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Abstract

■ In decision-making processes, the relevance of the informa-
tion yielded by outcomes varies across time and situations. It
increases when previous predictions are not accurate and in
contexts with high environmental uncertainty. Previous fMRI
studies have shown an important role of medial pFC in coding
both reward prediction errors and the impact of this informa-
tion to guide future decisions. However, it is unclear whether
these two processes are dissociated in time or occur simulta-
neously, suggesting that a common mechanism is engaged. In
the present work, we studied the modulation of two electro-
physiological responses associated to outcome processing—the
feedback-related negativity ERP and frontocentral theta oscilla-
tory activity—with the reward prediction error and the learning

rate. Twenty-six participants performed two learning tasks differ-
ing in the degree of predictability of the outcomes: a reversal
learning task and a probabilistic learning task with multiple
blocks of novel cue–outcome associations. We implemented
a reinforcement learning model to obtain the single-trial reward
prediction error and the learning rate for each participant and
task. Our results indicated that midfrontal theta activity and
feedback-related negativity increased linearly with the unsigned
prediction error. In addition, variations of frontal theta oscilla-
tory activity predicted the learning rate across tasks and partici-
pants. These results support the existence of a common brain
mechanism for the computation of unsigned prediction error
and learning rate. ■

INTRODUCTION

In our daily life, we face decisions and evaluate their
consequences to obtain information about how to act
in similar situations in the future. Determining the value
of a decision in different contexts is a complex issue,
which is influenced by new evidences that are continu-
ously collected and by the learning history. The relevance
of both history and new information in guiding decision-
making is influenced by the characteristics of the envi-
ronment. In uncertain environments, new pieces of
information have greater importance in the adaptation
of behavior. In contrast, in stable environments, past
experience is more relevant than recently acquired infor-
mation. Therefore, we constantly evaluate how accurate
our predictions are and how relevant incoming informa-
tion is according to the present context to update future
estimates.
Several studies have revealed a crucial role of the medial

pFC (mPFC) in both action monitoring and updating of
action values (Rushworth,Walton, Kennerley,&Bannerman,
2004). Specifically, it has been proposed that the mPFC
monitors behavior on the bases of reward prediction errors
(RPEs; discrepancies between expected and real outcomes),

a process described by the principles of reinforcement
learning (RL) theory (Jocham,Neumann,Klein,Danielmeier,
& Ullsperger, 2009; Sutton & Barto, 1998). In addition, fMRI
studies have suggested that mPFC also encodes the rate
at which new information replaces outdated evidence
( Jocham et al., 2009; Behrens, Woolrich, Walton, &
Rushworth, 2007; Walton, Croxson, Behrens, Kennerley, &
Rushworth, 2007; Yoshida & Ishii, 2006). These studies have
shown that activity in the mPFC, specifically in the ACC,
increases in situations in which newly acquired information
is highly relevant to optimize goal-directed behavior, such
in uncertain environments. This information is indexed in
RL models by the learning rate parameter (α). This param-
eter is greater in uncertain or volatile environments than in
stable contexts. In addition, variations in ACC activity during
outcome monitoring predict the α values across partici-
pants, reflecting the relationship between mPFC and the
updating of new information (Jocham et al., 2009; Behrens
et al., 2007).

However, because of the low temporal resolution of
the fMRI technique, it is still an open question whether
these two processes, monitoring of behavior and updat-
ing of action values, are dissociated or not in the mPFC.
The goal of this study is to determine whether computa-
tion of prediction error and determination of the learning
rate are two independent neural processes or engage
a common mechanism. To reach this goal, we will take
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advantage of the high temporal resolution of EEG. Pre-
vious studies have described two electrophysiological
responses during outcome processing, the feedback-
related negativity (FRN) ERP (Gehring & Willoughby,
2002) and the mediofrontal theta oscillatory activity
(Marco-Pallares et al., 2008; Cohen, Elger, & Ranganath,
2007). Previous studies using intracranial recording and
source modeling have suggested that these two signals
are generated in the mPFC (Cohen, Ridderinkhof, Haupt,
Elger, & Fell, 2008; Luu, Tucker, & Makeig, 2004; Luu,
Tucker, Derryberry, Reed, & Poulsen, 2003). Both signals
peak around 250–300 msec after outcome delivery and
are modulated by the degree of discrepancy between
expected and real outcome (Ferdinand, Mecklinger, Kray,
& Gehring, 2012; Cavanagh, Figueroa, Cohen, & Frank,
2011; Chase, Swainson, Durham, Benham, & Cools, 2011;
Philiastides, Biele, Vavatzanidis, Kazzer, & Heekeren, 2010;
Oliveira, McDonald, & Goodman, 2007; Holroyd & Coles,
2002). However, at present there are no studies addressing
the modulation of these components by the learning rate.

In the present work, we used brain ERPs and time fre-
quency (TF) decomposition of EEG data to study the
neuropsychological markers of both the RPE and the
learning rate. To reach this goal, the participants per-
formed two probabilistic learning (PL) tasks: a reversal
learning (RVL) task in which they had to adapt their
behavior to unexpected changes in the environment
and a PL task, which consisted of multiple blocks of novel
cue–outcome associations without unexpected reversal
rules. In both tasks, electrophysiological responses were
analyzed based on the characteristics of a computational
RL model. We hypothesized that FRN and theta oscilla-
tory activity would be modulated by RPE in both tasks.
Additionally, if these two signals are also the neural signa-

tures of the learning rate, they should vary across partici-
pants and tasks (e.g., increasing in more uncertain
environments such as the RVL task compared with the
PL task).

METHODS

Participants

Twenty-six students (M=21.7 years, SD=2.7 years, 13men)
participated in the experiment. All participants were paid
A10 per hour and a monetary bonus depending on their
performance. All participants gave written informed con-
sent, and all procedures were approved by the local ethics
committee.

Experimental Procedure

Each participant performed two experimental tasks; the
presentation order was counterbalanced across partici-
pants. The first was a RVL task adapted from Cools,
Clark, Owen, and Robbins (2002), which consisted of
637 trials divided into 49 blocks (10–16 trials each). In
each trial, two geometric figures were presented on
either side of a central fixation point. The participants
were instructed to select one of the figures. After a delay
of 1000 msec, one of two possible types of feedback was
displayed: a green tick (reward, +A0.04) or a red cross
(punishment, −A0.04; Figure 1). On each block, one
figure was rewarded in 75% of the trials, whereas the
other was rewarded in 25% of the trials. However, at the
beginning of each block, the rule was reversed. During
the first five trials following the contingency reversal, a

Figure 1. RVL (left) and PL (right) tasks used in the study. Both tasks consisted of 637 trials divided into 49 blocks varying from 10 to 16 trials each.
On each trial, participants had to select between two geometric figures. Using trial-and-error feedback, participants had to discover the most
advantageous figure. After each block, the rule changed. In the RVL, rule changes were not informed, whereas in the PL, rule changes were indicated
by the presentation of two new figures.
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selection of the previously correct stimulus would result
in punishment.
The second task was a PL task, which also consisted of

637 trials divided into 49 blocks of 10–16 trials. As in the
RVL, participants had to choose between two geometric
figures that were rewarded differently (75% vs. 25%
rewarded), resulting in two possible feedbacks: a green
tick (reward, +A0.04) or a red cross (punishment,
−A0.04). However, in this task, there were no uninformed
reversal contingencies. After each block (10–16 trials),
two new figures were presented. Therefore, in each block,
the participants had to discover the rule that would
remain constant for the remainder of the block. During
the first five trials of each block, a selection of the incorrect
stimulus would lead to punishment. Blocks were not
followed by breaks or pauses; here we refer to block as
periods in which cue–outcome associations remain stable.
The duration of the stimulus presentation was the same as
in RVL (Figure 1). Both tasks were preceded by a short
training session.
In both tasks, if the participants did not respond in the

requested time (1000 msec), a question mark appeared
on the screen after the stimuli. These trials were dis-
carded from further analysis. Self-paced rest periods were
given after 35–40 trials. During these pauses, the partici-
pants were told how much money they had earned up to
that point. The participants were encouraged to earn as
much money as possible in both tasks. The participants
were explicitly informed that one task involved uninformed
reversals (RVL) and the other did not (PL).

Electrophysiological Recording

EEG was recorded from the scalp (0.01 Hz high-pass filter
with a notch filter at 50 Hz; 250 Hz sampling rate) using a
BrainAmp amplifier with tin electrodes mounted in an
electrocap (Electro-Cap International) located at 29 stan-
dard positions (Fp1/2, Fz, FCz, F7/8, F3/4, Fc1/2 Fc5/6, Cz,
C3/4, T3/4, Cp1/2, Cp5/6, Pz, P3/4, T5/6, PO1/2, Oz) and
the left and right mastoids. An electrode placed at the
lateral outer canthus of the right eye served as an online
reference. EEG was rereferenced offline to the linked
mastoids. Vertical eye movements were monitored with
an electrode at the infraorbital ridge of the right eye.
Electrode impedances were kept below 5 kΩ. Trials with
absolute mean amplitudes higher than 100 μV were auto-
matically rejected offline. Six participants were excluded
from the study because they had trial rejection rates higher
than 20%.

EEG Analysis

The FRN was studied by epoching EEG data from 100msec
time-locked before the outcome (baseline) to 600 msec
after the outcome onset. Following previous studies
(Gehring & Willoughby, 2002), FRN was analyzed by aver-
aging the amplitude in a time window located 40 msec

around the peak, which was located between 240 and
300 msec for each experimental condition at FCz. How-
ever, this mean amplitude is affected by the concomitant
P300, which we hypothesized might respond differently
to experimental conditions. To minimize this effect, ERP
epochs were first high-pass-filtered at 3 Hz to remove
slow-frequency noise such as P300 (Wu & Zhou, 2009).

Time–frequency analysis was performed per trial in
4-sec epochs (2 sec before feedback through 2 sec after)
using seven-cycle complex Morlet wavelets. Considering
previous studies (Marco-Pallares et al., 2008; Cohen
et al., 2007), we specifically focused on theta (5–7 Hz),
which has been implicated in both reward and punish-
ment processing. To analyze trial-by-trial modulations,
we computed changes in time-varying energy (square
of the convolution between wavelet and signal) in the
studied frequencies with respect to baseline for each
trial. To compare different conditions, trials associated
with a specific condition were averaged for each partici-
pant before performing a grand average. Following pre-
vious studies (Cavanagh, Zambrano-Vazquez, & Allen,
2012; Luu et al., 2004), the mean increase/decrease in
power for each condition was computed at FCz.

RL Model

A Q-learning model used by Watkins and Dayan (1992)
was implemented in both tasks. The model used RPE
to update the weights associated with each stimulus
and probabilistically chose the stimulus with the higher
weight. The weight was then updated using the following
algorithm:

Wðt þ 1Þ ¼ WðtÞ þ α � δ

where α is the learning rate and δ represents the
prediction errors, calculated as the difference between
the outcome and the expectancy or weight of the
selected figure. Next, softmax action selection was used
to compute the probability of choosing one of the two
options:

PAðtÞ ¼ eγ�WAðtÞ

eγ�WAðtÞ þ eγ�WBðtÞ

where γ is an exploitation parameter (the inverse of the
temperature parameter).

The model was run 10 times using random initial val-
ues for each participant by maximizing the log-likelihood
estimate (LLE). We used the fminsearch function of
Matlab R2008, which uses a Nelder–Mead simplex method
(Cohen & Ranganath, 2007). The parameters α and γ with
the best LLE were selected. The model was run across the
entire task in the RVL task. On the other hand, in the PL
task, the model was run for each block, that is, for each
new cue–outcome association. In the PL, those blocks
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in which the difference between the LLE derived from the
model and the LLE of a chance performance model was
less than 3—suggesting a poor fit—were discarded for
the analysis (M = 17%, SD = 0.7%; Kass & Raftery,
1995). Once α and γ were individually calculated, values
representing the prediction error could be determined on
a trial-by-trial basis. Finally, we also computed, for each
participant, the probability of choice predicted by the
model on each trial considering the parameter computed
(α and γ), the participantʼs responses, and the feedback
delivered. To show the consistency of modelʼs prediction
in both tasks, we plotted the average of both real partici-
pantsʼ choice and the probability of choice computed by
the model across trials. In addition, we also computed the
probability of choice given the mean of α and γ of all par-
ticipants and using simulated data. If the model fits well,
participantsʼ choice should match the probability of
choice predicted by the model using both participantsʼ
behavior and simulated data.

Statistical Analysis

To study which components of ERP and TF during feed-
back evaluation were associated with the prediction er-
rors extracted from the model, negative and positive
trials were independently sorted into three bins accord-
ing to the size of the absolute RPE: those with high
(HPE), medium (MPE), and low (LPE) prediction error
(with each group defined by the 33rd, 66th, and 100th
percentile of the range).

In both tasks, differences among conditions in both
ERP and TF data were determined by repeated-measures
ANOVA with two within-participant factors: Valence
(positive and negative) and Absolute RPE (high, medium,
and low).

In the RVL task, in addition, regression analysis was
performed using absolute RPE as a predictor of FRN
amplitude and oscillatory activity. We then determined
whether the value of the slope was different overall from
0 for the group for RPE measure using a one-sample t test.
A significant difference from 0 would suggest a relation-
ship between the size of the prediction error and the
size of the FRN amplitude or TF activity. Separate analyses
for positive and negative prediction errors were also
performed.

In PL, the amplitude of the FRN and theta activity
within trials may be modulated not only by RPE but also
by the difference of learning rate among blocks. To test
this hypothesis, we performed a multiple regression
analysis with two independent measures: absolute RPE
and the learning rate associated to each block. Again,
separate analysis for positive and negative feedback were
performed.

We used Spearman correlation to study the relation-
ship between participantʼs learning rate and both mid-
frontal theta activity and FRN amplitude during RVL tasks.
Finally, we studied whether differences in learning rate

between tasks and across participants may predict differ-
ences in FRN amplitude and oscillatory activity. For that
reason, we performed Spearman correlations of overall
FRN amplitude and theta activity with the difference of
the learning rates obtained in the RVL and the PL. To obtain
a unique learning rate for each participant in the PL to
compare it with the learning rate obtained in the RVL task,
we average the learning rates obtained across blocks for
each individual. We performed separate analyses for posi-
tive and negative feedback. Participants with theta activity
and FRN amplitude greater than 2.5 SD in any of the
conditions were not included in the correlation analysis
of each specific condition.
For all statistical effects involving two or more degrees

of freedom in the numerator, the Greenhouse–Geisser
epsilon was used as needed to correct for possible viola-
tions of the sphericity assumption. The p values following
correction are reported.

RESULTS

RVL Task

The participants selected the most rewarded figure
in 77% (SD = 4.5%) of the trials with a mean RT of
446.01 msec (SD = 63.79 msec) and performed a switch
after 2.3 (SD = 0.5) consecutive negative outcomes.
Previous studies have shown similar error perseverance
in this task (Chase et al., 2011). The participants earned
A7.35 (SD = A1.2) on average.
The RL model was fitted to participantsʼ behavioral

performance (pseudo-R2 = .48, SD = .12). Participants
had a mean learning rate of 0.62 (SD = 0.2) and a mean
exploitation parameter of 0.27 (SD = 0.04). Figure 2A
shows an example of the behavior of one participant
and the predictions generated by the model with the
parameters estimated for this individual by the RL model
(α and γ) and participantʼs data. The model successfully
predicts most of the responses generated by the partici-
pant. Additionally, Figure 2B shows percentage of partici-
pantʼs choice as well as the predictions generated by the
model based on participantsʼ behavior and simulated
data. Although model prediction matched most of par-
ticipantsʼ responses, model predictions and participantsʼ
behavior did not fully match between Trials 3 and 6.
These differences could be because of other different
learning systems operating in parallel-like model-based
learning (Gläscher, Daw, Dayan, & OʼDoherty, 2010).
Mean amplitudes of the FRN for trials with high,medium,

and low absolute RPE were extracted in both positive and
negative feedback and analyzed by repeated-measures
ANOVA. Figure 3 shows that feedback induced a negative
waveform around 260–300 msec (FRN), which was more
pronounced in negative than in positive feedbacks (valence
effect, F(1, 19) = 12.0, p < .01). Topographical maps
(see Figure 3) revealed that this effect was maximal at
FCz. Additionally, we found a significant linear effect of
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RPE, F(1, 19) = 16.9, p = .001, which was not affected by
valence (RPE×Valence, F(1, 19)= 2.4, p= .13). Therefore,
feedback associated with high absolute RPE elicited a more
negative deflection of the FRN than trials associated with
low absolute RPE in both positive and negative feedback.
These results suggest that FRN amplitude does not only
reflect negative RPE but also increases linearly with out-

comesʼ expectancy deviation independently of the valence.
Therefore, the FRN amplitude is also modulated by an
unsigned RPE, that is, when something is different (rather
than worse or better) than expected.

To test this relationship between absolute RPE and
FRN amplitude, we performed a regression analysis, with
all the trials for each participant, using FRN amplitude as

Figure 2. (A) Example of one participantʼs behavior in the RVL task. The participantʼs learning rate in RVL task was 0.66. Black dots indicate that
the participant received a positive feedback, whereas red dots indicate a negative feedback. Dots in the upper part of the panel indicate that the
participant selected Stimulus A, whereas dots in the lower part of the graph indicate that participant selected the Stimulus B. Dashed lines indicate
the beginning of a new block, which in RVL indicates a rule reversal. Solid lines indicate the probability of selecting Stimulus A according to the
RL model predictions. (B) Learning curves during RVL. The trial number is represented on the x axis. The values on the y axis are the percentage of
trials in which the most rewarding stimulus was selected. Black lines show participantsʼ behavior; gray lines indicate the prediction of the model
given participantʼs data; red lines indicate the prediction of the model with simulated data. Error bars represent the SEM.

Figure 3. ERPs and
topographical mapping for
each condition in the RVL
tasks. (Top) The ERPs without
high-pass filter and (bottom)
the ERPs with 3-Hz high-pass
filter. (Middle) Topographical
maps for the six conditions
studied (260–300 msec after
feedback). Note that the
maximum activity for the
FRN was located at FCz.
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dependent variable and absolute RPE as independent
measure. As suggested in the previous analysis, there
was a negative relationship between these two measures
in all participants. Higher FRN amplitude (more negative
deflection) was associated to increase in the size of the
absolute RPE. The mean slope for the group was signifi-
cantly different from zero, t(19) = −3.9, p = .001. We
also repeated the same analysis separately for positive
and negative feedbacks. As expected, there was a nega-
tive relationship, and the mean slope was also signifi-
cantly different from 0 in positive, t(19) = −3.7, p <
.01, and negative feedbacks, t(19) = −3.3, p = .001.

The time–frequency analysis of the six conditions
(high, medium, and low RPE for both positive and nega-
tive feedbacks) revealed a clear enhancement of theta
activity (5–7 Hz) between 100 and 600 msec after feed-
back onset (Figure 4). The maximum of activity was
found between 280 and 400 msec, and this was the time
window chosen for further analysis. This enhancement of
theta power increase was more pronounced in negative
trials, F(1, 19) = 17.8, p < .001, and increased linearly
with RPE, F(1, 19) = 7.6, p < .05. However, the two main
effects did not interact (F < 1). These results suggest
that, as FRN, theta activity is also modulated according
to unsigned RPE. We repeated the previous regression
analysis using theta activity, instead of FRN amplitude,
as dependent measure. There was a positive relationship
between both measures in all but one of the participants
and the mean slope significantly differed from 0, t(19) =

3.8, p = .001. The same results were obtained when
positive feedbacks were analyzed separately, t(19) =
3.2, p < .01. A trend toward a significant effect in nega-
tive feedbacks was also found, t(19) = 1.9, p = .08.
Finally, we computed the overall theta and FRN am-

plitude during the entire task and correlated it with the
participantsʼ learning rates. The analysis revealed a sig-
nificant positive correlation between α and theta power,
ρ(20) = .59, p < .01, but not with the FRN, ρ(20) = −.04,
p = .88. We performed the same analysis separately for
positive and negative feedback to study whether the
relationship between midfrontal theta activity and learn-
ing rate was independent from valence or, in contrast,
was only present in one type of feedback (Figure 5A, B).
In both cases, individual differences in learning rate pre-
dicted individual differences in theta activity (positive,
ρ(20) = .57, p < .01; negative, ρ(18) = .58, p = .01). No
significant correlation was found with the FRN in any case
(positive, ρ(20) = −.08, p = .74; negative, ρ(18) = −.02,
p = .94).
In summary, FRN and theta oscillatory activity were

modulated according to an unsigned RPE, and addition-
ally, individual differences in frontal theta oscillatory
activity predicted the learning rate across participants.

PL Task

The participants selected the most rewarded figure 89.3%
of the time (SD = 3.4%), with a mean RT of 448.47 msec

Figure 4. Changes in power at FCz with respect to baseline (100 msec before feedback onset) for negative (top) and positive feedbacks (bottom)
according to the prediction error (HPE left, MPE medium, LPE right) in the RVL task.
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(SD = 56.38 msec). Behaviorally, all of the participants
quickly adapted their decision-making tomaximize rewards.
The participants reached the most rewarded figure after
1.3 (SD = 0.2) trials of negative feedback at the beginning
of the block. At the end of the task, the participants accu-
mulated A11.03 (SD = A1.4) on average.
The RL model was fitted to participantsʼ behavioral

performance for each block (pseudo-R2 = .77, SD = .06).
Participants had a mean learning rate of 0.35 (SD = 0.04)
and a mean exploitation parameter of 22.72 (SD = 4.06).
Figure 6A shows an example of the behavior of one par-
ticipant and the predictions generated by the model
given participantʼs data. We have selected four blocks with
different learning rates (Block 1 = 0.27, Block 2 = 0.98,
Block 3 = 0.35, Block 4 = 0.07). In Blocks 1, 2, and 4,
the participant received a punishment after selecting a
stimulus that was previously rewarded for three to four times.
However, participantsʼ behaviors varied across blocks. In
the second block, the participant immediately selected

the second stimulus, whereas in Blocks 1 and 4, the par-
ticipant perseverated after three or four punishments
more, respectively. That is, in the second block, one simple
punishment was enough to decrease the value of the
selected compared with the unselected stimulus, whereas
in the fourth block, four negatives feedbacks were required
to reach such threshold. These differences in behavior
had their parallel in the learning rate computed for each
block, with a high learning rate in the second block
(0.98) and a low learning rate in the fourth (0.07). Similarly,
Figure 6B also shows that model predictions matched
most of the choices performed by the participants.

In general, participants presented a smaller learning
rate, t(19) = 14.81 p < .001, but a higher exploitation
parameter, t(19) = 24.87 p < .001, in PL than in RVL.
These differences were expected, as that in the PL task,
once the correct figure has been found, participants
hardly change their selection (Figure 6B). The learning
rate has been suggested to be modulated according to

Figure 6. (A) Example of one participantʼs behavior in the PL task. Four blocks with different learning rates were selected (Block 1 = 0.27,
Block 2 = 0.98, Block 3 = 0.35, Block 4 = 0.07). Black dots indicate that the participant received a positive feedback, whereas red dots indicate a
negative feedback. Dots in the upper part of the panel indicate that the participant selected Stimulus A, whereas dots in the lower part of the
graph indicate that the participant selected the stimulus B. Dashed lines indicate the beginning of a new block, which indicates the presentation
of new cues. Solid lines indicate the probability of selecting the Stimulus A according to the RL model predictions. (B) Learning curves during PL.
The trial number is represented on the x axis. The values on the y axis are the percentage of trials in which the most rewarding stimulus was selected.
Black lines show participantsʼ behavior; gray lines indicate the prediction of the model given participantʼs data; red lines indicate the prediction
of the model with simulated data. Error bars represent the SEM.

Figure 5. Scatter plot of theta power increase of negative (A) and positive feedbacks (B) and the participantsʼ learning rate in the RVL task.
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environmental uncertainty (Behrens et al., 2007). In that
sense, the RVL task includes an extra source of uncer-
tainty compared with PL: the rule uncertainty (rule changes
were unpredictable). In contrast, in the PL task, no unpre-
dictable changes occur within blocks. In uncertain situa-
tions, new information becomes more relevant (high
learning rate) than in stable environments (low learning
rate). This difference in uncertainty also affects partici-
pantsʼ perseverance, which explains differences in the
exploitation parameter.

Mean amplitudes of the FRN for trials with high, me-
dium, and low absolute RPE within each block were ex-
tracted for both positive and negative feedback and
analyzed by repeated-measures ANOVA. Similar to the
results obtained in the RVL tasks, FRN amplitude was more
pronounced in negative than in positive feedback (Valence
effect, F(1, 19)= 10.3, p< .005) and scale linearly with RPE,

F(1, 19) = 3.8, p < .05, independent of feedback valence
(RPE × Valence, F(1, 19) = 2.02, p = .15; Figure 7A).
To study as well how the learning rate may modulate

FRN amplitude, we performed a regression analysis with
the FRN amplitude as dependent variable and absolute
RPE and learning rate as independent variables. As it
was expected from the previous analysis, the mean slope
of absolute RPE was significantly different from 0, t(19) =
−2.2, p< .05; t(19) =−2.9, p< .01, in both positive and
negative feedbacks, respectively. However the mean
slope of the learning rate (t < 1; t(19) = −1.2, p =
.23) in both positive and negative feedback was not
significantly different from 0. Thus, FRN is modulated
by unsigned RPE but is not affected by the learning rate.
The time–frequency analysis of the six conditions (high,

medium, and low absolute RPE for both positive and nega-
tive feedbacks) revealed a clear enhancement of theta

Figure 7. (A) FRN power
and (B) Theta in trials
presenting high, medium, and
low prediction error for positive
and negative feedback
according to the RL model
for both the RVL and
PL tasks.

Figure 8. Changes in power at FCz with respect to baseline (100 msec before feedback onset) for negative (top) and positive feedbacks (bottom)
according to the prediction error (HPE left, MPE medium, LPE right) in the PL task. Scalp maps in the dashed box are also represented.
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activity (5–7 Hz) for negative trials, F(1, 19) = 8.8, p< .01.
Additionally, it increased linearly with RPE, F(1, 19) = 10.4,
p< .001, independent of the feedback valence, F(1, 19) =
1.6, p = .22 (Figures 7B and 8).
However, considering the results obtained in RVL, theta

oscillatory activity should be modulated by both the abso-
lute RPE values and the different learning rates obtained
in each block. To test this hypothesis, we performed a
regression analysis with theta oscillatory activity as depen-
dent variable and absolute RPE and blockʼs learning rate
as independent measures. As previously reported, there
was a positive relationship between absolute RPE and
theta activity in all but two participants. Additionally, the
learning rate was also positively related with theta activity
in 18 participants. Mean slopes for all participants differed
from 0 (RPE, t(19) = 4.2, p< .001; Alpha, t(19) = 3.5, p<
.01). This effect was also significantly different from 0
when positive feedbacks were separately analyzed (RPE:
t(19) = 3.3, p< .01; Alpha: t(19) = 2.5, p< .05), whereas
for negative feedbacks, results were marginally significant
(RPE: t(19) = 1.6, p = .12; Alpha: t(19) = 1.6, p = .12).
As stated before, the participants showed higher learn-

ing rates during RVL than in PL. Frontal theta oscillatory
activity was also higher in RVL than in PL task, t(19) = 2.7,
p < .05 (Figure 7B), suggesting a relationship between
this component and the learning rate. However, these
differences were significant for positive feedback, t(19) =
4.5, p < .001, but only marginal for negative, t(19) = 1.8,
p = .09, feedback. Finally, differences between tasks in
frontal theta activity predicted differences in learning rate
both for positive, rho(20)= .43, p= .06, and negative feed-
backs, rho(19) = .49, p < .05 (Figure 9). In this later com-
putation, the overall learning rate of the PL was computed
as the average of the learning rates obtained in all blocks.

DISCUSSION

In the present work, we studied the modulation of
two neurophysiologic components (the FRN and mid-
frontal theta oscillatory activity) with RPE and learning
rate. These two signals have been suggested to be gener-
ated in the mPFC, a hypothesis that has been tested by
using source modeling and confirmed by intracranial stud-
ies (Cohen et al., 2008; Luu et al., 2003, 2004). The partici-
pants performed an RVL task in which unpredictable

changes of rule occurred and a PL task with multiple blocks
of new action–outcome associations without reversal rules.
Variations in electrophysiological responses to RPE and
learning rate, across and within participants, were analyzed.
Two main results were extracted from the data. First, FRN
and frontal theta activity were modulated by unsigned pre-
diction error. In addition, variations in frontal theta activity
reflected variations in the learning rate across participants
and tasks.

The present results show the first evidence that there
is a fast evaluation of the learning rate in the mPFC,
which is parallel to the processing of expectancy devia-
tions. Three independent results support this claim. First,
variations in theta activity across participants were cor-
related with individual learning rates during the RVL task.
Second, theta activity was also sensitive to variations in
learning rate within participants across the different
blocks of the PL task. Finally, differences in frontal theta
activity between the two tasks were predicted by differ-
ences in their learning rate. These results provide evi-
dence that frontal theta oscillatory activity is modulated
not only on the basis of an unsigned RPE as previously
reported (Cavanagh et al., 2011, see also below) but also
by the learning rate across and within participants. Learn-
ing rate is a key feature of the RL model and controls the
impact of new information on the next action value esti-
mate. For example, a learning rate value of 1 indicates
that only new acquired information is being considered;
in contrast, a learning rate value of 0 shows that new
information is not being used, that is, there is no learning
from new experience. Therefore, the learning rate deter-
mines the weight of the value of RPE to update old esti-
mates (Sutton & Barto, 1998). Previous studies have
proposed a relationship between mPFC activity, specifi-
cally in ACC, and the learning rate ( Jocham et al., 2009;
Krugel, Biele, Mohr, Li, & Heekeren, 2009; Behrens et al.,
2007; Yoshida & Ishii, 2006; Walton, Devlin, & Rushworth,
2004). For instance, Behrens et al. (2007) showed that in
high volatile (fast-changing) environments, the learning
rate was higher than in stable environments, and those
differences in learning rate resulted in differences in
ACC activity. Additionally, and consistent with other
studies (Jocham et al., 2009; Krugel et al., 2009), indi-
vidual differences in learning rate were correlated with
ACC BOLD signal. This increase of ACC activity could

Figure 9. Scatter plot of
differences in theta activity
between both tasks for both
negative (A) and positive (B)
feedback and differences in
their learning rate. The solid
black line represents the
slope of the linear fit.

Mas-Herrero and Marco-Pallarés 455



parallel the increases of frontal theta activity observed in
our study.

The second main finding of the current study is that
the FRN ERP and frontocentral theta oscillatory activity
are associated to the unsigned RPE of the current trial
in the two different experimental paradigms used. These
results do not support one of the most influential models
about the origin of frontocentral negativities (specially
the FRN): the RL theory (Holroyd & Coles, 2002). This
model postulates that phasic reduction in the firing of
midbrain dopaminergic neuron activity following worse
than expected events (Schultz, 1997) is transmitted to
ACC, which in turn uses this information to adjust behav-
ior. Some studies have supported this theory by showing
that negative feedback elicits greater FRN than positive
feedback (Philiastides et al., 2010; Gehring & Willoughby,
2002; Holroyd & Coles, 2002). Similarly, theta activity has
also been associated with negative RPEs (Cavanagh,
Frank, Klein, & Allen, 2010; Marco-Pallares et al., 2008;
Cohen et al., 2007). However, our results would argue
against a specific valence effect (whether positive or
negative) for both theta activity and FRN amplitude. In
contrast, they would agree with recent studies showing
that frontocentral theta activity and FRN amplitude also
responds to the unsigned (both positive and negative)
RPEs (Ferdinand et al., 2012; Cavanagh et al., 2011). In
addition, recent findings in nonhuman animal studies
have also shown that mPFC neurons are sensitive to
surprising outcomes regardless of their valence (Bryden,
Johnson, Tobia, Kashtelyan, & Roesch, 2011; Hayden,
Heilbronner, Pearson, & Platt, 2011). Present results par-
tially agree with a recent study that tries to dissociate the
sensitivity of both FRN amplitudes and theta power
increases to outcome valence and probability (Hajihosseini
& Holroyd, 2013). The authors showed that, although both
FRN and evoked theta power increases were sensitive to
outcome valence and probability, they were more strongly
determined by outcome valence. In contrast, induced theta
power was more affected by outcome probability, reflect-
ing dissociation between FRN amplitude and midfrontal
theta power increases. Additionally, these results support
the idea that dissociable processes, such as outcome and
valence processing, engage simultaneously similar brain
mechanism as midfrontal theta oscillatory activity.

The relationship of FRN and theta oscillatory activity
with both learning rate and unsigned RPE fits well with a
new model that proposes that the mPFC detects action–
outcome discrepancies independently from their affec-
tive valence (Alexander & Brown, 2011). The predicted
response–outcome model (PROmodel) is able to correctly
simulate some of the previously reported results on the
activity of mPFC in error processing, conflict detection,
and action monitoring. According to the model, mPFC
neurons would fire when an action yields an unexpected
outcome, that is, when the outcome is unexpected (posi-
tive surprise), but also when an expected outcome does
not appear (negative surprise). Therefore, according to

the PRO model, both the negative and positive prediction
errors in the RL model are unexpected outcomes and
therefore unexpected nonoccurrences of the expected
response. The modulation of theta and FRN activity with
unsigned prediction error would then be related to the
surprise signal of the mPFC. In addition, the PRO model
also predicts greater activity of the mPFC in environments
showing greater variability (the RVL task compared with
the PL task) as surprises are more constant in less predict-
able environments. Therefore, results in Behrens et al.
(2007) showing that the mPFC tracks the volatility of the
environment as well as present results showing that theta
activity are greater in the RVL task than in the PL task would
also be explained by the PRO model.
Similar surprise signals have been reported in other

brain regions connected to the mPFC such as the amyg-
dala (Paus, 2001) and its major target, the locus coeruleus
(Aston-Jones & Cohen, 2005), which is the main norad-
renergic nucleus of the brain. Indeed, pharmacological
studies have shown that noradrenergic drugs that lead
to an increase of noradrenergic release increase FRN
amplitude (Riba, Rodríguez-Fornells, Morte, Münte, &
Barbanoj, 2005). Thus, FRN amplitude and theta activity
could be related to attentional signals transmitted from
the locus coeruleus by noradrenergic neurotransmission
rather than reflect increase/decreases of dopamine in the
ventral tegmental area. However, this requires further
research combining different drugs to study the different
roles of both dopamine and noradrenalin in outcome
monitoring.
The surprise signal reflected by FRN and theta oscilla-

tory activity signal is also consistent with attentional mod-
els that suggest that unexpected outcomes may drive
learning by increasing attention to subsequent events
(Pearce & Hall, 1980). Theta oscillatory activity could
then indicate the need to reallocate processing resources
as focusing attention on the most relevant information.
The idea that the mPFC generates attention-related sig-
nals is consistent with a growing body of literature show-
ing the mPFCʼs role in attention and cognitive control
(Shackman et al., 2011; Kerns et al., 2004; Botvinick, Braver,
Barch, Carter, & Cohen, 2001). Indeed, theta oscillations
are an optimal mechanism of communication between
distant brain regions of a same network (Buzsáki &
Draguhn, 2004). mPFC is functionally connected to dorso-
lateral pFC (dlPFC) through theta rhythms (Brázdil et al.,
2009), and both structures cooperate to regulate behavior
(Botvinick et al., 2001). Therefore, mPFC might monitor
internal and external cues to detect unexpected action–
outcome discrepancies and recruit the dlPFC according to
task demands. Depending on the environmental cues
and task needs, mPFC might request different cognitive
control adjustments to the dlPFC, such as the increase of
more basic information-processing pathways (Kerns,
2006; Kerns et al., 2004; Botvinick et al., 2001) or the
engagement of working memory to retain information
(Botvinick et al., 2001) to make current context more
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relevant than previous experience. Indeed, increases in
frontal theta activity have been observed to reflect task
difficulty (Gevins, Smith, McEvoy, & Yu, 1997), to increase
withmemory load in workingmemory (Deiber et al., 2007;
Jensen & Tesche, 2002), and to be related to a wide variety
of tasks under situations of conflict and error (Cavanagh
et al., 2012).
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