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ABSTRACT
We report measurements of the mass density, and cosmological-constant energy density, of)

M
, )",

the universe based on the analysis of 42 type Ia supernovae discovered by the Supernova Cosmology
Project. The magnitude-redshift data for these supernovae, at redshifts between 0.18 and 0.83, are Ðtted
jointly with a set of supernovae from the Supernova Survey, at redshifts below 0.1, to yieldCala� n/Tololo
values for the cosmological parameters. All supernova peak magnitudes are standardized using a SN Ia
light-curve width-luminosity relation. The measurement yields a joint probability distribution of the
cosmological parameters that is approximated by the relation in the region0.8)

M
[ 0.6)" B[0.2 ^ 0.1

of interest For a Ñat cosmology we Ðnd (1 p statistical)()
M

[ 1.5). ()
M

] )" \ 1) )
M
flat\ 0.28~0.08`0.09 ~0.04`0.05

(identiÐed systematics). The data are strongly inconsistent with a "\ 0 Ñat cosmology, the simplest
inÑationary universe model. An open, "\ 0 cosmology also does not Ðt the data well : the data indicate
that the cosmological constant is nonzero and positive, with a conÐdence of P("[ 0)\ 99%, including
the identiÐed systematic uncertainties. The best-Ðt age of the universe relative to the Hubble time is

Gyr for a Ñat cosmology. The size of our sample allows us to perform a variety oft0flat\ 14.9~1.1`1.4(0.63/h)
statistical tests to check for possible systematic errors and biases. We Ðnd no signiÐcant di†erences in
either the host reddening distribution or Malmquist bias between the low-redshift sampleCala� n/Tololo
and our high-redshift sample. Excluding those few supernovae that are outliers in color excess or Ðt
residual does not signiÐcantly change the results. The conclusions are also robust whether or not a
width-luminosity relation is used to standardize the supernova peak magnitudes. We discuss and con-
strain, where possible, hypothetical alternatives to a cosmological constant.
Subject headings : cosmology : observations È distance scale È supernovae : general
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1. INTRODUCTION

Since the earliest studies of supernovae, it has been sug-
gested that these luminous events might be used as standard
candles for cosmological measurements (Baade 1938). At
closer distances they could be used to measure the Hubble
constant if an absolute distance scale or magnitude scale
could be established, while at higher redshifts they could
determine the deceleration parameter (Tammann 1979 ;
Colgate 1979). The Hubble constant measurement became
a realistic possibility in the 1980s, when the more homoge-
neous subclass of type Ia supernovae (SNe Ia) was identiÐed
(see Branch 1998). Attempts to measure the deceleration
parameter, however, were stymied for lack of high-redshift
supernovae. Even after an impressive multiyear e†ort by

et al. (1989), it was only possible toNÔrgaard-Nielsen
follow one SN Ia, at z\ 0.31, discovered 18 days past its
peak brightness.

The Supernova Cosmology Project was started in 1988 to
address this problem. The primary goal of the project is the
determination of the cosmological parameters of the uni-
verse using the magnitude-redshift relation of type Ia super-
novae. In particular, Goobar & Perlmutter (1995) showed
the possibility of separating the relative contributions of the
mass density, and the cosmological constant, ", to)

M
,

changes in the expansion rate by studying supernovae at a
range of redshifts. The Project developed techniques,
including instrumentation, analysis, and observing stra-
tegies, that make it possible to systematically study high-
redshift supernovae (Perlmutter et al. 1995a). As of 1998
March, more than 75 type Ia supernovae at redshifts
z\ 0.18È0.86 have been discovered and studied by the
Supernova Cosmology Project (Perlmutter et al. 1995b,
1996, 1997a, 1997b, 1997c, 1997d, 1998a).

A Ðrst presentation of analysis techniques, identiÐcation
of possible sources of statistical and systematic errors, and
Ðrst results based on seven of these supernovae at redshifts
zD 0.4 were given in Perlmutter et al. (1997e ; hereafter
referred to as P97). These Ðrst results yielded a conÐdence
region that was suggestive of a Ñat, "\ 0 universe but with
a large range of uncertainty. Perlmutter et al. (1998b) added
a z\ 0.83 SN Ia to this sample, with observations from the
Hubble Space Telescope (HST ) and Keck 10 m telescope,
providing the Ðrst demonstration of the method of separat-
ing and " contributions. This analysis o†ered prelimi-)

Mnary evidence for a lowÈmass-density universe with a
best-Ðt value of assuming "\ 0. Indepen-)

M
\ 0.2 ^ 0.4,

dent work by Garnavich et al. (1998a), based on three
supernovae at zD 0.5 and one at z\ 0.97, also suggested a
low mass density, with best-Ðt for "\ 0.)

M
\[0.1 ^ 0.5

Perlmutter et al. 1997f presented a preliminary analysis
of 33 additional high-redshift supernovae, which gave a
conÐdence region indicating an accelerating universe and
barely including a low-mass "\ 0 cosmology. Recent inde-
pendent work of Riess et al. (1998), based on 10 high-
redshift supernovae added to the Garnavich et al. (1998a)
set, reached the same conclusion. Here we report on the
complete analysis of 42 supernovae from the Supernova
Cosmology Project, including the reanalysis of our pre-
viously reported supernovae with improved calibration
data and improved photometric and spectroscopic SN Ia
templates.

2. BASIC DATA AND PROCEDURES

The new supernovae in this sample of 42 were all dis-

covered while still brightening, using the Cerro Tololo
Inter-American Observatory (CTIO) 4 m telescope with the
20482 pixel prime-focus CCD camera or the 4] 20482 pixel
Big Throughput Camera.10 The supernovae were followed
with photometry over the peak of their light curves and
approximately 2È3 months further (D40È60 days rest
frame) using the CTIO 4 m, Wisconsin-Indiana-Yale-
NOAO (WIYN) 3.6 m, ESO 3.6 m, Isaac Newton Telescope
(INT) 2.5 m, and the William Herschel Telescope (WHT) 4.2
m telescopes. (SN 1997ap and other 1998 supernovae have
also been followed with HST photometry.) The supernova
redshifts and spectral identiÐcations were obtained using
the Keck I and II 10 m telescopes with the Low-Resolution
Imaging Spectrograph (Oke et al. 1995) and the ESO 3.6 m
telescope. The photometry coverage was most complete in
Kron-Cousins R-band, with Kron-Cousins I-band photo-
metry coverage ranging from two or three points near peak
to relatively complete coverage paralleling the R-band
observations.

Almost all of the new supernovae were observed spectro-
scopically. The conÐdence of the type Ia classiÐcations
based on these spectra taken together with the observed
light curves, ranged from ““ deÐnite ÏÏ (when Si II features
were visible) to ““ likely ÏÏ (when the features were consistent
with type Ia and inconsistent with most other types). The
lower conÐdence identiÐcations were primarily due to host-
galaxy contamination of the spectra. Fewer than 10% of the
original sample of supernova candidates from which these
SNe Ia were selected were conÐrmed to be nonÈtype Ia, i.e.,
being active galactic nuclei or belonging to another SN
subclass ; almost all of these nonÈSNe Ia could also have
been identiÐed by their light curves and/or position far from
the SN Ia Hubble line. Whenever possible, the redshifts
were measured from the narrow host-galaxy lines rather
than the broader supernova lines. The light curves and
several spectra are shown in Perlmutter et al. (1997e, 1997f,
1998b) ; complete catalogs and detailed discussions of the
photometry and spectroscopy for these supernovae will be
presented in forthcoming papers.

The photometric reduction and the analyses of the light
curves followed the procedures described in P97. The super-
novae were observed with the Kron-Cousins Ðlter that best
matched the rest-frame B and V Ðlters at the supernovaÏs
redshift, and any remaining mismatch of wavelength cover-
age was corrected by calculating the expected photometric
di†erenceÈthe ““ cross-Ðlter K-correction ÏÏÈusing template
SN Ia spectra as in Kim, Goobar, & Perlmutter (1996). We
have now recalculated these K-corrections (see Nugent et
al. 1998) using improved template spectra, based on an
extensive database of low-redshift SN Ia spectra recently
made available from the survey (Phillips et al.Cala� n/Tololo
1999). Where available, IUE and HST spectra (Cappellaro,
Turatto, & Fernley 1995 ; Kirshner et al. 1993) were also
added to the SN Ia spectra, including those published pre-
viously (1972E, 1981B, 1986G, 1990N, 1991T, 1992A, and
1994D: in Kirshner & Oke 1975 ; Branch et al. 1993 ; Phil-
lips et al. 1987 ; Je†ery et al. 1992 ; Meikle et al. 1996 ; Patat
et al. 1996). In Nugent et al. (1998) we show that the K-
corrections can be calculated accurately for a given day on
the supernova light curve and for a given supernova light-

10 Big Throughput Camera information is provided by G. Bernstein &
J. A. Tyson, 1998, at http ://www.astro.lsa.umich.edu/btc/user.html.
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curve width from the color of the supernova on that day.
(Such a calculation of K-correction based on supernova
color will also automatically account for any modiÐcation
of the K-correction due to reddening of the supernova ; see
Nugent et al. 1998. In the case of insigniÐcant reddening the
SN Ia template color curves can be used.) We Ðnd that these
calculations are robust to mis-estimations of the light-curve
width or day on the light curve, giving results correct to
within 0.01 mag for light-curveÈwidth errors of ^25% or
light-curve phase errors of ^5 days even at redshifts where
Ðlter matching is the worst. Given small additional uncer-
tainties in the colors of supernovae, we take an overall sys-
tematic uncertainty of 0.02 mag for the K-correction.

The improved K-corrections have been recalculated for
all the supernovae used in this paper, including those pre-
viously analyzed and published. Several of the low-redshift
supernovae from the survey have relativelyCala� n/Tololo
large changes (as much as 0.1 mag) at times in their K-
corrected light curves. (These and other low-redshift super-
novae with new K-corrections are used by several
independent groups in constructing SN Ia light-curve tem-
plates, so the templates must be updated accordingly.) The
K-corrections for several of the high-redshift supernovae
analyzed in P97 have also changed by small amounts at the
light-curve peak mag] and somewhat[*K(t \ 0)[ 0.02
larger amounts by 20 days past peak [*K(t \ 20)[ 0.1
mag] ; this primarily a†ects the measurement of the rest-
frame light-curve width. These K-correction changes
balance out among the P97 supernovae, so the Ðnal results
for these supernovae do not change signiÐcantly. (As we
discuss below, however, the much larger current data set
does a†ect the interpretation of these results.)

As in P97, the peak magnitudes have been corrected for
the light-curve width-luminosity relation of SNe Ia :

m
B
corr \ m

B
] *corr(s) , (1)

where the correction term is a simple monotonic func-*corrtion of the ““ stretch factor,ÏÏ s, that stretches or contracts the
time axis of a template SN Ia light curve to best Ðt the
observed light curve for each supernova (see P97 ; Perlmut-
ter et al. 1995a ; Kim et al. 1999 ; Goldhaber et al. 1999 ; and
see Phillips 1993 ; Riess, Press, & Kirshner 1995, 1996
[hereafter RPK96]). A similar relation corrects the V -band
light curve, with the same stretch factor in both bands. For
the supernovae discussed in this paper, the template must
be time-dilated by a factor 1] z before Ðtting to the
observed light curves to account for the cosmological
lengthening of the supernova timescale (Goldhaber et al.
1995 ; Leibundgut et al. 1996a ; Riess et al. 1997a). P97 cal-
culated by translating from s to (both describ-*corr(s) *m15ing the timescale of the supernova event) and then using the
relation between and luminosity as determined by*m15Hamuy et al. (1995). The light curves of the Cala� n/Tololo
supernovae have since been published, and we have directly
Ðtted each light curve with the stretched template method
to determine its stretch factor s. In this paper, for the light-
curve width-luminosity relation, we therefore directly use
the functional form

*corr(s)\ a(s [ 1) (2)

and determine a simultaneously with our determination of
the cosmological parameters. With this functional form, the
supernova peak apparent magnitudes are thus all

““ corrected ÏÏ as they would appear if the supernovae had the
light-curve width of the template, s \ 1.

We use analysis procedures that are designed to be as
similar as possible for the low- and high-redshift data sets.
Occasionally, this requires not using all of the data avail-
able at low redshift, when the corresponding data are not
accessible at high redshift. For example, the low-redshift
supernova light curves can often be followed with photo-
metry for many months with high signal-to-noise ratios,
whereas the high-redshift supernova observations are gen-
erally only practical for approximately 60 rest-frame days
past maximum light. This period is also the phase of the
low-redshift SN Ia light curves that is Ðtted best by the
stretched-template method and that best predicts the lumi-
nosity of the supernova at maximum. We therefore Ðtted
only this period for the light curves of the low-redshift
supernovae. Similarly, at high redshift the rest-frame
B-band photometry is usually much more densely sampled
in time than the rest-frame V -band data, so we use the
stretch factor that best Ðts the rest-frame B-band data for
both low- and high-redshift supernovae, even though at
low-redshift the V -band photometry is equally well
sampled.

Each supernova peak magnitude was also corrected for
Galactic extinction, using the extinction law of Cardelli,A

R
,

Clayton, & Mathis (1989), Ðrst using the color excess,
at the supernovaÏs Galactic coordinates pro-E(B[V )SFÔD,

vided by Schlegel, Finkbeiner, & Davis (1998) and thenÈ
for comparisonÈusing the value provided byE(B[V )BÔHD. Burstein & C. Heiles (1998, private communication ; see
also Burstein & Heiles 1982). Galactic extinction, wasA

R
,

calculated from E(B[V ) using a value of the total-to-selec-
tive extinction ratio, speciÐc to eachR

R
4 A

R
/E(B[V ),

supernova. These were calculated using the appropriate
redshifted supernova spectrum as it would appear through
an R-band Ðlter. These values of range from 2.56 atR

Rz\ 0 to 4.88 at z\ 0.83. The observed supernova colors
were similarly corrected for Galactic extinction. Any extinc-
tion in the supernovaÏs host galaxy or between galaxies was
not corrected for at this stage but will be analyzed separa-
tely in ° 4.

All the same corrections for width-luminosity relation,
K-corrections, and extinction (but using wereR

B
\ 4.14)

applied to the photometry of 18 low-redshift SNe Ia
(z¹ 0.1) from the supernova survey (HamuyCala� n/Tololo
et al. 1996) that were discovered earlier than 5 days after
peak. The light curves of these 18 supernovae have all been
reÐtted since P97, using the more recently available photo-
metry (Hamuy et al. 1996) and our K-corrections.

Figures 1 and 2a show the Hubble diagram of e†ective
rest-frame B magnitude corrected for the width-luminosity
relation,

m
B
eff\ m

R
] *corr [ K

BR
[ A

R
, (3)

as a function of redshift for the 42 Supernova Cosmology
Project high-redshift supernovae, along with the 18

low-redshift supernovae. (Here is theCala� n/Tololo K
BRcross-Ðlter K-correction from observed R band to rest-

frame B band.) Tables 1 and 2 give the corresponding IAU
names, redshifts, magnitudes, corrected magnitudes, and
their respective uncertainties. As in P97, the inner error bars
in Figures 1 and 2 represent the photometric uncertainty,
while the outer error bars add in quadrature 0.17 mag of
intrinsic dispersion of SN Ia magnitudes that remain after
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FIG. 1.ÈHubble diagram for 42 high-redshift type Ia supernovae from the Supernova Cosmology Project and 18 low-redshift type Ia supernovae from the
Supernova Survey after correcting both sets for the SN Ia light-curve width-luminosity relation. The inner error bars show the uncertainty dueCala� n/Tololo

to measurement errors, while the outer error bars show the total uncertainty when the intrinsic luminosity dispersion, 0.17 mag, of light-curveÈwidth-
corrected type Ia supernovae is added in quadrature. The unÐlled circles indicate supernovae not included in Ðt C. The horizontal error bars represent the
assigned peculiar velocity uncertainty of 300 km s~1. The solid curves are the theoretical for a range of cosmological models with zero cosmologicalm

B
eff(z)

constant : on top, (1, 0) in middle, and (2, 0) on bottom. The dashed curves are for a range of Ñat cosmological models : on()
M

, )")\ (0, 0) ()
M

, )") \ (0, 1)
top, (0.5, 0.5) second from top, (1, 0) third from top, and (1.5, [0.5) on bottom.

applying the width-luminosity correction. For these plots,
the slope of the width-brightness relation was taken to be
a \ 0.6, the best-Ðt value of Ðt C discussed below. (Since
both the low- and high-redshift supernova light-curve
widths are clustered rather closely around s \ 1, as shown
in Fig. 4, the exact choice of a does not change the Hubble
diagram signiÐcantly.) The theoretical curves for a universe
with no cosmological constant are shown as solid lines for a
range of mass density, 1, 2. The dashed lines)

M
\ 0,

represent alternative Ñat cosmologies, for which the total
mass energy density (where)

M
] )" \ 1 )" 4 "/3H02).The range of models shown are for (0.5,()

M
, )")\ (0, 1),

0.5), (1, 0), which is covered by the matching solid line, and
(1.5, [0.5).

3. FITS TO )
M

AND )"
The combined low- and high-redshift supernova data sets

of Figure 1 are Ðtted to the Friedman-Robertson-Walker
(FRW) magnitude-redshift relation, expressed as in P97 :

m
B
eff 4 m

R
] a(s [ 1)[ K

BR
[ A

R
\M

B
] 5 logD

L
(z ; )

M
, )") , (4)

where is the ““ Hubble-constantÈfree ÏÏ lumi-D
L
4H0 d

Lnosity distance and log is theM
B
4M

B
[ 5 H0 ] 25

““Hubble-constantÈfree ÏÏ B-band absolute magnitude at
maximum of a SN Ia with width s \ 1. (These quantities

are, respectively, calculated from theory or Ðtted from
apparent magnitudes and redshifts, both without any need
for The cosmological-parameter results are thus alsoH0.completely independent of The details of the ÐttingH0.)procedure as presented in P97 were followed, except that
both the low- and high-redshift supernovae were Ðtted
simultaneously, so that and a, the slope of the width-M

Bluminosity relation, could also be Ðtted in addition to the
cosmological parameters and For most of the)

M
)".

analyses in this paper, and a are statistical ““ nuisance ÏÏM
Bparameters ; we calculate two-dimensional conÐdence

regions and single-parameter uncertainties for the cosmo-
logical parameters by integrating over these parameters, i.e.,

da.P()
M

, )") \ // P()
M

, )", M
B
, a)dM

BAs in P97, the small correlations between the photo-
metric uncertainties of the high-redshift supernovae, due to
shared calibration data, have been accounted for by Ðtting
with a correlation matrix of uncertainties.11 The low-
redshift supernova photometry is more likely to be uncor-
related in its calibration, since these supernovae were not
discovered in batches. However, we take a 0.01 mag system-
atic uncertainty in the comparison of the low-redshift
B-band photometry and the high-redshift R-band photo-
metry. The stretch-factor uncertainty is propagated with a
Ðxed width-luminosity slope (taken from the low-redshift

11 The data are available at http ://www-supernova.lbl.gov.
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FIG. 2.È(a) Hubble diagram for 42 high-redshift type Ia supernovae from the Supernova Cosmology Project and 18 low-redshift type Ia supernovae from
the Supernova Survey, plotted on a linear redshift scale to display details at high redshift. The symbols and curves are as in Fig. 1.Cala� n/Tololo
(b) Magnitude residuals from the best-Ðt Ñat cosmology for the Ðt C supernova subset, 0.72). The dashed curves are for a range of Ñat()

M
, )")\ (0.28,

cosmological models : on top, (0.5, 0.5) third from bottom, (0.75, 0.25) second from bottom, and (1, 0) is the solid curve on bottom. The()
M

, )")\ (0, 1)
middle solid curve is for Note that this plot is practically identical to the magnitude residual plot for the best-Ðt unconstrained cosmology()

M
, )")\ (0, 0).

of Ðt C, with (c) Uncertainty-normalized residuals from the best-Ðt Ñat cosmology for the Ðt C supernova subset,()
M

, )")\ (0.73, 1.32). ()
M

, )") \
(0.28, 0.72).

supernovae ; cf. P97) and checked for consistency after the
Ðt.

We have compared the results of Bayesian and classical,
““ frequentist,ÏÏ Ðtting procedures. For the Bayesian Ðts, we
have assumed a ““ prior ÏÏ probability distribution that has
zero probability for but otherwise has uniform)

M
\ 0

probability in the four parameters a, and For)
M

, )", M
B
.

the frequentist Ðts, we have followed the classical statistical
procedures described by Feldman & Cousins (1998) to
guarantee frequentist coverage of our conÐdence regions in
the physically allowed part of parameter space. Note that
throughout the previous cosmology literature, completely



570 PERLMUTTER ET AL. Vol. 517

TABLE 1

SCP SNE IA DATA

SN z p
z

m
X
peak p

X
peak A

X
K

BX
m

B
peak m

B
eff p

mBeff
Notes

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1992bi . . . . . . . 0.458 0.001 22.12 0.10 0.03 [0.72 22.81 23.11 0.46 EÈH
1994F . . . . . . . 0.354 0.001 22.08 0.10 0.11 [0.58 22.55 22.38 0.33 EÈH
1994G . . . . . . . 0.425 0.001 21.52 0.21 0.03 [0.68 22.17 22.13 0.49
1994H . . . . . . . 0.374 0.001 21.28 0.06 0.10 [0.61 21.79 21.72 0.22 BÈL
1994al . . . . . . . 0.420 0.001 22.37 0.06 0.42 [0.68 22.63 22.55 0.25 EÈH
1994am . . . . . . 0.372 0.001 21.82 0.07 0.10 [0.61 22.32 22.26 0.20 EÈH
1994an . . . . . . 0.378 0.001 22.14 0.08 0.21 [0.62 22.55 22.58 0.37 EÈH
1995aq . . . . . . 0.453 0.001 22.60 0.07 0.07 [0.71 23.24 23.17 0.25
1995ar . . . . . . . 0.465 0.005 22.71 0.04 0.07 [0.71 23.35 23.33 0.30 H
1995as . . . . . . . 0.498 0.001 23.02 0.07 0.07 [0.71 23.66 23.71 0.25 H
1995at . . . . . . . 0.655 0.001 22.62 0.03 0.07 [0.66 23.21 23.27 0.21 H
1995aw . . . . . . 0.400 0.030 21.75 0.03 0.12 [0.65 22.27 22.36 0.19
1995ax . . . . . . 0.615 0.001 22.53 0.07 0.11 [0.67 23.10 23.19 0.25
1995ay . . . . . . 0.480 0.001 22.64 0.04 0.35 [0.72 23.00 22.96 0.24
1995az . . . . . . . 0.450 0.001 22.44 0.07 0.61 [0.71 22.53 22.51 0.23
1995ba . . . . . . 0.388 0.001 22.08 0.04 0.06 [0.63 22.66 22.65 0.20
1996cf . . . . . . . 0.570 0.010 22.70 0.03 0.13 [0.68 23.25 23.27 0.22
1996cg . . . . . . . 0.490 0.010 22.46 0.03 0.11 [0.72 23.06 23.10 0.20 C, D, GÈL
1996ci . . . . . . . 0.495 0.001 22.19 0.03 0.09 [0.71 22.82 22.83 0.19
1996ck . . . . . . 0.656 0.001 23.08 0.07 0.13 [0.66 23.62 23.57 0.28
1996cl . . . . . . . 0.828 0.001 23.53 0.10 0.18 [1.22 24.58 24.65 0.54
1996cm . . . . . . 0.450 0.010 22.66 0.07 0.15 [0.71 23.22 23.17 0.23
1996cn . . . . . . 0.430 0.010 22.58 0.03 0.08 [0.69 23.19 23.13 0.22 C, D, GÈL
1997F . . . . . . . 0.580 0.001 22.90 0.06 0.13 [0.68 23.45 23.46 0.23 H
1997G . . . . . . . 0.763 0.001 23.56 0.41 0.20 [1.13 24.49 24.47 0.53
1997H . . . . . . . 0.526 0.001 22.68 0.05 0.16 [0.70 23.21 23.15 0.20 H
1997I . . . . . . . . 0.172 0.001 20.04 0.02 0.16 [0.33 20.20 20.17 0.18
1997J . . . . . . . . 0.619 0.001 23.25 0.08 0.13 [0.67 23.80 23.80 0.28
1997K . . . . . . . 0.592 0.001 23.73 0.10 0.07 [0.67 24.33 24.42 0.37 H
1997L . . . . . . . 0.550 0.010 22.93 0.05 0.08 [0.69 23.53 23.51 0.25
1997N . . . . . . . 0.180 0.001 20.19 0.01 0.10 [0.34 20.42 20.43 0.17 H
1997O . . . . . . . 0.374 0.001 22.97 0.07 0.09 [0.61 23.50 23.52 0.24 BÈL
1997P . . . . . . . 0.472 0.001 22.52 0.04 0.10 [0.72 23.14 23.11 0.19
1997Q . . . . . . . 0.430 0.010 22.01 0.03 0.09 [0.69 22.60 22.57 0.18
1997R . . . . . . . 0.657 0.001 23.28 0.05 0.11 [0.66 23.83 23.83 0.23
1997S . . . . . . . . 0.612 0.001 23.03 0.05 0.11 [0.67 23.59 23.69 0.21
1997ac . . . . . . . 0.320 0.010 21.38 0.03 0.09 [0.55 21.83 21.86 0.18
1997af . . . . . . . 0.579 0.001 22.96 0.07 0.09 [0.68 23.54 23.48 0.22
1997ai . . . . . . . 0.450 0.010 22.25 0.05 0.14 [0.71 22.81 22.83 0.30 H
1997aj . . . . . . . 0.581 0.001 22.55 0.06 0.11 [0.68 23.12 23.09 0.22
1997am . . . . . . 0.416 0.001 21.97 0.03 0.11 [0.67 22.52 22.57 0.20
1997ap . . . . . . 0.830 0.010 23.20 0.07 0.13 [1.23 24.30 24.32 0.22 H

NOTE.ÈCol. (1) : IAU Name assigned to SCP supernova.
Col. (2) : Geocentric redshift of supernova or host galaxy.
Col. (3) : Redshift uncertainty.
Col. (4) : Peak magnitude from light-curve Ðt in observed band corresponding to rest-frame B-band (i.e., m

X
peak 4m

R
peak

or m
I
peak).

Col. (5) : Uncertainty in Ðt peak magnitude.
Col. (6) : Galactic extinction in observed band corresponding to rest-frame B-band (i.e., or an uncer-A

X
4A

R
A

I
) ;

tainty of 10% is assumed.
Col. (7) : Representative K-correction (at peak) from observed band to B-band (i.e., or an uncer-K

BX
4 K

BR
K

BI
) ;

tainty of 2% is assumed.
Col. (8) : B-band peak magnitude.
Col. (9) : Stretch luminosityÈcorrected e†ective B-band peak magnitude : m

B
eff 4m

X
peak ] a(s[ 1) [ K

BX
[ A

X
.

Col. (10) : Total uncertainty in corrected B-band peak magnitude. This includes uncertainties due to the intrinsic
luminosity dispersion of SNe Ia of 0.17 mag, 10% of the Galactic extinction correction, 0.01 mag for K-corrections, 300
km s~1 to account for peculiar velocities, in addition to propagated uncertainties from the light-curve Ðts.

Col. (11) : Fits from which given supernova was excluded.

unconstrained Ðts have generally been used that can (and
do) lead to conÐdence regions that include the part of
parameter space with negative values for The di†er-)

M
.

ences between the conÐdence regions that result from
Bayesian and classical analyses are small. We present the
Bayesian conÐdence regions in the Ðgures, since they are

somewhat more conservative ; i.e., they have larger con-
Ðdence regions in the vicinity of particular interest near
"\ 0.

The residual dispersion in SN Ia peak magnitude after
correcting for the width-luminosity relation is small, about
0.17 mag, before applying any color-correction. This was
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TABLE 2

SNE IA DATACALa� N/TOLOLO

SN z p
z

mobspeak pobspeak A
B

K
BB

m
B
peak m

B
corr p

mBcorr
Notes

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1990O . . . . . . 0.030 0.002 16.62 0.03 0.39 [0.00 16.23 16.26 0.20
1990af . . . . . . 0.050 0.002 17.92 0.01 0.16 ]0.01 17.75 17.63 0.18
1992P . . . . . . . 0.026 0.002 16.13 0.03 0.12 [0.01 16.02 16.08 0.24
1992ae . . . . . . 0.075 0.002 18.61 0.12 0.15 ]0.03 18.43 18.43 0.20
1992ag . . . . . . 0.026 0.002 16.59 0.04 0.38 [0.01 16.22 16.28 0.20
1992al . . . . . . 0.014 0.002 14.60 0.01 0.13 [0.01 14.48 14.47 0.23
1992aq . . . . . . 0.101 0.002 19.29 0.12 0.05 ]0.05 19.19 19.16 0.23
1992bc . . . . . . 0.020 0.002 15.20 0.01 0.07 [0.01 15.13 15.18 0.20
1992bg . . . . . . 0.036 0.002 17.41 0.07 0.77 ]0.00 16.63 16.66 0.21
1992bh . . . . . . 0.045 0.002 17.67 0.04 0.10 ]0.01 17.56 17.61 0.19
1992bl . . . . . . 0.043 0.002 17.31 0.07 0.04 ]0.01 17.26 17.19 0.18
1992bo . . . . . . 0.018 0.002 15.85 0.02 0.11 [0.01 15.75 15.61 0.21 BÈL
1992bp . . . . . . 0.079 0.002 18.55 0.02 0.21 ]0.04 18.30 18.27 0.18
1992br . . . . . . 0.088 0.002 19.71 0.07 0.12 ]0.04 19.54 19.28 0.18 BÈL
1992bs . . . . . . 0.063 0.002 18.36 0.05 0.09 ]0.03 18.24 18.24 0.18
1993B . . . . . . . 0.071 0.002 18.68 0.08 0.31 ]0.03 18.34 18.33 0.20
1993O . . . . . . 0.052 0.002 17.83 0.01 0.25 ]0.01 17.58 17.54 0.18
1993ag . . . . . . 0.050 0.002 18.29 0.02 0.56 ]0.01 17.71 17.69 0.20

NOTE.ÈCol. (1) : IAU name assigned to supernova.Cala� n/Tololo
Col. (2) : Redshift of supernova or host galaxy in Local Group rest-frame.
Col. (3) : Redshift uncertainty.
Col. (4) : Peak magnitude from light-curve Ðt in observed B-band. Note that the template light curve used in the

Ðt is not identical to the template light curve used by Hamuy et al. (1995), so the best-Ðt peak magnitude may di†er
slightly.

Col. (5) : Uncertainty in Ðt peak magnitude.
Col. (6) : Galactic extinction in observed B-band ; an uncertainty of 10% is assumed.
Col. (7) : Representative K-correction from observed B-band to rest-frame B-band ; an uncertainty of 2% is

assumed.
Col. (8) : B-band peak magnitude.
Col. (9) : Stretch-luminosity corrected B-band peak magnitude.
Col. (10) : Total uncertainty in corrected B-band peak magnitude. This includes uncertainties due to the intrinsic

luminosity dispersion of SNe Ia of 0.17 mag, 10% of the Galactic extinction correction, 0.01 mag for K-corrections,
300 km s~1 to account for peculiar velocities, in addition to propagated uncertainties from the light-curve Ðts.

Col. (11) : Fits from which given supernova was excluded.

reported in Hamuy et al. (1996) for the low-redshift Cala� n/
Tololo supernovae, and it is striking that the same residual
is most consistent with the current 42 high-redshift super-
novae (see ° 5). It is not clear from the current data sets,
however, whether this dispersion is best modeled as a
normal distribution (a Gaussian in Ñux space) or a log-
normal distribution (a Gaussian in magnitude space). We
have therefore performed the Ðts in two ways : minimizing
s2 measured using either magnitude residuals or Ñux
residuals. The results are generally in excellent agreement,
but since the magnitude Ðts yield slightly larger conÐdence
regions, we have again chosen this more conservative alter-
native to report in this paper.

We have analyzed the total set of 60 low- plus high-
redshift supernovae in several ways, with the results of each
Ðt presented as a row of Table 3. The most inclusive
analyses are presented in the Ðrst two rows : Fit A is a Ðt to
the entire data set, while Ðt B excludes two supernovae that
are the most signiÐcant outliers from the average light-
curve width, s \ 1, and two of the remaining supernovae
that are the largest residuals from Ðt A. Figure 4 shows that
the remaining low- and high-redshift supernovae are well
matched in their light-curve width (the error-weighted
means are andSsTHamuy\ 0.99^ 0.01 SsTSCP \ 1.00
^ 0.01) making the results robust with respect to the
width-luminosityÈrelation correction (see ° 4.5). Our
primary analysis, Ðt C, further excludes two supernovae

that are likely to be reddened, and is discussed in the follow-
ing section.

Fits A and B give very similar results. Removing the two
large-residual supernovae from Ðt A yields indistinguish-
able results, while Figure 5a shows that the 68% and 90%
joint conÐdence regions for and still change very)

M
)"little after also removing the two supernovae with outlier

light-curve widths. The best-Ðt mass-density in a Ñat uni-
verse for Ðt A is, within a fraction of the uncertainty, the
same value as for Ðt B, (see Table 3). The)

M
flat\ 0.26~0.08`0.09

main di†erence between the Ðts is the goodness-of-Ðt : the
larger s2 per degree of freedom for Ðt A, indicatessl2\ 1.76,
that the outlier supernovae included in this Ðt are probably
not part of a Gaussian distribution and thus will not be
appropriately weighted in a s2 Ðt. The s2 per degree of
freedom for Ðt B, is over 300 times more probablesl2\ 1.16,
than that of Ðt A and indicates that the remaining 56 super-
novae are a reasonable Ðt to the model, with no large sta-
tistical errors remaining unaccounted for.

Of the two large-residual supernovae excluded from the
Ðts after Ðt A, one is fainter than the best-Ðt prediction and
one is brighter. The photometric color excess (see ° 4.1) for
the fainter supernova, SN 1997O, has an uncertainty that is
too large to determine conclusively whether it is reddened.
The brighter supernova, SN 1994H, is one of the Ðrst seven
high-redshift supernovae originally analyzed in P97 and is
one of the few supernovae without a spectrum to conÐrm its
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FIG. 3.ÈDistribution of rest-frame B-band magnitude residuals from
the best-Ðt Ñat cosmology for the Ðt C supernova subset, for (a) 18

supernovae, at redshifts z¹ 0.1 and (b) 42 supernovae fromCala� n/Tololo
the Supernova Cosmology Project, at redshifts between 0.18 and 0.83. The
darker shading indicates those residuals with uncertainties less than 0.35
mag, unshaded boxes indicate uncertainties greater than 0.35 mag, and
dashed boxes indicate the supernovae that are excluded from Ðt C. The
curves show the expected magnitude residual distributions if they are
drawn from normal distributions given the measurement uncertainties and
0.17 mag of intrinsic SN Ia dispersion. The low-redshift expected distribu-
tion matches a Gaussian with p \ 0.20 mag (with error on the mean of 0.05
mag), while the high-redshift expected distribution matches a Gaussian
with p \ 0.22 mag (with error on the mean of 0.04 mag).

classiÐcation as a SN Ia. After reanalysis with additional
calibration data and improved K-corrections, it remains the
brightest outlier in the current sample, but it a†ects the Ðnal
cosmological Ðts much less as one of 42 supernovae, rather
than 1 of 5 supernovae in the primary P97 analysis.

4. SYSTEMATIC UNCERTAINTIES AND CROSS-CHECKS

With our large sample of 42 high-redshift supernovae, it
is not only possible to obtain good statistical uncertainties
on the measured parameters but also to quantify several
possible sources of systematic uncertainties. As discussed in
P97, the primary approach is to examine subsets of our data
that will be a†ected to lesser extents by the systematic
uncertainty being considered. The high-redshift sample is
now large enough that these subsets each contain enough
supernovae to yield results of high statistical signiÐcance.

4.1. Extragalactic Extinction
4.1.1. Color-Excess Distributions

Although we have accounted for extinction due to our
Galaxy, it is still probable that some supernovae are

FIG. 4.ÈDistribution of light-curve widths for (a) 18 Cala� n/Tololo
supernovae at redshifts z¹ 0.1 and (b) 42 supernovae from the Supernova
Cosmology Project at redshifts between 0.18 and 0.83. The light-curve
widths are characterized by the ““ stretch factor,ÏÏ s, that stretches or con-
tracts the time axis of a template SN Ia light curve to best Ðt the observed
light curve for each supernova (see Perlmutter et al. 1995a, 1997e ; Kim et
al. 1999 ; Goldhaber et al. 1999). The template has been time-dilated by a
factor 1] z before Ðtting to the observed light curves to account for the
cosmological lengthening of the supernova timescale (Goldhaber et al.
1995 ; Leibundgut et al. 1996a). The shading indicates those measurements
of s with uncertainties less than 0.1, and the dashed lines indicate the two
supernovae that are removed from the Ðts after Ðt A. These two excluded
supernovae are the most signiÐcant deviations from s \ 1 (the highest
stretch supernova in panel b has an uncertainty of ^0.23 and hence is not
a signiÐcant outlier from s \ 1) ; the remaining low- and high-redshift dis-
tributions have almost exactly the same error-weighted means :

andSsTHamuy \ 0.99^ 0.01 SsTSCP \ 1.00^ 0.01.

dimmed by host galaxy dust or intergalactic dust. For a
standard dust extinction law (Cardelli et al. 1989) the color,
B[V , of a supernova will become redder as the amount of
extinction, increases. We thus can look for any extinc-A

B
,

tion di†erences between the low- and high-redshift super-
novae by comparing their rest-frame colors. Since there is a
small dependence of intrinsic color on the light-curve width,
supernova colors can only be compared for the same stretch
factor ; for a more convenient analysis, we subtract out the
intrinsic colors so that the remaining color excesses can be
compared simultaneously for all stretch factors. To deter-
mine the rest-frame color excess E(B[V ) for each super-
nova, we Ðtted the rest-frame B and V photometry to the B
and V SN Ia light-curve templates, with one of the Ðtting
parameters representing the magnitude di†erence between
the two bands at their respective peaks. Note that these
light-curve peaks are D2 days apart, so the resulting

color parameter, which is frequently used toBmax[ Vmax
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TABLE 3

FIT RESULTS

Best Fit
Fit N s2 DOF )

M
flat P()" [ 0) ()

M
, )") Fit Description

Inclusive Fits :
A . . . . . . 60 98 56 0.29~0.08`0.09 0.9984 0.83, 1.42 All supernovae
B . . . . . . 56 60 52 0.26~0.08`0.09 0.9992 0.85, 1.54 Fit A, but excluding two residual outliers and two stretch outliers

Primary Ðt :
C . . . . . . 54 56 50 0.28~0.08`0.09 0.9979 0.73, 1.32 Fit B, but also excluding two likely reddened

Comparison Analysis Techniques :
D . . . . . . 54 53 51 0.25~0.09`0.10 0.9972 0.76, 1.48 No stretch correctiona
E . . . . . . 53 62 49 0.29~0.10`0.12 0.9894 0.35, 0.76 Bayesian one-sided extinction correctedb

E†ect of Reddest Supernovae :
F . . . . . . 51 59 47 0.26~0.08`0.09 0.9991 0.85, 1.54 Fit B supernovae with colors measured
G . . . . . . 49 56 45 0.28~0.08`0.09 0.9974 0.73, 1.32 Fit C supernovae with colors measured
H . . . . . . 40 33 36 0.31~0.09`0.11 0.9857 0.16, 0.50 Fit G, but excluding seven next reddest and two next faintest high-redshift supernovae

Systematic Uncertainty Limits :
I . . . . . . . 54 56 50 0.24~0.08`0.09 0.9994 0.80, 1.52 Fit C with ]0.03 mag systematic o†set
J . . . . . . . 54 57 50 0.33~0.09`0.10 0.9912 0.72, 1.20 Fit C with [0.04 mag systematic o†set

Clumped Matter Metrics :
K . . . . . . 54 57 50 0.35~0.10`0.12 0.9984 2.90, 2.64 Empty beam metricc
L . . . . . . 54 56 50 0.34~0.09`0.10 0.9974 0.94, 1.46 Partially Ðlled beam metric

a A 0.24 mag intrinsic SNe Ia luminosity dispersion is assumed.
b Bayesian method of RPK96 with conservative prior (see text and Appendix) and 0.10 mag intrinsic SNe Ia luminosity dispersion.
c Assumes additional Bayesian prior of )

M
\ 3, )" \ 3.

describe supernova colors, is not a color measurement on a
particular day. The di†erence of this color parameter from
the found for a sample of low-redshift super-Bmax[ Vmaxnovae for the same light-curve stretch-factor (Tripp 1998 ;
Kim et al. 1999 ; M. M. Phillips 1998, private
communication) does yield the rest-frame E(B[V ) color
excess for the Ðtted supernova.

For the high-redshift supernovae at 0.3 \ z\ 0.7, the
matching R- and I-band measurements take the place of the
rest-frame B and V measurements, and the Ðt B and V
light-curve templates are K-corrected from the appropriate
matching Ðlters, e.g., (Kim et al. 1996 ;R(t)\B(t) ] K

BR
(t)

Nugent et al. 1998). For the three supernovae at z[ 0.75,
the observed R[I corresponds more closely to a rest-frame
U[B color than to a B[V color, so E(B[V ) is calculated
from rest-frame E(U[B) using the extinction law of Card-
elli et al. (1989). Similarly, for the two SNe Ia at zD 0.18,
E(B[V ) is calculated from rest-frame E(V [R).

Figure 6 shows the color excess distributions for both the
low- and high-redshift supernovae after removing the color
excess due to our Galaxy. Six high-redshift supernovae are
not shown on this E(B[V ) plot, because six of the Ðrst
seven high-redshift supernovae discovered were not
observed in both R and I bands. The color of one low-
redshift supernova, SN 1992bc, is poorly determined by the
V -band template Ðt and has also been excluded. Two super-
novae in the high-redshift sample are [3 p red-and-faint
outliers from the mean in the joint probability distribution
of E(B[V ) color excess and magnitude residual from Ðt B.
These two, SNe 1996cg and 1996cn (Fig. 6 ; light shading),
are very likely reddened supernovae. To obtain a more
robust Ðt of the cosmological parameters, in Ðt C we
remove these supernovae from the sample. As can be seen
from the Ðt-C 68% conÐdence region of Figure 5a, these
likely reddened supernovae do not signiÐcantly a†ect any of
our results. The main distribution of 38 high-redshift super-
novae thus is barely a†ected by a few reddened events. We

Ðnd identical results if we exclude the six supernovae
without color measurements (Ðt G in Table 3). We take Ðt C
to be our primary analysis for this paper, and in Figure 7 we
show a more extensive range of conÐdence regions for this
Ðt.

4.1.2. Cross-Checks on Extinction

The color-excess distributions of the Ðt C data set (with
the most signiÐcant measurements highlighted by dark
shading in Fig. 6) show no signiÐcant di†erence between the
low- and high-redshift means. The dashed curve drawn over
the high-redshift distribution of Figure 6 shows the
expected distribution if the low-redshift distribution had the
measurement uncertainties of the high-redshift supernovae
indicated by the dark shading. This shows that the
reddening distribution for the high-redshift supernovae is
consistent with the reddening distribution for the low-
redshift supernovae, within the measurement uncertainties.
The error-weighted means of the low- and high-redshift dis-
tributions are almost identical : SE(B[V )THamuy\ 0.033
^ 0.014 mag and \ 0.035^ 0.022 mag. WeSE(B[V )TSCPalso Ðnd no signiÐcant correlation between the color excess
and the statistical weight or redshift of the supernovae
within these two redshift ranges.

To test the e†ect of any remaining high-redshift
reddening on the Ðt C measurement of the cosmological
parameters, we have constructed a Ðt H subset of the high-
redshift supernovae that is intentionally biased to be bluer
than the low-redshift sample. We exclude the error-
weighted reddest 25% of the high-redshift supernovae ; this
excludes nine high-redshift supernovae with the highest
error-weighted E(B[V ). We further exclude two super-
novae that have large uncertainties in E(B[V ) but are sig-
niÐcantly faint in their residual from Ðt C. This is a
somewhat conservative cut, since it removes the faintest of
the high-redshift supernovae, but it does ensure that the
error-weighted E(B[V ) mean of the remaining supernova



FIG. 5.ÈComparison of best-Ðt conÐdence regions in the plane. Each panel shows the result of Ðt C (shaded regions) compared with Ðts to di†erent)
M
-)"subsets of supernovae, or variant analyses for the same subset of supernovae, to test the robustness of the Ðt C result. Unless otherwise indicated, the 68% and

90% conÐdence regions in the plane are shown after integrating the four-dimensional Ðts over the other two variables, and a. The ““ noÈbig-bang ÏÏ)
M
-)" M

Bshaded region at the upper left, the Ñat-universe diagonal line, and the inÐnite expansion line are shown as in Fig. 7 for ease of comparison. The panels are
described as follows : (a) Fit A of all 60 supernovae and Ðt B of 56 supernovae, excluding the two outliers from the light-curve width distribution and the two
remaining statistical outliers. Fit C further excludes the two likely reddened high-redshift supernovae. (b) Fit D of the same 54-supernova subset as in Ðt C,
but with no correction for the light-curve width-luminosity relation. (c) Fit H of the subset of supernovae with color measurements, after excluding the
reddest 25% (nine high-redshift supernovae) and the two faint high-redshift supernovae with large uncertainties in their color measurements. The close match
to the conÐdence regions of Ðt C indicates that any extinction of these supernovae is quite small and not signiÐcant in the Ðts of the cosmological parameters.
(d) 68% conÐdence region for Fit E of the 53 supernovae with color measurements from the Ðt B data set, but following the Bayesian reddening-correction
method of RPK96. This method, when used with any reasonably conservative prior (i.e., somewhat broader than the likely true extinction distribution ; see
text), can produce a result that is biased, with an approximate bias direction and worst-case amount indicated by the arrows. (e) Fits I and J. These are
identical to Ðt C but with 0.03 or 0.04 mag added or subtracted from each of the high-redshift supernova measurements to account for the full range of
identiÐed systematic uncertainty in each direction. Other hypothetical sources of systematic uncertainty (see Table 4B) are not included. ( f ) Fit M. This is a
separate two-parameter and Ðt of just the high-redshift supernovae, using the values of and a found from the low-redshift supernovae. The()

M
)") M

Bdashed conÐdence regions show the approximate range of uncertainty from these two low-redshift-derived parameters added to the systematic errors of Ðt J.
Future well-observed low-redshift supernovae can constrain this dashed-line range of uncertainty.
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FIG. 6.È(a) Rest-frame B[V color excess distribution for 17 of 18
supernovae (see text), corrected for Galactic extinction usingCala� n/Tololo

values from Schlegel et al. (1998). (b) Rest-frame B[V color excess for the
36 high-redshift supernovae for which rest-frame B[V colors were mea-
sured, also corrected for Galactic extinction. The darker shading indicates
those E(B[V ) measurements with uncertainties less than 0.3 mag,
unshaded boxes indicate uncertainties greater than 0.3 mag, and the light
shading indicates the two supernovae that are likely to be reddened based
on their joint probability in color excess and magnitude residual from Ðt B.
The dashed curve shows the expected high-redshift E(B[V ) distribution if
the low-redshift distribution had the measurement uncertainties of the
high-redshift supernovae indicated by the dark shading. Note that most of
the color-excess dispersion for the high-redshift supernovae is due to the
rest-frame V -band measurement uncertainties, since the rest-frame B-band
uncertainties are usually smaller.

subset is a good indicator of any reddening that could a†ect
the cosmological parameters. The probability that the high-
redshift subset of Ðt H is redder in the mean than the low-
redshift supernovae is less than 5%; This subset is thus very
unlikely to be biased to fainter magnitudes by high-redshift
reddening. Even with nonstandard, ““ grayer ÏÏ dust that does
not cause as much reddening for the same amount of extinc-
tion, a conservative estimate of the probability that the
high-redshift subset of Ðt H is redder in the mean than the
low-redshift supernovae is still less than D17% for any
high-redshift value of less than twice theR

B
4 A

B
/E(B[V )

low-redshift value. [These same conÐdence levels are
obtained whether using Gaussian statistics, assuming a
normal distribution of E(B[V ) measurements, or using
bootstrap resampling statistics, based on the observed dis-
tribution.] The conÐdence regions of Figure 5c and the )

M
flat

results in Table 3 show that the cosmological parameters
found for Ðt H di†er by less than half of a standard devi-
ation from those for Ðt C. We take the di†erence of these
Ðts, 0.03 in (which corresponds to less than 0.025 in)

M
flat

magnitudes) as a D1 p upper bound on the systematic
uncertainty due to extinction by dust that reddens.

Note that the modes of both distributions appear to be at
zero reddening, and similarly the medians of the distribu-
tions are quite close to zero reddening : SE(B[V )THamuymedian\
0.01 mag and mag. This should beSE(B[V )TSCPmedian\ 0.00
taken as suggestive rather than conclusive, since the zero
point of the relationship between true color and stretch is
not tightly constrained by the current low-redshift SN Ia
data set. This apparent strong clustering of SNe Ia about
zero reddening has been noted in the past for low-redshift
supernova samples. Proposed explanations have been given
based on the relative spatial distributions of the SNe Ia and
the dust : Modeling by Hatano, Branch, & Deaton (1998) of
the expected extinction of SN Ia disk and bulge populations
viewed at random orientations shows an extinction dis-
tribution with a strong spiked peak near zero extinction
along with a broad, lower probability wing to higher extinc-
tion. This wing will be further suppressed by the obser-
vational selection against more reddened supernovae, since
they are dimmer. (For a Ñux-limited survey this suppression
factor is where is10~aR*RBE(B~V)~a(s~1)+B 10~1.6E(B~V), a

Rthe slope of the supernova number counts.) We also note
that the high-redshift supernovae for which we have accu-
rate measurements of apparent separation between SN and
host position (generally, those with HST imaging) appear to
be relatively far from the host center, despite our high
search sensitivity to supernovae in front of the host galaxy
core (see Pain et al. 1996 for search efficiency studies ; also
cf. Wang, & Wheeler 1997). If generally true for theHo� Ñich,
entire sample, this would be consistent with little extinction.

Our results, however, do not depend on the low- and
high-redshift color-excess distributions being consistent
with zero reddening. It is only important that the reddening
distributions for the low-redshift and high-redshift data sets
are statistically the same and that there is no correlation
between reddening and statistical weight in the Ðt of the
cosmological parameters. With both of these conditions
satisÐed, we Ðnd that our measurement of the cosmological
parameters is una†ected (to within the statistical error) by
any small remaining extinction among the supernovae in
the two data sets.

4.1.3. Analysis with Reddening Correction of Individual Supernovae

We have also performed Ðts using rest-frame B-band
magnitudes individually corrected for host galaxy extinc-
tion using (implicitly assuming that theA

B
\R

B
E(B[V )

extragalactic extinction is all at the redshift of the host
galaxy). As a direct comparison between the treatment of
host galaxy extinction described above and an alternative
Bayesian method (RPK96), we applied it to the 53 SNe Ia
with color measurements in our Ðt C data set. We Ðnd that
our cosmological parameter results are robust with respect
to this change, although this method can introduce a bias
into the extinction corrections and hence the cosmological
parameters. In brief, in this method the Gaussian extinction
probability distribution implied by the measured color-
excess and its error is multiplied by an assumed a priori
probability distribution (the Bayesian prior) for the intrinsic
distribution of host extinctions. The most probable value of
the resulting renormalized probability distribution is taken
as the extinction, and following A. Riess (1998, private
communication) the second-moment is taken as the uncer-
tainty. For this analysis, we choose a conservative prior (as
given in RPK96) that does not assume that the supernovae
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are unextinguished but rather is somewhat broader than the
true extinction distribution where the majority of the pre-
viously observed supernovae apparently su†er very little
reddening. (If one alternatively assumes that the current
dataÏs extinction distribution is quite as narrow as that of
previously observed supernovae, one can choose a less con-
servative but more realistic narrow prior probability dis-
tribution, such as that of Hatano et al. 1998. This turns out
to be quite similar to our previous analysis in ° 4.1.1, since a
distribution like that of Hatano et al. 1998 has zero extinc-
tion for most supernovae.)

This Bayesian method with a conservative prior will only
brighten supernovae, never make them fainter, since it only
a†ects the supernovae with redder measurements than the
zero-extinction E(B[V ) value, leaving unchanged those
measured to be bluer than this. The resulting slight di†er-
ence between the assumed and true reddening distributions
would make no di†erence in the cosmology measurements
if its size were the same at low and high redshifts. However,
since the uncertainties, in the high-redshift data setp

E(B~V)highvz ,
E(B[V ) measurements are larger on average than those of
the low-redshift data set, this method can over-p

E(B~V)lowvz ,
correct the high-redshift supernovae on average relative to
the low-redshift supernovae. Fortunately, as shown in the
Appendix, even an extreme case with a true distribution all
at zero extinction and a conservative prior would introduce
a bias in extinction only of order 0.1 mag at worst forA

Bour current low- and high-redshift measurement uncer-
tainties. The results of Ðt E are shown in Table 3 and as the
dashed contour in Figure 5d, where it can be seen that
compared to Ðt C this approach moves the best-Ðt value
much less than this and in the direction expected for this
e†ect (Fig. 5d ; arrows). The fact that changes so little)

M
flat

from case C, even with the possible bias, gives further con-
Ðdence in the cosmological results.

We can eliminate any such small bias of this method by
assuming no Bayesian prior on the host-galaxy extinction,
allowing extinction corrections to be negative in the case of
supernovae measured to be bluer than the zero-extinction
E(B[V ) value. As expected, we recover the unbiased results
within error but with larger uncertainties, since the Bayes-
ian prior also narrows the error bars in the method of
RPK96. However, there remains a potential source of bias
when correcting for reddening : the e†ective ratio of total to
selective extinction, could vary for several reasons.R

B
,

First, the extinction could be due to host galaxy dust at the
supernovaÏs redshift or intergalactic dust at lower redshifts,
where it will redden the supernova less, since it is acting on
a redshifted spectrum. Second, may be sensitive to dustR

Bdensity, as indicated by variations in the dust extinction
laws between various sight lines in the Galaxy (Clayton &
Cardelli 1988 ; Gordon & Clayton 1998). Changes in metal-
licity might be expected to be a third possible cause of R

Bevolution, since metallicity is one dust-related quantity
known to evolve with redshift (Pettini et al. 1997), but fortu-
nately it appears not to signiÐcantly alter as evidencedR

B
,

by the similarity of the optical portions of the extinction
curves of the Galaxy, the LMC, and the SMC (Pei 1992 ;
Gordon & Clayton 1998). Three-Ðlter photometry of high-
redshift supernovae currently in progress with the HST will
help test for such di†erences inR

B
.

To avoid these sources of bias, we consider it important
to use and compare both analysis approaches : the rejection
of reddened supernovae and the correction of reddened
supernovae. We do Ðnd consistency in the results calculated

both ways. The advantages of the analyses with reddening
corrections applied to individual supernovae (with or
without a Bayesian prior on host-galaxy extinction) are out-
weighed by the disadvantages for our sample of high-
redshift supernovae ; although, in principle, by applying
reddening corrections the intrinsic magnitude dispersion of
SNe Ia can be reduced from an observed dispersion of 0.17
mag to approximately 0.12 mag, in practice the net
improvement for our sample is not signiÐcant, since uncer-
tainties in the color measurements often dominate. We have
therefore chosen for our primary analysis to follow the Ðrst
procedure discussed above, removing the likely reddened
supernovae (Ðt C) and then comparing color-excess means.
The systematic di†erence for Ðt H, which rejects the reddest
and the faintest high-redshift supernovae, is already quite
small, and we avoid introducing additional actual and pos-
sible biases. Of course, neither approach avoids biases if R

Bat high redshift is so large that dust does not[[2R
B
(z\ 0)]

redden the supernovae enough to be distinguished and this
dust makes more than a few supernovae faint.

4.2. Malmquist Bias and Other L uminosity Biases
In the Ðt of the cosmological parameters to the

magnitude-redshift relation, the low-redshift supernova
magnitudes primarily determine and the width-M

Bluminosity slope a, and then the comparison with the high-
redshift supernova magnitudes primarily determines )

Mand Both low- and high-redshift supernova samples can)".
be biased toward selecting the brighter tail of any distribu-
tion in supernova detection magnitude for supernovae
found near the detection threshold of the search (classical
Malmquist bias ; Malmquist 1924, 1936). A width-
luminosity relation Ðt to such a biased population would
have a slope that is slightly too shallow and a zero point
slightly too bright. A second bias is also acting on the super-
nova samples, selecting against supernovae on the narrowÈ
light-curve side of the width-luminosity relation, since such
supernovae are detectable for a shorter period of time. Since
this bias removes the narrowest/faintest supernova light
curves preferentially, it culls out the part of the width-
brightness distribution most subject to Malmquist bias and
moves the resulting best-Ðt slope and zero point closer to
their correct values.

If the Malmquist bias is the same in both data sets, then it
is completely absorbed by and a and does not a†ect theM

B
,

cosmological parameters. Thus our principal concern is
that there could be a di†erence in the amount of bias
between the low- and high-redshift samples. Note that
e†ects peculiar to photographic supernovae searches, such
as saturation in galaxy cores, that might in principle select
slightly di†erent SNe Ia subpopulations should not be
important in determining luminosity bias, because light-
curve stretch compensates for any such di†erences. More-
over, Figure 4 shows that the high-redshift SNe Ia we have
discovered have a stretch distribution entirely consistent
with those discovered in the search.Cala� n/Tololo

To estimate the Malmquist bias of the high-redshift-
supernova sample, we Ðrst determined the completeness of
our high-redshift searches as a function of magnitude,
through an extensive series of tests inserting artiÐcial super-
novae into our images (see Pain et al. 1996). We Ðnd that
roughly 30% of our high-redshift supernovae were detected
within twice the SN Ia intrinsic luminosity dispersion of the
50% completeness limit, where the above biases might be
important. This is consistent with a simple model where the
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supernova number counts follow a power-law slope of 0.4
mag~1, similar to that seen for comparably distant galaxies
(Smail et al. 1995). For a Ñux-limited survey of standard
candles having the light-curve width-corrected luminosity
dispersion for SNe Ia of D0.17 mag and this number-count
power-law slope, we can calculate that the classical Malm-
quist bias should be 0.03 mag (see, e.g., Mihalas & Binney
1981 for a derivation of the classical Malmquist bias). (Note
that this estimate is much smaller than the Malmquist bias
a†ecting other cosmological distance indicators because of
the much smaller intrinsic luminosity dispersion of SNe Ia.)
These high-redshift supernovae, however, are typically
detected before maximum, and their detection magnitudes
and peak magnitudes have a correlation coefficient of only
0.35, so the e†ects of classical Malmquist bias should be
diluted. Applying the formalism of Willick (1994) we esti-
mate that the decorrelation between detection magnitude
and peak magnitude reduces the classical Malmquist bias in
the high-redshift sample to only 0.01 mag. The redshift and
stretch distributions of the high-redshift supernovae that
are near the 50% completeness limit track those of the
overall high-redshift sample, again suggesting that Malm-
quist biases are small for our data set.

We cannot make an exactly parallel estimate of Malm-
quist bias for the low-redshiftÈsupernova sample, because
we do not have information for the data setCala� n/Tololo
concerning the number of supernovae found near the detec-
tion limit. However, the amount of classical Malmquist bias
should be similar for the supernovae, sinceCala� n/Tololo
the amount of bias is dominated by the intrinsic luminosity
dispersion of SNe Ia, which we Ðnd to be the same for the
low-redshift and high-redshift samples (see ° 5). Figure 4
shows that the stretch distributions for the high- and low-
redshift samples are very similar, so that the compensating
e†ects of stretch bias should also be similar in the two data
sets. The major source of di†erence in the bias is expected to
be due to the close correlation between the detection magni-
tude and the peak magnitude for the low-redshift supernova
search, since this search tended not to Ðnd the supernovae
as early before peak as the high-redshift search. In addition,
the number-counts at low-redshift should be somewhat
steeper (Maddox et al. 1990). We thus expect the

supernovae to have a bias closer to thatCala� n/Tololo
obtained by direct application of the classical Malmquist
bias formula, 0.04 mag. One might also expect
““ inhomogeneous Malmquist bias ÏÏ to be more important
for the low-redshift supernovae, since in smaller volumes of
space inhomogeneities in the host galaxy distribution might
by chance put more supernovae near the detection limit
than would be expected for a homogeneous distribution.
However, after averaging over all the Cala� n/Tololo
supernova-search Ðelds, the total low-redshift volume
searched is large enough that we expect galaxy count Ñuc-
tuations of only D4%, so the classical Malmquist bias is
still a good approximation.

We believe that both these low- and high-redshift biases
may be smaller and even closer to each other, because of the
mitigating e†ect of the bias against detection of low-stretch
supernovae, discussed above. However, to be conservative
we take the classical Malmquist bias of 0.04 mag for the
low-redshift data set and the least biased value of 0.01 mag
for the high-redshift data set, and we consider systematic
uncertainty from this source to be the di†erence, 0.03 mag,
in the direction of low-redshift supernovae more biased
than high-redshift. In the other direction, i.e., for high-

redshift supernovae more biased than low-redshift, we con-
sider the extreme case of a fortuitously unbiased
low-redshift sample and take the systematic uncertainty
bound to be the 0.01 mag bias of the high-redshift sample.
(In this direction any systematic error is less relevant to the
question of the existence of a cosmological constant.)

4.3. Gravitational L ensing
As discussed in P97, the clumping of mass in the universe

could leave the line-of-sight to most of the supernovae
underdense, while occasional supernovae may be seen
through overdense regions. The latter supernovae could be
signiÐcantly brightened by gravitational lensing, while the
former supernovae would appear somewhat fainter. With
enough supernovae, this e†ect will average out (for inclusive
Ðts such as Ðt A, which include outliers), but the most over-
dense lines of sight may be so rare that a set of 42 super-
novae may only sample a slightly biased (fainter) set. The
probability distribution of these ampliÐcations and deam-
pliÐcations has previously been studied both analytically
and by Monte Carlo simulations. Given the acceptance
window of our supernova search, we can integrate the prob-
ability distributions from these studies to estimate the bias
due to ampliÐed or deampliÐed supernovae that may be
rejected as outliers. This average (de)ampliÐcation bias is
less than 1% at the redshifts of our supernovae for simula-
tions based on isothermal spheres the size of typical galaxies
(Holz & Wald 1998), N-body simulations using realistic
mass power spectra (Wambsganss, Cen, & Ostriker 1998),
and the analytic models of Frieman (1996).

It is also possible that the small-scale clumping of matter
is more extreme, for example, if signiÐcant amounts of mass
were in the form of compact objects such as MACHOs. This
could lead to many supernova sight lines that are not just
underdense but nearly empty. Once again, only the very
rare line of sight would have a compact object in it, amplify-
ing the supernova signal. To Ðrst approximation, with 42
supernovae we would see only the nearly empty beams and
thus only deampliÐcations. The appropriate luminosity-
distance formula in this case is not the Friedmann-
Robertson-Walker (FRW) formula but rather the ““ partially
Ðlled beam ÏÏ formula with a mass Ðlling factor, g B 0 (see
Kantowski 1998 and references therein). We present the
results of the Ðt of our data (Ðt K) with this luminosity-
distance formula (as calculated using the code of Kayser,
Helbig, & Schramm 1996) in Figure 8. A more realistic limit
on this pointlike mass density can be estimated, because we
would expect such pointlike masses to collect into the gravi-
tational potential wells already marked by galaxies and
clusters. Fukugita, Hogan, & Peebles (1998) estimate an
upper limit of on the mass that is clustered like)

M
\ 0.25

galaxies. In Figure 8, we also show the conÐdence region
from Ðt L, assuming that only the mass density contribution
up to is pointlike, with Ðlling factor g \ 0, and)

M
\ 0.25

that g rises to 0.75 at We see that at low mass)
M

\ 1.
density, the FRW Ðt is already very close to the nearly
empty-beam (g B 0) scenario, so the results are quite
similar. At high mass density, the results diverge, although
only minimally for Ðt L ; the best Ðt in a Ñat universe is
)

M
flat\ 0.34~0.09`0.10.

4.4. Supernova Evolution and Progenitor
Environment Evolution

The spectrum of a SN Ia on any given point in its light
curve reÑects the complex physical state of the supernova
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FIG. 7.ÈBest-Ðt conÐdence regions in the plane for our primary)
M

-)"analysis, Ðt C. The 68%, 90%, 95%, and 99% statistical conÐdence regions
in the plane are shown, after integrating the four-dimensional Ðt)

M
È)"over and a. (See footnote 11 for a link to the table of this two-M

Bdimensional probability distribution.) See Fig. 5e for limits on the small
shifts in these contours due to identiÐed systematic uncertainties. Note that
the spatial curvature of the universeÈopen, Ñat, or closedÈis not determi-
native of the future of the universeÏs expansion, indicated by the near-
horizontal solid line. In cosmologies above this near-horizontal line the
universe will expand forever, while below this line the expansion of the
universe will eventually come to a halt and recollapse. This line is not quite
horizontal, because at very high mass density there is a region where the
mass density can bring the expansion to a halt before the scale of the
universe is big enough that the mass density is dilute with respect to the
cosmological constant energy density. The upper-left shaded region,
labeled ““ no big bang,ÏÏ represents ““ bouncing universe ÏÏ cosmologies with
no big bang in the past (see Carroll et al. 1992). The lower right shaded
region corresponds to a universe that is younger than the oldest heavy
elements (Schramm 1990) for any value of km s~1 Mpc~1.H0º 50

on that day : the distribution, abundances, excitations, and
velocities of the elements that the photons encounter as they
leave the expanding photosphere all imprint on the spectra.
So far, the high-redshift supernovae that have been studied
have light-curve shapes just like those of low-redshift super-
novae (see Goldhaber et al. 1999), and their spectra show
the same features on the same day of the light curve as their
low-redshift counterparts having comparable light-curve
width. This is true all the way out to the z\ 0.83 limit of the
current sample (Perlmutter et al. 1998b). We take this as a
strong indication that the physical parameters of the super-
nova explosions are not evolving signiÐcantly over this time
span.

Theoretically, evolutionary e†ects might be caused by
changes in progenitor populations or environments. For

example, lower metallicity and more massive SN Ia-
progenitor binary systems should be found in younger
stellar populations. For the redshifts that we are consider-
ing, z\ 0.85, the change in average progenitor masses may
be small (Ruiz-Lapuente, Canal, & Burkert 1997 ; Ruiz-
Lapuente 1998). However, such progenitor mass di†erences
or di†erences in typical progenitor metallicity are expected
to lead to di†erences in the Ðnal C/O ratio in the exploding
white dwarf and hence a†ect the energetics of the explosion.
The primary concern here would be if this changed the
zero-point of the width-luminosity relation. We can look for
such changes by comparing light curve rise times between
low- and high-redshift supernova samples, since this is a
sensitive indicator of explosion energetics. Preliminary indi-
cations suggest that no signiÐcant rise-time change is seen,
with an upper limit of day for our sample (see forth-[1
coming high-redshift studies of Goldhaber et al. 1999 and
Nugent et al. 1998 and low-redshift bounds from Vacca &
Leibundgut 1996, Leibundgut et al. 1996b, and Marvin &
Perlmutter 1989). This tight a constraint on rise-time
change would theoretically limit the zero-point change to
less than D0.1 mag (see Nugent et al. 1995 ; Ho� Ñich,
Wheeler, & Thielemann 1998).

A change in typical C/O ratio can also a†ect the ignition
density of the explosion and the propagation characteristics
of the burning front. Such changes would be expected to
appear as di†erences in light-curve timescales before and
after maximum & Khokhlov 1996). Preliminary(Ho� Ñich
indications of consistency between such low- and high-
redshift light-curve timescales suggest that this is probably
not a major e†ect for our supernova samples (Goldhaber et
al. 1999).

Changes in typical progenitor metallicity should also
directly cause some di†erences in SN Ia spectral features

et al. 1998). Spectral di†erences big enough to(Ho� Ñich
a†ect the B- and V -band light curves (see, e.g., the extreme
mixing models presented in Fig. 9 of et al. 1998)Ho� Ñich
should be clearly visible for the best signal-to-noise ratio
spectra we have obtained for our distant supernovae, yet
they are not seen (Filippenko et al. 1998 ; Hook et al. 1998).
The consistency of slopes in the light-curve width-
luminosity relation for the low- and high-redshift super-
novae can also constrain the possibility of a strong
metallicity e†ect of the type that et al. (1998)Ho� Ñich
describes.

An additional concern might be that even small changes
in spectral features with metallicity could in turn a†ect the
calculations of K-corrections and reddening corrections.
This e†ect, too, is very small, less than 0.01 mag, for photo-
metric observations of SNe Ia conducted in the rest-frame B
or V bands (see Figs. 8 and 10 of et al. 1998), as isHo� Ñich
the case for almost all of our supernovae. (Only two of our
supernovae have primary observations that are sensitive to
the rest-frame U band, where the magnitude can change by
D0.05 mag, and these are the two supernovae with the
lowest weights in our Ðts, as shown by the error bars of Fig.
2. In general the I-band observations, which are mostly
sensitive to the rest-frame B band, provide the primary light
curve at redshifts above 0.7.)

The above analyses constrain only the e†ect of
progenitor-environment evolution on SN Ia intrinsic lumi-
nosity ; however, the extinction of the supernova light could
also be a†ected, if the amount or character of the dust
evolves, e.g., with host galaxy age. In ° 4.1, we limited the
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size of this extinction evolution for dust that reddens, but
evolution of ““ gray ÏÏ dust grains larger than D0.1 km, which
would cause more color-neutral optical extinction, can
evade these color measurements. The following two analysis
approaches can constrain both evolution e†ects, intrinsic
SN Ia luminosity evolution and extinction evolution. They
take advantage of the fact that galaxy properties such as
formation age, star formation history, and metallicity are
not monotonic functions of redshift, so even the low-
redshift SNe Ia are found in galaxies with a wide range of
ages and metallicities. It is a shift in the distribution of rele-
vant host-galaxy properties occurring between zD 0 and
zD 0.5 that could cause any evolutionary e†ects.

W idth-luminosity relation across low-redshift environ-
ments : To the extent that low-redshift SNe Ia arise from
progenitors with a range of metallicities and ages, the light-
curve width-luminosity relation discovered for these super-
novae can already account for these e†ects (cf. Hamuy et al.
1995, 1996). When corrected for the width-luminosity rela-
tion, the peak magnitudes of low-redshift SNe Ia exhibit a
very narrow magnitude dispersion about the Hubble line,
with no evidence of a signiÐcant progenitor-environment
di†erence in the residuals from this Ðt. It therefore does not
matter if the population of progenitors evolves such that the
measured light-curve widths change, since the width-
luminosity relation apparently is able to correct for these
changes. It will be important to continue to study further
nearby SNe Ia to test this conclusion with as wide a range
of host-galaxy ages and metallicities as possible.

Matching low- and high-redshift environments : Galaxies
with di†erent morphological classiÐcations result from dif-
ferent evolutionary histories. To the extent that galaxies
with similar classiÐcations have similar histories, we can
also check for evolutionary e†ects by using supernovae in
our cosmology measurements with matching host galaxy
classiÐcations. If the same cosmological results are found
for each measurement based on a subset of low- and high-
redshift supernovae sharing a given host-galaxy classi-
Ðcation, we can rule out many evolutionary scenarios. In
the simplest such test, we compare the cosmological param-
eters measured from low- and high-redshift elliptical host
galaxies with those measured from low- and high-redshift
spiral host galaxies. Without high-resolution host-galaxy
images for most of our high-redshift sample, we currently
can only approximate this test for the smaller number of
supernovae for which the host-galaxy spectrum gives a
strong indication of galaxy classiÐcation. The resulting sets
of nine elliptical-host and eight spiral-host high-redshift
supernovae are matched to the four elliptical-host and 10
spiral-host low-redshift supernovae (based on the morpho-
logical classiÐcations listed in Hamuy et al. 1996 and
excluding two with SB0 hosts). We Ðnd no signiÐcant
change in the best-Ðt cosmology for the elliptical host-
galaxy subset (with both the low- and high-redshift subsets
about 1 p brighter than the mean of the full sets) and a small
(\1 p) shift lower in for the spiral host-galaxy subset.)

M
flat

Although the consistency of these subset results is encour-
aging, the uncertainties are still large enough
(approximately twice the Ðt C uncertainties) that this test
will need to await the host-galaxy classiÐcation of the full
set of high-redshift supernovae and a larger low-redshift
supernova sample.

4.5. Further Cross-Checks
We have checked several other possible e†ects that might

bias our results by Ðtting di†erent supernova subsets and
using alternative analyses :

Sensitivity to width-luminosity correction : Although the
light-curve width correction provides some insurance
against supernova evolution biasing our results, Figure 4
shows that almost all of the Ðt C supernovae at both low
and high redshift are clustered tightly around the most
probable value of s \ 1, the standard width for a B-band
Leibundgut SN Ia template light curve. Our results are
therefore rather robust with respect to the actual choice of
width-luminosity relation. We have tested this sensitivity by
reÐtting the supernovae of Ðt C but with no width-
luminosity correction. The results (Ðt D), as shown in
Figure 5b and listed in Table 3, are in extremely close agree-
ment with those of the light-curveÈwidth-corrected Ðt C.
The statistical uncertainties are also quite close ; the light-
curve width correction does not signiÐcantly improve the
statistical dispersion for the magnitude residuals because of
the uncertainty in s, the measured light-curve width. It is
clear that the best-Ðt cosmology does not depend strongly
on the extra degree of freedom allowed by including the
width-luminosity relation in the Ðt.

Sensitivity to nonÈSN Ia contamination : We have tested
for the possibility of contamination by nonÈSN Ia events
masquerading as SNe Ia in our sample by performing a Ðt
after excluding any supernovae with less certain SN Ia spec-
troscopic and photometric identiÐcation. This selection
removes the large statistical outliers from the sample. In
part, this may be because the host-galaxy contamination
that can make it difficult to identify the supernova spectrum
can also increase the odds of extinction or other systematic
uncertainties in photometry. For this more ““ pure ÏÏ sample
of 43 supernovae, we Ðnd just over half of)

M
flat\ 0.33~0.09`0.10,

a standard deviation from Ðt C.
Sensitivity to galactic extinction model : Finally, we have

tested the e†ect of the choice of Galactic extinction model,
with a Ðt using the model of Burstein & Heiles (1982), rather
than Schlegel et al. (1998). We Ðnd no signiÐcant di†erence
in the best-Ðt cosmological parameters, although we note
that the extinction near the Galactic pole is somewhat
larger in the Schlegel et al. model and that this leads to a
D0.03 mag larger average o†set between the low-redshift
supernova B-band observations and the high-redshift
supernovae R-band observations.

5. RESULTS AND ERROR BUDGET

From Table 3 and Figure 5a, it is clear that the results of
Ðts A, B, and C are quite close to each other, so we can
conclude that our measurement is robust with respect to the
choice of these supernova subsets. The inclusive Ðts A and B
are the Ðts with the least subjective selection of the data.
They already indicate the main cosmological results from
this data set. However, to make our results robust with
respect to host-galaxy reddening, we use Ðt C as our
primary Ðt in this paper. For Ðt C, we Ðnd )

M
flat\ 0.28~0.08`0.09

in a Ñat universe. Cosmologies with are a poor Ðt to)" \ 0
the data at the 99.8% conÐdence level. The contours of
Figure 7 more fully characterize the best-Ðt conÐdence
regions.12

The residual plots of Figures 2b and 2c indicate that the
best-Ðt in a Ñat universe is consistent across the red-)

M
flat

shift range of the high-redshift supernovae. Figure 2c shows

12 The data are available at http ://www-supernova.lbl.gov.
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FIG. 8.ÈBest-Ðt 68% and 90% conÐdence regions in the plane)
M

-)"for cosmological models with small scale clumping of matter (e.g., in the
form of MACHOs) compared with the FRW model of Ðt C, with smooth
small-scale matter distribution. The shaded contours (Ðt C) are the con-
Ðdence regions Ðt to a FRW magnitude-redshift relation. The extended
conÐdence strips (Ðt K) are for a Ðt of the Ðt C supernova set to an ““ empty
beam ÏÏ cosmology, using the ““ partially Ðlled beam ÏÏ magnitude-redshift
relation with a Ðlling factor g \ 0, representing an extreme case in which
all mass is in compact objects. The Ðt L unshaded contours represent a
somewhat more realistic partially ÐlledÈbeam Ðt, with clumped matter
(g \ 0) only accounting for up to of the critical mass density)

M
\ 0.25

and any matter beyond that amount smoothly distributed (i.e., g rising to
0.75 at )

M
\ 1).

the residuals normalized by uncertainties ; their scatter can
be seen to be typical of a normal-distributed variable, with
the exception of the two outlier supernovae that are
removed from all Ðts after Ðt A, as discussed above. Figure 3
compares the magnitude-residual distributions (the projec-
tions of Fig. 2b) to the Gaussian distributions expected
given the measurement uncertainties and an intrinsic dis-
persion of 0.17 mag. Both the low- and high-redshift dis-
tributions are consistent with the expected distributions ;
the formal calculation of the SN Ia intrinsic-dispersion
component of the observed magnitude dispersion

yields(pintrinsic2 \ pobserved2 [ pmeasurement2 ) pintrinsic\ 0.154
^ 0.04 for the low-redshift distribution and pintrinsic\0.157^ 0.025 for the high-redshift distribution. The s2 per
degree of freedom for this Ðt, also indicates thatsl2\ 1.12,
the Ðt model is a reasonable description of the data. The
narrow intrinsic dispersionÈwhich does not increase at
high redshiftÈprovides additional evidence against an
increase in extinction with redshift. Even if there is gray dust
that dims the supernovae without reddening them, the dis-
persion would increase, unless the dust is distributed very
uniformly.

A Ñat, cosmology is a quite poor Ðt to the data.)" \ 0
The 0) line on Figure 2b shows that 38 out of()

M
, )")\ (1,

42 high-redshift supernovae are fainter than predicted for
this model. These supernovae would have to be over 0.4
mag brighter than measured (or the low-redshift super-
novae 0.4 mag fainter) for this model to Ðt the data.

The 0) upper solid line on Figure 2a shows()
M

, )")\ (0,
that the data are still not a good Ðt to an ““ empty universe, ÏÏ
with zero mass density and cosmological constant. The

high-redshift supernovae are as a group fainter than pre-
dicted for this cosmology ; in this case, these supernovae
would have to be almost 0.15 mag brighter for this empty
cosmology to Ðt the data, and the discrepancy is even larger
for This is reÑected in the high probability (99.8%))

M
[ 0.

of )" [ 0.
As discussed in Goobar & Perlmutter (1995), the slope of

the contours in Figure 7 is a function of the supernova
redshift distribution ; since most of the supernovae reported
here are near zD 0.5, the conÐdence region is approx-
imately Ðtted by (The0.8)

M
[ 0.6)" B[0.2 ^ 0.1.

orthogonal linear combination, which is poorly con-
strained, is Ðtted by In P97 we0.6)

M
] 0.8)" B 1.5^ 0.7.)

emphasized that the well-constrained linear combination is
not parallel to any contour of constant current-
deceleration-parameter, the accelerating/q04)

M
/2 [ )" ;

decelerating universe line of Figure 9 shows one such
contour at Note that with almost all of the con-q0 \ 0.
Ðdence region above this line, only currently accelerating
universes Ðt the data well. As more of our highest redshift
supernovae are analyzed, the long dimension of the con-
Ðdence region will shorten.

5.1. Error Budget
Most of the sources of statistical error contribute a sta-

tistical uncertainty to each supernova individually and are
included in the uncertainties listed in Tables 1 and 2, with
small correlations between these uncertainties given in the
correlated-error matrices.13 These supernova-speciÐc sta-
tistical uncertainties include the measurement errors on SN
peak magnitude, light-curve stretch factor, and absolute
photometric calibration. The two sources of statistical error
that are common to all the supernovae are the intrinsic
dispersion of SN Ia luminosities after correcting for the
width-luminosity relation, taken as 0.17 mag, and the red-
shift uncertainty due to peculiar velocities, which are taken
as 300 km s~1. Note that the statistical error in and aM

Bare derived quantities from our four-parameter Ðts. By inte-
grating the four-dimensional probability distributions over
these two variables, their uncertainties are included in the
Ðnal statistical errors.

All uncertainties that are not included in the statistical
error budget are treated as systematic errors for the pur-
poses of this paper. In °° 2 and 4, we have identiÐed and
bounded four potentially signiÐcant sources of systematic
uncertainty : (1) the extinction uncertainty for dust that
reddens, bounded at \0.025 mag, the maximal e†ect of the
nine reddest and two faintest of the high-redshift super-
novae ; (2) the di†erence between the Malmquist bias of the
low- and high-redshift supernovae, bounded at ¹0.03 mag
for low-redshift supernovae biased intrinsically brighter
than high-redshift supernovae and at \0.01 mag for high-
redshift supernovae biased brighter than low-redshift super-
novae ; (3) the cross-Ðlter K-correction uncertainty of \0.02
mag ; and (4) the \0.01 mag uncertainty in K-corrections
and reddening corrections due to the e†ect of progenitor
metallicity evolution on the rest-frame B-band spectral fea-
tures. We take the total identiÐed systematic uncertainty to
be the quadrature sum of the sources : ]0.04 mag in the
direction of spuriously fainter high-redshift or brighter low-
redshift supernovae and [0.03 mag in the opposite direc-
tion.

Note that we treat the possibility of gravitational lensing

13 The data are available at http ://www-supernova.lbl.gov.
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FIG. 9.ÈIsochrones of constant the age of the universe relative toH0 t0,the Hubble time, with the best-Ðt 68% and 90% conÐdence regions inH0~1,
the plane for the primary analysis, Ðt C. The isochrones are labeled)

M
-)"for the case of km s~1 Mpc~1, representing a typical value foundH0\ 63

from studies of SNe Ia (Hamuy et al. 1996 ; RPK96; Saha et al. 1997 ; Tripp
1998). If were taken to be 10% larger (i.e., closer to the values inH0Freedman et al. 1998), the age labels would be 10% smaller. The diagonal
line labeled accelerating/decelerating is drawn for q04 )

M
/2[ )" \ 0

and divides the cosmological models with an accelerating or decelerating
expansion at the present time.

due to small-scale clumping of mass as a separate analysis
case rather than as a contributing systematic error in our
primary analysis ; the total systematic uncertainty applies to
this analysis as well. There are also several more hypotheti-
cal sources of systematic error discussed in ° 4, which are
not included in our calculation of identiÐed systematics.
These include gray dust [with [R

B
(z\ 0.5) 2R

B
(z\ 0)]

and any SN Ia evolutionary e†ects that might change the
zero point of the light-curve width-luminosity relation. We
have presented bounds and tests for these e†ects, which give
preliminary indications that they are not large sources of
uncertainty, but at this time they remain difficult to quan-
tify, at least partly because the proposed physical processes
and entities that might cause the e†ects are not completely
deÐned.

To characterize the e†ect of the identiÐed systematic
uncertainties, we have reÐt the supernovae of Ðt C for the
hypothetical case (Ðt J) in which each of the high-redshift
supernovae were discovered to be 0.04 mag brighter than
measured, or, equivalently, the low-redshift supernovae
were discovered to be 0.04 mag fainter than measured.
Figure 5e and Table 3 show the results of this Ðt. The best-
Ðt Ñat-universe varies from that of Ðt C by 0.05, less)

M
flat

than the statistical error bar. The probability of is)" [ 0
still over 99%. When we Ðtted with the smaller systematic
error in the opposite direction (i.e., high-redshift supernovae
discovered to be 0.03 mag fainter than measured), we Ðnd
(Ðt I) only a 0.04 shift in from Ðt C.)

M
flat

The measurement error of the cosmological parameters
has contributions from both the low- and high-redshift
supernova data sets. To identify the approximate relative
importance of these two contributory sources, we rea-
nalyzed the Ðt C data set, Ðrst Ðtting and a to theM

Blow-redshift data set (this is relatively insensitive to cosmo-
logical model) and then Ðtting and to the high-)

M
)"redshift data set. (This is only an approximation, since it

neglects the small inÑuence of the low-redshift supernovae
on and and of the high-redshift supernovae on)

M
)" M

Band a, in the standard four-parameter Ðt.) Figure 5 shows
this Ðtted as a solid contour (labeled Ðt M) with the)

M
-)"1 p uncertainties on and a included with the systematicM

Buncertainties in the dashed-line conÐdence contours. This
approach parallels the analyses of Permutter et al. (1997e,
1998b ; 1997f) and thus also provides a direct comparison
with the earlier results. We Ðnd that the more important
contribution to the uncertainty is currently due to the low-
redshift supernova sample. If three times as many well-
observed low-redshift supernovae were discovered and
included in the analysis, then the statistical uncertainty
from the low-redshift data set would be smaller than the
other sources of uncertainty.

We summarize the relative statistical and systematic
uncertainty contributions in Table 4.

6. CONCLUSIONS AND DISCUSSION

The conÐdence regions of Figure 7 and the residual plot
of Figure 2b lead to several striking implications. First, the
data are strongly inconsistent with the "\ 0, Ñat universe
model (indicated with a circle) that has been the theoreti-
cally favored cosmology. If the simplest inÑationary theo-
ries are correct and the universe is spatially Ñat, then the
supernova data imply that there is a signiÐcant, positive
cosmological constant. Thus the universe may be Ñat or
there may be little or no cosmological constant, but the
data are not consistent with both possibilities simulta-
neously. This is the most unambiguous result of the current
data set.

Second, this data set directly addresses the age of the
universe relative to the Hubble time, Figure 9 showsH0~1.
that the conÐdence regions are almost parallel to)

M
-)"contours of constant age. For any value of the Hubble con-

stant less than km s~1 Mpc~1, the implied age ofH0\ 70
the universe is greater than 13 Gyr, allowing enough time
for the oldest stars in globular clusters to evolve (Chaboyer
et al. 1998 ; Gratton et al. 1997). Integrating over and)

Mthe best-Ðt value of the age in Hubble-time units is)",
or, equivalently,H0 t0 \ 0.93~0.06`0.06 t0\ 14.5~1.0`1.0(0.63/h)

Gyr. The age would be somewhat larger in a Ñat universe :
or, equivalently,H0 t0flat \ 0.96~0.07`0.09 t0flat\ 14.9~1.1`1.4(0.63/h)

Gyr.
Third, even if the universe is not Ñat, the conÐdence

regions of Figure 7 suggest that the cosmological constant
is a signiÐcant constituent of the energy density of the uni-
verse. The best-Ðt model (the center of the shaded contours)
indicates that the energy density in the cosmological con-
stant is D0.5 more than that in the form of mass energy
density. All of the alternative Ðts listed in Table 3 indicate a
positive cosmological constant with conÐdence levels of
order 99%, even with the systematic uncertainty included in
the Ðt or with a clumped-matter metric.

Given the potentially revolutionary nature of this third
conclusion, it is important to reexamine the evidence care-
fully to Ðnd possible loopholes. None of the identiÐed
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TABLE 4

SUMMARY OF UNCERTAINTIES AND CROSS-CHECKS

A. CALCULATED IDENTIFIED UNCERTAINTIES

Source of Uncertainty Uncertainty on ()
M
flat, )"flat)\ (0.28, 0.72)a

Statistical uncertainties (see ° 5) :
High-redshift supernovae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.05
Low-redshift supernovae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.065

Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.085
Systematic uncertainties from identiÐed entities/processes :

Dust that reddens, i.e., R
B
(z\ 0.5)\ 2R

B
(z\ 0) (see ° 4.1.2) . . . . . . . . . . . . . . \0.03

Malmquist bias di†erence (see ° 4.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \0.04
K-correction uncertainty (see °° 2 and 3) including zero points . . . . . . . . . . . \0.025
Evolution of average SN Ia progenitor metallicity \0.01

a†ecting rest-frame B spectral features (see ° 4.4) . . . . . . . . . . . . . . . . . . . . . . . . .
Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.05

B. UNCERTAINTIES NOT CALCULATED

Proposed/Theoretical Sources of Systematic Uncertainties Bounds and Tests (see text)

Evolving gray dust, i.e., R
B
(z\ 0.5)\ 2R

B
(z\ 0) (see °° 4.4 and 4.1.3) . . . . . . Test with º3-Ðlter color measurements

Clumpy gray dust (see ° 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Would increase SN mag residual dispersion with z
SN Ia evolution e†ects (see ° 4.4)b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test that spectra match on appropriate date for all z

Shifting distribution of progenitor mass, metallicity, C/O ratio . . . . . . . . . . . . Compare low- and high-redshift light-curve rise-times, and light-curve
timescales before and after maximum. Test width-luminosity relation
for low-redshift supernovae across wide range of environments.
Compare low- and high-redshift subsets from ellipticals/spirals,
cores/outskirts, etc.

C. CROSS CHECKS

Sensitivity to (see ° 4.5) *)M,"flat \

Width-luminosity relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \0.03
NonÈSN Ia contamination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \0.05
Galactic extinction model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \0.04
Gravitational lensing by clumped mass (see ° 4.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \0.06

a For the redshift distribution of supernovae in this work, uncertainties in correspond approximately to a factor of 1.3 times uncertainties in the)
M,"flat

relative supernova magnitudes. For ease of comparisons, this table does not distinguish the small di†erences between the positive and negative error bars ; see
Table 3 for these.

b The comparison of low- and high-redshift light-curve rise times discussed in ° 4.4 theoretically limits evolutionary changes in the zero-point of the
light-curve width-luminosity relation to less than D 0.1 mag, i.e., *)M,"flat [ 0.13.

sources of statistical and systematic uncertainty described
in the previous sections could account for the data in a
"\ 0 universe. If the universe does in fact have zero cosmo-
logical constant, then some additional physical e†ect or
““ conspiracy ÏÏ of statistical e†ects must be operativeÈand
must make the high-redshift supernovae appear almost 0.15
mag (D15% in Ñux) fainter than the low-redshift super-
novae. At this stage in the study of SNe Ia, we consider this
unlikely but not impossible. For example, as mentioned
above, some carefully constructed smooth distribution of
large-grainÈsized gray dust that evolves similarly for ellip-
tical and spiral galaxies could evade our current tests. Also,
the full data set of well-studied SNe Ia is still relatively
small, particularly at low redshifts, and we would like to see
a more extensive study of SNe Ia in many di†erent host-
galaxy environments before we consider all plausible loop-
holes (including those listed in Table 4B) to be closed.

Many of these residual concerns about the measurement
can be addressed with new studies of low-redshift super-
novae. Larger samples of well-studied low-redshift super-
novae will permit detailed analyses of statistically
signiÐcant SN Ia subsamples in di†ering host environments.
For example, the width-luminosity relation can be checked
and compared for supernovae in elliptical host galaxies, in

the cores of spiral galaxies, and in the outskirts of spiral
galaxies. This comparison can mimic the e†ects of Ðnding
high-redshift supernovae with a range of progenitor ages,
metallicities, and so on. So far, the results of such studies
with small statistics has not shown any di†erence in width-
luminosity relation for this range of environments. These
empirical tests of the SNe Ia can also be complemented by
better theoretical models. As the data sets improve, we can
expect to learn more about the physics of SN Ia explosions
and their dependence on the progenitor environment,
strengthening the conÐdence in the empirical calibrations.
Finally, new, well-controlled, digital searches for SNe Ia at
low redshift will also be able to further reduce the uncer-
tainties due to systematics such as Malmquist bias.

6.1. Comparison with Previous Results
A comparison with the Ðrst supernova measurement of

the cosmological parameters in P97 highlights an impor-
tant aspect of the current measurement. As discussed in ° 3,
the P97 measurement was strongly skewed by SN 1994H,
one of the two supernovae that are clear statistical outliers
from the current 42 supernova distribution. If SN 1994H
had not been included in the P97 sample, then the cosmo-
logical measurements would have agreed within the 1 p
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error bars with the current result. (The small changes in the
K-corrections discussed in ° 2 are not a signiÐcant factor in
arriving at this agreement.) With the small P97 sample size
of seven supernovae (only Ðve of which were used in the P97
width-corrected analysis) and somewhat larger measure-
ment uncertainties, it was not possible to distinguish SN
1994H as the statistical outlier. It is only with the much
larger current sample size that it is easy to distinguish such
outliers on a graph such as Figure 2c.

The fact that there are any outliers at all raises one cau-
tionary Ñag for the current measurement. Although neither
of the current two outliers is a clearly aberrant SN Ia (one
has no SN Ia spectral conÐrmation, and the other has a
relatively poor constraint on host-galaxy extinction), we are
watching carefully for such aberrant events in future low-
and high-redshift data sets. Ideally, the one-parameter
width-luminosity relationship for SNe Ia would completely
account for every single well-studied SN Ia event. This is
not a requirement for a robust measurement, but any excep-
tions that are discovered would provide an indicator of
as-yet-undetected parameters within the main SN Ia dis-
tribution.

Our Ðrst presentation of the cosmological parameter
measurement (Perlmutter et al. 1997f), based on 40 of the
current 42 high-redshift supernovae, found the same basic
results as the current analysis : A Ñat universe was shown to
require a cosmological constant, and only a small region of
lowÈmass-density parameter space with all the systematic
uncertainty included could allow for "\ 0. (Fit M of
Figure 5f still shows almost the same conÐdence region,
with the same analysis approach.) The current conÐdence
region of Figure 7 has changed very little from the corre-
sponding conÐdence region of Perlmutter et al. (1997f), but
since most of the uncertainties in the low-redshift data set
are now included in the statistical error, the remaining sys-
tematic error is now a small part of the error budget.

The more recent analyses of 16 high-redshift supernovae
by Riess et al. (1998) also show a very similar con-)

M
-)"Ðdence region. The best Ðts for mass density in a Ñat uni-

verse are or for the)
M
flat\ 0.28^ 0.10 )

M
flat\ 0.16^ 0.09

two alternative analyses of their nine independent, well-
observed, spectroscopically conÐrmed supernovae. The best
Ðts for the age of the universe for these analyses are H0 t0\

and To Ðrst order, the Reiss et0.90~0.05`0.07 H0 t0\ 0.98~0.05`0.07.
al. result provides an important independent cross-check
for all three conclusions discussed above, since it was based
on a separate high-redshift supernova search and analysis
chain (see Schmidt et al. 1998). One caveat, however, is that
their conÐdence region result cannot be directly)

M
-)"compared to ours to check for independent consistency,

because the low-redshift supernova data sets are not inde-
pendent : a large fraction of these supernovae with the
highest weight in both analyses are from the Cala� n/Tololo
Supernova Survey (which provided many well-measured
supernovae that were far enough into the Hubble Ñow so
that their peculiar velocities added negligible redshift-
uncertainty). Moreover, two of the 16 high-redshift super-
novae included in the Reiss et al. conÐdence-region analyses
were from our sample of 42 Supernova Cosmology Project
supernovae ; Riess et al. included them with an alternative
analysis technique applied to a subset of our photometry
results. (In particular, their result uses the highest redshift
supernova from our 42 supernova sample, which has strong
weight in our analysis due to the excellent HST photo-
metry.) Finally, although the analysis techniques are mostly

independent, the K-corrections are based on the same
approach (Nugent et al. 1998) discussed above.

6.2. Comparison with Complementary Constraints on
and)

M
)"

SigniÐcant progress is being made in the measurement of
the cosmological parameters using complementary tech-
niques that are sensitive to di†erent linear combinations of

and and have di†erent potential systematics or)
M

)",
model dependencies. Dynamical methods, for example, are
particularly sensitive to since a†ects dynamics only)

M
, )"weakly. Since there is evidence that dynamical estimates of

depend on scale, the most appropriate measures to)
Mcompare with our result are those obtained on large scales.

From the abundanceÈindeed, the mere existenceÈof rich
clusters at high redshift, Bahcall & Fan (1998) Ðnd )

M
\

(95% conÐdence). The Canadian Network for0.2~0.1`0.3
Observational Cosmology collaboration (Carlberg et al.
1996 ; Carlberg et al. 1998) applies evolution-corrected
mass-to-light ratios determined from virial mass estimates
of X-ray clusters to the luminosity density of the universe
and Ðnds for (D90% conÐdence),)

M
\ 0.17 ^ 0.07 )" \ 0

with small changes in these results for di†erent values of )"(cf. Carlberg 1997). Detailed studies of the peculiar veloci-
ties of galaxies (e.g., Willick et al. 1997 ; Willick & Strauss
1998 ; Riess et al. 1997b ; but see Sigad et al. 1998) are now
giving estimates of (95%b \ )

M
0.6/b

IRAS
B 0.45 ^ 0.11

conÐdence),14 where b is the ratio of density contrast in
galaxies compared to that in all matter. Under the simplest
assumption of no large-scale biasing for IRAS galaxies,
b \ 1, these results give (95% conÐdence),)

M
B 0.26^ 0.11

in agreement with the other dynamical estimatesÈand with
our supernova results for a Ñat cosmology.

A form of the angular-size distance cosmological test has
been developed in a series of papers (see Guerra & Daly
1998 and references therein) and implemented for a sample
of 14 radio galaxies by Daly, Guerra, & Wan (1998). The
method uses the mean observed separation of the radio
lobes compared to a canonical maximum lobe sizeÈ
calculated from the inferred magnetic Ðeld strength, lobe
propagation velocity, and lobe widthÈas a calibrated stan-
dard ruler. The conÐdence region in the plane)

M
-)"shown in Daly et al. (1998) is in broad agreement with the

SN Ia results we report ; they Ðnd (68%)
M

\ 0.2~0.2`0.3
conÐdence) for a Ñat cosmology.

Quasi-stellarÈobject gravitational lensing statistics are
dependent on both volume and relative distances and thus
are more sensitive to Using gravitational lensing sta-)".
tistics, Kochanek (1996) Ðnds (at 95% conÐdence)" \ 0.66
for and Falco, Kochanek, &)

M
] )" \ 1) )

M
[ 0.15.

Munoz (1998) obtained further information on the redshift
distribution of radio sources, which allows calculation of
the absolute lensing probability for both optical and radio
lenses. Formally, their 90% conÐdence levels in the )

M
-)"plane have no overlap with those we report here. However,

as Falco et al. (1998) discuss, these results do depend on the
choice of galaxy subtype luminosity functions in the lens
models. Chiba & Yoshii (1999) emphasized this point,
reporting an analysis with E/S0 luminosity functions that
yielded a best-Ðt mass density in a Ñat cosmology of )

M
flat\

in agreement with our SN Ia results.0.3~0.1`0.2,

14 This is an error-weighted mean of Willick et al. (1997) and Riess et al.
(1997b), with optical results converted to equivalent IRAS results using

from Oliver et al. (1996).bOpt/bIRAS
\ 1.20^ 0.05
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Several papers have emphasized that upcoming balloon
and satellite studies of the cosmic background radiation
(CBR) should provide a good measurement of the sum of
the energy densities, and thus provide almost)

M
] )",

orthogonal information to the supernova measurements
(White 1998 ; Tegmark et al. 1999). In particular, the posi-
tion of the Ðrst acoustic peak in the CBR power spectrum is
sensitive to this combination of the cosmological param-
eters. The current results, while not conclusive, are already
somewhat inconsistent with overclosed cos-()

M
] )" ? 1)

mologies and ““ near-empty ÏÏ cosmologies()
M

] )" [ 0.4)
and may exclude the upper right and lower left regions of
Figure 7 (see, e.g., Lineweaver 1998 ; Efstathiou et al. 1998).

6.3. Cosmological Implications
If in fact the universe has a dominant energy contribution

from a cosmological constant, there are two coincidences
that must be addressed in future cosmological theories.
First, a cosmological constant in the range shown in Figure
7 corresponds to a very small energy density relative to the
vacuumÈenergy-density scale of particle physics energy zero
points (see Carroll, Press, & Turner 1992 for a discussion of
this point). Previously, this had been seen as an argument
for a zero cosmological constant, since presumably some
symmetry of the particle physics model is causing cancel-
lations of this vacuum energy density. Now it would be
necessary to explain how this value comes to be so small,
yet nonzero.

Second, there is the coincidence that the cosmological
constant value is comparable to the current mass-energy
density. As the universe expands, the matter energy density
falls as the third power of the scale, while the cosmological
constant remains unchanged. One therefore would require
initial conditions in which the ratio of densities is a special,
inÐnitesimal value of order 10~100 in order for the two
densities to coincide today. [The cross-over between mass-
dominated and "-dominated energy density occurred at
zB 0.37 for a Ñat universe, whereas the cross-)

M
B 0.28

over between deceleration and acceleration occurred when
that is at zB 0.73. This was approx-(1] z)3)

M
/2 \)",

imately when SN 1997G exploded, over 6] 109 yr ago.]
It has been suggested that these cosmological coin-

cidences could be explained if the magnitude-redshift rela-
tion we Ðnd for SNe Ia is due not to a cosmological
constant, but rather to a di†erent, previously unknown
physical entity that contributes to the universeÏs total
energy density (see, e.g., Steinhardt 1996 ; Turner & White
1997 ; Caldwell, Dave, & Steinhardt 1998). Such an entity
can lead to a di†erent expansion history than the cosmo-
logical constant does, because it can have a di†erent rela-
tion (““ equation of state ÏÏ) between its density o and pressure
p than that of the cosmological constant, Wep"/o" \ [1.
can obtain constraints on this equation-of-state ratio,
w4 p/o, and check for consistency with alternative theories
(including the cosmological constant with w\ [1) by
Ðtting the alternative expansion histories to data ; White
(1998) has discussed such constraints from earlier super-
nova and CBR results. In Figure 10, we update these con-
straints for our current supernova data set for the simplest
case of a Ñat universe and an equation of state that does not
vary in time (see Garnavich et al. 1998b for comparison
with their high-redshift supernova data set and Aldering et
al. 1998 for time-varying equations of state Ðtted to our
data set). In this simple case, a cosmological-constant equa-
tion of state can Ðt our data if the mass density is in the

range However, all the cosmological0.2[)
M

[ 0.4.
models shown in Figure 10 still require that the initial con-
ditions for the new energy density be tuned with extreme
precision to reach their current-day values. Zlatev, Wang, &
Steinhardt (1999) have shown that some theories with time-
varying w naturally channel the new energy density term to
““ track ÏÏ the matter term as the universe expands, leadingÈ
without coincidencesÈto values of an e†ective vacuum
energy density today that are comparable to the mass
energy density. These models require at all timeswZ [0.8
up to the present for The supernova data set)

M
º 0.2.

presented here and future complementary data sets will
allow us to explore these possibilities.
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FIG. 10.ÈBest-Ðt 68%, 90%, 95%, and 99% conÐdence regions in the
plane for an additional energy density component, characterized)

M
-w )

w
,

by an equation of state w\ p/o. (If this energy density component is
EinsteinÏs cosmological constant, ", then the equation of state is w\

The Ðt is for the supernova subset of our primary analysis, Ðtp"/o" \ [1.)
C, constrained to a Ñat cosmology The two variables()

M
] )

w
\ 1). M

Band a are included in the Ðt and then integrated over to obtain the two-
dimensional probability distribution shown.
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APPENDIX

EXTINCTION CORRECTION USING A BAYESIAN PRIOR

BayesÏs theorem provides a means of estimating the a posteriori probability distribution, of a variable A given aP(A oA
m
),

measurement of its value, along with a priori information, P(A), about what values are likely :A
m
,

P(A oA
m
) \ P(A

m
oA)P(A)

/ P(A
m

oA)P(A)dA
. (A1)

In practice P(A) often is not well known but must be estimated from sketchy, and possibly biased, data. For our purposes
here we wish to distinguish between the true probability distribution, P(A), and its estimated or assumed distribution, often
called the Bayesian prior, which we denote as P(A). RPK96 present a Bayesian method of correcting SNe Ia for host galaxy
extinction. For P(A) they assume a one-sided Gaussian function of extinction, G(A), with dispersion magnitude :p

G
\ 1

P(A)\G(A)4
q
r
s

J2/(np
G
2 ) e~A2@2p2G for Aº 0 ,

0 for A\ 0 ,
(A2)

which reÑects the fact that dust can only redden and dim the light from a supernova. The probability distribution of the
measured extinction, is an ordinary Gaussian with dispersion i.e., the measurement uncertainty. RPK96 choose theA

m
, p

m
,

most probable value of as their best estimate of the extinction for each supernova :P(A oA
m
)

AŒ
G

\ mode [P(A oA
m
)]\

q

r

s

t

t

A
m

p
G
2

p
G
2 ] p

m
2

for A
m

[ 0 ,

0 for A
m

¹ 0 .
(A3)

Although this method provides the best estimate of the extinction correction for an individual supernova, provided
P(A)\ P(A), once measurement uncertainties are considered, its application to an ensemble of SNe Ia can result in a biased
estimate of the ensemble average extinction whether or not P(A) \ P(A). An extreme case that illustrates this point is where
the true extinction is zero for all supernovae, i.e., P(A) is a delta function at zero. In this case, a measured value of
E(B[ V )\ 0 (too blue) results in an extinction estimate of while a measured value with E(B[ V ) º 0 results in anAŒ

G
\ 0,

extinction estimate The ensemble mean of these extinction estimates will beAŒ
G

[ 0.

SAŒ
G
T \ p

m
J2n

A p
G
2

p
G
2 ] p

m
2
B

, (A4)

rather than 0 as it should be. (This result is changed only slightly if the smaller uncertainties assigned to the least extincted
SNe Ia are incorporated into a weighted average.)

The amount of this bias is dependent on the size of the extinction-measurement uncertainties, For ourp
m

\R
B
p
E(B~V).sample of high-redshift supernovae, typical values of this uncertainty are whereas for the low-redshift supernovae,p

m
D 0.5,

Thus, if the true extinction distribution is a delta function at A\ 0, while the one-sided prior, G(A), of equationp
m

D 0.07.
(A2) is used, the bias in is about 0.13 mag in the sense that the high-redshift supernovae would be overcorrected forSAŒ

G
T

extinction. Clearly, the exact amount of bias depends on the details of the data set (e.g., color uncertainty and relative
weighting), the true distribution P(A), and the choice of prior P(A). This is a worst-case estimate, since we believe that the true
extinction distribution is more likely to have some tail of events with extinction. Indeed, numerical calculations using a
one-sided Gaussian for the true distribution, P(A), show that the amount of bias decreases as the Gaussian width increases
away from a delta function, crosses zero when P(A) is still much narrower than P(A), and then increases with opposite sign.
One might use the mean of instead of the mode in equation (A3), since the bias then vanishes if P(A)\ P(A) ;P(A oA

m
)

however, this mean-calculated bias is even more sensitive to than the mode-calculated bias.P(A) DP(A)
We have only used conservative priors (which are somewhat broader than the true distribution, as discussed in ° 4.1) ;

however, it is instructive to consider the bias that results for a less conservative choice of prior. For example, an extinction
distribution with only half of the supernovae distributed in a one-sided Gaussian and half in a delta function at zero
extinction is closer to the simulations given by Hatano et al. (1998). The presence of the delta-function component in this less
conservative prior assigns zero extinction to the vast majority of supernovae and thus cannot produce a bias even with
di†erent uncertainties at low and high redshift. This will lower the overall bias, but it will also assign zero extinction to many
more supernovae than assumed in the prior, in typical cases in which the measurement uncertainty is not signiÐcantly smaller
than the true extinction distribution. A restrictive prior, i.e., one that is actually narrower than the true distribution, can even
lead to a bias in the opposite direction from a conservative prior.
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It is clear from BayesÏs theorem itself that the correct procedure for determining the maximum-likelihood extinction, ofA3 ,
an ensemble of supernovae is to Ðrst calculate the a posteriori probability distribution for the ensemble :

P(A o MA
mi

N) \ P(A) ; P(A
mi

oA)
/ P(A) ; P(A

mi
oA)dA

, (A5)

and then take the most probable value of for For the above example of no reddening, this returns the correctP(A o MA
mi

N) A3 .
value of A3 \ 0.

In Ðtting the cosmological parameters generally one is not quite as interested in the ensemble extinction as in the combined
impact of individual extinctions. In this case must be combined with other sources of uncertainty for eachP(A o MA

mi
N)

supernova in a maximum-likelihood Ðt, or the use of a Bayesian prior must be abandoned. In the former case a s2 Ðt is no
longer appropriate, since the individual are strongly non-Gaussian. Use of a Gaussian uncertainty for basedP(A o MA

mi
N)Ïs AŒ

Gon the second moment of may introduce additional biases.P(A o MA
mi

N)
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