-Slonczewski equation. In
this project we study the behavior of localized spin-wave modes, which are called magnetic droplet
solitons. The system is analyzed with micromagnetic numerical simulations of an array of spins.
We study the stability of magnetic droplet solitons. We analyzed the conditions for creation and
annihilation and the effect of external applied fields.

I. INTRODUCTION

A. Magnetic Droplet Solitons

An interesting phenomenon occurring in magnetic ma-
terials with uniaxial anisotropy is the formation of mag-
netic droplet solitons, i.e., a localized dynamical excita-
tion consisting of reversed precessing magnetic moments.
An example is shown in FIG. 1.

FIG. 1: Example of the result of one simulation. A magnetic
droplet soliton has been created and it is stable. Notice that
the magnetization is pointing upwards everywhere but below
the contact, where it is reversed.

Experimental signatures of droplet solitons have been
detected [3] and suggest that these excitations might
only be stable under certain conditions. Further, re-
cent experiments have shown a hysteretic behavior [2].
Here, we present numerical simulations that were per-
formed on ferromagnetic films with perpendicular mag-
netic anisotropy to analyze the stability properties of
the droplet solitons, such as creation and annihilation
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conditions, hysteresis, and the effect of longitudinal and
transversal applied fields.

Magnetic droplets had been predicted as a solution for
the magnetization dynamics with zero damping. When
the damping term is introduced, droplets are no longer
stable if no spin torque current is applied. Spin torque
acting upon a ferromagnetic film with uniaxial magnetic
anisotropy can create stable magnetic droplet solitons.
In these droplets (see FIG. 1), the magnetic moment is
almost reversed and precesses at a frequency smaller than
the ferromagnetic frequency.

B. The Landau-Lifschitz-Gilbert Equation

The Landau-Lifschitz-Gilbert equation describes the
magnetic moment dynamics in a magnetic material upon
applied fields. The magnetic moment precesses around
the effective magnetic field which can be controlled by
the external applied field at GHz frequencies, and eventu-
ally aligns with it because of the damping. This equation
describes the propagation of magnetic moment perturba-
tions through the material, which are called spin waves.
The precessional term of this equation (commonly known
as Larmor’s equation) can be easily derived from quan-
tum mechanics. To do so, let us consider a small volume
V inside the magnetic material. First of all, we notice
that the classical magnetization M is the expected value
of its corresponding quantum operator M̂,

M ≡
〈
M̂
〉
. (1)

Now, the Hamiltonian Ĥ of the volume element of the
magnet under an effective magnetic field Heff is:

Ĥ = −µ0V M̂ ·Heff, (2)

where µ0 is the magnetic permeability of free space and
Heff is the effective magnetic field. According to the
theory of magnetism, the magnetization operator can be
written as follows:
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M̂V = −γĴ (3)

where Ĵ is the angular momentum and γ is the gyro-
magnetic ratio. We can now use Ehrenfest’s theorem,
which relates the rate of change of the expected value of
a quantum operator (e.g. the magnetization) with the
Hamiltonian of the system:

d

dt

〈
M̂
〉

=
1

i~

〈
[M̂, Ĥ]

〉
. (4)

We may now compute the commutator in the last equa-
tion, by components. The summation over repeated in-
dices is implicit.

[M̂k, Ĥ] = −γ
2µ0

V
(Heff)l [Ĵk, Ĵl]. (5)

The last commutator is known to be i~ εkls Ĵs, where
εkls are the Levi-Civita symbols. Therefore,

[M̂k, Ĥ] = i~γµ0 (Heff)l M̂sεkls. (6)

We can substitute the last expression into Ehrenfest’s
theorem:

dMk

dt
= γµ0 (Heff)lMsεkls. (7)

The last equation can be rewritten in vector form as:

dM

dt

∣∣∣∣
Larmor

= −γµ0M×Heff, (8)

which is Larmor’s equation. In addition to this term,
there is a phenomenological damping term which ac-
counts for the loss of energy.

dM

dt

∣∣∣∣
Damping

= − 2

M2
s T2

M× (M×Heff), (9)

where Ms is the saturation magnetization and T2 is
the so called transverse relaxation time.

C. Ferromagnetic Thin Films and Spin Transfer
Torque

A ferromagnetic thin film can therefore be seen as a
huge array of nanometric damped oscillators. Because
of the damping, any spin dynamics that occurs in the
material will rapidly die out. However, Slonczewski pre-
dicted that this damping could be compensated using the

spin torque caused by a polarized electric current flow-
ing through a nanocontact [6]. The spin transfer torque
is a purely quantum mechanical effect which is strongly
related to giant magnetoresistance (GMR) [7], [8]. As
an effect of GMR, when a flow of electrons encounters a
ferromagnetic conducting metal, those electrons with the
spin in the same direction as the magnetization are most
likely transmitted while those electrons with the spin in
the opposed direction will be mostly reflected.

FIG. 2: Working principle of the spin transfer torque. Mag-
netization is represented by the blue big arrows, and the spin
of the electron fluxes is shown as the red thin arrows. In this
idealized example, only the electrons with their spin parallel
to the magnetization are transmitted through the ferromag-
netic layers, while those with antiparallel spin are reflected
back.

Now consider the situation in FIG. 2. This situation
is extremely analogous to the Stern-Gerlach experiment
[9]. The electric current is flowing upwards, so the flow of
electrons (which are negatively charged) is moving from
top to bottom. The electrons coming from outside are
not polarized at all. When an electron arrives to a mag-
netized layer its spin collapses to either parallel or an-
tiparallel orientation with respect to M. If it is parallel,
the electron is transmitted; if it is antiparallel, it is re-
flected. As usual in quantum mechanics, the probability
of collapse to a particular direction is the square of the
projection of the spin wavefunction upon the correspond-
ing eigenstate.

The thin ferromagnetic layer, which is called the ”free”
layer receives from below the electrons that have been re-
flected by the thick ferromagnetic layer called the ”fixed”
layer. As they have been reflected, these electrons are po-
larized in the direction of nσ, otherwise they would have
crossed the fixed layer. When they arrive to the free
layer, they collapse in the direction of the free magne-
tization, and therefore the component of the spin wave-
function is lost. This transverse component is proven to

Treball de Fi de Grau 2 Barcelona, June 2015



Micromagnetic study of magnetic droplet solitons in STOs Raimon Luna i Perelló

be [5]:

ST =
~

2M2
s

M× (M× nσ) (10)

By conservation of angular momentum, this compo-
nent must be transfered to the free layer. This is the
origin of spin torque [6]. Considering that the free layer
has thickness δ and the nanocontact has a radius of RC ,
then the spin torque reads as:

dM

dt

∣∣∣∣
ST

=
I~εγ

2eM2
s δπR

2
C

θ(RC − r) M× (M× nσ), (11)

Here θ(x) is the Heaviside step function. This results
in magnetization-dynamic excitations on the free film,
such as spin waves. A way to excite dynamics in a ferro-
magnetic film is shown in FIG. 3. A nanocontact is built
on top of the free ferromagnetic layer and an electric cur-
rent is driven through it. The fixed layer is placed below,
separated by a non magnetic splitter whose thickness is
larger than the exchange length of the ferromagnets. The
free layer, however, is thinner than the exchange length
in order to have a two-dimensional problem.

Adding together the three terms one obtains the com-
plete Landau-Lifschitz-Gilbert-Slonczewski, which is the
differential equation governing our system:

dM

dt
= −γµ0M×Heff −

2

M2
s T2

M× (M×Heff)

+
I~εγ

2eM2
s δπR

2
C

θ(RC − r) M× (M× nσ), (12)

where e is the elementary charge, I is the electric current,
and ε is an efficiency parameter.

FIG. 3: Simplified version of the spin transfer torque setup.
A nanometric hole is performed on an insulating layer (usu-
ally SiO2), thus creating a nanocontact that is used to excite
dynamics in the free ferromagnetic layer. The fixed layer is
below, with a non magnetic splitter in order to affect the po-
larization of the moving electrons only.

II. COMPUTATIONAL TECHNIQUES

We performed the numerical simulations using the
Landau-Lifschitz-Gilbert-Slonczewski equation, which
describes the dynamics of the magnetization under the
effect of a magnetic field. In order to make the numerical
calculations easier, the equations have been nondimesion-
alyzed as described in [4].

m =
M

Ms
, h =

H

Ms
, τ =

ωM
2π

t, ρ =
r

lex
,

(13)

ωM = 2πγµ0Ms, lex =

√
D

γµ0Ms~
,

(14)

where D is the so called exchange parameter. With this
change of variables, the equation can be written as fol-
lows.

dm

dτ
= −m×heff − αm× (m×heff) + σm× (m×nσ).

(15)

heff = h0 + (mk − 1)mz ez +∇2m. (16)

The σ and α parameters are the intensity of the po-
larized current and the damping strength, respectively.
The effective magnetic field (heff) has three contributions.
The first one is the external applied field (h0), which can
be easily controlled by an electromagnet, for instance.
The second one is the anisotropy term, that accounts for
the tendency of the magnetization to preferably orient
to some particular directions. First, since we are dealing
with a thin film, the demagnetizing field plays an impor-
tant role (shape anisotropy). The shape anisotropy favors
the in-plane orientations. There can be other sources of
anisotropy though, which can be used to achieve uniax-
ial (out of plane) anisotropy. These are included in the
mk parameter, which can be controlled by the crystal
structure (crystal anisotropy) or by multilayers. If mk is
smaller than one, we have in-plane anisotropy, for mk = 1
the system is isotropic, and if mk > 1, which is the
case studied here, uniaxial anisotropy shows up. The en-
ergy associated to anisotropy is εa(θ) = −(mk−1) cos2 θ,
where θ is the polar angle of the spherical coordinates.
A visual representation of this is shown in FIG. 4. The
last term describes the exchange interaction between the
spatially distributed magnetic moments, and it is the re-
sponsible for the collective phenomena. The origin of
this exchange is the overlap of the wavefunctions of the
neighbor atoms. This effect is modeled for a hydrogen
molecule in [1]. The explicit form of the interaction be-
tween two atoms is −JS1 ·S2, and in the continuous form
it is taken to be the laplacian of m.
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FIG. 4: Anisotropy energy as a function of the polar angle θ
for different values of the anisotropy parameter mk.

The simulations were done with the software Octave,
using the lsode integration algorithm.

III. DROPLET STABILITY AND HYSTERESIS

We have done a study on the stability of the magnetic
droplet solitons, and their creation and annihilation con-
ditions of magnetic field and contact current.

FIG. 5: Regions of stability of the droplets, for different values
of the injected current σ and the external magnetic field h0.
In the upper region the droplets cannot exist, while in the
lower region droplets are always created. There is, however,
a thin band between the two regions where the droplets are
neither created nor destroyed (hysteretic behavior).

While the injected current is favoring the formation of
the droplet, the external applied magnetic field (h0) is
opposing it. As a consequence, for high enough magnetic
fields, droplets will not be created or, if they were alredy
there, they will be anihilated. On the other hand, with
a high enough current, the droplet will be created and
mantained undefinitely. Moreover, there exists a hys-
teretic behavior.

Hysteresis can be predicted using a simple macrospin
model by the LLGS equation, neglecting the interaction
between individual spins [2]. By doing it, one obtains the
following linear equations for the frontiers of the stability
region:

h0↑ = σ/α− (mk − 1) (17)

h0↓ = σ/α+ (mk − 1) (18)

Notice that the size of the hysteresis band is 2(mk−1),
which has been reproduced by the simulations. In this
macrospin simple model, we are neglecting the exchange
interaction between the spins, and therefore we are ana-
lyzing the stability properties of a single spin. However,
in the simulation we introduce the interaction, so the
dynamics becomes much more complex.

In FIG. 5 the three regions of stability are shown. The
black dots are an initial bounding estimate of the fron-
tiers that checks whether the minimum value of mz is
higher or lower than 0 at τ = 100 to see if the droplet
is present. In order to have more accurate data, another
set of four simulations were run with a larger spin array
until and the value for mz at the center of the droplet
was plotted as a function of time from τ = 0 to τ = 200.
The graphs were visually examined in order to have a
better estimation of the tendency of the system.

IV. TRANSVERSE FIELD

FIG. 6: Color map of the values of mz under the nanometric
contact. The contact position and shape is shown by the
black circumferences. The pulsation, which affects the size
and depth of the droplet can be seen.
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FIG. 7: Variation of the giant magnetoresistance of the con-
tact region with time. Here, 0% represents the maximum
conductivity (mz = 1), when the magnetizations of the free
and fixed layers are parallel. On the other hand, 100% corre-
sponds to mz = −1, and the magnetoresistance is maximal.

Also, we ran simulations with an external magnetic
field and a current polarization (σ) that are not perpen-
dicular to the ferromagnetic film, i.e., adding a compo-
nent which is not perpendicular to the plane. First, we
create a droplet, and then we introduce the transverse
field. When the transverse field is added, and after a
short transient regime, the droplet pulsates periodically.
Namely, the z component of the magnetization inside the
droplet, and the droplet diameter itself, increase and de-
crease periodically, as it can be seen in FIG. 6. Black cir-
cles correspond to the approximate size of the nanocon-
tact. The variation of the droplet induces a magnetore-

sistance oscillation, which might be detected experimen-
tally. Since magnetoresistance has a linear relation to
mz, it can be approximated (up to a constant factor) by
averaging mz over the whole surface of the nanocontact
(see FIG. 7).

V. CONCLUSIONS

It is possible to create and control nanometric
magnetic droplet solitons on a ferromagnetic layer by
using an injected polarized current and with applied
field. The behavior of the solitons can be modelled
by the Landau-Lifschitz-Gilbert-Slonczewski equation,
introducing an exchange term in numerical simulations.
Droplets are created and annihilated depending on the
current and magnetic field conditions, and they present
hysteresis. A transverse field produces a pulsation of
the droplet at the precession frequency, changing its
magnetoresistance and therefore increasing the output
power of the oscillation.
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