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Abstract. The zebrafish embryo has emerged as promising 

alternative model for traditional in vivo developmental toxicological 

screening due to their advantageous characteristics as their small size 

and transparency. In this paper, we reviewed the applicability of the 

zebrafish embryo model in some relevant areas to human toxicology 

as developmental toxicity, cardiovascular toxicity and neurotoxicity 

(behavioral assessment). Despite the promising results, further 

optimization and testing of more substances as well as a harmonized 

methodology is needed to streamline the methods and make the assay 

conducive to medium-throughput. 

 

Introduction 
 

 The potential toxicity of a chemical has traditionally been carried out 

through in vivo mammalian screening approaches. Traditional guideline 

methods are laborious, costly, require large number of animals and attract 

increasingly ethical concerns [1]. Moreover, animal testing will increase  
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dramatically over next decade as a consequence of implementation of EU 

initiative for the Registration, Evaluation and Authorization of Chemicals, 

REACH [2]. Reproductive and developmental toxicity studies will use by far 

the most animals and resources within REACH (61% of animals and 54% of 

resources). Thus, the use of alternative methods in hazard assessment is 

encouraged and animal experiments should only be used as a last resort [3]. 

In addition to the REACH initiatives, it has been estimated that out of 10,000 

new drug entities that a pharmaceutical may start with, only one or two are 

finally approved by the European Medicines Agency (EMA) at an estimated 

cost of €1,172 million [4]. A large proportion of this cost is due to animal 

testing. The use of alternative methods at multiple stages in the drug 

discovery process would potentially reduce the attrition rate and costs by 

reducing the use of mammals and unnecessary clinical trials. The use of 

screening assays before clinical phases to select the best candidates is also 

one strategy to identify potential new active pharmaceuticals ingredients.  

 Fish have been used for years to assess the ecotoxicity of xenobiotics, 

but during the last years assays using embryonic stages of the zebrafish 

(Danio rerio) have attracted the attention of toxicologists due to their several 

advantages. In particular, in compliance with international animal welfare 

regulations, the fish embryo provides an ethically acceptable small-scale 

analysis system with complexity of a complete organism [5-7]  

 Most advanced and promising in the field of human hazard prediction is 

the use of the zebrafish embryo test (ZFET) to screen for developmental 

disorders as an indicator of teratogenic effects. Modifications of the ZFET 

protocol allow the use of this model also for the detection of specific organ 

toxicity such as cardiotoxicity, neurotoxicity, hepatotoxicity or 

nephrotoxicity [8].  

 In the following sections, the applications of the zebrafish embryo test in 

toxicology are reviewed as a screening level tool and as a system to predict 

mammalian developmental toxicity. Considering the current research activity 

on this topic, and based in our own research experience, we have selected 

some examples of the use of the zebrafish embryo model in toxicology. 

Additionally, we have included some of our last results in the field.  

 

1. The zebrafish embryo as a model organism 
 

 Zebrafish is a tropical freshwater teleost fish native to the rivers of India 

and South Asia [9]. Adult fishes are simple and inexpensive to raise and 

maintain. One pair of adults routinely lays hundreds of fertilized eggs in a 

single cross. Large-scale breeding chambers allow the efficient and reliable 

generation of thousands of embryos each day (Fig. 1). 
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Figure 1. Custom made breeding chamber. A grid is located in the bottom in order to 

avoid predation of the eggs by the parent fishes. Plastic plants and marbles can be 

placed in the tank in order to stimulate the spawning. The shape of the tank, as a 

funnel on the bottom, allows simple release of the newly spawned eggs. 

 

 The development of zebrafish is very similar to the embryogenesis in 

higher vertebrates, but, unlike mammals, the zebrafish egg develops outside 

the mother. Moreover, the embryos themselves are transparent during the 

first few days of their lives allowing an easy visualization of internal organ-

tissues that facilitates developmental and organ toxicity studies. Also its 

development is very fast and has been well characterized, including 

morphological, biochemical and physiological information at all stages of 

early development [10]. 

 During the first 24 hours after fertilization, all major organs are formed 

and within 3 days the fish hatches. After 3-4 months zebrafish are sexually 

mature and can generate new offspring.  

 Besides this, the small size of the embryo allows the ability of culture 

large number of zebrafish embryos in small volumes of media facilitating 
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rapid toxicity testing of compounds, while using a minimal amount of 

compound [11]. All the above mentioned properties of the zebrafish model 

represent a reduction on the experimental time and cost.  

 Zebrafish has been used predominantly in fundamental research 

(developmental biology and molecular genetics), so a lot of resources are 

available (genetic tools, mutant lines…) which the community can get the 

most benefit. In addition, zebrafish shares a high degree of homology with the 

human genome (about a 70%) [12], as well as structural similarities (about 

86% of orthologs of human drug targets) [13]. All these unique advantages 

make using zebrafish an attractive alternative that also represents an advance 

towards the aim of reducing and refining animal use in research [14]. 

 
2. Zebrafish embryo assays in toxicology 
 

Teratogenesis  
 

 The assessment of potential developmental toxicity is an integral part 

of European (and international) regulation for the risk assessment of 

pharmaceuticals, industrial chemicals, food additives, biocides and plant 

protection products. The assessment is performed based on OECD 

guidelines to allow international harmonization. Particularly, in 

teratogenesis tests, pregnant laboratories animals of two species, typically 

rats and rabbits, are exposed to the investigated chemical during the period 

of major organogenesis and offspring is monitored for endpoints such as 

death, growth changes, and morphological abnormalities. The use of 

mammalian models is laborious, time-consuming and results in the 

suffering of animals.  

 Ever since the thalidomide tragedy, there has been a presumed need to 

routinely use two species for developmental toxicity testing. Next to ethical 

concerns, animal experiments have been also criticized because of the 

partially weak reliability for the prediction of human teratogenicity [15]. 

Further problems have arisen due to the new EU cosmetics directive, which 

excludes any animal testing for cosmetic ingredients. Therefore, there is an 

increasing demand to develop alternative in vitro methods.  

 Up to date a few alternative approaches have been proposed for 

teratogenicity testing of chemicals and drugs. These approaches require 

either cultured cell lines [16], dissociated cells of embryonic buds or the 

midbrain of rat embryos [17], or the culture of whole embryo rodents [18] 

and lower vertebrates (e.g. Xenopus and zebrafish)[19].  
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 Results from numerous small-scale pilot studies with zebrafish 

embryos have been shown to correctly classify mammalian teratogens and 

non-teratogens with an overall concordance of 72-92% (Table 1). These 

assays are focused on three manifestations of deviant development: death, 

malformation and growth retardation [20]. However, they applied different 

experimental protocols and the number and the variety of assayed 

substances were limited. Currently there is no consensus about the optimal 

procedure in some basic features as the specific endpoints and scoring 

systems to use, the time of exposure and the stage of embryonic/larval 

development to do the observations. There is an increasing common 

interest to harmonize zebrafish developmental toxicity assays in order to 

ensure high concordance with mammalian data and increase cross-

laboratory reliability [21].  

  
Table 1. List of the published zebrafish teratogenicity assays with its overall 

concordance with mammalian data. Exposure was done during different windows of 

development and the teratogenic potential of chemicals was based on different 

criteria.  

 

 

 

Note: a, collaborative pilot study of Phylonix, Inc. with Bristol-Myers Squibb. b, developed by 

DanioLabs Ltd and evaluated in a pilot study run by Pfizer, Inc. and ECVAM. c, results from Bristol-

Myers Squibb group. d, compounds tested in the ring test-2. n/d, not defined. Hours post-fertilization 

(hpf).     
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 In this regard, our group focused on achieving a better characterization 

of growth retardation in the zebrafish embryo test [28]. In this study the 

suitability of a biochemical endpoint, the measurement of 

acetylcholinesterase activity (AChE), as a marker of developmental delay in 

zebrafish embryos was explored. The expression of AChE starts early and 

increases with age along the embryo development. It is an easy, robust and 

sensitive endpoint that could be liable to automation and higher throughput 

than morphological endpoints like the measurement of head-trunk angle. 

Evidently, any substance with some specific action on AChE expression or 

activity, as AChE inhibitors, could produce results unrelated to 

developmental age. These substances can be easily discarded by means of an 

in vitro AChE activity assay. 

 The measurement of AChE activity allowed us to detect substances with 

a clear effect on developmental delay (valproic acid, methoxyacetic acid and 

boric acid) at non-teratogenic concentrations, thus increasing the sensitivity 

of the assay. As figure 2 shows, these substances presented a strong 

correlation between AChE activity and head-trunk angle with a slope similar 

to that obtained in normally developmental embryos at different 

developmental stages. However, our results do not allow concluding about  
 

 
 
Figure 2. Correlation analysis between AChE activity values versus normalized 

head-trunk angle values [(180°- head-trunk angle)*100/(180°- control head-trunk 

angle)] in each compound that produced a significant change in AChE activity. Slope 

and coefficient of correlation of each simple linear regression. The correlation 

analysis of the values of normally developed embryos was obtained from the 

evaluation of the age-dependent AChE activity and head-trunk angle. 
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the discriminating efficiency of developmental retardation endpoints in the 

zebrafish assay to predict teratogenic potential in mammals. Probably, for a 

major part of substance, developmental delay is an unspecific effect 

unrelated or secondary to teratogenic activity.     

 

Cardiovascular toxicity 
 

 Cardiotoxicity is a highly relevant area of toxicity assessment as drug 

candidates were frequently found to have cardiac adverse effects being a 

leading cause of drug withdraws [29]. Current available in vivo assays such 

as the Langendott-perfused rabbit heart model are laborious, costly and      

time-consuming [30]. Moreover, in vitro cardiotoxicity screenings such as 

the patch clam assay focusing on assessing the effects of compounds on 

potassium, sodium and calcium ion channels are limited by biological 

simplicity and an inability to detect drug–drug interactions [31]. Due to the 

limitations of both traditional mammalian models and in vitro approaches, 

researchers are showing increasing interest in zebrafish-based assays to 

assess cardiovascular safety and toxicity.  

 The cardiovascular system is the first major system to function within 

the embryo. Unlike the double circulation in mammals, the fish heart is         

two-chambered, consisting of an atrium and a ventricle separated by an 

atrioventricular valve. Zebrafish and mammalian heart exhibit a closed 

cardiovascular system, but organs and tissues of zebrafish embryos do not 

depend on the cardiac output for oxygen delivery. Embryos rely on oxygen 

diffusion through the skin from the swimming medium up to 14 days             

post-fertilization (dpf) [32]. Therefore, this feature permits embryos with 

severe cardiovascular defects to survive during the initial phase of 

embryonic development. By contrast, avian and mammalian embryos would 

die rapidly in the absence of a functional cardiovascular system.  

 Effects on cardiovascular system can be visually assessed in living 

zebrafish using a stereomicroscope and a microscope. Different cardiac and 

vascular abnormalities from developmental exposure to zebrafish have been 

reported (Table 2) being edema and heart rate change the most commonly 

assessed [33].  

 Several methods have been employed successfully in the larval fish to 

study heart function, for example, electrocardiogram [34], laser Doppler 

microscope technique [35] and laser confocal scanning microscopy [36]. 

However, these tools are labor-intensive, require special instrumentation and 

are not scalable for high-throughput screening. Therefore, we propose the 

use of a non-invasive method using simple light microscopy and a                   

fast  digital camera. Recent development in digital image analysis tools makes  
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Table 2. Cardiac and vascular abnormalities reported from developmental exposure 

to zebrafish (Reviewed by [33]). 

 

 

 
analysis of cardiovascular function, such as cardiac output, traveling speed 

of the blood cells, blood cell count, visualization and analysis of blood 

cells distribution in transparent zebrafish larvae easier [37].  

 The zebrafish is also used as a preclinical model in order to study 

drug-induced cardiac arrhythmias such as QT prolongation [38]. Drug-

induced prolongation of the QT interval in the electrocardiogram usually 

results from concentration dependent inhibition of the hERG (the human 

Ether-à-go-go-Related Gene) potassium channel. Moreover, drugs 

blocking this potassium current either as an intended pharmacologic effect 

(eg. antiarrhythmics dofetilide and almokalant) or as an unwanted side-

effect (eg. antihistamine drugs, antidepressive drugs and macrolide 

antibiotics) are potential human teratogens [39]. 
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 Numerous groups have screened pharmacologically relevant collections 

of compounds in zebrafish using bradycardia or/and atrioventricular 

dissociation as indicators of QT prolongation [30, 40, 41]. These assays were 

able to detect known QT prolonging drugs that block hERG such as 

terfenadine or cisapride, as well as compounds that block L-type calcium 

channels, not affecting the hERG channel. 

 In our case, we established the methodology for screening 

cardiovascular drugs using two reference compounds, terfenadine and 

isoprenaline (Fig. 3 and Fig. 4). Embryos exposed to terfenadine (10 µM) 

displayed a 2:1 atrioventricular block and bradychardia with a reduced 

cardiac output. In contrast, isoprenaline exposure increased the heart rate and 

cardiac output without causing an atrioventricular block. 

 Cardiovascular performance can also be assessed by recording the blood 

flow through the dorsal aorta. Scan lines obtained parallel to the flow of 

blood within the dorsal aorta were used to measure the cellular velocity and 

other cardiac indices. Figure 5 shows as an example the measured changes in 

blood flow velocity and diameter of the blood vessel in zebrafish embryos 

exposed to terfenadine and isoprenaline. 

 

 
 
Figure 3. Atrial and ventricular rates of embryos exposed to terfenadine and 

isoprenaline for 3 h at 72 hpf. Values are mean ± SEM of two independent test                 

(n= 6). Asterisks indicate significant difference at ***p<0.001, t-student test. 
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Figure 4. Representative end-diastolic (A) and end-systolic (B) images of a heart 

ventricle of zebrafish larva at 3 dpf. Calculation of ventricle volume during systole 

and diastole was based on the formula for the volume of a prolate spheroid: 4/3πab2 

where a represents the major axe radius and b of the minor axe radius of the ventricle 

image. Cardiac output (nl/min) = Stroke volume (end-diastolic volume – end-systolic 

volume) x heart rate. (Scale bar= 20µm).Table at the right shows the cardiac output 

of zebrafish embryos exposed to terfenadine and isoprenaline (n= 6). Asterisks 

indicate significant difference respect the control group at ***p<0.001, t-student test. 

 

 
 

Figure 5. (A) Maximum and minimum blood cell velocity, measured from embryos 

treated with terfenadine and isoprenaline. Data are presented as mean ± SEM (n=6). 

(B) Mean vessel cross section represented as a black outline, while the surrounding 

color shading indicates the standard deviation of the mean. Numerical values indicate 

the corresponding vessel cross-sectional area (μm2). Asterisks indicate significant 

difference at *p<0.05 and ***p<0.001, t-student test. 

 

 In addition, several transgenic lines with heart tissue and vascular 
fluorescent reporters have been generated [42, 43] and can be really useful 
for detecting changes in specific tissues, to visualize cardiomyocytes and 
vascular endothelium as well as precursor cells.  
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 These tools can contribute to a better understanding of the key 

cardiotoxic mechanisms in a whole-organism, cost-effective and medium 

high-throughput manner.   

 

Behavioral assessment of neurotoxic effects 
 

 Current in vivo methods for the assessment of developmental neurotoxic 

compounds [44] are designed to screen for adverse effects of pre and 

postnatal exposures on the development and function of the nervous system. 

However, these guidelines are unsuitable for screening large number of 

chemicals for many reasons including low throughput, high cost, and 

questions regarding reliability [45]. Therefore, new, reliable, and efficient 

screening and assessment tools are needed for better identification, 

prioritization, and evaluation of chemicals with the potential to induce 

developmental neurotoxicity. 

 Larval zebrafish nervous system exhibits developmental, structural and 

pharmacological conservation with the mammalian nervous system [46]. 

Locomotor patterns that develop early in the larva [47] (see Fig. 6) can be 

monitored for systematic screening of the genes, pharmaceuticals and 

environmental toxicants that can influence behavior [48, 49]. Moreover,  

 

 
 
Figure 6. Chronological sequence of appearance of motility patterns during 

development of the zebrafish. 
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several studies suggest that zebrafish larvae are sensitive to neuroactive 

drugs and that their locomotor response is similar to that of mammals               

[50, 51]. 

 Many assays have been developed in zebrafish larvae by taking 

advantage of its locomotor repertoire and inherent visual reflexes (Table 3). 

Among these is the visual motor response test that consists in brief (10-30 

min) alternating periods of light and dark and is characterized by low (basal) 

locomotor activity under light exposure and transient but robust behavioral 

hyperactivity on sudden transition to dark [52].  

 
Table 3. Different types of behavioral patterns exhibited by zebrafish larvae that can 

be measured as indicators of toxicant exposure (modified from [53]). 
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 Locomotor activity endpoints included swimming speed, distances 

swum, time spent in the different sections of the tank, time spent immobile, 

erratic movements, turning rate, etc. For an accurate, objective, and efficient 

measurement of these parameters, the use of automated video tracking 

systems is recommended [53]. In these systems, movement in the vertical 

plane is usually ignored or minimized by reducing water depth of the vessels 

[54] and currently, several commercial setups are available on the market 

(e.g. Viewpoint ZebraLab videotrack system).  

 Figure 7 shows as example the assessment of locomotor activity of 

zebrafish after being exposed to increasing concentrations of                                

d-amphetamine. The experimental conditions and data processing 

implemented in our laboratory permitted to reproduce the effects of                       

d-amphetamine being the results similar to those reported by Irons et al. [50]. 

Our results demonstrated that d-amphetamine produced an evident biphasic 

“inverted U” concentration-response pattern with a highly consistent 

behavioral pattern between light and dark periods. The lowest concentration  

 

 
 
Figure 7. Effects of d-amphetamine on larval locomotion. Values are mean + SEM 

of the total distance moved in 4 min interval Asterisks indicate significant difference 

at *p<0.05, **p<0.01 respect control. Black and white bars at the bottom signify dark 

and light conditions, respectively. 
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of d-amphetamine produced hyperactivity and the highest concentration 

tested caused hypoactivity, mainly in dark periods. The effects reflect those 

found in mammalian models, proving the usefulness of the zebrafish embryo 

model for neurobehavioral studies. In addition, it is likely that can be used to 

unveil abnormal nervous system developmental/maturation due to 

developmental neurotoxicity [50].   

 There are several conditions which need to be controlled in order to get 

consistent and reproducible outcomes especially involving locomotor 

activity (Table 4). For example, MacPhail et al. [60] found that zebrafish 

larvae are more active in the morning than in the afternoon, so locomotor 

activity depends on the time of day. It must be noted that, although behavior 

is the ultimate result of neuronal development and signaling, not all 

behavioral modifications are of neurological origin. Malformed limbs or 

other morphological based conditions may be associated with behaviors not 

apparent in normal individuals. For instance, a reduced visual sensitivity or 

higher visual threshold could delay the transition in activity when darkness is 

switched to light [60]. Therefore, if our final objective is to detect neurotoxic 

effects, embryos with malformations should be not used in the locomotor 

activity assay [61].  

 

Table 4. Variables that influence larval zebrafish behavior. 

 

 
. 

Hurdles to the acceptance of zebrafish assays 
 

 Despite the promising zebrafish studies described above, there are still 

significant issues to be addressed before the zebrafish is accepted as a 

toxicological model.  
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 Absorption, distribution, metabolism and excretion are crucial factors 

affecting the toxicity of chemicals. Most of the zebrafish assays relay on 

aqueous exposure and compound uptake predominantly by diffusion through 

the skin. Compound uptake may be not linear and it is dependent upon a 

number of physicochemical variables [65]. Internal concentration analysis is 

therefore needed in order to correlate the toxic phenotype observed with the 

actual concentration of the compound within the larvae. It is also necessary 

in order to identify false-negative results attributable to poor compound 

absorption and to link effect concentrations between mammals and fish 

embryos [66]. 

 One of the alleged weaknesses of the zebrafish embryo as a model for 

teratogenicity in mammals is the difference in metabolic activity towards 

exogenous substances. This is especially relevant in the case of xenobiotics 

that need bioactivation. Zebrafish embryos and larvae have the ability to 

perform both phase I (oxidation, n-demethylation, o-demethylation and                

n-dealkylation) and phase II (sulfation and glucuronidation) metabolism 

reactions [65]. In particular, zebrafish have a total of 94 CYP genes, 

distributed among 18 gene families, most of which are direct orthologs of 

human CYPs. Most of these CYPs are expressed in embryos during various 

time courses along the first 48 hours after fertilization. Indeed, some 

maternally-derived CYPs RNA transcripts are present in the unfertilized egg 

[67]. Some studies have been shown the capacity of zebrafish embryos to 

metabolize different drugs, some of that known human proteratogenic 

substances [68-70]. However, differences to mammalian metabolic pathways 

have been identified. Cisapride, for example, was mainly metabolized to 

cisapride N-sulfate in zebrafish larvae, which is only a minor metabolite in 

mammals. Therefore, more extensive studies are required to evaluate the 

similarities and differences in metabolic pathways between human and 

zebrafish.  

 

Conclusions 
 

 We have shown various examples of the applicability of the zebrafish 

embryo model in toxicology, focusing on the developmental toxicity 

evaluation of chemicals. The zebrafish embryo model is still struggling for 

recognition by regulators and industry as a screening tool in drug 

development and toxicological testing of chemicals other than water quality 

assessment. The first steps are promising [13, 71] and demonstrate the 

reliability of the zebrafish embryo model in human risk assessment. Further 

systematic testing of toxicologically concerning substances in all applicable 

areas relevant to humans will definitely provide a significant picture of the 



Elisabet Teixidó et al. 80 

predictive power of the zebrafish embryo assay. However, embryonic 

development is a very complex biological process so a single in vitro test 

capable of covering this whole process with satisfactory predictivity cannot 

be expected. An integrated testing approach with different test species 

should help minimize risk in the animal-human extrapolation [72].  

 In order to accurately predict and relate chemical impacts across species, 

it is necessary to have a mechanistic understanding of the effects of pathway 

perturbation. Recently, the use of the concept of Adverse Outcome pathways 

(AOPs) provides a framework in which data and knowledge are collected at 

many levels of biological organization and can be synthesized in a way that 

is useful to risk assessors and toxicologists that support this activity [73]. All 

this new developments in hazard assessment will contribute to have a more 

human-relevant and more predictive alternatives to traditional testing.  
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