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1 Introduction

Cost allocation appears in different settings such as pricing policies, use of
facilities or the cost-benefit analysis of projects. A tool to analyze cost allo-
cation is its modelling as a cooperative game. For example the analysis of
the 1930’s Tennessee Valley Authority project (Ransmeier, 1942) takes into
account the possible usages of the dams (see, e.g. Young, 1985).

In cooperative game theory, the core of a game consists of all efficient
payoff vectors from which no coalition has an incentive to deviate. One
well-known core catcher is the Weber set (Weber, 1978, 1988) defined as the
convex hull of the marginal worth vectors, and it coincides with the core
for convex games (Shapley, 1971). Notice that the Weber set is always non-
empty, but the core can be empty.

In an applied context, and assessing a cooperative situation, it is some-
times expensive or complex the evaluation of the worth of the coalitions,
and therefore some of the widely used methods take only into account the
total amount (worth of the grand coalition), the stand-alone cost (individual
worth), or the marginal cost of each agent to the grand coalition (separable
cost).

In this paper, we will ‘forget’ or change the worth of certain coalitions
and use solely the worth of some coalitions, either because we do not want to
compute the remaining worths or because we just have limited information
on the game. Informational costs to assess the worth of the coalitions are
also to be considered.

The paper is organized as follows. In Section 2, we introduce the no-
tation to be used. In Section 3, we define the game of level k and prove
that the core of the original game is included in the Weber set of any level.
We give the necessary and sufficient condition to ensure that the Weber
sets of consecutive levels are ordered by inclusion. It turns out that it is
the 0−monotonicity property. Finally we prove that the intersection of the
Weber sets for consecutive levels is always non-empty.

2 Preliminaries

Let N = {1, 2, ..., n} be a finite set, the player set. A cooperative game of
transferable utility (a T.U.-game or a game) of n players is given by a pair
(N, v), where v : 2N −→ R is a real function over the set 2N of all subsets of
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N (coalitions) satisfying v(∅) = 0. The set of all T.U. games over the set N
is denoted by GN .

As usual, the set I∗(v) is the set of preimputations, and I(v) is the set of
imputations:

I∗(v) :={x ∈ Rn | x1 + x2 + ...+ xn = x(N) = v(N)} and

I(v) :={x ∈ I∗(v) | xi ≥ v({i}), i = 1, 2, . . . , n}.

A game (N, v) with I(v) 6= ∅ is called essential.
Given a vector x ∈ Rn and a coalition S, x(S) is defined as x(S) :=

∑
i∈S

xi

if S 6= ∅ and x(∅) = 0. For any game (N, v), the subgame associated to a
coalition S.

(
S, v|S

)
, is defined as v|S(T ) := v(T ) for all T ⊆ S.

A game (N, v) is called modular if v(S) =
∑
i∈S

v({i}) for all S ⊆ N. A

game (N, v) is called convex if v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) for all
S, T ⊆ N.

In order to define the Weber set (see Weber (1978)) of a game v ∈ GN we
need to define first, for any permutation θ ∈ ΠN , the marginal worth vector,
mθ(v) ∈ Rn as

mθ
i (v) = v(Pθ,i ∪ {i})− v(Pθ,i), i = 1, 2, . . . , n,

where Pθ,i = {j ∈ N | θ(j) < θ(i)} is the set of predecessors of i in the
permutation θ.

The convex hull of the set of marginal worth vectors is the Weber set,

Web(v) := convex{mθ(v)}θ∈ΠN
.

Any marginal worth vector is a preimputation, i.e. efficient, and more-
over, the Weber set is always non-empty, convex and compact.

It is known that for convex games, the core and the Weber set coincide,
they are non-empty and included in the imputation set (see Shapley (1971)
and Weber (1988)). In general, as it is well known (see Derks (1992) and
Weber (1988)), the Weber set contains the core of a game, which is defined
by:

C(v) := {x ∈ I(v) | x(S) ≥ v(S),∀S ∈ 2N}.

A game (N, v) is called 0−monotone if v(S) +
∑

i∈T\S
v({i}) ≤ v(T ), for all

S ⊆ T ⊆ N. This is equivalent to the following condition: v(S) + v({i}) ≤
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v(S ∪ {i}) for all S ⊆ N and for all i /∈ S, which is called also weak-
monotonicity. Notice that this implies Web(v) ⊆ I(v). If the game is
0−monotone, it is totally essential, i.e. v (S) ≥

∑
j∈S v ({j}) for all S ⊆ N.

3 Main results

We define now the game of level k, where the worth of all coalitions with size
equal or below k has been substituted by the modular game arising from the
individual worths. This is related to the filtering of the game by an hyper-
graph or conference structure (see Myerson (1980) or van den Nouweland et
al. (1992)).

Given a game (N, v) we define the game of level k, (N, vk), for k =
1, . . . , n− 1, as

vk (S) :=

{ ∑
j∈S

v ({j}) if |S| ≤ k,

v (S) if |S| > k.

Notice that v1 = v, and I (v) = I (vk) , for all k ∈ {1, . . . , n− 1} , and it is
easy to see that if the game v is 0-monotone, vk is 0-monotone. Moreover, if
k, k′ ∈ {1, . . . , n− 1} , we have (vk)k′ = (vk′)k = vmax{k,k′}.

For any cooperative game (N, v), the Weber set of level k of the game v
is the Weber set of the game vk, that is Web (vk) = convex

{
mθ (vk)

}
θ∈ΠN

.

Then, if the game v is essential, we have I (v) = Web (vn−1) . If the game is
0-monotone, Web (vk) ⊆ Web (vn−1) = I (v) , for any k = 1, . . . , n− 1.

Since C(v) ⊆ C(vk), the core of the game is always included in the Weber
set of any level, that is

C(v) ⊆ Web (vk) , for k ∈ {1, . . . , n− 1} .

It could seem that also Web(v) ⊆ Web (vk) for k ∈ {1, . . . , n− 1} , but
the following example shows that this is not true in general. Consider the
following game (N, v) of three players: N = {1, 2, 3} and v(S) = 0, for
|S| = 1, v(S) = −1, for |S| = 2, and v(N) = 0. In this case Web(v) =

convex
{

(0,−1, 1)
}

where the overline means all the possible permutations

of these digits among the coordinates. Notice that Web (v2) = {(0, 0, 0)} ,
and we obtain the strict inclusion Web(v) ⊃ Web (v2) .

In the next theorem we show that the 0−monotonicity of the game is the
characterization of the chain inclusion of the Weber sets of different levels.
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Theorem 3.1. Let (N, v) be a game. Then the following statements are
equivalent:

1. (N, v) is 0-monotone,

2. Web(v) = Web(v1) ⊆ Web(v2) ⊆ . . . ⊆ Web(vn−1) = I(v).

Proof. 1.→ 2.
We will prove that Web(vk−1) ⊆ Web(vk) for all k ∈ {2, . . . , n− 1} by

induction on the cardinality of N. If |N | = 3, it is the inclusion Web(v) ⊆
I(v), satisfied for 0−monotone games.

Suppose now that the inclusion holds up to n− 1 players. We will prove
that any marginal worth vector mθ (vk−1) belongs to Web(vk).

Let us consider first the case k < n−1, and suppose θ = (i1, . . . , in−1, in) ∈
ΠN .

The subgame v|N\{in} satisfies the induction hypothesis and the permu-

tation θ̃ = (i1, . . . , in−1) belongs to ΠN\{in}. Notice that for k < |S|, (vk)|S =(
v|S
)
k
. Then,

mθ̃
(
vk−1|N\{in}

)
=

∑
π̃∈ΠN\{in}

λπ̃m
π̃
(
vk|N\{in}

)
with λπ̃ ≥ 0 and

∑
π̃∈ΠN\{in}

λπ̃ = 1. Now, since

mθ
j (vk) =

{
mθ̃
j

(
vk|N\{in}

)
if j 6= in

vk (N)− vk (N\ {in}) if j = in,

we complete each permutation π̃ with the player in who enters in the last
place and obtain π ∈ ΠN . Therefore

mθ (vk−1) =
∑

π̃∈ΠN\{in}

λπ̃m
π (vk)

with λπ̃ ≥ 0 and
∑

π̃∈ΠN\{in}
λπ̃ = 1, showing that mθ (vk−1) ∈ Web(vk).

For the case k = n−1, just recall that for 0−monotone games Web(vk) ⊆
Web(vn−1) = I(v) for all k and therefore Web(vn−2) ⊆ Web(vn−1) = I(v).
2.→ 1.

From Web(v) ⊆ I(v), we obtain that v({i}) ≤ v(S∪{i})−v(S) for all S ⊆
N and for all i /∈ S. This is a equivalent condition to 0−monotonicity.
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From the previous theorem, 0−monotonicity is the characterization of the
chain inclusion. The next example shows that we can obtain a reverse chain.
Consider N = {1, 2, 3, 4} and the game (N, v) defined by

v(S) = 0, for |S| = 1, v(S) = −1, for |S| = 2,

v(S) = 1, for |S| = 3, and v(N) = 0.

In this case, Web(v1) = Web(v) = convex
{

(0,−1, 2,−1)
}

where the overline

means all the possible permutations of these digits among the coordinates.

Also Web(v2) = convex
{

(0, 0, 1,−1)
}

and Web(v3) = I(v) = {(0, 0, 0, 0)} .
Therefore we have the following strict inclusions

Web(v1) ⊃ Web(v2) ⊃ Web(v3) = I(v).

Something more surprising is that the intersection of two Weber sets
of different levels can be empty, as Example 3.1 in Mart́ınez-de-Albéniz and
Rafels (1998) shows. To make this paper self-contained, we state the example
below.

Example 3.1. Consider N = {1, 2, 3, 4} and the following 4-player game
defined by:

v(S) = 0, for |S| = 1,

v(S) = −2, for |S| = 2, and S 6= {3, 4}, v({3, 4}) = 10,

v(S) = −3, for |S| = 3, and {3, 4} 6⊂ S,

v(S) = 8, for |S| = 3, and {3, 4} ⊂ S, and

v(N) = 5.

Players 1 and 2 are symmetric (substitutes), and any marginal contribution
of these players to any non-empty coalition is negative. Thus, in any of
the marginal worth vectors, the payoffs assigned to players 1 and 2 are non-
positive, and at least one of them is strictly negative. Any convex combination
of the marginal worth vectors will have the same property, i.e., the payoffs
assigned to players 1 and 2 are non-positive, and at least one of them is
strictly negative. These convex combinations cannot be imputations, because
the payoffs of any player must be greater or equal than the worth of the
individual coalition, i.e. 0. Therefore, the Weber set of the previous game
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does not contain any imputation. Notice that, since the game is essential,
I(v) = Web(v3) and Web(v) = Web(v1). Then

Web(v3) ∩Web(v1) = I(v) ∩Web(v) = ∅.

We have seen that the intersection of the Weber sets for non-consecutive
levels can be empty, but now we now show that the intersection of two Weber
sets of consecutive levels is always non-empty.

Theorem 3.2. Let (N, v), be a game and k ∈ {2, . . . , n− 1} . Then

Web(vk−1) ∩Web(vk) 6= ∅.

Proof. We will prove it by induction on the cardinality of N. If |N | = 3, it
is stated in the Appendix.

Assume then that |N | > 3. If k < n−1, consider coalition S = {1, 2, ..., n− 1}
and apply the induction hypothesis on the game v|S. We have

Web(vk−1|S) ∩Web(vk |S) 6= ∅.

Notice that for k < |S|, (vk)|S =
(
v|S
)
k
. Then, for any x̂ ∈ Web(vk−1|S) ∩

Web(vk |S), define vector x ∈ Rn in the following way:

xi =

{
x̂i if i ∈ S

v (N)− v (N\ {n}) if i = n.

Each permutation θ̂ = (i1, i2, ..., in−1) ∈ ΠS can be completed to obtain
permutation θ = (i1, i2, ..., in−1, n) ∈ ΠN , and we have

mθ
j (vk) =

{
mθ̂
j

(
vk|S

)
if j 6= n,

vk (N)− vk (N\ {n}) if j = n,

and also

mθ
j (vk−1) =

{
mθ̂
j

(
vk−1|S

)
if j 6= n,

vk−1 (N)− vk−1 (N\ {n}) if j = n.

Thus, it is easy to see that x ∈ Web(vk−1) ∩Web(vk).
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If k = n− 1 consider the auxiliary game (N \ {1}, w) defined by

w(T ) := vk−1 (T ∪ {1})− vk−1 ({1}) , if T ⊆ N \ {1} .

Then, we have

w(T ) =
∑
j∈T

v ({j}) , if |T |+ 1 ≤ k − 1 = n− 2, and

w(T ) =v (T ∪ {1})− v ({1}) , if |T |+ 1 > k − 1.

Notice that w(N \ {1}) = v (N) − v ({1}) , and wk−2 = w. Therefore if
|T | > k − 1,

wk−1(T ) = vk−1 (T ∪ {1})− vk−1 ({1}) =

= vk (T ∪ {1})− vk ({1}) ,

and if |T | ≤ k − 1 we have wk−1(T ) = vk (T ∪ {1})− vk ({1}) .
By induction hypothesis applied to (N \ {1}, w), we have

Web(wk−2) ∩Web(wk−1) 6= ∅,

and for each x̂ ∈ Web(wk−2) ∩Web(wk−1), define vector x ∈ Rn by

xi =

{
v ({1}) if i = 1,
x̂i if i ∈ N\ {1} .

For each permutation θ̂ = (i1, i2, ..., in−1) ∈ ΠN\{1}, consider the permutation
θ = (1, i1, i2, ..., in−1) ∈ ΠN . We have

mθ
j (vk) =

{
v ({1}) if j = 1,

mθ̂
j (wk−1) if j 6= 1,

and also

mθ
j (vk−1) =

{
v ({1}) if j = 1,

mθ̂
j (wk−2) if j 6= 1.

Therefore, for each x̂ ∈ Web(wk−2)∩Web(wk−1) we find x ∈ Web(vk−1)∩
Web(vk), that is

Web(vk−1) ∩Web(vk) 6= ∅.
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4 An example

In this section we present an example from Alegre and Claramunt (1995).
This numerical example of 6 players establishes the characteristic function
of a game v and computes its Shapley value to allocate the total saving. We
use our previous setting and compute the Shapley value for the game v4, i.e.
we use the individual worth and the worth of coalitions of 5 players.

Example 4.1. In this example there are 6 participants, one of whom is 30
years old, whilst the others are 20. The benefits are prepayable retirement
annuities, the 20-year-old participants having an amount of 1,000,000 pese-
tas, and the 30 year old 5,000,000 pesetas. The effective rate of interest is
6% per year, the maximum admitted likelihood of insolvency is 5% and the
mortality table used is that for Spanish males. The analysis of the example
gives a total saving to allocate of 2, 086, 456.37 ptas.

In Table 1 the characteristic function v is given. It gives the corresponding
savings in the solvency cost. The different coalitions are indicated with the
first numbers of the ages of players that form the coalition, i.e. the coalition
223 is formed by two persons 20 year old and one person 30 year old.

Table 1: Solvency cost savings for coalitions

Coalition Characteristic
game function

2 0
3 0

22 173 972.07
23 416 528.13

222 415 004.80
223 823 324.36

2222 730 518.84
2223 1 228 945.90

22222 1 059 513.53
22223 1 653 630.45

222223 2 086 456.37

The Shapley value of the game v, which is an average of the marginal
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worth vectors (Shapley, 1953), is the following one: Sh2(v) = 289 628.74
and Sh3(v) = 638 312.66, and it is in the core of the game.

The Shapley value of the game v4 with size-truncated information is Sh2(v4) =
327 938.83 and Sh3(v4) = 446 762.21 . It is also in the core of the game.

Appendix

Here we prove that for games with three players, the intersection between
the Weber set of level 1 and 2 is always non-empty. Notice that if the game is
essential I (v) = Web2(v), and in this case, the result is stated in Mart́ınez-
de-Albéniz and Rafels (1998).

Proposition 4.1. Let (N, v) be a game and |N | = 3. Then

Web1(v) ∩Web2(v) 6= ∅.

Proof. Notice that since Web(v1) = Web(v), it is defined as the convex hull
of the following vectors:

m123 (v) = (v({1}), v({1, 2})− v({1}), v(N)− v({1, 2})) ,
m132 (v) = (v({1}), v(N)− v({1, 3}), v({1, 3})− v({1})) ,
m213 (v) = (v({1, 2})− v({2}), v({2}), v(N)− v({1, 2})) ,
m231 (v) = (v(N)− v({2, 3}), v({2}), v({2, 3})− v({2})) ,
m312 (v) = (v({1, 3})− v({3}), v(N)− v({1, 3}), v({3})) ,
m321 (v) = (v(N)− v({2, 3}), v({2, 3})− v({3}), v({3})) .

The set Web(v2) is the convex hull of the following vectors:

m123 (v2) =m213 (v2) = (v({1}), v({2}), v(N)− v({1})− v({2})) ,
m132 (v2) =m312 (v2) = (v({1}), v(N)− v({1})− v({3}), v({3})) ,
m231 (v2) =m321 (v2) = (v(N)− v({2})− v({3}), v({2}), v({3})) .

If the intersection in the statement were empty, since they are non-empty,
compact and convex sets, there is an separating hyperplane π(x1, x2, x3) =
Ax1 + Bx2 + Cx3 + D = 0 such that these sets are in different semispaces
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(see e.g. Theorem 2.4.6 in Webster, 1994). Then,

π(m123 (v)) = Av({1}) +B[v({1, 2})− v({1})] + C[v(N)− v({1, 2})] +D < 0,

π(m132 (v)) = Av({1}) +B[v(N)− v({1, 3})] + C[v({1, 3})− v({1})] +D < 0, and

π(m123 (v2)) = Av({1}) +Bv({2}) + C[v(N)− v({1})− v({2})] +D > 0,

π(m132 (v2)) = Av({1}) +B[v(N)− v({1})− v({3})] + Cv({3}) +D > 0.

Now, substracting any of the last inequalities from the two first ones, we
obtain the following inequalities:

[B − C][v({1, 2})− v({1})− v({2})] < 0, (1)

[B − C][v(N)− v({1, 3})− v({2})] < 0, (2)

[C −B][v(N)− v({1, 2})− v({3})] < 0, and (3)

[C −B][v({1, 3})− v({1})− v({3})] < 0. (4)

We can find the analogous conditions for marginal worth vectors whose per-
mutations begin with 2 :

[A− C][v({1, 2})− v({1})− v({2})] < 0, (5)

[A− C][v(N)− v({1, 2})− v({3})] < 0, (6)

[C − A][v(N)− v({2, 3})− v({1})] < 0, and (7)

[C − A][v({2, 3})− v({2})− v({3})] < 0. (8)

From (1) and (5), we obtain [B − C][A − C] > 0 and from (3) and (6) we
obtain [C −B][A− C] > 0, a contradiction.
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