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Abstract We study how the changes of coordinates between the class of harmonic
coordinates affect the analitycal solutions of Einstein’s equations and we apply it to
an analytical approach for stationary and axisymmetric solutions of Einstein equation
used by Cabezas et al. (Gen. Relativ. Gravit. 39:707–736, 2007) and Cuchí et al. (Gen.
Relativ. Gravit. 45:1433–1456, 2013) to solve the problem of a self-gravitating rigidly
rotating perfect fluid compact source.

Keywords Harmonic coordinates · Analitic solutions · Einstein equations ·
Stationary and axisymmetric metrics

1 Introduction

In several previous articles [1,2] to solve Einstein’s equations we used a new method
to obtain approximate stationary and axisymmetric solutions to describe the gravita-
tional field (interior and exterior) of a compact stellar object in rigid rotation. This
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method is a combination of a postminkowskian approach and another one that could
be qualified as post spherical. At every postminkowskian order in a dimensionless
parameter, λ that we set as usual to be proportional to the mass of the object, a series
expansion is performed in powers of a parameter, �, also dimensionless, which takes
into account the deformation of the object relative to spherical symmetry. This para-
meter classically represents the ratio in the equatorial plane between the centrifugal
force and the gravitational one, or in terms of the Maclaurin ellipsoids [3,4], some
function of the eccentricity. In this sense this second subordinate series expansion is
similar to the slow rotation approach used by Hartle [5], but with the advantage that
we do not start from an spherical exact solution in λ, so that we can go easily to higher
� terms and we do not need any numerical computation to obtain algebraic results in
the slow rotation parameter.

In this article we are going to study only some aspects related to the post-
minkowskian approach without any care with respect to the post spherical approach.

To explain our current goal let’s recall first that the approximate general solution of
the Einstein equations to the postminkowskian linear order in harmonic coordinates
contains four groups of constants. As regards the exterior solution two of these groups
of constants are the static and dynamic multipole moments of Geroch–Hansen, Thorne
et al. [6–8] (and therefore they are invariant), while the other two groups are removable
by a coordinate change, so that they can be described by gauge constants. In the interior
a similar situation occurs, there are two sets of non removable constants, but they do
not have a specific meaning (as those from the exterior solution have), and two other
groups of gauge constants. A priori it seems natural to choose a coordinate system in
which all gauge constants become equal to zero. This is the choice of Thorne [9] and
that is known as canonical gauge. However we are interested in making a match on
the surface of the stellar object by using the Lichnerowicz’s prescription [10], i.e. in
this matching the metric is continuous and has continuous derivatives on the surface.
On this basis the gauge constants (both external and internal) are needed and also are
uniquely fixed when the matching is performed [2].

As a consequence of this we need to maintain the gauge constants at the first order
and drag them to the second order (and so on) in an iterative process inferred from
the postminkowskian approach. It is easy to see that this results in quite long and
cumbersome calculations, even with the use of the algebraic software, which must be
implemented with elaborate routines when we go over the second order. The following
questions can be naturally raised:

• What is the aspect of the solution at the second order (for instance) that comes
from the first order gauge constants?

• You may obtain this part of the second order solution just analyzing infinitesimal
coordinate changes up to the second order?

The main objective of this paper is to answer these questions, showing that the
global solution to the second order contains the first order gauge constants transferred
to the second order solution that matches exactly what we expect from the analysis of
infinitesimal coordinate changes. One might object that the result is trivial because of
the covariance of the theory; however this argument presents some difficulties which
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are specified in the text, and in any case our contribution is a explicit verification of
how gauge constants are transferred, which can simplify the calculations significantly.

The paper is organized as follows. In Sect. 2 the expressions for the harmonicity
conditions and the Ricci tensor are written in an appropriate way to develop the post-
minkowskian approximation. In Sect. 3, these expressions are used to write Einstein’s
equations to different orders in the postminkowskian expansion. In Sect. 4 the infinites-
imal coordinate changes are studied up to the second order including the peculiarities
of the harmonic changes, i.e., those that go from harmonic coordinates to harmonic
coordinates, specially the results are written for our problem i.e. for a stationary and
axisymmetric spacetime with a Papapetrou structure and asymptotically flat. In Sect. 5
the properties of the stationary and axisymmetric metrics are specified. In Sect. 6 we
address the problem of the external vacuum solution, solving Einstein’s equations to
first and second order of the postminkowskian approximation in harmonic coordinates.
Besides we prove the fundamental thesis of this work, i.e., the part of the second order
solution transferred by the first order gauge constants can be obtained by a simple
analysis of the infinitesimal changes. It is also argued that the result must be true to
third order. In Sect. 7 the same process is repeated for the case of an interior perfect
fluid solution in rigid rotation and with a linear equation of state. Finally in Sect. 8 the
conclusions of the work are presented.

As usual the space–time metric is written as follows

ds2 = gαβ(xρ)dxαdxβ

The Greek and Latin indexes take the values

α, β, λ, . . . = 0, 1, 2, 3; i, j, k, . . . = 1, 2, 3

We use the Einstein summation convention, the following definitions � = ηαβ∂α∂β ,
� = δi j∂i∂ j , and the signature of the space–time is

(−,+,+,+)
.

2 Harmonicity conditions and the Ricci tensor

2.1 Harmonicity conditions

It is well known that the harmonic coordinates condition is


α := gλμ
α
λμ = − 1√−g

∂μ

(√−ggμα
) = 0 (1)

Since


ρ
μρ = ∂μ log

√−g (2)

we have


α = −∂μg
μα − gμα
ρ

μρ (3)
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so that we can also define


α := gαλ

λ = −gαλ∂μg

μλ − 
μ
αμ (4)

If we define the metric deviation hαβ from the Minkowski metric as

gαβ := ηαβ + hαβ (5)

and the inverse metric

gαβ := ηαβ + kαβ
(⇒ kαρηρβ + ηαρhρβ + kαρhρβ = 0

)
(6)

the Eq. (4) can be written in terms of the metric deviation as follows


α = ηλμ
α,λμ + kλμ
α,λμ = lα + Pα = 0 (7)

where

lα := ∂μhμα − 1
2∂αh

Pα := kλμ
α,λμ

(
∂μ := ημρ∂ρ, h := ηλμhλμ

)
(8)

by splitting the linear terms in the deviation from the nonlinear terms.

2.2 The Ricci tensor

Now we are going to write the Ricci tensor in terms of the left hand side of the
harmonicity condition and the metric deviation. First of all from the definition of the
Ricci tensor we have

Rαβ = ∂λ

λ
αβ − ∂β
λ

αλ + 
λ
ρλ


ρ
αβ − 
λ

ρβ

ρ
αλ (9)

but using (3) the first term of the right hand side can be written

∂λ

λ
αβ = gλμ∂λ
μ,αβ + ∂λg

λμ
μ,αβ

= gλμ∂λ
μ,αβ − 
μ
μ,αβ − 
λ
ρλ


ρ
αβ (10)

and using this result in (9)

Rαβ = gλμ∂λ
μ,αβ − ∂β
λ
αλ − 
μ


μ
αβ − 
λ

ρβ

ρ
αλ . (11)

In this expression only the first and the second terms on the right hand side contain
linear terms in the deviation. We are going to separate them from the non linear ones;
since

123



Perturbation theory and harmonic gauge propagation in... Page 5 of 21  112 

gλμ∂λ
μ,αβ − ∂β
λ
αλ = 1

2
ηλμ

(
∂λαhμβ + ∂λβhμα − ∂λμhαβ

)

+ kλμ∂λ
μ,αβ − 1

2
ηλμ∂βαhλμ − ∂β(kλμ
μ,αλ) (12)

then the Ricci tensor can be expressed as

Rαβ = Lαβ − 
μ

μ
αβ + Nαβ (13)

where we have defined

Lαβ := −1

2
�hαβ + 1

2
∂αlβ + 1

2
∂βlα (14)

Nαβ := kλμ∂λ
μ,αβ − 1

2
∂β(kλμ∂αhλμ) − 
λ

ρβ

ρ
αλ (15)

and where all the linear terms in the deviation are in Lαβ . If we use the harmonicity
condition 
α = 0 we can substitute lα = −Pα and we finally get

Rαβ = −1

2
�hαβ − 1

2
∂αPβ − 1

2
∂β Pα + Nαβ (16)

where only the first term on the right hand side contains linear terms in the deviation.

3 Einstein equations and the series expansion

The Einstein equations read

Rαβ = Tαβ − 1

2
Tgαβ := Tαβ (8πG = c = 1) (17)

Let us assume that the deviation hαβ of the metric and Tαβ can be expanded in a series
of a parameter λ, i.e.

⎧
⎨

⎩

hαβ = λh(1)
αβ + λ2h(2)

αβ + λ3h(3)
αβ + · · · = ∑

n=1 λnh(n)
αβ

Tαβ = λT (1)
αβ + λ2T (2)

αβ + λ3T (3)
αβ + · · · = ∑

n=1 λnT (n)
αβ

(18)

Then the linear term, as in the harmonic coordinates condition (7), can be written as

lα =
∑

n=1

λn
[
∂βh(n)

αβ − 1

2
∂αh

(n)
]

:=
∑

n=1

λnl(n)
α , h(n) := ημνh(n)

μν (19)

For the nonlinear term we have

Pα = λ2P(2)
α + λ3P(3)

α + · · · =
∑

n=2

λn P(n)
α :=

∑

n=2

λn
∑

r+s=n

k(r)μν 
(s)
α,μν
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(r, s = 1, 2, . . .) where in 

(s)
α,λμ only the terms ∂νh

(s)
βρ are needed. The terms k(r)μν

of the inverse metric are obtained as follows; from the definition

kαβ =
∑

n=1

λnk(n)αβ and the relation gαμgμβ = δα
β

we obtain

∑

n=1

λn

[

k(n)αρηρβ + ηαρh(n)
ρβ +

∑

r+s=n

k(r)αρh(s)
ρβ

]

= 0

If we know h(1)
μν this gives us k(1)μν and if we know

{
h(1)

μν , . . . , h
(n)
μν

}
and

{
k(1)μν, . . . , k(n−1)μν

}

the term with λn gives us the term k(n)μν . Then, to obtain the term P(n)
α we need the

deviation of the metric to order n − 1.
The same happens with the Ricci tensor (16). The remaining terms to analyze are

in Nαβ , in which the two first terms have the same structure we have already analyzed,
and the third one contains products of the type

(ηλμ + kλμ)
μ,αρ(ηρν + kρν)
ν,βλ

The terms of order n are obtained with the deviation of the metric to order less than
order n, and like Pα in Nαβ the lower term is of order λ2, i.e.

Nαβ = λ2N (2)
αβ + λ3N (3)

αβ + · · · =
∑

n=2

λi N (n)
αβ (20)

Then to first order the Einstein’s equation and the harmonicity conditions are

⎧
⎪⎨

⎪⎩

� h(1)
αβ = −2 T (1)

αβ

∂ρh(1)
ρα − 1

2
∂αh(1) = 0

(21)

and to order n ≥ 2

⎧
⎪⎨

⎪⎩

� h(n)
αβ = −2 T (n)

αβ + 2
[
N (n)

αβ − ∂(αP
(n)
β)

]

∂ρh(n)
ρα − 1

2
∂αh(n) = −P(n)

α

(22)

where for instance for n = 2 T (2)
αβ , N (2)

αβ and P(2)
α are built with the linear deviation

h(1)
αβ i.e.
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P(2)
α = k(1)λμ


(1)
α,λμ

N (2)
αβ = k(1)λμ∂λ


(1)
μ,αβ − 1

2
k(1)λμ∂αβh(1)λμ − 1

2
∂αh

(1)
λμ∂βk

(1)λμ − 

(1)ρ
βλ 
(1)λ

αρ

(23)

and T (2)
αβ is built from h(1)

λμ. The same happens with the higher order equations, the
second member of the equations are built with lower orders that are already known.

4 Infinitesimal coordinates change to second order

Now we are going to study how the infinitesimal changes of coordinates affect the
deviation of the metric of the previous section and how this gauge propagates to higher
order. Let us assume that we take the deviation to second order in the parameter, i.e.

gαβ(x) = ηαβ + λhαβ(x) + λ2qαβ(x) (24)

and the inverse metric

gαβ(x) = ηαβ + λkαβ(x) + λ2 pαβ(x) (25)

Let us point out that we have changed the notation, the terms hαβ and kαβ represent
from now on the first order in the parameter λ for the deviation and not all the deviation
as in equations (5) and (6). i.e.

{
h(1)

αβ → hαβ, h(2)
αβ → qαβ

k(1)αβ → kαβ, k(2)αβ → pαβ
(26)

Then from (6)

kαρηρβ + ηαρhρβ = 0; pαρηρβ + ηαρqρβ + kαρhρβ = 0 (27)

If we perform now the infinitesimal coordinates change to second order

x̃α = xα + λ ξα(x) + λ2ζ α(x) (28)

the metric in the new coordinates can be written as

g̃αβ(x̃) = ηαβ + λh̃αβ(x̃) + λ2q̃αβ(x̃) (29)

= ηαβ + λh̃αβ(x) + λ2
[
ξρ(x)∂ρ h̃αβ(x) + q̃αβ(x)

]
(30)

but also

gαβ(x) = ∂ x̃λ

∂xα
(x)

∂ x̃μ

∂xβ
(x)g̃λμ

[
x̃(x)

]
(31)
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and then

ηαβ + λhαβ(x) + λ2qαβ(x) = (δλ
α + λ∂αξλ + λ2∂αζ λ)(δ

μ
β + λ∂βξμ + λ2∂βζμ)

×
{
ηλμ + λh̃λμ(x) + λ2

[
ξρ(x)∂ρ h̃λμ(x)

+ q̃λμ(x)
]}

(32)

Now we can identify the two first orders in λ in Eqs. (30) and (32)

h̃αβ(x) = hαβ(x) − ∂αξβ(x) − ∂βξα(x) (33)

q̃αβ(x) = qαβ(x) − ∂αζβ(x) − ∂βζα(x) − ∂αξμ(x)∂βξμ(x)

−ξρ(x)∂ρ

[
hαβ(x) − ∂αξβ(x) − ∂βξα(x)

]

−
[
hαμ(x) − ∂αξμ(x) − ∂μξα(x)

]
∂βξμ(x)

−
[
hμβ(x) − ∂βξμ(x) − ∂μξβ(x)

]
∂αξμ(x) (34)

which can be written as

q̃αβ(x) = qαβ(x) − ∂αζβ(x) − ∂βζα(x) − £(ξ)h̃αβ(x) − ∂αξμ(x)∂βξμ(x) (35)

where the two last terms are the first order gauge propagation to second order.
For later use it is important to specify the equations that the vectors ξα(x) and

ζ α(x) should verify to ensure that the change (28) transforms harmonic coordinates to
harmonic coordinates (“harmonic changes”). If xα are harmonic coordinates for the
metric gλμ(xα) then 
α = 0 (1), and the necessary and suficient condition for x̃α(x)
to be harmonic is

gλμ∂λμ x̃
α(x) − 
β∂β x̃

α = 0

but since 
β = 0, then

gλμ∂λμ x̃
α(x) = 0 (36)

which results in the following equations

ηλμ∂λμξα(x) = 0

ηλμ∂λμζα(x) = hλμ(x)∂λμξα(x) (37)

having taken into account (25), (26), (27) and (28), and where hλμ = ηλαημβhαβ .
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5 Stationary and axisymmetric metrics

We require our space-time to be a stationary and axisymmetric semi–Riemannian
asymptotically flat manifold admitting a global system of spherical-like coordinates
{t, r, θ, ϕ} which verifies the following properties:

A. Coordinates are adapted to the space-time symmetry, that is to say, ξ = ∂t
and ζ = ∂ϕ are respectively the timelike and spacelike Killing vectors, so that the
metric components do not depend on the coordinate t nor ϕ.
B. Coordinates {r, θ} parametrize two dimensional surfaces orthogonal to the orbits
of the symmetry group, that is, the metric tensor has Papapetrou structure,

g = γt tω
t⊗ωt + γtϕ(ωt⊗ωϕ + ωϕ⊗ωt ) + γϕϕωϕ⊗ωϕ

+ γrrω
r⊗ωr + γrθ (ω

r⊗ωθ + ωθ⊗ωr ) + γθθω
θ⊗ωθ , (38)

where ωt = dt, ωr = dr, ωθ = r dθ, ωϕ = r sin θ dϕ is the Euclidean orthonor-
mal co basis associated to these coordinates.
C. Coordinates {t, x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = cos θ} associated
with the spherical-like coordinates are Cartesian coordinates at spacelike infinity,
that is the metric in these coordinates tends to the Minkowsky metric in standard
Cartesian coordinates for large values of the coordinate r .

All these properties are compatible with the harmonic coordinates we use in this
paper. Time coordinate t is always harmonic under these assumptions.

The coordinate change to another system of adapted coordinates {t ′, ϕ′} that pre-
serve the regularity at the axis of symmetry, with closed compact orbits of periodicity
2π for the axial Killing vector, are t = a t ′ and ϕ = ϕ′ + b t ′ , where a and b are
constants. If at spacelike infinity the metric tends to the Minkowski metric then a = 1
and this implies for the infinitesimal change of Sect. 4 that ξ0(x) = 0, ζ 0(x) = 0.
Taking also into account the independence of the metric on time coordinate, we have
ξ i (x j ) and ζ i (xk), i.e. do not depend on the time coordinate. Furthermore the change
ϕ = ϕ′ + bt ′ does not maintain the harmonicity condition, i.e. if the Cartesian coor-
dinates x, y, z associated to the spherical r, θ, ϕ are harmonic the Cartesian ones
associated to r, θ, ϕ′ are not.

Consequently, splitting time and space components in the Eqs. (33) and (35) we
have

First order

h̃00(x
k) = h00(x

k) (39)

h̃0 j (x
k) = h0 j (x

k) (40)

h̃i j (x
k) = hi j (x

k) − ∂iξ j (x
k) − ∂ jξi (x

k) (41)

the metric components h00 and h0 j of the metric deviation are invariants to first
order.
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Second order

q̃00(x
k) = q00(x

k) − ξ l(xk)∂l h00(x
k) (42)

q̃0 j (x
k) = q0 j (x

k) − ξ l(xk)∂l h0 j (x
k) − h0l∂ jξ

l(xk) (43)

q̃i j (x
k) = qi j (x

k) − ∂iζ j (x
k) − ∂ jζi (x

k) − £(ξ)h̃i j (x
k) − ∂iξ

l(xk)∂ jξl(x
k) (44)

With respect to the “harmonic changes” (37), the stationarity and axial symmetry
with a Papapetrou structure leads to the following equations

�ξ i (x) = 0 (45)

�ζ i (x) = h jk(x)∂ jkξ
i (x) (46)

i.e. the functions ξ i must be three independent harmonic functions. On the other hand,
the functions ζ i must be the sum of a harmonic function and a particular solution of
equation (46).

Finally, the harmonic condition and Einstein’s equations of Sect. 3 with the splitting
of time and space components become:

First order

�h(1)
00 = −2T (1)

00 (47)

�h(1)
0 j = −2T (1)

0 j ; ∂ j h(1)
0 j = 0 (48)

�h(1)
i j = −2T (1)

i j ; ∂ j h(1)
i j − 1

2
∂ j ĥ

(1) = −1

2
∂ j h

(1)
00 (49)

where ĥ := δi j hi j .

Order n ≥ 2

�h(n)
00 = −2T (n)

00 + 2N (n)
00 (50)

�h(n)
0 j = −2T (n)

0 j + 2N (n)
0 j − ∂ j P

(n)
0 ; ∂ j h(n)

0 j = −P(n)
0 (51)

�h(n)
i j = −2T (n)

i j + 2
[
N (n)
i j − ∂(i P

(n)
j)

]
; ∂ j h(n)

i j − 1

2
∂i ĥ

(n) = −P(n)
i − 1

2
∂i h

(n)
00

(52)

6 Vacuum exterior solution in harmonic coordinates

Let’s assume that we have a compact stationary gravitational source with axial sym-
metry and we would like to study the exterior 2–postminkowskian solution [1]. First
of all we need to solve Eqs. (47), (48) and (49) with T (1)

μν = 0, and then to solve the

Eqs. (53), (54) and (55) for n = 2 and T (2)
μν = 0. Henceforth we will use the notations

of (26).

123



Perturbation theory and harmonic gauge propagation in... Page 11 of 21  112 

6.1 First order in λ

• For the scalar term h00 the solution of (47) is the solution of the Laplace equation
in spherical coordinates, introduced in Sect. 5. The solution is [1,6]

h00(r, θ) = 2
∞∑

n=0

Mn

rn+1 Pn(cos θ) (53)

where Mn are arbitrary constants, representing the static multipole moments of Thorne
[6,9], and Pn(x) is the Legendre polynomial of order n.

• For the vectorial h0 j terms the solution of (48) is

h0 j (r, θ) = 2
∞∑

n=1

Jn
rn+1 P

1
n (cos θ)eϕ j (54)

where Jn are arbitrary constants, representing the dynamic multipole moments
of Thorne, eϕ := (− sin ϕ, cos ϕ, 0) is the tangent vector associated to the ϕ

coordinate and P1
n (x) is the Legendre function of the first kind.

• For the tensorial hij terms the solution of (49) is

hi j = h00δi j + ∂iw j + ∂ jwi (55)

where

w j :=
∞∑

n=0

Qn

rn+1 Pn(cos θ)ezj +
∞∑

n=1

Rn

rn+1 P
1
n (cos θ)eρ j (56)

and Qn and Rn are arbitrary constants, eρ := (cos ϕ, sin ϕ, 0) is the tangent vector
associated to the ρ = r sin θ cylindrical coordinate and ez := (0, 0, 1) is the
tangent vector associated to the z cylindrical coordinate. The constants Qn and Rn

are related to the An and Bn constants used in [1] by the following expressions

An+1 = Qn + nRn, Bn+1 = −2Rn

It is clear that the solution of the homogeneous part of the tensor Eq. (55) is pure
gauge [see (41)]. That is, it could be interpreted as a first order infinitesimal change
of coordinates with ξ i (x) := −wi (x); furthermore it would be a “harmonic change”
because it is easily verified that �wi = 0. On the other hand, the complete equation,
that contains the derivative of the scalar equation solution, has the simple particular
solution h00δi j .

Now, assuming that the first order solution contains this gauge dependence in the
tensor term we would like to know how these gauge terms, wi , propagate to the second
order term, of the deviation, qαβ . To simplify the resulting equations we are going to
write down only the terms containing the first order gauge.
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In particular, we would like to verify that the resulting terms coincide with those
that come from an infinitesimal change of coordinates up to the second order.

6.2 Second order in λ

The second order equations to solve are (50), (51) and (52) with T (n) = 0 and n = 2,
then we need to use equation (23) where only the deviation to first order in λ appears.

It has been already assumed that the gauge dependence in the first order deviation
is given by Eqs. (53), (54) and (55), i.e. only the terms hi j depend on the first order
gauge. From (27) we have kμν = −ημρηνσ hρσ thus in kμν only the terms ki j depend
on the first order gauge. Then the Christoffel symbols to first order are



(1)
0,00 = 0, 


(1)
0,0 j = 1

2
∂ j h00, 


(1)
0,i j = 1

2

(
∂i h0 j + ∂ j h0i

)
(57)



(1)
k,00 = −1

2
∂kh00, 


(1)
k,0 j = 1

2

(
∂ j h0k − ∂kh0 j

)
(58)



(1)
k,i j = 1

2

(
δk j∂i h00 + δki∂ j h00 − δi j∂kh00

) + ∂i jwk (59)

Only the terms 
i, jk, hi j and ki j depend on the gauge. Now we can write the gauge
dependent terms splitting the space and time components of P(2) and N (2) in (23)
using the sign 	 to denote that we omit the terms with no gauge dependence.

P(2)
0 = kλμ


(1)
0,λμ 	 −1

2

(
∂kwl + ∂ lwk)(∂kh0l + ∂l h0k

)
(60)

P(2)
k = kλμ


(1)
k,λμ 	 −(

∂iwk + ∂kwi
)
∂ i h00 + ∂iw

i∂kh00 − 2∂ iw j∂i jwk (61)

where we have taken into account that �wi = 0, and

N (2)
00 = kλμ∂λ


(1)
μ,00 − 


(1)λ
0μ 


(1)μ
0λ 	 ∂ iw j∂i j h00 (62)

N (2)
0 j = kλμ∂λ


(1)
μ,0 j − 


(1)λ
0μ 


(1)μ
jλ

	 −1

2

(
∂kwl + ∂ lwk)(∂k j h0l − ∂klh0 j

) − 1

2

(
∂ l hk0 − ∂khl0

)
∂ jkwl (63)

N (2)
i j = kλμ∂λ


(1)
μ,i j − 


(1)λ
iμ 


(1)μ
jλ − 1

2

(
kλμ∂i j hλμ + ∂i hλμ∂ j k

λμ
)

	 δi j∂klh00∂
kwl + ∂i j h00∂kw

k − ∂(ikh00
(
∂ j)w

k + ∂kw j)
)

+∂kh00
(
∂k(iw j) − ∂i jwk

) + ∂(i h00∂ j)kw
k + ∂ikwl∂

k
jw

l (64)

where as usual (i j) means simmetryzation on the indexes i, j .
Once we have determined the gauge dependent terms on the right hand side of the

equations we are going to find the second order solution. As we did before, let us begin
solving the scalar equation

�q00 = 2N (2)
00 	 2∂ iw j∂i j h00 (65)
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The solution would be equal to the homogeneous solution, formally identical to the
first order plus a particular solution of the inhomogeneous equation. The complete
right hand side of the above equation has also terms which do not depend on wk but
they had been omitted. It turns out that the particular solution can be written as the sum
of a canonical particular solution plus a pure gauge particular solution. Therefore, for
our purposes, we need to find out a particular solution of the differential equation:

�q00 = 2∂ iw j∂i j h00 (66)

Taking into account that h00 and w j solve the flat Laplace equation, then

�
(
wi∂i h00

) = 2∂ jwi∂ j i h00 (67)

Thus, the particular solution wi∂i h00 has exactly the structure required by the propa-
gation of the first order gauge to second order (42), remember that w j := −ξ j .

Let us now solve the vector equations

�q0 j = 2N (2)
0 j − ∂ j P

(2)
0 	 2∂kwl∂klh0 j + 2∂ jkw

l∂kh0l

∂ j q0 j = −P(2)
0 	 ∂kwl(∂kh0l + ∂l h0k

)
(68)

As in the scalar equation, the homogeneous solution is formally the same as the first
order one, and taking into account that �wk = 0 and ∂ j h0 j = 0 we obtain that a pure
gauge particular solution is

wk∂kh0 j + h0k∂ jw
k (69)

i.e., the solution required by the propagation of the first order gauge to second order
as given in Eq. (43).

The tensor equations are

�qi j = 2N (2)
i j − ∂i P

(2)
j − ∂ j P

(2)
i , ∂ j qi j − 1

2
∂i q̂ = −1

2
∂i q00 − P(2)

i (70)

where

2N (2)
i j − ∂i P

(2)
j − ∂ j P

(2)
i 	 2∂kwl∂klh00δi j + 2∂kh00

(
∂kiw j + ∂k jwi

)

+ 2∂ikwl∂
k
jw

l + 2
(
∂klwi∂ jkwl + ∂klw j∂ikwl

) + 2∂kwl(∂kliw j + ∂kl jwi
)

(71)

and using the result from the scalar equation we have

−1

2
∂i q00 − P(2)

i 	 −1

2
∂iw

k∂kh00 − 1

2
wk∂ki h00 + 2∂kwl∂klwi

+ ∂kh00
(
∂kwi + ∂iwk

) − ∂kw
k∂i h00 (72)
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Following the same reasoning we have done above, the part of the solution of the
differential system (70) which depends on the first order gauge term is

q∗
i j 	 wk∂k h̃i j + h̃k j∂iw

k + h̃ik∂ jw
k − ∂iw

k∂ jwk (73)

where

h̃i j = h00δi j + ∂iw j + ∂ jwi (74)

i.e. the gauge term transferred from the first to the second order (43). We must bear in
mind that this is only a part of the particular solution which depends on the first order
gauge, the terms depending on the rest of the first order solution that appear in P and
N and the terms depending on the gauge of second order are not computed.

6.3 The possible validity of the result to third order

If we replace (74) in (73), after a short calculation we obtain

q∗
i j = wk∂kh00 δi j + h00

(
∂iw j + ∂ jwi

)

+ ∂iwk∂ jw
k∂i

(
wk∂kw j

) + ∂ j
(
wk∂kwi

)
(75)

Therefore the exact solution of (70) can be written as follows

qi j = qci j + wk∂kh00 δi j + h00
(
∂iw j + ∂ jwi

) + ∂iwk∂ jw
k

+ ∂i

(
w

(2)
j + wk∂kw j

)
+ ∂ j

(
w

(2)
i + wk∂kwi

)
(76)

where qci j represents a particular solution of (70) with wi = 0 and where the sum

∂iw
(2)
j +∂ jw

(2)
i is the general solution of the homogeneous system, therefore �w

(2)
i =

0, i.e. with w
(2)
i formally identical to (56).

The second line of (72) could be interpreted as the main part of an infinitesimal
change of coordinates to second order. It is also easy to see that ζi = ξ

(2)
i + wk∂kξi

is the general solution of (46) with ξ i = −wi and ξ
(2)
i = w

(2)
i , that is, it would be

an harmonic coordinate change. This suggests that the results concerning the gauge
transfer would also be valid to the third order.

7 Interior solution in harmonic coordinates for a rigidly rotating perfect
fluid with a linear equation of state

We are going to use the solution obtained in [2].
From the metric Eq. (38) and

eri dx
i = dr, eθ i dx

i = rdθ, eϕi dx
i = r sin θ dϕ. (77)
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we have

ds2 = γt t dt
2 + 2γtϕeϕ j dtdx

j

+ (γrr eri er j + 2γrθeri eθ j + γθθeθ i eθ j + γϕϕeϕi eϕ j )dx
idx j (78)

that is

gi j := γrr eri er j + 2γrθeri eθ j + γθθeθ i eθ j + γϕϕeϕi eϕ j , g0 j := γtϕeϕ j

We assume that the source of the gravitational field is a perfect fluid,

Tαβ := Tαβ − 1

2
Tgαβ = (μ + p)uαuβ + 1

2
(μ − p)gαβ (79)

whose density μ and pressure p depend only on r and θ . We also assume that the fluid
has no convective motion, so its velocity lies on the plane spanned by the two Killing
vectors

u = ψ(∂t + ω∂ϕ) = ψ
(
∂t + ωr sin θ eiϕ∂i

)
(80)

where

ψ ≡
[
−

(
γt t + 2ω γtϕ r sin θ + ω2 γϕϕ r

2 sin2 θ
)]− 1

2
(81)

is a normalization factor. From now on we are going to assume that the fluid rotates
rigidly; so that ω = constant.

In order to obtain a postminkowskian expansion for the metric we need to have the
density μ of order λ i.e. μ = λμ̃.

In the postminkowskian approximation we have

g00 = −1 + λh00 + λ2q00, g0 j = ω
(
λh0 j + λ2q0 j

)
, gi j = δi j + λhi j + λ2qi j

(82)

This implies that

γt t = −1 + λhtt + λ2qtt , γtϕ = ω(λhtϕ + λ2qtϕ), γϕϕ = 1 + λhϕϕ + λ2qϕϕ

γrr = 1 + λhrr + λ2qrr , γrθ = λhrθ + λ2qrθ , γθθ = 1 + λhθθ + λ2qθθ (83)

Let us consider the Euler equations for the fluid (or, equivalently, the energy-
momentum tensor conservation law) [11]

∂a p = (μ + p)∂a ln ψ (a, b, . . . = r , θ) . (84)
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We are going to use the following linear equation of state (EOS)

μ + (1 − n)p = μ0. (85)

With this EOS the Euler equations are integrated easily, to give

p = μ

n

{(
ψ

ψ�

)n

− 1

}
, μ = μ

n

{
(n − 1)

(
ψ

ψ�

)n

+ 1

}
(86)

where ψ� is the value of the normalization factor ψ on the surface of zero pressure,
which in turn leads to the following implicit equation for the matching surface

p = 0 ⇐⇒ ψ = ψ� . (87)

With this dependence on the parameter, the lowest order in λ of this equation gives us
cylindrical surfaces instead of spherical deformed ones unless the rotation parameter
depends on λ. For that we need ω2 ∝ λ at least. Then, to the lowest order in λ

ψ ≈ 1 + 1

2
λ
(
htt + ω̃2r2 sin2 θ

)
(88)

where we have defined ω2 := λω̃2 (ω̃ ∝ � slow rotation parameter) and for the
constant ψ�

ψ� := 1 + λS (89)

This approach is consistent with the post spherical approach carried out in previous
articles (see details in references [1] and [2]). This implies that some quantities, includ-
ing g0 j , have a series expansion in half powers of λ. However, this situation does not
affect the present work, in which we only deal with the postminkowskian approach, so
we are just to consider the integer part of the orders of the series in the computation.

Then, the approximate pressure is

p ≈ 1

2
λ2μ̃

(− 2S + htt + ω̃2r2 sin2 θ
)

(90)

and for the velocity field we have

{
u0 ≈ −1 + 1

2λ
(
htt − ω̃2r2 sin2 θ

)

u j ≈ ω̃λ1/2
{
r sin θ + λ

[
htϕ + 1

2r sin θ
(
htt + 2hϕϕ + ω̃2r2 sin2 θ

)]}
eϕ j

(91)

Now we can compute the energy momentum tensor to second order in λ, and we
obtain

T00 ≈ 1

2
λμ̃ + 1

4
λ2μ̃

( − 2(n + 2)S + nh00 + (n + 6)ω̃2r2 sin2 θ
)
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T0 j ≈ −λ3/2μ̃ω̃r sin θeϕ j − 1

2
λ5/2μ̃ω̃

×
[
h0ke

k
ϕ + r sin θ

( − 2nS + nh00 + 2hkle
k
ϕe

l
ϕ + (n + 2)ω̃2r2 sin2 θ

)]
eϕ j

Ti j ≈ 1

2
λμ̃δi j + 1

4
λ2μ̃

[
(2 − n)

(
2S − h00 − ω̃2r2 sin2 θ

)
δi j + 2hi j

+ 4ω̃2r2 sin2 θeϕi eϕ j

]
(92)

7.1 First order in λ

The Einstein’s equations to first order are (47), (48) and (49). The scalar equation

�h00 = −2T (1)
00 = −μ̃ (93)

has as solution well behaved in r = 0 given by

h00(r, θ) = −1

6
μ̃ r2 + 2

∞∑

n=0

mnr
n Pn(cos θ) (94)

The vector equations are

�h0k = −2T (1)
0k = 2μ̃ ω r sin θ eϕk

∂kh0k = 0 (95)

and their solution is

h0k(r, θ) =
[

1

5
μ̃ ω r3 sin θ + 2

∞∑

n=1

jnr
n P1

n (cos θ)

]

eϕk (96)

As in the exterior solution, there are not gauge dependent terms in the first order
solution for h00 and h0 j .

The tensor equations are

�hi j = −2T (1)
i j = −μ̃ δi j

∂khk j − 1

2
∂ j ĥ = −1

2
∂ j h00 (97)

and their solution is

hi j = h00 δi j + ∂i w̄ j + ∂ j w̄i (98)
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where now

w̄ j :=
∞∑

n=1

Q̄nr
n Pn(cos θ) ezj +

∞∑

n=1

R̄nr
n P1

n (cos θ) eρ j (99)

The constants Q̄n and R̄n are related to the an and bn constants used in [1] by the
following expressions

an = Q̄n+1 + (n + 2)R̄n+1, bn = 2R̄n+1.

As in the exterior problem, the solution of the homogeneous part of this tensor
equation is pure gauge, see (41) with ξ j := −w̄ j . Since the complete equation that
contains the derivative of the scalar equation solution has the simple particular solution
h00δi j too, we can use the same expressions (60), (61), (62), (63) and (64) we have
used above for the exterior solution.

Now we also want to determine how the “pure gauge” terms of the first order
solution are transmitted to the second order solution and, in particular, verify that the
resulting terms coincide with those coming from an infinitesimal second order change
of coordinates.

7.2 Second order in λ

We can now go to second order i.e. solve (50), (51) and (52) with T given by Eqs. (92)
when n = 2. Do not confuse this n, related to the order of the approximation we
perform, with the n appearing in the EOS. As in the exterior problem we are going
to look only for the terms in the solution corresponding to the propagation of the first
order gauge.

The scalar equation is

�q00 = 2N (2)
00 − 2T (2)

00 	 2∂ i w̄ j∂i j h00 (100)

The term T (2)
00 does not contain the gauge vectors w̄i . The terms to solve have the same

aspect as in the exterior case. And we have

�
(
w̄i∂i h00

) = �w̄i ∂i h00 + 2∂ j w̄i ∂ j (∂i h00) + w̄i�(∂i h00) = 2∂ j w̄i ∂ j i h00

(101)

where we have taken into account that

�w̄i = 0, �(∂i h00) = ∂i
(
�h00

) = 0 (102)

Then, the particular solution for the terms depending on the first order gauge has the
aspect required by a gauge change to second order (35).

For the vector equations, the term T (2)
0 j is only gauge dependent in the hi j term,

that is
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T (2)
0 j 	 −2μ̃ωr sin θ

(
∂kw̄l e

k
ϕe

l
ϕ

)
eϕ j . (103)

now we need to find a particular solution for the gauge dependent part of the
following equations

�q0 j = 2N (2)
0 j − ∂ j P

(2)
0 − 2T (2)

0 j (104)

	 2∂kw̄l∂klh0 j + 2∂ jkw̄
l∂kh0l + 4μ̃ωr sin θ

(
∂kw̄l e

k
ϕe

l
ϕ

)
eϕ j

∂ j q0 j = −P(2)
0 	 ∂kw̄l(∂kh0l + ∂l h0k

)
(105)

We know from the second order gauge infinitesimal transformation (43) that the expres-
sion w̄k∂kh0 j + h0k∂ j w̄

k should be the right answer. Let’s try this particular solution

�
(
w̄k∂kh0 j + h0k∂ j w̄

k) = 2∂ lw̄k ∂lkh0 j + 2∂ l h0k ∂l j w̄
k

+ w̄k∂k�h0 j + �h0k∂ j w̄
k . (106)

Using the first order Eq. (95) and the expression for ω̄k (99) we get

w̄k∂k�h0 j + �h0k∂ j w̄
k = 4μ̃ω

∞∑

n=1

R̄nr
n P1

n (cos θ) eϕ j

and the last term in the expression for �q0 j , using (99),

r sin θ
(
∂kw̄l e

k
ϕe

l
ϕ

) =
∞∑

n=1

R̄nr
n P1

n (cos θ) (107)

Now if we put this particular solution in the harmonicity condition (105)

∂ j (w̄k∂kh0 j + h0k∂ j w̄
k) = ∂ j w̄k(∂ j h0k + ∂kh0 j

)
(108)

then the gauge propagation gives the particular solution to second order for the vector
equations too.

Let us finally solve the tensor equations

�qi j = 2N (2)
i j − ∂i P

(2)
j − ∂ j P

(2)
i − 2T (2)

i j , ∂ j qi j − 1

2
∂i q̂ = −1

2
∂i q00 − P(2)

i

(109)

The only difference with the equations we have solved for the exterior problem is the
term

T (2)
i j 	 1

2
μ̃

(
∂i w̄ j + ∂ j w̄i

)
(110)
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The remaining terms are determined from (64) and (61) and the solution of the
scalar Eq. (94).

Then, as we did above, we try the particular solution

q∗
i j = w̄k∂khi j + hkj∂i w̄

k + hik∂ j w̄
k − ∂i w̄

k ∂ j w̄k (111)

where

hi j = h00δi j + ∂i w̄ j + ∂ j w̄i (112)

As in the exterior vacuum problem a direct calculation shows that this is indeed a
solution of (109).

8 Conclusions

We have checked that second order gauge transformations map second order solutions
of the stationary axisymmetric Einstein equations onto solutions of the same kind.
This fact provides a simple way to introduce such gauge constants into an approxi-
mate metric avoiding the harder calculations and messy expressions involved in the
derivation of a second order solution from a first order metric when gauge constants
are included.

However, the second order metric obtained by iteration from the first order metric
with gauge constants and the metric one gets by setting the gauge constants equal to
zero in that metric followed by a second order gauge transformation can look very
different. It does not mean they are different solutions of the same problem, they are
indeed the same, only their expressions are different. The reason for this discrepancy
is that the constants which appear in the metrics generated by the two procedures, even
though they have the same labels in both metrics, can actually be not the same. Any
time a homogeneous solution of the first order equations is added to get a higher order
solution, constants are redefined in an uncontrolled way. This is not made explicit since
we do not change the constant labels, but they have actually changed in the sense that
an indeterminate term of the same order as the approximation we are calculating has
been added to them. Obviously these corrections to the constants depend on the rule
used to select the inhomogeneous solution and other choices we make.

As an example, consider two second order solutions from reference [2]: the exterior
metric of Eq. (20) and the interior metric of Eq. (17). They both have been obtained
from a first order solution with gauge constants. Setting A0 = A2 = B2 = 0 in (20)
we get an exterior metric without gauge constants, which can then be reintroduced by
means of the following gauge transformation

w j =
[(

A0 − 2�2B2
)
r3

0

2r3 P1 + 3�2A2r5
0

2r4 P3

]

ezj

+
[(

A0 + �2B2
)
r3

0

2r2 P1
1 + �2A2r5

0

2r4 P1
3

]

eρ j (113)
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(there are not explicit second order terms because they have the same structure of first
order terms, so we can include them in the first order by redefining gauge constants).
In this case nothing strange happens and we recover metric (20). However, this is not
the case when we apply the same scheme to the interior metric (17). The result of
getting rid of gauge constants, a0 = a2 = b2 = 0, and bringing them back by using
the gauge transformation

w j =
[(

1

2
a0 − �2b2

)
r P1 + 3�2a2

2r2
0

r3P3

]

ezj

+
[

1

2

(
a0 + �2b2

)
r P1

1 + �2a2

2r2
0

r3P1
3

]

eρ j (114)

(there are no second order terms for the same reason as before) is a metric which
differs widely from (17). However, the following change of constants in the metric
(17),

m0 → m0, m2 → m2 + λ (b2 + a0m2) ,

j1 → j1 + λ j1
(
a0 + �2b2

)
, j3 → j3 + λ

(
2 j3a0 + j1a2 + 12

25
b2

)
,

a0 → a0 + λ

(
a0m0 + 3

4
a2

0

)
, a2 → a2 + λ

(
a2m0 + 1

5
a0m2 + 5

2
a0a2

)
,

b2 → b2 + λ

(
b2m0 + 3

2
b2a0

)
(115)

brings it into the metric generated by the gauge transformation. The difference between
both expressions of the same metric is just a solution of the homogeneous Einstein
equations.
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