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“Por diferentes motivos se marchan los hombres a los confines abandonados del 

mundo. A algunos les impele solamente el afán de aventuras, otros sienten una intensa 

sed de saber, los terceros obedecen a la seductora llamada de unas voces quedas, al 

encanto misterioso de lo desconocido que les aleja de los senderos rutinarios de la vida 

cotidiana.” 

Ernest Shackleton, 1901. 

 

 

“Water and air, the two essential fluids on which all life depends, have become global 

garbage cans.” 

Jacques-Yves Cousteau, 1910. 
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Abstract 

The Open Ocean has been recognized as playing a key role on global dynamics of 

pollutants due to its large coverage of the planet surface, its high degradation 

potential and its sink and accumulation capacities towards anthropogenic chemicals. 

Nevertheless, there is a dearth of measurements of contaminants in the Open Ocean 

lower atmosphere, water column and trophic chain as a result of its remoteness and 

wide spatial reach. Persistent organic pollutants (POPs) are an important class of 

chemical contaminants due to their particular characteristics such as persistency, 

bioaccumulation potential, high toxicity and long range environmental transport 

capacity. Even though previous studies report their occurrence in the marine 

environment, the processes and magnitude of their fate, transport and sinks in the 

Open Ocean remain uncharacterized. In this Thesis two groups of organic 

contaminants have been selected in order to study POPs dynamics and fate in the 

oceanic environment. Polycyclic Aromatic Hydrocarbons (PAHs) are organic pollutants 

generated during incomplete combustion of fossil fuels and organic matter, but as well 

coming from petrogenic and biogenic natural sources. PAHs are semivolatile and highly 

mobile between the atmosphere and aqueous systems. Perfluoroalkylated substances 

(PFASs) are anthropogenic halogenated pollutants, recently developed for industrial 

and consumer goods usage. They are extremely persistent and exhibit higher solubility 

and lower hydrophobicity than most POPs, which makes them prone to be found in 

aqueous matrixes. 

During the Malaspina 2010 circumnavigation cruise across the Atlantic, Pacific and 

Indian oceans (35°N- 40°S), 64 PAHs were measured in the gas, aerosol, rainwater, 

dissolved, particulate and plankton matrixes, and 11 PFASs were quantified in 

dissolved phase at surface and deep chlorophyll maximum depth seawater. 

Degradation and atmospheric deposition of PAHs was assessed for dry deposition, wet 

deposition and diffusive air-water exchange, suggesting approaches for their global 

estimation, and proposing a global budget for PFAS, PAHs, and other semivolatile 

aromatic-like compounds, and their effect in the carbon global cycle. Dry deposition 

was obtained by direct measurements on board and parametrized for the whole 

tropical and subtropical Ocean; wet deposition was quantified from the precipitation  
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rainwater gathered during the cruise; and diffusive exchange was calculated from the 

measured PAHs concentrations in the gas and dissolved phases, concurrently with the 

environmental parameters affecting volatilization and absorption (temperature, wind 

speed, salinity, dissolved organic carbon among others). Moreover, vertical 

distribution processes and influencing parameters in the surface mixed layer of the 

water column were assessed for PAHs and PFASs. Processes evaluated for PAHs 

include the vertical fluxes associated to the organic matter sinking (biological pump), 

biomass dilution, planktonic degradation, and air-water-particle exchange. For PFASs, 

the biological pump and eddy diffusive fluxes (based on turbulence eddy diffusion 

coefficients measured concurrently to the PFASs sampling) were assessed empirically 

for the first time in literature. The analysis of the complex feedback established 

between atmospheric depositional fluxes and the diffusive, degradative and biological 

pumps fluxes in the marine water column at a global scale is also covered. 

Furthermore, a wide array of understudied environmental parameters are reviewed as 

plausible factors affecting POPs fate in the Open Ocean, and a proposal of the research 

directions to follow and missing gaps to be filled is done. Amongst the innovative 

outcomes of this study, it can be highlighted the comprehensive sampling covering the 

tropical and subtropical global oceans, and the large amount of experimentally 

determined processes and influencing factors in order to better understand  the global 

fate of chemical organic pollutants in the Open Ocean. 
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Resumen 

El Océano Abierto está reconocido como un ambiente clave en la dinámica global de la 

contaminación debido a que representa un gran porcentaje de la superficie terrestre, 

su alto potencial de degradación y su capacidad como sumidero de sustancias químicas 

antropogénicas. A pesar de ello, hay una carencia de medidas de contaminantes en la 

atmósfera, la columna de agua y el plancton oceánico como resultado de su difícil 

acceso y amplitud espacial. Los contaminantes orgánicos persistentes (COP) son un 

importante grupo de contaminantes químicos caracterizados por ser persistentes, 

bioacumulables, tóxicos y susceptibles de sufrir transporte a larga distancia. Aunque 

estudios previos documentan su existencia en el medio ambiente marino, los procesos 

y la magnitud de su comportamiento, capacidad de transporte y sumidero en el 

Océano abierto no están caracterizados. En esta Tesis dos grupos de contaminantes 

orgánicos han sido seleccionados para ilustrar la dinámica de los COP y su destino en el 

medio ambiente oceánico. Los hidrocarburos aromáticos policíclicos (PAHs, por sus 

siglas en inglés) son contaminantes orgánicos generados durante la combustión 

incompleta de combustibles fósiles y de materia orgánica, o provenientes de fuentes 

petrogénicas o biogénicas naturales. Son semivolátiles y altamente móviles entre la 

atmósfera y los sistemas acuosas debido a sus propiedades fisicoquímicas Las 

sustancias perfluoroalquiladas (PFASs, por sus siglas en inglés) son contaminantes 

halogenados antropogénicos emergentes desarrollados recientemente para usos 

industriales y en productos de consumo. Son extremadamente persistentes y exhiben 

mayor solubilidad y menor hidrofobicidad que otros COP, lo que les hace susceptibles 

de hallarse en matrices acuosas. 

Durante la campaña de circunnavegación Malaspina 2010 a través de los océanos 

Atlántico, Pacífico e Índico (35°N- 40°S), se midieron 64 PAHs en las matrices gas, 

aerosol, agua de lluvia, disuelto, particulado y en el plancton; y 11 PFAS se 

cuantificaron en la fase disuelta de agua marina superficial y de la profundidad del 

máximo de clorofila. La degradación y la deposición atmosférica de los PAHs se 

evaluaron mediante las medidas de deposición seca, deposición húmeda e intercambio 

difusivo aire-agua, sugiriéndose métodos para su cuantificación global y 

proponiéndose un cómputo global para estos contaminantes y otros compuestos  
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semivolátiles aromáticos, así como su efecto en el ciclo del carbono. La deposición seca 

se obtuvo directamente de medidas durante la campaña y fue parametrizada para 

todo el Océano tropical y subtropical; la deposición húmeda se cuantificó con agua de 

lluvia recogida durante la navegación; y el intercambio difusivo se estimó con las 

concentraciones de PAHs de las fases gas y disuelta, medidas simultáneamente con 

parámetros ambientales que afectan a la volatilización y la absorción de estos 

compuestos (temperatura, velocidad del viento, salinidad y carbono orgánico disuelto, 

entre otras). Asimismo, se midieron los procesos de distribución vertical y los 

parámetros que afectan a las concentraciones de PAHs y PFASs en la capa de mezcla 

superficial de la columna de agua. Los procesos examinados para PAHs incluyen los 

flujos verticales asociados con la sedimentación de materia orgánica (bomba 

biológica), la biodilución, la degradación planctónica, y el equilibrio aire-agua-partícula. 

Para las PFASs, la bomba biológica y los flujos difusivos turbulentos (basados en 

medidas de los coeficientes de difusión turbulenta simultáneas con el muestreo de 

PFASs) fueron medidos empíricamente por primera vez en la literatura. El análisis de 

los complejos efectos retroactivos establecidos entre los flujos de deposición y los 

procesos de degradación, difusión y la bomba biológica a escala global también ha sido 

abordado. De la misma forma, un amplio espectro de parámetros ambientales se ha 

revisado para dilucidar posibles factores que pudieran afectar al destino de los COP en 

el Océano Abierto, y se proponen una serie de líneas de investigación y necesidades 

prioritarias para su futura investigación. Entre los aspectos más innovadores de esta 

Tesis destacan la enorme cobertura espacial del Océano Global en sus zonas tropicales 

y subtropicales, y la gran cantidad de procesos de transporte determinados de manera 

empírica junto a sus factores determinantes, con el objeto de poder mejorar el 

conocimiento sobre el comportamiento y destino final de los contaminantes químicos 

orgánicos en el Océano Abierto. 
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Resum 

L'Oceà Obert s'ha descrit com un ambient clau en la dinàmica global de la 

contaminació degut al seu gran percentatge de cobertura de la superfície terrestre, el 

seu alt potencial de degradació i la seva capacitat com a embornal i acumulador de 

substàncies químiques antropogèniques. Tot i això, hi ha una manca de mesures de 

contaminants a l'atmosfera, a la columna d'aigua i al plàncton oceànic com a resultat 

del seu difícil accés i de l’amplitud espacial. Els contaminants orgànics persistents 

(COP) són substàncies químiques no degradables, bioacumulatives, tòxiques per als 

humans i els ecosistemes, i susceptibles de patir transport a llarga distància. Encara 

que hi ha estudis previs que reporten la seva existència en el medi ambient marí, els 

processos i la magnitud del seu transport i embornal en l'Oceà Obert no està 

caracteritzada. En aquesta tesi dos exemples de grups de contaminants orgànics han 

estat seleccionats per il·lustrar la dinàmica dels COP i el seu destí en el medi ambient 

oceànic. Els hidrocarburs aromàtics policíclics (PAHs) són contaminants orgànics 

generats durant la combustió incompleta de combustibles fòssils i de matèria orgànica, 

o provinents de fonts petrogèniques o biogèniques naturals. Tot i que els PAHs no són 

considerats COP ja que són degradables en el medi, han estat descrits com nocius per 

als ecosistemes, es troben de manera ubiqua en el medi ambient i mostren nivells 

creixents en algunes regions a causa de l'augment de les seves fonts antropogèniques. 

Són compostos semivolàtils, altament mòbils entre l'aire i l'aigua com a resultat de les 

seves característiques fisicoquímiques. Les substàncies perfluoroalquilades (PFASs) són 

contaminants halogenats antropogènics de recent creació per al seu ús industrial i en 

productes de consum com aïllants i tensioactius. Són extremadament persistents i 

exhibeixen major solubilitat i menor hidrofobicitat que altres COP, fet que els fa 

susceptibles de trobar-se en matrius aquoses. 

Durant la campanya de circumnavegació Malaspina 2010 a través dels oceans Atlàntic, 

Pacífic i Índic (35 ° N-40 ° S), 64 PAHs van ser mesurats en les matrius; gas, aerosol, 

aigua de pluja, fracció dissolta, fracció particulada i en el plàncton, i 11 PFASs van ser 

identificats en la fase dissolta d'aigua marina superficial i de la profunditat del màxim 

de clorofil·la. La degradació i la deposició atmosfèrica dels PAHs van ser avaluades 

mitjançant la mesura de la deposició seca, deposició humida i Intercanvi difusiu aire- 
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aigua, suggerint mètodes per a la seva quantificació global i proposant un còmput 

global per a aquests contaminants, i altres compostos semivolàtils aromàtics, així com 

el seu acoplament amb el cicle del carboni orgànic. La deposició seca es va obtenir 

directament de mesures durant la campanya i va ser parametritzada per tot l'Oceà 

tropical i subtropical; la deposició humida es va quantificar gràcies a l'aigua de pluja 

recollida durant la navegació; i l'Intercanvi difusiu va ser estimat amb les 

concentracions dels PAHs mesurades en les fases gas i dissolta, preses simultàniament 

amb paràmetres ambientals que afecten la volatilització i l'absorció d'aquests 

compostos (temperatura, velocitat del vent, salinitat, carboni orgànic dissolt, entre 

d'altres). A més a més, es van mesurar els processos de distribució vertical i els 

paràmetres que afectaven a la capa de mescla superficial de la columna d'aigua per als 

PAHs i PFASs. Els processos examinats per a PAHs inclouen els fluxos verticals associats 

amb la sedimentació de matèria orgànica (bomba biològica), la biodilució, degradació 

planctònica, i l'equilibri aire-aigua-partícula. Per a les PFASs, la bomba biològica i els 

fluxos difusius turbulents (basats en mesures dels coeficients de difusió turbulenta 

simultànies amb el mostreig de PFASs) van ser mesurats empíricament per primera 

vegada en la literatura. L'anàlisi dels complexos efectes retroactius establerts entre els 

fluxos de deposició i els processos de degradació, difusió i la bomba biològica a escala 

global també ha estat abordat. De la mateixa manera, un ampli espectre de 

paràmetres ambientals ha estat revisat per dilucidar possibles factors que puguin 

afectar al destí dels COP en l'Oceà Obert, i es proposen una sèrie de línies 

d'investigació i necessitats prioritàries per a la seva futura investigació. Entre els 

aspectes més innovadors d'aquesta tesi es poden destacar l'enorme cobertura espacial 

de l'Oceà Global a les seves zones tropicals i subtropicals, i la gran quantitat de 

processos de transport determinats de manera empírica juntament amb els seus 

factors determinants, per tal de poder identificar el destí final dels contaminants 

orgànics persistents en l'Oceà Obert. 
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Pollution in the Open Ocean: Persistent Organic Pollutants and “not so 

Persistent” Pollutants 

The Open Ocean remains as one the most fruitful and unexplored ecosystem on Earth 

yet if its extension covers more than three quarters of the Earth’s surface. It provides 

the primary source of oxygen to our atmosphere and holds the first place as a sink for 

substances like CO2, carbon, and of course, pollutants. Recent studies have dealt with 

the resilience capacity of the ocean, and if it would be possible to reach the tipping 

point from which its physico-chemical properties and natural biogeochemical cycles 

will not sustain life any more 1, 2. Global change threatens in the Ocean are associated 

with i) ice melting in the poles and freshening of the oceanic waters, ii) oceanic 

currents modification with effects in the heat global transfer, iii) acidification, iv) 

ecosystems functioning and biodiversity alterations (both alien species proliferation 

and extinction of others) and v) pollution 3. 

The chemical alteration of the global Open Ocean has been recently considered for few 

emerging issues, like the plastic debris accumulation 4-6 or acidification 7, but other 

types of chemical pollution had not been assessed at a planetary scale, even if more 

than 2000 organic pollutants have been already reported in marine waters 8. 

Moreover, this list is increasing exponentially nowadays with the production and 

release of new chemicals with still unknown effects in the environment. Indeed, 

chemical risk is one of the global dangers to which we are unaware, according to 

Rockstrom et al., who defines it as an earth-system process yet to explore at a global 

scale 9. 

In order to identify priority chemicals there is an established Risk criteria which 

includes i) production volume, ii) usage profile and iii) their physico-chemical 

properties 10. Taking into account these premises, there is a particular group of 

pollutants that have been classified of major concern, as they fulfill all the 

requirements, the so called Persistent Organic Pollutants (POPs). Those are organic 

chemicals that: 

- Are persistent since they do not degrade over long periods of time once 

released into the environment 
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- Bioaccumulate and biomagnify in the trophic chains 

- Are toxic to both humans and wildlife 

- Are prone to long-range environmental transport (LRET) and deposition 

Consequently, POPs pose a threat to the environment and to human health all over 

the globe. Due to the international concern regarding these chemicals, the United 

Nations Environment Program (UNEP) promoted the adoption in 2001 of the 

Stockholm Convention to protect human health and the environment from POPs 11. On 

it, 12 priority substances were initially regulated by controlling all their life cycle, from 

their production, use and consumption to their removal and waste disposal products. 

Nowadays, this list of pesticides, industrial chemicals and unintentional products has 

grown, nevertheless, it is still incomplete taking into account the myriads of toxics 

fulfilling those requirements released every year to our ecosystems. Other regional 

regulatory tools affecting POPs are the United States Environmental Protection 

Agency’s (EPA) Toxic Release Inventory 12, the Canadian Environmental Protection Act 

13, and The European Union’s regulation on Registration, Evaluation, Authorization, 

and Restriction of Chemicals (REACH) 14. 

The legacy POPs more extensively studied in the literature are the polychlorinated 

biphenyls (PCBs), organochlorinated pesticides (OCPs) such as 

dichlorodiphenyltrichloroethane (DDT), hexachlorocyclohexanes (HCHs) and 

hexachlorobenzene (HCB) and other by-products of industrial processes or 

combustion, such as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). 

Among the new emerging contaminants, defined as chemicals that are not currently or 

have been only recently regulated, other halogenated contaminants are arising, like 

polybrominated compounds (such as polybrominated diphenyl ethers (PBDEs) and 

Dechlorane Plus (DP)) or perfluoroalkylated substances (PFASs). Traditionally, much 

attention has been paid as well to the polycyclic aromatic hydrocarbons (PAHs), which 

are not as recalcitrant as POPs, but because of their toxicity, bioaccumulation tendency 

in low trophic levels (e.g. in plankton), and susceptibility to undergo long-range 

atmospheric transport are of great concern globally 15. Indeed, PAHs are not listed in 

the Stockholm Convention but are included in the Aarhus Protocol of the United 

Nations Economic Commission for Europe (UNECE) 16 and the Convention on Long-
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Range Transboundary Air Pollution (CLRTAP) 17. Based on the previous considerations, 

in this thesis PAHs will be referred to as POPs in its most general sense. 

Although the regulations on the use and production of those chemicals and the 

potentially new ones launched into the marked, their continuous use and still 

unknown toxic effect for the ecosystem’s health requires further research to 

understand their fate and behavior in the global environment. Most of the studies 

dealing with POPs in the last decades focus on ecotoxicological and health effects and 

assess their occurrence at limited regional scales. However, there is a big gap in the 

knowledge of POPs global fate 18, even though in the last years some studies are 

emphasizing the significance of global dynamics and the role of the ocean on the 

global distribution and sink of these pollutants 18, 19. 

 

Environmental Fate and Dynamics of POPs 

A combination of local, regional and long range transport is responsible of the POPs 

distribution in the global environment. The POPs potential to undergo LRET explains 

why they can be found in remote areas, which is even favored by their persistency. 

Already in the 60s, the dispersion of halogenated persistent contaminants was 

reported 20, 21, and also at that decade, popular concern for these pollutants caused 

the “Silent Spring” revolution 22, starting a social movement towards chemical 

environmental awareness at global scale supported by the scientific community. Up to 

date several studies assessing global transport and accumulation processes to remote 

polar and oceanic regions have been undertaken 18, 23-25, suggesting all of them a need 

for further research on physico-chemical properties, good monitoring approaches and 

global understanding of processes 18, 23, 26. 

The distribution of POPs in the environment may occur either in the atmosphere or in 

the water systems, or under a combination of both (soils and other environmental 

matrixes are considered as reservoirs 27). The presence of POPs in both environmental 

compartments is a matter of concern itself, as the uptake from atmosphere and the 

water are the two main paths of bioconcentration, and subsequent biomagnification 
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through the trophic chains, leading to a potential risk for wildlife and humans 28. 

Moreover, the spread of pollution is accelerated and intensified in these highly 

dynamic media. 

 

Figure I.1. Schematic view of POPs processes in the Global Ocean. 

The potential fate and behavior of a given contaminant depends on their physico-

chemical properties and environmental variables. It has been reported that 

mobilization occurs in pulses of deposition and volatilization, what is called the 

“grasshopper effect” 19. In each stage of the cycle, POPs may suffer from different 

degradation (like photolysis or OH reactions in the atmosphere, or biodegradation in 

soils or the water column) and/or accumulation processes (sequestration by soot in 

the atmosphere or bioaccumulation over a food web, for instance) that affects their 

occurrence, fate, toxicity and bioavailability. The grasshopper effect is mainly 

regulated by temperature and the biological pump, and it is a distillation global process 

towards the cold poles, where POPs have been reported to accumulate 29-31. 

Nevertheless, other ambient factors like sources, precipitation, organic matter 

sorption, or the presence of secondary sources modify the global distribution of POPs. 
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Therefore, the total perspective of processes and their interrelations in the global 

Ocean is highly complex (Figure I.1) depending on many environmental factors and 

multi-media equilibria. 

 

Atmospheric processes 

Most POPs are semivolatile compounds which once released into the environment 

distribute over the atmosphere and spread at regional and global scale through a 

variety of deposition processes, chemical partition and interchanging fluxes with the 

ocean or soils 19, 32, 33. Atmospheric deposition of POPs has been assessed in remote 

areas like the Open Ocean and polar seas 34-40 but not on a planetary scale except for 

few seminal works 25. The main entrance of POPs to the ocean is reported to be the 

atmosphere 41, 42, even if riverine inputs or run-off may be of particular relevance for 

some compounds like pesticides and PFASs in coastal areas 43, 44. 

The atmospheric deposition processes considered are dry deposition, wet deposition 

and air-water diffusive fluxes (Figure I.1). These processes have different relative 

importance on pollution loading depending on environmental parameters 

(temperature, wind speed, aerosol abundance and organic matter content, 

precipitation rates, organic matter content of the surface water, salinity, density, etc.) 

and also on the physicochemical properties of the contaminant (volatility, solubility, 

hydrophobicity, shoot sorption, etc.). The gas-particle partition of the pollutant will 

determine which of the process will have a higher relevance in its total atmospheric 

deposition 45. POPs mainly partitioned to aerosols (like PAHs, the more toxic dioxins 

and furans, organophosphorus flame retardants and plasticizers, PBDEs and DPs) due 

to their low-medium volatility are prone to enter the open ocean via dry deposition. 

Contrarily, those POPs mainly found in the gas phase (like volatile PAHs, PCBs and 

HCHs) would be more affected by diffusive fluxes between the low atmosphere and 

the surface ocean. 

Dry deposition in the open ocean consists in the direct load of pollutants adsorbed 

onto marine aerosols. The settling of these particles is a generalized process over the 

ocean surface, and even if the concentration of aerosols in the remote ocean 
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atmosphere is low there is a continuous production and renewal of these active 

elements 46 and their chemical characteristics (organic carbon content) makes them an 

effective attaching surface for low vapor pressure POPs. The dry deposition flux had 

been poorly described in the open ocean so far, being only characterized in the 

Mediterranean Sea 47-49 and some parts of the Atlantic Ocean 41, 50, 51. Previous works 

described that dry deposition fluxes will depend on the concentration of contaminants 

in the aerosol fraction and the velocity of settling of that aerosol (Figure I.2), and may 

be affected by wind speed and other physico-chemical properties of the water that 

could enhance the aerosol affinity to the oceanic surface. Dry deposition fluxes (FDD) 

can be calculated from  

FDD = vD·CA  [I.1] 

where CA is the aerosol phase concentration and vD is the deposition velocity of the 

specific aerosol-bound chemical 51. 

 

Figure I.2. Schematic draw of dry deposition. 

Wet deposition is associated with the precipitation events that accelerate the entrance 

of pollution in the Open Ocean by a “washing process” of the atmosphere. In the 

tropical ocean, precipitation is mainly due to rain, but in higher latitudes or coastal 

areas fog, snow and hail should be considered as well. It consists on a double step 

equilibria: on the one hand each raindrop is chemically equilibrated with the gas phase 

concentration of organic pollutants through diffusion, and on the other, the rain 

sweeps the suspended particulate matter in the low atmosphere and enhances the 

entrance of hydrophobic compounds attached to the aerosol into the open ocean 45. 
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The wet deposition flux (FWD) of POPs into the ocean can be calculated from a two 

terms equation, 

𝐹𝑊𝐷 =  𝑝0  (
𝐶𝐺

𝐻′
+  𝑤𝑝 𝐶𝐴)  [I.2] 

where p0 is the precipitation rate, and multiplies a “gaseous equilibria” term, based on 

the concentration of the pollutant in the gas phase (CG) and the Henry’s Law constant 

(H’), and a “scavenging” term, based on the washout ratio (wp) and the concentration 

in the aerosol phase (Figure I.3). 

Wet deposition is a very relevant entrance pathway of organic pollution to the ocean; 

nevertheless it is an episodic event very difficult to extrapolate spatially and 

temporally. It is also very intense during the first moments, but once that the fast 

removal of pollution has occurred it rapidly dilutes its strength as a transport vector 

since the atmosphere has become depleted in POPs. It has been assessed for 

compounds like PCBs42, 52, 53, PAHs49, 54, 55 and PFASs56-58, but again limited to regional 

areas, and only modeled at a global scale42. 

 

Figure I.3. Schematic draw of wet deposition. 

Diffusive exchange between the atmosphere and the surface ocean appears to be the 

major diffuse entrance of POPs into the marine environment 42, 59. Among the 

interchanging processes it is the most reported one for many legacy halogenated 

pollutants 39, 47, 53, 60 and hydrocarbons 61-64 and it is becoming a hot topic for the 

emerging contaminants, even if few information in the Open Ocean can be found yet 

65-67. 
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The direction of the air-water exchange depends on the fugacity of the chemical in air 

and water. Fugacity is the “the escaping tendency” of a substance from a media, and 

each POP will exhibit a particular fugacity from air and water according to its chemical 

properties and environmental conditions. Therefore the fugacity from the air (fA) and 

the fugacity from the water (fW) phases will be, 

𝑓𝐴 =  𝐶𝐺  𝑅 𝑇  [I.3] 

𝑓𝑊 =  𝐶𝑊 𝐻′𝑅 𝑇  [I.4] 

It is based on the concentration of the compound in the matrix (CG in gas or CW in 

water), the gases constant R, the dimensionless Henry’s Law constant H’, and on 

temperature (T). The net air-water diffusive flux is always from high to low fugacity, 

and there is a net equilibrium if air and water POP fugacities are similar in magnitude. 

Diffusive fluxes are estimated from a fugacity gradient and a mass transfer coefficient, 

which depend on a wide array of environmental parameters. Air-water flux (FAW, 

Figure I.4) can be calculated from the concentration of the POP in the air and in the 

water as follows, 

𝐹𝐴𝑊 = 𝑘𝐴𝑊  (
𝐶𝐺

𝐻′
− 𝐶𝑊)  [I.5] 

Where H’ is the Henry’s Law constant of the compound (salinity and temperature 

corrected) and kAW is the air-water mass transfer rate. In turn, this rate is estimated 

using the two film resistance model, and thus it is dependent on the mass transfer 

coefficients in each phase (kA and kW for the air and water, respectively), 

1

𝑘𝐴𝑊
=  

1

𝑘𝐴 𝐻′
+ 

1

𝑘𝑊
  [I.6] 

To calculate the particular kA and kW of a certain pollutant (kA,POP and kW,POP), 

empirically determined coefficients for H2O in the air (kA,H2O)and CO2 in the water 

(kW,CO2)are used as comparison standards. Then in the air, 

𝑘𝐴,𝑃𝑂𝑃 =  𝑘𝐴,𝐻2𝑂 (
𝐷𝐴,𝑃𝑂𝑃

𝐷𝐴,𝐻2𝑂
)

0.61

  [I.7] 
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being 𝑘𝐴,𝐻2𝑂 = 0.2 𝑈10 + 0.3, where DA is the diffusivity coefficient in the air and U10 is 

the wind speed at 10 m height of the air-ocean interphase. 

The same way in the water, 

𝑘𝑊,𝑃𝑂𝑃 =  𝑘𝑊,𝐶𝑂2 (
𝑆𝐶,𝑃𝑂𝑃

𝑆𝐶,𝐶𝑂2
)

−0.5

  [I.8] 

being 𝑘𝑊,𝐶𝑂2 = 0.24 𝑈10
2 + 0.061 𝑈10 and 𝑆𝐶,𝐶𝑂2 the Schmidt number at 298 K, 

related with the diffusion of a substance in a liquid depending on the fluid viscosity, 

600 for the CO2. 

   

Figure I.4. Schematic draw of diffusive  Figure I.5. Schematic draw of Atmospheric Degradation. 

air-water exchange. 

Nevertheless, the atmosphere holds also a high degradation capacity, and acts not only 

as an input vector of pollution to the remote ocean, but as a sink of released POPs, 

primarily originating in land. There are many reactions in the atmosphere that may 

affect POP concentrations, like photodegradation and interactions with oxidative 

substances or radicals, like ozone or OH 31, 68. However, it is assumed that POPs 

degradation in the atmosphere is affecting mainly gas phase pollutants and it is 

dominated by the reaction with hydroxyl radical 31, and thus depend on the 

concentration of OH in the atmospheric boundary layer (ABL) (Figure I.5). OH 

production in the tropical and subtropical marine atmosphere is constant, and 

depends on temperature, being therefore a continuous and ubiquitous depletion 

process 31. 
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Water column processes 

There are direct loads of POPs from inland waters via either run-off or through riverine 

discharges (Figure I.6). Run-off mainly depends on continental precipitation regimes 

(quite important in tropical and subtropical areas), temperature, vegetation cover and 

land use, and it has been recently turned into a research topic of interest due to the 

suggested future scenarios of climate change 69, 70. Riverine discharge has been more 

extensively studied in the past due to the habitual connection between rivers, harbors 

and human emplacements, with the consequent effects of POPs on human health and 

activities 71-73. Moreover, industrial activities and waste water treatment plants usually 

spill in riverine systems affecting as well pollution loading into the coastal marine 

environment 74-76. However, POPs entrance through direct coastal inputs has a much 

lower effect on the open ocean concentrations when compared to atmospheric inputs 

and, thus, those processes are out of the scope of this thesis. Nevertheless, it should 

be taken into account that for some POP families, such as PFASs, it has been suggested 

that riverine inputs account for a main input to the marine environment 77, 78. 

Ocean currents are an effective vector for transport of substances like oxygen 79, salts 

80, nutrients 81 and heat 82 at a planetary scale. Equally, organic pollutants prone to be 

found in the dissolved water phase (like ionic PFASs) are reported to be affected by 

water masses transport 44, 83-85. Nevertheless, most POPs are highly hydrophobic and 

semivolatile and it can be assumed that they will not be affected directly by oceanic 

circulation, but mainly by atmospheric deposition and other processes, like 

phytoplankton blooms in upwelling areas, effects on air-water exchange due to ocean 

currents temperature, and organic matter cycling influence on air-water dis-equilibria. 

Moreover, the latitudinal area covered in this thesis (tropical and subtropical oceans) 

does not include the main marine subduction areas, placed in higher latitudinal strips 

85, and therefore this process is out of the scope of this work (Figure I.6). 

Dispersion in the deep ocean due to turbulent kinetics is another physical transport 

which has received little attention (Figure I.6). It is based on Fick’s laws of diffusion, 

which explain diffusion caused by turbulent fluxes 86 by, 

𝐹𝐸𝑑𝑑𝑦 = −𝐷 
𝜕𝐶𝑤

𝜕𝑧
  [I.9] 
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where Cw is the seawater concentration of the target substance, z is depth, and D is the 

eddy diffusivity. Diffusivity has been estimated in literature from differences in the 

microscale temperature or density of the water 87, 88, being this coefficient is the main 

parameter to measure turbulence in the ocean. Turbulence, caused by macro and 

micro scale movement of the ocean and wind shear, has been used to explain diffusion 

of dissolved substances like nutrients and oxygen in the open ocean 89-91, but up to the 

moment has had very low application in POPs distribution 83 and thus it is a research 

field yet to explore 87. 

 

Figure I.6. Schematic draw of physical transport processes in the water column. 

Interactions of POPs with organic matter in the water column are relevant processes 

affecting their fate in the Open Ocean (Figure I.7). POPs are rapidly sorpt onto 

particulate organic matter, if not entering the water directly attached to aerosols, and 

once there, they are susceptible to suffer physical or biological alteration. Among 

these processes; dilution, fast air-water-particle equilibrium, degradation, settling 

(biological pump), or bioaccumulation and biomagnification have been described to 

modify POPs concentrations in the marine water column and have a plausible effect on 

global fate of these compounds18, 23. Studies regarding these processes have been 

conducted in lakes and coastal areas92, 93, confined seas64, 94 and in polar regions37, 39, 95, 

but for many of these processes there is a lack of a global assessments of their 

relevance. 
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Figure I.7. Schematic draw of biological transport processes in the water column. 

 

Case studies in the Malaspina expedition: PAHs and PFASs 

The challenge to make a global study of POP’s dynamics in the Open Ocean was 

difficult to consider taking into account the logistic and theoretical problems that could 

arise in such an effort. That is why most of the previous approaches have been 

formulated from non-empirical situations (like models or reviews of disperse datasets 

31, 59, 83) or from new technologies like satellite imagery. Even if those serve as a very 

interesting base to infer the POPs dynamics in the Open Ocean, there was a lack of 

oceanic scale field studies comprehensively assessing processes affecting POP cycling 

and inputs. 

 

Figure I.8. Malaspina 2010 circumnavigation track. 
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The Malaspina 2010 circumnavigation cruise (Figure I.8) was an optimal framework to 

hold such an ambitious objective. This interdisciplinary project linked many of the 

oceanographic sciences, like physical oceanography, biogeochemistry, chemical 

pollution, optics, phytoplankton science (production and metabolism), microbial 

biodiversity and functions and zooplankton science among others. This conjunction 

created myriads of measurements and data sets that could be interrelated in order to 

get a holistic view of the Global Ocean. It lasted 7 months and crossed all the tropical 

and subtropical oceans between 40° North and 30° South, making it possible to 

measure concentrations and fluxes of the pollutants of interest all around the globe 

with a daily resolution. By crossing this information with other measured parameters 

during the circumnavigation (like chemical properties or meteorological data) it is 

possible to infer the potential influence of some processes not evaluated so far in the 

field in terms of POP cycling. 

The key processes of distribution and interchange between the atmosphere and the 

water surface were evaluated for the main POPs families during the development of 

this work, like dioxins, PCBs and some halogenated pesticides. Nevertheless, in this 

thesis, two particular groups of organic pollutants, PAHs and PFASs, were selected as 

target contaminants to asses POPs dynamics and fate in the open ocean. The first are 

semivolatile compounds (considered together with POPs even if they are susceptible 

to degradation) with a wide range of volatility and hydrophobicity, what makes them 

very interesting in order to asses atmosphere- seawater exchange. The second, PFASs, 

are ionic emerging POPs whose chemical characteristics (like much lower 

hydrophobicity compared with other POPs, and non-volatility) will serve as an example 

to show processes of mobility and diffusion within the water column in the Open sea. 
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Polycyclic Aromatic Hydrocarbons (PAHs) 

Polycyclic Aromatic Hydrocarbons are 

probably the more abundant and widely 

distributed carcinogens in the Earth 96, and 

they are present in our proximate 

environments 15, 97 but also in remote areas 

like the open ocean and polar regions 98 36, 

99-101. They come mainly from incomplete 

combustion of fossil fuels and organic 

matter and are related as well to 

petrogenic and biogenic processes. Even if 

they have been described to be occurring naturally, due to wildfires, volcanoes 102 and 

organic matter degradation in soils 103, the predominant vies is that the main actual 

global emission is due to anthropogenic activities, being biofuel consumption the main 

global source and the principal producing countries China (114 Gg y-1), India (90 Gg y-1) 

and United States (32 Gg y-1) (Figures I.9 and I.10) 104. 

 

Figure I.10. National annual emissions rate of EPA’s 16 regulated PAHs (modified from Zang et al 2009). 

The EPA suggested a priority list of 16 compounds (those indicated in Figures I.9 and 

I.10 and Table I.1) as of particular toxicological and environmental concern. Among 

them, there are the seven PAH compounds classified as probable human carcinogens: 

benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, 

chrysene, dibenz[a,h]anthracene, and indeno[1,2,3-cd]pyrene 12. The persistence and 

Figure I.9. PAHs global production (modified 

from Zang et al. 2009). 
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toxicity of PAHs is related with the MW (Table I.1) and with the isomeric structure 105. 

However, the higher occurrence of other non-as-toxic compounds or those having a 

bigger LRET potential make other PAHs of high interest as well. The chemical 

properties of each considered PAH in this thesis are included in Table I.1 and show the 

wide range of volatility, hydrophobicity, and persistence these compounds may 

exhibit. Indeed, the reported array of their semi volatility and partitioning tendency to 

soot and organic carbon, makes PAHs as a good case study of organic pollutants being 

subject to a number of different biotic and abiotic processes, and for assessing global 

transport and exchange between air-water-biota in the open ocean. 
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Table I.1. PAHs physicochemical properties 

 
 

MW 

[g mol
-1

] 

Log 

KOA 

Log 

KOW 

KOH 

[cm
-3

 

molec
-1

s
-1

] 

-∆H 

[kJ 

mol
-1

] 

∆S 

[kJ 

mol
-1

K
-1

] 

Naphthalene* 
 

128 5.1
a
 3.33 

i
 1.9 10

-11
 -19.29 

d
 0.054 

d
 

Methyl-

naphthalenes  
142 5.79 

b
 3.87 

j
 4.1 10

-11
 -42.4 

m
 0.11 

m
 

Dimethyl-

naphthalenes  
156 

 
4.42 

j
 6 10

-11
 -48.69 

d
  

Acenaphtylene* 

 

152 6.52 
c
 3.62 

i
 1.1 10

-10
 -52.2 

m
 0.131 

m
 

Acenaphtene* 

 

153 6.31 
d
 3.92 

i
 5.8 10

-11
 -51.9 

m
 0.133 

m
 

Fluorene* 

 

166 6.83 
d
 4.21 

i
 1.3 10

-11
 -48.8 

m
 0.118 

m
 

Dibenzothiophene 
 

184 7.24 
e
 4.38 

k
 1.4 10

-11
 -21.6 

n
 0.056 

o
 

Methyl-

dibenzothiophenes  
198 

 
 1.3 10

-11
   

Dimethyl-

dibenzothiophenes  
212 

 
 

 
  

Phenanthrene* 

 

178 7.22 
e
 4.57 

i
 1.3 10

-11
 -47.3 

m
 0.106 

m
 

Methyl-

phenanthrenes 
 

192 7.49 
e
 4.99 

i
 8 10

-12
 -35.4 

m
 0.067 

m
 

Dimethyl-

phenanthrenes 
 

206 8.03 
e
 

 
7.7 10

-12
   

Anthracene* 
 

178 7.55 
d
 4.68 

i
 1.1 10

-11
 -46.8 

m
 0.106 

m
 

Fluoranthene* 
 

202 8.61 
d
 5.23 

i
 9.1 10

-12
 -38.7 

m
 0.07 

m
 

Pyrene* 

 

202 8.75 
d
 5.11 

i
 8.6 10

-12
 -42.9 

m
 0.084 

m
 

Methyl-pyrenes 

 
216 

 
5.45 

i
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Dimethyl-pyrenes 

 

230 
  

   

Benzo[ghi] 

fluoranthene  

226 
  

 -5.35 
n
  

Benzo[a] 

anthracene*  
228 9.5

 a
 5.91 

i
 6.9 10

-12
 -66.4 

m
 0.159 

m
 

Chrysene* 
 

228 10.4
 a
 5.81 

i
 7.7 10

-12
 -100.9 

m
 0.268 

m
 

Methyl-chrysenes 

 

242 
 

  
  

Benzo[b] 

fluoranthene*  

252 11.19 
f
 6.2 

i
 

 
-19.6 

n
 0.056 

d
 

Benzo[k] 

fluoranthene*  
252 11.19 

f
 6.2 

i
 

 
-19.6 

n
 0.056 

d
 

Benzo[e] pyrene 

 

252 11.13 
f
 6.12 

i
 

 
-16.57 

d
 0.036 

d
 

Benzo[a] pyrene* 

 
252 11.56 

g
 6.13 

i
 

 
-25.61 

d
 0.032 

d
 

Perylene 
 

252 11.7 
h
 5.84 

i
 

 
-31.88 

d
 0.057 

d
 

Indeno[1,2,3-cd] 

pyrene* 
 

276 12.43 
g
 6.65 

i
 

 
-21.51 

d
 0.056 

d
 

Dibenzo[a,h] 

anthracene*  
278 12.59 

g
 6.86 

i
 

 
-31.16 

d
 0.057 

d
 

Benzo[ghi] 

perylene* 
 

276 12.55 
g
 6.22 

i
 

 
-17.37 

d
 0.031 

d
 

a 
Wania & Mackay 1996, 

b 
Hiatt 2014, 

c 
Ma et al 2010, 

d 
Mackay book 2006, 

e 
Lehndorff and Schwark 

2009, 
f 
Finizio et al. 1997, 

g
 Odabasi 2006, 

h 
Mackay and Callcot 1998, 

i
 Bukhard EST 2000, 

j
 Mackay book 

1992, 
k
 Blum et al 2011, 

l
 Keyte et al 2013, 

m 
Bamford 1999, 

n
 Acree and Chickos 2010, 

o
 Ramirez-

Verduzco et al 2007. *included in the EPA priority list. 
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Perfluoroalkylated Substances (PFASs) 

Perfluorinated compounds (PFCs) are anthropogenic halogenated chemicals recently 

developed for industrial and consumer goods usage. They were first produced by 

Dupont and 3M for isolation purposes and were included in daily products like plastics, 

food packages and clothes since the early sixties. The most produced and widely used 

compounds correspond to the perfluoroalkylated chains, the PFASs (Figure I.11 106). 

 

Figure I.11. PFCs production and use timeline. 

They were first reported in human blood in 1968 107 and during last years they have 

been reported in all environmental matrixes from soils75, water44 and air108, 109, to 

biota110, even in remote areas35, 111, 112. Because of this rising interest on their 

environmental distribution and little knowledge of their effects in the environment, 

coupled to a high pressure of the EPA in USA during the 90s, industry voluntarily 

phased out perfluorooctane carboxylic 

acid (PFOA) and perfluorooctane sulfonic 

acid (PFOS) direct production in the 2000s 

113. Nevertheless, electrochemical 

fluorination and telomerisation processes 

are still performed in industry, producing 

short chain PFASs and precursors of the 

more persistent PFASs even if some of 

them, like PFOS and its salts, were 

included in the Stockholm Convention in 
Figure I.12. PFOS and related substances 

global production (tons y
-1

). 
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2009 114. There is little information about the generating volume of the producing 

countries and emplacement of the sources. The more complete studies found to date 

are the Organization for Economic Cooperation and Development (OECD) reports in 

which only direct production of PFOS is compulsory informed for some countries, but 

not for other fluorinated compounds extensively used in pesticides formulations, 

firefighting foams, photographic industry and aviation industry 115. According to the 

report from 2009, the top annual producers in 2003 were Japan, China and Brazil 

(Figure I.12), even if previous to that year USA was by far the main producer and 

consumer reaching in year 2000 more than 3500 tons of annual production 113. 

PFASs consist on a fully fluorinated carbon chain, which makes them highly stable due 

to the strong fluoride-carbon bond, and an alkylated ionic “head” which gives them the 

amphipathic character. In particular PFOS and PFOA, the 8 carbons (C) sulphonic acid 

and carboxylic acid, respectively, have been reported all over the planet in all kind of 

environmental matrixes 44, 110, 116-119. These ionic families, perfluoroalkylated sulfonic 

and carboxylic acids (PFSAs and PFCAs, respectively) are the more persistent and toxic 

among the PFASs, and even if long chain and 8C compounds are raising general 

concern, shorter chain compounds are still being used in the growing industry of 

surfactants 44. Among the neutral PFASs, fluorotelomer alcohols, sulfonamides 

(PFASAs) and fluorotelomer aldehydes are the more relevant precursors of PFSAs and 

PFCAs 114, and recently they have become also target pollutants in environmental 

research as they are more volatile and have high LRET potential 74, 108, 120-122. In this 

thesis, PFSAs, PFCAs and PFASAs were selected for assessing their occurrence and 

cycling in the Open Ocean. Their properties affecting chemical dynamics are 

summarized in Table I.2. Of special interest is the fact that they have a particular 

organic matter affinity, as they are not as lipophilic as other POPs but they have been 

described as proteinophilic 123. There are few studies reporting their occurrence in the 

open ocean at big spatial scale 35, 112, 124-126, even less giving concentrations through the 

deep water column 84 and none to date assessing their fate in the open ocean relating 

them with organic matter cycling. Therefore the data provided in this thesis are novel 

and of high interest for the better understanding of these pollutants in the remote 

Oceanic environment. 
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Table I.2. PFASs physicochemical properties. 

Compound Acronym Molecule 
Chain 

length (n) 
MW  

[g mol-1] 
Log 

KOA
127 

Log 
KOW

127 
Log 

KPW
127 

BAF128 

 
Perfluoro-1-octanesulfonamide 
 

PFOSA 

 

 
 

7 498 8.4 6.3 - 
 

N-methylperfluoro-1-
octansulfonamide 

N-MePFOSA 7 512 
    

Perfluoro-n-butanoic acid PFBA 

 

 
 

3 
     

Perfluoro-n-pentanoic acid PFPA 4 
     

Perfluoro-n-hexanoic acid PFHxA 5 312 
    

Perfluoro-n-heptanoic acid PFHpA 6 363 5.9 3.8 2 
 

Perfluoro-n-octanoic acid PFOA 7 413 6.3 4.6 2.5 292 

Perfluoro-n-nonanoic acid PFNA 8 463 6.6 5.5 3.1 1650 

Perfluoro-n-decanoic acid PFDA 9 512 6.8 6.4 3.8 765 

Perfluoro-n-undecanoic acid PFUnDA 10 
 

7.1 7.4 4.5 
 

Perfluoro-n-dodecanoic acid PFDoDA 11 
 

7.4 8.1 5 
 

Perfluoro-n-tridecanoic acid PFTrDA 12 
 

8.8 9 5.6 
 

Perfluoro-n-tetradecanoic acid PFTeDA 13 
     

Perfluoro-n-hexadecanoic acid PFHxDA 15 
     

Perfluoro-n-octadecanoic acid PFODA 17 
     

Perfluoro-butanesulfonate PFBS 

  

3 298 
    

Perfluoro-hexanesulfonate PFHxS 5 399 
   

58 

Perfluoro-heptanesulfonate PFHpS 6 449 
    

Perfluoro-octanesulfonate PFOS 7 499 7.8 5.3 3 169 

Perfluoro-decanesulfonate PFDS 9 
     

Perfluoro-dodecanesulfonate PFDoDS 11 
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Aim and Outline of this thesis 

The general aim of this thesis is to assess the occurrence of POPs cycling in the global 

tropical and subtropical Open Oceans, focusing on PAHs and PFASs. 

The specific objectives are 

- To determine PAHs occurrence in gas, aerosol, dissolved, particulate and 

planktonic phases, and PFAS in dissolved phase from the global Open Ocean. 

- To quantify POPs fluxes between the different environmental compartments. 

- To study physical and trophic factors that affect POPs entrance in the plankton. 

- To evaluate the relevance of semivolatile aromatic hydrocarbons (containing 

PAHs and other aromatic compounds) as a source of semivolatile organic 

carbon to the ocean. 

The results obtained are presented in different chapters, depending on the 

contaminant family and the processes evaluated, as briefly described below: 
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Chapter 1: Field measurements of the Atmospheric Dry Deposition Fluxes and Velocities 

of Polycyclic Aromatic Hydrocarbons to the Global Oceans. Published in Environmental 

Science and Technology, 2014. 

In the first chapter, as illustrated in Figure I.13, the empirical measurements of PAHs 

dry deposition done during the Malaspina 2010 circumnavigation cruise are presented. 

PAHs velocities of deposition in coarse and fine aerosol are obtained separately and at 

a global scale resolution. Moreover, the directly quantified fluxes measured 

concurrently with other physicochemical and meteorological parameters, allowed to 

suggest an empirical parametrization of the velocity of deposition. The given equation 

allow to predict the dry depositional velocities of semivolatile organic compounds to 

the global Oceans by measuring the target compound concentration in the aerosol 

phase, its vapor pressure, the wind speed and the chlorophyll concentration of the 

water where the aerosol is deposing. 

 

 

Figure I.13. Schematic view of processes evaluated in Chapter 1. 
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Chapter 2: High Atmosphere-Ocean Exchange of Semivolatile Aromatic Hydrocarbons. 

Submitted. 

This Chapter describes all the measured and calculated depositional fluxes and fading 

processes in the atmospheric boundary layer over the tropical and subtropical global 

Oceans (Figure I.14). Diffusive exchange, wet deposition, dry deposition and 

atmospheric degradation (OH radical oxidation) are calculated from the measured 64 

PAHs congener’s concentrations in the gas, aerosol, rainwater and dissolved phases in 

the Open Ocean. Furthermore, an estimation of the semivolatile aromatic-like 

compounds (SALCs) concentration is done in the gaseous and dissolved phases and the 

diffusive exchange for them is calculated, as it appeared to be the highest magnitude 

flux affecting their fate. An estimation of the total carbon entrance to the Open Ocean 

due to these organic compounds, PAHs and SALCs, is also emphasized in order to 

suggest their account in the global carbon budgets calculations. 

 

 

Figure I.14. Schematic view of processes evaluated in Chapter 2. 
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Chapter 3: Perfluoroalkylated Substances in the Global Tropical and Subtropical Surface 

Oceans. Published in Environmental Science and Technology, 2014. 

PFASs occurrence in surface ocean waters is reported in this Chapter for the Atlantic, 

Indian and Pacific oceans. Eleven congeners of two ionic families (perfluoroalkyl 

carboxylic acids and perfluoroalkyl sulfonic acids) and two neutral precursors 

(perfluoroalkyl sulfonamides) were identified and quantified. Their global occurrence 

and the potential factors affecting their distribution patterns are discussed including 

the distance to coastal regions, oceanic subtropical gyres, currents and biogeochemical 

processes. 

 

 

Figure I.15. Schematic view of processes evaluated Chapter 3. 
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Chapter 4: Oceanic Transport and Sinks of Perfluoroalkylated Substances. To be 

submitted. 

This Chapter goes a step further on the assessment of PFASs dynamics in the Open 

Ocean’s water column. It provides paired concentration of PFASs at the deep 

chlorophyll maximum depth (around 100 m depth) to those presented for surface in 

the previous chapter, and affords the first calculations of eddy diffusion fluxes (FEddy) 

due to marine turbulence and settling fluxes (FSettling) due to the biological pump at a 

global scale (Figure I.16). Moreover, FEddy was calculated from concurrent empirical 

measurements of turbulence in the water column with the PFASs sampling allowing 

the first reported estimations of diffusive fluxes of POPs from field data. FSettling was 

calculated separately for the phytoplankton and zooplankton fecal pellets contribution 

to total biological pump, which allows the characterization of FSettling magnitude 

depending on the biomass present, and enlightens the relevance of the biological 

pump in PFASs fate in the Open Ocean never assessed before. 

 

 

Figure I.16. Schematic view of processes evaluated in Chapter 4. 
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Chapter 5: Cycling of Polycyclic Aromatic Hydrocarbons in the Surface Open Ocean. In 

preparation. 

The role of plankton and organic suspended particles in PAHs distribution and fate in 

the Open Ocean is an unresolved issue. In this Chapter it is described the measured 

PAHs concentration in the dissolved, particulate and plankton phases during the 

Malaspina 2010 circumnavigation. Concentration dependence on organic carbon and 

physicochemical properties of the PAHs (particularly hydrophobicity) is evaluated. 

Furthermore, a review of the previously suggested processes regulating PAH 

concentrations in the water column is done, including biodilution, air-water-particle 

equilibria, and the degradative and biological pumps (Figure I.17). This last is calculated 

separately for the zooplankton and phytoplankton sinking matter, for the first time in 

literature, allowing an estimation of the sinking fluxes of PAHs in the Open Ocean and 

suggesting directions for future research. 

 

 

Figure I.17. Schematic view of processes reviewed in Chapter 5. 
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ABSTRACT 

The atmospheric dry deposition fluxes of 16 polycyclic aromatic hydrocarbons (PAHs) 

have been measured, for the first time, in the tropical and subtropical Atlantic, Pacific 

and Indian Oceans. Depositional fluxes for fine (0.7-2.7 µm) and coarse (>2.7 µm) 

aerosol fractions were simultaneously determined with the suspended aerosol phase 

concentrations, allowing the determination of PAH deposition velocities (vD). PAHs dry 

deposition fluxes (FDD) bound to coarse aerosols were higher than those of fine 

aerosols for 83% of the measurements. Average FDD for total (fine + coarse) 16PAHs 

(sum of 16 individual PAHs) ranged from 8.33 ng m-2d-1 and 52.38 ng m-2d-1. Mean FDD 

for coarse aerosol’s individual PAHs ranged between 0.13 ng m-2d-1 (Perylene) and 1.96 

ng m-2d-1 (Methyl Pyrene), and for the fine aerosol fraction these ranged between 0.06 

ng m-2d-1 (Dimethyl Pyrene) and 1.25 ng m-2d-1 (Methyl Chrysene). The estimated 

deposition velocities went from the highest mean vD for Methyl Chrysene (0.17-13.30 

cm s-1), followed by Dibenzo(ah)Anthracene (0.29-1.38 cm s-1), and other high MW 

PAHs to minimum values of vD for Dimethyl Pyrene (<0.00-0.04 cm s-1) and Pyrene 

(<0.00-0.06 cm s-1). Dry depositional processes depend on the concentration of PAHs in 

the suspended aerosol, but also on physicochemical properties and environmental 

variables (vapor pressure, wind speed and on the affinity of aerosols for depositing to 

the sea surface). Empirical parameterizations are proposed to predict the dry 

depositional velocities of semivolatile organic compounds in the global oceans. 

 

Graphical Abstract 1.  
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INTRODUCTION 

Atmospheric deposition is the main vector for the entrance of semivolatile organic 

compounds to the Global Oceans 1-4. The gas-particle partitioning of the chemical 

determines which of the different depositional processes dominates the overall 

atmospheric deposition 5. Some persistent organic pollutants (POPs), such as 

polychlorinated biphenyls (PCBs) or hexachlorocyclohexanes, are mainly, but not only, 

6,7 found in the gas-phase, and therefore diffusive air-water exchange estimates 

support the idea that this is the main process driving their deposition to the surface 

ocean 7-9. On the contrary, many polycyclic aromatic hydrocarbons (PAHs) and 

polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) are mainly found in the 

aerosol phase due to their low vapor pressure and strong sorption to aerosols 10-13. 

Therefore, high MW PAHs, with more than four aromatic rings, and PCDD/Fs are 

mainly removed from the atmosphere by dry deposition 1,11,12,14,15. Similarly, dry 

deposition of aerosol bound POPs will be the dominant depositional process for other 

chemicals with analogous properties, such as organophosphorus flame retardants and 

plasticizers 16, polybrominated diphenyl ethers and other brominated flame retardants 

17,18, and dechlorane plus 19-21. Wet deposition by rain and snow is another 

depositional process which is very efficient removing gas- and aerosol-phase organic 

compounds from the atmosphere, but its importance is limited to some specific 

oceanic regions and time periods 2. 

To the best of our knowledge, there has been only one previous effort to measure the 

dry deposition fluxes (FDD, ng m-2d-1) of semi-volatile organic compounds in the open 

ocean 22, and very few at coastal sites 23-27. Hence, the magnitude of FDD is usually 

estimated from the measured aerosol phase concentrations (CA, ng m-3) by, 

𝐹𝐷𝐷 =  864𝑣𝐷𝐶𝐴  [1.1] 

Where vD (cm s-1) is the deposition velocity of the specific aerosol-bound chemical, and 

864 is a unit conversion factor. vD is a function of wind speed, the size distribution of 

aerosols, atmospheric stability and relative humidity among other factors. In the case 

of the marine environment, the occurrence of a surface microlayer with reduced 

surface tension and higher hydrophobicity due to organic compounds and lipids  
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floating at surface also increases the values of vD 23. A number of early theoretical 

studies addressed the parameterization of vD 28,29, which have been used in many 

studies focusing on the deposition of semi-volatile organic compounds 1,30,31. 

Field estimates of vD can be obtained from the simultaneous determination of FDD and 

CA using equation [1.1]. There are few measures of vD, 
22,32-36 with vD ranging from 0.1 

to 0.8 cm s-1 in coastal or terrestrial areas. Higher values of vD have been observed in 

urban/industrial areas due to the presence of large aerosols, with faster depositional 

velocities due to gravitational processes (sedimentation (settling by gravity) or 

impaction processes 37), coming from anthropogenic sources 33. However, there is only 

one study that experimentally studied vD for the open marine environment, and it was 

carried out in the subtropical NE Atlantic 22, with vD ranging from 0.08 to 0.3 cm s-1. 

These estimations have been used in the literature to estimate the dry deposition 

fluxes of PAHs and other POPs in various oceanic regions 13,14,16-18,21. Because of the 

scarcity of previous measures of dry deposition fluxes and vD values for semivolatile 

organic compounds, there is a need for further field measurements in order to 

understand the factors affecting vD over the ocean and to obtain a more precise range 

of vD values in this environment. 

PAHs are ubiquitous in the environment and have been included in the Convention on 

Long Range Transboundary Air Pollution Protocol on Persistent Organic Pollutants 38. 

Moreover, due to their chemical characteristics, PAHs are susceptible of partitioning 

between gas and particle phases in the atmosphere, their concentrations are higher 

than for other organic pollutants in the oceanic atmosphere, and can be used as 

surrogates of the depositional processes affecting aerosol-bound organic compounds. 

The objectives of this work are: i) to report a coherent dataset of field measurements 

of dry deposition fluxes of PAHs for the global oceans, ii) to estimate the vD values for 

individual PAH compounds from the simultaneous determination of FDD and CA, iii) to 

assess the factors, such as the chemical vapor pressure, wind speed and aerosol size, 

influencing vD values. 
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MATERIALS AND METHODS 

 

Sampling strategy 

Samples were collected during the Malaspina 2010 cruise performed from December 

14th, 2010 to July 14th, 2011 on board of RV Hespérides. The cruise completed a 

circumnavigation covering all the tropical and temperate oceans between 35°N and 

40°S in seven consecutive transects: Cadiz (Spain) - Rio de Janeiro (Brazil) – Cape Town 

(South Africa) – Perth (Australia) – Sydney (Australia) – Auckland (New Zealand) – 

Honolulu (Hawaii, USA) – Cartagena de Indias (Colombia) – Cartagena (Spain) (Figure 

1.1). 

A total of 12 field experiments measuring the dry deposition fluxes of PAHs were 

carried out during the circumnavigation cruise (see Figure 1.1 and table S1.1 for 

positions and ancillary data) using the sampling methodology described elsewhere 

22,23. Briefly, FDD measures were obtained by exposing to the atmosphere stainless-

steel trays (0.4m x 0.3 m x 0.1 m) filled with three liters of surface seawater collected 

at 4 m depth from the continuous pumping system of the ship. Seawater was 

previously pre-filtered with a GF/F filter (0.7 µm pore size, Whatman) and a sterile 

cellulose nitrate filter (0.2 µm pore size, Whatman) in order to remove marine particles 

(bacteria, phytoplankton, detritus, aerosols, etc.). The trays were previously cleaned 

with acetone and seawater. The dry deposition samplers were deployed on the upper 

deck, over the bridge of the ship, for a time period of 3-4 days, after which the final 

volume of water was measured and filtered consecutively over a pre combusted 2.7 

µm pore size GF/D filter (Whatman) for the aerosol coarse size fraction, and over a 0.7 

µm pore size GF/F filter (Whatman) for the fine size fraction. Filters were kept folded in 

aluminum foil and zip bags at -20°C during the cruise until their analysis in the 

laboratory. 

Samples of suspended aerosol (n = 29) were taken using a high volume air sampler 

placed on the upper deck, over the bridge, in the top front part of the boat to minimize 

contamination from the ship exhaust. Furthermore, a wind vane was connected to the 
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electric power system in order to allow sampling only when the wind was coming from 

the bow to avoid any perturbation of the sample by the ship emissions. The air 

sampling flux was set at 40 m3 hour-1 and the volumes sampled ranged between 525 

and 1982 m3 of air per filter (Table S1.2). The suspended aerosols were collected on 

pre-combusted (450°C for 24 hours) quartz microfiber filters (QM/A, Whatman), which 

after sampling were kept folded in aluminum foil and zip bags at -20°C during the 

cruise until their analysis in the laboratory. The 29 air samples were taken 

simultaneously to the dry deposition measurements and in order to determine vD 

values, the concentrations were weighted to the air volume sampled in order to obtain 

a mean value of suspended aerosol phase PAH concentration in the atmosphere per 

each measure of the dry deposition flux. 

 

Sample extraction and instrumental analysis 

All atmospheric samples for suspended aerosols and deposited coarse and fine 

particles were freeze-dried overnight, weighted and Soxhlet extracted with 

dichloromethane: methanol (DCM: MeOH) (2:1, v/v) for 24 hours. 25 ng of recovery 

standard (Semivolatile Internal Standard Mix©, Dr. Ehrenstorfer by Supelco), 

containing Chrysene-d12and Perylene-d12 were added to each sample to estimate 

losses during the extraction and fractionation processes. After a solvent exchange to 

hexane (Hx), the extract was fractionated on 3 g of 3% chromatography grade quality 

water deactivated alumina on a chromatography column with a top layer of anhydrous 

sodium sulfate. A first fraction of 5 mL Hx was eluted (containing the more apolar 

compounds not analyzed here) and then a 12 mL DCM:Hx (2:1) fraction which 

contained the target PAHs. The second fraction was concentrated and solvent 

exchanged to isooctane in a rotavapor system and further concentrated under a gentle 

stream of nitrogen. 

The instrumental analysis of PAHs was performed through an Agilent 6890 Series gas 

chromatographer coupled with a mass spectrometer Agilent 5973 (GS-MS) operating 

in selected ion monitoring (SIM) and electron impact mode (EI). The GC system used an 

Agilent DB-5MS column (30 m, 0.25 mm internal diameter, 0.25 μm film thickness).  
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2 µL of sample were injected in split less mode. The initial GC oven temperature was 

set at 90°C. It was risen up to 175°C at a rate of 6°C per minute and hold for 4 minutes. 

Then the temperature increasing rate slowed to 3°C per minute until 235°C. After, the 

heating rate was switched to 8°C per minute and hold for 8 minutes. At last, with the 

same rate, the temperature reached 315°C during 4 minutes. The quantification 

followed the internal standard procedure, using a mix of Pyrene-d10 and Benzo-b-

Fluoranthrene-d12 (Dr. Ehrenstorfer, Supelco) added to the samples prior to injection. 

Since dry deposition may not be the dominating depositional process for the low MW 

PAHs, and in order to avoid sampling artifacts of the lighter compounds due to gas 

diffusive exchange 22, only PAHs with four or more aromatic rings were considered in 

this study. The target compounds were; Fluoranthrene (Flu), Pyrene (Pyr) , 

Methylpyrene (MePyr, as the sum of 5 isomers), Dimethylpyrene (DMePyr, as the sum 

of 8 isomers), Benzo(ghi)Fluoranthrene (B(ghi)Fluo), Benzo(a)Anthracene (B(a)Anthr), 

Chrysene (Chry), Methylchrysene (MeChry, as the sum of 2 isomers), 

Benzo(b)Fluoranthrene, Benzo(k)Fluoranthrene (both isomers are given together, 

B(b+k)Fluo), Benzo(e)Pyrene (B(e)Pyr), Benzo(a)Pyrene (B(a)Pyr), Perylene (Per), 

Indeno(1,2,3-cd)Pyrene (I(cd)Pyr), Dibenzo(a,h)Anthracene (DB(ah)Anthr) and 

Benzo(ghi)Perylene (B(ghi)Per). More information on their identification ions, 

retention times and MS method is given in the supplementary info (Table S1.3). 

Organic Carbon (OC) was quantified in the settled particles during the dry deposition 

measurements. Filters were first lyophilized and a weighted portion of each of them 

was homogenized and acidified with hydrochloric acid at 7% to remove the 

carbonaceous inorganic fraction. Then it was vortexed repeatedly and pH adjusted 

with chromatography quality water. After a last lyophilization for 24 hours, OC was 

measured using a Pregl-Dumas (dynamic flash combustion) modified method, using 

helium as carrier gas, in an Elemental Microanalyzer (A7) model Flash 2000 39. 
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Quality assurance and control 

The quality of the dry deposition measurements was assessed with 2 field blanks and 3 

laboratory blanks. In the same manner, the extraction method for the suspended 

aerosols was assessed through 9 laboratory blanks and 6 field blanks. Field blanks were 

obtained from GF/F and GF/D filters placed in the filtration system during the sampling 

campaign (for settled aerosol) and clean QM/A filters placed in the high volume 

sampler for a minute (in the case of suspended aerosol), and processed in the 

laboratory together with the real samples. The laboratory blanks were extracted 

simultaneously to the processed aerosol filters to evaluate any contamination during 

sample treatment in the laboratory. The detection limit (DL) was set as the inferior 

limit of the calibration curve (0.02 ng for all compounds). Quantification limit (QL) 

corresponds to mean blank level of the sample class evaluated. The levels for all native 

PAHs in the blanks were under the measured levels for 100% of the samples of 

suspended and coarse deposited aerosols, and for 99.4% of fine fraction deposited 

aerosol samples (as a mean percentage of all individual compounds). Concentrations in 

aerosols samples were not subtracted for the concentration in the blanks. Mean 

surrogate recoveries in dry deposition samples were 78% for Chrysene-d12 and 114% 

for Perylene-d12. Recoveries of the Suspended Aerosol samples ranged between 92% 

for Chrysene-d12 and 101% for Perylene-d12. PAHs concentrations were corrected by 

the recoveries of Chrysene-d12. Complete information on blank levels, DL and QL and 

recoveries is given through the tables of Annex 2. 

 

Statistical analysis 

Statistical analysis was performed using SPSS Statistics® version 21.0 (IBM Corp.©). 

Kolmogorov-Smirnov test were run to assure normality of the data, which was not 

encountered (p<0.05). Non-Parametric statistics were thus applied for the 

comparisons and correlations within the data. 
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Back Trajectories 

Back Trajectories were calculated using the NOAA Hysplit model online at 3 heights 

(30, 200 and 500 meters) using GDAS Meteorological data from the sampled period 

(Figure S1.1). In addition, back trajectories were also estimated for the upper boundary 

layer and above (800 and 2000 masl, Figure S1.2). 
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RESULTS AND DISCUSSION 

 

Dry Deposition Fluxes of PAHs 

Dry deposition fluxes (ng m-2d-1) were calculated from the measured mass of PAHs in 

the deposited aerosols and the time of exposure of the deposition samplers for each 

measurement per exposed area of the sampler. Figure 1.1b and figure 1.1c show the 

spatial variability of FDD for the coarse (bigger than 2.7 µm) and the fine (between 0.7 

and 2.7 µm) fraction of deposited aerosols, respectively, and compound and sample 

specific values are given in Table S1.8. 

Overall, PAHs dry deposition was higher for the coarse than fine aerosols in the open 

ocean by a mean factor of 4. Only in two measurements in south and equatorial Pacific 

Ocean, the deposition fluxes of the fine fraction of aerosol-bound PAHs were higher 

than for larger aerosols. Average FDD for total (fine + coarse) 16PAHs ranged from 8.33 

ng m-2d-1 to 52.38 ng m-2d-1. Mean FDD for coarse aerosol’s individual PAHs ranged 

between 0.13 ng m-2 d-1 (Per) and 1.96 ng m-2 d-1 (MePyr), while for the fine fraction, 

FDD ranged between 0.06 ng m-2 d-1 (DMePyr) and 1.25 ng m-2 d-1 (MeChry) (Figure 

S1.3). Higher FDD were observed in the southern tropical Atlantic which is associated to 

higher aerosol-phase PAH concentrations, presumably influenced by emissions from 

off-Africa and off-South America as indicated by the back trajectories. In addition, 

there is a relevant increase in the PAHs depositional fluxes in the fine fraction’s PAHs in 

the central North Pacific sample due to a possible influence of the Hawaiian 

archipelago adjacent to the sampling area and an influence of air masses from East 

Asia in the upper boundary layer. 
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Figure 1.1. Maps of (a) PAHs concentration in suspended aerosols (ng m
-3

), (b) dry deposition flux of 

PAHs measured for the coarse fraction of aerosols (ng m
-2

d
-1

), and (c) dry deposition flux of PAHs 

measured for the fine fraction of aerosols (ng m
-2

d
-1

). 
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Table 1.1 shows the comparison of the measured FDD with those reported in the 

literature for marine sites (essentially coastal). The deposition fluxes reported here are 

significantly lower (factor of 2-8) than those reported for the NE Atlantic Ocean 22, a 

region affected by high concentrations of PAHs and other POPs from west Africa 40 as 

well as those reported in coastal sites with predominantly maritime air masses 

affecting the depositional processes 41. Unexpectedly, similar values have been 

reported in a terrestrial location in Toronto 36 and in the Corpus Christy Bay (FL, USA) 

42. The measured FDD in the open ocean are more than an order of magnitude lower 

than those reported for the coastal NE Mediterranean sea 23, and other coastal sites 

25,43-47 (Table 1.1). 

FDD for aerosols (particles) ranged between 0.15 and 0.86 g m-2d-1 in the fine fraction, 

and 0.28 and 1.25 g m-2d-1 for the coarse particles (Figure S1.4). The depositional fluxes 

of individual PAHs were not correlated with the dry deposition of aerosols, which may 

indicate that dry deposition of PAHs is not determined by the amount of deposited 

matter, but by the origin and concentrations of the deposited aerosols, and 

presumably by the amount of carbonaceous aerosols due to the strong affinity of PAHs 

to organic matter and specially aerosol soot carbon 10. Soot carbon could not be 

determined in the deposited aerosols, but OC concentrations ranged from <0.23% to 

3.34% of the particle mass (Table S1.9). Nevertheless there is not a statistically 

significant correlation of PAH concentrations in settled aerosols with OC 

concentrations. PAHs with more than five rings are likely to be adsorbed to aerosol 

soot carbon. PAHs with 4 rings also show a strong association with soot carbon, but 

because they concentrations are higher in the gas phase 21, they could dynamically 

partition to marine primary and secondary organic aerosols. 
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Table 1.1. Comparison of the dry deposition fluxes (ng m
-2

d
-1

) measured in this work with those reported for marine and coastal sites. 

Sampling site 
Sampling 

environment 
Sampling 

period 
Fluo Pyr 

B (a) 
Anthr 

Chry B (b) Fluo 
B (k) 
Fluo 

B (e) 
Pyr 

B (a) 
Pyr 

Per 
I (123-
cd) Pyr 

DB(ah) 
Anthr 

B (ghi) 
Per 

total Reference 

   
(ng m

-2
day

-1
) 

 
Miami, Florida, 

USA 
coastal and 

mangrove area 
Jun 1994 – 
Mar 1995 

- - - - - - - - - - - - 800,00 Lang et al 2002 

Corpus Christi 
Bay, Texas, USA 

industrialized bay 
and harbor 

Ago 1998 - 
Sep 1999 

0,014 
(+Pyr) 

- 0,01 0,04 0,05 0,03 0,03 0,03 0,02 0,04 0,01 0,04 0,13-2,95 Park et al 2002 

Tampa, Florida, 
USA 

coastal near urban 
area 

May - Aug 
2002 

1870,00 650,00 10,00 60,00 30,00 10,00 - 10,00 
 

10,00 10,00 20,00 11500,00 Poor et al 2004* 

Finokalia, Creta 
Island Greece 

coastal area 
Sep 2001 - 
Jul 2002 

6,60 3,30 4,00 9,50 5,10 2,90 2,90 1,80 1,50 0,70 0,40 0,70 58,00 Tsapakis et al 2006 

Bursa,Turkey 
industrial coastal 

city 
Aug 2004 - 
May 2005 

400,00 225,00 100,00 280,00 100,00 90,00 - 70,00 - 70,00 20,00 125,00 1480,00 Tasdemir&Esen 2007 

NW Atlantic 
Ocean 

open ocean 
May - Jun 
2003 

5,75 8,24 2,44 4,31 
12,31 

(+B(k)Fluo) 
- 6,63 3,84 0,00 5,90 0,00 8,94 58,55 Del Vento et al 2007a 

NW 
Mediterranean  

urban coastal area Jul 2002 - 
Dec 2003 

- - - - - - - - - - - - 60-230 Del Vento et al 2007b 

Guangzhou, 
Pearl River Delta, 

China 
urban coastal area 

Apr 2001-
Mar 2002 

215,49 152,32 39,63 143,32 93,15 69,52 - 37,99 - 82,65 - 104,51 938,57 Li et al 2009 

Bursa,Turkey suburban 
Aug 2004 - 
May 2005 

90,00 65,00 25,00 55,00 25,00 18,00 - 7,00 - 9,00 4,00 20,00 318,00 Esen el at 2010 

Izmir,Turkey suburban 
May 2003 - 
May 2004 

615,00 815,00 132,00 237,00 441,00 170,00 - 154,00 - 313,00 393,00 242,00 8160,00 Demircioglu et al 2011 

Izmir,Turkey urban 
May 2003 - 
May 2004 

732,00 428,00 78,00 350,00 162,00 94,00 - 66,00 - 90,00 34,00 113,00 4286,00 Demircioglu et al 2011 

Bursa,Turkey 
industrial coastal 

city 
Sep 2008 - 
Jun 2009 

1600,00 1100,00 100,00 300,00 100,00 100,00 - <100 - <100 <100 <100 3300,00 Birgul et al 2011 

Toronto, 
Ontario, Canada 

urban terrestrial 
area 

Jun 2012 - 
Jan 2013 

7,58 7,37 1,82 4,58 8,32 3,34 - 4,57 1,09 6,27 1,01 5,41 51,35 Eng et al 2014 

Global ocean 
open tropical 

ocean 
Dec 2010 - 
Jun 2011 

0,84 0,71 1,13 0,89 
1,6067 

(+B(k)Fluo) 
- 0,52 2,04 0,17 1,55 1,36 1,00 16,93 This study 

 *Flux of gaseous phase is included in this study. 
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Concentrations of PAH in deposited and suspended aerosols 

FDD values depend on several factors, but primary on the chemical concentrations in 

the aerosol phase, and it is necessary to assess both suspended and deposited aerosol 

as different PAHs distributional patterns may occur (Figure 1.2). PAH concentrations 

were higher in the coarse than in the fine deposited aerosols. Concentrations (CDD) of 

16PAHs in coarse particles ranged from 35.26 ng g-1 to 1129.74 ng g-1, while for fine 

aerosol these ranged between 14.23 ng g-1 and 264.25 ng g-1 
16PAHs (Table S1.10 and 

Figure S1.5). The highest concentrations of all individual compounds were found in the 

Atlantic Ocean for the coarse fraction, in particular west of the Canary Islands, 

influenced by Saharan winds and air masses for which there are previous reports of 

high PAHs levels 21,48, followed by the Pacific and Indian Oceans consecutively. 

However, due to the large variability within oceanic basins, there are no statistically 

significant differences between the concentrations of individual compounds, nor for 

16PAHs, between the Atlantic, Indian and Pacific oceans. In the fine fraction, with less 

variability between basins, the higher PAHs levels were found in the Pacific Ocean 

followed by Atlantic and then Indian oceans, with no significant differences between 

oceans neither (Figures 1.1 and 1.2). 

Figure 1.2 shows the PAHs congeners’ profiles for the deposited coarse and fine 

fractions in the three oceanic basins (middle and inferior panels). In general, there is a 

higher abundance of the high MW PAHs than in suspended aerosols consistently for 

the Atlantic, Pacific and Indian oceans. This is probably due to the high affinity of soot 

aerosols to the marine surface microlayer, which is rich in hydrophobic organic 

compounds. Nevertheless, this different concentration of individual PAHs in fine and 

coarse aerosols according to molecular weight is less severe in large sized aerosols, 

due to the affinity of lower MW PAHs to the coarser fraction of particles 24,25. In 

addition, methylated PAHs are found predominantly in the coarse fraction for the 

Atlantic Ocean (51.15 ng g-1 MePyr and 29.07 ng g-1 MeChry), while in the fine fraction, 

B(a)Pyr, DB(ah)Ant, I(cd)Pyr and B(b+k)Flu register the highest concentrations (14.66 

ng g-1, 13.18 ng g-1, 12.47 ng g-1 and 12.09 ng g-1, respectively). In the Pacific Ocean, the 

fine and coarse deposited aerosols show similar patterns with higher average 

concentrations of MeChry (27.09 ng g-1) and B(a)Pyr (22.11 ng g-1) followed by other 
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heavier compounds in the coarse fraction, as well as 32.82 ng g-1 and 21.36 ng g-1 for 

MeChry and B(a)Pyr, respectively, in the fine fraction. In the only sampling event for 

the Indian Ocean, there is a reverse trend in the PAH profile, being the unique dry 

deposition measurement where concentrations of some individual compounds in the 

fine aerosols are higher than in the coarse aerosols. The highest concentrations in the 

Indian ocean are for B(a)Pyr (12.94 ng g-1 and 23.55 ng g-1 in coarse and fine fractions) 

and for MeChry (11.98 ng g-1 and 22.37 ng g-1 in coarse and fine fractions). 

 

 

Figure 1.2. PAHs distribution pattern of concentrations (ng g
-1

) in suspended aerosols (upper panels), 

coarse (middle panels) and fine fraction (lower panels) of deposited aerosols. 

Generally, there were several measures of PAHs in suspended aerosols for each dry 

deposition measurement (Table S1.11 and Figure S1.6). Therefore, in order to obtain 

vD from equation [1.1], PAHs concentrations in the aerosol phase gathered 

simultaneously to each dry deposition measurement were averaged depending on the 

sampled volume for each measurement. Figure 1a shows the suspended aerosol phase 

concentrations of PAHs corresponding to each dry deposition measurement. The mean 

CA of individual PAHs in suspended aerosols are shown in Figure 1.2. 16PAHs 
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concentrations in suspended aerosols ranged between 0.06 ng m-3 and 6.52 ng m-3. 

This high variability is particularly observed in the Atlantic Ocean, with the highest 

concentrations of PAHs found off-shore Brazil, whereas the lowest concentrations are 

observed in the central south Atlantic. High PAH concentrations were also described in 

the NE Atlantic in previous reports 22 and in the measurements on this study. 

Unexpectedly, the sampling event for the Indian Ocean revealed the highest mean 

PAHs concentrations in the aerosol phase (given as ng g-1, Figure 1.2).This is due to the 

first of the four suspended aerosols samples used to average the concentration during 

the time period when the dry deposition was measured, whose PAHs concentrations 

were anomalously high (Figure S1.6). It could have been caused by facilitated transport 

from distant sources due to the strong winds during this sampling period. Moreover, 

there is a particular switch of the direction of the wind during this sampling event since 

BT analysis showed that air masses were coming predominantly from Southeast Asia 

instead than from the south 49 (Figure S1.2). High levels of atmospheric PAHs have 

been reported in South and Southeast Asia. This region is responsible of half of the 

world PAHs emissions since 2007 50. Therefore, this abrupt change in wind direction 

could have affected the levels of the aerosol sampled, enhancing the PAHs content. 

Conversely, PAH concentrations and variability in the Atlantic are slightly greater than 

those measured in the Pacific atmosphere for all individual compounds. 

Concerning the abundance of individual PAHs (Figure 1.2a), Flu, Pyr and methylated 

Pyr were the most abundant PAHs in the suspended aerosol; on average 17.8% and 

16.0% of 16PAHs corresponds to Flu and Pyr, respectively, followed by Chry (7.8%), 

B(b+k)Flu (8.5%) and B(a)Anthr (6.9%) (see profile in Figure S1.7). Flu global maximal 

concentrations were found in the Atlantic Ocean, in particular near the South 

American coastal area. Even though the back trajectories in the low atmosphere 

(Figure S1.1) indicate that the air masses in that region were coming from the Central 

Atlantic, upper air masses show different origins, coming from the Brazilian coastal 

region, directly related with a heavier pollution with industrial and urban pollution 

uprising PAHs levels (Figure S1.2) 51,52. Pyr followed a very similar pattern, with slightly 

lower concentrations than Flu in all samples except for the measurement taken in the 

central Indian Ocean.  
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The measured concentrations in suspended aerosols reported here are in the same 

range of those reported previously in Atlantic 22,48, Pacific53 and Indian 40 tropical and 

subtropical areas, but higher than the concentrations given in some studies 54,55. The 

PAHs concentrations in suspended aerosol were between one and two orders of 

magnitude higher than the deposited aerosol concentrations, suggesting there is a 

pool of aerosols with high PAH content that is not efficiently deposited to the ocean. 

 

Dry Deposition Velocities 

 

Figure 1.3. Dry deposition velocity (cm s
-1

) for Fluoranthene, Benzo (a) Pyrene and Benzo (ghi) Perylene 

determined from the measured dry deposition fluxes and concentrations in suspended aerosols. 

Dry deposition velocities for all individual PAHs were calculated with the field 

measured FDD and CA using equation [1.1] (Table S1.12). Higher mean vD corresponded 

to MeChry (0.17-13.30 cm s-1) followed by DB(ah)Anthr (0.29-1.38 cm s-1), and other 

high MW PAHs. Values reported in the few previous studies in the Atlantic Ocean 22 

(0.08 to 0.3 cm s-1), coastal sites 22,32-36 (0.01 and 0.8 cm s-1) or in models 1 (0.01 and 

0.8 cm s-1) fall in the same range than those estimated here. Nevertheless, calculated 

velocities for large urban sites or industrial areas are far higher 33,56. Highest vD were 

found in the North Pacific Ocean, followed by the Atlantic (showing no substantial 

statistical differences among north and south hemispheres). The lowest values of vD 

are those from the South Pacific and Indian Oceans (Figure 1.3) and for lower MW 

compounds. 

Previous studies have suggested that there is a direct relation between PAHs MW (and 

other MW dependent chemical properties, like vapor pressure, PL) and vD. For 
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example, higher MW PAHs were reported as more susceptible to attach to finer 

aerosols in polluted areas 22,56, but this trend is not always observed for coastal and 

marine atmospheres 22,23 nor in this study. Figure 4 shows the correlations between PL 

and vD for individual PAHs (Table S1.13) for each sampling event. For 10 out of the 12 

sampling events, vD is inversely correlated with Log(PL), with higher values of vD for the 

high MW PAHs (p<0.05 or p<0.01) (Table S1.14). Lower values of PL are characteristic 

of the more hydrophobic PAHs. This suggests that higher MW PAHs are mainly 

deposited with either larger aerosols which have a faster vD due to gravity, or attached 

to hydrophobic aerosols, for example soot carbon, that exhibit higher deposition 

velocity. Fine particles do not deposit due to gravity (they are suspended in air), but 

due to the collisions to the marine surface. At higher wind speed there is more 

turbulence and thus more collisions. In addition, the number of collisions that result in 

a deposited aerosol increase at lower surface tension and higher hydrophobicity of the 

surface microlayer22. This stickiness of the surface microlayer is due to organic 

substances with surfactant and hydrophobic properties that in the open oceans are 

mainly biogenic 23,57,58. Hydrophobic aerosols will be as well specially enriched with the 

more hydrophobic organic compounds such as high MW PAHs due to chemical affinity, 

and this sub-population of aerosols (presumably soot carbon) would be particularly 

prone to be deposited to the surface ocean. The abundance of high MW PAHs in 

suspended aerosols is generally small, suggesting that concentration of high MW PAHs 

is low in the accumulation mode aerosols (0.5-1.2 µm), which dominate the suspended 

aerosol population 37, also corroborated with the higher concentration of these 

compounds found in the coarse fraction (over 2.7 um) of the dry deposited aerosol. In 

addition, the higher the PL, the higher the fraction of the chemical in the gas phase. 

This means that for PAHs with higher PL, gas-particle partitioning processes play a 

bigger role, and PAH may partition from the gas phase preferably to the fine particles, 

which dominate the number and surface size distribution of aerosols 37. Over the 

ocean, a large fraction of fine particles may be marine secondary organic aerosols. 

Contrariwise, high MW PAHs are unlikely to be present in the gas phase due to their 

strong association to aerosol soot carbon, and deposit faster as stated before. It is also 

possible that other processes specific of the marine environment, such as resuspension 

of marine aerosols, etc., may also affect the depositional velocities of PAHs. 
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Figure 1.4. Dry deposition velocity (cm s
-1

) versus vapor pressure (Log(Pa)) for the target PAHs. 1-12 Dry 

deposition samples code: blue in north Atlantic, green in south Atlantic, purple Indian, orange south 

Pacific and red north Pacific. Statistical significances are shown: ns means not significant, * means 

p<0.05 (bilateral) and ** means p<0.01 (bilateral). 

 

  

Figure 1.5. Concentrations in fine deposited aerosols (ng g
-1

) versus wind velocity (m s
-1

) for the target 

PAHs. Statistical significances are shown: ns means not significant, * means p<0.05 (bilateral) and ** 

means p<0.01 (bilateral). 

Models predict that wind speed (U10) also affects the values of vD for fine aerosols 

because an increased turbulence close to the air-water interface enhances the 

efficiency of the depositional process by increasing the number of collisions of aerosols 

with the surface. Wind speed does influence to a lesser extent the deposition of coarse 

aerosols because dry deposition of large aerosols is mainly driven by gravity 1,3. 
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Average U10 (Table S1.12) for the dry deposition sampling periods was positively 

correlated with aerosol concentration in the fine fraction for all the PAHs analyzed 

(except for DMePyr and MeChry) (Figure 1.5, Table S1.15), but not for the coarse 

fraction in any case. Additionally, by calculating the fine particles deposition velocity 

(vDf) obtained from Equation [1.1] for the fine particles FDD (FDD fine), it is found as well a 

positive correlation (p<0.05) between vDf and U10 for all target PAHs (but for MeChry 

and B(ghi)Per) (Table S1.16). These results support the theoretical predictions of higher 

deposition of fine aerosols at high wind speeds. Furthermore, the slope of vD for the 

fine fraction when plotted against PL is as well inversely correlated with U10 (p<0.05) 

(Table S1.17); meaning that with fast wind speeds over the ocean there is a stronger 

gradient in vD values between low and high MW PAHs, and therefore fast winds favors 

the relative deposition of high MW PAHs versus low MW PAHs.  

 

Predicting Dry Deposition fluxes for semivolatile organic compounds to the oceans 

Most field studies only measure the concentrations of organic compounds in 

suspended aerosols, but not the dry deposition fluxes. In addition environmental fate 

and transport models require of appropriate parameterization of vD to predict the 

depositional fluxes. In order to formulate a parameterization for the 3 measured 

deposition velocities for PAHs (vDf, vDc (coarse) and vD) as a function of chemical and 

environmental factors (PL, U10 and the existence of an hydrophobic microlayer over the 

sea surface), a multiple parameter least squares regression was applied to the data set 

(Table S1.18). As stated in the previous section, vDf is correlated with PL and wind 

speed for each of the measurements (Figure 1.5, Table S1.15). The stickiness of the 

surface due to biogenic organic compounds lowering the surface tension and 

increasing the surface hydrophobicity is accounted by using chlorophyll a 

concentrations as a surrogate of the biological source of these compounds (for 

example exudates from phytoplankton). The chlorophyll concentrations were 

measured in surface waters (Chls). The following equation is proposed for predicting vDf 

values, 

𝐿𝑜𝑔 (𝑣𝐷𝑓) =  −0.287(±0.060)𝐿𝑜𝑔 (𝑃𝐿) + 0.442(±0.115)𝑈10 ∗ 𝐶ℎ𝑙𝑠 − 3.269(±0.307) [1.2] 
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with a significance of p<0.001 for all parameters and R2=0.23 (Table S1.18) (U10 [m s-1] 

and Chls [mg m-3]). Equation [1.2] reflects decreasing depositional velocities for 

compounds with higher PL and with low U10 and Chls, as theoretically stated in models 

and previously discussed. 

For the coarse particles deposition, vDc depends as well on the vapor pressure of the 

target compound and the interaction between wind speed and chlorophyll 

concentration in the ocean surface by (R2= 0.50, p<0.001), 

𝐿𝑜𝑔(𝑣𝐷𝑐) =  −0.253(±0.047) 𝐿𝑜𝑔 (𝑃𝐿) + 0.337(±0.090) 𝑈10 ∗ 𝐶ℎ𝑙𝑠 − 2.973(±0.240)  [1.3] 

Regarding vD, originated from fine and coarse aerosol depositional flux concurrently, it 

can be predicted by , 

𝐿𝑜𝑔(𝑣𝐷) =  −0.261(±0.038) 𝐿𝑜𝑔 (𝑃𝐿) + 0.387(±0.074) 𝑈10 ∗ 𝐶ℎ𝑙𝑠 − 3.082(±0.197) [1.4] 

Equation 1.4 (R2 = 0.37 and p<0.001) would be a good approximation for calculating 

dry depositional velocities for semi-volatile compounds over the open ocean surface 

from known parameters (PL, U10 and Chls) and when atmospheric concentrations are 

measured using high volume samplers not discriminating aerosols of different size. U10 

and Chls can be easily measured or estimated from satellite products, but in case that 

U10 or Chls were not available, the following parameterizations could be used,  

𝐿𝑜𝑔 (𝑣𝐷𝑓) =  −0.287(±0.063) 𝐿𝑜𝑔 (𝑃𝐿) − 2.798(±0.296)  [1.5] 

𝐿𝑜𝑔 (𝑣𝐷𝑐) =  −0.253(±0.049) 𝐿𝑜𝑔 (𝑃𝐿) − 2.614(±0.231)  [1.6] 

𝐿𝑜𝑔 (𝑣𝐷) =  −0.261(±0.042 )𝐿𝑜𝑔 (𝑃𝐿) − 2.670(±0.198)  [1.7] 

which significances are all p<0.001 and R2= 0.139, 0.172 and 0.229 respectively for 

equations [1.5], [1.6] and [1.7] (Table S1.19). 

The usefulness of equations [1.2] to [1.7] can be observed if the error made when 

using a single value of vD versus the measured vD from this work is compared with the 

error made when using equation [1.4] for predicting vD (or deposition fluxes). For 

instance, the mean vD in this study is of 0.12 cm s-1. If this value is used to predict the 

dry deposition fluxes of individual PAHs, there will be an average error of 1800%. 
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Conversely, if equation [1.4] is used to predict the dry deposition velocities and fluxes 

from the suspended aerosol PAH concentrations, the mean error is of a factor of 3 

(335%). Therefore, the error in estimating the dry deposition fluxes for individual PAHs 

at different locations is reduced by a factor of 5. 

It is evident that the atmospheric input of PAHs and other organic pollutants to the 

Ocean need to be further studied, and that part of the variability of the measured dry 

deposition fluxes cannot be yet predicted from the empirical parameterizations. 

Further research should focus on a better characterization of the size distribution of 

aerosols, the chemical composition of the surface microlayer and aerosols, and other 

processes affecting the dry deposition of organic compounds to the ocean. 
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ABSTRACT 

Polycyclic aromatic hydrocarbons (PAHs), and other semivolatile aromatic-like 

compounds (SALCs), are an important and ubiquitous fraction of organic matter, with 

numerous sources such as incomplete combustion of fossil fuels, oil spills, and other 

anthropogenic and biogenic sources 1-5. PAHs have been previously described in the 

oceanic atmosphere, seawater, sediments and biota, including remote regions 2,4,6,7. 

However, their occurrence, fluxes and relevance at a planetary scale have been poorly 

assessed for the open ocean. Here we report the first global assessment of the 

occurrence and of the atmosphere-ocean fluxes of 64 PAHs and total SALCs. PAHs 

were ubiquitously found in the Atlantic, Pacific and Indian oceans, with gas phase 

concentrations of a few ng m-3 for the most abundant compounds (phenanthrene and 

alkylated phenanthrenes), and of hundreds of pg L-1 in surface seawater (with 

phenanthrene, pyrene and fluoranthene being the most abundant compounds). The 

global net diffusive atmospheric input and dry deposition of PAHs to the global ocean 

is estimated at 0.09 Tg month-1, four folds the total PAH inputs from the Deep Horizon 

oil spill 1. The resolved PAH input to the global ocean accounts for 1 Tg C y-1, 

comparable to ocean-atmosphere carbon fluxes of isoprene and other biogenic volatile 

organic compounds 8. SALC concentrations account for averaged 10000 ng C m-3 in the 

gas phase and 870 ng C L-1 in the surface seawater, with a large contribution of an 

aromatic unresolved complex mixture (UCM). These large concentrations drive global 

inputs of carbon to the Atlantic, Pacific and Indian Oceans of 430 Tg C y-1, around 16% 

of the oceanic CO2 uptake 9. 

 

Graphical Abstract 2.  
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INTRODUCTION 

 

There is a growing interest in the quantification of ocean-atmosphere and land-

atmosphere exchange of organic compounds 8,10-15, but besides some earlier efforts, 

this has been largely limited to volatile organic compounds (VOCs) such as methane, 

ethane, isoprene and other low molecular weight organic compounds with high 

volatility 8,11. Atmospheric deposition is small for VOCs, for which the atmosphere is an 

ultimate sink. Conversely, semivolatile organic compounds (SOCs) tend to be deposited 

to oceans following atmospheric transport 16. Recent studies suggest a large 

contribution of SOCs in the overall air-sea and air-land exchanges of carbon 10,13-15, but 

these remain uncharacterized. 

PAHs, originated from incomplete combustion of biomass, fossil fuels, oil spills, 

diagenesis of organic matter and other biogenic sources 1,2,4,5, are among the abundant 

known semivolatile organic compounds in the environment 4,17,18. PAHs have raised 

significant concern due to their known toxic effects on biota and humans 3 coupled 

with their ubiquitous occurrence 19. PAHs are globally redistributed through cycles of 

atmospheric transport and deposition/volatilization due to their semivolatility 2,6,7,16,20. 

Once deposited in the oceanic water column, PAHs enter the oceanic carbon 

biogeochemical cycle including accumulation in the marine food web, biotic and 

abiotic degradation and settling of the more refractory PAHs to deep waters and 

sediments 4,17,18. However, the air-sea exchange of PAHs has only been assessed in 

limited marine regions, mainly coastal or semi-confined seas 18,20,21. In addition, 

previous assessments quantified only a small fraction of the total PAHs present in the 

environment. Thus, we conducted a global assessment of air-sea exchange of a large 

number of PAHs and other SALCs in the open ocean to ascertain whether the resulting 

inputs represent a significant source of pollutants and semi-volatile organic carbon to 

the oceans. 
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MATERIALS AND METHODS 

 

Sampling strategy 

All samples were collected during the Malaspina 2010 circumnavigation cruise on 

board of the RV Hespérides from December 2010 until July 2011. The sampling 

campaign crossed the north and south basins of the Atlantic and Pacific oceans, as well 

as the Indian Ocean, between 35°N and 40°S, navigating all the tropical and subtropical 

oceanic gyres 22. A total of 108 gas, 108 aerosols, 68 seawater samples and 11 wet 

deposition events were collected over the 3 oceanic basins. 

Air samples (concurrent gas and aerosol phases) were taken as explained elsewhere 

2,6,18 with high volume samplers located above the bridge. The high volume samplers 

were connected to a wind vane in order to allow sampling only when the wind was 

coming from the bow to avoid any perturbation of the sample by the ship emissions. 

The mean air volume sampled was 824 m3 (525 - 1982 m3) per sample. The marine 

aerosols were first collected on precombusted quartz microfiber filters (QM/A, 

Whatman), and the gas phase compounds were retained over precleaned 

polyurethane foams (PUF). After sampling, all filters and PUFs were kept folded in 

aluminum foil and zip bags at −20 °C. 

Water samples were taken from the continuous intake of surface (4 m) seawater of the 

research vessel and directly transferred to the sampling system, in which the water 

was filtered on precombusted GF/F filters (Whatman), and afterwards, the dissolved 

phase compounds were retained on XAD-2 sorbent kept in stainless-steel columns at a 

controlled flow. The average volume of water filtered was 239 L (69-391 L). XAD-2 

columns were stored at 4°C until their extraction in the laboratory as described 

elsewhere 23. 

Wet deposition samples were gathered exposing over the boat bridge a pre-cleaned 

stainless funnel attached to a Pyrex bottle during rain events. Rain water was solid 

phase extracted using HLB Oasis (3cc, 60mg) cartridges on board using a slightly 

modified protocol by Berrojalbiz et al 23. Briefly, cartridges were preconditioned with 3 
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mL Hexane (Hx), 3 mL Hx:Dichloromethane (DClM) (1:2), 3 mL Methanol(MeOH):DClM 

(1:2) and 3 mL of HPLC quality water. Then, the sample was loaded (previously spiked 

with a recovery standard) using a vacuum system until dryness. Then, it was eluted 

with 3 mL Hx, 6 mL Hx: DClM (1:2) and 6 mL MeOH: DClM (1:2) and the extracts were 

preserved frozen until their analysis in the laboratory. 

 

PAHs analysis and quantification 

Aerosol, gas and dissolved phase samples were analyzed as described elsewhere 

4,6,18,23. HLB extracts from the rain water samples were further purified over 3 g of 

activated silica. All sample extracts were fractionated in three fractions (aliphatic, 

aromatic, polar), and PAHs and SALCs were determined in the aromatic fraction. 64 

individual PAHs were quantified. These were: Naphthalene, Methylnaphthalenes (sum 

of 2 isomers), Dimethylnaphthalenes (sum of 6 isomers), Acenaphtylene, Acenaphtene, 

Fluorene, Dibenzothiophene, Methyldibenzothiophenes (sum of 3 isomers), 

Dimethyldibenzothiopenes (sum of 5 isomers), Phenanthrene, Methylphenantrenes 

(sum of 4 isomers), Dimethylphenanthrenes (sum of 7 isomers), Anthracene, 

Fluoranthene, Pyrene, Methylpyrenes (sum of 5 isomers), Dimethylpyrenes (sum of 8 

isomers), Benzo[ghi]fluoranthene, Benzo[a]Anthracene, Chrysene, Methylchrysenes 

(sum of 3 isomers), Benzo[b+k]fluoranthene (sum of 2 isomers), Benzo[e]Pyrene, 

Benzo[a]Pyrene, Perylene, Indeno[1,2,3-cd]Pyrene, Dibenzo[a,h]anthracene, 

Benzo[ghi]perylene. In the text and figures, we refer to 28 PAHs as we report the sum 

of concentrations of 64 alkylated and parental PAHs. 

PAHs quantification was performed with an Agilent 6890 Series gas chromatograph 

coupled to a mass spectrometer Agilent 5973 (GC-MS) operating in selected ion 

monitoring (SIM) and electron impact mode (EI) as described elsewhere 6. The 

quantification followed the internal standard procedure (using anthracene-d10, pyrene-

d10, p-terphenyl-d14, and benzo[b]fluoranthene-d12) and measured concentrations 

were corrected with recovery of perdeuterated standards (acenaphtene-d10, 

phenanthrene-d10, chrysene-d12, and perylene-d12) added before the extraction of the 

samples. 
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Quantification of the total semivolatile aromatic-like compounds 

A subset of ten pairs of gas and dissolved phase samples taken simultaneously were 

analyzed for the determination of SALCs. The aromatic fraction extracts were injected 

in the same GC-MS, using the same column and chromatographic conditions than for 

PAHs, but operating the mass detector in full scan mode (m/z from 50 to 500). The 

total ion current was integrated including resolved and unresolved compounds in the 

quantification; it is thus largely composed by the UCM. The chromatogram was divided 

in six retention time windows (Figure 2.5) around six individual PAHs which were used 

as quantification standard for the total SALCs in that chromatographic retention time 

window: 1) for more volatile compounds using Acenaphtene as reference standard, 2) 

for more semivolatile 3 ring aromatic hydrocarbons, using Phenanthrene, 3) lighter 4 

ring hydrocarbons, using Pyrene, 4) heavier 4 rings, using Chrysene, 5) 5 aromatic ring 

hydrocarbons using Benzo[a]pyrene and 6) heavier 5 rings hydrocarbons, using 

Dibenzo[a,h]anthracene as reference standard. Concentrations were surrogate 

recovery corrected, such as in the PAHs quantification. Since it is possible that the 

response factors when using GC-MS may vary from chemical to chemical, the 

quantification of the SALCs has a higher uncertainty than the quantification of PAHs. 

However, the response factor for aromatic compounds, independently of their 

chemical structure, will not vary by more than a factor of 2, and the total uncertainty 

for the integration of the thousands compounds quantified as SALCs will likely be lower 

than a factor of 2. 

The aromatic fraction of environmental samples is operationally defined as to ensure a 

good recovery of targeted PAHs during the analysis of these compounds. When 

abundant, the total lipid extract interferes with the purification (separation) of PAHs 

through matrix effects. In order to counteract these matrix effects, the aromatic 

fraction usually extends over a considerable range in polarity than strictly that of PAHs, 

and other neutral lipids than PAHs occur in the so called “aromatic fraction”, or “PAH 

fraction”. The extension in polarity used by various authors to isolate the PAHs and 

aromatic fraction is slightly variable. The mixture eluting the PAHs may vary from 

Hx:DClM 30% (this work) 2,6,18 to pure DClM 24. In our samples, fatty acid methyl esters 
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(mostly C16 and C18) were identified in the second fraction of the gas and the marine 

dissolved phase. In the dissolved phase, slightly more polar compounds, such as 

aliphatic alcohols (primarily C14), were also identified. Aliphatic hydrocarbons were 

not present in neither the gas nor the dissolved phase as they eluted completely in the 

first, or aliphatic, fraction (see above). Therefore we refer to the sum of identified and 

non-identified resolved compounds, and non-resolved compounds of the second 

fraction as SALCs, and they might also include short-chain waxes, aldehydes and some 

alcohols. However, most of the SALC mass corresponds to the unresolved aromatic 

UCM. 

In environmental samples, unresolved compounds are present in all fractions of 

different polarities 24. In the aliphatic hydrocarbon fraction, this UCM is dominant in 

some sediment samples and have been extensively studied, quantified and qualified 25. 

The UCM in the aliphatic hydrocarbon fraction is composed by alkyl substituted and/or 

cyclic hydrocarbons 26,27. The UCM of the PAHs fraction is more seldom analyzed and 

include alkyl cyclic compounds (tertralin) and polycyclic hydrocarbons with a carbonyl 

substituent (indane) 28. Lately, the UCM in polar fractions, eluted by mixtures including 

methanol, has been tentatively characterized and it is constituted by N, O and S-

substituted branched PAHs 29,30. The aliphatic and polar unresolved compounds were 

not quantified in this work. 

 

Quality Assurance and Control 

Laboratory and field blanks, recoveries and analytical limits were determined for each 

phase. Aerosol sample blanks and recoveries are included in González-Gaya et al 6. 

Breakthroughs of gas phase compounds were checked in 6 split PUFs samples (one per 

ocean basin). On average, 77% of total PAHs were present in the first half and 23% in 

the second half. The second half contained mainly 2-3 ring PAHs. For the gas phase 5 

field blanks and 7 laboratory blanks were collected; dissolved phase blanks included 5 

field blanks and 8 laboratory blanks, all extracted in batches with the rest of the 

samples to evaluate the analytical procedure. For the gas phase, mean Σ64PAHs was 10 

ng per sample in the field blanks and 10 ng per sample in the laboratory blanks. 
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Equally, for the dissolved phase, mean Σ64PAHs was 14 ng per sample and 4 ng per 

sample in the field and laboratory blanks respectively (Table S2.2). Measured PAHs in 

all analyzed field samples were above field and laboratory blanks concentrations, and 

thus, those were not subtracted from the quantified PAH amounts. Median recoveries 

of the perdeuterated PAHs used as surrogates in dissolved phase samples were: 52% 

Acenaphtene-d10, 60% Phenanthrene-d10, 69% Chrysene-d12 and 93% of Perylene-d12. 

All concentrations in the different matrixes were surrogate recovery corrected. The 

detection limit (DL) was set as the inferior limit of the calibration curve (0.02 ng for all 

compounds). Quantification limit (QL) corresponds to the mean blank level of each 

sample phase. 

 

Estimation of atmospheric deposition and degradation fluxes 

Dry deposition fluxes (FDD, ng m-2d-1) were calculated per each individual compound 

from the measured aerosol phase concentrations (CA, ng m-3) by, 

FDD = 864·vD·CA  [2.1] 

where vD (cm s-1) is the deposition velocity of the specific aerosol-bound chemical, and 

864 is a unit conversion factor. The values of vD where measured for 12 time periods in 

which deposited and suspended particles were collected simultaneously as reported in 

Gonzalez-Gaya et al 6. This allowed deriving an empirical equation for the prediction of 

vD, 

𝐿𝑜𝑔(𝑣𝐷) =  −0.261 𝐿𝑜𝑔 (𝑃𝐿) + 0.387 𝑈10 · 𝐶ℎ𝑙𝑠 − 3.082  [2.2] 

Where PL is the subcooled liquid vapor pressure of the PAH, U10 is the wind speed at 10 

m height, and Chls is the surface chlorophyll concentration. Equation [2.2] allowed 

estimating vD for each compound and sampling period depending on the chemical 

vapor pressure of every compound and the environmental conditions. Based on the 

calculated vD and the measured CA, FDD where obtained from equation [1.1] per each 

PAH and sampling period. 
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The wet deposition flux (FWD, ng m-2d-1) of PAHs was estimated from the PAH 

concentrations quantified in the collected rainwater, and the precipitated water 

volume per time period and surface, for each one of the 11 rain events that occurred 

during the Malaspina 2010 cruise. 

The air-water diffusive fluxes (FAW, ng m-2d-1) for PAHs were estimated in the 

traditional manner as, 

FAW = kAW (
𝐶𝐺

𝐻′
− 1000 𝐶𝑇𝑤)  [2.3] 

Where CG and CTW are the measured concentrations in the gas (ng m-3) phase and the 

truly dissolved phase concentration (ng L-1), respectively, H’ is the temperature 

dependent dimensionless Henry’s Law constant taken from elsewhere 31 and corrected 

by salinity, and kAW is the air-water mass transfer rate (m d-1) estimated using the two 

film model and taking into account the non-linear influence of wind speed as described 

elsewhere 24. 

Truly dissolved phase concentrations used in equation [2.3] were estimated from the 

measured dissolved phase concentrations (CW, ng L-1) by,  

CTW = (
𝐶𝑊

1+𝑘𝐷𝑂𝐶 𝐷𝑂𝐶
)  [2.4] 

where kDOC is 10% the value of the octanol water partition coefficient (KOW) and DOC is 

the dissolved organic carbon. Gross fluxes of absorption and volatilization correspond 

to the first and second term of equation [2.3]. Total accumulated fluxes for the 

Atlantic, Pacific and Indian oceans were obtained by multiplying the average basin flux 

by the surface area of the respective basin. 

The diffusive air-water exchange fluxes of SALCs were estimated for each one of the six 

retention time windows quantified in the chromatogram (Figure 2.5) and using the 

physical-chemical properties of the major PAHs eluting in that time window. It is 

possible that H’ values for some of the aromatic compounds contributing to SALCs are 

significantly different (different solubility in water rather than different vapor 

pressure) than those used for the diffusive fluxes calculations. Nevertheless, it is 

reasonable to assume that the average physical chemical properties of the aromatic 
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compounds contributing to SALCs are similar than those of PAHs since they were 

eluted in the same mid-polarity fraction during the fractionation of the extract 

(hydrophobicity), and moreover, because they show similar retention times on the GC-

MS system (volatility). Uncertainty was calculated using values of H’ one third and 

triple of those used for a representative PAH for each of the chromatographic 

intervals. Plausible maximum and minimum variation fluxes using those H’ are pointed 

in Table S2.3. We do not provide the dry deposition fluxes of SALCs due to the minor 

role of dry deposition to the overall atmospheric deposition as demonstrated for 

individual PAHs. The fluxes reported as carbon assume an average 80% of carbon in 

the total mass of SALCs. 

The atmospheric degradation fluxes (Datm) of PAHs in the oceanic boundary 

atmosphere were estimated by, 

𝐷𝑎𝑡𝑚 =
(𝐶𝐺𝑓−𝐶𝐺𝑖)𝐴𝐵𝐿

𝑡
  [2.5] 

where CGi is the measured gas phase concentration at the initial time (ng m-3), CGf is the 

final concentration (ng m-3) after certain time in a supposed closed system, t is the 

time period considered (averaged 12 hours of light per day in tropical and subtropical 

areas), and ABL is the mean height of the atmospheric boundary layer (500 m). CGf was 

estimated from, 

Ln (
𝐶𝐺𝑖

𝐶𝐺𝑓
) = kOH [OH] t  [2.6] 

where kOH is the PAH dependent rate constant for reaction with OH radicals 19, [OH] is 

the concentration of hydroxyl radicals in the considered mixed layer, dependent on 

temperature (T, °C) 32and estimated from 

[OH] = (0.5 + 4 (T-273.15)) 105  [2.7] 

We do not provide the atmospheric degradation fluxes of SALCs due to major 

uncertainties in their kOH values. 

  



Results 2 

95 
 

RESULTS AND DICUSSION 

108 gas, 108 aerosol, and 68 dissolved seawater phase samples from the lower 

atmosphere and surface waters were sampled in the Atlantic, Pacific and Indian 

Oceans during the Malaspina 2010 circumnavigation expedition 22 (Figure 2.1). 64 

individual PAHs, corresponding to 28 parent and isomer groups of alkylated PAHs, 

were analyzed (mean concentrations of individual PAHs per ocean is showed in Table 

S2.1). Gas phase concentrations (ng m-3) were highest in the North Atlantic Ocean, 

with mean Σ64 PAHs CG (as the sum of all measured compounds) of 41 ng m-3. The 

mean CG did not differ significantly in the South Atlantic, Indian and Pacific oceans, but 

concentrations were higher in oceanic regions close to continents (Figure 2.1, top 

panel). Aerosol phase PAH concentrations (ng m-3) were significantly higher in the 

Indian Ocean with a mean Σ64 PAHs of 10 ng m-3 (Figure 2.1 middle panel), associated 

with air mass back trajectories from Southern Asia. The global distribution of PAHs in 

the surface ocean shows a lower variability in concentrations than that in the 

atmosphere. Dissolved phase (ng L-1) oceanic basin average concentrations of Σ64 PAHs 

ranged from 3.5 ng L-1 (North Atlantic) to 2 ng L-1 (Indian Ocean). Higher CW was also 

observed close to continents than at the center of the oceanic basins, with the highest 

concentrations of PAHs found adjacent to the South American and South African 

coasts (Figure 2.1, bottom panel). 

The relative abundance of individual PAHs in the gas, aerosol and dissolved seawater 

phases depends on the hydrophobicity and volatility of each chemical, as reflected in 

the PAH profiles measured (Figure S2.1). The gas and dissolved phase were dominated 

by low MW PAHs. In the gas phase, phenanthrene (global mean 6.1 ng m-3), its 

methylated forms (methyl-phenanthrenes 5.7 ng m-3 , dimethyl-phenanthrenes 2.1 ng 

m-3), and dibenzothiophene (DBT) and its methylated forms (0.7 n m-3 for DBT, 2.5 n m-

3 methyl-DBTs, and 4.2 n m-3 dimethyl-DBTs) accounted for more than 70% of Σ64 PAHs. 

There was a larger abundance of the high MW PAHs, such as chrysene (global mean 

0.2 n m-3) and benzo[a]anthracene (global mean 0.2 n m-3) in the aerosol phase. In the 

seawater dissolved phase, fluoranthene and pyrene were the more abundant PAHs 

(global means of 0.3 and 0.4 ng L-1). 



Results 2 

96 
 

 

 

Figure 2.1. Concentration of PAHs in the gas phase (upper panel), aerosol phase (middle panel) and 

dissolved water phase (bottom panel). Colored bar represents the sum of the 28 quantified parent and 

alkylated PAHs, being each individual color noted in the bottom legend (from green, the lightest PAHs, to 

red, the heaviest PAHs). 

The measured CG, CA and CW fall within the range of previously reported 

concentrations for individual PAHs in the marine environment 4,7,17,18, but here we 

report the occurrence of a larger number of individual PAHs, and therefore, greater 

total concentrations. 
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Dry deposition of aerosol-bound PAHs (ng m-2 d-1), is the main depositional process for 

PAHs with 5 or more aromatic rings 20. Average FDD for Σ64PAHs ranged from 1 ng 

m−2d−1 (in the open ocean) to almost 2500 ng m−2d−1 (near the coasts of South Africa 

and Australia, Figure 2.2), with this variability depending mainly on the concentration 

of PAHs in the suspended aerosol, but also on the variables affecting the deposition 

velocities such as the chemical vapor pressure and wind speed. 

Wet deposition fluxes (µg m-2 d-1) of Σ64PAHs for the 11 rain events that occurred 

during the Malaspina Circumnavigation were in the order of hundreds to 5000 µg m-2 

d-1 (Figure S2.2). Wet deposition is an efficient scavenging process of atmospheric gas 

and aerosol phase semivolatile organic compounds. However, rain events are sporadic, 

and of lower global relevance than the other depositional processes 33. 

Diffusive air-water fluxes are the main process driving the exchange of the lighter 

SALCs present in marine samples, such as 2-4 aromatic ring PAHs 20. We estimated the 

net diffusive air-water exchange (ng m-2 d-1) by applying the two-film resistance model 

13 to the measured gas and dissolved phase concentrations. There was a net input from 

the atmosphere to the ocean for most PAHs, except for the more volatile compounds 

such as parent and alkylated naphthalenes and DBTs which represent between 27 to 

46% of Σ64 PAHs (Figure 2.2 and S2.3). 

The integrated monthly FAW fluxes (Tg month-1) of the 5-6 ring PAHs were in the same 

order of magnitude than FDD fluxes in all sampled basins, except in the Indian Ocean 

where dry deposition fluxes were higher (Figure 2.3). For the other 3-4 rings PAHs, FAW 

was up to 3 orders of magnitude greater than FDD in all oceans. The global gross 

volatilization and gross absorption of Σ64 PAHs were 0.042 Tg month-1, 0.132 Tg month-

1, respectively, resulting in a net input of atmospheric Σ64 PAHs to the ocean of 0.090 

Tg month-1 (Figure S2.3), 90 times larger than the global dry deposition of aerosol-

bound PAHs estimated at 0.001 Tg month-1. 
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Figure 2.2. Global measurements of the 2 more relevant processes affecting PAHs exchange in the open 

ocean: Dry deposition fluxes for the 28 analyzed compounds (Top panel) and net diffusive fluxes for 3 

representative compounds (bottom panel). In upper panel, colored bar represents the sum of the 28 

quantified compounds, being each individual color noted in the bottom legend (from green, the lightest 

PAHs, to red, the heaviest PAHs). In bottom panel downwards bars indicate net deposition into the 

ocean, and upwards bars net volatilization of the compounds. 

For comparison, the collapse of the Deepwater Horizon drilling rig in the Gulf of 

Mexico in 2010, the largest accidental oil spill to the ocean, delivered an estimated 

input of 2.1·1010 g of PAHs to the ocean 1. The monthly net diffuse input of PAHs to the 

ocean estimated here is 4-fold larger than the reported Deepwater Horizon PAHs 

release to the ocean, thus indicating that the annual atmospheric input of PAHs to the 

ocean amounts to about 50 Deepwater Horizon accidents. This comparison confirms 

the important role that diffuse fluxes play at a global scale on the overall atmosphere-

ocean exchange of semivolatile organic compounds. 
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Figure 2.3. Dry deposition (FDD) and net diffusive (FAW) fluxes averaged per month for the Atlantic, Pacific 

and Indian Oceans. 

In addition to the amount of PAHs transferred to the ocean, PAHs are also degraded 

during their atmospheric transport due to reaction with OH radicals 19. The estimated 

degradation fluxes (ng m-2 d-1) over the oceanic atmosphere (Figure S2.4) account for 

and additional sink of 0.18 Tg month-1 of Σ64 PAHs. The large PAHs net deposition to 

the ocean and atmospheric sink must be supported by large global PAH sources, 

mainly from continental origin. The increase of total global atmospheric emissions has 

been reported for the last century, mainly due to the use of fossil and bio fuels, and 

wildfires 5. Potential biogenic sources may also be ubiquitous from land 2. 
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Figure 2.4. Atmosphere-ocean exchange of carbon associated to semivolatile aromatic hydrocarbons 

(SALCs, figures in red), and Σ28PAHs (figures in black). 

When extrapolated annually, and expressed as carbon fluxes, the global annual input 

of Σ64PAHs to the ocean is estimated to be 0.87 Tg C y-1 (Figure 2.4). This flux is of 

comparable magnitude to the estimated oceanic volatilization flux of some VOCs such 

as isoprene (1.1 to 1.29 Tg C y-1), or dimethyl sulfur (2.8 Tg C y-1), but still lower than 

most estimates of the oceanic sink of oxygenated VOCs such as methanol (0.3 to 101 

Tg C y-1) and acetone (0.7 to 67 Tg C y-1) 8,11. However, the measured fluxes of Σ64 PAHs 

only account for a small fraction of the total SALCs present in the gas and dissolved 

phases. There are hundreds, if not thousands, of other SALCs, including oxygenated 

PAHs, Nitro-PAHs, halogenated-PAHs, and even the not yet resolved and identified 

aromatic compounds 24,29. When analyzed by gas chromatography coupled to mass 

spectrometry, the aromatic fraction of a gas or dissolved water sample comprises 

hundreds of other compounds than targeted PAHs. These semivolatile compounds of 

similar polarity as aromatic hydrocarbons, appear on chromatograms as resolved 

compounds over a large hump referred to as unresolved complex mixture 24,29 which 

includes the majority of SALCs (Figure 2.5). The SALCs are semi volatile organic 

compounds of middle polarity, thus propitious to exchange between air and water. 
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We quantified the total gas and dissolved phase SALC concentrations and estimated 

their fluxes for a representative subset of paired samples. Dissolved and gas phase 

concentrations of SALCs ranged between 360 and 1900 ng C L-1 and between 2000 and 

47000 ng C m-3, respectively. The SALC concentrations in the dissolved and gas phase 

are between 100 and 7000 times larger than the Σ64PAH concentrations, with this 

difference being highest for the gas samples (Figure S2.5). The estimated average net 

diffusive flux of SALCs from the atmosphere to the ocean is of 4.3 mg C m-2 d-1 (0.36 

mmol C m-2 d-1), which is of comparable magnitude to the reported air-sea CO2 fluxes 9. 

The global diffusive gross absorption and volatilization fluxes of SALCs are of 512 Tg C 

y-1 and 83 Tg C y-1 respectively, resulting in a net input of organic carbon to the 

Atlantic, Pacific and Indian oceans of 429 Tg C y-1 (Figure 2.4). This input is larger than 

the reported 244 Tg C y-1 for dry and wet deposition of organic carbon to the global 

oceans 34. The global net uptake of atmospheric CO2 by the ocean is of 2700 Tg C y-1 9, 

seven fold higher than the estimated SALC net fluxes. Furthermore, there are other 

fractions of semivolatile organic matter (aliphatic UCM, polar UCM)29 with yet 

unquantified inventories and fluxes which may be playing a role in the global 

biogeochemical cycles. This work supports previous claims from studies using 

alternative approaches 13-15 suggesting an important role of atmospheric fluxes of SOCs 

to the ocean as a component of the marine organic carbon budget. 

 

 

 

 

 

 

 

 



Results 2 

102 
 

 

 

Figure 2.5. Overlaid chromatograms of a gas phase sample (A) and dissolved phase sample (B). In blue 

the total ion chromatogram (TIC) of the total aromatic fraction obtained by GC-MS in full scan mode and 

in red the TIC obtained by GC-MS in SIM mode of the analyzed ions. Quantification groups and standards 

are 1) from retention time 6 to 12.38 minutes using Acenaphtene, 2) from 12.38 to 28 minutes using 

Phenanthrene, 3) from 28 to 37.5 minutes using Pyrene, 4) from 37.5 to 39 minutes using Chrysene, 5) 

from 39 to 46.5 minutes using Benzo[a]pyrene and 6) from 46.5 to 56 minutes using 

Dibenzo[a,h]anthracene as reference standard.. 
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These large inputs and outputs of SALCs in the open ocean have important implications 

in the Earth Sciences which have not hitherto been accounted for 35. Many PAHs are 

known to be efficiently degraded by bacteria in marine waters 4, and thus, atmospheric 

inputs of PAHs and other SALCs could fuel ocean respiration 13. Furthermore, the 

presence of a sustained and sizable diffusive input of SALCs and PAHs to the ocean 

could condition marine microbial communities for the capacity to degrade these 

compounds, thereby allowing rapid degradation of these compounds when introduced 

from point sources, such as oil spills 36. In addition, some PAHs have been described as 

precursors of secondary organic aerosols (SOA) 37, and the large volatilization fluxes of 

some SALCs could play an important role on SOA formation and other atmospheric 

chemistry processes. Conversely, some PAHs and the UCM can also have toxic effects 

on the oceanic food webs 3,29. 

Whereas PAHs are natural components of the environment, increasing fossil fuel use 

have led to a major growth in PAH inputs during the anthropocene 5. The results 

presented here show that diffusive PAH and SALC contributions from the atmosphere 

to the ocean represent a key perturbation of the oceanic carbon cycle and potentially 

marine food webs, which remains largely unexplored and requires urgent research 

efforts. 
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ABSTRACT 

In this study, perfluoroalkylated substances (PFASs) were analyzed in 92 surface 

seawater samples taken during the Malaspina 2010 expedition which covered all the 

tropical and subtropical Atlantic, Pacific and Indian oceans. Nine ionic PFASs including 

C6-C10 perfluoroalkyl carboxylic acids (PFCAs), C4 and C6-C8 perfluoroalkyl sulfonic 

acids (PFSAs) and two neutral precursors perfluoroalkyl sulfonamides (PFASAs), were 

identified and quantified. The Atlantic Ocean presented the broader range in 

concentrations of total PFASs (131-10900 pg L-1, median 645 pg L-1, n=45) compared to 

the other oceanic basins, probably due to a better spatial coverage. Total 

concentrations in the Pacific ranged from 344 to 2500 pg L-1 (median=527 pg L-1, n=27) 

and in the Indian Ocean from 176 to 1976 pg L-1 (median=329, n=18). Perfluorooctane 

sulfonic acid (PFOS) was the most abundant compound, accounting for 33% of the 

total PFASs globally, followed by perfluorodecanoic acid (PFDA, 22%) and 

perfluorohexanoic acid (PFHxA, 12%), being the rest of the individual congeners under 

10% of total PFASs, even for perfluorooctane carboxylic acid (PFOA, 6%). PFASAs 

accounted for less than 1% of the total PFASs concentration. This study reports the 

ubiquitous occurrence of PFCAs, PFSAs and PFASAs in the global ocean, being the first 

attempt, to our knowledge, to show a comprehensive assessment in surface water 

samples collected in a single oceanic expedition covering tropical and subtropical 

oceans for the first time. 

The potential factors affecting their distribution patterns were assessed including the 

distance to coastal regions, oceanic subtropical gyres, currents and biogeochemical 

processes. Field evidence of biogeochemical controls on the occurrence of PFASs was 

tentatively assessed considering environmental variables (solar radiation, 

temperature, chlorophyll a concentrations among others), and these showed 

significant correlations with some PFASs, but explaining small to moderate 

percentages of variability. This suggests that a number of physical and biogeochemical 

processes collectively drive the oceanic occurrence and fate of PFASs in a complex 

manner.  
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INTRODUCTION 

PFASs, such as PFCAs and PFSAs have received increasing worldwide attention due to 

their global distribution and toxic properties 1. PFASs are ubiquitous, being found in 

densely populated areas 2 or the remote poles 3,4, in a huge variety of environmental 

compartments and ecosystems 5-7. Many PFASs have also been stated as 

bioaccumulative and susceptible to biomagnification 8-10, thus meeting the criteria of 

persistent organic pollutants (POPs). PFOS, its salts and perfluorooctane sulfonyl 

fluoride were added in 2009 by the Fourth Conference of Parties to the Stockholm 

Convention on POPs 11. In spite of this, many PFASs and volatile precursors are still 

being produced 12. 

The high stability of the Fluorine-Carbon bond makes PFASs extremely persistent in the 

environment. In addition, PFASs have higher water solubility and lower lipophilicity 

when compared to other legacy POPs, thus the processes driving the long range 

transport and cycling of ionic PFASs are different than those described for more 

hydrophobic pollutants, for instance the polychlorinated biphenyls 13,14. The neutral 

and more volatile PFASs like the fluorotelomer alcohols and PFASAs undergo 

atmospheric transport 15,16, which after oxidation in the atmosphere reach remote 

oceanic and continental regions through dry/wet deposition 17-19. However, direct 

transport by oceanic water masses is thought to be the main vector for the global 

transport of the ionic PFASs from source regions, as suggested for PFOA and PFOS 20-23. 

Besides, the open-ocean is presumably the main final global sink for the most 

persistent ionic species 20,24. Nevertheless, many uncertainties exist on the main 

drivers of their global distribution, including the influence of source regions, currents 

and biogeochemical cycles, such as the biological pump and degradative processes. 

There are a number of previous studies on the occurrence of PFASs in the oceans 25-27, 

focusing primarily on long-chain PFCAs and PFSAs, especially PFOA and PFOS, and 

recently other non-ionic species, for instance PFASAs 28,29. Any potential comparison of 

levels between oceanic basins or subregions can be strongly biased due to differences 

in the analytical and sampling procedures of the different assessments. For this reason, 

a global comprehensive data set of measurements on surface water samples collected 

in a single oceanic expedition, for the different oceanic regions, can provide a unique 
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data set to identify the major known or still unknown biogeochemical and physical 

processes driving the PFASs occurrence in the global ocean.  

Therefore, the objectives of this study were i) to provide, for the first time, an 

assessment of the occurrence of PFCAs, PFSAs and PFASAs in the surface water of all 

the tropical and subtropical oceans sampled during the Malaspina 2010 expedition 

and analyzed using the same protocols, and ii) to assess the relative influence of 

coastal regions, subtropical oceanic gyres and the physical and biogeochemical 

controls affecting the occurrence of PFASs in the global tropical and subtropical 

oceans. 
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MATERIAL AND METHODS 

 

Sampling 

A total of 92 surface seawater samples were collected during the Malaspina 2010 

expedition performed from December 14th, 2010 to July 14th, 2011 on board of the 

research vessel Hespérides. The cruise completed a circumnavigation covering all the 

tropical and temperate oceans between 35°N and 40°S in eight consecutive transects: 

Cadiz (Spain) - Rio de Janeiro (Brazil) – Cape Town (South Africa) – Perth (Australia) – 

Sydney (Australia) – Auckland (New Zealand) – Honolulu (Hawaii, USA) – Cartagena de 

Indias (Colombia) – Cartagena (Spain). During the cruise, all the oceanic gyres (north 

and south Atlantic and Pacific, and south Indian oceans), and the coastal regions out of 

territorial waters were sampled (SI, Table S3.1). 

Surface seawater at 3 m depth was sampled with a polyvinyl chloride (PVC) 30 L Niskin 

bottle and 1 L was collected in a polypropylene (PP) bottle, previously rinsed with 

methanol and washed 3 times with seawater from the Niskin bottle immediately 

before sample collection. The PP bottle was fully filled in order to avoid the loss of 

volatile species to the trapped air 30. 

 

Sample treatment and instrumental analysis 

The extraction method was based on a previously reported procedure 31 with minor 

modifications. Briefly, samples were extracted on board by solid phase extraction using 

OASIS WAX cartridges and kept during the cruise at -20 °C until their further treatment 

in the laboratory (Details in SI, Text S3.1). 

The instrumental analysis was performed using a Waters Acquity Ultra Performance 

Liquid Chromatography system coupled with a Waters XEVO TQS, triple-quadrupole 

mass spectrometer (UPLC-MS/MS). To further reduce instrumental contamination, a 

C18 hold-up column available as a PFC kit analysis from Waters®, was installed on the 

aqueous solvent line just before the mixing chamber.  
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A 10 µL aliquot of each sample was injected onto an Acquity UPLC BEH C18 column 

(1.7 um, 2.1 x 50 mm; Waters®) maintained at 50 ºC. Separation was achieved by the 

use of a gradient mobile phase of water and methanol with a constant 1% of 

acetonitrile buffer at a flow rate of 400 µl/min. Electrospray negative ionization (ESI) 

was used with the mass spectrometer operating in the multiple-reaction-monitoring 

(MRM) mode. Ionization and collision cell parameters were optimized for each 

individual analyte (SI, Table S3.2). Each sample was injected in triplicate. A calibration 

curve was made with 10 points from 0.001 pg to 100 pg injected on column. The 

quantification followed the internal standard procedure, using the labeled compounds 

indicated in Table S3.2. Of the 21 target analytes, 9 ionic PFASs (C6-C10 PFCAs and C4, 

C6-C8 PFSAs) and two neutral PFASAs precursor compounds, perfluorooctane 

sulfonamide (PFOSA) and N-methyl perfluorooctane sulfonamide (N-MePFOSA) were 

identified and quantified. 

 

Quality assurance and quality control 

Fluorinated materials (e.g. Teflon®, Gore-Tex®, etc.) were avoided during the sampling 

and analysis. Field blank samples of the Niskin bottle were carried out with 

chromatography-grade water after washing the Niskin bottle with methanol and 

chromatography-grade water. Then, the Niskin field blanks were obtained subtracting 

the levels of PFASs present in the chromatographic-grade water not in contact with the 

bottle. Laboratory blanks consisted on a) chromatographic-grade water (accounted for 

field blanks), b) SPE-extracted chromatographic-grade water and c) the reagents used 

for analysis. There were no substantial differences among field and laboratory blanks b 

and c, showing a negligible contamination effect by neither the Niskin bottle nor the 

sample treatment method (details in SI, Table S3.3). 

The method detection limit (MDL) and method quantification limit (MQL) were 

calculated as the mean of instrument detection limit (IDL) and instrumental 

quantification limit (IQL) (automatically calculated through iteration of all the analyzed 

samples and standards by MassLynx software package, Waters®) of 20 random 

samples plus the standard deviation. MDL ranged from 0.01 to 4.89 pg L-1 and MQL 
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ranged from 0.01 to 10.25 pg L-1. The mean recovery of the labeled surrogates ranged 

between 72% for PFNA-13C5 and 149% for PFHxA-13C4. Concentrations were not 

corrected by surrogate recoveries. Matrix spikes tests with PFHxA-2C13, PFHxS-2O18, 

PFOA-4C13,PFNA-5C13, PFOS-4C13, PFDA-2C13, following the same extraction and analysis 

procedures, resulted in recoveries of 96±24%. See SI, Table S3.3 for details on MDL, 

MQL, and recoveries. 

 

Back Trajectories and statistical analysis. 

Atmospheric back trajectories were calculated with the NOAA Hysplit model online at 

3 different heights (30, 200 and 500 meters) using GDAS Meteorological data from the 

sampling dates (SI, Figure S3.1). SPSS Statistics version 21.0 (IBM Corp.®) was used for 

non-parametric statistical analysis (see normality test results in Table S3.4, SI). 
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RESULTS AND DISCUSSION 

 

Hemispheric and oceanic-basin occurrence of PFASs 

The global median surface seawater concentration for the sum of all the analyzed 

compounds (ΣPFAS) was 1180 ± 1860 pg L-1. In the northern hemisphere the median 

concentration was 708 ± 831 pg L-1, while in the southern hemisphere the median 

concentration was 1620 ± 488 pg L-1. The Atlantic Ocean presented the broader 

concentrations range of ΣPFAS (131-10900 pg L-1, median 645 pg L-1, n=45) compared 

to the other ocean basins. Total concentrations in the Pacific ranged from 344 to 2500 

pg L-1 (median=527 pg L-1, n=27), and in the Indian Ocean from 176 to 1980 pg L-1 

(median=329, n=18). Therefore, the Atlantic Ocean shows the highest concentrations 

globally, presenting as well a higher variability in concentrations, in accordance with 

previous studies (SI, Tables S3.5 and S3.6). This may be due to the fact that the 

sampling coverage of the Atlantic included a larger latitudinal and coastal transects 

versus open ocean gradients. Nevertheless, the Malaspina cruise did not cover the 

north west Pacific, where PFASs concentrations have been reported in the same range 

or even higher 20 than the maximum found in this study. 

Figure 3.1 shows the global distribution of PFCAs, PFSAs and PFASAs in surface 

seawater in all the tropical and subtropical oceans. There are significant differences in 

the relative contribution and concentrations of the three PFAS families in the different 

oceanic basins. Ionic PFASs were present in all the samples analyzed, while PFOSA and 

N-Me-PFOSA were only found in 49.4% and 61.8% of the samples, respectively. The 

median concentration of ΣPFASAs was 0.38 pg L-1, thus significantly lower (T-test, 

p<0.05) than ionic PFASs concentrations. The global median concentrations for the two 

ionic groups were 595 pg L-1 and 189 pg L-1 for ΣPFCAs and ΣPFSAs, respectively, with a 

different global distribution (Figure 3.1). 
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Figure 3.1. Global distribution of PFASs in the tropical and subtropical oceans. Upper panel shows the 

PFSA concentrations, central panel shows the PFCA concentrations and lower panel shows the PFASA 

concentrations. Note that the concentrations of PFSAs and PFCAs in the South Atlantic Ocean are shown 

with a different scale in the separated square sub-panels. 

The inter-oceanic comparison showed no significant differences for ΣPFCAs, while 

ΣPFSAs showed statistically higher concentrations in the South Atlantic Ocean (Kruskal-

Wallis, p<0.01), and PFASAs were significantly more abundant in the Pacific (Kruskal-

Wallis, p<0.01). The higher abundance in the South Atlantic may be influenced by a 

better coverage of continent-influenced regions, such as the area in front of Brazil, in 

comparison to the Pacific Ocean where more remote regions from potential sources 

were sampled. The fact that PFASAs, presumably airborne, have mainly been found in 

the northern hemisphere, would be consistent with the described direct release to the 

atmosphere by the fluoropolymer manufacturing sites, which are largely located in 
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USA, Belgium, France, Italy, Japan and into a lesser extent in China, Russia and India 

24,32,33. The low levels of PFASAs, suggest that these are either degraded before they 

are deposited to seawater, and/or they are volatilized/degraded during oceanic 

transport 34. 

Figure 3.2 shows the relative contribution of PFCAs, PFSAs and PFASAs depending on 

hemispheres and oceanic basins. On average, PFOS contributed a 33% of the total 

PFASs (from 64% in South Atlantic to 16% in North Atlantic), followed by PFDA (22%), 

and PFHxA (12%), being the rest of the individual congeners under 10%, with PFOA 

contributing 6% and PFASAs accounting for less than 1% of the total PFASs 

concentration. There was a significantly higher concentration of PFSAs (Kruskal-Wallis, 

p<0.004) in the southern hemisphere, a higher concentration of PFASAs in the 

northern hemisphere (Kruskal-Wallis, p<0.01) and no hemispheric differences for 

PFCAs. The most often reported PFASs, such as PFOA and PFOS, show a concentration 

variability of several orders of magnitude depending on the ocean basin. PFOA and 

PFOS concentrations in the North Atlantic (PFOA with a median of 44 pg L-1 and PFOS 

with a median of 59 pg L-1; the South Atlantic medians were 58 pg L-1 and 742 pg L-1 

respectively), Pacific (median 25 pg L-1 of PFOA; 101 pg L-1 PFOS) and Indian oceans 

(median 23 pg L-1 of PFOA; and 89 pg L-1 of PFOS) were not substantially different than 

those previously reported (Figure 3.3 and SI, Table S3.5) 4,26,35-37. However, most 

surveys of PFASs in the Pacific Ocean correspond to coastal waters from east Asian 

countries 20,31,36,38,39. Since China and other south east Asian countries are the major 

consumers of many fluorinated products 32, there is a huge range of concentrations 

between few nanograms per liter of PFOS and PFOA reported in coastal Japanese and 

Chinese waters, 31,39,40 to the picograms per liter concentrations in the center of the 

Pacific oceanic gyres. There are few previous reports of PFAS concentrations for the 

southern Indian Ocean, and these are limited to coastal surveys in Australia 41, or 

further north in the South East Asia 42,43 with seawater concentrations similar to those 

measured during the Malaspina 2010 expedition. Concentrations of other individual 

PFASs measured in this work are also in agreement with those reported in previous 

studies (SI, Table S3.6).  
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Figure 3.2. Relative contribution of the individual PFASs for each oceanic hemispherical sub basin. 

Sample sizes correspond to: north Atlantic n=25, south Atlantic n=22, north Pacific n=19, south Pacific 

n=8 and Indian Ocean n=18. 

 

Figure 3.3. Comparison of the surface seawater concentration ranges of PFOS and PFOA measured 

during the Malaspina 2010 expedition with those reported in previous studies. 1) Theobald et 

al.(2007a)
44

, 2) Ahrens et al. (2009a)
27

, 3) Zhao et al (2012)
4
, 4) Benskin et al (2012)

26
, 5) Yamashita 

et al.(2005)
31

, 6) Yamashita et al.(2008)
20

, 7) Wei et al.(2007)
42

, 8) Cai et al. (2012b)
37

, *) this study. 

The bars extend from the minimum to the maximum reported values on a logarithmic scale. 
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Coastal versus open ocean occurrence of PFASs in the global ocean  

PFAS concentrations in coastal waters have been reported to be 1–2 orders of 

magnitude higher than in open-ocean waters 12,45,46. Moreover, their sources in the 

marine environment have been identified to be mostly terrestrial through wastewaters 

and riverine inputs, and directly linked to population density 12,29,47. This is consistent 

with decreasing concentrations from the coasts towards the open ocean (Figure 3.1). 

None of the sampling sites was located within the 12 miles of territorial waters, so we 

refer as coastal sites those that are at a distance that can range from tens of miles to 

more than 200 miles from the coast. 

Of special interest are the high levels of PFOS found along the Brazilian coast 

compared with much lower concentrations in the North Atlantic Ocean, or the center 

of the sub-Atlantic gyre (Figure 3.1 and SI, Table S3.5). The particularly high PFOS 

concentrations ranging from 3240 to 6560 pg L-1 found near Brazil have not been 

reported before in this region (Figure 3.1). Nevertheless, previous studies have 

reported higher levels of PFOS in the south Atlantic compared to the north Atlantic 26. 

Sulfluramid (N-ethyl perfluorooctane sulfonamide) is extensively used as a pesticide in 

Brazil, which can be transformed to PFOS via different degradation pathways 26,48. The 

declared consumption of Sulfuramid in 2004 was of 20.58 tons, increasing up to about 

30 tons year-1 in 2007 32. Nonetheless, the high concentration plume detected covering 

a large oceanic region gives a calculated total mass of PFASs superior to the reported 

pesticide use in Brazil. In addition, PFAS surface concentrations were not correlated 

with the surface salinity during the Malaspina cruise, thus, without a direct apparent 

riverine influence. Therefore, other contributions, including atmospheric contributions 

of PFOS may need to be considered. The air mass backtrajectories (SI, Figure S3.1) for 

the lower troposphere had an oceanic origin (from the East), however, in the upper 

boundary layer (800 m), air masses were coming from the coastal zone of Espirito 

Santo and Rio de Janeiro states, among the more populated and developed in Brazil 49. 

Additionally, January coincides with the rainfall period 50 and before and during the 

sampling activities, several extreme rain events occurred, facilitating scavenging of gas 

phase fluorinated precursors and aerosol bound ionic PFASs by wet deposition 17. Dry 

deposition of aerosol bound PFASs could also be a source to surface waters from the 
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upper boundary layer, which cannot be quantified here, even if it has been reported to 

be of major relevance for other pollutants in the Open Ocean 51. Nevertheless, the 

great amount of PFSAs quantified in the south Atlantic is still a surprising novelty which 

would deserve further research based on a more comprehensive sampling approach in 

the area which was out of the scope of this work. 

In the Indian Ocean, there was a clear coastal-open ocean gradient of concentrations, 

with concentrations of PFASs, mainly PFOS and PFDA, of more than 1500 pg L-1 in the 

Australian coast to 200 pg L-1 in open seawater. The influence of Hawaii and the 

Caribbean islands and continents was also noticeable in the Pacific and Atlantic oceans 

concentrations, mainly regarding PFCAs and PFSAs (Figure 3.1 and SI, Table S3.5). 

 

Potential influence of the oceanic currents and gyres and biogeochemical processes on 

PFASs occurrence in the global ocean 

Despite the coastal influence on PFAS concentrations in the open ocean, sometimes 

the maximum concentrations are not found in the sampling site closest to the 

continental shelf. In the regions affected by the Benguela and Brazilian currents along 

the South African and Brazilian coasts (SI, Figure S3.2), the maximum concentrations, 

especially for PFCAs and PFOS, are observed in the sampling points strongly affected 

by the currents, but not in the sites closest to the continental shelf (Figure 3.1). It is 

possible that these well delimitated currents transport PFASs from other source 

regions, contributing more than the adjacent continental shelf, and/or that there is 

lower dilution within the currents. 

The influence of oceanic currents driving an important variability in concentrations, 

especially of PFCAs, is also observed around the equator, where for both the Pacific 

and Atlantic oceans there are South, North and Counter Equatorial currents (SI, Figure 

S3.2). For instance, total PFAS levels are higher in the Atlantic Equator (due to the 

counter current flowing from South American coast) compared with contiguous 

sampling stations. In the southern hemisphere, the decrease of PFAS concentrations at 

higher latitudes may be influenced by the adjacent Antarctic Circumpolar Current with 
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low concentration of these pollutants 20,26. In addition, primary emissions of 

fluorinated compounds from south African countries are generally low 7,26. 

The central areas of the subtropical oceanic gyres are known to accumulate 

“swimmer” pollutants, like plastic debris, driven by the oceanic currents transporting 

the contaminants 52-55. Ionic PFASs, behaving as swimmers, show a slight increase in 

concentrations, especially for PFCAs, in the central areas of the Indian, north Pacific 

and north and south Atlantic oceans, which is consistent with oceanic currents 

accumulating PFASs in the center of the oceanic gyres. This accumulation is not 

observed for semivolatile POPs which can be volatilized driven by the higher 

temperatures 56. Therefore, more research should be done to analyze the gyres’ 

relative influence on PFASs accumulation depending on the compound volatility and 

environmental drivers. 

Biogeochemical processes, such as sinking of organic matter and biodegradation, are 

known to control the occurrence of hydrophobic POPs in the water column 57 58, but its 

influence is presumably of lower importance for the less hydrophobic PFASs. 

Nevertheless, PFASs have been reported to enter food webs in aquatic environments 

from the Poles59-61 to the subtropical regions10,62 and therefore organic matter and 

biota may influence their global distribution. Longhurst provinces 
63, account for the 

geographical variability of biogeochemical and physical processes (SI, Table S3.1 and 

Table S3.7). Figure S3.3 (SI) shows the concentration of PFOA, PFOS, and the ratio 

PFOA/PFOS in the Longhurst oceanic provinces sampled during the Malaspina 2010 

Expedition. There is an important and significant variability in the PFOA/PFOS ratio 

(Figure S3.3 middle panel) among the Longhurst provinces (ANOVA, p<0.001). The 

highest PFOS concentrations and lowest PFOA/PFOS ratios are observed in the 

Benguela (BENG) and South Atlantic gyre (SATL) provinces, followed by the North 

Pacific Equatorial Countercurrent (PNEC). The highest PFOA/PFOS ratios were found in 

the northern hemisphere provinces, with a particular relevance of the North Atlantic 

Subtropical Gyre Province East (NASE) and North Atlantic Tropical Gyre Province 

(NATR). Generally, the variability of PFOA and PFOS and their ratio seems most 

probably related to proximity to source regions and currents, in addition to the 

intrinsic biogeochemical characteristics considered by the Longhurst provinces. The 
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PFOA/PFOS ratios were generally lower than 1 when averaged per biogeochemical 

province (Figure S3.3, SI), or averaged per oceanic subbasin (Figure 3.2). Other recent 

studies have described higher concentrations of PFOS than PFOA in some oceanic 

regions, as shown in Figure 3.3. Higher median concentration of PFOS were found in 

the north and south Atlantic by Theobald et al.64 and by Ahrens et al. 27, respectively. 

Ahrens et al. also described higher PFOS than PFOA concentrations in the South 

Atlantic and Southern Ocean 35. Zhao et al 4 reported higher PFOS than PFOA medians 

in the middle and south Atlantic. Yamashita 20 reported higher PFOS than PFOA 

concentrations in the Equatorial Pacific ocean, while Benskin et al 26 did not encounter 

a higher PFOS median in their north-south transects in 2008 and 2009, but PFOS 

concentrations were higher than PFOA in some regions, especially where PFOS was 

maximum, as observed for the South Atlantic. Wei et al. 42 reported as well higher 

PFOS concentrations compared to PFOA in remote areas, particularly in the south east 

Indian and Southern Oceans. The overall trend is that most observations of higher 

PFOS than PFOA are in the southern hemisphere and equatorial oceans, and also for 

the remote locations. This contrasts with higher PFOA/PFOS ratios usually observed in 

many studies of PFAS in the northern hemisphere 20,26,27and other regions. In our 

study, the sampling sites showing PFOA/PFOS higher than 1 were also from the 

Northern hemisphere. It is possible that the source regional variability plays an 

important role explaining the relative predominance of PFOS versus PFOA. 

Nevertheless, the specific processes affecting their fate and transport once released in 

the environment may be of particular interest regarding their presence and relative 

abundance in the remote areas. 

The physico-chemical and biological processes affecting the fate of PFASs have been 

poorly described, especially for the open ocean. However, biodegradation, adsorption 

to settling organic matter (biological pump), and photodegradation have shown to be 

relevant for other organic pollutants 65. PFASAs and other ionic PFASs precursors can 

degrade through photolysis and/or biotransformation processes 34,60. On the contrary, 

no biodegradation has been described for most ionic PFASs under aerobic or anaerobic 

conditions 66-69. Nevertheless, PFOS and PFOA have been reported to degrade 

anaerobically in sewage sludge 66, having PFOS a fastest removal rate than PFOA 70. In 
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any case, defluorination of a perfluorinated compound has only appeared to occur 

within explicit chemical conditions (molecule conformation, pH and sulfur limiting 

conditions being the most relevant) which cannot be extrapolated to the open ocean 

68. Nevertheless, due to the huge marine bacterial and functional diversity, the 

relevance of biodegradation cannot be disregarded and should be further studied. 

The biological pump is an effective process to remove organic pollutants 58,65, but 

PFOS, PFOA and other PFASs have low hydrophobicities, even though it could be 

relevant for the longer chain substances. There are potential non-hydrophobicity 

driven bioconcentration processes in phytoplankton and other organic matter pools 

for ionic compounds 9,71,72. PFASs have been recently stated as proteinophilic 

compounds in biological tissues 61, 73. The partition coefficient of PFASs depends on 

carbon chain length, pH and organic carbon fraction 74,75. PFSAs and PFASAs have a 

higher tendency to partition to organic matter than PFCAs, and indeed, PFCAs with 

shorter chains (less than seven carbons) have been found only in the dissolved phase, 

but not in suspended matter 76. Significant non-parametric correlations were found 

between concentrations of individual or total PFASs versus chlorophyll a 

concentrations and bacterial biomass measured at each sampling station, but generally 

explaining a small fraction of the variability (SI, Table S3.8). For instance PFOS and 

PFOA do correlate (p<0.05) with chlorophyll a concentrations and bacterial biomass, 

suggesting a potential role of the biological pump and/or unknown degradative 

pathways decreasing their dissolved phase concentrations, processes that require 

further research. 

The concentrations of some PFASs showed a significant correlation with the measured 

light intensity during the sampling periods (ΣPFSAs, p<0.05 and ΣPFASAs p<0.01, SI, 

Table S3.9). A large variability of PFAS concentrations, including the sampling stations 

with the maximum concentrations of some PFASs, was observed at the low solar 

radiated areas (SI, Figure S3.4), suggesting a potential role of photodegradation. PFOS 

photodegradation in water has been experimentally confirmed and it depends on UV 

wavelength and pH. Laboratory experiments showed that 68% of PFOS is lost after 10 

days of UV exposition under certain conditions, 77 even though these loss rates cannot 

be extrapolated to the field conditions 78. Alternatively, the recent study from Taniyasu 
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et al.79 shows that photolytic degradation of perfluorinated compounds may occur in 

the natural environment under high solar radiation intensities. Photodegradation 

reduces mainly the concentration of long chain fluorochemicals, but also of PFOS, thus 

the amount of short PFBS and PFBA could increase due to their formation. This may 

cause that radiation is not directly correlated with the total amount of PFASs, even if it 

is influencing the marine surface concentrations as reported. Indeed, the positive 

correlation found between PFOS and radiation may arise from the fact that long chain 

PFASs are degrading and forming more PFOS. 

Temperature can affect the degradation processes, but also the partitioning, and it is 

related to the water mass. PFCAs and PFASAs are significantly positively correlated 

with surface water temperature (p<0.01, Kendall-Tau non-parametric coefficients, SI, 

Table S3.8). PFOS is also significantly correlated with water temperature (p<0.01) using 

non-parametric coefficients to avoid a bias by source locations overprint (SI, Figure 

S3.5 and Table S3.8). This suggests that temperature is an important environmental 

variable of the processes affecting the fate of PFASs in surface water. However the 

relative importance of the specific processes driving these correlations cannot be 

elucidated here. 

 

Time-trends of PFASs in the surface global ocean 

Even though field studies dealing with PFASs in the open ocean only expand for one 

decade, the assessment of potential temporal trends of PFASs in surface oceanic water 

could be attempted for the Atlantic Ocean (SI, Table S3.6). Nevertheless, a high 

variability of the sampled areas, seasonal variations, sampling and analytical 

techniques, among other factors, introduce a non-negligible uncertainty in this 

assessment. In the north Atlantic, a decreasing tendency in surface seawater 

concentrations has been described for total PFSAs 4. Conversely, the shorter chain 

PFSAs have increased in the north Atlantic 27,31,. On the contrary, the concentration 

range of total PFCAs have remained constant during the last decade in the north 

Atlantic, excluding long chain compounds which show higher values for the field 

studies performed since 2008 4,26 (SI, Table S3.6). 
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Figure 3.4 shows a decreasing tendency of PFOA concentrations in the northern 

hemisphere (both in Atlantic and Pacific oceans) for the last decade. Fitting this data 

set to,  

𝐿𝑛 (
𝐶𝑡

𝐶0
) =  −𝑘 𝑡 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  [3.1] 

Where t is the year, we obtain that k (inverse of e-folding time) equals 0.12, and thus 

the time needed to reduce the concentration to half of the initial value is of 5.8 years. 

This decrease, only observed for the Northern Atlantic, suggests that dilution by 

homogenization of the concentrations in this basin, removal to deeper waters, or 

biotic or abiotic degradation, may have become important drivers once primary 

emissions have been reduced. The lower decrease in PFOA concentrations observed in 

the Pacific ocean may be due to a different evolution of the potential sources directly 

affecting the Pacific basin (like increasing instead of decreasing production in Asian 

countries), or to a higher uncertainty due to a fewer number of measurements in the 

open Pacific ocean.  

 

Figure 3.4. Temporal trend of PFOA concentrations in the northern hemisphere in the Atlantic and 

Pacific oceans and the fitted linear temporal trend. Data from Yamashita et al.(2005)
31

, Ahrens et al. 

(2009a)
27

, Ahrens et al. (2010), Zhao et al (2012)
4
, and Benskin et al (2012)

26
. 
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PFSAs can undergo photo- and maybe bacterial degradation in seawater 68, 77,79,80 , 

therefore, the lower concentrations of PFOS in the north Atlantic, the Canary Island 

region, and the westerly current north of equator, reported here in comparison to 

other studies, may reflect the phasing out of its peak in production and use in the 

northern hemisphere regions after 2009, when it was banned 11. This would indicate 

that once primary emissions are reduced; there are significant losses of PFOS either by 

eddy diffusion and the biological or degradative pumps; which is not appreciated in 

other short chain compounds with higher recent emissions.  

This study shows the ubiquitous occurrence of PFCAs, PFSAs and PFASAs in the global 

ocean, being the first attempt, to our knowledge, to show a comprehensive 

assessment in surface water samples collected in a single oceanic expedition covering 

tropical and subtropical oceans and using consistently the same sampling and 

analytical procedures. Nevertheless, more and new fluorinated products are being 

added to the market 12 and the main processes affecting their fate remain largely 

unknown, even though, presumably, it is a complex interaction of many factors and 

processes what drives their global distribution. Therefore, more research is needed to 

explain PFASs fate and behavior in the global ocean, which is presumably their main 

sink. 
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ABSTRACT 

Perfluoroalkylated substances (PFASs) dynamics at the open ocean is an unresolved 

issue at a global scale. At the Malaspina 2010 circumnavigation cruise, 21 PFASs were 

measured at the deep chlorophyll maximum (around 100 m depth) alongside physical 

and biological parameters influencing their chemistry, in order to elucidate their 

vertical transport along the water column. The samples were taken at the Atlantic, 

Pacific and Indian Oceans between 35°N and 40°S, providing the first synoptic global 

sampling and allowing a direct comparison between oceanic basins at surface and 

subsurface in the mixed layer. The vertical transport of PFASs was assessed empirically 

for eddy Diffusion and settling fluxes of organic matter bound PFASs (Biological pump). 

The eddy diffusion coefficients in the photic water column were measured 

concurrently with the PFASs concentrations, allowing the first reported estimation of 

PFASs diffusive fluxes from field data. The biological pump fluxes were calculated 

based on bioconcentration factors of the selected PFASs and organic carbon export 

from the mixed layer. The phytoplankton and zooplankton contribution to the 

biological pump fluxes were estimated separately; zooplankton influence dominates 

over the phytoplankton, according to our measurements. Moreover, the biological 

pump vertical transport of PFASs is of higher magnitude than turbulent diffusion, 

except in regions with strong water column eddy diffusion. 

 

Graphical Abstract 4.  
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INTRODUCTION 

Perfluoroalkylated substances (PFASs) are persistent synthetic compounds, receiving 

rising concern worldwide due to their increasing use and therefore widespread 

occurrence as environmental contaminants. PFASs are ubiquitous and can reach 

remote regions, including the open oceans 1-5. Although earlier studies reported PFASs 

occurrence in the marine environment, including assessments at oceanic scale 6-8, and 

inter oceanic comparisons 1,5,9,10, the understanding of their fate still represent an 

important scientific challenge 11. Neutral PFASs can be atmospherically transported 

and deposited globally 12-14, while for ionic PFASs, such as perfluorooctane carboxylic 

acids (PFCAs) and perfluorooctane sulfonic acids (PFSAs), marine currents are thought 

to be the main transport vector to remote areas 15. Among those, perfluorooctane 

carboxylic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are frequently 

assessed 4. Moreover, atmospheric deposition of ionic PFASs is feasible after their 

neutral precursors are degraded in the atmosphere 14,16,17, but the relevance of this 

input to the ocean has been poorly constrained. Once in the oceanic water column 

their residence times and their global fate is still uncertain due to their particular 

chemical properties (e.g high water solubility and lipophobicity) compared to other 

Persistent Organic Pollutants (POPs) 11. 

Most previous assessments of PFAS in the marine environment report concentrations 

for surface waters 6,18, while the transport routes (horizontally and vertically) as well as 

the potential biogeochemical controls on their occurrence have received little 

attention. In addition, the magnitude of the oceanic sinks of PFASs remain largely 

uncharacterized 
15,19,20. Nevertheless, the potential relevance of the ocean as an 

ultimate sink of PFASs has been suggested 4. To date, a limited number of studies focus 

on the PFASs vertical transport and their water column distributions in the marine 

environment. A remarkable attempt was published by Yamashita and coworkers. 15, 

who reported the concentrations’ vertical profiles, from the surface down to several 

thousand meters depth, at 9 locations from North Atlantic, South Pacific and offshore 

Japan. Their study showed PFOA and PFOS concentrations generally higher at surface 

compared to deep waters, consistent with these chemicals being introduced at surface 

through riverine inputs and atmospheric deposition. Nevertheless, the database was 
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based on PFOS and PFOA measured during several independent research cruises 

between 2002 and 2006, which may enhance variability due to sampling 

methodologies. Subsequently, this database was used to test the relevance of vertical 

transport by eddy Diffusion as a process affecting PFOA depletion from surface marine 

waters and driving their transport to the deep ocean 21. The study suggested that 

vertical eddy diffusion was an oceanic sink with a magnitude three fold larger than 

subduction of water masses, previously suggested to be important as a sink for other 

organic pollutants 22 and PFASs 2. Both, vertical transport by eddy diffusion and 

subduction of water masses, are part of the “physical pump”. Lohmann and coworkers 

also noted the scarce information on the efficiency of vertical mixing due to the limited 

field derived data sets of eddy diffusion coefficients, as well the limited knowledge on 

the occurrence of PFASs for many oceanic regions, especially in the Indian and Pacific 

Oceans. 

On the other hand, the Biological pump may be taking part in the removal processes of 

PFASs in surface tropical oceans as it has been described as a key factor driving POP 

concentrations in remote areas, being able to trap the pollutants and change water 

and even air concentrations in the Arctic 23,24, the Antarctica 25,26 and in other marine 

environments 27. As pollutants with high octanol- water partition coefficient (Kow) tend 

to accumulate in the organic matter in the water column, the vertical settling of these 

particles drives a sinking flux of hydrophobic POPs. PFASs sorb onto particulate matter 

in aquatic systems, 8,28 even if to a lower extend, and may be affected by this settling 

process. There are some studies about bioaccumulation of PFASs in biota, including 

planktonic organisms 29-31, but attention has been given mainly to their toxicity or 

transfer through food webs. The potential role of the biological pump on the removal 

of PFAS from surface waters has not been assessed so far. 

Based on the previous considerations, the removal fluxes caused by turbulent diffusion 

in the water column (physical pump) and by sorption to biomass with subsequent 

sinking (biological pump), as it occurs for other POPs, are the two main processes 

potentially affecting the superficial depletion of PFASs, which deserve further 

evaluation. For this purpose, our study is based on the Malaspina 2010 

circumnavigation cruise, which allowed field measurements of 21 PFAS, including 
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PFCAs, PFSAs and perfluoroalkyl sulfonamides (PFASAs), at surface and at the deep 

chlorophyll maximum (DCM) depth, concurrently with in-situ measurements of the 

eddy diffusion coefficients in the photic zone of the water column 32. To our 

knowledge, this research represents the first synoptic estimation of PFASs eddy 

diffusive fluxes and settling fluxes derived from field measurements and climatologies 

at a global scale. 

Therefore, the objective of this work is to assess for a wide range PFASs the removal 

fluxes from the superficial ocean through i) the evaluation of their spatial and vertical 

concentrations in the global tropical and subtropical Open Ocean and ii) the 

quantification of vertical turbulent diffusion and the biological pump affecting PFASs, 

as the main settling mechanism for oceanic POPs. 
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MATERIAL AND METHODS 

 

Sampling 

PFASs and eddy diffusivities were measured during the Malaspina 2010 

circumnavigation cruise with RV Hespérides from December 14, 2010 to July 14, 2011, 

providing the first global sampling of PFASs in the tropical and subtropical Atlantic, 

Pacific and Indian Oceans. The surface seawater concentrations of PFASs have been 

discussed in a companion work 1. In addition, 89 water samples at the DCM depth 

were taken in the north and south basins of the Atlantic and Pacific Oceans and in the 

Indian Ocean between 35°N and 40°S (Figure 4.1), allowing to assess the vertical 

distribution of PFASs globally. The DCM depth oscillated between 20 and 160 m during 

the circumnavigation cruise, depending on the transparency and nutrients content in 

the water column 33
. The DCM was chosen because it is where the concentration of 

phytoplanktonic biomass is at its maximum, and it has been reported to be an area of 

special interest regarding biological processes 34-36. One liter of seawater from the 

DCM depth was sampled in 30 L Niskin bottles attached to an oceanographic rosette 

coupled with a CTD device (conductivity, temperature, depth), which allowed the 

detection of the DCM depth precisely. The water was then transferred to 1L 

polypropylene bottles for its subsequent concentration in the laboratory. All the 

sampling stations, localizations and depths for DCM samples are included in the 

Supplementary Info (SI, Table S4.1). 

 

Sample treatment & Instrumental Analysis 

The samples were analyzed following the same protocols used for surface water 

samples as described in Gonzalez-Gaya et al. and its supplementary info 1. Briefly, after 

collection, water samples were filtered using glass fiber filters (GF/F, 0.7 µm) and 

spiked with a mixture of 13C labeled C4,6,8-12 PFCAs and 18O C6 and 13C C8 PFSAs. The 

filtrate was concentrated on solid phase extraction OASIS WAX cartridges and kept at -

20°C during the cruise until their further treatment in the laboratory. 
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After the elution and concentration of the extract, the instrumental analysis was 

performed using a Waters Acquity Ultraperformance Liquid Chromatography system 

coupled with a Waters XEVO TQS, triple-quadrupole mass spectrometer (UPLC-MS/MS) 

with the mass spectrometer operating in the multiple-reaction-monitoring (MRM) 

mode. Separation was achieved on an Acquity UPLC BEH C18 Column (1.7 µm, 1.0 x 50 

mm; Waters Corp.). Electrospray negative ionization (ESI) was used. Three labeled (13C) 

PFSAs and PFCAs, and one deuterated (D) PFASA were used as injection standard for 

an internal standard quantification. Of the 21 target PFASs analyzed, 9 ionic PFASs (C6-

C10 PFCAs and C4, C6-C8 PFSAs) and 2 neutral PFASAs precursor compounds 

(perfluorooctane sulfonamide (PFOSA) and N-methyl perfluorooctane sulfonamide (N-

MePFOSA)) were consistently identified. Therefore, the present study if focused on 

these 11 compounds. 

 

Quality Assurance/Quality Control 

Each sample was injected in triplicate and all the detection and quantification limits 

(DL, QL) were calculated as explained elsewhere 1. Niskin field blanks and laboratory 

blanks (chromatographic-grade water, SPE-extracted chromatographic-grade water 

and of the reagents used for analysis) were analyzed simultaneously with the sample 

batches, and give no significant signals of the target compounds in both blanks types, 

being the concentrations found of few pg per sample 1. Recoveries for the DCM water 

samples ranged from 76% for perflourononane carbolxilic acid PFNA 13C5 to 142% for 

perfluorohexane sulfonic acid PFHxS 18O2 (SI, table S4.2). Additional details on QA/QC 

are reported in González-Gaya et al 2014 1. 

 

Estimation of Eddy vertical Diffusion of PFASs 

The oceanic sink due to vertical eddy diffusion was calculated for individual PFASs with 

a one dimension diffusion model as described elsewhere 21. Briefly, the estimation of 

the turbulent flux (FEddy, ng m-2d-1) is based on the Fick’s first law, 
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𝐹𝐸𝑑𝑑𝑦 = −𝐾𝜌   
𝜕𝐶𝑤

𝜕𝑧
  [4.1] 

where Cw (ng m-3) is the PFASs seawater concentration, z is depth, and Kρ is the eddy 

diffusivity (m2 d-1). In the model, it is assumed that no PFASs pollution was present in 

the marine surface in the initial time step (Cw0 =0, t0 = 1970) and that the flux is 

unidirectional coming from the surface towards the deep ocean, driven uniquely by 

eddy diffusion. T0 was selected as the moment when the production of 

perfluorochemicals started to be relevant, but the oceanic concentrations were still 

likely to be negligible 37. The concentrations are allowed to increase until reaching the 

CW values measured for the surface ocean in 2011. Time steps are lapsed in Δt = 0.5 

years and the resolution of the water column is of 1 m depth. Details on the 

integration method are given by Lohmann et al. 21, except that for the Kρ values. Kρ was 

calculated from in-situ measurements during the Malaspina cruise 32 by, 

𝐾𝜌 =  Γ 
ε

𝑁2  [4.2] 

where N2 (s−2) is the squared buoyancy frequency, Γ is the mixing efficiency described 

by Osborn 38 and modified as described in Fernandez-Castro et al. 32, and ε (W kg-1) is 

the dissipation rate of turbulent kinetic energy measured by a microstructure 

turbulence profiler launched during the sampling campaign. It was deployed, 

immediately after the water sampling for PFASs analysis, at 50 stations with a profile 

resolution of one ε measurement per meter between 0 to 300 m depth. From 2 to 6 

profiles were obtained in each station, being the ε used here an averaged value. When 

the ε records were not available, Kρ was obtained from hydrographic and 

meteorological data by using the K-profile parameterization described by Fernandez-

Castro et al 32. The estimated FEddy are based on the surface concentrations recorded 

during the sampling cruise 1 and the Kρ averaged per meter over the water column of 

each sampling point. Fluxes are given for 9 ionic species (C6-10 PFCAs and C4, 6-8 PFSAs) 

as their detection in the global sampling campaign was consistent, allowing their 

comparison in all the tropical and subtropical oceans. 
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Settling fluxes of PFAS due to the Biological pump 

The settling flux (FSettling) associated with the settling of organic matter bound PFASs 

(biological pump) was estimated by, 

𝐹𝑆𝑒𝑡𝑡𝑙𝑖𝑛𝑔  =   − 𝐹𝑂𝑀 𝐵𝐶𝐹 𝐶𝑊 = −(𝐹𝑃ℎ𝑦𝑡𝑜 + 𝐹𝐹𝑒𝑐𝑎𝑙)𝐵𝐶𝐹 𝐶𝑊 [4.3] 

where FOM (ng m-2 s-1) is the flux of organic matter that settles out of the mixed layer to 

the deep ocean with an algal matter flux component (FPhyto) and a zooplankton related 

matter flux component (FFecal), Cw (ng L-1) is the concentration of PFASs measured in 

the DCM during the Malaspina 2010 sampling cruise, and BCF is the bioconcentration 

factor of the given PFASs in plankton (phytoplankton and fecal). 

We assume that FOM is 1.8 times the flux of organic carbon (FOC, ng m-2s-1) exported 

from the mixed layer 39. FOC is taken from the recently described climatology of export 

fluxes of organic carbon in the global oceans by Siegel and coworkers 40. This 

climatology separates the contribution to FOC from phytoplankton from those derived 

from zooplankton fecal pellets of organic matter (last term of equation [4.3]). 

Therefore, both, the phytoplankton and zooplankton contribution to the biological 

pump fluxes were estimated separately for the first time, as previous estimates of 

POPs fluxes due to the biological pump considered one unique settling flux of organic 

matter. Even if there is no available data for PFASs, fecal pellets have been reported to 

accumulate persistent organic pollutants 41 42,43. 

The BCF values for PFASs accumulation in plankton were taken from the literature 30. 

In order to estimate the two components of the settling flux of PFAS, we assume that 

the PFAS’s BCFs of phytoplankton is of equal magnitude than the fecal pellet-water 

partition coefficient for PFASs (Equation [4.3]). 

 

Statistical analysis 

SPSS Statistics version 21.0 (IBM Corp.) was used for nonparametric statistical analysis 

as the measured concentration of individual PFASs where not normally distributed (see 

normality test results in SI, Table S4.3).  
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RESULTS AND DISCUSSION 

 

Global occurrence of PFASs in the deep chlorophyll maximum depth 

The Atlantic Ocean showed the highest average concentrations (as the sum of all the 

measured compounds, ΣPFASs) at DCM; followed by the Pacific and the Indian Ocean. 

Average concentrations found in the Northern hemisphere were lower than values 

found in the Southern hemisphere (Figure 4.1, and SI, Table S4.4), mainly due to the 

high concentrations found near Brazil, South Africa and West Australia. It is remarkable 

the high abundance of PFOS, as 39% of the total average PFASs concentration, 

perfluorodecanoic acid (PFDA) 17%, and perfluorohexanoic acid (PFHxA) 12%. The 

relative contribution of the remaining compounds was under 10%, with PFOA, 

contributing 5% to ΣPFASs measured at the DCM (SI, Figure S4.1). The PFASs pattern 

found at the DCM depth resembles that described previously for the corresponding 

surface waters 1 for most oceans basins with the exception of the North Atlantic 

Ocean. In this case, PFCAs were predominant at the surface, meanwhile PFCAs and 

PFSAs had similar occurrence at the DCM depth, as PFOA and PFDA were highly 

reduced with depth. 

Regarding global occurrence for the three PFAS families, PFSAs showed a clear coastal 

gradient, with the highest concentrations in the South Atlantic Ocean, near the 

Brazilian coast as observed previously at surface 1 (Figure 4.1, top panel). PFCAs 

followed a similar spatial occurrence pattern, even if the highest concentrations were 

not found in the Brazilian coasts, but near West Africa in the North Atlantic gyre, and 

close to the East and West coasts of the Indian Ocean transect (Figure 4.1, middle 

panel). PFASAs concentrations (Figure 4.1, bottom panel) were 2 or 3 orders of 

magnitude lower than the other two ionic families and very close to the analytical 

method DL. Neutral compounds have been reported here for the first time in deep 

waters, although their detection was possible in 60% of the samples and mostly in the 

Northern hemisphere. Their chemical characteristics, such as high volatility and lower 

persistence, and lower abundances in the southern hemisphere could be influencing 

these results 6. 
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Figure 4.1. Global distribution of PFASs in the tropical and subtropical oceans at the DCM. Upper panel shows 

the PFSA concentrations, central panel shows the PFCA concentrations and lower panel shows the PFASA 

concentrations. Note that the concentrations of PFSAs and PFCAs in the South Atlantic Ocean are shown with a 

different scale in the separated square sub-panels. 

The concentration spatial patterns of PFASs at DCM were similar to those found at 

surface previously 1, even though the concentration ranges at DCM were much smaller 

than that of surface samples. Indeed, PFAS concentrations at DCM are positively 

correlated with those at surface, being significant this correlation for all analyzed 

compounds, except for the PFHxA (Figure 4.2 and SI, Table S4.5). Surface 

concentrations of individual PFASs were generally higher than at the DCM for most 

samples (surface/DCM ratio was over 0.8 in 75 out of 92 samples, and between 0.8 

and 1.2 in 26 out of 92 samples), (SI, Figure S4.2 and Table S4.4) likely due to different 

factors (e.g. regional strength of removal processes, influence of oceanic circulation, 
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and different historical/ongoing emissions). Assuming a main superficial income of 

PFASs pollution, it seems that in some areas the factors affecting surface depletion are 

more intense than in others. Also the amount of pollution seems to be relevant; for 

instance, in areas with a very low surface PFASs concentration, like the central Pacific 

Ocean, there are many stations where PFAS concentrations at DCM are higher than at 

surface or in the same range, most likely due to a similar level of the individual 

contaminants in both layers, close to the baseline concentrations. Conversely, DCM 

total concentration is also higher than at surface in areas with extremely high 

concentrations combined with intense removal fluxes (as described later in this paper), 

like in the Central America, South African and Australian coasts (SI, Figure S4.2). 

Therefore, it is relevant to assess the magnitude and spatial distribution of the eddy 

diffusion and settling fluxes due to the biological pump on PFAS in order to understand 

their vertical distribution. 

 

Figure 4.2. PFASs Log concentrations at the surface versus DCM (pg L
-1

). 

Vertical eddy diffusion fluxes of PFASs 

Kρ ranged from 5.07 m2s-1 in surface areas of the North Atlantic (with strong turbulent 

events, like a storm, which enhanced diffusion) to 3.53·10-7 m2s-1 in the deepest areas 

of the measured mixed layer, causing the latter a very slow diffusion typical from the 

inner parts of the ocean 32 (SI, Figure S4.3). 
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The application of the one dimensional model using the measured eddy diffusion 

coefficients allowed predicting the vertical profile of CW in the water column, and 

therefore, it was possible to calculate a theoretical value of CW at the DCM depth. To 

test the model's goodness-of-fit we compared the measured field concentration of 

PFASs at the DCM with those obtained from the model at the same depth (Figure 4.3). 

In general, there was a good agreement in the order of magnitude between the model 

and the measured field concentration at DCM. However, the model usually 

underestimated the measured concentrations (ranging the mean absolute error from 

13 pg L-1 for perfluoroheptane acid (PFHpS) to 324 pg L-1 for PFOS) (SI, Table S4.6). In 

the South Atlantic Ocean, where maximal concentrations were found at surface 1, 

there is more dissimilarity between modeled and measured concentrations (SI, Figure 

S4.4). This may be also a consequence of different past or ongoing PFASs loadings from 

the surrounding areas and potential unknown vertical transport mechanisms. 

Therefore, extreme PFASs concentrations seem to be a factor influencing the model 

predictive potential. Likewise, the chemical properties of each individual PFAS may be 

a matter of interest, as the fit of every congener is different (SI, Table S4.6 and Figure 

S4.4). 

 

Figure 4.3. PFOS and PFOA modelled versus measured concentrations (pg L
-1

) at the DCM depth. 
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The calculated turbulent fluxes were obtained computing the modeled concentrations 

in the water column. FEddy generally decreased with depth because microstructure 

turbulence is 1-3 orders of magnitude lower in the deep ocean than in the mixing layer 

of the open ocean at tropical and subtropical latitudes 32. FEddy at the surface were 

generally higher, up to 4 orders of magnitude, than at the DCM. An inversion of 

turbulence fluxes intensity (higher at the DCM) only occurred consistently for all 

analyzed compounds at 5 sampling stations (placed in the Brazilian coast, in the Pacific 

Equatorial Countercurrent and near the Caribbean sea) corresponding to areas where 

situations like to coastal vicinity, lateral water mass intrusion, internal waves or salt-

fingers occur, causing increased interior shear areas as reported by Fernandez-Castro 

et al. 32. 

FEddy at surface oscillated between 2.92·10-8 and 5.42·10-2 ng m-2day-1 for PFOS and 

between 3.24·10-8 and 9.11·10-4 ng m-2day-1 for PFOA (SI, Table S4.7 and Figure S4.5). 

FEddy at DCM depth ranged between 1.53·10-5 and 1.96·10-2 for PFOS and between 

1.28·10-3 and 1.08·10-6 ng m-2day-1 for PFOA (Figure 4.4 and SI, Table S4.7). The 

turbulent fluxes calculated by Lohmann et al. for PFOA are in the same order of 

magnitude and exhibit as well those broad ranges depending on the location 21. FEddy 

calculated for other PFAS are displayed in Table S4.7 at the SI, and were logically lower 

for the less abundant PFASs (e.g. PFHpS and PFNA). The PFOS eddy diffusion flux was 

one order of magnitude superior to PFOA due to the higher concentrations of PFOS. 

Even at the maximal measured Kρ for PFOS, eddy diffusion will disperse 7 ng m-2y-1 of 

PFOS from the oceanic surface, being thus a flux of small magnitude. 

The PFOS and PFOA annual removal fluxes for the global tropical and subtropical 

surface oceans are of 2.3 and 0.2 tons per year, respectively. Yamasita et al. reported a 

rate of 620 Kg year-1 for PFOS and 1460 Kg year-1 for PFOA due to deep water 

formation globally, which is of comparable magnitude taking into account the few 

areas where deep water subduction occurs. Likewise, Lohmann and coauthors 

estimated a total amount of PFOA removed from the top 100 m of the global ocean by 

turbulence as 664 tons from 1970 to 2009, which attends for a mean of 17 tons per 

year, 85 times our calculated values for this compound. Nevertheless, they assume an 

error of their estimations of eddy diffusivity of several orders of magnitude, as they 
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were not field derived. Therefore, they provide a range of the estimated PFOA export 

from 1.5 tons to 4818 tons since 1970, being then our values within their estimations. 

Moreover, they also estimated the mean deep water formation flux for PFOA as 220 

tons (80-360 tons). The mean annual sinking according to these calculations would be 

5.6 tons, being our calculations of FEddy in the range of the minimum fluxes due to 

subduction according to Lohmann 21. 

Eddy diffusion is not constant over the open ocean at a fixed depth. For instance, at 

the DCM depth very high FEddy was recorded for PFOS at the east South Atlantic, 

probably due to elevated concentrations of the pollutant coupled with an intense 

internal turbulence caused by upwelling waters. Besides, high FEddy peaks for PFOA in 

selected points of West African coasts in the North Atlantic Ocean were found, 

probably associated with a significant occurrence of PFOA (Figure 4.4). Shallower areas 

(like Tasmanian straight), upwelling water (near South African west coast) and natural 

stratification of the mixed layer (for instance due to riverine discharge or cold water 

intrusions) among other processes, affect the intensity of the turbulence 32 as reflected 

in our measurements. 

At surface, turbulence is even more variable (SI, Figure S4.4) depending mostly on 

meteorological events (rain, wind, etc.) that may be episodic and thus difficult to 

generalize. Indeed, the extremely high variability of instantaneous turbulent fluxes at 

the surface ocean have already been reported 21. Therefore, the turbulent fluxes 

obtained correspond to a snapshot of the diffusion occurred during the Malaspina 

2010 circumnavigation. Moreover, the influence of turbulence alone does not fully 

explain the concentrations found at depth, being other sinking processes able to have 

an important influence on PFASs behavior. 
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Figure 4.4. Fluxes assessed for PFOS and PFOA; turbulent fluxes (FEddy) on the top and biological pump 

fluxes on the bottom (FPhyto and FFecal). Bars with ≈ symbol have been manually diminished by a factor of 

10 in order to ease the global comparison of all the measurements. 
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Settling Fluxes due to the Biological Pump 

Settling fluxes due to the biological pump were calculated for the 5 ionic PFASs (C8-10 

PFCAs and C6,8 PFSAs) for which their BCF data in the marine phytoplankton were 

available 30. Bioconcentration onto organic matter will deplete PFASs from the 

dissolved water phase and export them out from the surface mixed layer. The 

magnitude of these fluxes is related to the chemical BCF, the concentration at the 

DCM, and the magnitude of FOC. The BCF is positively correlated with the FSettling 

(Equation 4.3, Figure S4.6); consequently, PFASs with high BCF, such as PFNA and 

PFDA, will be more affected by the removal through the biological pump. The global 

organic carbon sinking fluxes have been poorly described due to a high variability on a 

temporal and regional scale, coupled to a not clear definition of what kind of organic 

matter should be taken into account to quantify the sinking processes and the 

difficulties to empirically measure it 44-46. Traditionally, the biological pump effect on 

POPs has been calculated based on estimation of FOC from chlorophyll a concentrations 

39, however it is now possible to quantify organic carbon fluxes associated to plankton 

through different methods and parametrizations 46,47. Siegel et al. 40 modeled global 

oceanic carbon export from the euphotic layer individually for algae (FOC Phyto) and 

zooplankton fecal matter (FOC Fecal) on a monthly basis in a one by one degree global 

grid. Based on these estimations, we used the corresponding monthly average export 

for the sampled positions to obtain the FOC to calculate the sinking fluxes (SI, Table 

S4.8). 

The global export of organic carbon is correlated with the concentrations of PFASs at 

the surface, at DCM depth and with the ratio between them in a complex manner. For 

instance, the surface PFOA concentration is significantly reduced with increased FOC by 

phytoplankton (p<0.05), by fecal matter (p<0.05) and as a total OC flux (p<0.05). Also 

PFOS concentrations at surface and DCM were negatively correlated with 

phytoplankton FOC (p<0.01). Moreover, the phytoplanktonic fraction of export of 

organic carbon was negatively correlated with the ratio of surface/DCM concentrations 

for PFOS and for 3 PFCAs (p<0.05), including PFOA, meaning that for those compounds 

the concentration decrease with depth was correlated with the biological pump 

strength. 
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Algal sinking fluxes ranged from 10-8 ng m-2 day-1 for PFHxS, with a low KOW, up to 10-2 

ng m-2 day-1 for PFNA and PFDA, long chain PFCAs that have much higher KOW 
48. 

Sinking fluxes attributed to zooplankton fecal pellets ranged between 10-6 ng m-2 day-1 

for PFHxS and 10-1 ng m-2 day-1 for PFOS, PFNA and PFDA. Even if hydrophobicity is 

positively correlated with the perfluoroalkyl chain length, PFSAs exhibit a higher 

partition to organic matter than PFCAs, showing PFOS a similar KOW than larger 

carboxylate chains 4,49 and therefore comparable sinking fluxes by the biological pump 

(SI, Table S4.9). 

Fluxes associated with the zooplankton fecal matter were found to be higher than 

those associated only with phytoplankton for the measured concentrations of PFASs at 

DCM depth (Figure 4.4 and SI, Table S4.9). The settling fluxes of fecal pellets are thus 

relevant for PFASs, as previously described for other POPs. Conversely, the 

zooplankton eggs production, included in some studies as a contribution to total 

planktonic export of POPs 43,50, may enhance the FSettling particularly due to the 

tendency of PFASs to bind to albumin 51. Moreover, as zooplankton undergoes a 

vertical daily migration, it could be playing an additional role as well. For other 

hydrophobic POPs, such as polychlorinated biphenyls, their bioconcentration in 

zooplankton is driven by water-lipid partitioning, whereas for PFASs, it is possible that 

water-protein partitioning gets more influence 51. During its vertical migration, PFASs 

will partition at surface and at depth, and since the concentrations are lower at deeper 

waters, this could induce an additional flux as suggested for other organic pollutants 

43,52,53 which cannot be estimated here as we have no information on the kinetics of 

these partitioning processes for PFASs in the open deep ocean. 

PFOS adsorption to organic carbon is higher than PFOA’s, Log KOW 5.3 and 4.6, 

respectively 54 and thus its sinking fluxes due to the biological pump were found to be 

at least one order of magnitude greater, even if a higher concentration of PFOS is 

affecting as well. Total median FSettling (algal and zooplankton) at the DCM depth for 

PFOS was 4.54·10-3 and for PFOA 8.25·10-4 ng m-2 day-1. They differed not only on their 

rates of export from the surface, but on the global patterns (Figure 4.4). PFOS’ higher 

FSettling was recorded in the South Atlantic Ocean basin, principally near the Brazilian 

coast, where the concentration of this compound has been reported to be extremely 
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high 1,20. PFOA’s FSettling was also intense in the Atlantic Ocean, even if the maximum 

level of export was found near Central America West coast. Indeed in that area, high 

concentrations of PFOA coincide with significant phytoplankton abundances 55 which 

made the biological pump to be especially relevant. Moreover, the relative importance 

of the algal sinking fluxes is remarkable at that zone. 

Hence, in general zooplankton contribution to the biological pump is highly significant, 

but the particular case of each PFASs and well as the algal abundance should be taken 

into account when calculating the export of PFASs from the mixed layer associated 

with biomass sinking. 

 

Global sinking and PFASs fate 

Vertical turbulent diffusion fluxes are generally low, being the maximum values 

generally associated to extraordinary events of mixing. Sinking fluxes due to the 

biological pump, several orders of magnitude higher than the turbulent fluxes, seem to 

dominate the removal processes in the water column according to our estimations 

(Figure 4.4 and SI, Tables S4.7 and S4.9). Nevertheless, both removal processes are 

slow, in spite of the considerable uncertainty in their estimation, resulting in long 

residence times of PFASs in the surface ocean. A mean PFASs concentration in the 

mixed layer (between surface and DCM) can be calculated to obtain an averaged 

inventory of PFASs in the global marine euphotic zone of the water column. With the 

calculated turbulent and sinking fluxes and the averaged inventory, we can estimate a 

mean residence time for the analyzed compounds; PFOS mean residence time in the 

mixed layer would be of 27000 years, more than the 17000 years calculated for PFOA, 

before they are removed from the surface by eddy diffusion and the biological pump. 

The estimated mean FEddy plus FSettling for the individual compounds would range from 

0.1 ng m-2 per year for PFHxS to 4 ng m-2 of annual export for PFDA (Table 4.1). 

The more complete assessment on production rates of PFASs is the OECED survey from 

2005, reporting almost 100 tons of PFOS and related substances produced in Japan in 

2003, followed by China and Brazil with 50 and 30 tons respectively during the same 
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year 56. More recent studies endorse China a total production of more than 200 tons of 

PFASs in 2006 57. Hence, the production seems to be growing on a much higher rate 

than rate at which the environment is able to receive and transfer PFASs to the inner 

areas of the deep ocean. Therefore, unless there are other still unidentified relevant 

removal processes, the surface ocean will remain as a key reservoir of PFASs for 

millenniums. 

Table 4.1. Annual mean export of PFASs due to turbulent fluxes (FEddy) and biological pump fluxes (FSettling). 

 

PFHxS PFOS PFOA PFNA PFDA 

 (ng m-2 year-1) 

Mean FEddy  0.07 0.36 0.05 0.07 0.22 

Mean FSettling  0.06 1.66 0.30 2.32 3.82 

Total 0.13 2.02 0.35 2.39 4.04 

 

Assuming both processes accounted here, the turbulent fluxes and the biological 

pump, the decay of PFASs from ocean’s surface is still not fully described. Firstly, the 

regions where a higher biological pump export occurs, like Northern Atlantic and 

Pacific Oceans, Southern Ocean and upwelling areas, like near the western coast of 

South America 58, have not been assessed. Therefore, the global means of FSettling could 

be much higher than those here reported. 

Conversely, export of organic matter and particles from the continental shelfs towards 

the Open Ocean, through dense shelf water cascading, has been recently reported to 

transfer PFASs to deep-sea ecosystems 59. Therefore, the fluxes of organic and 

inorganic material in the inner parts of the water column should be assessed further to 

obtain a total budget of PFASs entrances to the marine environment. Eventually, the 

formation of deep oceanic water will also deplete PFASs from the global ocean surface. 

The latter is only relevant at certain regions of the North Atlantic and Southern oceans 

not sampled during the Malaspina cruise, where the thermohaline circulation provokes 

the sinking of cooled and less saline water masses.
60. Other plausible process affecting 

environmental removal of PFASs from the marine surface is photodegradation, 

recently reported for a few compounds, but only under precise conditions difficult to 

reach in the oceanic environment 61 and called into question by Wang and 
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collaborators 62. Likewise, biodegradation has not been reported yet for these 

chemicals 63-66. Nevertheless, surface/DCM concentrations ratio for PFOA, for PFCAs, 

(p<0.01) and for the total PFASs (p<0.05) correlated with some bacterial activity 

concurrently measured during the sampling (Pep Gasol, direct communication). Also 

some correlations were found with other microbiological parameters, like bacterial 

size or total bacteria carbon content (p<0.05), which supports the idea that the 

biological activity of the mixed layer of the global ocean could be playing a still 

unknown but maybe important role in PFASs fate, which needs further research. 

More extensive field data of marine turbulence would be needed to confirm FEddy of 

PFASs in yet unexplored parts of the ocean. Conversely, even if this study provides the 

first synoptic approach to the topic at a global scale and with a strong empirical base, 

more development of the biological pump effects studies is also required. Moreover, 

the role of marine biota in the biological pump and other processes should be 

characterized further. Considering the new fluorinated compounds being created as 

substitutes 2, the full understanding of PFASs fate in the open Global Ocean, is a 

complex issue that needs further research. 
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ABSTRACT 

Polycyclic Aromatic Hydrocarbons (PAHs) are organic pollutants coming from 

anthropogenic origins (incomplete combustion and fossil fuels) but also from natural 

sources. Their occurrence in marine environments has been widely reported but most 

studies focused to the effects that such substances may have in wildlife or ecosystems 

health. Conversely, some reports have been conducted about their dynamics, mainly 

originated in continental areas and reaching remote areas due to their long range 

transport potential, being the Open Ocean a relevant sink at a global scale. Moreover, 

PAHs degradation in the water column and the oceanic sink through the sequestration 

of pollutants by biomass and particles, and subsequent settling (biological pump), have 

been pointed to strongly affect PAHs occurrence in some marine environments. The 

assessment of these processes and the identification of the key parameters affecting 

them at a global scale is the purpose of this work. During the Malaspina 2010 

circumnavigation cruise, which sailed the Atlantic, Pacific and Indian oceans between 

35°N and 40°S simultaneous water and plankton samples were taken. PAHs occurrence 

was analyzed for 64 individual congeners; in surface dissolved water phase 

concentration ranged from 0.2 to 11.0 ng L-1, in particulate surface phase from 8.0 to 

4700 ng gdw
-1 and in plankton phase from 11.0 to 7700 ng gdw

-1. Correlations versus 

total suspended particles and biomass showed a relevant influence of the air-water-

particles equilibria for surface samples, and an effective removal by degradation and 

the biological pump in the mixed layer. Biological pump fluxes were estimated 

separately for the phytoplankton and zooplanktonic fecal sinking matter, being the last 

1 order of magnitude higher. Total biological pump fluxes showed to remove an annual 

amount of 0.008 Tg of PAHs at a planetary scale. Therefore, it is a very relevant process 

in the global budget of these pollutants even if the complexity of their governing 

mechanisms needs still to be fully understood. 
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INTRODUCTION 

Polycyclic Aromatic Hydrocarbons (PAHs) are generated during incomplete combustion 

of fossil fuels and organic matter, in addition to accidental oil spills and biogenic 

sources 1-3. They cause carcinogenic and toxic effects in biota, and have been proved to 

be harmful for ecosystems 4. Moreover, PAHs are ubiquitous in the environment. Due 

to their physicochemical properties, PAHs partition to all environmental matrixes and 

are found at proximate and remote sites from primary anthropogenic sources 3,5,6. 

Earlier assessments of PAHs in the marine environment have focused on their 

occurrence in sediments 7-10 and in surface waters 11-14, with few reports of the PAH 

occurrence and cycling in different matrixes in the surface (top 200 m) of the marine 

environment 13,15,16. PAHs reach the Open Ocean by atmospheric deposition 

5,17(Chapter 2). Once PAHs enter the water column by diffusive air-water exchange and 

dry/wet deposition, they move into the organic matter cycle by partitioning to 

particulate organic carbon (POC), accounting bacteria, phytoplankton and zooplankton 

as important pools. In addition, part of this particulate matter, mainly aggregates of 

organic matter, fecal pellets, and dead cells, will settle to the deep ocean (biological 

pump), favoring an oceanic sink of PAHs 7,8,10,17-19. However, it has been observed that 

atmospheric inputs of PAHs are two orders of magnitude higher than their sinking 

fluxes 17,20, thus pointing out to important degradation processes in the water column. 

This degradation is mostly due to bacteria and zooplankton 16,21. Even though these 

earlier works were performed at the Mediterranean and Black Sea, it is possible that a 

similar scenario occurs for the global ocean. As the atmosphere-ocean exchange of 

PAHs is remarkable, the cycling/degradation in the water column and how they 

partition to particles and plankton are important processes for understanding the 

regional and global environmental fate and sinks of this family of organic pollutants. 

These degradative processes, together with the biological pump will be responsible for 

the oceanic sink of PAHs. 

Previously, the degradative potential in surface waters has been determined by 

comparison of settling fluxes and atmospheric inputs of PAHs 17,20, and by the patterns 

of PAHs in plankton samples. Accumulation of PAHs and other organic pollutants in 

phyto- and zooplankton is important as an introduction vector of pollution into oceanic  
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food webs, and also as supporting contaminants levels in sinking particles (Biological 

pump). Nevertheless, there is a dearth of measurements of PAHs in oceanic plankton 

and particulate matter, and of the assessment of their role in the oceanic cycling of 

these pollutants. In general, previous studies have been undertaken from an 

ecotoxicological point of view and report effects of PAHs in marine wildlife 22-24 and 

plankton 25-27. Earlier works on PAHs and other persistent organic pollutants (POPs) 

have described a complex interaction between plankton and contaminants which 

includes the influence of biomass dilution, air-water-biomass exchange and the 

biological pump 16,28-31.  All these processes drive the occurrence of organic pollutants 

in water and biota from proximate and remote marine regions 31-35 (Chapter 4). 

Biomass dilution is explained by the lower concentrations in plankton depleted into 

large amounts of plankton biomass, largely in very productive areas 36-38. Also trophic 

dilution through marine food webs has been described 39. Air-water exchange can 

counteract this biomass dilution by supplying POPs to surface waters, when they are 

depleted of pollutants. Nevertheless, this exchange plays a relevant role at a global 

scale mostly in the ocean surface, being not that significant along the whole water 

column 16. The biological pump fluxes are significant modifying plankton phase 

concentrations when the sinking fluxes due to organic matter settling are higher than 

the air-water-plankton exchange, mainly for highly hydrophobic POPs that strongly 

attach to organic matter and at deeper depths than surface 16. 

The objectives of this work are therefore, i) to report the largest dataset available for 

PAHs in the dissolved phase, particulate phase and plankton from the Atlantic, Pacific 

and Indian oceans, and ii) to elucidate the biogeochemical and physical controls that 

drive their occurrence in the water column, as well their accumulation in surface 

particles and photic zone plankton in the Open Ocean. 
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MATERIALS AND METHODS 

 

Sampling strategy 

All samples were gathered during the Malaspina 2010 circumnavigation cruise 

between December 2010 and July 2011 on board of the Hesperides research vessel. 

The sampling campaign crossed the north and south basins of the Atlantic and Pacific 

oceans as well as the Indian Ocean, between 35°N and 40°S, covering all the tropical 

and subtropical oceanic gyres (Figure 5.1). Water samples (n = 69) were taken from the 

subsurface (4 m) using the continuous water sampling systems of the boat, during one-

day transects in alternate days. Particles were retained over precombusted GF/F filters 

(0.7 µm pore size, Whatman) and the dissolved pollutants were concentrated in XAD-2 

resin placed on stainless columns after the filtration. Mean filtration volume was 239 L 

(ranging from 69 to 391 L). Columns and filters were kept at 4°C and -20°C respectively 

until their further treatment in the laboratory after the cruise. Concurrently, plankton 

samples (n = 71) were gathered in 50 um mesh size vertical trawl, from 20 m deeper 

than the deep chlorophyll maximum depth (DCM; see Chapter 4 SI for a detailed list of 

the DCM depths), and were immediately filtered (GF/D, 1.7 µm pore size, Whatman) 

and kept at -20°C, as done in other studies 16, until their analysis in the laboratory after 

the circumnavigation. Emplacement and time of sampling for water sampling transects 

and for plankton trawls are noted in Table S5.1, and in Table S5.2, respectively in the 

supplementary information (SI). 

 

PAH analysis and quantification 

Dissolved phase, particulate phase, and plankton samples were analyzed following a 

slightly modified protocol previously reported 16,17 (Chapter 2). Prior to the extraction, 

a mix of deuterated PAHs (Acenaphtene D10, Phenanthrene D10, Chrysene D12, and 

Perylene D12) was added as a recovery standard. Briefly, the XAD-2 resin was washed 

sequentially with methanol (MeOH) and dichloromethane (DClM), which were liquid-
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liquid extracted with hexane (Hx) and further purified on a sulfate column and 

fractionated on an alumina column. 

Filters containing the particulate and plankton samples were freeze dried and soxhlet 

extracted overnight with DClM/MeOH (2:1) and DCl/Hx (1:1), respectively. Particulate 

phase samples were further purified and fractioned over an alumina column. Plankton 

samples were purified and fractioned over a combined silica and alumina column. 

Further details are provided in the SI (Text S5.1). 

The aromatic fractions underwent the instrumental analysis for 64 individual PAHs, 

that was carried out on an Agilent 6890 Series gas chromatograph coupled with a mass 

spectrometer Agilent 5973 (GS-MS) operating in selected ion monitoring (SIM) and 

electron impact mode (EI) as described elsewhere 5 (Chapter 2). The quantification 

followed the internal standard procedure, using a mix of Anthracene-d10, Pyrene-d10, 

P-therpenyl-d14 and Benzo[b]fluoranthene-d12 added to the samples prior to injection. 

The 64 PAHs identified and quantified were grouped in 28 parent and isomer clusters. 

 

Quality Assurance and Quality Control 

Laboratory and field blanks, recoveries and analytical limits were controlled and 

fulfilled standard QA/QC constraints. The detection limit (DL) was set as the inferior 

limit of the calibration curve (0.02 ng for all compounds). The quantification limit (QL) 

corresponds to the mean blank level of each sample phase. 

Dissolved phase blanks and recoveries are reported elsewhere (Chapter 2). Particulate 

phase blanks (4 field blanks and 7 laboratory blanks) were concurrently extracted and 

analyzed with the field samples. The average total pg found per blank was one order of 

magnitude lower than the PAHs measured at the samples. Average recoveries were 

76% for Perylene D12, for which all given concentrations have been surrogate recovery 

corrected. See Table S5.3 in the SI for complete QA/QC information. 4 field blanks and 

7 laboratory blanks were concurrently extracted and analyzed with plankton samples. 

The average total pg found per blank was as well one order of magnitude lower than 

the measured samples. Moreover, plankton samples breakthrough was evaluated by 
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doing a second extraction of five random samples and between 81% and 100% of each 

single PAHs was extracted in the first batch. Recoveries of the deuterated PAHs ranged 

between 25% for Acenaphthene D10 and 102% for Perylene D12. All concentrations 

have been surrogate recovery corrected with the proper standard (Table S5.4 in the 

SI). 

 

Organic Carbon in particles and plankton 

POC has been reported to affect binding and therefore occurrence and bioavailability 

of PAHs in marine environments 35. POC was measured during Malaspina 2010 

circumnavigation concurrently with the water phase sampling. Total suspended matter 

was trapped onto GF/F filters (0.7 µm pore size, Whatman), dried overnight (60°C) and 

exposed to HCl (35%) vapors to remove carbonates. Combustion catalyzed with V2O5 

was performed with an elemental analyzer (Carlo Erba 1108) and quantification of OC 

was done through gas chromatography coupled with a thermic conductivity detector 40 

(complete data set in Table S5.5). 

The spatial variability of biomass and stable isotopes in plankton size fractions was 

studied in concurrent samples to the plankton phase to determine nitrogen and 

carbon sources. Samples for isotopes analysis were collected by 40 mm mesh size 

vertical tows along the upper 200 m of the water column. Sampling was always 

performed right after the plankton phase collection, during the local early morning 

time. Filtrate was separated into five size fractions (40 - 200, 200 - 500, 500 - 1000, 

1000 - 2000 and over 2000 mm mesh size) by filtration over nylon sieves and removing 

the large gelatinous organisms found. Aliquots for each size fraction were collected on 

glass-fiber filters, dried (60°C, 48 h) and stored in a desiccator. The determination of 

biomass (dry weight), carbon and nitrogen content and natural abundance of stable 

carbon and nitrogen isotopes was performed after the circumnavigation. Isotope 

analysis was accomplished with an elemental analyzer (Carlo Erba CHNSO 1108) 

coupled to an isotope-ratio mass spectrometer (Finnigan Mat Delta Plus). Further 

analytical details can be consulted elsewhere 41. Total carbon and nitrogen data is 

included in Table S5.6. 
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The biological pump 

The contribution of the export of PAHs from the ocean surface due to sorption to 

organic matter and subsequent sinking (biological pump) was evaluated from the 

plankton phase samples taken during the Malaspina 2010 circumnavigation. Biological 

pump calculations follow the same procedure than those in Chapter 4, by using Siegel 

and coworker’s global climatology of organic carbon export from the surface mixed 

layer (FOC) 42. The reported monthly averaged FOC during the sampling was used to 

estimate the organic matter flux (FOM, assuming that it is 1.8 times FOC 
32) due to 

phytoplankton (FPhyto, gC m-2day-1) and to zooplankton associated pellets (FFecal, gC m-

2day-1) separately (Table S5.7, SI). Therefore, the biological pump fluxes (FSettling, ng m-

2day-1) is given by, 

𝐹𝑆𝑒𝑡𝑡𝑙𝑖𝑛𝑔  =   − 𝐹𝑂𝑀 𝐶𝑃𝑙𝑎𝑛𝑘𝑡𝑜𝑛 = −(𝐹𝑃ℎ𝑦𝑡𝑜 + 𝐹𝐹𝑒𝑐𝑎𝑙)𝐶𝑃𝑙𝑎𝑛𝑘  [5.1] 

where CPlankton (ng gC-1) is the concentration of PAHs measured in plankton normalized 

by organic carbon content. We assume that the concentrations in plankton are 

representative of the concentrations in phytoplankton and fecal pellets. The calculated 

biological pump fluxes shape the biggest database reported for PAHs at a global scale 

and moreover, this is the first time that phytoplankton and fecal contribution are 

estimated individually at such spatial resolution. 

 

Statistical analysis 

Statistical analysis was performed using SPSS Statistics (21.0 IBM Corp.). Kolmogorov-

Smirnov test were run to assure normality of the data, which was found for most 

compounds (24 and 20 out of 28 in dissolved and particulate phases, respectively) 

(p>0.05). PAH concentrations in plankton were not normally distributed though. 

Nevertheless, logarithmic transformation of the data gave a statistically normalized 

distribution (p>0.05). Parametric statistics were thus applied for the comparisons and 

correlations within the data.  
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RESULTS AND DISCUSSION 

 

PAH concentrations in oceanic water 

Dissolved phase concentrations (CW) for all measured PAHs have been briefly reported 

in Chapter 2 (concentrations can be found in Table S5.8 in the SI). Total Σ64PAHs 

concentration ranged between 0.2 and 10.6 ng L-1, with an average value of 2.7 ng L-1 

in the open ocean. The more abundant individual PAHs were fluoranthene and pyrene 

(average 0.3 and 0.4 ng L-1 respectively) (Figure 5.2). CW is relatively homogeneous 

globally when compared to atmospheric concentrations (Chapter 2), with no significant 

differences of Σ64PAHs concentrations for the sampled oceanic subbasins. 

Nevertheless, decreasing concentration gradients were found from continents towards 

central tropical gyres, especially in the South Atlantic and Indian Oceans (Figure 5.1). 

Concentrations of PAHs in remote oceanic areas have been rarely described. In the 

North Atlantic and Arctic oceans, Lohmann and collaborators 12 showed values ranging 

from tens to hundreds pg L-1 for individual measured PAHs, which are in the lowest 

values of our concentrations, corresponding with the decreasing latitudinal gradient 

that they report. Similar low values are reported in the same area by Schulz-Bull 43. 

Another study by Lohmann 13 in the tropical western area of Atlantic Ocean provided 

values for phenanthrene (Phe), fluoranthene and pyrene between 32 to 1400 pg L-1, 13 

to 190 pg L-1 and 25 to 240 pg L-1, respectively, which are in the range of our 

measurements for the same oceanic basin. Besides, the western Atlantic covered by 

Nizzetto 11, reported also values in the same order of magnitude for individual PAHs, 

even if they provide lower total concentrations as they considered only 10 individual 

PAHs. Conversely, given upper ranges of this work coincide with those reported in the 

Mediterranean by Berrojalbiz et al 16. 
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Figure 5.1. PAHs global concentration in the dissolved phase (pg L
-1

) (upper panel), particulate phase (ng 

gC
-1

) (middle panel) and plankton (ng gdw
-1

) (bottom panel). Marked sample (≈) has been reduced by 10 

fold to adjust the bars size. 
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Particulate phase total concentrations (CP) ranged between 7.7 and 4700 ng gdw
-1 

(global mean 270 ng gdw
-1). The more abundant compounds were found to be 

dibenzothiophene (DBT, 14 ng gdw
-1) ant its methylated forms (dimethyl-DBT and 

methyl-DBT at 42 and 31 mean ng gdw
-1 respectively), naphthalenes (Naph) (25 and 15 

ng gdw
-1 for methyl-Naph and Naph) and phenanthrenes (22 and 19 ng gdw

-1 methyl-Phe 

and Phe), being always the methylated forms more abundant (Figure 5.2, Table S5.9, 

SI). The relative abundance of individual congeners in the subbasins sampled was 

comparable (Figure S5.1, SI). However, total concentrations were significantly higher 

(p<0.05) in the Indian Ocean than in the rest of the subbasins. This is even more patent 

when the obtained concentrations are corrected by measured POC in the water 

column, as this correction modulates the higher presence of PAHs for sampling periods 

with higher particulate organic matter concentrations (Figure 5.1). Highest POC was 

recorded near continental areas, reaching maximal concentrations near Central 

America’s west coast and near South Africa, contrasting with the particularly 

oligotrophic center of the oceanic subtropical gyres, with low POC concentrations. 

Therefore, after normalizing CP by POC, a high PAHs contamination arises, for instance, 

in the central Indian Ocean (Figure 5.1). High concentrations of PAHs have been 

reported in the Indian Ocean in the marine aerosol 5, which may act as the main entry 

vector to the open ocean for some PAHs as suggested in previous works 44. Similar 

concentrations in particulate phase in the Atlantic Ocean (particularly those of high 

MW PAHs) were reported as well by Nizzetto et al 11, even if slightly lower volumetric 

concentrations are given by Lohmann in the western part of the North and South 

Atlantic Ocean 13, in the range of few pg L-1, when the mean values for individual 

compounds reported in this work are from few to tens pg L-1. On the other hand, the 

concentrations reported in the Mediterranean Sea 16 are between the same range and 

one order of magnitude higher than the concentrations found in the open ocean for 

individual PAHs. 
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Figure 5.2. Average concentrations and standard deviation of PAHs in the aerosol, gas, dissolved, 

particulate and plankton phase for the different oceanic basins.  
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PAHs occurrence in oceanic plankton 

All 64 selected PAHs were found ubiquitously in plankton (Table S5.10, SI), being the 

Phe and its methylated forms (methyl-Phe, dimethyl-Phe) the most abundant 

congeners (1000 ng gdw
-1, 260 ng gdw

-1 and 280 ng gdw
-1 respective medians) (Figure 

5.2). Relevant concentrations of lighter PAHs were also found, being the profiles 

similar to the dissolved phase profile (Figure 5.2). The relative abundance of the 

individual PAHs was not significantly different among the oceanic sub basins (Figure 

S5.2, SI). Only in South Atlantic Ocean, a lower percentage of Phe and methyl-Phe and 

higher occurrence of 2-ring and volatile PAHs was observed. Concurrently, the PAHs 

plankton phase concentrations (CPlankton) was higher in the South Atlantic Ocean 

(median ∑64PAHs 140 ng gdw
-1) followed by North Atlantic Ocean (median ∑64PAHs 130 

ng gdw
-1), with particularly high Cplankton in the Brazilian and West African coasts 

proximities (Figure 5.1). Lowest concentrations were found in the Indian Ocean 

(median ∑64PAHs 100 ng gdw
-1) and large regions of the Pacific Ocean. The CPlankton 

found are between one and two orders of magnitude lower than the average values in 

the Mediterranean Sea for individual compounds, even if the maximum records 

reported here, in coastal Atlantic areas, are of the same order of magnitude 16. 

 

Particle-water partition of PAHs and controls on surface particle phase concentrations 

The coefficient of partition (KOC) between the dissolved and the particulate phases of 

the surface water was calculated by, 

𝐾𝑂𝐶 =  
𝐶𝑃

𝐶𝑊
  [5.2] 

where CP is the PAH concentration in the particulate phase corrected by POC (ng kgPOC
-

1) and CW is the concentration in the dissolved phase (ng L-1). KOC ranged from 104 to 

108 L Kg-1 and its values were larger for the higher MW PAHs (Figure S5.3, SI). The 

particular chemical properties of a PAH, namely hydrophobicity as measured by the 

octanol-water partition coefficient (KOW) and the environmental conditions (like 

temperature) influence the partition in the water phase 32,45. 
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KOC and CP are affected by the amount of present particles (total suspended particles, 

TSP, or organic matter as measured by the POC in the water column). The dependence 

between the obtained KOC values and POC during the Malaspina 2010 cruise exhibits a 

potential decreasing correlation (statistically significant for 17 out of 28 congeners, 

p<0.05) (Figure 5.3, left). In general, for the more hydrophobic compounds (higher 

KOW) Koc decreased faster with growing POC than for the lighter compounds, 

confirming a decrease of the CP/CW ratio if the particles are enriched in organic carbon. 

This trend follows the pattern described before for POPs in plankton, where higher 

concentrations are observed at sites with lower organic matter, and lower 

concentrations are observed at sites with higher POC. This is probably due to a 

biomass (or organic carbon) dilution, but since the more hydrophobic compounds 

show a stronger dependence, it may indicate that this biomass dilution is modulated 

by air-water exchange and settling flues of POC 16,31. Likewise, CP is also negatively 

correlated with POC (Figure 5.3, right) (statistically significant for 4 out of 28 

congeners, p<0.05). 

Both the dissolved and particulate samples were taken close to the surface, and thus it 

is reasonable to consider that the PAH concentrations in the particulate phase are 

influenced by the levels of PAHs in the gas phase (CG). By assuming air-water-particle 

equilibria, it is possible to predict a CP* value (concentrations in particles equilibrated 

with the gas phase) from the measured CG (Chapter 2) by, 

𝐶𝑃
∗  =  

𝐶𝐺 𝐾𝑂𝐶

𝐻′
  [5.3] 

where KOC values were estimated as described above, and H’ is Henry’s Law constant 

temperature and salinity corrected as explained elsewhere (Chapter 2). Figure 5.4 

shows the predicted CP* versus the measured CP where it can be observed that there is 

a significant positive correlation (p<0.01) for 25 out 28 compounds. It is not significant 

for the heavy PAHs Dibenzo[a,h]anthracene and Benzo[ghi]perylene, which enter the 

ocean mainly by dry deposition and not by diffusive exchange 5. Even though there are 

correlations between predicted and measured CP, the predicted values are a factor 

between 2 and 10 higher than the measured CP. This indicated that generally, the 

surface water was undersaturated respect to atmospheric PAHs, which is consistent 
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with the net air to water diffusive flux measured for most sampling periods and 

individual compounds during the Malaspina 2010 circumnavigation (Chapter 2). Thus, 

the accumulation of PAHs in surface particulates reflects the levels found in the 

atmosphere, even if they are not equilibrated, but other processes may modulate their 

concentrations, such as dilution with POC. Overall, it is remarkable that even though 

CW and CP were measured close to the surface, these are not equilibrated with the 

atmosphere, which suggests a fast kinetics of the partitioning, maybe degradation and 

other controls of water column concentrations. 

 

Figure 5.3. Correlation between LogKOC (left) and LogCP (right) versus LogPOC. Statistical significance is 

noted per each PAH by * (p<0.05) and ** (p<0.01). 

 

Figure 5.4. Correlation between the theoretical CP* calculated from the reported CG and real CP 

measured. Statistical significance is noted per each PAH ** (p<0.01). 
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Biomass as a descriptor of plankton phase concentrations of PAHs 

The spatial distribution of PAHs in plankton shows a large variability, and even though 

high levels are sometimes found close to the continents (such as off-shore Brazil), high 

concentrations are also found in the middle of the Pacific, Atlantic and Indian oceans 

(Figure 5.1). Therefore, there is not a significant correlation between PAH 

concentrations and distance to continents, as previously reported for other POPs 

16{Morales, 2015 #586. 

 

Figure 5.5. PAH concentrations in plankton (CPlankton) versus plankton biomass (top panel). Slopes from 

the relationship between concentrations in plankton and biomass (m) versus the hydrophobicity of the 

compound (KOW) (bottom panel). 
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Similarly to the influence of POC on surface particle phase PAH concentrations (see 

above), previous works have identified that biomass is a key descriptor of the spatial 

and temporal variability of organic pollutants in the marine environment 

16,28,29{Morales, 2015 #586}. For the photic zone, which comprises waters directly 

influenced by atmospheric inputs, and deeper ones, which are isolated from 

atmospheric inputs by the thermocline, the concentration dilution at high biomass 

abundance is an important process driving the occurrence of PAHs 16. There is a 

decrease of the concentrations at higher biomass, especially for the more hydrophobic 

compounds as they partition to the organic matter and are faster removed from the 

water column by settling particles. This trend is also observed for PAHs from the global 

oceans (Figure 5.5, top panel). Berrojalbiz and coworkers 16 described the effects that 

plankton abundance may have on pollutants concentration by 

C Plankton = a B –m  [5.4] 

where CPlankton (ng gdw
-1) is the concentration of the pollutant in the planktonic phase 

and B is the plankton biomass (mg m-3). The negative correlations between CPlankton and 

B were significant for all PAHs (p<0.05, see Figure 5.5, top panel, for 5 examples). 

However, the slope (m) of this relationship is different for each individual compound 

(Table S5.11, SI). Figure 5.5 (bottom panel) shows that m values are lowest for PAHs 

with middle hydrophobicities (log KOW around 5-6). Conversely, m values are larger for 

the least and most hydrophobic PAHs. Indeed, m values are significantly correlated 

with KOW (p<0.05). 

The dependence of CPlankton on biomass reflects the different processes driving PAH 

concentrations in the water column, and the conceptual framework for the 

interpretations of these complex trends has been introduced elsewhere 16. One key 

process is biomass dilution. This is especially important below the thermocline since it 

is isolated from the atmosphere. Biomass dilution results in lower concentrations at 

high biomass, but this effect is independent of the chemical hydrophobicity 16. 

Therefore, even though biomass dilution may be affecting the concentrations of PAHs, 

there are other processes driving the trends depicted in Figure 5.5 as they appeared to 

be somehow related to KOW. The biological pump is the main process regulating the  
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PAH concentrations in the water column if the sinking fluxes of PAHs are higher than 

their air-water exchange. If PAHs are adsorbed to organic matter and those particles 

rapidly settle to the deep ocean, the surface ocean is depleted of PAHs. This process is 

responsible for the high m values of the more hydrophobic PAHs, but the less 

hydrophobic compounds are scarcer affected by this process. It can be said that the 

increasing tendency of the right part of the –m versus KOW plot, is therefore due to the 

biological pump effects (Figure 5.5, bottom). Conversely, air-water exchange tends to 

replenish the water column due to chemical equilibria, and this flux is faster for the 

lighter PAHs in the Open Ocean (Chapter 2). This would lead to lower values of m for 

the lower MW PAHs. However, PAHs with low MW show large m values (Figure 5.5). 

Probably, air-water exchange is not able to counterbalance PAH depletion in the entire 

photic zone, down to DCM. Degradation of PAHs is another plausible process affecting 

depletion in the water column, being a relevant process for low MW PAHs, which have 

been described to be metabolized by bacteria and plankton in the ocean 21. Therefore, 

the m values for the lowest MW PAHs are consistent with efficient degradation in the 

water column. Probably, large biomass indicates a large zooplankton community, and 

maybe also a larger bacterial population, which efficiently degrade some of the PAHs. 

A higher amount of biomass may induce biotransformation of the lower MW PAHs, but 

will not affect the intermediate and high MW compounds as they are not so 

susceptible to be degraded 21. Therefore, the decreasing tendency of –m for the low 

KOW PAHs (Figure 5.5, bottom) can be explained by degradative processes affecting the 

lower MW compounds. 

No statistical correlation was found between CPlankton and δN15, suggesting that the 

trophic level did not influence significantly the occurrence of PAHs. This is consistent 

with the narrow range of trophic positions for the plankton samples (from 1.2 to 1.9), 

and the equilibrium partitioning between the dissolved phase and both phytoplankton 

and zooplankton (concentrations are independent of the relative proportion of 

phytoplankton and zooplankton). 
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Oceanic sink of PAHs due to the biological pump 

As the biological pump appeared to be a relevant removal path of PAHs from the 

surface mixed layer, the biological pump settling fluxes were calculated for all the 

sampled areas and analyzed PAHs (Figure 5.6, Table S5.12, SI). 

 

Figure 5.6. Biological pump fluxes for the algal settling flux (FPhyto) (top panel), and the fecal settling flux 

(FFecal) (bottom panel). Marked bars (≈) have been reduced by a factor of 10 in order to ease the global 

comparison of all the measurements. 

Export of total measured PAHs due to the phytoplankton sinking fluxes are in the order 

of tens ng m-2day-1, and maximal fluxes are found in the eastern part of the North 

Atlantic basin and near South African coasts (Figure 5.6, top). Fecal sinking fluxes for 

total PAHs were in the order of magnitude of hundreds of ng m-2day-1, and the largest 

export rates were found as well in the Atlantic Ocean, but with higher fluxes in the 

southern basin (Figure 5.6, bottom). Therefore, the sinking fluxes due to fecal pellets 
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export are one order of magnitude higher than those due to algae communities, as 

reported elsewhere for other organic compounds in the Open Ocean (Chapter 4). 

Previous measurements and estimations of the sinking fluxes for PAHs in marine areas 

have been undertaken. In the Mediterranean Sea, reported as a highly polluted basin 

due to the surrounding developed countries, and to its semi-enclosed character, 

Lipiatou 7, Dachs 8, Raoux46, Tsapakis 20, Deyme 10 and Castro 17 described sinking fluxes 

in the range of the higher rates here obtained for the open ocean (hundreds of ng m-

2day-1), even if they generally considered less PAH congeners. Probably, in the 

Mediterranean Sea, the individual PAHs sinking rates are higher than in the open 

ocean due to the higher PAH concentrations reported in particles and plankton 16,17. 

Other studies near North American coasts (at heavily polluted areas) 47,48 reported 

sinking rates even in the order of μg m-2day-1, which were not found in this study as 

the remote open ocean does not hold such great concentrations. Moreover, the 

biological pump has been described as an effective removal process also for other 

POPs in remote areas; for instance in the Arctic, α and γ HCHs biological pump fluxes 

were between 10-1 and 10-2 ng m-2day-1 28, in the range of the fluxes detected for 

individual PAHs in the middle of the oligotrophic open ocean (Table S5.12, SI). 

Conversely, perfluoroalkylated substances sinking fluxes have been estimated to range 

between 10-8 and 10-1 ng m-2 day-1, due to the low hydrophobicity of these 

compounds, and thus their low tendency to partition to settling particles, and 

considerable lower environmental concentrations (Chapter 4). 

The average estimated flux for the Σ64PAHs was of 82.5 ng m-2day-1, standing for a total 

of 0.008 Tg of PAHs per year sinking out the tropical and subtropical surface oceans. 

Moreover, the more productive oceanic areas, like northern and southern oceans and 

upwelling zones near continental margins, have not been accounted in this work, and 

thus, total global means of the biological pump settling fluxes may be even higher than 

those reported here (Chapter 4). This sinking flux is of the same magnitude than the 

estimated global dry deposition flux of PAHs in the Open Ocean 5, but still, there are 2 

orders of magnitude higher entrance fluxes of PAHs through diffusive exchange 

(Chapter 2). Also previous reports in the Mediterranean Sea estimate that total 

atmospheric entrance of PAHs is far higher than what its accounted to sink due to the 
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Biological pump 17,20, pointing to unrevealed rates of degradation on the water column 

which need to be further assessed. 

There is strong evidence that the plankton does influence PAHs cycling at a global 

scale, and that the open ocean is an important sink for PAHs. Both, the biological pump 

and degradation are process affecting PAHs removal, availability and fate. The 

complexity of the results demonstrates that the characterization of the planktonic 

food webs, the organic matter and the parameters influencing the kinetics needs 

further research in order to fully understand the role of biomass in POPs global cycling. 
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Summary of Results 

Through chapters 1-5 presented in this Thesis, the fate and dynamics of two families of 

organic pollutants, polycyclic aromatic hydrocarbons (PAHs) and perfluoroalkylated 

substances (PFASs), have been studied in the global Open Ocean. The assessed 

processes include atmospheric deposition to the remote ocean, distribution along the 

water column horizontally and vertically, and interactions with the plankton as the first 

link to the oceanic food chain. The present research is circumscribed to the Malaspina 

2010 circumnavigation, and covers the tropical and subtropical regions (35°N - 40°S) of 

the Atlantic, Pacific and Indian Oceans. 

In Chapter 1 the direct input of PAHs to the Open Ocean via dry deposition is assessed. 

The study provides a collection of 12 direct measurements of dry deposition fluxes 

(FDD) in the Atlantic, Indian and Pacific oceans. The assortment of coarse (>2.7 μm) and 

fine (0.7 – 2.7 μm) deposited marine aerosol collected allowed to quantify the FDD to 

the Open Ocean surface for 16 individual PAHs. Average FDD for total (fine + coarse) 

16PAHs (sum of 16 individual PAHs) ranged from few ng m-2d-1 to around 50 ng m-2d-1. 

PAHs FDD bound to coarse aerosols were higher than those of fine aerosols for the 80% 

of the measurements and compounds. Coarse aerosol’s FDD for individual PAHs ranged 

between an average of 10-1 ng m-2d-1 to 2 ng m-2d-1. Fine aerosol fraction’s FDD ranged 

between an average of 10-2 ng m-2d-1 to 1 ng m-2d-1, being in all cases the fluxes for 

high MW PAHs of higher magnitude than those for the more volatile compounds. 

Concentrations of PAHs were measured in the suspended aerosol (CA) concurrently 

with the FDD. 16PAHs concentrations in suspended aerosols ranged between 10-2 ng m-

3 and few ng m-3 and were maximal in the Indian Ocean, where highly polluted marine 

aerosols were found. The PAHs velocity of deposition (vD) was calculated from the 

measured FDD and the CA, ranging from 10-3 to 1 cm s-1, being faster the deposition of 

high MW PAHs. The empirical vD was found to be significantly affected by the chemical 

properties of the PAHs, like the vapor pressure (PL) of the congener, and the 

environmental conditions, like wind speed (U10, which enhances turbulence and favors 

aerosol collisions with the marine surface) and chlorophyll concentration in the surface 

water (Chls, which increases stickiness of the ocean by lowering the surface tension 

and increasing hydrophobicity). According to these 3 factors, a parametrized equation 
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is proposed to predict vD in the coarse and fine fractions as well as the deposition 

velocity for the total aerosols. This empirical equation reduces by a factor of 5 the 

error of calculating FDD with fixed vD values, as traditionally reported in the literature. 

Moreover, this equation would be a good approximation for calculating dry 

depositional velocities for other semi-volatile compounds over the open ocean surface 

from known parameters (PL, U10 and Chls) when atmospheric concentrations are 

measured. 

The other main atmospheric input fluxes of chemical pollutants into the Open Ocean, 

wet deposition and diffusive exchange, are assessed for PAHs in Chapter 2. In this 

chapter it is also evaluated the extent of all the measured deposition fluxes and the 

implication of the total entrance of PAHs and other semivolatile aromatic-like 

compounds (SALCs) to the ocean on the carbon cycle. 64 PAHs and total SALCs were 

identified and ubiquitously found in the Atlantic, Pacific and Indian oceans, with gas 

phase concentrations (CG) of a few ng m-3 for the most abundant compounds, aerosol 

concentration of tens of pg m-3, and of hundreds of pg L-1 in surface seawater (CW). CG 

was maximal in the North Atlantic and revealed a dominance of the more volatile PAHs 

in the gas phase. Contrarily, CA highest records were found in the Indian Ocean with a 

higher occurrence of PAHs with 4 or more aromatic rings. Total PAHs CW was less 

variable in all the sampled oceans, compared with the atmosphere, being in the range 

of hundreds of pg L-1 in surface seawater. Nevertheless, in the 3 environmental phases, 

a decreasing concentration gradient was observed from continental margins to the 

open ocean. Dry deposition fluxes for the Open Ocean were calculated from the CA 

measured and the vD estimated from the parametrization explained in Chapter 1. 

Average FDD for Σ64PAHs ranged from 1 ng m−2d−1 (in the Open Ocean) to almost 2500 

ng m−2d−1 (in the west and east margins of the Indian Ocean). Rain water was gathered 

during the 11 precipitation events that occurred during the Malaspina 2010 cruise, and 

showed concentrations of hundreds to ten thousands ng L-1 of Σ64PAHs. The associated 

wet deposition fluxes (FWD) were calculated to be in the order of hundreds to 5000 µg 

m-2 d-1. Net diffusive air-water exchange (FAW) was estimated from the measured CG 

and CW by applying a two-film resistance model. FAW showed a net input of most PAHs 

to the ocean, except for some of the more volatile compounds, ranging from hundreds 
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of ng m−2d−1 Σ64PAHs volatilizing from the surface ocean to tens of thousands of ng 

m−2d−1 being absorbed. The global wet deposition is difficult to extrapolate spatially 

and temporally, due to its episodic character. Conversely, the comparison between 

total FAW and FDD integrated monthly for all the tropical and subtropical oceans 

revealed that the global gross volatilization and gross absorption of Σ64PAHs were 

0.042 Tg month-1 and 0.132 Tg month-1, respectively, resulting in a net input of 

atmospheric Σ64PAHs to the ocean of 0.090 Tg month-1, 90 times larger than the global 

FDD of aerosol-bound PAHs estimated at 0.001 Tg month-1. When extrapolated 

annually, and expressed as carbon fluxes, the global annual input of Σ64PAHs to the 

ocean is estimated to be 0.873 Tg C y-1. Moreover, by accounting not only PAHs, but 

the whole unresolved complex mixture of SALCs (whose concentrations in the 

dissolved and gas phase are between 100 and 7000 times larger than the Σ64PAH 

concentrations) the input of organic carbon to the Open Ocean is even greater. 

According to our estimations, the global diffusive gross absorption and volatilization 

fluxes of SALCs are of 512 Tg C y-1 and 83 Tg C y-1, respectively, resulting in a net input 

of organic carbon to the Atlantic, Pacific and Indian oceans of 429 Tg C y-1. Therefore, 

this first and unique report of global fluxes input of PAHs, SALCs and associated carbon 

to the Open Ocean suggests that atmospheric diffuse deposition of those organic 

pollutants is a key process influencing the global carbon cycle. 

Once in the water column, the pollutants suffer as well from other horizontal and 

vertical transport processes. Chapters 3 and 4 cope with the occurrence and dynamics 

of PFASs within the water column. Chapter 3 reports the occurrence of 11 PFASs 

congeners including ionic perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkyl 

sulfonic acids (PFSAs) and neutral perfluoroalkyl sulfonamides (PFASAs) in surface 

waters. The global mean CW of Σ11PFASs was in the order of hundreds to thousands of 

pg L-1, even if the single concentrations for individual congeners showed broad ranges 

(from thousand pg L-1 for the more abundant compounds like perfluorooctane sulfonic 

acid (PFOS), to concentrations very close to the detection limit of 10-2 pg L-1). The 

Atlantic Ocean exhibited the highest concentrations, found in southern basin for most 

compounds, but for the neutral precursors, which occurred mostly in the northern 

hemisphere and at very low concentrations. On average, PFOS contributed a 33% to 
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total PFASs (ranging from 64% in the South Atlantic to 16% in the North Atlantic), 

followed by perfluorodecanoic acid (22%), and perfluorohexanoic acid (12%). The 

mean concentrations for the remaining congeners was under 10%, with even 

perfluorooctane carboxylic acid (PFOA) contributing 6% and PFASAs accounting for less 

than 1% to total PFASs concentration. Cw in coastal waters was higher than those 

found in the center of the subtropical gyres, suggesting a continental origin of the 

pollutants. Of special interest is the high abundance of PFOS found in surface waters 

near Brazil, never reported previously at such concentrations in that region, for which 

riverine and atmospheric inputs (probably wet deposition) are suggested. The high 

concentrations found in other areas (like nearby the equator in the Pacific and Atlantic 

oceans) are attributed to global distribution by oceanic currents, which may transport 

and accumulate ionic PFASs in certain locations of the Global Ocean. The influence of 

biogeochemical and physicochemical processes, like adsorption to organic matter, 

biodegradation, or photodegradation is evaluated as well. According to our results and 

previous studies, biological pump fluxes could significantly affect PFASs 

concentrations, even if they had not been assessed previously to this Thesis. Time 

trends for some PFAS congeners are evaluated for the Northern Hemisphere, through 

a comparison of a reviewed dataset of PFAS concentrations in the oceanic 

environment. For instance, a general decrease of PFOA is observed in the North 

Atlantic and Pacific Oceans, with an estimated e-fold time (the time needed to reduce 

the concentration to 1/e of the initial value) of 5.8 years. However, the main processes 

affecting PFASs fate remain largely unknown, even though, presumably, it is a complex 

interaction of many factors and processes driving their global distribution. Therefore, 

PFASs fate and behavior in the Open Ocean, as their presumably main sink, merit 

further research. 

Chapter 4 intends to further understand PFASs fate in the Open Ocean by evaluating 

their sinking processes and vertical distribution. For that purpose, a global database of 

concentrations in the mixed layer at the deep chlorophyll maximum depth (DCM, 

around 100 m) is given. The DCM is an area of special interest regarding biological 

processes. Concentrations at DCM were concurrently measured with other physical 

and biological parameters influencing their occurrence and discussed. To our 
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knowledge, the vertical transport of PFASs has been assessed empirically for eddy 

diffusion fluxes and for settling fluxes of organic matter bound PFASs (biological pump) 

here for the first time. As found for surface CW, concentrations measured at the DCM 

showed maximal values in the South Atlantic basin with a very similar contribution of 

individual compounds to total PFASs concentration. PFOS accounted for 39% to the 

total PFASs concentration followed by perfluorodecanoic acid (17%) and 

perfluorohexanoic acid (12%), being the contribution of the remaining compounds 

under 10% (including PFOA, which mean contribution was 5%). A clear coast - Open 

Ocean decreasing concentrations was found as well for all the PFASs analyzed, as 

occurred for surface seawater. DCM CW showed less variability between oceanic basins 

than PFAS concentrations measures at surface seawater. However, they were 

significantly positively correlated. Vertical eddy diffusion fluxes (FEddy) were calculated 

from measured eddy diffusivity parameters (Kρ) concurrently with the PFAS 

concentrations along the Malaspina 2010 circumnavigation, and modelled on the 

mixed layer of the Open Ocean. The application of this one dimensional model 

predicted the vertical profile of CW in the water column, and therefore, it was possible 

to calculate a theoretical value of CW at the DCM depth. The modeled CW was generally 

of the same order of magnitude than the real measured value. The calculated FEddy at 

the surface were between 4 orders of magnitude higher and of comparable values 

than at the DCM. FEddy at surface oscillated between 10-8 and 10-2 ng m-2day-1 for PFOS 

and between 10-8 and 10-3 ng m-2day-1 for PFOA. FEddy at DCM depth ranged between 

10-5 and 10-2 for PFOS and between 10-3 and 10-6 ng m-2day-1 for PFOA. At the maximal 

measured Kρ, eddy diffusion will only disperse around 7 ng m-2 of PFOS per year, being 

thus a flux of small magnitude. Nevertheless, as turbulent diffusion is a continuous and 

ubiquitous process it should be accounted at a global scale. For instance, PFOS and 

PFOA annual removal fluxes for the global tropical and subtropical surface Oceans 

would be of 2.3 and 0.2 tons per year, respectively. Settling fluxes due to the biological 

pump (FSettling) were calculated for 5 ionic PFASs (C8-10 PFCAs and C6,8 PFSAs) using the 

measured surface CW, bioconcentration factors (BCF) from literature and a database of 

global export of organic matter (FOC) from the mixed layer. Fluxes were calculated for 

organic matter sinking related to phytoplankton (FPhyto) and to zooplankton fecal 

pellets export (FFecal). FPhyto ranged from an order of magnitude of 10-8 ng m-2 day-1 up 
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to 10-2 ng m-2 day-1 per individual congener. Individual PFASs FFecal oscillated between 

10-6 ng m-2 day-1 and 10-1 ng m-2 day-1. The magnitude of the flux was positively 

correlated with the hydrophobicity of the particular compound. FFecal were found to be 

about one order of magnitude higher than those associated only with phytoplankton. 

Moreover, FSettling seem to dominate the removal processes in the water column 

according to our calculations, several orders of magnitude higher than the turbulent 

fluxes calculated for all the analyzed compounds. The mean residence time of PFASs in 

the surface Open Ocean was calculated with the measured inventory in the mixed 

layer and considering the both removal processes quantified; being 27000 years for 

PFOS and 17000 years for PFOA. According to the actual production rates of PFASs and 

the estimated fluxes affecting their occurrence, the surface Open Ocean will remain a 

reservoir of these pollutants for millenniums. Nevertheless, other biological 

unrevealed processes not considered in the present study may be occurring in remote 

or deep areas of the ocean, and further research is needed to fully understand PFASs 

global behavior at the long-term. 

The interactions of POPs with organic matter in the water column and the effects of 

their accumulation in marine food webs are among the unstudied processes occurring 

in the global oceanic environment. Chapter 5 reviews the role of organic carbon and 

plankton on PAHs cycling in the Open Ocean and particularly focuses on the effects 

that total suspended particles (TSP) and biomass (B) may have on PAHs concentration 

in the surface mixed layer. 64 PAHs were simultaneously measured in dissolved and 

particulate phases (CP) of surface water, and in plankton pools of the total mixed layer 

(CPlankton). Σ64PAHs ranged between 10-1 and 10 ng L-1 in the dissolved water phase, 

between 10 and 103 ng gdw
-1 in the particulate phase and between 10 and 104 ng gdw

-1 

in the plankton phase. The PAHs congeners occurrence profile was not significantly 

different between the 3 matrixes, even if intermediate volatility PAHs were more 

abundant in the particulate phase. Contrarily, total concentrations differed in their 

global occurrence; maximal CW were recorded in south Atlantic coastal areas (with no 

significant differences among basins even though), CP was maximal in the Indian Ocean 

and CPlankton was the highest in different sampling spots along the Atlantic Ocean, near 

the European and Brazilian coasts. Partition coefficients (KOC) at the oceanic surface 
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were obtained for the water phase from CW and CP, and ranged from 104 to 108 L Kg-1, 

with bigger ratios for higher MW PAHs. KOC and CP negatively correlated with 

particulate organic carbon (POC) found in the TSP, at different rates for the individual 

PAHs, thus, the partition and occurrence in the particles are affected by a POC dilution, 

but also modulated by other processes depending on hydrophobicity (like air-water 

exchange or the biological pump). Similarly, PAHs concentration in the surface 

particulate phase appeared to be influenced by the PAHs found in the gas phase. 

Indeed, the suggested situation occurring at surface waters is that there is a fast air-

water-particle exchange governing PAHs occurrence at surface waters (dissolved and 

particulate phases). This equilibrium/exchange depends on CG, KOC and the Henry’s Law 

constant. Theoretical CP calculated assuming air-water-particle equilibrium, positively 

correlated with measured CP confirming the plausibility of this situation. Conversely at 

deeper depths of the mixed photic layer, CPlankton was significantly affected by the B 

present in the water column; higher amounts of biomass resulted in decreased 

concentrations of PAHs. The slope (m) of this correlation was characteristic for each 

individual PAH, and turned to be dependent on their hydrophobicity (KOW). For less 

hydrophobic compounds there is a decrease of the slope with increasing KOW; thus, the 

low hydrophobic congeners are more affected by B than intermediate PAHs. These 

results attend for degradative processes, as the low KOW are faster and easier degraded 

than the intermediate MW PAHs by bacteria, detoxifying phytoplankton processes and 

zooplankton metabolization. From medium to high KOW PAHs, m increased with higher 

hydrophobicity, and therefore, the more hydrophobic PAHs are further affected by B 

abundance. In this case, the governing process is the biological pump, as the more 

hydrophobic PAHs are faster and stronger adsorbed onto organic matter. Thus, their 

concentration and removal from surface water is driven by the settling of these 

particles. Biological pump fluxes were calculated for PAHs from CPlankton and literature 

reported organic carbon export fluxes, separately for algae (FPhyto) and zooplankton 

fecal pellets (FFecal). Export of total measured PAHs due to FPhyto are in the order of tens 

ng m-2day-1, and maximal fluxes are found in the eastern part of the North Atlantic 

basin and near South African coasts. FFecal for total PAHs were in the order of 

magnitude of hundreds of ng m-2day-1, and the largest export rates were found as well 

in the Atlantic Ocean, but in the southern basin. The average calculated total fluxes for 
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the Σ64PAHs was of 82.5 ng m-2day-1, standing for a total of 0.008 Tg of PAHs per year 

sinking out the tropical and subtropical surface oceans, which may be even greater 

taking into account the highly productive marine areas not assessed in this thesis (e.g. 

higher latitudinal and upwelling areas). Also the degradative processes seem to be of 

interest, especially for the lower MW PAHs, and should be fully characterized and 

quantified in the Open Ocean in the future. Therefore, there is evidence that the 

plankton does influence PAHs cycling at a global scale, and that the role of the Open 

Ocean as a pollutants sink depends on an extraordinary manner on the organic matter 

and plankton cycling in the water column. 
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General Discussion 

This Thesis evaluates the occurrence of two families of organic pollutants, polycyclic 

aromatic hydrocarbons (PAHs) and perfluoroalkylated substances (PFASs) in the Global 

tropical and subtropical Oceans. In addition, we have evaluated the role that 

atmospheric deposition and biogeochemical cycling has on the occurrence and fate of 

PAHs and PFAS. The processes influencing these Persistent Organic Pollutants (POPs) 

fate and distribution in the marine environment were assessed taking into account the 

contrasting physicochemical properties of PAHs and PFASs. The empirical description 

and characterization of the processes affecting these two examples of POP’s fate in the 

Global Ocean aims to help to elucidate as well global dynamics of other pollutants with 

similar properties. For instance, the parametrization proposed to calculate dry 

deposition velocity 1 has been successfully applied to dioxins and furans (PCDD/Fs), 

dioxin-like polychlorinated biphenyls (PCBs) 2, and organophosphorus flame retardants 

3. As well, it is noteworthy that it has been verified the relevance of the biological 

pump as a key regulator of PAHs and PFASs distribution in the Open Ocean, as already 

suggested for other POPs in earlier works 4-7. 

This discussion will integrate all the measurements performed in the Atlantic, Indian 

and Pacific Oceans, and will assess the status of the sampled areas regarding PAHs and 

PFASs pollution. We aim to integrate in this discussion the processes evaluated in the 

several chapters of the thesis, and thus compare the occurrence, transport and fate of 

the two families of POPs. In 1988 Bidleman showed that the gas-particle partition of 

organic semivolatile compounds controls their behavior and deposition process in the 

atmosphere 8. Likewise, in the water column, transport and fate will depend on the 

phase where the target compound is predominantly found 9. Therefore, the discussion 

Chapter will review as well the obtained partition coefficients found in the atmosphere 

for PAHs and in the water for PAHs and PFASs, in order to assess which are the 

governing processes affecting their fate in the Open Ocean. As a final point, a global 

budget of the quantified PAHs, SALCs and PFASs including all the reported processes is 

done; highlighting not only what has been assessed in this Thesis but the missing gaps 

in the global fate of PAHs and PFAS, which provide information for other POPs. 
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Figure D.1. Global distribution of oceanic concentrations of PAHs in the gas, aerosol, dissolved, 

particulate and plankton phases. 
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Global Occurrence 

 

PAHs 

Figure D.1 presents Σ64PAHs concentrations measured in the 5 environmental 

compartments studied in the global Ocean. The relative abundance of the different 

PAHs in the gas, aerosol, dissolved, particulate and planktonic phases depends on the 

hydrophobicity and volatility of each chemical, and is also affected by the sources and 

magnitude of transport and degradation processes. Therefore, the resulting global 

occurrence is a combination of physicochemical properties of PAHs and the 

environmental cycling of these compounds. 

Gas phase concentrations were within the same range in all the sampled oceans. No 

significant differences were found between Oceans, even if the North Atlantic 

exhibited the highest concentrations, and generally PAHs stand out near continental 

shelf margins. Contrarily, aerosol phase PAH concentrations were maximal in the 

Indian Ocean and statistically different from the rest of the oceanic basins. Also high 

concentrations were found in the NE Atlantic. Few previous records of PAHs in the 

Open Ocean atmosphere can be found; on the one hand because they are mostly 

related with human activity and some PAHs can be degraded during transport and 

once in the water column. Therefore, most studies on PAHs are performed in urban 

and coastal areas 10-13. On the other hand, self-contamination of samples has been 

frequently detected by boat fumes, and make difficult their sampling in remote 

oceanic areas 14. Nevertheless, the previous available measurements exhibit individual 

PAHs concentrations within the range of our study in the Atlantic Northern basin 15-17, 

showing as well the peaks near North African coasts. Regarding the Indian Ocean, no 

previous sampling campaigns covered the longitudinal transect at ~30°S, and the 

comparison stands with data sets from much northern and coastal regions 18. 

However, those indicate a large PAHs load from Asian margins and support the high 

concentrations measured during the Malaspina 2010 circumnavigation, which 

presumably are due to air masses in the upper troposphere originating in Southern 

East Asia. 
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Likewise, dissolved phase PAHs concentrations were not statistically different between 

the sampled Oceans. The highest concentrations were measured in the Atlantic 

continental margins, both in the North and South basins, being particularly high in the 

southern Atlantic. The particulate phase significant larger concentrations were found 

in the Indian Ocean, with some remarkable peaks as well in NE Atlantic. This seems 

consistent with the higher aerosol phase concentrations in these basins. Conversely, 

PAH concentrations in the plankton phase showed very variable concentrations, with 

the highest occurrence in the Atlantic Ocean, reflecting the dynamic character of this 

environmental compartment. Concentrations in the plankton phase, with samples 

integrating the photic zone do not reflect the proximity to continents, but 

biogeochemical controls such as biomass dilution and settling fluxes, as discussed in 

Chapter 5. Water (dissolved phase) concentrations are correlated with those in the 

atmosphere, confirming the effective transfer of PAHs through diffuse air-water 

exchange. Most of previous studies about PAHs in seawater have focused in coastal 

regions and semi enclosed bays or seas 13,19-22, as occurred with atmospheric 

assessments. The few existing reports in open waters 14,15,17, are in the range of our 

measurements both for the dissolved phase and the particulate, as reviewed in 

Chapter 5. Studies of PAHs in plankton are even scarcer. The available data set from 

the Mediterranean basin 19 ranges from the same level (our maximal CPlankton measured 

in the Atlantic Ocean) to 3 orders of magnitude higher (the lowest records recorded in 

Indian and South Pacific Oceans) than our Open Ocean concentrations, as this semi-

closed sea is reported to be further polluted with PAHs due to proximate land sources 

13. 
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PFASs 

Figure D.2 shows the total concentrations measured for ionic PFSAs and PFCAs 

ubiquitously found at surface and DCM depth of the Open Ocean. 

PFCAs total abundance in all sampled oceans was superior to PFSAs at marine surface, 

but in the South Atlantic basin, and their global distribution showed remarkable 

different patterns. In surface seawater, the interoceanic comparison revealed no 

significant differences for ΣPFCAs, while ΣPFSAs showed statistically higher 

concentrations in the South Atlantic Ocean. However, the maximal concentrations for 

PFCAs were as well recorded in the South Atlantic basin. Similarly to the PAHs 

distribution, high concentration peaks occurred in NE Atlantic, near African coasts, 

particularly high for PFCAs. Data from previous studies for individual PFASs are in the 

same order of magnitude than those measured in the Atlantic Ocean during the 

Malaspina 2010 circumnavigation 23-26. Nevertheless, the range of our measurements 

is wider than those previously described, probably due to a higher sampling coverage 

of the oceanic basin. Contrarily, the comparison with earlier reports in the Indian and 

Pacific Oceans 27-30 shows that our measurements are in the lower concentration 

ranges, as those studies focus mainly in coastal regions from Asian countries, which 

exponentially increase the PFASs loads 31. 

PFAS concentration patterns found in surface and DCM depth seawater were quite 

similar in terms of the range of concentrations, even though concentrations were 

higher at surface at most of the sampling sites. Nevertheless, there is a general 

increase of PFSAs concentrations at the subsurface and thus, their contribution to total 

PFASs is of similar magnitude than PFCAs at depth, with the exception of the South 

Atlantic Ocean, where the PFSAs relative concentration is larger, as observed at the 

surface. Only two studies were found dealing with PFAS concentrations in seawater at 

depths different than surface 28,32, and using the same global data set. The lower 

concentrations reported for PFOS and PFOA are in the range of the individual PFASs 

found in the Open Ocean in this Thesis. Conversely, their registers for Labrador Sea, 

 

 



General Discussion 

202 
 

 

 

Figure D.2. Global concentration of PFSAs (blue colors) and PFCAs (red colors) in the surface seawater (5 

m depth, top) and at the deep Chlorophyll maximum (DCM, bottom). 

Middle Atlantic Ocean and Japan Sea come near the mid-high concentrations found in 

DCM samples in the present study, even if those do not exceed the concentrations 

found near Brazilian and West African coasts in this study. 
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Partitioning of PAHs and PFASs in the environmental compartments and 

implications for their Global Fate 

 

PAHs occurrence in atmospheric gas and aerosol phases 

The considered atmospheric processes affecting PAHs (dry and wet deposition, air-

water diffusive exchange and degradation) are universal vectors of transport, transfer 

and transformation of POPs in the Open Ocean’s lower atmosphere which depend on 

the chemical properties of the substances and environmental parameters 8,9. The 

partition (KP-air) of a contaminant between the aerosol and the gaseous phase will 

determine the key process affecting its transference to the ocean; dry deposition will 

predominate if the pollutant is prone to be attached to aerosols while diffusive 

exchange will dominate if the pollutant is found mainly on the gaseous phase. Wet 

deposition will affect concentrations in both matrixes as the rain water is equilibrated 

with the gas concentration, and precipitation will scavenge aerosols affecting 

atmospheric gas and aerosol phase organic compounds occurrence 8. Moreover, the 

susceptibility to be photo chemically degraded in the atmosphere is also dependent on 

the phase where the POP is found 33-36. Therefore, the atmospheric fate of organic 

pollutants is exceptionally reliant on the aerosol-gas equilibria. 

According to our measurements for PAHs, KP-air obtained as the ratio between the 

aerosol concentration (CA) and the gas concentration (CG) is shown in Figure D.3 for 

some representative compounds at the Global Oceans. It can be observed that the 

more volatile compounds (like phenanthrene) reflect low KP-air and therefore, they are 

mainly present in the gas phase and will be more susceptible to atmospheric 

degradation, as there is a higher rate of reaction with OH radical in the gaseous form 

33. Meanwhile, heavier compounds exhibit a greater partition to marine aerosol and 

will be degraded on a lesser extent but preferably transferred to the ocean through dry 

deposition. The highest partition to the aerosol fraction for all PAHs was found in the 

central Indian basin and near the Australian southern coast. Besides, the high ΣPAHs CA 

found in the Indian Ocean and the large dry deposition fluxes measured there 1 
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facilitate the entrance of high MW PAHs (like perylene) in this particular ocean (Figure 

D.3), not previously assessed in the literature. 

  

Figure D.3. KP-air (L kgTSP
-1

) for four representative PAHs. 

The partition is the reflection of the concentrations of the different PAHs measured in 

the gas and aerosol phases, whose profiles (as mean abundances of individual PAHs in 

each matrix) are displayed in Figure D.4. 

 

Figure D.4. PAHs profile for gas (CG) and aerosol (CA) phases. 

PAHs pollution in the aerosol accounted for only 9.8% of total PAHs found in the 

atmosphere, even if the relative presence of higher MW compounds is larger in this 

phase than on the gas phase. On the contrary, the intermediate to high volatile 

compounds were largely present in the gas phase, holding more than 90% of the total 

PAHs measured in the oceanic atmosphere. The dominance of the atmospheric 
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concentrations in the gas phase has been reported previously in the Open Ocean 15, 

and moreover, in some studies the aerosol pollution is even neglected in the total 

atmospheric occurrence of PAHs 17.Therefore, the majority of PAHs will be affected by 

transport processes occurring mainly in the gas phase (diffusive exchange, 

degradation); meanwhile the more recalcitrant PAHs attached to the marine aerosol 

will be prone to be carried over the ocean with suspended atmospheric particles and 

affected by different processes (dry deposition). This is confirmed by the magnitude of 

the calculated fluxes presented in Chapter 2; diffusive exchange accounts for 99% of 

the total PAHs entrance to the Open Ocean, while dry deposition only stands for less 

than 1% of the PAHs input to the Global Oceans. 

PAHs and PFASs occurrence in seawater’s dissolved and particulate phases 

The presence of POPs either in the dissolved or particulate phase of the Open Ocean 

seawater will be affected by different factors leading their distribution and fate. For 

PAHs, several processes have been reviewed and calculated in Chapter 5; like biomass 

dilution, degradation, biological pump, effects of the air-water diffusive exchange, etc. 

Regarding PFASs, even if here there is a lack of direct measurements of concentrations 

in the particulate phase, an estimation of the particulate fraction fate has been 

conducted in Chapter 4. Effectively, as reported here and in other works, the biological 

pump is a key regulator of POPs occurrence in remote areas 4,5, affecting pollutants in 

the particulate phase fate. On the other hand distribution of POPs in the dissolved 

phase will be more affected by other processes in the Open Ocean, like water masses 

subduction or turbulent diffusion 32,37. 

 Figure D.5. KOC (L kgPOC
-1

) for four representative PAHs. 
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PAH’s organic carbon-water partition as given by KOC in the water phase is discussed in 

Chapter 5. The main drivers of partition act on a complex manner; the chemical 

equilibrium between particulate organic matter and water is affected by a wide array 

of variables like gas-water exchange, temperature, the composition of the particulate 

organic matter and several others that will modify the final concentration of PAHs. 

According to our measurements of dissolved (Cw) and particulate concentrations (CP) in 

surface waters for four representative PAHs (Figure D.5), there is a higher ratio of 

pollutants in the particulate phase in the Indian Ocean, as found in the atmosphere, 

and in the North Atlantic eastern margins. The Northeast Atlantic highest 

concentrations, and higher partition to particles of the more hydrophobic compounds, 

were previously discussed by Nizzetto and coworkers 17, concluding that African 

emissions would explain such occurrence of PAHs at high concentrations. Moreover, 

other POPs, such as brominated flame retardants 38 and polychlorinated naphthalenes 

39 were also highly abundant in that area. Conversely, PAHs occurrence in the Indian 

Ocean seawaters, with high partition to the particulate phase and high concentrations 

reported in Chapter 5, would be explained by the high concentrations measured as 

well in the atmosphere and intense depositional fluxes 1 for that area. Besides, likewise 

in the atmosphere, higher partition coefficients correspond for the more hydrophobic 

compounds (like perylene) in all the sampled Oceans. Nevertheless, the differences 

between the individual PAHs KOC in the water are much lower than in the atmosphere, 

showing narrower ranges. 

Due to a low concentration of total particles in the oligotrophic ocean 40, PAHs are 

more abundant in the dissolved than on the particulate phase, as found in the 

atmosphere. Nevertheless, the proportion of PAHs in the water column particles is 

slightly higher than in the aerosol, as 11% of total measured PAHs are found on the 

particles versus the 89% found dissolved in the water. This is probably due to the 

stronger binding forces in an aqueous solution that attach PAHs to organic matter 

more than those in the air 41, and to the degradation of low MW PAHs in the water 

column. The dissolved phase contained a higher relative concentration of the 

intermediate and more volatile congeners, whereas the particulate fraction holds a 

higher proportion of the more hydrophobic compounds (Figure D.6). Therefore, 
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biomass dilution and the biological pump, processes ruling the concentration of PAHs 

in the organic matter will mainly affect the more hydrophobic congeners. Contrarily, 

dissolved pollutants (like low MW PAHs and most ionic PFASs) will undergo other 

distribution processes within the water column. 

 

Figure D.6. PAHs profile for dissolved (CW) and particulate (CP) phases. 

PFASs have been reported to be present in both dissolved and particulate phases in 

aquatic environments, depending the partition on the amount of suspended solids, 

and the density and organic content of those (analogously as for PAHs) 42. Due to the 

low concentrations of suspended solids in the Open Ocean and their lesser 

hydrophobicity compared with other POPs, PFASs like PFOS, PFOA and PFOSA have 

been reported to be found mainly in the dissolved phase 42. Indeed, the calculated 

turbulent fluxes presented in Chapter 4 proved to successfully explain part of the 

occurrence of dissolved PFASs at depth in the water column. Nevertheless, according 

to our measurements and calculations, the biological pump is also a relevant removal 

process in the tropical and subtropical Open Ocean, playing even a larger role than 

eddy diffusion at a global scale for PFASs removal from the Open Ocean surface. This 

means that the occurrence of PFASs in the particulate phase deserve further research, 

as there is a need of more empirical measurements in the Open Ocean. A recent work 

has reported the occurrence of PFASs in settling particles in the NE Mediterranean sea, 

in this case, high fluxes were found due to dense shelf water cascading 43, a 

mechanism different than the biological pump estimated for the Open Ocean. 
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In addition, the occurrence of pollutants trapped onto organic matter influences their 

bioavailability to marine biota. PAHs are typically metabolized within the planktonic 

food web 44, and bioaccumulation is not so relevant, but degradation dominates in the 

Open Ocean. The length and complexity of the food web and the persistence of the 

particular PAHs 44 are factors influencing this process 45. Lighter compounds are easily 

degraded, meanwhile the more recalcitrant PAHs are prone to be accumulated in the 

organic matter and therefore redistributed in the water column by the biological 

pump, as explained in Chapter 5. Conversely, Higgins described that the sediment-

associated PFASs can be easier accumulated in aquatic food chains 46 and also Martin 

reported further accumulation of those pollutants when they are found on sediments 

and particles of the water column, as they are then bioavailable to benthic and filtering 

organisms, than in the dissolved phase 47. The degradation of those POPs has not been 

reported to date, but bioaccumulation and biomagnification48-50 turn as an additional 

process (and risk) to the PFASs fate in the Open Ocean yet to be fully characterized. 

 

Global fluxes and budgets of PAHs and PFASs in the Open Ocean 

At a global scale, all the processes and factors evaluated are interconnected within a 

dynamic coupling of various processes. The partitioning among the different phases 

(gas, aerosol, water, particles) strive to put the concentrations at equilibrium. On the 

other hand, there are a number of processes such as dry/wet deposition, biological 

pump, biomass dilution, advection, etc, that can drive the concentrations away from 

equilibrium. For instance, a biomass growth on a certain area may drive a decrease of 

pollution into the water column and a consequent enhanced diffusive flux from the 

atmosphere towards the Ocean. All the feedbacks and side-effects involved are not 

fully quantified, and even to a lesser extent at an oceanic global scale. Nevertheless, 

the data and discussion provided here enlightens the magnitude of the processes 

affecting PAHs and PFASs distribution and the balance among them which may provide 

new insights about the total budgets and governing parameters for the POPs 

distribution and fate in the global Open Ocean.  
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An important challenge for this Thesis was to have a first understanding on the global 

budget for PAHs in the marine lower atmosphere and surface mixed layer, and even an 

estimation of the occurrence and fate of other aromatic-like compounds (Chapter 2). 

These results highlight a potential yet unknown perturbation of the global 

biogeochemical cycling of organic matter which could influence the balance of the 

oceanic carbon cycle. Moreover, regarding the emerging PFASs in the mixed layer, 

their fate in the Global Ocean was analyzed for the first time based on direct field 

measurements (Chapter 4). 

 

PAHs and SALCs 

The annual global balance for PAHs and SALCs considering all the analyzed transport 

and transformation processes is shown in Figure D.7. Among all the PAHs present in 

the atmosphere, a high fraction of them is directly degraded via oxidative reactions 

with OH radical 33, as discussed in Chapter 2. In the oceanic lower atmosphere, 

accounting the mean inventory measured over the Atlantic, Pacific and Indian oceans, 

there is a degradation of near 2.2 Tg y-1 of the 64 PAHs identified and quantified. This 

atmospheric sink is approximately two times bigger than the global Open Ocean 

entrance through diffuse fluxes (FAW and FDD), but it only affects the lighter and 

degradable compounds. The preferential degradation of the low MW compounds may 

account for a distillation process towards remote areas, even if this was not observed 

in our measurements, probably due to the volatilization registered from marine 

surface in the central areas of the oceanic tropical basins (Chapter 2). Contrarily, this 

differential degradation and consequent distillation effect is evident for other non-

biogenic POPs, like PCBs. The lower hydrophobic PCBs show shorter residence times in 

intertropical regions due to the OH radical attack, and as they are not produced in the 

Open Ocean, the remote areas exhibit lower concentrations of lighter PCBs 51 even if 

they are potentially more mobile 52. The degradation rates for PCBs are estimated to 

be 0.008 Tg y-1, 3 orders of magnitude lower than those calculated here for PAHs, but 

also much larger than the calculated sinks for the Open Global Ocean for PCBs, 240 

tons y-1 53. Assuming the higher persistence of PCBs and the much lower environmental 
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concentrations (3 orders of magnitude lower than PAHs in the Open Ocean 54,55), the 

ranges of the fluxes are in agreement with those calculated here for PAHs, highlighting 

the degradative potential of the Earth’s atmosphere. 

The atmospheric measurements of PAHs in the gas phase and the aerosol, in the 

rainwater and the deposing aerosols over the marine surface, allowed us to calculate 

the diffusive, wet and dry depositional processes during the Malaspina 2010 

circumnavigation cruise. Their calculation and extrapolation to the global ocean, taking 

into account the varying environmental conditions and assuming a certain degree of 

uncertainty, provided the total fluxes of PAHs deposition per year in the Open Ocean 

(Figure D.7). 

 

Figure D.7. PAHs and SALCs global fluxes. 

Regarding diffusive exchange of PAHs, 1.6 Tg y-1 are absorbed through direct diffusion, 

counterbalanced by 0.5 Tg y-1 volatilizing from the seas surface. Wet deposition is very 

difficult to extrapolate spatially and temporally, and thus only an approximation of the 

measured rates can be showed, of hundreds to thousands µg m-2d-1 of Σ64PAHs 

entering the ocean through precipitations. This value, though, is highly variable 

depending on the atmospheric concentrations, the interval of the precipitation, and 

other physical parameters 56, and may vary between few tons and half Mg of PAHs 

deposing onto the Global Ocean per year. Dry deposition, directly measured for the 
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first time with such a resolution, appeared to be as well a relevant process influencing 

PAHs input onto the marine surface for the high MW PAHs. Even if the calculated 

global fluxes are 3 orders of magnitude lower than the diffusion exchange, the 0.008 

Tg y-1 of PAHs entering the Open Ocean with settling aerosols are twice the European’s 

year 2000 emission of the 16 EPA’s regulated PAHs 57, thus an unneglectable quantity. 

As stated previously, the magnitude of each depositional process depends on each 

POPs family class, specifically on their physical-chemical properties. For instance, PCBs 

are mainly affected by diffusive exchange fluxes as PAHs do, while for PCDD/Fs, those 

are in the range of wet deposition fluxes. Indeed, wet deposition accounts for 40-75% 

of the total deposition of PCDD/Fs to the Open Ocean, inducing particularly the 

entrance of the hepta- and octa- congeners, but for PCBs it does not represent more 

than 35% of total input 56. Dry deposition fluxes for PCBs and PCDD/Fs stand for an 

estimated 15% of total flux, and reported to be significant in areas with high wind 

speeds and high concentrations of marine aerosols 56. Nevertheless, in a recent study 

of PCDD/Fs and dioxin-like-PCBs in the open global ocean conducted as well during the 

Malaspina 2010 cruise, it is calculated a dry deposition global input of 360 Kg y-1 and 

900 Kg y-1 respectively 2, much lower than previous estimates 58 and thus, pointing to 

diffusive fluxes as the main vector of entrance of POPs into the Open Ocean 2, as 

occurs for PAHs according to our measurements. 

The processes causing the sequestration of PAHs and their transfer to the deep ocean 

by the biological pump are of the same range of their dry deposition fluxes (Figure 

D.7). Virtually, the same amount of PAHs that enter to the ocean with settling aerosol 

will continue their sinking to the deep ocean (0.008 Tg y-1). Other studies show the 

evidence of the correlation between biological pump fluxes and atmospheric inputs in 

temperate and polar oceans for PCBs, PCDD/Fs and halogenated pesticides 4,5,59,60. 

Moreover, in mid to high latitudes air-to-water fluxes are enhanced by the high settling 

fluxes of the abundant primary producers in these rich areas, as described for PCBs 

and hydrophobic dioxins 9. Those fluxes range within several orders of magnitude and 

depend on the amount of suspended biomass, POP concentrations, chemical affinities 

and other key environmental factors. Settling fluxes have been described to regulate 

pollutants dynamics between the atmosphere and the water oceanic ecosystem, down 
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to the deep ocean. There and even in shallower areas of the water column, dilution, 

degradation and other transformation processes will take part at an uncertain rates (at 

least at a global scale and for the myriads of pollutants present in the ocean 61), leaving 

the Open Ocean as a global sink of pollutants with many open questions about the 

global risk for the marine ecosystems. 

In 2004 there was a global estimated production of 530 Gg y-1 of the 16 EPA’s 

regulated PAHs by anthropogenic sources 57. The concentrations and fluxes here 

calculated are far larger, of 900 Gg yr-1 entering into the Open Ocean though dry 

deposition and diffusive exchange. This could be explained by an underestimation of 

the global anthropogenic production, to a large biogenic production of PAHs not 

accounted, and also to the fact that the more recalcitrant PAHs do accumulate and 

cycle in the Open Ocean for long time once they have been produced and released into 

the environment. Nevertheless, it is obvious that the resilience of the Open Ocean and 

its degradative and sink potential for PAHs is enormous, even if it seems that the real 

total loads of PAHs to the environment are poorly constrained. 

 

PFASs 

The global budget for the emerging fluorinated pollutants assessed in this Thesis, the 

PFASs, is still more uncertain to date than that of PAHs (Figure D.8). No degradation of 

those compounds has been reported neither in the atmosphere, nor by any organism 

in the ocean (in other aerobic or anaerobic ecosystems) 62. Moreover, the atmospheric 

inputs to the Ocean have largely being omitted in earlier studies, and are just starting 

to be considered in the literature. These remained out of the scope of this thesis. Some 

approaches attempted to estimate the relevance of the deposition process and origin 

of the PFASs in remote marine areas and lakes through a characterization of the ratios 

and isomer profiles of the congeners measured in water 63-65. Only few studies suggest 

a temperature dependent occurrence of some volatile compounds, like 

perfluoroalkylated sulfonamides, in the remote Arctic indicating a plausible diffusive 

exchange with ocean or ice, and mentioning partition to aerosol 66,67. Further, others 

correlated the presence of PFASs and their precursors in air, water and sediments in 
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Arctic lakes assuming atmospheric transport 68. But a precise description and 

quantification of their fluxes has not been conducted to date in the Open Ocean. Wet 

deposition has been tentatively assessed by Taniyasu et al. in Japan and North Pacific 

rain and snow 69 and by coworkers based on land measurements 70 and showed an 

effective flux of PFASs deposition which should be studied further and characterized 

for the Open Ocean. Riverine and run-off contributions have been estimated for some 

specific regions 71-73, but there is a lack of total inputs measurements at a global scale, 

which may vary exceptionally depending on the river basin and the sources, riverine 

discharges and seasonal fluxes 74. 

 

Figure D.8. PFASs global fluxes. 

Nonetheless, the inventory provided here for the tropical and subtropical surface 

ocean for the target PFASs and the calculated sinking fluxes to the mesopelagic ocean 

are examples of the most updated research on this topic. The previously reported eddy 

diffusion transport for PFOA by Lohmann et al 32 has been completed and recalculated 

here by using direct turbulence measurements concurrently with the PFASs 

concentrations along the 3 sampled oceans in the Malaspina 2010 circumnavigation. It 

was calculated also for 9 PFASs other than PFOA, with a total contribution of 93.8 tons 

of the 9 selected PFASs diffusing out of the surface mixed layer annually (76.1 tons y-1 

attend for the 5 PFASs for which also biological pump export was calculated, Figure 
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D.8). No much attention has been paid previously to turbulence affecting POPs 

transport in the Ocean; only Jurado et al 75 explicitly assessed the relevance of this 

process by modeling PCBs fate in the costal marine water column. Likewise in our 

results for PFASs, they concluded that turbulent mixing helps to predict real 

concentration of POPs in the water column, where may be other processes playing a 

role depending on the particular environmental conditions. 

Biological pump estimations were done for the first time for the 5 more abundant 

PFASs found in the open ocean during the Malaspina 2010 expedition. The settling flux 

turned to be 100 times higher than the eddy diffusion flux calculated for those 5 PFASs 

(Figure D.8). The almost 900 tons of PFASs sinking per year into the ocean in 

aggregates of organic matter or by turbulent diffusion, may have unknown effects in 

the deep marine ecosystems, as the deep ocean will remain as a reservoir for 

millenniums due to PFASs persistence. However other processes occurring in the open 

ocean may also play a key role, like biomass dilution, equilibration with the 

atmosphere (for neutral PFASs), ejection with sea spray aerosol, and thus with a 

potential reemission of the PFASs if the concentrations in the water are large enough, 

or even the non-yet discovered degradation in the deep ocean. Therefore, more 

research is still needed to fully understand the behavior of all the emerging 

perfluorinated pollutants in the Global Ocean, considering the relevant processes 

proposed here. 

The significance that anthropogenic POPs pollution, considering the huge amounts of 

compounds constantly produced and their coupling with global biogeochemical cycles 

can only be better understood if the processes affecting POPs fate in the Global Ocean 

are comprehensively studied. 
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General Conclusions 

The general aim of this work, as stated in the introductory chapter, was to assess the 

occurrence of POPs cycling in the global tropical and subtropical oceans, focusing on 

PAHs and PFASs. The results obtained in this Thesis, according to the specific 

objectives, contribute to the further advance in the knowledge on this issue, and a 

summary of the main conclusions per each objective are presented below. 

- To determine the occurrence of PAHs in gas, aerosol, dissolved, particulate and 

planktonic phases, and PFAS in the dissolved phase from the global Open 

Ocean. 

Both POPs families were detected worldwide in the tropical and subtropical Open 

Ocean, with different total concentrations and distribution patterns depending on 

their production sources, governing transport processes, chemical properties and 

decaying rates. 

 In general, PAHs were homogeneously distributed in gas and dissolved 

phases; meanwhile Indian Ocean revealed very high concentrations of PAHs 

in the aerosol and particulate phases. The highest PAHs concentration in 

the plankton phase was detected in the Atlantic Ocean. 

 PFASs were dominated by PFCAs at the surface, and more balanced 

between the PFCAs and PFSAs at DCM depth, even if concentrations at both 

depths are correlated. PFOSAs where rarely detected, mainly in the 

northern hemisphere. The highest concentration of PFASs by far was found 

in the Atlantic Ocean, particularly near Brazilian coasts followed by North 

East Atlantic margins. 

 

- To quantify the POPs fluxes between the different environmental 

compartments. 

Depositional fluxes of PAHs in the Open Ocean were dominated by diffusive 

exchange, followed by wet deposition and dry deposition. This last, even if of lower 

magnitude, is relevant for the heavier PAHs at global scale. Atmospheric 
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degradation accounted for a large sink for the more volatile PAHs. 

 PAHs dry deposition fluxes bound to coarse aerosols were higher than 

those of fine aerosols in the Open Ocean. 

 Dry deposition velocities (vD) were higher for higher MW PAHs, due to their 

chemical affinities to aerosol organic matter. 

 The chemical properties of the compound and environmental factors 

(aerosol size, wind speed, phytoplankton presence in the water column, 

among others) have a great impact on dry deposition. Through a 

parameterization of those is possible to predict vD with an error 5 times 

smaller than that obtained when using a fixed vD value from the literature, 

as it accounts for environmental conditions. 

 Dry deposition was especially relevant in the Indian Ocean. 

 Wet deposition is very intense but limited to certain periods and areas in 

the Open Ocean for PAHs. 

 Diffusive atmospheric deposition of PAHs and other semivolatile aromatic-

like compounds to the global oceans is much larger than expected, and 

account for a significant source of carbon to the Open Ocean that should be 

further studied. 

 Diffusive global exchange occurred on a higher extent in the Pacific Ocean 

due to its large surface. 

In the water column, the biological pump resulted to be the main sinking process 

governing PAHs and PFASs fate in the Open Ocean. Degradation was also important 

for low MW PAHs, and other processes like dilution for PAHs and eddy diffusive 

fluxes for PFAS are also relevant and should be further studied. 

 Eddy diffusive fluxes allow an estimation of the subsurface concentrations 

of some PFASs, even if other processes may be affecting the pollutants 

transport and their sinking in the Open Ocean. 

 The biological pump is an oceanic sink flux not previously reported for 

PFASs, showing an effective removal of pollutants from the surface. Fecal 

pellets associated fluxes were of higher magnitude than those associated 

with phytoplankton. 
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 The biological pump fluxes, several orders of magnitude higher than eddy 

diffusion fluxes, dominated the removal processes for PFASs, dependent on 

the physicochemical properties of the compound, the turbulence in the 

water column and the biomass abundance and sinking rates. 

 According to the temporal trends observed and the estimated residence 

times of PFASs, the Open Ocean will act as a reservoir of these pollutants 

for extremely long periods. Nevertheless, other processes of deposition and 

transport in the water phase may take part and need to be as well assessed 

to elucidate PFASs fate at a global scale in the Open Ocean. 

 Water-particle partition was higher for the high MW PAHs and turned to be 

dependent on particulate organic carbon with a negative correlation, at a 

higher extent for the more hydrophobic compounds. Also particulate phase 

concentration was correlated with the particulate organic carbon. This air-

water-particle exchange governs the occurrence and transport/degradation 

of PAHs in the surface ocean. 

 Air-water-particle transfer of PAHs was confirmed for superficial particulate 

phase concentrations, even if the phases were not in equilibria, causing a 

net diffusive flux towards the Ocean. 

 Zooplankton fecal pellet settling was one order of magnitude higher than 

the biological pump due to settling phytoplankton. This process is a very 

effective sink for PAHs from the euphotic surface ocean, and should be 

further characterized according to sinking matter composition. 

 The reported atmospheric deposition is not totally counterbalanced by the 

settling fluxes for PAHs, thus, the degradative pump and other sink 

processes in the Open Ocean should be further assessed. 

 

- To study physical and trophic factors that affect POPs entrance in the plankton. 

Hydrophobicity and the biomass concentration resulted to be the governing 

parameters for PAHs occurrence in the oceanic plankton. The amount of plankton 

biomass in the water column negatively correlated with the measured PAHs 

concentrations, modulated by the hydrophobicity of each particular compound. 

 For the lighter PAHs there was a decreasing rate of biomass influence with 

increasing hydrophobicity. As their occurrence is governed by degradation, 

the lightest are more affected than the intermediate PAHs, which are less 
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prone to be biotransformed. 

 For the intermediate and heavier compounds, there was an increasing rate 

of biomass dependence with higher hydrophobicity. The biological pump 

drives these PAHs occurrence in the plankton, and therefore, the heavier 

compounds (more hydrophobic) are more intensively affected at higher 

biomass occurrence. 

 Biomass dilution, air-water-particle exchange, degradation, and the 

biological pump are playing a role in the PAHs occurrence in plankton, and 

thus governing the POPs entrance in the lower levels of the trophic chains 

in the Open Ocean. 

 Following the trends suggested here, degradation rates and in-situ sinking 

fluxes should be assessed further in order to fully understand the entrance 

of pollution into marine food webs. 

 

- To evaluate the relevance of semivolatile aromatic hydrocarbons (containing 

PAHs and other aromatic compounds) as a source of semivolatile organic 

carbon to the Open Ocean. 

PAHs and other semivolatile aromatic-like compounds (SALCs) present in the Open 

Ocean lower atmosphere and surface water account for a significant portion of the 

total Organic Carbon at global scale. 

 Their transport and deposition fluxes to the Open Ocean are vectors of 

carbon cycling of the same order of magnitude than other’s organic 

substances already accounted in the global budgets. 

 Future work should focus on alternative approach of Organic Carbon 

measurements and characterization in order to add PAHs and SALCs, and 

probably other fractions of semivolatile organic compounds to better 

understand the processes governing the occurrence and fluxes of 

semivolatile organic compounds in the marine carbon cycle. 
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fine deposited fractions (ng m-2d-1). 

Figure S1.4, Aerosol dry deposition fluxes (FDD) in the Global Oceans (g m-2d-1). 

Table S1.9, Organic Carbon concentrations in the deposited particles (OC%) and their 

dry deposition fluxes ( FDD OC; mg m-2day-1). 

Table S11.0, Concentrations of PAHs in dry deposited fine and coarse aerosols (CDD, 

ng g-1). 

Figure S1.5, PAHs Concentration in dry deposited aerosol (CDD, ng g-1) for the a) fine 

fraction and b) coarse fraction. 

Table S1.11, Concentrations of individual PAHs in the suspended aerosols (CA, ngm-3). 

Figure S1.6, Concentrations of PAHs in suspended aerosol (CA, ng m-3) in the Global 

Oceans. 

Figure S1.7, Individual PAHs profile in suspended aerosols (CA, ng m-3). 

Table S1.12, Estimated dry deposition velocity (vD, cm s-1) of suspended aerosol-bound 

PAHs. 

Table S1.13, Vapor pressures (PL) for individual PAHs used in this work. 

Table S1.14, Spearman correlation data between PAHs dry deposition velocity (vD, cm 

s-1) for each sampling period versus compound specific vapor pressure (PL). 
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Table S1.15, Spearman correlations between PAHs concentration in the fine fraction of 

the dry deposited aerosols (CDDfine) and wind speed (U10). 

Table S1.16, Spearman correlations between PAHs dry deposition flux associated to 

fine particles (FDfine) and wind speed (U10). 

Table S1.17, Pearson’s correlation between PAHs dry deposition velocity slopes when 

plotted against vapor pressure (slope VDfine) versus wind speed (U10). 

Table S1.18. Parameterization of the deposition velocity (vD) versus physic and 

biochemical parameters using least squares multiple parametric linear regression. 

Table S1.19, Parameterization of the deposition velocity (vD) versus specific vapor 

pressure (PL) using least squares multiple parametric linear regression. 
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Table S1.1, Ancillary and meteorological information for the dry deposition measurements. 

S
ta

ti
o

n
 

S
a

m
p

le
 

Transect Day Hour Longitude  Latitude  
Coarse 

particles 
>2.7 µm  

Fine 
particles 

2.7-0.7 µm  

Mean 
Wind 

Velocity 

Instant 
Wind 

Velocity 

Air 
Temp. 

Humidity  
Solar 

Radiation 
Atmospheric 

Pressure 

    (UTC) (°E) (°N) (g day
-1

) (g day
-1

) (m s
-1

) (m s
-1

) (ºC) (%) (W m
-2

) (mmHg) 

10 1 initial 26/12/2010 12:00 -26.040 14.494 0 0 
      

12 1 final 28/12/2010 12:05 -26.014 9.565 0.0597 0.0430 7.31 8.71 25.30 67.54 214.65 1003.15 

17 2 initial 02/01/2011 21:00 -27.544 -3.464 0 0 
      

19 2 final 04/01/2011 13:00 -29.356 -7.200 0.2432 0.1349 8.26 9.33 26.40 74.62 220.35 1000.30 

22 3 initial 07/01/2011 12:00 -32.382 -13.704 0 0 
      

24 3 final 09/01/2011 18:00 -34.714 -18.607 0.1101 0.0891 7.87 9.08 25.81 69.47 404.71 1004.80 

25 4 initial 10/01/2011 11:13 -35.800 -19.900 0 0 
      

26 4 final 11/01/2011 14:26 -37.400 -22.800 0.0407 0.0355 8.71 11.57 26.64 71.21 380.68 1001.69 

29 5 initial 21/01/2011 18:00 -29.995 -25.448 0 0 
      

31 5 final 23/01/2011 19:00 -23.584 -26.583 0.1499 0.1036 6.34 7.00 24.14 73.99 427.01 1011.01 

33 6 initial 25/01/2011 19:45 -17.205 -27.706 0 0 
      

35 6 final 27/01/2011 16:45 -11.792 -28.598 0.1029 0.0649 5.13 5.83 22.58 68.15 472.62 1013.86 

58 7 initial 02/03/2011 09:15 79.775 -29.827 0 0 
      

60 7 final 04/03/2011 16:28 87.907 -29.717 0.0483 0.0279 6.36 6.98 21.48 69.41 271.52 1011.08 

85 8 initial 23/04/2011 18:55 -174.489 -15.902 0 0 
      

87 8 final 25/04/2011 18:59 -172.659 -11.209 0.0453 0.0257 5.88 6.57 27.92 73.94 220.35 1003.28 

95 9 initial 03/05/2011 18:40 -164.425 6.980 0 0 
      

97 9 final 05/05/2011 18:19 -162.413 11.593 0.0818 0.0707 9.73 10.78 26.30 77.84 340.11 1000.98 

115 10 initial 28/05/2011 14:00 -115.773 13.765 0 0 
      

116 10 final 29/05/2011 19:00 -113.264 13.185 0.0517 0.0326 3.81 4.81 25.04 63.99 452.94 1001.37 

120 11 initial 02/06/2011 16:10 -102.462 10.761 0 0 
      

121 11 final 03/06/2011 20:00 -99.224 10.034 0.0340 0.1269 5.03 5.75 27.08 75.43 306.89 1002.51 

0 12 initial 24/06/2011 14:00 -62.958 16.483 0 0 
      

0 12 final 25/06/2011 21:00 -59.580 17.508 0.2175 0.0413 6.58 7.245 28.12 72.32 353.86 1007.59 

* Meteorological data is used for calculations; therefore it is averaged for the measurement (whole exposition event) with data steps of second to minutes depending on the attribute.  



A5 
 

Table S1.2, Ancillary and meteorological information for the suspended aerosols samples. 

The correspondence of these samples with the simultaneous measurements of dry deposition is also indicated. 

Station 
Dry Dep 
sample 
corresp. 

Tran
sect 

Date Time  Longitude  Latitude  
Sampled 
Volume  

Aerosol 
Concen
tration  

Mean 
Wind 

velocity  

Instant 
Wind 

velocity  

Air 
Temp

.  
Humidity  

Solar 
Radiation  

Atmospheric 
Pressure  

    (UTC) (° E) (° N) (m
3
) (mg m

-3
) (m s

-1
) (m s

-1
) (°C) (%) (W m

-2
) (mmHg) 

11 1 
initial 26/12/2010 13:30 -26.031 14.504 

  
6.92 9.09 22.80 66.20 276.17 1005.53 

final 28/12/2010 13:00 -26.025 9.567 945 0.087 7.94 9.69 25.58 65.18 865.98 1005.16 

12 1 
initial 28/12/2010 13:15 -26.027 9.565 

  
5.41 6.04 21.94 65.18 1160.88 1012.91 

final 29/12/2010 21:55 -25.994 6.405 767 0.244 8.44 9.99 26.35 61.1 599.16 1001.83 

17 2 
initial 02/01/2011 12:00 -27.331 -3.028 

  
5.70 6.07 21.94 67.42 1179.60 1012.73 

final 03/01/2011 13:15 -28.181 -4.823 945 0.073 7.29 8.31 26.44 62.12 786.40 1001.83 

18 2 and 3 
initial 08/01/2011 19:02 -33.755 -16.559 

  
2.68 3.72 20.61 75.89 351.07 1012.18 

final 08/01/2011 12:30 -33.429 -15.809 960 0.163 10.26 11.51 26.64 74.87 0.00 1000.72 

23 3 
initial 08/01/2011 17:30 -33.623 -16.283 

  
6.72 7.38 20.80 74.56 79.57 1012.36 

final 09/01/2011 22:30 -35.142 -19.424 632 0.067 8.32 10.12 27.12 72.52 950.23 1000.72 

24 4 
initial 09/01/2011 23:00 -35.189 -19.514 

  
9.08 11.32 21.56 61.20 636.61 1012.36 

final 10/01/2011 20:45 -36.353 -21.835 525 0.133 8.39 9.20 27.41 72.52 1146.84 1000.72 

25 4 
initial 10/01/2011 21:15 -36.385 -21.904 

  
6.52 7.17 27.02 76.71 0.00 1004.42 

final 11/01/2011 20:45 -38.077 -23.382 275 0.331 5.42 7.20 27.12 64.67 383.83 1004.42 

30 5 
initial 20/01/2011 22:40 -31.479 -25.191 

  
7.60 8.15 27.89 75.00 0.00 1002.02 

final 21/01/2011 13:10 -30.167 -25.402 1339 0.086 4.22 4.86 26.54 63.85 1029.81 1005.71 

31 5 
initial 22/01/2011 13:35 -27.528 -25.877 

  
7.73 8.53 27.89 74.05 0.00 1001.28 

final 23/01/2011 22:00 -22.978 -26.684 1149 0.050 2.83 3.32 26.73 67.32 865.98 1004.42 

33 6 
initial 25/01/2011 18:40 -17.441 -27.666 

  
6.16 6.71 26.64 81.40 0.00 1001.28 

final 26/01/2011 20:30 -13.636 -28.328 940 0.028 5.27 6.17 25.19 71.81 0.00 1005.16 

34 6 
initial 26/01/2011 21:10 -13.487 -28.353 

  
9.86 10.86 26.64 79.36 0.00 1000.72 

final 27/01/2011 18:20 -11.452 -28.707 617 0.056 5.54 6.76 25.19 70.28 0.00 1005.34 

57 7 
initial 01/03/2011 13:15 77.418 -29.883 

  
6.87 7.99 24.62 64.47 800.44 1004.79 

final 03/03/2011 6:05 82.625 -29.799 1982 0.018 8.79 9.47 25.10 69.57 1245.14 1012.18 
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Station 
Dry Dep 
sample 
corresp. 

Tran
sect 

Date Time  Longitude  Latitude  
Sampled 
Volume  

Aerosol 
Concen
tration  

Mean 
Wind 

velocity  

Instant 
Wind 

velocity  

Air 
Temp

.  
Humidity  

Solar 
Radiation  

Atmospheric 
Pressure  

    (UTC) (° E) (° N) (m
3
) (mg m

-3
) (m s

-1
) (m s

-1
) (°C) (%) (W m

-2
) (mmHg) 

58 7 
initial 01/03/2011 6:00 76.061 -29.886 

  
5.99 7.32 25.00 62.53 500.86 1000.54 

final 03/03/2011 5:35 82.618 -29.800 927 0.035 6.38 7.05 22.80 76.50 0.00 1013.10 

59 7 
initial 03/03/2011 6:10 82.628 -29.801 

  
4.69 5.44 24.81 62.73 285.53 1000.72 

final 04/03/2011 6:20 86.256 -29.748 889 0.037 5.53 6.20 23.18 64.06 346.39 1013.65 

60 7 
initial 04/03/2011 5:58 86.252 -29.746 

  
8.05 9.97 26.16 66.61 215.32 999.06 

final 05/03/2011 5:00 89.433 -29.671 871 0.039 5.95 6.46 22.04 74.77 0.00 1012.84 

85 8 
initial 23/04/2011 13:15 -174.731 -16.341 

  
2.96 3.35 26.06 79.87 248.08 1002.57 

final 24/04/2011 12:30 -173.616 -14.028 672 0.047 5.81 6.18 22.23 73.95 0.00 1014.02 

86 8 
initial 24/04/2011 12:45 -173.598 -13.990 

  
5.95 6.53 28.57 70.38 547.67 100.17 

final 26/04/2011 12:15 -172.420 -10.069 582 0.071 3.70 4.02 22.80 63.14 294.89 1011.99 

95 9 
initial 03/05/2011 11:00 -164.578 6.515 

  
5.87 6.65 28.28 71.50 809.80 1004.23 

final 03/05/2011 20:15 -164.431 6.976 618 0.106 4.26 4.59 21.66 69.67 0.00 1013.28 

95 9 
initial 03/05/2011 20:20 -164.430 6.978 

  
6.35 7.94 28.08 72.12 0.00 1000.54 

final 04/05/2011 20:15 -163.581 9.227 902 0.118 2.63 2.92 21.75 65.38 4.67 1012.54 

96 9 
initial 04/05/2011 20:30 -163.582 9.227 

  
5.76 6.71 28.28 69.87 60.84 999.99 

final 05/05/2011 18:00 -162.411 11.592 1088 0.112 2.41 2.61 21.66 65.08 0.00 1012.73 

114 10 
initial 27/05/2011 21:45 -118.426 14.449 

  
6.12 7.30 27.70 78.54 276.17 100.72 

final 28/05/2011 22:50 -115.712 13.765 857 0.074 3.36 3.56 20.80 67.53 0.00 1012.54 

115 10 
initial 28/05/2011 23:15 -115.627 13.762 

  
6.12 7.30 27.70 78.54 276.17 100.72 

final 30/05/2011 0:05 -112.528 13.008 800 0.046 3.85 4.16 20.80 68.04 0.00 1012.36 

120 11 
initial 02/06/2011 21:48 -101.628 10.610 

  
5.68 6.14 26.93 82.52 1305.99 1004.79 

final 03/06/2011 22:30 -98.714 9.951 853 0.035 1.36 1.51 20.04 83.13 23.40 1013.47 

120 11 
initial 02/06/2011 16:45 -102.468 10.761 

  
6.77 7.39 27.79 79.05 393.20 100.72 

final 04/06/2011 0:20 -98.328 9.878 916 0.065 6.00 6.53 20.33 78.95 0.00 1013.84 

121 11 
initial 03/06/2011 23:50 -98.433 9.898 

  
5.37 6.26 27.60 80.28 781.72 1003.86 

final 04/06/2011 23:00 -95.274 9.216 883 0.030 7.82 8.74 19.95 78.24 0.00 1010.33 

122 11 
initial 04/06/2011 23:00 -95.274 9.216 

  
4.01 4.37 29.73 66.61 1118.75 1007 

final 05/06/2011 15:40 -93.139 8.792 551 0.090 5.33 7.06 20.23 89.56 0.00 999.80 
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Station 
Dry Dep 
sample 
corresp. 

Tran
sect 

Date Time  Longitude  Latitude  
Sampled 
Volume  

Aerosol 
Concen
tration  

Mean 
Wind 

velocity  

Instant 
Wind 

velocity  

Air 
Temp

.  
Humidity  

Solar 
Radiation  

Atmospheric 
Pressure  

    (UTC) (° E) (° N) (m
3
) (mg m

-3
) (m s

-1
) (m s

-1
) (°C) (%) (W m

-2
) (mmHg) 

122 11 
initial 04/06/2011 20:20 -95.796 9.330 

  
7.35 7.95 27.99 73.54 177.87 1009.59 

final 07/06/2011 17:30 -87.839 7.174 789 0.024 7.29 8.05 20.14 74.97 0.00 1010.14 

0** 12 
initial 24/06/2011 16:25 -62.491 16.577 

  
7.69 8.52 27.41 72.93 60.84 1008.3 

final 25/06/2011 13:00 -59.831 17.427 818 0.075 4.34 4.94 21.85 68.24 0.00 1004.60 

131 12 
initial 25/06/2011 10:20 -59.829 17.427 

  
11.05 12.25 27.5 72.52 332.34 1009.77 

final 26/06/2011 11:00 -57.812 18.064 820 0.069 5.56 6.24 22.04 66.71 1179.60 1012.73 

 

* Meteorological data is not used for calculations, therefore only starting and ending values are included. 

** No station (no stop) was done when this sample was gathered. 
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Figure S1.1, Air mass back trajectories for the low atmosphere. 

The back trajectories were calculated using the NOAA Hysplit model for the 12 end locations of the Dry Deposition measures. Blue lines 

correspond to the 48 hours backwards trajectories of the air masses at 30, 200 and 500 meters above sea level. 
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Figure S1.2, Air mass back trajectories for the upper atmospheric boundary layer. Back trajectories are shown for two characteristic 

dry deposition samples (Samples 4 and 7). 

In sample 4 (located in east south Atlantic, offshore Brazil), some of upper air masses are originated in Brazilian inland and coastal zone, 

facilitating then the distribution of industrial and urban (particularly heavily populated in this area) aerosols along the entire air column by 

deposition. Left panel shows the air masses during the sampling at 800 m above sea level for this sample. 

Sample 7 (located in the central Indian Ocean) was affected by a previous strong storm and wind coming from Southern East Asia, especially in 

the upper layers of the lower atmosphere above the boundary layer (2000 m). The central panel shows the 96 hours back trajectories and it can 

be observed starting points of the trajectories coming from the south and southwest. Right panel shows the evolution of the air masses during 

two previous days of the sampling at 800 m, showing as well upper intrusion of South East originated air masses, particularly at the heights of 

low clouds formation and from the North East. 

 

 

Brazil 
South 

Atlantic 

Ocean 

Indian Ocean Indian Ocean 

A
u

stra
lia

 



A10 
 

Table S1.3, Information on the Mass Spectrometer method. 

PAH Species Type Molecular ion Confirmation ion RT Calibration reference 

Fluoranthrene nat 202 - 25.12 
 Pyrene D10 is 212 - 26.51 
 Pyrene nat 202 - 26.60 
 Trymethylphenanthrene (12 isom) ni 220 205 29.30 Phenanthrene 

Methylpyrene (1) ni 216 215 28.92 Pyrene 

Methylpyrene (2) ni 216 215 29.53 Pyrene 

Methylpyrene (3) ni 216 215 29.97 Pyrene 

Methylpyrene (4+5) ni 216 215 30.90 Pyrene 

P-therpenyl D14 is 244 - 28.90 
 Dimethylpyrene (1+2+3+4) ni 230 215 32.79 Pyrene 

Dimethylpyrene (5+6) ni 230 215 34.40 Pyrene 

Dimethylpyrene (7+8) ni 230 215 35.01 Pyrene 

Benzo(ghi)Fluoranthrene ni 226 113 34.32 Benzo(a)Anthracene 

Benzo(a)Anthracene nat 228 226 35.92 
 Chrysene D12 surr 240 - 36.06 
 Chrysene nat 228 226 36.18 
 Methylchrysene (1+2) ni 242 119 39.57 Chrysene 

Benzo(b)Fluoranthrene D12 is 264 - 42.68 
 

Benzo(b+k)Fluoranthrene nat 252 250 42.80 
 Benzo(e)Pyrene ni 252 126 43.85 Benzo(a)Pyrene 

Benzo(a)Pyrene nat 252 250 43.98 
 Perylene D12 surr 264 264 44.22 Benzo(a)Pyrene 

Perylene ni 252 250 44.33 
 Indeno (1,2,3-cd)Pyrene nat 276 277 47.52 
 Dibenzo(a,h)Anthracene nat 278 276 47.67 
 Benzo(ghi)perylene nat 276 277 48.18 
  

Type column identifies recovery standards (surro), internal standards (is), native species with standard in 

the calibration curve (nat) and native without self-calibration standard (ni). For those last, calibration curve 

reference is pointed in the table. RT means retention time.  
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Table S1.4, Field blanks for the dry deposited aerosols samples. 

 

DL 
Blank 
coarse 

Blank  
fine 

Samples 
over QL 
coarse 

Samples 
over QL 

fine 

 

(ng/sample) (ng/sample) (ng/sample) (%) (%) 

Fluoranthene 0.02 0.02 0.05 94 100 

Pyrene 0.02 0.01 0.05 100 91 

Methylpyrene  0.02 0.00 0.00 100 100 

Dimethylpyrene  0.02 0.00 0.00 100 100 

Benzo(ghi)Fluoranthene 0.02 0.00 0.00 100 100 

Benzo(a)Anthracene 0.02 0.10 0.14 100 100 

Chrysene 0.02 0.02 0.06 100 100 

Methylchrysene  0.02 0.36 1.88 100 100 

Benzo(b+k)Fluoranthene 0.02 0.28 0.00 100 100 

Benzo(e)Pyrene 0.02 0.00 0.00 100 100 

Benzo(a)Pyrene 0.02 0.35 0.54 100 100 

Perylene 0.02 0.00 0.00 100 100 

Indeno(1,2,3-cd)Pyrene 0.02 0.00 0.00 100 100 

Dibenzo(a,h)Anthracene 0.02 0.00 0.00 100 100 

Benzo(ghi)perylene 0.02 0.00 0.00 100 100 
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Table S1.5, Field blanks for the suspended aerosol samples. 

 
DL Lab Blank 

Field 
Blank 

Samples 
over QL 

 
(ng/sample) (ng/sample) (ng/sample) (%) 

Fluoranthene 0.02 nd 0.02 100 

Pyrene 0.02 nd 0.05 100 

Methylpyrene  0.02 nd nd 100 

Dimethylpyrene  0.02 nd 0.23 100 

Benzo(ghi)Fluoranthene 0.02 nd nd 100 

Benzo(a)Anthracene 0.02 nd 0.25 100 

Chrysene 0.02 nd 0.02 100 

Methylchrysene  0.02 nd 0.12 97 

Benzo(b+k)Fluoranthene 0.02 nd 1.16 100 

Benzo(e)Pyrene 0.02 nd nd 100 

Benzo(a)Pyrene 0.02 nd nd 100 

Perylene 0.02 nd nd 100 

Indeno(1,2,3-cd)Pyrene 0.02 nd nd 100 

Dibenzo(a,h)Anthracene 0.02 nd nd 100 

Benzo(ghi)Perylene 0.02 nd nd 100 
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Table S1.6, Surrogate recoveries for the dry deposited aerosol samples. 

 

 
Station 

Aerosol 
fraction 

Chrysene D12 Perylene D12 

 
(initial-final) 

 
% recovery % recovery 

1 10-12 
coarse 112.5 121.0 

fine 59.0 104.9 

2 17-19 
coarse 63.0 112.1 

fine 51.0 89.2 

3 22-24 
coarse 521.3* 340.7* 

fine 64.2 118.4 

4 25-26 
coarse 120.8 203.0 

fine 42.9 77.7 

5 29-31 
coarse 184.7 147.0 

fine 78.3 124.3 

6 33-35 
coarse 70.0 128.3 

fine 70.8 124.7 

7 58-60 
coarse 69.7 112.8 

fine 56.2 65.7 

8 85-87 
coarse 21.2 28.2 

fine 41.9 78.6 

9 95-97 
coarse 79.8 129.4 

fine 69.2 120.3 

10 115-116 
coarse 75.1 128.1 

fine 0.0** 0.0** 

11 120-121 
coarse 84.6 140.0 

fine 139.1 114.7 

12 0-0 
coarse 81.8 136.3 

fine 0.0* 0.0* 

* 13 coarse sample was spiked wrongly due to an error during the extraction process 

**fine aerosol 10 and 12 samples were not surrogate marked 

Both anomalies did not account for the mean calculations. 
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Table S1.7, Surrogate recoveries for the suspended aerosol samples. 

Dry Deposition 
correspondence 

Station Sample Chrysene D12 Perylene D12 

   

% recovery % recovery 

1 11 MH013K011FPOP 95.20 101.14 

2 17 MH019K017FPOP 109.73 110.93 

3 23 MH025K023FPOP 87.90 88.84 

4 24 MH026K024FPOP 119.17 114.29 

4 25 MH027K025FPOP 102.86 100.03 

5 30 MH039K030FPOP 119.03 123.68 

5 31 MH040K031FPOP 122.74 129.47 

6 33 MH042K033FPOP 102.86 105.31 

6 34 MH043K034FPOP 127.75 134.19 

7 36 MH045K036FPOP 71.82 75.50 

7 37 MH046K037FPOP 102.38 95.45 

7 38 MH047K038FPOP 114.25 132.73 

8 40 MH049K040FPOP 107.08 132.29 

8 41 MH050K041FPOP 40.16 48.45 

9 57 MH077K057FPOP 93.91 112.13 

9 58 MH078K058FPOP 67.06 64.05 

9 59 MH079K059FPXX 97.96 105.01 

9 60 MH080K060FPOP 120.16 130.47 

10 85 MH129K085FPOP 94.37 112.47 

10 86 MH130K086FPOP1 97.45 109.26 

11 95 MH139K095FPOP1 88.44 116.07 

11 95 MH139K095FPOP3 95.10 109.89 

11 96 MH140K096FPOP2 91.45 108.27 

12 114 MH163K114FPOP1 100.18 110.34 

12 115 MH164K115FPOP1 96.83 104.74 

13 120 MH169K120FPOP1 72.50 82.58 

13 120 MH169K120FPOP2 92.60 119.51 

13 121 MH170K121FPOP1 91.98 104.60 

13 122 MH171K122FPOP1 90.17 103.18 

13 122 MH171K122FPOP2 93.32 121.11 

14 000 MH192K000FPOP1 104.25 117.28 

14 131 MH193K131FPOP1 102.59 115.35 
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Table S1.8, Dry deposition fluxes (FDD) measured for aerosols (g m-2d-1) and PAHs (ng m-2d-1). 
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  (g m
-2

day
-1

) (ng m
-2

day
-1
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1 
coarse 2.22 5.90 15.00 19.29 3.35 0.00 0.00 0.00 0.00 3.11 3.08 15.33 0.00 0.00 4.46 3.76 3.08 

fine 0.07 0.00 0.19 0.21 1.12 0.43 0.23 0.21 0.11 0.30 0.14 0.07 0.09 0.07 0.39 0.14 0.73 

2 
coarse 0.29 0.04 0.25 0.60 0.62 0.44 0.55 0.39 0.12 0.67 0.62 0.60 0.66 0.34 0.66 0.87 1.45 

fine 0.16 0.00 0.14 0.19 0.70 0.29 0.23 0.19 0.09 0.60 0.50 0.21 0.13 0.14 0.74 0.52 0.92 

3 
coarse 0.03 1.03 0.09 0.17 0.14 0.16 0.06 0.16 0.02 0.18 0.07 2.28 0.49 0.02 0.34 0.62 2.07 

fine 0.08 0.00 0.07 0.10 0.37 0.15 0.12 0.09 0.04 0.19 0.10 0.04 0.02 0.05 0.37 0.07 0.63 

4 
coarse 0.21 1.04 1.59 2.10 0.92 0.02 0.31 0.32 0.07 0.92 0.73 3.50 0.36 0.44 0.71 1.06 6.00 

fine 0.16 0.00 0.29 0.33 1.67 0.66 0.42 0.33 0.16 0.69 0.35 0.16 0.15 0.19 1.72 0.35 1.60 

5 
coarse 0.06 0.18 0.25 0.46 0.48 0.14 0.13 0.18 0.05 0.32 0.38 0.58 0.28 0.08 0.38 0.58 2.07 

fine 0.04 0.00 0.12 0.14 0.72 0.26 0.15 0.10 0.07 0.25 0.13 0.04 0.01 0.05 0.31 0.07 0.83 

6 
coarse 0.05 0.06 0.14 0.25 0.23 0.17 0.09 0.09 0.04 0.19 0.10 0.03 0.03 0.20 0.34 0.06 1.36 

fine 0.13 0.13 0.13 0.13 0.57 0.21 0.11 0.09 0.06 0.14 0.08 0.04 0.03 0.06 0.33 0.07 0.79 

7 
coarse 0.05 0.20 0.15 0.24 0.45 0.32 0.29 0.22 0.05 0.29 0.17 0.15 0.13 0.06 0.28 0.22 0.74 

fine 0.03 0.00 0.04 0.07 0.14 0.09 0.08 0.07 0.04 0.08 0.05 0.03 -0.01 0.05 0.33 0.06 0.73 

8 
coarse 0.98 9.47 0.00 7.26 2.01 0.00 0.00 0.00 0.00 0.00 0.87 0.00 0.00 1.94 0.00 0.00 0.00 

fine 0.04 0.00 0.08 0.10 0.22 0.13 0.10 0.07 0.05 0.12 0.09 0.05 0.00 0.09 0.49 0.11 0.88 

9 
coarse 0.04 0.18 0.15 0.21 0.27 0.37 0.94 1.97 0.07 1.14 0.89 0.41 0.45 0.24 1.07 1.42 1.70 

fine 0.04 0.00 0.15 0.26 0.71 0.40 0.47 0.44 0.09 0.47 0.39 0.41 0.32 0.17 0.86 0.82 4.37 

10 
coarse 0.07 0.12 0.11 0.15 0.54 0.30 0.22 0.16 0.07 0.30 0.19 0.17 0.12 0.09 0.54 0.24 1.43 

fine 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.15 0.02 0.00 0.00 0.00 0.00 0.04 0.00 0.00 

11 
coarse 0.09 1.42 0.18 0.25 0.93 0.38 0.29 0.28 0.09 0.54 0.22 0.22 0.16 0.12 0.51 0.31 1.96 

fine 0.27 4.55 0.39 0.56 0.35 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 3.57 

12 
coarse 0.09 0.00 0.14 0.26 0.75 0.40 0.46 0.37 0.09 1.09 0.82 0.36 0.45 0.18 0.93 1.09 1.57 

fine 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Figure S1.3, Mean dry deposition fluxes (FDD) for individual PAHs in the coarse and fine 

deposited fractions (ng m-2d-1). 
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Figure S1.4, Aerosol dry deposition fluxes (FDD) in the Global Oceans (g m-2d-1). 
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Table S1.9, Organic Carbon concentrations in the deposited particles (OC%) and their dry 

deposition fluxes (FDD OC; mg m-2d-1) 

 

Sample 
OC  

(% mass in sample) 

 coarse fine 

1 0.56 0.37 

2 0.00* 0.00* 

3 0.56 0.23 

4 3.34 0.95 

5 0.00* 0.00* 

6 0.68 0.69 

7 0.64 0.48 

8 1.53 0.97 

9 0.00* 0.60* 

10 1.74 2.11 

11 1.19 0.79 

12 1.19 0.38 

 

* The value is set to 0.00% when the value was detection limit (<0.10%) 
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Table S1.10, Concentrations of PAHs in dry deposited fine and coarse aerosols (CDD , ng g-1) 
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(g) (ng g

-1
)  

1 
coarse 0.0825 75.390 74.709 371.537 nd nd 108.113 91.053 74.722 53.025 nd 60.375 nd 76.489 72.567 71.763 1129.74

2 
fine 0.0674 9.037 4.178 1.992 2.558 2.018 11.486 4.047 21.700 22.160 2.861 28.068 1.250 25.033 26.271 8.941 171.601 

2 
coarse 0.1915 5.844 5.380 5.235 5.746 2.967 5.735 7.580 12.579 20.017 9.028 25.194 2.665 10.437 9.647 5.896 133.951 

fine 0.0956 10.528 8.775 3.576 2.208 2.479 12.914 9.039 16.069 24.603 9.514 29.929 4.349 25.071 22.374 11.157 192.584 

3 
coarse 0.1948 2.092 0.830 26.332 5.698 0.238 3.878 7.106 23.920 2.298 3.002 5.013 0.464 1.470 1.376 1.272 84.989 

fine 0.1681 2.550 1.311 0.493 0.282 0.684 4.892 0.986 8.488 7.998 0.252 9.538 0.443 9.064 9.551 2.994 59.525 

4 
coarse 0.1061 9.668 7.726 36.835 3.734 4.665 7.421 11.138 63.074 13.662 12.796 25.229 3.192 26.039 5.212 25.722 256.114 

fine 0.0760 10.101 5.097 2.398 2.132 2.839 25.278 5.209 23.483 30.016 5.179 36.399 2.147 34.376 32.086 15.093 231.832 

5 
coarse 0.0924 6.851 7.974 12.331 5.862 1.608 8.034 12.389 43.820 6.958 5.505 11.028 1.924 6.943 nd 6.768 137.994 

fine 0.0674 7.315 3.654 1.203 0.251 1.560 8.978 2.073 24.076 16.995 0.491 19.516 1.241 18.709 19.581 6.244 131.886 

6 
coarse 0.2883 1.223 0.650 0.207 0.175 1.319 2.202 0.391 8.841 8.222 0.049 5.026 0.290 nd 5.143 1.523 35.262 

fine 0.1660 1.610 0.960 0.503 0.318 0.621 3.731 0.762 8.931 7.034 nd 8.499 0.362 nd 8.813 2.600 44.702 

7 
coarse 0.1422 4.748 2.826 2.465 2.036 0.968 4.552 3.544 11.982 9.959 3.007 12.941 1.093 10.823 10.817 4.680 86.442 

fine 0.0755 2.338 1.647 0.992 nd 1.673 9.932 1.812 22.373 19.406 nd 23.553 0.540 nd nd 7.161 90.993 

8 
coarse 0.0977 nd 17.738 nd nd 39.736 nd nd nd nd nd nd nd nd nd nd 57.474 

fine 0.0498 4.855 3.487 1.909 nd 3.532 19.741 4.328 35.437 40.503 0.659 48.707 1.703 46.476 nd 15.071 226.362 

9 
coarse 0.0824 13.655 10.698 4.897 5.385 2.915 12.784 16.983 20.323 18.577 8.945 23.894 1.526 16.707 16.416 6.669 180.374 

fine 0.0638 7.222 5.999 6.369 4.982 2.641 13.214 12.602 67.565 25.025 13.380 36.010 4.661 25.666 25.068 13.844 264.248 

10 
coarse 0.0545 6.655 4.210 3.783 2.736 2.070 12.015 5.327 31.678 23.290 3.701 28.473 3.052 24.716 25.676 8.953 186.335 

fine 0.0389 0.689 nd nd nd nd 1.210 nd nd nd nd 0.728 nd nd nd 11.600 14.228 

11 
coarse 0.0423 15.419 6.324 6.453 4.574 3.385 14.725 8.853 56.381 28.402 8.565 36.093 2.812 29.367 30.161 13.844 265.358 

fine 0.1534 0.969 nd nd nd nd nd nd 28.293 nd nd nd nd nd nd nd 29.263 

12 
coarse 0.0587 23.897 17.948 7.902 9.827 3.941 20.398 24.007 34.639 31.650 25.605 45.955 7.180 32.201 25.380 21.500 332.031 

fine 0.0485 nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd 
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Figure S1.5, PAHs concentration in dry deposited aerosol (CDD, ng g-1) for the a) fine 

fraction and b) coarse fraction. 
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Table S1.11, Concentrations of individual PAHs in the suspended aerosols (CA, ng m-3) 
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3
) (mg m

-3
) (ng m

-3
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1 11 945 0.087 0.207 0.185 0.077 0.116 0.034 0.085 0.083 0.001 0.074 0.024 0.057 0.035 0.010 0.027 0.016 0.039 1.069 

2 17 945 0.073 0.071 0.062 0.014 0.045 0.017 0.025 0.026 0.001 0.021 0.006 0.020 0.008 0.003 0.007 0.003 0.011 0.339 

3 23 632 0.067 0.474 0.404 0.090 0.311 0.181 0.305 0.294 0.005 0.256 0.080 0.218 0.148 0.044 0.087 0.048 0.129 3.073 

4 24 525 0.133 0.126 0.111 0.022 0.086 0.027 0.043 0.045 0.002 0.034 0.010 0.026 0.014 0.005 0.019 0.005 0.022 0.596 

4 25 275 0.331 0.365 0.381 0.102 0.532 0.004 0.155 0.227 0.005 0.094 0.023 0.079 0.032 0.011 0.021 0.009 0.035 2.077 

5 30 1339 0.086 0.059 0.047 0.011 0.038 0.014 0.019 0.022 0.001 0.026 0.007 0.021 0.007 0.003 0.015 0.003 0.021 0.313 

5 31 1149 0.050 0.040 0.031 0.015 0.031 nd 0.015 0.015 0.001 0.012 0.003 0.009 0.005 0.001 0.004 0.002 0.005 0.189 

6 33 940 0.028 0.052 0.040 0.017 0.039 0.017 0.016 0.019 0.001 0.014 0.004 0.011 0.005 0.003 0.004 0.002 0.005 0.249 

6 34 617 0.056 0.072 0.057 0.026 0.066 0.001 0.026 0.029 0.001 0.021 0.006 0.016 0.005 0.002 0.005 0.002 0.006 0.342 

7 33 1982 0.018 0.010 0.012 0.003 0.025 0.001 0.002 0.004 0.001 0.003 0.001 0.004 0.001 nd 0.001 nd 0.003 0.071 

7 37 927 0.035 0.501 0.613 0.448 0.834 0.131 0.907 0.858 0.013 0.662 0.194 0.481 0.335 0.092 0.174 0.007 0.272 6.524 

7 59 889 0.037 0.114 0.114 0.001 0.002 nd 0.120 0.115 nd 0.116 0.106 0.001 0.111 nd 0.116 0.120 0.109 1.145 

7 60 871 0.039 0.061 0.092 0.028 0.191 0.066 0.018 0.028 0.007 0.021 0.004 0.027 0.010 0.003 0.007 0.003 0.024 0.592 

8 85 672 0.047 0.067 0.059 0.016 0.075 0.001 0.060 0.066 0.002 0.078 0.021 0.072 0.021 0.009 0.026 0.012 0.041 0.625 

8 86 582 0.071 0.059 0.050 0.022 0.042 0.001 0.025 0.023 0.001 0.022 0.007 0.016 0.009 0.003 0.005 0.002 0.008 0.295 

9 95 618 0.106 0.105 0.089 0.037 0.062 0.032 0.039 0.037 0.001 0.033 0.009 0.028 0.015 0.005 0.011 0.005 0.015 0.522 

9 96 902 0.118 0.016 0.016 0.008 0.013 nd 0.010 0.008 nd 0.010 0.002 0.009 0.003 0.002 0.004 0.001 0.005 0.108 

9 114 1088 0.112 0.026 0.024 0.012 0.022 0.011 0.016 0.015 nd 0.016 0.005 0.015 0.010 0.003 0.006 0.003 0.010 0.194 

10 114 857 0.074 0.028 0.024 0.012 0.021 0.011 0.014 0.012 0.001 0.014 0.004 0.012 0.005 0.002 0.005 0.002 0.007 0.173 

10 115 800 0.046 0.051 0.043 0.016 0.034 nd 0.016 0.020 0.001 0.014 0.003 0.011 0.005 0.001 0.003 0.001 0.004 0.224 

11 120 853 0.035 0.050 0.042 0.016 0.035 0.011 0.014 0.019 0.001 0.016 0.005 0.012 0.006 0.002 0.006 0.002 0.008 0.243 

11 120 916 0.065 0.046 0.040 0.017 0.028 nd 0.015 0.017 0.001 0.013 0.004 0.011 0.006 0.002 0.004 0.002 0.005 0.211 

11 121 883 0.030 0.023 0.031 0.010 0.065 0.001 0.005 0.008 0.002 0.007 0.002 0.009 0.003 0.001 0.003 0.001 0.008 0.181 
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11 122 551 0.090 0.100 0.086 0.033 0.063 0.001 0.034 0.040 0.001 0.034 0.009 0.028 0.010 0.002 0.014 0.003 0.021 0.477 

11 122 789 0.024 0.071 0.065 0.028 0.049 0.027 0.024 0.030 nd 0.022 0.007 0.018 0.011 0.003 0.007 0.003 0.010 0.375 

12 0 818 0.075 0.007 0.010 0.004 0.020 0.001 0.002 0.002 0.001 0.002 0.001 0.002 0.001 nd 0.001 nd 0.002 0.055 

12 131 820 0.069 0.048 0.042 0.018 0.028 nd 0.013 0.014 0.001 0.011 0.003 0.010 0.005 0.002 0.004 0.002 0.005 0.205 

 

Figure S1.6, Concentrations of PAHs in suspended aerosol (CA, ng m-3) in the Global Oceans 
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Figure S1.7, Individual PAHs profile in suspended aerosols (CA, ng m-3). 

Bars show the standard deviation (SD) of the deposition measures in the signed ocean. Indian 

Ocean only holds one measurement, thus with no SD bar. 
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Table S1.12, Estimated dry deposition velocity (vD, cm s-1) of suspended aerosol-bound PAHs 
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1 0.019 0.020 0.232 0.001 0.002 0.066 0.054 3.016 0.035 0.002 0.114 0.005 0.170 0.287 0.097 

2 0.021 0.021 0.068 0.020 0.033 0.065 0.063 2.860 0.159 0.094 0.630 0.199 0.425 1.069 0.142 

3 0.001 0.000 0.030 0.002 0.000 0.003 0.003 0.634 0.003 0.001 0.009 0.002 0.011 0.020 0.003 

4 0.009 0.006 0.086 0.002 0.039 0.034 0.015 2.941 0.056 0.041 0.283 0.073 0.286 0.467 0.151 

5 0.013 0.015 0.056 0.010 0.019 0.047 0.041 5.315 0.042 0.020 0.236 0.077 0.113 0.330 0.046 

6 0.006 0.005 0.004 0.001 0.028 0.038 0.006 2.831 0.101 0.000 0.347 0.035 0.000 0.940 0.099 

9 0.003 0.002 0.002 0.001 0.003 0.004 0.002 0.368 0.008 0.002 0.025 0.005 0.019 0.197 0.009 

10 0.002 0.016 0.002 0.000 0.146 0.018 0.004 1.095 0.034 0.001 0.124 0.014 0.171 0.000 0.039 

11 0.073 0.063 0.084 0.043 0.060 0.151 0.200 13.301 0.197 0.138 0.722 0.214 0.642 1.378 0.198 

12 0.007 0.005 0.012 0.004 0.018 0.045 0.014 2.701 0.064 0.017 0.288 0.097 0.264 1.015 0.148 

13 0.008 0.003 0.007 0.002 0.010 0.018 0.009 2.632 0.029 0.012 0.111 0.029 0.106 0.351 0.030 

14 0.029 0.024 0.025 0.019 0.028 0.078 0.089 0.177 0.110 0.126 0.472 0.214 0.448 0.852 0.234 

0
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Table S1.13, Vapor pressures (PL) for individual PAHs used in this work. 

 

Compound PL  

 [Pa] 

Fluoranthrene 0.00598 

Pyrene  

Benzo(g,h,i)fluoranthrene 0.00000755 

Benzo(a)anthracene  

Chrysene 0.00017 

Benzo(b+k)fluoranthrene 0.00000896 

Benzo(e)pyrene  

Benzo(a)pyrene 0.0000059 

Perylene 0.00000488 

Dibenzo(a,h)anthracene 0.000000344 

Benzo(g,h,i)perylene 0.000000428 

 

Adapted from Lei et al. 20021, Super-cooled Liquid vapor Pressure at 25ºC. 

 

  

                                                             
1 Lei, Y. D.; Chankalal, R.; Chan, A.; Wania, F., Supercooled liquid vapor pressures of the 
polycyclic aromatic hydrocarbons. Journal of Chemical and Engineering Data 2002, 47, (4), 
801-806. 
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Table S1.14, Spearman correlation data between PAHs dry deposition velocity 

(vD) for each sampling period versus compound specific vapor pressure (PL) 

Rho Spearman test  Log(PL) 

vD 1 

P -.382 

Sig. (two-tailed) .247 

N 11 

vD 2 

P -.827** 

Sig. (two-tailed) .002 

N 11 

vD 3 

P -.627* 

Sig. (two-tailed) .039 

N 11 

vD 4 

P -.936** 

Sig. (two-tailed) .000 

N 11 

vD 5 

P -.736** 

Sig. (two-tailed) .010 

N 11 

vD 6 

P -.709* 

Sig. (two-tailed) .015 

N 11 

vD 7 

P -.755** 

Sig. (two-tailed) .007 

N 11 

vD 8 

P -.127 

Sig. (two-tailed) .709 

N 11 

vD 9 

P -.673* 

Sig. (two-tailed) .023 

N 11 

vD 10 

P -.900** 

Sig. (two-tailed) .000 

N 11 

vD 11 

P -.882** 

Sig. (two-tailed) .000 

N 11 

vD 12 

P -.827** 

Sig. (two-tailed) .002 

N 11 
**. Correlation is significant at level 0.01 (two-tailed). 
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*. Correlation is significant at level 0.05 (two-tailed).  
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Table S1.15, Spearman correlations between PAHs concentration in the fine 

fraction of the dry deposited aerosols (CDDfine) and wind speed (U10) 

Rho Spearman Mean U10 

 

Fluoranthrene_CDDfine P .692
*
 

Sig. (bilateral) .013 

N 12 

Pyrene_ CDDfine P .803
**
 

Sig. (bilateral) .002 

N 12 

Methylpyrene_ CDDfine P .796
**
 

Sig. (bilateral) .002 

N 12 

Dimethylpyrene_ CDDfine P .542 

Sig. (bilateral) .069 

N 12 

Benzo(ghiFluoranthrene_ CDDfine P .746
**
 

Sig. (bilateral) .005 

N 12 

Benzo(a)Anthracene_ CDDfine P .774
**
 

Sig. (bilateral) .003 

N 12 

Chrysene_ CDDfine P .810
**
 

Sig. (bilateral) .001 

N 12 

Methylchrysene_ CDDfine P .315 

Sig. (bilateral) .318 

N 12 

Benzo(b+k)Fluoranthrene_ CDDfine P .746
**
 

Sig. (bilateral) .005 

N 12 

Benzo(e)Pyrene_ CDDfine P .732
**
 

Sig. (bilateral) .007 

N 12 

Benzo(a)Pyrene_ CDDfine P .739
**
 

Sig. (bilateral) .006 

N 12 

Perylene_ CDDfine P .810
**
 

Sig. (bilateral) .001 

N 12 

Indeno(123-cd)Pyrene_ CDDfine P .682
*
 

Sig. (bilateral) .015 
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Rho Spearman Mean U10 

N 12 

Dibenzo(ah)Anthracene_ CDDfine P .689
*
 

Sig. (bilateral) .013 

N 12 

Benzo(ghi)Perylene_ CDDfine P .627
*
 

Sig. (bilateral) .029 

N 12 

**. Correlation is significant at level 0.01 (two-tailed). 

*. Correlation is significant at level 0.05 (two-tailed).  
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Table S1.16, Spearman correlations between PAHs dry deposition flux 

associated to fine particles (FDDfine) and wind speed (U10) 

Rho Spearman Mean U10 

Fluoranthrene_ FDDfine 

P .657* 

Sig. (bilateral) .020 

N 12 

Pyrene_ FDDfine 

P .657* 

Sig. (bilateral) .020 

N 12 

Methylpyrene_ FDDfine 

P .664* 

Sig. (bilateral) .019 

N 12 

Dimethylpyrene_ FDDfine 

P .618* 

Sig. (bilateral) .032 

N 12 

Benzo(ghi)Fluoranthrene_ FDDfine 

P .695* 

Sig. (bilateral) .012 

N 12 

Benzo(a)Anthracene_ FDDfine 

P .649* 

Sig. (bilateral) .022 

N 12 

Chrysene_ FDDfine 

P .638* 

Sig. (bilateral) .026 

N 12 

Methylchrysene_ FDDfine 

P .523 

Sig. (bilateral) .081 

N 12 

Benzo(b+k)Fluoranthrene_ FDDfine 

P .644* 

Sig. (bilateral) .024 

N 12 

Benzo(e)Pyrene_ FDDfine 

P .692* 

Sig. (bilateral) .013 

N 12 

Benzo(a)Pyrene_ FDDfine 

P .601* 

Sig. (bilateral) .039 

N 12 

Perylene_ FDDfine 

P .678* 

Sig. (bilateral) .015 

N 12 

Indeno123cdpyrene_ FDDfine 

P .702* 

Sig. (bilateral) .011 

N 12 

Dibenzoahanthracene_ FDDfine 

P .591* 

Sig. (bilateral) .043 

N 12 
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Rho Spearman Mean U10 

   

Benzoghiperylene_ FDDfine 

P .326 

Sig. (bilateral) .301 

N 12 

*. Correlation is significant at level 0.05 (two-tailed). 
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Table S1.17, Pearson’s correlation between PAHs dry deposition velocity slopes 

when plotted against vapor pressure (slope VDDfine) versus wind speed (U10) 

Slopes are obtained from S14 per each measurement. In this case parametric statistics 

are applied as the slope is already normalized within the logarithmic plotting in S14. 

 

Pearson correlation Mean U10 

Slope 

P -.638
*
 

Sig. (bilateral) .026 

N 12 

*. Correlation is significant at level 0.05 (two-tailed). 

 
Table S1.18, Parameterization of the deposition velocity versus physic and 

biochemical parameters using least squares multiple parametric linear 

regression. 

Parameters include: vapor pressure (LogPL), wind speed (U10) and chlorophyll a 

concentrations ate the sea surface (Chls). The term U10xChls accounts for the 

interaction of wind speed and chlorophyll a concentration at surface. 

Coefficient
s
  

Model Not standardized 

Coefficients  

Standardized 

Coefficients 

t Sig. R square B Typical Error β 

1 

(Constant) -3.082 .197  -15.656 .000 .365
a
 

LogPL -.261 .038 -.479 -6.826 .000  

U10xChls .387 .074 .368 5.243 .000  

a. Dependent Variable: logvD  

Coefficient
s
  

Model Not standardized 

Coefficients 

Standardized 

Coefficients 

t Sig. R square B Typical Error β 

1 

(Constant) -3.269 .307  -10.645 .000 .227
b
 

LogPL -.287 .060 -.373 -4.819 .000  

U10xChls .442 .115 .297 3.840 .000  

b. Dependent Variable: logvDfine  

Coefficient
s
  

Model Not standardized 

Coefficients 

Standardized 

Coefficients 

t Sig. R square B Typical Error β 

1 
(Constant) -2.973 .240  -12.402 .000 .503

c
 

LogPL -.253 .047 -.415 -5.450 .000  
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U10xChls .337 .090 .285 3.749 .000  

c. Dependent Variable: logvDcoarse  

Table S1.19, Parameterization of the deposition velocity (vD) versus vapor 

pressure (PL) using least squares multiple parametric linear regression. 

 

 Coefficient 
a
 

Model Not standardized Coefficients Standardized 

Coefficients 

t Sig. R square B Typical Error β 

1 
(Constant) -2.670 .198  -13.483 .000 .229 

LogPL -.261 .042 -.479 -6.222 .000  

a. Dependent Variable: logvD 

Coefficient 
b
  

Model Not standardized Coefficients Standardized 

Coefficients 

t Sig. R square B Typical Error β 

1 
(Constant) -2.798 .296  -9.452 .000 .139 

LogPL -.287 .063 -.373 -4.583 .000  

b. Dependent Variable: logvDfine  

Coefficient 
c
  

Model Not standardized Coefficients Standardized 

Coefficients 

t Sig. R square B Typical Error β 

1 
(Constant) -2.614 .231  -11.339 .000 .172 

LogPL -.253 .049 -.415 -5.196 .000  

c. Dependent Variable: logvDcoarse 
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2. HIGH ATMOSPHERE-OCEAN EXCHANGE OF SEMIVOLATILE 

AROMATIC HYDROCARBONS  
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Table S2.1. Mean concentrations of PAHs per ocean in each analyzed matrix 

 Gas Phase (ng m-3)  Aerosol Phase (ng m-3)  Dissolved Phase (ng L-1) 

 
Atlantic 
North 

Atlantic 
South 

Pacific 
North 

Pacific 
South 

Indian  
Atlantic 
North 

Atlantic 
South 

Pacific 
North 

Pacific 
South 

Indian  
Atlantic 
North 

Atlantic 
South 

Pacific 
North 

Pacific 
South 

Indian 

Naphthalene 0.072 0.105 0.080 0.144 0.179  0.001 0.001 0.000 0.001 0.004  0.029 0.018 0.019 0.031 0.024 

Methylnaphthalenes 0.000 0.000 0.000 0.000 0.000  0.001 0.009 0.000 0.001 0.001  0.131 0.140 0.062 0.110 0.074 

Dimethylnaphthalenes 0.146 0.730 0.041 1.120 0.470  0.001 0.001 0.000 0.001 0.001  0.289 0.133 0.150 0.270 0.150 

Acenaphtylene 0.198 0.144 0.176 0.135 0.086  0.003 0.004 0.005 0.007 0.020  0.030 0.146 0.004 0.001 0.001 

Acenaphtene 0.048 0.085 0.059 0.076 0.112  0.000 0.001 0.000 0.001 0.005  0.135 0.058 0.043 0.043 0.022 

Fluorene 0.368 0.434 0.132 0.329 0.366  0.003 0.004 0.002 0.003 0.017  0.195 0.192 0.083 0.083 0.056 

Dibenzothiophene 1.130 1.060 0.489 0.784 0.779  0.003 0.003 0.002 0.002 0.018  0.123 0.160 0.042 0.044 0.040 

Methyldibenzothiophenes 6.330 2.410 2.260 1.670 1.120  0.024 0.042 0.029 0.030 0.167  0.145 0.185 0.101 0.109 0.081 

Dimethyldibenzothiopenes 10.500 3.930 4.230 3.780 2.840  0.074 0.088 0.112 0.114 0.729  0.115 0.151 0.125 0.140 0.088 

Phenanthrene 9.360 9.380 5.400 9.510 8.710  0.051 0.084 0.036 0.042 0.348  0.458 0.387 0.325 0.326 0.212 

Methylphenantrenes 5.180 2.960 2.200 3.660 1.910  0.036 0.024 0.030 0.053 0.333  0.287 0.324 0.285 0.293 0.223 

Dimethylphenanthrenes 2.260 1.380 1.050 2.070 1.060  0.043 0.045 0.053 0.067 0.507  0.139 0.164 0.147 0.154 0.108 

Anthracene 1.860 1.780 1.050 1.370 1.420  0.028 0.101 0.047 0.020 0.130  0.045 0.049 0.033 0.035 0.025 

Fluoranthene 1.340 0.828 0.674 1.700 0.908  0.058 0.090 0.041 0.067 0.631  0.349 0.417 0.353 0.393 0.274 

Pyrene 0.862 0.565 0.476 1.640 0.662  0.059 0.078 0.035 0.065 0.587  0.401 0.477 0.407 0.495 0.295 

Methylpyrenes 0.278 0.226 0.102 0.208 0.244  0.029 0.023 0.013 0.024 0.320  0.052 0.085 0.043 0.042 0.061 

Dimethylpyrenes 0.127 0.162 0.052 0.092 0.127  0.072 0.079 0.035 0.075 0.730  0.022 0.037 0.014 0.011 0.020 

Benzo[ghi]fluoranthene 0.122 0.081 0.109 0.120 0.114  0.019 0.015 0.007 0.035 0.165  0.016 0.018 0.015 0.015 0.012 

Benzo[a]anthracene 0.079 0.073 0.048 0.061 0.082  0.059 0.041 0.014 0.055 0.799  0.026 0.038 0.008 0.019 0.041 

Chrysene 0.141 0.126 0.063 0.104 0.121  0.076 0.048 0.020 0.077 0.806  0.016 0.016 0.010 0.011 0.007 

Methylchrysenes 0.037 0.043 0.025 0.021 0.027  0.049 0.012 0.010 0.039 0.612  0.007 0.011 0.003 0.003 0.010 

Benzo[b+k]fluoranthenes 0.051 0.026 0.056 0.190 0.283  0.142 0.048 0.022 0.097 1.227  0.003 0.010 0.002 0.002 0.002 

Benzo[e]pyrene 0.014 0.022 0.018 0.035 0.024  0.078 0.032 0.014 0.061 0.725  0.006 0.008 0.004 0.004 0.003 
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 Gas Phase (ng m-3)  Aerosol Phase (ng m-3)  Dissolved Phase (ng L-1) 

 
Atlantic 
North 

Atlantic 
South 

Pacific 
North 

Pacific 
South 

Indian  
Atlantic 
North 

Atlantic 
South 

Pacific 
North 

Pacific 
South 

Indian  
Atlantic 
North 

Atlantic 
South 

Pacific 
North 

Pacific 
South 

Indian 

Benzo[a]pyrene 0.033 0.045 0.070 0.063 0.071  0.028 0.016 0.006 0.026 0.377  0.002 0.011 0.002 0.002 0.002 

Perylene 0.010 0.007 0.020 0.026 0.040  0.009 0.005 0.002 0.008 0.107  0.001 0.007 0.001 0.001 0.001 

Indeno[1,2,3-cd]pyrene 0.005 0.016 0.005 0.007 0.004  0.060 0.014 0.007 0.037 0.167  0.050 0.072 0.042 0.030 0.036 

Dibenzo[a,h]anthracene 0.004 0.014 0.007 0.010 0.006  0.010 0.005 0.001 0.007 0.115  0.064 0.093 0.060 0.043 0.045 

Benzo[ghi]perylene 0.004 0.003 0.002 0.010 0.001  0.084 0.019 0.011 0.053 0.396  0.017 0.028 0.016 0.014 0.014 

Σ64 PAHS 40.589 26.635 18.887 28.961 21.750  1.103 0.933 0.556 1.067 10.044  3.151 3.433 2.400 2.722 1.927 
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Table S2.2. Mean concentrations of PAHs in the gas and dissolved phase 

blanks 

 

 Gas Phase Dissolved Phase 

 

Field blank 
mean 

(total ng) 

Laboratory blank 
mean 

(total ng) 

Field blank 
mean 

(total ng) 

Laboratory 
blank mean 

(total ng) 

Naphthalene 0.82 0.98 0.91 0.96 

Methylnaphthalenes 0.00 0.00 0.35 0.32 

Dimethylnaphthalenes 0.40 0.00 0.49 0.38 

Acenaphtylene 0.15 0.09 0.08 0.05 

Acenaphtene 0.09 0.47 0.04 0.03 

Fluorene 0.05 0.41 0.12 0.08 

Dibenzothiophene 0.04 0.09 0.09 0.04 

Methyldibenzothiophenes 0.41 0.23 0.48 0.20 
Dimethyldibenzothiopene
s 0.13 1.91 0.56 0.19 

Phenanthrene 0.14 0.18 0.72 0.58 

Methylphenantrenes 0.16 0.47 0.69 0.22 

Dimethylphenanthrenes 0.12 0.32 0.49 0.16 

Anthracene 0.14 0.33 0.31 0.02 

Fluoranthene 0.22 0.44 0.28 0.18 

Pyrene 0.21 0.35 0.33 0.22 

Methylpyrenes 0.01 0.00 0.26 0.13 

Dimethylpyrenes 0.03 0.00 0.13 0.04 

Benzo[ghi]fluoranthene 0.35 0.75 0.64 0.02 

Benzo[a]anthracene 0.08 0.26 0.15 0.13 

Chrysene 0.07 0.12 0.09 0.08 

Methylchrysenes 0.13 0.00 0.04 0.02 

Benzo[b+k]fluoranthenes 0.02 1.98 0.03 0.04 

Benzo[e]pyrene 0.65 0.32 0.01 0.04 

Benzo[a]pyrene 3.06 0.00 0.08 0.03 

Perylene 1.27 0.00 0.11 0.05 

Indeno[1,2,3-cd]pyrene 1.01 0.00 1.83 0.07 

Dibenzo[a,h]anthracene 0.32 0.00 3.88 0.26 

Benzo[ghi]perylene 0.00 0.00 0.80 0.02 

Σ64PAHs 10.09 9.72 14.01 4.55 
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Table S2.3. Calculated uncertainty for SALCs Diffusive fluxes according to 

Henry’s constant (H’) 

 

The results are for H’ values 3 times higher and 3 times lower than the H’ values 

corresponding to the individual PAH selected for each analysis time window and used 

to quantify SALCs. 

 

 

 

 

Mean total SALCs 
flux 

(ng m-2d-1) 

 H’ 1/3 H’ x3 

Absorption flux -8,13 106 -4,02 106 

Volatilization flux  4,61 105 1,84 106 

Net flux -7,67 106 -2,18 106 
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Figure S2.1. Mean PAH profile in each matrix analyzed; gas (top), aerosol 
(middle) and dissolved phase (bottom panel) 
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Figure S2.2. Wet deposition fluxes measured during the 11 rain events that occurred during the Malaspina cruise 
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Figure S2.3. Ocean basin averaged gross volatilization (top) and absorption 

(middle) fluxes, and net diffusive fluxes (bottom) of PAHs 
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Figure S2.4. Degradation of PAHs in the atmosphere by reaction with OH radicals 
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Figure S2.5. Mean concentrations of total aromatics, id SALCs (blue) and of 

targeted PAHs (red) in gas (top) and dissolved water (bottom) samples for 

the six retention time intervals quantified 
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3. PERFLUOROALKYLATED SUBSTANCES IN THE GLOBAL 

TROPICAL AND SUBTROPICAL SURFACE OCEANS 
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Table S3.1. Stations and positional information of the sampling points 

Leg* Station Ocean 
Longhurst 

Province** 
Day  UTC time Longitude Latitude 

1 2 Atlantic NASE 17/12/2010 8:17 -12.782 34.003 

1 3 Atlantic NASE 19/12/2010 7:15 -17.285 29.686 

1 5 Atlantic NASE 21/12/2010 13:00 -21.028 25.005 

1 7 Atlantic NATR 23/12/2010 12:10 -23.453 21.447 

1 8 Atlantic NATR 24/12/2010 10:30 -24.304 20.26 

1 9 Atlantic NATR 25/12/2010 11:30 -26.01 16.143 

1 11 Atlantic NATR 27/12/2010 8:19 -26.005 14.519 

1 12 Atlantic WTRA 28/12/2010 8:44 -25.994 9.564 

1 13 Atlantic WTRA 29/12/2010 8:12 -25.996 7.326 

1 14 Atlantic WTRA 30/12/2010 8:15 -26.033 5.011 

1 15 Atlantic WTRA 31/12/2010 8:55 -26.032 2.472 

1 17 Atlantic WTRA 02/01/2011 8:05 -27.327 -3.03 

1 18 Atlantic WTRA 03/01/2011 11:30 -28.174 -4.773 

1 20 Atlantic SATL 05/01/2011 9:20 -30.189 -9.11 

1 21 Atlantic SATL 06/01/2011 9:15 -31.412 -11.568 

1 23 Atlantic SATL 08/01/2011 9:18 -33.412 -15.824 

1 24 Atlantic SATL 09/01/2011 9:34 -34.675 -18.399 

1 26 Atlantic SATL 11/01/2011 9:20 -36.987 -23.021 

2 28 Atlantic SATL 20/01/2011 9:00 -33.095 -24.852 

2 29 Atlantic SATL 21/01/2011 9:00 -30.131 -25.4 

2 30 Atlantic SATL 22/01/2011 9:00 -27.589 -25.863 

2 31 Atlantic SATL 23/01/2011 9:00 -24.243 -26.424 

2 32 Atlantic SATL 24/01/2011 9:00 -21.431 -26.901 

2 33 Atlantic SATL 25/01/2011 9:00 -18.091 -27.55 

2 34 Atlantic SATL 26/01/2011 9:00 -14.789 -28.101 

2 37 Atlantic SATL 29/01/2011 9:00 -5.401 -29.687 

2 38 Atlantic SATL 30/01/2011 9:00 -2.448 -30.239 

2 39 Atlantic SATL 31/01/2011 8:30 0.956 -30.879 

2 40 Atlantic SATL 01/02/2011 7:30 3.727 -31.296 

2 41 Atlantic SATL 02/02/2011 9:00 6.786 -31.772 

2 42 Atlantic BENG 03/02/2011 8:45 9.417 -32.104 

2 43 Atlantic BENG 04/02/2011 8:35 12.749 -32.791 

2 44 Atlantic BENG 05/02/2011 8:40 15.474 -33.297 

3 46 Indian EAFR 14/02/2011 5:11 27.546 -34.837 

3 47 Indian EAFR 15/02/2011 5:32 31.083 -34.446 

3 49 Indian ISSG 17/02/2011 5:10 37.001 -33.881 

3 50 Indian ISSG 18/02/2011 5:20 39.88 -33.532 

3 52 Indian ISSG 24/02/2011 3:30 61.458 -30.053 

3 53 Indian ISSG 25/02/2011 3:40 63.248 -27.976 

3 55 Indian ISSG 27/02/2011 3:00 69.414 -29.363 

3 57 Indian ISSG 01/03/2011 2:00 76.086 -29.906 
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Leg* Station Ocean 
Longhurst 

Province** 
Day  UTC time Longitude Latitude 

3 58 Indian ISSG 02/03/2011 2:00 79.607 -29.834 

3 60 Indian ISSG 04/03/2011 2:15 86.262 -29.756 

3 63 Indian ISSG 07/03/2011 1:00 96.395 -29.582 

3 64 Indian ISSG 08/03/2011 1:05 99.998 -29.907 

3 66 Indian AUSW 10/03/2011 1:20 107.211 -30.812 

3 67 Indian AUSW 11/03/2011 1:15 110.18 -31.154 

4 70 Indian SSTC 20/03/2011 22:30 120.846 -36.644 

4 71 Indian SSTC 21/03/2011 22:55 124.874 -37.345 

4 73 Indian SSTC 24/03/2011 22:15 131.541 -38.548 

4 75 Indian SSTC 25/03/2011 21:00 138.768 -39.86 

4 77 Pacific AUSE 28/03/2011 19:50 150.426 -38.671 

4 78 Pacific AUSE 29/03/2011 19:52 150.991 -36.685 

5 82 Pacific SPSG 20/04/2011 17:20 -178.212 -23.376 

5 84 Pacific SPSG 22/04/2011 16:55 -175.848 -18.554 

5 86 Pacific SPSG 24/04/2011 18:23 -173.397 -13.533 

5 88 Pacific SPSG 26/04/2011 19:15 -172.323 -9.46 

5 90 Pacific PEQD 28/04/2011 17:05 -170.781 -5.733 

5 92 Pacific PEQD 30/04/2011 17:07 -168.357 -1.304 

5 94 Pacific PEQD 02/05/2011 15:40 -165.805 3.821 

5 97 Pacific PNEC 05/05/2011 17:06 -162.422 11.6 

5 99 Pacific NPTG 07/05/2011 16:30 -159.442 17.977 

6 102 Pacific NPTG 15/05/2011 16:16 -153.42 21.571 

6 103 Pacific NPTG 16/05/2011 13:12 -150.366 21.067 

6 106 Pacific NPTG 19/05/2011 16:15 -141.617 19.902 

6 107 Pacific NPTG 20/05/2011 16:10 -138.966 19.279 

6 109 Pacific NPTG 22/05/2011 15:05 -133.262 18.057 

6 110 Pacific NPTG 23/05/2011 15:18 -130.595 17.404 

6 112 Pacific NPTG 25/05/2011 15:10 -124.508 15.914 

6 113 Pacific NPTG 26/05/2011 15:10 -121.995 15.311 

6 114 Pacific NPTG 27/05/2011 14:15 -118.773 14.529 

6 116 Pacific PNEC 29/05/2011 14:15 -113.27 13.195 

6 117 Pacific PNEC 30/05/2011 14:15 -110.392 12.493 

6 120 Pacific PNEC 02/06/2011 14:15 -102.448 10.757 

6 121 Pacific PNEC 03/06/2011 13:15 -99.251 10.083 

6 123 Pacific PNEC 05/06/2011 13:10 -93.148 8.764 

6 124 Pacific PNEC 06/06/2011 12:35 -90.362 8.142 

6 125 Pacific PNEC 07/06/2011 13:10 -87.947 7.221 

7 128 Atlantic CARB 21/06/2011 11:07 -71.703 14.184 

7 129 Atlantic CARB 22/06/2011 11:05 -69.289 15.073 

7 131 Atlantic NATR 25/06/2011 10:10 -59.829 17.428 

7 132 Atlantic NATR 26/06/2011 10:20 -57.81 18.065 

7 134 Atlantic NATR 28/06/2011 9:05 -52.629 20.013 

7 135 Atlantic NATR 29/06/2011 9:35 -50.143 20.805 
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Leg* Station Ocean 
Longhurst 

Province** 
Day  UTC time Longitude Latitude 

7 137 Atlantic NATR 01/07/2011 14:03 -44.539 22.869 

7 138 Atlantic NATR 02/07/2011 8:15 -41.912 23.736 

7 140 Atlantic NASE 04/07/2011 8:11 -35.274 26.111 

7 141 Atlantic NASE 05/07/2011 8:05 -32.89 26.918 

7 143 Atlantic NASE 07/07/2011 7:25 -26.952 28.875 

7 144 Atlantic NASE 08/07/2011 7:14 -23.693 29.966 

7 146 Atlantic NASE 10/07/2011 6:00 -17.26 32.088 

7 147 Atlantic NASE 11/07/2011 6:10 -14.65 32.875 

 

*”Leg” term corresponds with transects: (1) Cadiz (Spain) – Rio de Janeiro (Brazil, (2) Rio de 

Janeiro (Brazil) – Cape Town (Republic of South Africa), (3) Cape Town (Republic of South 

Africa) – Perth (Australia), (4) Perth (Australia) – Sydney (Australia), (5) Sydney (Australia) – 

Honolulu (Hawaii, USA), (6) Honolulu (Hawaii, USA) – Cartagena de Indias (Colombia), (7) 

Cartagena de Indias (Colombia) – Cartagena (Spain). 

**Longhurst Provinces acronyms corresponds to: North Atlantic Subtropical Gyral Province 

East (NASE), North Atlantic Tropical Gyral Province (NATR), Western Tropical Atlantic 

Province (WTRA), South Atlantic Gyral Province (SATL), Benguela Current Coastal Province 

(BENG), East Africa Coastal Province (EAFR), Indian South Subtropical Gyre Province 

(ISSG), Australia-Indonesia Coastal Province (AUSW), South Subtropical Convergence 

Province (SSTC), East Australia Coastal Province (AUSE), South Pacific Subtropical Gyre 

Province (SPSG), Pacific Equatorial Divergence Province (PEQD), North Pacific Equatorial 

Countercurrent Province (PNEC), North Pacific Tropical Gyre Province (NPTG), Caribbean 

Province (CARB). 
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Text S3.1. Details of sample treatment  

Reagents and standards 

All the solvents and solutions used were of analytical grade. Methanol, acetone and 

water (LiChrosolv) were purchased from Merk. Acetonitrile was purchased from Fluka 

and acetic acid (HPLC) from Scharlab. Ammonia (30% for analysis) and Ammonium 

acetate (solid PRS) were provided by Panreac. Glass fiber filters (GF/F, 0.7 µm pore 

size) were supplied by Whatman. OASIS WAX cartridges (150 mg, 6 cc, 30 µm) were 

supplied by Waters. 

The native standard solution used was made of C4-C14, C16 and C18 PFCAs and C4, C6-

C8, C10 and C12 PFSAs acquired as a mix solution (PFAC-MXB commercial solution), 

plus the perfluorooctane sulfonamide (PFOSA) and N-methyl perfluorooctane 

sulfonamide (N-MePFOSA). The recovery standard solution contained 
13

C labeled 

C4,6,8-12 PFCAs, 
18

O C6 and 
13

C C8 PFSAs (MPFAC-MXA commercial solution). The 

injection standard consisted of a mixture of PFOA 
13

C8, PFOS 
13

C8, 
3
D-N-MePFOSA 

and PFUnDA 
13

C7. All standards were supplied by Wellington Laboratories (Ontario, 

Canada).  

Sample treatment 

Immediately after sampling, seawater samples were filtered through pre-combusted 

glass fiber filters. Samples were spiked with a solution containing seven 
13

C labelled 

PFCAs, and two 
18

O and 
13

C labelled PFSAs. Samples were extracted on board by solid 

phase extraction using OASIS WAX cartridges. The cartridges were conditioned with 4 

mL methanol, 4 mL ammonia 0.1% in methanol and 4 mL of chromatographic-grade 

water. Then, the sample was loaded and vacuum extracted at a constant slow flow. The 

cartridges were then washed with 4 mL of chromatographic-grade water to remove salts 

and matrix impurities, dried under vacuum aspiration for 30 minutes and kept at -20 ºC 

during the cruise folded in aluminum foil and zip PP bags, until their elution in the 

laboratory. After unfreezing, each cartridge was pH conditioned with 4 mL of 

ammonium acetate buffer 25 mM at pH 4 and vacuum dried to remove all aqueous 

phase. The target compounds were eluted with 4 mL methanol and 4 mL ammonia 0.1% 

in methanol, concentrated under a gentle nitrogen flux down to 0.3 mL and then, 

transferred to self-filtration PP vials (Mini-UniPrep Syringeless Filters vials, Whatman). 
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Table S3.2. MS/MS parameters for the target compounds 

Compound Acronym RT 
Parent 

Ion 

Quan 

Ion 

Conf 

Ion 

Cone 

Voltage 

Collision 

Energy 
Q1 

Collision 

Energy 
Q2 

Dwell 

time 

Perfluoro-butanesulfonate PFBS 2.33 298 79 98.8 40 30 28 0.110 

Perfluoro-n-hexanoic acid PFHxA 3.09 312 268 118.9 10 8 19 0.023 

Perfluoro-n-[1,2-13C2]hexanoic acid *PFHxA 13C2 3.1 314 269 119 10 9 14 0.023 

Perfluoro-n-heptanoic acid PFHpA 3.8 362.9 318.8 169 10 10 16 0.023 

Perfluoro-hexanesulfonate PFHxS 3.87 398.9 79.7 98.9 45 33 33 0.020 

Perfluoro-1-hexane[18O2]sulfonate *PFHxS 18O2 3.88 402.9 102.9 83.8 45 33 35 1.000 

Perfluoro-n-octanoic acid PFOA 4.32 412.9 368.8 168.9 10 10 17 0.030 

Perfluoro-n-[1,2,3,4-13C4]octanoic acid *PFOA13C4 4.32 416.9 371.8 172 10 9 16 0.030 

Perfluoro-n-[13C8]octanoic acid # PFOA13C8 4.32 420.8 375.8 172 10 10 18 0.030 

Perfluoro-heptanesulfonate PFHpS 4.34 448.8 79.8 98.8 55 40 42 2.000 

Perfluoro-n-nonanoic acid PFNA 4.72 462.8 418.9 218.9 10 10 15 2.000 

Perfluoro-n-[1,2,3,4,5-13C5]nonanoic acid *PFNA 13C5 4.75 467.9 422.7 219 10 10 14 1.000 

Perfluoro-1-octanesulfonamide PFOSA 5.24 497.9 77.8 168.7 42 40 24 1.000 

Perfluoro-octanesulfonate PFOS 4.75 498.8 79.8 98.9 25 40 39 0.020 

Perfluoro-1-[1,2,3,4-13C4]octanesulfonate *PFOS 13C4 4.76 502.8 79.8 98.8 25 42 36 1.000 

Perfluoro-[13C8]octanesulfonate #PFOS 13C8 4.76 506.8 79.8 98.8 25 40 34 0.016 

Perfluoro-n-decanoic acid PFDA 5 512 468.8 269 15 10 21 0.050 

Perfluoro-n-[1,2-13C2]decanoic acid *PFDA 13C2 5.08 514 469.8 219 15 8 18 0.050 

N-methylperfluoro-1-octansulfonamide N-MePFOSA 5.56 511.9 168.9 219 35 26 23 8.000 

N-methyl-d3-perfluoro-1-

octanesulfonamide 

#d3-N-

MePFOSA 
5.58 514 169 218.9 35 27 25 5.000 

Perfluoro-n-[1,2-13C2]undecanoic acid *PFUnDA 13C2 5.28 564 519 269 15 10 18 1.000 

Perfluoro-n-[1,2,3,4,5,6,7-13C7]undecanoic 

acid 
#PFUnDA 13C7 5.24 569 524 219 15 12 18 8.000 

*recovery standards, # injection standards.  
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Table S3.3. Details of laboratory and field blanks, MDLs, MQLs (pg/L) and % recoveries of the 9 target compounds 

 
n PFBS PFHxA PFHpA PFHxS PFOA PFHpS PFNA FOSA PFOS N-MeFOSA PFDA 

Laboratory blanks 
 

           

Chromatography water 3 8.33 3.67 7.00 0.50 5.67 18.1 28.7 nd 4.33 2.74 12.7 

SPE- extracted Chromatography  water 4 12.0 3.00 8.00 0.37 13.0 3.16 14.0 nd 4.75 3.25 25.0 

Reagents 4 6.00 2.75 7.37 0.00 5.25 1.96 8.12 nd 3.25 2.62 8.50 

Field blanks 
            

Niskin bottle 
3 7.00 4.00 1.33 3.00 14.7 0.00 58.7 0.00 3.00 0.00 1.33 

MDL AND MQL             

MDL 
 

0.32 2.75 1.75 0.59 0.01 0.49 0.01 0.01 0.06 0.02 0.659 

MQL 
 

1.17 10.2 5.31 1.90 0.80 1.70 0.29 0.01 0.42 0.02 1.07 

Recoveries             

Standard 
 

 PFHxA -13C2  PFHxS  -18O2 PFOA   -13C4  PFNA   -13C5  PFOS    -13C4  PFDA   -13C2 

Average Recovery % 
 

 
149 

 
137 96 

 
72 

 
79 

 
97 
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Figure S3.1 Air mass back trajectories for the upper atmospheric boundary layer in the 

South Atlantic coastal sites 

 

 

At the sampling locations in east south Atlantic, offshore Brazil, some of upper air masses are 

originated in Brazilian inland and coastal zone according to the GDAS Meteorological data 

provided by NOAA
1
, facilitating then the distribution of industrial and urban (particularly 

heavily populated in this area
2
) air masses and possible increase of PFASs precursors over the 

ocean. 

Left panel shows the air masses during the sampling at 800 m above sea level for this area at the 

time the sampling campaign was ongoing. Left upper coastline corresponds to Brazilian coast. 

 

 

  

Brazil South Atlantic Ocean 



A56 
 

 

Table S3.4. Concentration Normality test  

 

 

Normality Test 

 Kolmogorov-Smirnov
a
 Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

PFBS ,168 92 ,000 ,817 92 ,000 

PFHxA ,236 92 ,000 ,736 92 ,000 

PFHpA ,158 92 ,000 ,829 92 ,000 

PFHxS ,348 92 ,000 ,391 92 ,000 

PFOA ,220 92 ,000 ,666 92 ,000 

PFHpS ,328 92 ,000 ,472 92 ,000 

PFNA ,366 92 ,000 ,434 92 ,000 

FOSA ,286 92 ,000 ,750 92 ,000 

PFOS ,337 92 ,000 ,413 92 ,000 

NMeFOSA ,262 92 ,000 ,719 92 ,000 

PFDA ,372 92 ,000 ,319 92 ,000 

∑PFCAs ,352 92 ,000 ,393 92 ,000 

∑PFSAs ,322 92 ,000 ,409 92 ,000 

∑PFOSAs ,268 92 ,000 ,739 92 ,000 

∑allPFASs ,320 92 ,000 ,509 92 ,000 

a. Significance Lilliefors corrected 

 

Since all distributions were not normal, non-parametric statistics was applied. 
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Table S3.5. Individual and ∑PFAS concentration (pg/L) in surface ocean water samples obtained for the Malaspina 2010 expedition 

Station PFBS PFHxA PFHpA PFHxS PFOA PFHpS PFNA PFOSA PFOS 
N-

MePFOSA 
PFDA ∑PFAS 

2 81.7 68.3 50.1 18.2 82.1 23.1 274 nd 61.4 0.255 633 1290 

3 34.5 47.7 23.3 8.39 45.8 0.572 31.2 nd 14.8 nd 148 354 

5 80.2 33.4 67.1 10.8 145 0.664 1670 nd 43.6 nd 1080 3130 

7 26.4 10.8 18.0 7.30 41.7 4.18 53.8 nd 56.3 1.25 296 516 

8 36.2 20.9 13.2 6.44 35.2 8.54 30.0 nd 43.0 nd 159 353 

9 46.9 38.4 32.3 6.59 102 188 1270 nd 74.9 0.270 1190 2940 

11 68.4 15.0 11.0 5.45 21.7 8.35 46.1 nd 29.0 nd 80.2 285 

12 64.3 18.7 13.4 5.54 32.2 3.33 42.0 nd 76.2 0.030 84.7 340 

13 67.1 18.3 63.4 23.3 129 6.54 847 nd 124 nd 2720 4000 

14 38.5 32.0 36.4 11.2 66.5 2.80 318 nd 118 0.390 519. 1140 

15 6.59 28.2 7.27 1.27 33.9 1.34 37.4 nd 22.0 nd 161 299 

17 269 154 32.0 1420 132 308 30.2 2.47 6560 nd 1330 9040 

18 139 138 16.5 652 77.0 183 22.1 0.300 4250 nd 154 5630 

20 154 142 14.3 366 60.7 96.9 32.8 0.740 3420 nd 193 4480 

21 249 87.1 125 717 282 91.8 825 nd 3240 nd 1540 7150 

23 100 40.0 69.8 125 131 18.0 1010 nd 793 nd 3940 6230 

24 118 51.2 17.3 140 60.9 33.4 494 0.210 1240 0.090 8750 10900 

26 5.29 6.27 5.46 31.1 18.5 6.57 7.36 nd 310 0.150 109 500 

28 18.6 52.7 17.1 46.5 66.6 16.2 263 nd 952 nd 200 1630 

29 67.0 nd 106 226 167 45.8 110 nd 2730 nd 61.3 3510 

30 36.0 83.5 21.4 123 77.4 37.2 21.1 nd 2340 nd 12.0 2750 

31 nd nd 55.0 84.0 36.0 26.6 nd 9.00 1680 9.00 129 2080 

32 107 nd 38.9 67.4 106 9.90 600 nd 689 nd 322 1940 

33 91.7 nd 20.1 35.1 54.2 6.88 245 nd 584 nd 89.6 1130 

35 39.6 5.07 13.4 51.7 32.2 8.50 8.71 nd 569 nd 5.03 733 
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Station PFBS PFHxA PFHpA PFHxS PFOA PFHpS PFNA PFOSA PFOS 
N-

MePFOSA 
PFDA ∑PFAS 

37 nd nd 6.50 15.5 29.3 2.25 5.65 nd 239 nd 6.41 305 

38 70.9 nd 17.1 69.0 38.8 7.76 20.7 nd 492 nd 15.9 732 

39 12.6 0.840 3.36 46.9 24.0 2.07 9.57 nd 305 nd 4.72 409 

40 106 0.060 19.1 79.9 29.6 4.41 8.58 nd 368 nd 3.50 620 

41 48.0 51.0 101 82.0 55.0 40.4 45.0 6.00 692 9.00 nd 1250 

42 34.3 7.11 14.3 88.7 66.7 11.3 22.0 nd 845 nd 12.3 1100 

43 25.2 3.60 27.8 90.4 39.2 6.52 20.5 nd 419 nd 12.6 645 

44 41.9 1.65 6.02 35.7 23.4 2.07 8.45 nd 302 nd 3.20 424 

46 7.32 3.69 5.71 5.60 21.1 3.67 31.6 nd 83.8 nd 166 329 

47 11.9 6.77 6.28 6.65 17.6 2.50 48.8 nd 64.7 nd 386 551 

49 19.3 18.5 5.99 6.00 10.8 1.96 8.51 nd 46.8 nd 62.8 181 

50 26.1 12.1 9.71 14.2 18.7 2.33 20.7 nd 88.5 nd 70.9 263 

52 109 17.4 5.60 7.94 16.4 1.47 14.3 nd 53.9 nd 58.9 285 

53 49.3 23.5 7.36 12.9 24.4 3.25 8.83 nd 91.9 nd 56.5 278 

55 9.63 29.9 6.95 6.46 22.2 1.38 14.8 nd 48.0 nd 99.7 239 

57 10.8 21.3 10.4 5.90 42.1 2.42 119 nd 48.8 nd 562 823 

58 45.0 20.7 9.66 6.36 33.5 1.56 118 nd 51.0 nd 471 757 

60 46.5 17.7 7.29 4.90 43.0 7.44 91.1 nd 274 nd 249 742 

63 nd nd 45.0 1nd 11.0 0.138 33.0 3.00 64.0 3.00 nd 519 

64 124 nd 4.75 6.46 21.2 0.828 18.0 nd 126 nd 73.5 374 

66 91.3 nd 19.1 22.8 55.8 4.92 120 0.300 328 0.480 1030 1680 

67 51.3 51.0 33.0 52.7 59.8 nd 60.7 nd 511 nd 1160 1980 

70 20.7 30.4 4.05 8.78 24.2 3.98 10.8 nd 129 0.360 12.9 245 

71 31.6 nd nd 5.50 12.9 1.67 7.35 nd 102 0.260 14.3 176 

74 4.71 nd nd 8.60 25.7 4.19 33.5 nd 250 0.350 102 429 

75 10.2 14.7 9.20 3.89 26.2 3.07 69.6 nd 50.5 0.350 292 480 
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Station PFBS PFHxA PFHpA PFHxS PFOA PFHpS PFNA PFOSA PFOS 
N-

MePFOSA 
PFDA ∑PFAS 

77 13.7 47.0 6.90 8.35 23.2 2.58 24.7 nd 95.6 0.180 33.6 256 

78 nd nd nd nd nd nd nd nd nd nd nd 0.00 

82 110 nd 3.12 13.4 35.1 3.33 17.3 nd 146 0.400 43.2 372 

84 109 143 132 2.31 17.0 nd nd nd 74.1 0.300 145 622 

86 15.0 39.0 54.0 nd 16.0 2.16 87.0 6.00 52.0 9.00 nd 640 

88 nd 9.00 61.0 nd 24.0 4.82 46.0 6.00 159 1nd 637 967 

90 nd nd 149 11.0 35.0 71.2 13.0 6.00 174 15.0 78.0 552 

92 9.00 nd 164 8.00 33.0 4.80 33.0 6.00 105 9.00 183 585 

94 4.50 nd 134 11.0 45.0 117 71.0 9.00 218 nd 233 852 

97 nd 24.0 27.0 7.00 25.0 96.2 13.0 6.00 nd 9.00 22.0 489 

99 61.5 121 68.1 169 94.0 5.90 243 2.51 232 2.84 1500 2500 

102 49.4 55.8 44.3 12.4 32.0 12.4 22.1 2.33 216 3.71 42.9 493 

103 31.1 nd 35.4 178 41.2 nd 22.7 2.61 112 3.49 44.1 470 

106 115 nd 107 70.0 34.8 nd 18.8 2.07 119 2.58 26.8 497 

107 79.6 nd 138 36.2 23.3 nd 12.7 2.47 101 2.95 15.9 413 

109 50.8 134 37.7 89.5 42.4 16.9 39.0 3.01 110 3.22 47.0 573 

110 56.0 75.2 84.2 476 31.0 nd 27.9 2.01 46.0 2.87 22.5 824 

112 88.0 73.9 52.5 24.6 30.8 nd 12.6 2.25 79.5 3.55 8.48 376 

113 34.2 104 120 144 25.4 nd 9.38 3.24 69.6 2.85 14.8 527 

114 41.3 208 90.0 300 34.4 15.6 6.90 3.29 158 2.83 36.6 896 

116 34.2 nd 34.6 132 20.9 18.0 7.11 2.60 64.2 3.46 42.0 359 

117 23.7 257 49.6 63.5 24.6 5.27 3.91 2.84 76.3 3.25 38.0 548 

120 36.6 296 122 79.2 21.9 nd 4.47 2.75 58.2 3.16 11.3 636 

121 30.6 136 45.0 50.7 13.0 3.03 nd 3.30 45.8 2.97 13.3 344 

123 72.5 184 77.7 32.4 19.9 9.44 nd 2.97 41.1 2.75 62.5 505 

124 74.0 nd 49.0 7.00 17.0 161 nd 3.00 76.0 3.00 44.0 444 
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Station PFBS PFHxA PFHpA PFHxS PFOA PFHpS PFNA PFOSA PFOS 
N-

MePFOSA 
PFDA ∑PFAS 

125 38.0 193 9.00 4.00 14.0 39.1 1.50 3.00 56.0 3.00 14.0 375 

128 53.0 nd 12.0 5.00 27.0 0.201 19.0 4.00 88.0 5.00 147 360 

129 47.0 41.0 36.0 5.00 28.0 20.3 7.00 3.00 104 6.00 74.0 371 

131 174 9.00 41.0 12.0 24.0 0.201 9.00 5.00 191 8.00 307 780 

132 23.0 nd 61.5 2.00 11.0 0.201 nd 3.00 27.0 3.00 nd 131 

134 17.0 155 15.0 4.00 nd 0.201 nd 3.00 16.0 3.00 3.00 236 

135 23.0 61.5 32.0 4.00 34.0 0.201 nd 3.00 16.0 3.00 nd 207 

137 23.0 nd 31.0 15.0 36.0 0.201 19.0 3.00 47.0 3.00 12.0 189 

138 22.0 18.0 7.50 8.00 32.0 9.03 13.0 3.00 nd 3.00 8.00 184 

140 25.0 82.0 48.0 3.00 52.0 nd nd 3.00 66.0 3.00 11.0 313 

141 35.0 51.0 39.0 nd 44.0 28.0 19.0 3.00 76.0 3.00 13.0 311 

143 32.0 nd 41.0 3.00 44.0 6.91 14.0 3.00 59.0 5.00 18.0 226 

144 nd 25.5 66.0 13.0 71.0 15.5 24.0 9.00 69.0 9.00 nd 302 

146 27.0 nd 79.0 19.0 63.0 38.9 nd 3.00 71.0 3.00 6.00 330 

147 nd 192 69.0 3.00 45.0 nd nd 3.00 nd 3.00 6.00 441 

Ocean [median]          

Atlantic 39.6 33.4 27.8 21.1 45.0 8.35 30.0 3.00 191 3.00 99.5 645 

Indian 45.4 121 61.0 32.4 25.4 12.4 15.2 3.00 101 3.16 42.9 527 

Pacific 20.0 14.7 6.90 6.65 23.2 2.42 24.7 0.000 88.5 0.000 99.7 329 

Hemisphere [median]            

North 38.2 55.8 42.6 11.2 33.9 8.35 21.1 3.00 69.3 3.00 42.9 708 

South 40.8 22.4 16.5 15.5 33.0 4.80 30.1 4.50 274 0.400 109 1620 

 [median]            

Total 39.1 38.4 32.0 12.9 33.5 6.21 23.3 3.00 101 3.00 73.8 1180 

nd: non-detected  
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Table S3.6. Comparison of PFAS concentrations (pg/L) in surface seawaters from different ocean basins including values from the present study 

 

Location Position Year PFBS PFHxS PFOS PFBA PFPA PFHxA PFHpA PFOA PFNA PFDA PFUnDA PFOSA 
N-Me 

FOSA 

ARTIC AND GREENLAND 
               

Labrador Sea (deep water)3  56ºN-52º W 2004-06 na na 9-12 na na na na 55-75 na na na na na 

Labrador Sea (coastal) 4 
 

2008 na 2.3-10 24-73 na na na na 8-182 <mdl na na na na 

North Sea 5 60ºN-7ºE 2004 na na 25 na na na na 300 na na na na na 

Greenland Sea 6 75-80ºN 2004 na <2-20 12-32 na na na na 25-80 na na na na na 

Norwegian Sea6 72-75ºN 2005 na 5-16 25-80 na na na na 45-60 na na na na na 

Northwest Atlantic (east of 

Newfoundland)7  
2007 na na <10 na na <5.7 na 40-81 <5.1 na na na na 

East Greenland Arctic Ocean8 67.5–80.4ºN 2009 nd nd-14.5 nd-38.0 nd nd nd-22.0 nd-26.9 nd-120 nd na na nd-300 na 

Labrador sea/ Davis strait/ North 

Baffin Bay9 
59-77º N 2008 na nd-15 nd-39 na na 0.4-26 na 21-41 nd-13 na na na na 

Canadian Artic Archipielago9 87-124º N 2005 na nd-19 nd-32 na na 3-65 na 6-54 2-47 na na na na 

Beaufort Sea/ Chukchi Sea/ 

Bering Strait9 
137-169º N 2005 na nd15 9-27 na na 11-45 na 26-39 5-13 na na na na 

Chukchi Sea and Artic Ocean10 39-76ºN 2010 na <66 <21-53 na na <27-28 na <20-67 <22-51 na na na na 

ATLANTIC 
               

North Atlantic Ocean11 >40º N 2002-03 na 4.1-6.1 8.6-36 na na na na 160-338 15-36 na na na na 

Middle Atlantic Ocean11 40-0ºN 2002-03 na 2.6-12 37-73 na na na na 100-439 na na na na na 

German Bight5 
 

2004 na na 250-7000 na na na na 3000-13000 na na na na na 

German Bight12 
 

2003-05 na na 280-3100 na na na na 540-5900 na na na na na 

West Baltic Sea12 
 

2003-05 na na 330-900 na na na na 470-1100 na na na na na 

East North to South Atlantic 

Ocean13 
53ºN-30ºS 2007 na na <14-170 na na na na <17-90 na na na na na 

North Atlantic Ocean7 
 

2007 <1.6-60 nd <10-291 na na <5.7-127 <5.9-104 <4.0-229 <5.1-107 na na <17-307 na 

Middle Atlantic Ocean7 
 

2007 <1.6 nd <10-60 na na <5.7 <5.9-9.7 <4.0-87 <5.1-35 na na <17-60 na 
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Location Position Year PFBS PFHxS PFOS PFBA PFPA PFHxA PFHpA PFOA PFNA PFDA PFUnDA PFOSA 
N-Me 

FOSA 

South Atlantic Ocean14 
 

2007 <1.6 nd <10 na na <5.7 <5.9 <4.0 <5.1 na na <17-53 na 

German Bight14 
 

2007 na na 699-3950 na na na na 2670-7830 na na na na na 

Norwegian Sea15 
 

2008 nd nd nd nd nd nd nd 10-nd nd nd na nd na 

Norwegian Coast15 
 

2008 nd-90 nd-30 nd nd nd 200-310 nd-210 70-350 10-40 nd na 120-280 na 

Open North sea15 
 

2008 nd-70 nd nd-70 nd nd nd nd 20-70 40-50 nd na nd-70 na 

German Coast15 
 

2008 10-6510 nd-280 nd-2260 nd-4730 nd-380 nd-1180 nd-580 80-3020 50-370 nd-170 na nd-380 na 

Riber Elbe15 
 

2008 3490-5270 320-500 4090-6160 nd-400 370-470 1660-2560 700-940 4360-4810 690-1160 240-850 na 500-780 na 

Baltic Sea15 
 

2008 260-880 nd-610 nd-350 nd-440 nd-120 120-270 60-260 250-4550 100-420 nd na nd-460 na 

North Atlantic Ocean16 
 

2007 <1.6-45 nd <10-114 na nd <5.7-88 na <4.0-209 <5.1-100 nd nd na na 

North Atlantic Ocean16 
 

2008 <4.4-20 13-27 54-116 na 30-74 38-54 na 87-154 24-39 12-37 20-39 na na 

North Atlantic Ocean16 
 

2010 <51 <6.5-39 <20-90 na 16-77 40-79 na <13-110 13-38 <21 <13 na na 

Middle Atlantic Ocean16 
 

2007 <1.6 nd <10-60 na nd <5.7 na <4.0-87 <5.1-35 nd nd na na 

Middle Atlantic Ocean16 
 

2008 <4.4-17 8.1-14 62-77 na 21-35 20-31 na 49-70 4.4-25 19-35 26-30 na na 

Middle Atlantic Ocean16 
 

2010 <51 <6.5-12 40-50 na <13-32 33-38 na <13 <12-16 <21 <1 na na 

South Atlantic Ocean16 
 

2007 <1.6 nd <10 na nd <5.7 na <4.0 <5.1 nd nd na na 

South Atlantic Ocean16 
 

2008 <4.4-13 <4.1-17 <11-72 na <14-24 <3.0-26 na <5.2-62 <3.0 <5.5-27 <11-28 na na 

South Atlantic Ocean16 
 

2010 <51 <6.5 <20-45 na <13 <5.9 na <13-15 <12 <21 <13 na na 

East Atlantic9 27-46º N 2009 na 11-36 61-192 na na 47-110 na 96-259 26-70 na na na na 

East coast U.S.A.9 38-41º N 2009 na 13-51 46-191 na na 53-150 na 80-252 48-131 na na na na 

Western Atlantic9 3-37º N 2007 na 1-7 13-32 na na 14-75 na 17-49 4-27 na na na na 

Mid to Southeeastern Atlantic9 3-21º S 2009 na 2-5 18-30 na na 18-75 na 17-30 5-19 na na na na 

Southwest Atlantic (not 

including Rio de la Plata)9 
5-52º S 2007 na nd-8 18-45 na na 3-17 na 3-26 2-15 na na na na 

Northeast Atlantic Ocean (this 

study) 
35-0º N 2011 0-174 0-188 0-23 15-191 nd nd 0-192 7-79 11-145 0-1669 0-2722 0-9 0-9 

Southwest Atlantic Ocean (this 
study) 

0-40º S 2011 0-269 2-308 16-1420 239-6558 nd nd 0-154 3-125 19-282 6-1013 3-8751 0-9 0-9 
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Location Position Year PFBS PFHxS PFOS PFBA PFPA PFHxA PFHpA PFOA PFNA PFDA PFUnDA PFOSA 
N-Me 

FOSA 

                

PACIFIC 
               

Tokyo Bay, Japan11 
 

2002 na na 340-58000 na na na na 1800-192000 na na na na na 

Coastal Hong Kong, China11 
 

2002 na na 70-2600 na na na na 670-5500 na na na na na 

Coastal South Corea11 
 

2002 na na 40-2500 na na na na 240-11000 na na na na na 

South China Sea11 
 

2002 na na 8-110 na na na na 160-420 na na na na na 

Coastal area of Japan17 
 

2002 na na <2500-59000 na na na na na na na na na na 

West Pacific Ocean11 
 

2002-03 na 2.2-2.8 54-78 na na na na 136-142 na na na na na 

Central to East Pacific Ocean11 
 

2002-03 na 0.1-1.6 1.1-20 na na na na 15-62 1.0-16 na na na na 

Central to East Pacific Ocean 
(deep water 4000m)11  

2002-03 na 0.4-0.6 3.2-3.4 na na na na 45-56 na na na na na 

Coastal South Corea18 
 

2003-04 na na 40-730000 na na na na 240-320000 na na na na na 

Perl River Delta, China18 
 

2003-04 na na 20-1200 na na na na 240-16000 na na na na na 

Hong Kong, China18 
 

2003-04 na na 90-3100 na na na na 730-5500 na na na na na 

South Pacific Ocean3 
 

2004 na na <5-11 na na na na <5-11 na na na na na 

Dalian coast, China19 
 

2006 na na <100-2300 na na na na 170-38000 na na na na na 

Central and South Pacific 

Ocean20  
2007 <25 <5 <5-21 na na <5 <5 <5-7.0 <5 na na <5 na 

East to South China Sea21 
 

2010 23.0-941.0 na <20.7-70.3 na <20.3-439.0 <27.2-304 <11.3-422.0 37.5-1542.0 <22.5-37.9 na na na na 

Northwest Pacific and Bering 
Sea22 

39-79ºN 2010 na <66 <21-60 na na <27 na <20-100 <22-70 na na na na 

North Pacific Ocean (this study) 35-0º N 2011 0-115 0-161 4-476 41-260 nd nd 0-296 9-138 13-94 0-243 8-1503 2-9 3-10 

South Pacific Ocean (this study) 0-40º S 2011 0-110 0-71 2-13 52-174 nd nd 0-143 3-164 16-35 0-87 43-637 0-6 0-15 

Caribbean Sea (this study) 
 

2011 47-53 0-20 5-5 88-104 nd nd 0-41 12-36 27-28 7-19 74-147 3-4 5-6 

INDIAN 
               

Sri Lanka (coastal lakes)23 
 

2005 <16-1180 <16-1140 650-44000 na na 330-2170 260-2030 1070-12400 230-610 110-500 18-130 <16-7500 na 

Indian Ocean20 
 

2007? <5 <5 <5-8.6 na na <5 <5 <5-11 <5 na na na na 

Indian Ocean (this study) 0-40º S 2011 7-124 0-7 5-53 47-511 nd nd 0-51 5-45 11-60 9-120 57-1156 0-3 0-3 

Australian coast (this study) 0-40º S 2011 0-32 0-4 0-9 0-250 nd nd 0-47 0-9 0-26 0-70 0-292 0-0 0-0 
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Location Position Year PFBS PFHxS PFOS PFBA PFPA PFHxA PFHpA PFOA PFNA PFDA PFUnDA PFOSA 
N-Me 

FOSA 

                

ANTARCTIC 
               

Antarctic region20 
 

2007 <1(5)-2.9 <1(5) 5.1-22.6 na na <5 <5 <5 <5 na na na na 

Fildes and King George22 62ºS 2011 
<8.3-11.3 na na <64.1-79.7 25.1-82.2 56.6-360 <5.6-28.1 81-15096 na na <10.5-43.2 <40.3-46.4 na 

 

na: not analyzed; nd: not detected 
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Figure S3.2. Schematics of the global oceanic currents and the Malaspina 2010 cruise track 

 

 

Warm currents are displayed in red. Cold currents correspond to the blue ones. Black line is the cruise track during the Malaspina 2010 expedition. 
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Table S3.7. Biogeochemical parameters measured at each sampling station retrieved from the meteorological station or from the continuous surface 

seawater measurement system 

Station 

Air 

temperature 

(ºC) 

Humidity-

(%) 

Solar radiation 

(w/ m
2
) 

Salinity 

(PSU) 

Water 

Temperature 

(ºC) 

Fluorescence 

(adim) 

Conductivity 

(S/m) 

Water 

density 

(Kg/m3) 

2 17.96 87.72 0 36.3827 19.3434 0.0488 48.9349 25.9908 

3 19.28 70.48 46.8 36.9057 21.1895 0.0391 51.5265 25.8947 

5 22.99 64.77 767.68 36.9370 23.1915 0.0415 53.7231 25.3493 

7 23.18 64.36 341.7 36.9783 25.0572 0.0391 55.8105 24.8215 

8 23.47 51.51 276.17 36.6332 25.5721 0.0366 55.9087 24.4016 

9 24.62 63.55 322.98 36.3869 26.9941 0.0366 57.1210 23.7669 

11 24.72 70.08 0 35.7813 27.4287 0.0366 56.7450 23.1705 

12 25.29 65.89 42.12 35.4439 27.8767 0.0366 56.7493 22.7710 

13 26.06 69.97 0 35.4009 28.3027 0.0391 57.1442 22.5990 

14 26.44 76.6 14.03 35.5171 28.5429 0.0440 57.5688 22.6070 

15 26.35 74.05 196.59 35.6446 27.9858 0.0440 57.1516 22.8864 

17 25.96 73.95 4.67 36.0982 27.9917 0.0415 57.8022 23.2257 

18 27.21 70.69 940.87 36.3231 27.7474 0.0391 57.8540 23.4749 

20 25.58 78.75 117.02 36.5988 27.8583 0.0000 58.3649 23.6463 

21 26.54 68.24 355.75 36.8678 27.6718 0.0000 58.5380 23.9098 

23 26.06 64.98 271.49 37.2380 27.8186 0.0000 59.2219 24.1406 

24 23.09 78.34 79.57 37.2265 27.7199 0.0000 59.0955 24.1643 

26 25.96 76.71 98.29 36.6801 26.9831 0.0000 57.5165 23.9914 

28 25.1 82.11 102.97 36.6345 27.1598 0.0000 57.6471 23.9002 

29 24.33 71.61 135.74 36.5812 26.0425 0.0000 56.3508 24.2155 

30 22.42 89.15 70.21 36.4865 25.6802 0.0000 55.8275 24.2571 

31 23.18 77.73 402.56 36.4102 24.6138 0.0000 54.5709 24.5268 
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Station 

Air 

temperature 

(ºC) 

Humidity-

(%) 

Solar radiation 

(w/ m
2
) 

Salinity 

(PSU) 

Water 

Temperature 

(ºC) 

Fluorescence 

(adim) 

Conductivity 

(S/m) 

Water 

density 

(Kg/m3) 

32 22.71 69.06 440.01 36.2004 23.9521 0.0000 53.5829 24.5665 

33 22.61 67.22 117.02 36.2058 23.7886 0.0000 53.4153 24.6191 

35 22.52 67.73 472.77 36.5073 23.8035 0.0000 53.8259 24.8432 

37 22.04 68.14 496.18 36.1066 22.6482 0.0000 52.0732 24.8762 

38 21.56 62.43 828.53 35.9812 22.8164 0.0000 52.0902 24.7326 

39 21.94 65.79 365.11 35.9319 21.7726 0.0000 50.9276 24.9914 

40 20.33 81.4 538.31 35.7931 21.5748 0.0000 50.5458 24.9409 

41 20.8 74.67 1240.46 35.7748 21.3115 0.0000 50.2478 24.9998 

42 19.76 93.54 365.11 35.8058 21.315 0.0000 50.2903 25.0225 

43 20.71 88.64 449.37 35.4656 20.9058 0.0000 49.4419 24.8755 

44 20.9 77.52 1006.41 35.5409 21.0717 0.0000 49.7070 24.8875 

46 25.1 79.56 243.4 35.2933 26.3909 0.0073 54.9561 23.1340 

47 23.28 77.73 397.88 35.5106 23.7084 0.0073 52.4190 24.1159 

49 22.61 56.61 145.1 35.6274 23.8482 2.0000 52.7195 24.1631 

50 20.99 57.02 196.59 35.5671 24.4647 2.0024 53.2903 23.9337 

52 22.04 61.3 177.87 0.0000 0.0000 0.0000 0.0000 0.0000 

53 22.42 87.52 145.1 35.2860 26.3192 1.7314 54.8700 23.1511 

55 21.75 92.52 159.15 35.4577 25.6305 1.7436 54.3761 23.4955 

57 21.85 66.91 46.8 35.6690 24.9659 1.7900 53.9571 23.8592 

58 21.56 67.53 276.17 36.0047 23.5609 1.8462 52.9098 24.5338 

60 21.56 72.63 552.35 35.9466 22.8594 1.8828 52.0912 24.6940 

63 20.8 56.71 60.84 35.7717 22.1645 1.9267 51.1361 24.7595 

64 20.04 57.94 407.24 35.5304 22.1143 1.9683 50.7770 24.5903 

66 20.9 55.39 173.19 35.5737 23.4565 2.0317 52.2369 24.2377 

67 20.99 61.92 711.5 35.4728 23.3919 2.1001 52.0376 24.1801 
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Station 

Air 

temperature 

(ºC) 

Humidity-

(%) 

Solar radiation 

(w/ m
2
) 

Salinity 

(PSU) 

Water 

Temperature 

(ºC) 

Fluorescence 

(adim) 

Conductivity 

(S/m) 

Water 

density 

(Kg/m3) 

70 14.19 74.87 42.12 35.3687 18.4103 2.4542 46.7689 25.4535 

71 14.19 81.09 60.84 35.4493 18.6765 2.3687 47.1349 25.4481 

74 13.53 61.1 84.25 35.2497 16.9175 2.4176 45.1250 25.7265 

75 12.88 83.74 4.67 35.1478 16.4225 3.2063 44.5144 25.7647 

77 20.33 75.38 0 35.5502 22.0825 3.0965 50.7689 24.6143 

78 20.33 73.14 0 0.0000 0.0000 0.0000 0.0000 0.0000 

82 23.57 62.12 0 35.2816 27.0522 1.5507 55.6413 22.9153 

84 26.16 82.52 0 34.5453 28.9403 1.5897 56.5867 21.7449 

86 28.66 72.93 617.88 34.9384 29.6889 1.6313 57.9544 21.7883 

88 27.79 76.81 14.03 35.2433 29.542 1.8071 58.2450 22.0668 

90 27.5 78.34 28.08 35.3715 28.7436 3.1209 57.5748 22.4309 

92 27.41 80.17 524.26 35.4516 27.9378 3.8266 56.8256 22.7568 

94 26.83 76.3 0 34.9893 27.996 5.3309 56.2294 22.3901 

97 23.66 83.03 93.61 34.5525 26.7716 3.8486 54.3265 22.4554 

99 20.71 87.62 0 0.0000 0.0000 0.0000 0.0000 0.0000 

102 22.04 75.69 32.76 34.9421 24.9412 2.2662 52.9533 23.3171 

103 21.66 71.81 0 34.5712 24.4214 2.2271 51.9172 23.1932 

106 19.95 84.15 37.44 34.6146 23.8118 2.1050 51.3476 23.4068 

107 21.47 77.83 159.15 34.7804 22.762 2.1978 50.4856 23.8369 

109 20.04 69.46 9.35 34.8413 22.3751 2.2637 50.1670 23.9932 

110 20.14 63.14 65.53 34.8462 22.058 2.3175 49.8484 24.0862 

112 21.85 68.44 107.65 34.6703 23.8151 2.5128 51.4245 23.4480 

113 22.32 71.3 42.12 34.5075 24.5749 2.4908 51.9900 23.0991 

114 22.61 71.91 131.06 34.4197 25.2931 2.4542 52.6113 22.8153 

116 24.72 65.59 201.27 34.0548 28.4774 2.7082 55.3923 21.5299 
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Station 

Air 

temperature 

(ºC) 

Humidity-

(%) 

Solar radiation 

(w/ m
2
) 

Salinity 

(PSU) 

Water 

Temperature 

(ºC) 

Fluorescence 

(adim) 

Conductivity 

(S/m) 

Water 

density 

(Kg/m3) 

117 26.25 67.93 98.29 34.1531 29.1432 2.8278 56.2274 21.3828 

120 27.41 73.24 46.8 33.4412 29.6864 3.2869 55.7415 20.6667 

121 27.21 77.73 149.78 33.8554 29.4574 3.3895 56.1170 21.0543 

123 26.83 83.85 98.29 34.3193 28.1317 8.0244 55.4135 21.8420 

124 25.19 85.07 23.4 34.2250 28.5718 5.2625 55.7364 21.6266 

125 26.54 82.52 177.87 34.1586 28.1704 8.4737 55.2233 21.7087 

128 27.89 79.36 23.4 35.5559 29.2159 1.8510 58.3503 22.4115 

129 28.18 78.75 65.53 35.5043 29.2817 1.7460 58.3463 22.3506 

131 27.5 72.52 32.76 35.5153 29.4255 1.8217 58.5174 22.3103 

132 27.21 73.24 60.84 35.5783 29.031 1.7314 58.1833 22.4903 

134 26.25 74.77 0 36.7524 28.1236 1.8095 58.8748 23.6747 

135 25.58 78.13 42.12 37.0479 27.5184 1.8388 58.6207 24.0955 

137 26.73 65.18 1128.11 37.0533 27.0288 1.9585 58.0851 24.2581 

138 23.95 66.71 0 37.4466 26.4516 1.9805 57.9858 24.7396 

140 23.09 75.58 42.12 37.6315 24.8824 2.0977 56.4885 25.3695 

141 22.71 68.65 9.35 37.4785 24.3872 2.1758 55.7374 25.4043 

143 20.14 88.44 23.4 37.3438 22.9963 2.4127 54.0341 25.7152 

144 20.23 64.36 0 36.9525 21.6126 2.5324 52.0386 25.8127 

146 20.14 80.99 0 36.7039 21.8145 2.8987 51.9435 25.5669 

147 19.66 84.66 0 36.7783 21.6044 3.2332 51.8120 25.6824 
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Figure S3.3. PFOA and PFOS in the different oceanic biogeochemical provinces  

 

 

 

Upper panel shows mean and minimum and maximums records of PFOA and PFOS 

(pg/L) and medium panel PFOA/PFOS ratio mean, minimum and maximum records per 

Longhurst province. Map draws Longhurst 2010 biogeochemical provinces and 

sampling points in red dots. Chronologically ordered provinces Malaspina cruise 

crossed correspond to: N. Atlantic Subtropical Gyre Province East (NASE), N. Atlantic 

Tropical Gyre Province (NATR), Western Tropical Atlantic Province (WTRA), South 

Atlantic Gyral Province (SATL), Benguela Current Coastal Province (BENG), E. Africa 

Coastal Province (EAFR), Indian S. Subtropical Gyre Province (ISSG), Australia-

Indonesia Coastal Province (AUSW), S. Subtropical Convergence Province (SSTC), E. 

Australia Coastal Province (AUSE), S. Pacific Subtropical Gyre Province (SPSG), 

Pacific Equatorial Divergence Province (PEQD), N. Pacific Equatorial Countercurrent 

Province (PNEC), N. Pacific Tropical Gyre Province (NPTG), Caribbean Province 

(CARB). NASE, NATR and PNEC have been divided into west and east as they were 

crossed in different areas and periods during the campaign.  
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Table S3.8. Non parametric statistical correlations between PFAS concentrations and 

biological parameters (chlorophyll a concentrations and bacterial biomass) 

Non Parametric Correlations 
CHLTotal (mgm-

3
) BacterialBiomass(µgCl1) 

T
a

u
_

b
 K

e
n

d
a

ll 

∑PFSAs 

Correlation -,077 -,100 

Sig. (bilateral) ,319 ,194 

N 78 79 

∑PFCAs 

Correlation ,057 -,104 

Sig. (bilateral) ,461 ,177 

N 78 79 

∑PFASAs 

Correlation ,203
*
 ,125 

Sig. (bilateral) ,013 ,120 

N 78 79 

∑PFASs 

Correlation -,041 -,126 

Sig. (bilateral) ,596 ,100 

N 78 79 

PFOS 

Correlation -,151 -,163
*
 

Sig. (bilateral) ,051 ,034 

N 78 79 

PFOA 

Correlation -,195
*
 -,206

**
 

Sig. (bilateral) ,012 ,007 

N 78 79 

R
h
o

 S
p

e
a

rm
a
n
 

∑PFSAs 

Correlation -,114 -,140 

Sig. (bilateral) ,319 ,219 

N 78 79 

∑PFCAs 

Correlation ,076 -,149 

Sig. (bilateral) ,507 ,190 

N 78 79 

∑PFASAs 

Correlation ,279
*
 ,181 

Sig. (bilateral) ,013 ,110 

N 78 79 

∑PFASs 

Correlation -,063 -,173 

Sig. (bilateral) ,587 ,127 

N 78 79 

PFOS 

Correlation -,228
*
 -,242

*
 

Sig. (bilateral) ,044 ,031 

N 78 79 

PFOA 

Correlation -,294
**
 -,276

*
 

Sig. (bilateral) ,009 ,014 

N 78 79 

** p< 0,01 (bilateral).* p <0,05 (bilateral).  
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Figure S3.4. Solar radiation influence on PFASs concentration 

 

 

 

Total PFSAs and PFCAs in the upper panel and PFOS and PFOA in the bottom panel. 
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Figure S3.5. Temperature influence on PFASs concentration  

 

 

Total PFSAs and PFCAs in the upper panels and PFOS and PFOA in the bottom panels; air 

temperature on the left and water temperature on the right. 
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Table S3.9. Non parametric statistical correlations between PFAS concentrations and 

solar radiation and water and air temperature 

 

Non parametric Correlations Solar Radiation 

Wm-2 

Air temp. 

ºC 

Water temp 

ºC 

T
a

u
_

b
 K

e
n

d
a

ll 

ΣPFCAs 

Correlation -,037 ,182* ,196** 

Sig. (bilateral) ,610 ,011 ,006 

N 92 92 89 

ΣPFSAs 

Correlation ,165* -,016 -,035 

Sig. (bilateral) ,021 ,821 ,630 

N 92 92 89 

ΣPFOSAs 

Correlation -,262** ,217** ,243** 

Sig. (bilateral) ,001 ,004 ,001 

N 92 92 89 

PFOA 

Correlation -.031 -.079 -.101 

Sig. (bilateral) .663 .270 .160 

N 92 92 89 

PFOS 

Correlation .179* -.017 .345** 

Sig. (bilateral) .013 .881 .000 

N 92 92 92 

R
h
o

 S
p

e
a

rm
a
n
 

ΣPFCAs 

Correlation -,044 ,269
**
 ,294

**
 

Sig. (bilateral) ,675 ,010 ,005 

N 92 92 89 

ΣPFSAs 

Correlation ,253
*
 -,030 -,062 

Sig. (bilateral) ,015 ,773 ,566 

N 92 92 89 

ΣPFOSAs 

Correlation -,357
**
 ,297

**
 ,338

**
 

Sig. (bilateral) ,000 ,004 ,001 

N 92 92 89 

PFOA 

Correlation -.039 -.112 -.138 

Sig. (bilateral) .712 .287 .198 

N 92 92 89 

PFOS 

Correlation .272** -.030 -.101 

Sig. (bilateral) .009 .778 .346 

N 92 92 89 

*. p< 0,05 (bilateral). 
**. p< 0,01 (bilateral). 
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Table S4.1. Stations, positional information and sampling dates of the DCM water 

samples 

Leg* Station Ocean Day 
UTC 

Time 
Longitude Latitude 

DCM 

Depth 

(m) 

1 3 Atlantic 12/19/2010 10:30 -17.285 29.686 98 

1 7 Atlantic 12/23/2010 12:40 -23.456 21.456 88 

1 8 Atlantic 12/24/2010 10:30 -24.36 20.275 45 

1 9 Atlantic 12/25/2010 12:40 -26.018 16.165 75 

1 11 Atlantic 12/27/2010 11:53 -26.021 14.514 65 

1 12 Atlantic 12/28/2010 10:25 -26.001 9.563 88 

1 13 Atlantic 12/29/2010 10:20 -26.011 7.33 55 

1 14 Atlantic 12/30/2010 10:35 -26.035 5.021 120 

1 15 Atlantic 12/31/2010 10:55 -26.071 2.503 80 

1 17 Atlantic 1/2/2011 11:17 -27.348 -3.024 75 

1 18 Atlantic 1/3/2011 11:25 -28.167 -4.785 110 

1 20 Atlantic 1/5/2011 11:19 -30.191 -9.069 150 

1 21 Atlantic 1/6/2011 12:45 -31.465 -11.647 150 

1 23 Atlantic 1/8/2011 11:50 -33.435 -15.801 152 

1 24 Atlantic 1/9/2011 12:50 -34.669 -18.411 130 

1 26 Atlantic 1/11/2011 11:48 -37.001 -23.054 125 

2 28 Atlantic 1/20/2011 11:11 -33.366 -24.795 120 

2 29 Atlantic 1/21/2011 10:50 -30.151 -25.402 120 

2 30 Atlantic 1/22/2011 11:30 -27.591 -25.847 130 

2 31 Atlantic 1/23/2011 11:00 -24.257 -26.409 140 

2 32 Atlantic 1/24/2011 11:00 -21.433 -26.892 125 

2 33 Atlantic 1/25/2011 11:05 -18.084 -27.556 120 

2 34 Atlantic 1/26/2011 10:35 -14.792 -28.079 150 

2 37 Atlantic 1/29/2011 10:30 -5.424 -29.675 110 

2 38 Atlantic 1/30/2011 10:30 -2.441 -30.256 105 

2 39 Atlantic 1/31/2011 16:00 1.475 -30.949 110 

2 40 Atlantic 2/1/2011 10:40 3.841 -31.317 70 

2 41 Atlantic 2/2/2011 10:45 6.752 -31.771 85 

2 42 Atlantic 2/3/2011 10:40 9.92 -32.274 72 

2 43 Atlantic 2/4/2011 10:35 12.734 -32.771 48 

2 44 Atlantic 2/5/2011 10:50 15.479 -33.307 55 

3 46 Indian 2/14/2011 8:52 27.494 -34.863 93 

3 47 Indian 2/15/2011 7:03 31.05 -34.464 80 

3 49 Indian 2/17/2011 8:52 36.981 -33.868 87 

3 50 Indian 2/18/2011 6:42 39.872 -33.526 125 

3 52 Indian 2/24/2011 5:30 61.483 -30.053 130 

3 53 Indian 2/25/2011 6:00 63.259 -27.972 130 

3 55 Indian 2/27/2011 5:00 69.424 -29.355 130 

3 57 Indian 3/1/2011 5:00 76.066 -29.892 140 

3 58 Indian 3/2/2011 4:30 79.612 -29.824 130 

3 60 Indian 3/4/2011 4:57 86.252 -29.747 150 
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3 63 Indian 3/7/2011 3:20 96.416 -29.571 114 

3 64 Indian 3/8/2011 3:15 99.999 -29.897 113 

3 66 Indian 3/10/2011 3:50 107.25 -30.81 100 

3 67 Indian 3/11/2011 2:20 110.22 -31.12 130 

4a 70 Indian 3/20/2011 0:55 120.866 -36.634 100 

4a 71 Indian 3/21/2011 1:50 124.878 -37.281 75 

4a 73 Indian 3/24/2011 0:20 131.592 -38.515 70 

4a 75 Indian 3/25/2011 22:21 138.791 -39.853 60 

4a 77 Pacific 3/28/2011 23:54 150.436 -38.699 60 

4a 78 Pacific 3/29/2011 22:16 150.949 -36.779 80 

5 82 Pacific 4/20/2011 
 

-178.24 -23.346 110 

5 84 Pacific 4/22/2011 
 

-175.864 -18.562 89 

5 86 Pacific 4/24/2011 
 

-173.397 -13.533 105 

5 88 Pacific 4/26/2011 
 

-172.367 -9.455 115 

5 90 Pacific 4/28/2011 
 

-170.816 -5.732 100 

5 92 Pacific 4/30/2011 
 

-168.385 -1.289 65 

5 94 Pacific 5/2/2011 
 

-165.734 3.943 80 

5 97 Pacific 5/5/2011 
 

-162.398 11.657 89 

5 99 Pacific 5/7/2011 
 

-159.443 17.982 140 

6 102 Pacific 5/15/2011 19:56 -153.43 21.577 140 

6 103 Pacific 5/16/2011 19:56 -150.442 21.063 105 

6 106 Pacific 5/19/2011 18:47 -141.635 19.917 125 

6 107 Pacific 5/20/2011 19:40 -138.977 19.287 130 

6 109 Pacific 5/22/2011 18:30 -133.324 18.075 125 

6 110 Pacific 5/23/2011 18:20 -130.634 17.39 110 

6 112 Pacific 5/25/2011 17:48 -124.523 15.916 40 

6 113 Pacific 5/26/2011 15:10 -121.998 15.31 137 

6 114 Pacific 5/27/2011 15:35 -118.776 14.528 88 

6 116 Pacific 5/29/2011 18:10 -113.267 13.187 70 

6 117 Pacific 5/30/2011 18:50 -110.373 12.475 124 

6 120 Pacific 6/2/2011 15:54 -102.459 10.76 37 

6 121 Pacific 6/3/2011 15:25 -99.253 10.07 43 

6 123 Pacific 6/5/2011 17:20 -93.143 8.809 24 

6 124 Pacific 6/6/2011 15:10 -90.341 8.153 23 

6 125 Pacific 6/7/2011 15:10 -87.9 7.207 20 

7 128 Atlantic 6/21/2011 14:15 -71.772 14.226 97 

7 129 Atlantic 6/22/2011 14:52 -69.384 15.068 95 

7 131 Atlantic 6/25/2011 13:50 -59.833 17.427 90 

7 132 Atlantic 6/26/2011 13:20 -57.845 18.094 160 

7 134 Atlantic 6/28/2011 12:30 -52.691 20.014 130 

7 135 Atlantic 6/29/2011 12:45 -50.178 20.79 135 

7 137 Atlantic 7/1/2011 12:36 -44.531 22.862 137 

7 138 Atlantic 7/2/2011 11:05 -41.918 23.766 130 

7 140 Atlantic 7/4/2011 11:07 -35.324 26.111 140 

7 141 Atlantic 7/5/2011 10:40 -32.924 26.925 150 

7 143 Atlantic 7/7/2011 9:50 -26.97 28.874 120 
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7 144 Atlantic 7/8/2011 10:33 -23.71 29.978 100 

7 146 Atlantic 7/10/2011 9:20 -17.286 32.084 110 

7 147 Atlantic 7/11/2011 9:30 -14.678 32.846 90 

 

*”Leg” term corresponds with transects: (1) Cadiz (Spain) – Rio de Janeiro (Brazil, (2) Rio de 

Janeiro (Brazil) – Cape Town (Republic of South Africa), (3) Cape Town (Republic of South 

Africa) – Perth (Australia), (4) Perth (Australia) – Sydney (Australia), (5) Sydney (Australia) – 

Honolulu (Hawaii, USA), (6) Honolulu (Hawaii, USA) – Cartagena de Indias (Colombia), (7) 

Cartagena de Indias (Colombia) – Cartagena (Spain). 
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Table S4.2. Surrogate recovery data in DCM samples 

 

 

Standard 
 

 

PFHxA -
13C2  

PFHxS -
18O2 

PFOA -
13C4  

PFNA -
13C5  

PFOS -
13C4  

PFDA -
13C2 

Average Recovery 

% 

 

 
140 

 
142 96 

 
76 

 
82 

 
87 
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Table S4.3. Normality test for the individual PFASs concentrations 

 

Normality Test 

 Kolmogorov-Smirnov
a
 Shapiro-Wilk 

Statistic gf Sig. Statistic gf Sig. 

S_PFBS ,168 92 ,000 ,817 92 ,000 

S_PFHxA ,236 92 ,000 ,736 92 ,000 

S_PFHpA ,158 92 ,000 ,829 92 ,000 

S_PFHxS ,348 92 ,000 ,391 92 ,000 

S_PFOA ,220 92 ,000 ,666 92 ,000 

S_PFHpS ,328 92 ,000 ,472 92 ,000 

S_PFNA ,366 92 ,000 ,434 92 ,000 

S_FOSA ,286 92 ,000 ,750 92 ,000 

S_PFOS ,337 92 ,000 ,413 92 ,000 

S_NMeFOSA ,262 92 ,000 ,719 92 ,000 

S_PFDA ,372 92 ,000 ,319 92 ,000 

S_∑PFCAs ,352 92 ,000 ,393 92 ,000 

S_∑PFSAs ,322 92 ,000 ,409 92 ,000 

S_∑PFOSAs ,268 92 ,000 ,739 92 ,000 

S_∑PFASs ,320 92 ,000 ,509 92 ,000 

DCM_PFBS ,216 92 ,000 ,651 92 ,000 

DCM_PFHxA ,258 92 ,000 ,697 92 ,000 

DCM_PFHpA ,225 92 ,000 ,700 92 ,000 

DCM_PFHxS ,324 92 ,000 ,428 92 ,000 

DCM_PFOA ,155 92 ,000 ,772 92 ,000 

DCM_PFHpS ,314 92 ,000 ,519 92 ,000 

DCM_PFNA ,347 92 ,000 ,333 92 ,000 

DCM_FOSA ,261 92 ,000 ,631 92 ,000 

DCM_PFOS ,367 92 ,000 ,290 92 ,000 

DCM_NMeFOSA ,253 92 ,000 ,683 92 ,000 

DCM_PFDA ,326 92 ,000 ,468 92 ,000 

DCM_∑PFCAs ,281 92 ,000 ,503 92 ,000 

DCM_∑PFSAs ,345 92 ,000 ,326 92 ,000 

DCM_∑PFOSAs ,269 92 ,000 ,713 92 ,000 

DCM_∑PFASs ,289 92 ,000 ,458 92 ,000 

a. Significance Lilliefors corrected 

S attends for Surface samples concentrations and DCM for the DCM ones. 

Since all distributions were not normal, non-parametric statistics was applied. 
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Table S4.4. Individual and total PFAS concentrations (pg L
-1

) in DCM ocean water samples and total PFAS concentrations (pg L
-1

) in surface 

water samples 
1
 

 

station PFBS PFHxS PFHpS PFOS PFHxA PFHpA PFOA PFNA PFDA PFOSA N-MePFOSA 
ΣPFASs 

DCM 

ΣPFASs 

surface 

2            No sample 1290 

3 95.9 18.8 67.6 524 66.2 89.0 186 1050 2120 nd 0.18 4220 355 

5            No sample 3130 

7            No sample 516 

8 32.5 8.54 27.4 99.0 11.9 37.4 78.5 363 1230 nd 0.36 1890 353 

9 50.0 6.88 5.36 37.2 19.0 11.3 33.1 27.7 72.9 nd nd 263 2940 

11 68.0 7.14 24.6 34.2 46.4 11.9 32.0 24.9 50.5 nd nd 300 285 

12 119 5.10 2.34 74.3 90.4 25.3 51.4 254 525 nd nd 1150 340 

13 9.40 4.88 2.86 53.2 26.8 15.7 38.1 123 489 nd 0.39 763 4000 

14 25.8 6.88 2.22 55.1 45.1 14.1 44.0 139 643 nd nd 975 1140 

15 4.62 2.65 1.34 16.2 26.4 6.33 22.2 22.4 97.9 nd nd 200 300 

17 95.3 316 85.4 3400 249 8.47 53.2 25.0 144 0.82 nd 4370 9040 

18 106 193 56.3 1910 100 9.37 34.9 27.7 64.5 nd nd 2500 5630 

20 24.0 681 108 9580 12.0 21.0 77.0 40.0 149 17.0 3.00 10700 4480 
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station PFBS PFHxS PFHpS PFOS PFHxA PFHpA PFOA PFNA PFDA PFOSA N-MePFOSA 
ΣPFASs 

DCM 

ΣPFASs 

surface 

21 57.8 140 96.4 1620 32.3 12.8 54.0 18.4 96.6 nd nd 2130 7150 

23 56.3 134 25.7 844 30.8 6.15 23.4 15.0 148 nd 0.03 1280 6230 

24 83.9 138 27.7 902 51.5 19.7 49.2 84.3 629 nd 0.03 1990 10900 

26 10.8 53.9 14.5 509 11.0 6.99 26.9 33.7 769 0.03 0.11 1440 500 

28 26.9 21.3 5.34 404 nd 4.02 20.3 5.91 37.7 nd nd 526 1630 

29 103 36.2 6.83 506 17.7 16.1 43.2 90.5 78.9 nd nd 898 3510 

30 40.2 92.5 20.9 1340 71.0 10.3 46.1 45.1 14.4 nd nd 1680 2750 

31 85.6 55.6 8.63 667 6.03 40.9 81.4 384 110 nd nd 1440 2090 

32 62.76 14.58 1.835 189.6 nd 4.900 18.47 24.57 29.35 nd nd 346.1 1941 

33 480.0 50.00 18.40 1101 39.00 54.00 32.00 10.00 nd 6.000 9.000 1799 1127 

35 46.14 19.22 4.083 319.0 nd 8.490 18.38 4.240 4.770 nd nd 424.3 733.2 

37 32.18 19.76 2.172 220.2 nd 10.76 23.28 8.460 6.560 nd nd 323.4 304.9 

38 72.33 40.81 4.583 275.2 nd 5.930 27.82 9.320 7.960 nd nd 443.9 732.3 

39 59.33 18.89 2.729 209.2 nd 6.380 19.78 7.610 1.080 nd nd 325.0 409.2 

40 67.80 31.98 1.068 277.0 nd 10.21 20.75 9.580 4.590 nd nd 422.9 619.6 

41 39.49 44.08 6.870 325.0 3.060 10.78 31.59 14.99 6.160 nd nd 482.0 1249 

42 68.67 34.57 2.199 332.0 2.970 3.340 19.76 12.80 4.840 nd nd 480.7 1102 
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station PFBS PFHxS PFHpS PFOS PFHxA PFHpA PFOA PFNA PFDA PFOSA N-MePFOSA 
ΣPFASs 

DCM 

ΣPFASs 

surface 

43 148.7 77.36 8.695 547.0 13.29 6.720 34.35 9.200 4.250 nd nd 849.4 644.6 

44 14.07 20.48 1.330 337.2 nd 3.120 25.52 13.28 3.380 nd nd 418.5 424.2 

46 14.33 15.47 2.449 76.82 2.490 11.70 21.32 43.86 268.9 nd nd 457.3 328.8 

47 15.31 8.890 2.571 49.36 6.260 11.69 20.53 60.87 285.4 nd nd 460.9 551.4 

49 3.340 10.10 1.686 55.65 10.17 6.180 18.71 15.46 63.36 nd 0.060 184.7 180.6 

50 24.03 6.240 1.535 31.13 8.145 9.550 24.33 102.2 757.0 nd nd 964.1 263.2 

52 36.72 9.330 2.971 102.0 8.895 4.040 18.34 20.20 152.1 nd nd 354.6 285.3 

53 51.03 10.72 2.059 60.54 40.50 6.830 16.18 8.850 10.21 nd nd 206.9 278.0 

55 3.540 7.600 1.623 68.77 36.45 5.400 10.95 7.170 46.71 nd nd 188.2 239.0 

57 18.33 9.480 2.201 55.33 20.64 3.800 12.38 13.76 138.3 nd nd 274.3 823.3 

58            No sample 757.5 

60 29.08 8.040 1.652 124.5 nd 7.040 24.17 42.63 143.1 nd nd 380.2 741.8 

63 133. 7 10.98 2.193 159.4 22.51 7.190 19.64 74.68 189.5 nd nd 619.7 519.1 

64 32.00 25.00 0.138 215.0 69.00 nd 19.00 59.00 415.0 6.000 3.000 843.1 373.8 

66 255.0 32.97 10.80 458.0 51.52 16.93 43.72 58.40 154.1 0.300 nd 1082 1676 

67 167.0 33.00 nd 631.0 nd 175.0 40.00 124.0 2193 18.00 15.00 3396 1976 

70 14.47 5.340 2.340 84.61 22.59 0.900 20.11 8.340 13.75 nd 0.290 172.7 245.3 
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station PFBS PFHxS PFHpS PFOS PFHxA PFHpA PFOA PFNA PFDA PFOSA N-MePFOSA 
ΣPFASs 

DCM 

ΣPFASs 

surface 

71 8.360 4.210 1.711 85.48 nd nd 14.94 4.570 10.48 nd 0.230 130.0 176.0 

74 29.30 8.570 1.524 146.1 13.95 8.540 34.29 88.21 109.5 nd 0.255 440.2 429.0 

75 23.68 5.270 1.519 59.37 36.33 7.350 21.54 33.46 100.3 nd 0.230 289.0 479.7 

77 82.54 16.32 3.206 197.6 21.24 6.405 31.64 94.02 64.67 nd 0.240 517.9 255.6 

78 14.17 11.02 5.759 121.9 7.8 nd 34.56 14.38 34.90 nd 0.250 244.8 No sample 

82 120.3 15.03 3.835 200.5 30.47 3.540 33.26 16.59 40.71 nd 0.350 464.5 372.2 

84 nd 7.000 130.62 185.0 75.00 nd 25.00 47.00 335.0 6.000 9.000 819.6 622.2 

86 nd nd 2.155 357.0 85.50 34.50 31.00 19.00 109.0 6.000 9.000 653.2 640.2 

88 3.000 14.00 4.978 102.0 nd 106.0 24.00 32.00 353.0 6.000 9.000 654.0 966.8 

90 nd 6.000 42.24 227.0 18.0 156.0 21.00 6.000 34.00 6.000 18.00 534.3 552.2 

92 15.00 7.500 13.70 264.0 nd 116.0 44.00 16.00 140.0 6.000 9.000 631.2 584.8 

94 26.07 137.2 39.97 220.4 nd 29.63 32.68 16.27 61.81 2.890 3.160 570.1 852.2 

97 8.770 24.21 2.960 108.9 nd 37.10 28.81 48.33 323.6 2.230 2.750 587.7 489.6 

99 116.4 96.30 226.0 232.9 nd 120.1 59.43 28.49 185.3 2.690 2.710 1070 2503 

102 140.8 124.2 14.50 145.5 nd 13.35 39.20 24.88 98.19 2.610 3.250 606.5 493.1 

103 41.75 48.43 nd 85.89 217.0 49.70 27.79 23.75 22.53 2.220 3.140 522.2 470.4 

106 27.43 37.15 nd 121.8 nd 25.85 18.52 16.78 18.67 2.540 2.790 271.6 496.8 
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station PFBS PFHxS PFHpS PFOS PFHxA PFHpA PFOA PFNA PFDA PFOSA N-MePFOSA 
ΣPFASs 

DCM 

ΣPFASs 

surface 

107 66.29 22.56 55.36 128.3 129.2 30.19 20.96 17.69 10.84 2.850 3.310 487.5 412.6 

109 26.84 125.8 4.713 102.1 nd 33.66 34.66 40.59 21.74 2.100 3.030 395.2 572.7 

110 43.84 72.91 nd 134.4 nd 15.51 32.76 13.02 35.85 2.630 2.660 353.6 823.7 

112 29.52 19.05 19.71 103.4 94.42 44.96 22.80 19.93 35.73 3.290 3.150 396.0 376.3 

113 25.57 nd 13.91 68.24 139.1 86.41 8.380 nd 7.940 2.510 3.050 355.1 526.5 

114 nd nd 19.02 86.00 nd 50.00 40.00 17.00 29.00 6.000 9.000 256.0 895.9 

116 34.94 71.91 nd 91.88 nd 84.09 17.28 11.61 5.250 3.045 3.630 323.6 359.4 

117 17.99 36.32 10.39 26.53 nd 26.90 5.330 nd 15.46 2.500 2.740 144.2 548.3 

120 nd 6.000 12.29 20.00 96.00 147.0 17.00 9.000 22.00 6.000 9.000 344.3 635.6 

121 51.17 nd 3.991 59.80 182.6 114.4 21.92 0.450 nd 2.360 2.610 439.3 344.1 

123 145.3 3.000 0.201 60.00 nd nd 102.0 18.00 84.00 3.000 3.000 418.5 505.4 

124 54.00 8.000 0.201 24.00 nd 10.50 19.00 3.000 13.00 3.000 3.000 137.7 443.7 

125 34.00 8.000 44.10 136.00 141.0 51.00 12.00 nd nd 3.000 4.000 433.1 374.5 

128 75.00 5.000 0.201 69.00 nd 36.00 30.00 12.00 164.1 3.000 5.000 399.3 360.1 

129 36.00 14.00 54.06 126.0 108.0 12.00 50.00 15.00 106.0 4.000 7.000 532.1 371.3 

131 144.1 25.00 51.21 257.6 nd 39.00 34.00 18.00 nd 5.000 12.00 586.0 780.0 

132 19.00 3.000 6.425 33.00 nd 15.00 43.00 15.00 nd 3.000 3.000 140.4 130.7 
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station PFBS PFHxS PFHpS PFOS PFHxA PFHpA PFOA PFNA PFDA PFOSA N-MePFOSA 
ΣPFASs 

DCM 

ΣPFASs 

surface 

134 29.00 2.000 0.201 19.00 nd 16.50 52.00 15.00 3.000 3.000 3.000 142.7 235.9 

135 28.00 13.00 0.201 32.00 nd 52.00 51.00 16.00 6.000 3.000 3.000 204.2 206.7 

137 18.00 7.000 5.033 44.00 43.50 29.00 48.00 18.00 8.000 3.000 3.000 226.5 189.2 

138 21.00 12.00 0.201 40.00 144.0 nd 54.00 16.00 10.00 3.000 3.000 303.2 183.5 

140 14.00 7.000 0.201 47.00 nd 24.00 13.00 5.000 15.00 3.000 3.000 131.2 313.0 

141 21.00 6.000 nd 29.00 33.00 19.00 53.00 16.00 3.000 3.000 3.000 186.0 311.0 

143 17.00 nd nd 34.00 43.50 30.00 38.00 20.00 8.000 3.000 3.000 196.5 226.0 

144 28.00 3.000 nd 31.00 73.50 58.00 45.00 18.00 13.00 3.000 3.000 275.5 302.0 

146 28.00 3.000 8.046 53.00 nd 25.00 63.00 18.00 7.000 3.000 3.000 211.1 330.0 

147 17.00 3.000 nd 37.00 nd 18.00 79.00 32.00 8.000 3.000 3.000 200.0 441.0 

 

nd: non detected 
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Figure S4.1. Relative contribution of the individual PFASs at the DCM for each oceanic sub 

basin 
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Table S4.5. Non parametric correlation coefficients and significances for individual PFASs 

between surface and DCM concentrations 

 

Compound Correl. Coeff. Sig. 

PFBS 
.332 .000** 

PFHxS 
.445 .000** 

PFHpS 
.245 .001** 

PFOS 
.588 .000** 

PFHxA 
.113 .124 

PFHpA 
.393 .000** 

PFOA 
.261 .000** 

PFNA 
.271 .000** 

PFDA 
.435 .000** 

FOSA 
.577 .000** 

NMeFOSA 
.572 .000** 

Non-parametric Kendall’s Tau 
**. P< 0,01 (bilateral). 

*. P< 0,05 (bilateral). 
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Figure S4.2. Comparison of PFASs concentration at surface and DCM water samples 
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Figure S4.3. Eddy diffusion coefficients (Kρ, m
2
s

-1
) at the surface and DCM depth 

 

 

 

 
 

 

Top panel shows the value of Kρ at 15 m, corresponding to the surface diffusivity (shallower 

diffusivity is not considered due to variability induced by non-diffusion processes like waves and 

wind shear). Bottom panel shows the value of Kρ at 105 m, close to the mean DCM depth during 

Malaspina 2010 campaign. 

 

Bars with ≈ symbol have been diminished by a factor of 10 in order to ease the global comparison of 

all the measurements.  
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Table S4.6. Mean relative error of modeled DCM concentration (pg L
-1

) 

 

 

Mean 

error 

PFBS 38.37 

PFHxS 39.01 

PFHpS 13.66 

PFOS 323.51 

PFHxA 13.91 

PFHpA 21.53 

PFOA 23.11 

PFNA 51.69 

PFDA 145.95 

PFOSA 1.96 

N-MePFOSA 2.24 
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Figure S4.4. Relative error of modelled DCM concentration per sub basin 
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Table S4.7. Turbulent fluxes (FEddy, ng m
-2

day
-1

) 

S
ta

ti
o
n

 

Surface Turbulent Fluxes  

 

DCM Turbulent Fluxes 

PFBS PFBS PFHxS PFHpS PFOS PFOA PFHpA PFHxA PFNA 
 

PFBS PFHxS PFHpS PFOS PFOA PFHpA PFHxA PFNA PFDA 

3 8,85 10-4 8,85 10-4 3,81 10-4 8,62 10-6 3,81 10-4 5,98 10-4 5,98 10-4 2,16 10-4 8,03 10-4 
 

9,67 10-4 2,35 10-4 1,61 10-5 4,16 10-4 1,28 10-3 6,53 10-4 1,34 10-3 8,76 10-4 4,16 10-3 

7 3,73 10-4 3,73 10-4 7,95 10-4 1,36 10-5 7,95 10-4 2,55 10-4 2,55 10-4 1,03 10-4 7,60 10-4 
 

1,00 10-4 2,77 10-5 1,59 10-5 2,14 10-4 1,58 10-4 6,85 10-5 4,09 10-5 2,04 10-4 1,13 10-3 

13 5,86 10-7 5,86 10-7 1,08 10-6 1,26 10-6 1,08 10-6 5,53 10-7 5,53 10-7 2,03 10-7 7,39 10-6 
 

2,07 10-4 7,17 10-5 2,01 10-5 3,82 10-4 3,99 10-4 1,95 10-4 5,63 10-5 2,61 10-3 8,39 10-3 

17 2,22 10-3 2,22 10-3 5,42 10-2 6,40 10-6 5,42 10-2 2,64 10-4 2,64 10-4 1,17 10-2 2,49 10-4 
 

8,01 10-4 2,88 10-3 6,24 10-4 1,96 10-2 2,68 10-4 9,53 10-5 3,12 10-4 9,00 10-5 3,98 10-4 

20 2,04 10-6 2,04 10-6 4,52 10-5 3,44 10-5 4,52 10-5 1,89 10-7 1,89 10-7 4,84 10-6 4,32 10-7 
 

2,75 10-6 6,54 10-6 1,73 10-6 6,10 10-5 1,08 10-6 2,56 10-7 2,53 10-6 5,84 10-7 3,45 10-6 

23 3,21 10-4 3,21 10-4 2,54 10-3 3,94 10-6 2,54 10-3 2,24 10-4 2,24 10-4 4,00 10-4 3,25 10-3 
 

7,03 10-6 8,76 10-6 1,26 10-6 5,56 10-5 9,17 10-6 4,90 10-6 2,80 10-6 7,11 10-5 2,77 10-4 

29 9,20 10-5 9,20 10-5 3,75 10-3 3,40 10-6 3,75 10-3 1,45 10-4 1,45 10-4 3,11 10-4 1,51 10-4 
 

3,49 10-6 1,18 10-5 2,38 10-6 1,42 10-4 8,70 10-6 5,50 10-6 - 5,73 10-6 3,19 10-6 

32 4,97 10-4 4,97 10-4 3,19 10-3 3,31 10-5 3,19 10-3 1,80 10-4 1,80 10-4 3,12 10-4 2,78 10-3 
 

5,00 10-5 3,14 10-5 4,60 10-6 3,20 10-4 4,94 10-5 1,81 10-5 - 2,79 10-4 1,50 10-4 

37 - - 3,03 10-4 4,40 10-6 3,03 10-4 8,22 10-6 8,22 10-6 1,97 10-5 7,16 10-6 
 

- 3,00 10-5 4,36 10-6 4,63 10-4 5,67 10-5 1,26 10-5 - 1,09 10-5 1,24 10-5 

38 1,56 10-4 1,56 10-4 1,08 10-3 2,84 10-5 1,08 10-3 3,77 10-5 3,77 10-5 1,52 10-4 4,56 10-5 
 

2,64 10-4 2,57 10-4 2,89 10-5 1,83 10-3 1,45 10-4 6,38 10-5 - 7,72 10-5 5,91 10-5 

40 1,06 10-3 1,06 10-3 3,65 10-3 8,15 10-7 3,65 10-3 1,89 10-4 1,89 10-4 7,92 10-4 8,51 10-5 
 

1,48 10-4 1,11 10-4 6,12 10-6 5,10 10-4 4,11 10-5 2,65 10-5 8,32 10-8 1,19 10-5 4,85 10-6 

41 1,05 10-4 1,05 10-4 1,51 10-3 3,54 10-4 1,51 10-3 2,20 10-4 2,20 10-4 1,79 10-4 9,84 10-5 
 

2,87 10-4 4,90 10-4 2,41 10-4 4,13 10-3 3,28 10-4 6,00 10-4 3,05 10-4 2,69 10-4 7,16 10-4 

43 3,53 10-4 3,53 10-4 5,86 10-3 4,39 10-6 5,86 10-3 3,89 10-4 3,89 10-4 1,27 10-3 2,87 10-4 
 

3,63 10-4 1,30 10-3 9,38 10-5 6,03 10-3 5,65 10-4 4,00 10-4 5,16 10-5 2,95 10-4 1,82 10-4 

44 1,08 10-5 1,08 10-5 7,77 10-5 8,03 10-6 7,77 10-5 1,55 10-6 1,55 10-6 9,19 10-6 2,18 10-6 
 

2,70 10-4 2,30 10-4 1,33 10-5 1,95 10-3 1,51 10-4 3,88 10-5 1,06 10-5 5,45 10-5 2,06 10-5 

46 1,22 10-6 1,22 10-6 1,40 10-5 1,54 10-5 1,40 10-5 9,52 10-7 9,52 10-7 9,34 10-7 5,27 10-6 
 

3,58 10-5 2,74 10-5 1,79 10-5 4,10 10-4 1,03 10-4 2,79 10-5 1,80 10-5 1,55 10-4 8,12 10-4 

47 2,11 10-6 2,11 10-6 1,14 10-5 7,92 10-6 1,14 10-5 1,11 10-6 1,11 10-6 1,18 10-6 8,61 10-6 
 

5,18 10-5 2,89 10-5 1,09 10-5 2,81 10-4 7,66 10-5 2,73 10-5 2,94 10-5 2,12 10-4 1,68 10-3 

50 2,22 10-6 2,22 10-6 7,53 10-6 9,78 10-6 7,53 10-6 8,26 10-7 8,26 10-7 1,21 10-6 1,76 10-6 
 

9,15 10-5 4,97 10-5 8,17 10-6 3,10 10-4 6,55 10-5 3,40 10-5 4,23 10-5 7,27 10-5 2,48 10-4 

53 4,49 10-6 4,49 10-6 2,92 10-8 1,75 10-5 8,38 10-6 6,71 10-7 6,71 10-7 1,17 10-6 8,05 10-7 
 

2,30 10-4 6,02 10-5 1,52 10-5 4,29 10-4 1,14 10-4 3,44 10-5 1,10 10-4 4,13 10-5 2,64 10-4 

55 1,62 10-6 1,62 10-6 8,38 10-6 5,82 10-6 8,07 10-6 1,17 10-6 1,17 10-6 1,09 10-6 2,48 10-6 
 

3,22 10-5 2,16 10-5 4,62 10-6 1,60 10-4 7,41 10-5 2,32 10-5 9,99 10-5 4,94 10-5 3,33 10-4 

57 1,75 10-5 1,75 10-5 8,07 10-6 9,14 10-6 7,88 10-5 1,68 10-5 1,68 10-5 9,52 10-6 1,93 10-4 
 

2,88 10-5 1,57 10-5 6,42 10-6 1,30 10-4 1,12 10-4 2,76 10-5 5,66 10-5 3,17 10-4 1,49 10-3 

58 4,16 10-6 4,16 10-6 7,88 10-5 5,95 10-6 4,71 10-6 8,93 10-7 8,93 10-7 5,88 10-7 1,09 10-5 
 

1,36 10-4 1,93 10-5 4,72 10-6 1,55 10-4 1,01 10-4 2,93 10-5 6,27 10-5 3,59 10-4 1,43 10-3 

60 4,23 10-6 4,23 10-6 4,71 10-6 3,37 10-5 2,49 10-5 6,63 10-7 6,63 10-7 4,45 10-7 8,28 10-6 
 

1,41 10-4 1,48 10-5 2,25 10-5 8,31 10-4 1,30 10-4 2,21 10-5 5,36 10-5 2,76 10-4 7,56 10-4 

63 6,69 10-6 6,69 10-6 2,49 10-5 7,00 10-7 2,14 10-5 1,51 10-5 1,51 10-5 3,35 10-6 1,10 10-5 
 

9,82 10-5 4,91 10-5 6,80 10-7 3,14 10-4 5,40 10-5 2,21 10-4 - 1,62 10-4 1,62 10-3 

64 2,50 10-5 2,50 10-5 2,14 10-5 3,97 10-6 2,54 10-5 9,61 10-7 9,61 10-7 1,31 10-6 3,64 10-6 
 

5,66 10-4 2,96 10-5 3,79 10-6 5,75 10-4 9,71 10-5 2,18 10-5 - 8,26 10-5 3,37 10-4 

70 3,67 10-6 3,67 10-6 2,54 10-5 3,90 10-5 2,29 10-5 7,20 10-7 7,20 10-7 1,56 10-6 1,92 10-6 
 

2,04 10-4 8,68 10-5 3,93 10-5 1,28 10-3 2,39 10-4 4,00 10-5 3,01 10-4 1,07 10-4 1,28 10-4 

71 3,97 10-5 3,97 10-5 2,29 10-5 1,15 10-6 1,28 10-4 - - 6,90 10-6 9,22 10-6 
 

4,07 10-4 7,07 10-5 2,15 10-5 1,32 10-3 1,65 10-4 - - 9,45 10-5 1,84 10-4 

74 9,58 10-7 9,58 10-7 1,28 10-4 2,76 10-5 5,08 10-5 - - 1,75 10-6 6,82 10-6 
 

4,11 10-5 7,50 10-5 3,65 10-5 2,18 10-3 2,24 10-4 - - 2,92 10-4 8,91 10-4 
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S
ta

ti
o
n

 

Surface Turbulent Fluxes  

 

DCM Turbulent Fluxes 

PFBS PFBS PFHxS PFHpS PFOS PFOA PFHpA PFHxA PFNA 
 

PFBS PFHxS PFHpS PFOS PFOA PFHpA PFHxA PFNA PFDA 

75 1,77 10-6 1,77 10-6 5,08 10-5 2,35 10-5 8,72 10-6 1,59 10-6 1,59 10-6 6,71 10-7 1,20 10-5 
 

1,05 10-4 3,99 10-5 3,15 10-5 5,18 10-4 2,68 10-4 9,43 10-5 1,50 10-4 7,13 10-4 2,99 10-3 

77 7,06 10-5 7,06 10-5 8,72 10-6 6,02 10-6 4,94 10-4 3,57 10-5 3,57 10-5 4,32 10-5 1,28 10-4 
 

1,40 10-4 8,54 10-5 2,64 10-5 9,77 10-4 2,37 10-4 7,05 10-5 4,81 10-4 2,52 10-4 3,43 10-4 

82 5,54 10-4 5,54 10-4 4,94 10-4 7,48 10-6 7,33 10-4 1,57 10-5 1,57 10-5 6,72 10-5 8,68 10-5 
 

2,33 10-4 2,83 10-5 7,02 10-6 3,08 10-4 7,40 10-5 6,59 10-6 - 3,65 10-5 9,12 10-5 

88 - - 7,33 10-4 8,83 10-6 1,34 10-4 5,15 10-5 5,15 10-5 8,44 10-6 3,88 10-5 
 

- 1,23 10-6 5,95 10-7 1,96 10-5 2,96 10-6 7,52 10-6 1,11 10-6 5,67 10-6 7,85 10-5 

90 - - 1,34 10-4 9,88 10-5 3,34 10-4 2,86 10-4 2,86 10-4 2,11 10-5 2,49 10-5 
 

- 3,13 10-5 2,03 10-4 4,95 10-4 9,96 10-5 4,24 10-4 - 3,70 10-5 2,22 10-4 

94 3,06 10-5 3,06 10-5 3,34 10-4 7,58 10-5 1,48 10-3 9,11 10-4 9,11 10-4 7,48 10-5 4,83 10-4 
 

1,92 10-6 4,70 10-6 4,99 10-5 9,32 10-5 1,92 10-5 5,73 10-5 - 3,03 10-5 9,96 10-5 

97 - - 1,48 10-3 2,20 10-6 1,55 10-3 1,61 10-4 1,61 10-4 4,17 10-5 7,74 10-5 
 

- 3,31 10-5 4,54 10-4 1,23 10-3 1,18 10-4 1,28 10-4 1,13 10-4 6,14 10-5 1,04 10-4 

102 3,54 10-5 3,54 10-5 1,55 10-3 6,06 10-5 1,55 10-4 3,17 10-5 3,17 10-5 8,86 10-6 1,58 10-5 
 

4,37 10-5 1,09 10-5 1,10 10-5 1,91 10-4 2,83 10-5 3,92 10-5 4,93 10-5 1,95 10-5 3,79 10-5 

103 5,69 10-5 5,69 10-5 1,55 10-4 - 2,05 10-4 6,48 10-5 6,48 10-5 3,26 10-4 4,15 10-5 
 

3,42 10-4 1,96 10-3 - 1,23 10-3 4,53 10-4 3,89 10-4 - 2,49 10-4 4,85 10-4 

107 3,02 10-4 3,02 10-4 2,05 10-4 - 3,85 10-4 5,23 10-4 5,23 10-4 1,37 10-4 4,82 10-5 
 

2,24 10-4 1,02 10-4 - 2,86 10-4 6,57 10-5 3,89 10-4 - 3,58 10-5 4,50 10-5 

109 3,45 10-5 3,45 10-5 3,85 10-4 1,86 10-4 7,45 10-5 2,56 10-5 2,56 10-5 6,07 10-5 2,65 10-5 
 

3,04 10-5 5,35 10-5 1,01 10-5 6,57 10-5 2,54 10-5 2,25 10-5 7,99 10-5 2,33 10-5 2,81 10-5 

112 1,32 10-4 1,32 10-4 7,45 10-5 - 1,19 10-4 7,87 10-5 7,87 10-5 3,68 10-5 1,89 10-5 
 

5,78 10-5 1,61 10-5 - 5,22 10-5 2,02 10-5 3,45 10-5 4,85 10-5 8,29 10-6 5,57 10-6 

116 2,33 10-4 2,33 10-4 1,19 10-4 1,33 10-5 4,38 10-4 2,36 10-4 2,36 10-4 9,03 10-4 4,85 10-5 
 

1,55 10-4 6,01 10-4 8,17 10-5 2,91 10-4 9,46 10-5 1,57 10-4 - 3,22 10-5 1,90 10-4 

117 5,19 10-5 5,19 10-5 4,38 10-4 2,41 10-6 1,67 10-4 1,09 10-4 1,09 10-4 1,39 10-4 8,58 10-6 
 

1,73 10-5 4,65 10-5 3,86 10-6 5,59 10-5 1,80 10-5 3,63 10-5 1,88 10-4 2,86 10-6 2,78 10-5 

121 3,86 10-5 3,86 10-5 1,67 10-4 4,57 10-7 5,79 10-5 5,68 10-5 5,68 10-5 6,41 10-5 - 
 

3,20 10-5 5,30 10-5 3,17 10-6 4,79 10-5 1,36 10-5 4,70 10-5 1,43 10-4 - 1,39 10-5 

123 1,60 10-4 1,60 10-4 5,79 10-5 2,01 10-7 9,06 10-5 1,71 10-4 1,71 10-4 7,15 10-5 - 
 

2,70 10-5 1,21 10-5 3,52 10-6 1,53 10-5 7,42 10-6 2,89 10-5 6,86 10-5 - 2,33 10-5 

124 7,67 10-5 7,67 10-5 9,06 10-5 1,42 10-5 7,88 10-5 5,08 10-5 5,08 10-5 7,25 10-6 1,04 10-5 
 

2,57 10-4 2,43 10-5 5,58 10-4 2,64 10-4 5,90 10-5 1,70 10-4 - 3,47 10-5 1,53 10-4 

125 4,15 10-5 4,15 10-5 7,88 10-5 1,42 10-6 6,11 10-5 9,83 10-6 9,83 10-6 4,37 10-6 1,64 10-6 
 

1,26 10-4 1,33 10-5 1,30 10-4 1,86 10-4 4,65 10-5 2,99 10-5 6,41 10-4 4,98 10-6 4,65 10-5 

128 8,75 10-5 8,75 10-5 6,11 10-5 3,83 10-7 1,45 10-4 1,98 10-5 1,98 10-5 8,25 10-6 3,14 10-5 
 

1,27 10-4 1,20 10-5 4,80 10-7 2,10 10-4 6,46 10-5 2,87 10-5 - 4,54 10-5 3,51 10-4 

131 4,93 10-4 4,93 10-4 1,45 10-4 1,90 10-8 5,43 10-4 1,16 10-4 1,16 10-4 3,40 10-5 2,55 10-5 
 

2,17 10-5 1,50 10-6 2,50 10-8 2,39 10-5 2,99 10-6 5,12 10-6 1,12 10-6 1,12 10-6 3,83 10-5 

134 5,70 10-6 5,70 10-6 5,43 10-4 3,12 10-7 5,36 10-6 5,03 10-6 5,03 10-6 1,34 10-6 - 
 

2,90 10-5 6,82 10-6 3,42 10-7 2,73 10-5 3,41 10-5 2,56 10-5 2,64 10-4 - 5,12 10-6 

137 1,08 10-5 1,08 10-5 5,36 10-6 9,16 10-7 2,20 10-5 1,45 10-5 1,45 10-5 7,04 10-6 8,91 10-6 
 

1,38 10-5 9,00 10-6 1,20 10-7 2,82 10-5 2,16 10-5 1,86 10-5 - 1,14 10-5 7,20 10-6 

140 5,89 10-5 5,89 10-5 2,20 10-5 - 1,55 10-4 1,13 10-4 1,13 10-4 7,07 10-6 4,71 10-5 
 

1,20 10-5 1,44 10-6 - 3,17 10-5 2,50 10-5 2,31 10-5 3,94 10-5 9,61 10-6 5,29 10-6 

143 5,96 10-5 5,96 10-5 1,55 10-4 3,59 10-5 1,10 10-4 7,63 10-5 7,63 10-5 5,58 10-6 2,61 10-5 
 

1,56 10-4 1,46 10-5 3,36 10-5 2,87 10-4 2,14 10-4 1,99 10-4 - 6,80 10-5 8,75 10-5 

146 1,11 10-8 1,11 10-8 1,10 10-4 7,99 10-5 2,92 10-8 3,24 10-8 3,24 10-8 7,85 10-9 8,20 10-9 
 

5,51 10-5 3,88 10-5 7,94 10-5 1,45 10-4 1,29 10-4 1,61 10-4 - 4,08 10-5 1,22 10-5 

Zero values (-) attend for a null turbulence due to; i) a concentration of the compound under LOD, ii) a depletion of the quantified compound because of the calculated 

ongoing diffusion iii) a diminution of the measured concentration too low for appreciating a variation and thus quantifying a flux, or iv) to a missing value of the eddy 

diffusion coefficients. 
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Figure S4.5. Turbulent fluxes at Surface for PFOS and PFOA (FEddy, ng m
-2

day
-1

) 

 

 

 
 

Bars with ≈ symbol have been manually diminished by a factor of 10 in order to ease the 

global comparison of all the measurements. 
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Figure S4.6. Relation between DCM concentrations and FSettling on a logarithmic scale for 

PFASs with different BCF 

 

 
 

 

BCFs have been taken from Loi et al. 
2
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Table S4.8. Organic Carbon Sinking fluxes (FOC, mg C m
-2

day
-1

)  
 

Station Foc Phyto Foc Fecal Total Foc 

2 5.24 26.46 31.69 

3 2.96 29.67 32.63 

5 5.10 44.04 49.14 

7 6.33 50.92 57.25 

8 6.66 53.92 60.58 

9 11.44 79.24 90.67 

11 10.97 79.32 90.29 

12 8.59 53.54 62.14 

13 11.07 62.89 73.96 

14 13.67 68.05 81.72 

15 9.01 61.34 70.35 

17 2.06 55.28 57.34 

18 1.18 55.16 56.35 

20 0.21 35.79 36.00 

21 0.14 28.64 28.78 

23 0.27 34.78 35.05 

24 0.49 43.92 44.41 

26 0.75 43.42 44.16 

28 0.38 35.40 35.78 

29 0.47 34.28 34.75 

30 0.53 34.63 35.16 

31 0.24 27.45 27.69 

32 0.16 27.52 27.67 

33 0.10 24.45 24.55 

35 0.10 21.18 21.28 

37 0.05 19.25 19.30 

38 0.07 22.31 22.38 

39 0.09 26.72 26.80 

40 0.13 25.39 25.52 

41 0.21 24.16 24.36 

42 0.31 25.52 25.82 

43 0.79 31.31 32.10 

44 2.43 41.23 43.65 

46 4.19 51.01 55.20 

47 2.27 43.36 45.64 

49 0.97 38.63 39.60 

50 0.60 38.37 38.97 

52 0.25 20.81 21.06 

53 0.87 31.25 32.13 

55 0.21 19.01 19.22 

57 0.18 16.96 17.14 

58 0.18 16.80 16.99 

60 0.19 18.87 19.05 
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Station Foc Phyto Foc Fecal Total Foc 

63 0.19 15.44 15.63 

64 0.28 18.69 18.97 

66 0.95 29.11 30.06 

67 0.98 39.81 40.79 

70 3.70 41.98 45.68 

71 2.68 39.25 41.93 

74 7.24 48.63 55.87 

75 9.13 49.80 58.92 

77 20.73 88.53 109.26 

78 13.10 71.47 84.56 

82 1.28 37.85 39.13 

84 2.46 43.32 45.79 

86 0.50 40.06 40.56 

88 0.49 39.62 40.11 

90 2.26 54.41 56.67 

92 10.59 97.14 107.73 

94 9.42 74.90 84.32 

97 0.63 34.73 35.36 

99 0.68 36.79 37.47 

102 0.60 42.10 42.70 

103 0.54 40.18 40.72 

106 0.53 37.63 38.17 

107 0.39 36.94 37.33 

109 0.30 32.96 33.26 

110 0.79 35.81 36.60 

112 0.61 40.84 41.45 

113 1.75 44.82 46.57 

114 1.20 42.84 44.04 

116 2.91 52.96 55.87 

117 3.56 56.49 60.04 

120 3.53 48.01 51.54 

121 5.88 52.70 58.58 

123 33.00 127.11 160.11 

124 48.62 176.16 224.78 

125 21.84 93.34 115.18 

128 4.34 52.20 56.54 

129 4.77 48.64 53.41 

131 3.34 46.50 49.84 

132 1.25 32.82 34.06 

134 0.37 20.85 21.22 

135 0.26 19.01 19.27 

137 0.40 18.24 18.64 

138 0.24 14.19 14.43 

140 0.14 12.17 12.31 

141 0.14 13.44 13.58 



A103 
 

Station Foc Phyto Foc Fecal Total Foc 

143 0.19 14.87 15.07 

144 0.26 16.58 16.84 

146 0.64 28.07 28.71 

147 0.69 26.17 26.86 

 

 

All the values are extracted from Siegel et al. 
3
 database at the corresponding locations and month. 

 

 

 



A104 
 

Table S4.9. Biological pump fluxes (FSettling, ng m
-2

day
-1

) 

 

Station 

PFHxS 
 

PFOS 
 

PFOA 
 

PFNA 
 

PFDA 

Algae  Fecal  
 

Algae  Fecal  
 

Algae  Fecal  
 

Algae  Fecal  
 

Algae  Fecal  

2   
 

  
 

  
 

  
 

  

3 5.80 10
-6

 5.82 10
-5

  4.72 10
-4

 4.74 10
-3

  2.88 10
-4

 2.89 10
-3

  9.24 10
-3

 9.27 10
-2

  8.62 10
-3

 8.65 10
-2

 

5   
 

  
 

  
 

  
 

  

7   
 

  
 

  
 

  
 

  

8 5.94 10
-6

 4.81 10
-5

  2.01 10
-4

 1.62 10
-3

  2.75 10
-4

 2.23 10
-3

  7.18 10
-3

 5.81 10
-2

  1.13 10
-2

 9.12 10
-2

 

9 8.22 10
-6

 5.69 10
-5

  1.30 10
-4

 8.98 10
-4

  1.99 10
-4

 1.38 10
-3

  9.40 10
-4

 6.51 10
-3

  1.15 10
-3

 7.95 10
-3

 

11 8.18 10
-6

 5.91 10
-5

  1.14 10
-4

 8.24 10
-4

  1.85 10
-4

 1.34 10
-3

  8.13 10
-4

 5.88 10
-3

  7.63 10
-4

 5.51 10
-3

 

12 4.58 10
-6

 2.85 10
-5

  1.94 10
-4

 1.21 10
-3

  2.32 10
-4

 1.45 10
-3

  6.48 10
-3

 4.03 10
-2

  6.22 10
-3

 3.87 10
-2

 

13 5.64 10
-6

 3.20 10
-5

  1.79 10
-4

 1.02 10
-3

  2.22 10
-4

 1.26 10
-3

  4.05 10
-3

 2.30 10
-2

  7.45 10
-3

 4.23 10
-2

 

14 9.82 10
-6

 4.89 10
-5

  2.29 10
-4

 1.14 10
-3

  3.16 10
-4

 1.58 10
-3

  5.65 10
-3

 2.81 10
-2

  1.21 10
-2

 6.02 10
-2

 

15 2.49 10
-6

 1.70 10
-5

  4.43 10
-5

 3.02 10
-4

  1.05 10
-4

 7.16 10
-4

  6.00 10
-4

 4.09 10
-3

  1.21 10
-3

 8.27 10
-3

 

17 6.79 10
-5

 1.82 10
-3

  2.13 10
-3

 5.71 10
-2

  5.75 10
-5

 1.55 10
-3

  1.53 10
-4

 4.10 10
-3

  4.07 10
-4

 1.09 10
-2

 

18 2.38 10
-5

 1.11 10
-3

  6.86 10
-4

 3.20 10
-2

  2.17 10
-5

 1.01 10
-3

  9.74 10
-5

 4.54 10
-3

  1.05 10
-4

 4.90 10
-3

 

20 1.49 10
-5

 2.54 10
-3

  6.11 10
-4

 1.04 10
-1

  8.49 10
-6

 1.45 10
-3

  2.49 10
-5

 4.25 10
-3

  4.30 10
-5

 7.34 10
-3

 

21 2.04 10
-6

 4.19 10
-4

  6.87 10
-5

 1.41 10
-2

  3.96 10
-6

 8.13 10
-4

  7.62 10
-6

 1.57 10
-3

  1.85 10
-5

 3.81 10
-3

 

23 3.80 10
-6

 4.88 10
-4

  6.96 10
-5

 8.93 10
-3

  3.33 10
-6

 4.28 10
-4

  1.21 10
-5

 1.55 10
-3

  5.53 10
-5

 7.10 10
-3

 

24 7.00 10
-6

 6.31 10
-4

  1.34 10
-4

 1.21 10
-2

  1.26 10
-5

 1.14 10
-3

  1.22 10
-4

 1.10 10
-2

  4.22 10
-4

 3.80 10
-2

 

26 4.20 10
-6

 2.44 10
-4

  1.16 10
-4

 6.72 10
-3

  1.06 10
-5

 6.14 10
-4

  7.47 10
-5

 4.34 10
-3

  7.91 10
-4

 4.60 10
-2

 

28 8.37 10
-7

 7.86 10
-5

  4.64 10
-5

 4.36 10
-3

  4.01 10
-6

 3.77 10
-4

  6.62 10
-6

 6.21 10
-4

  1.96 10
-5

 1.84 10
-3

 

29 1.78 10
-6

 1.30 10
-4

  7.25 10
-5

 5.27 10
-3

  1.07 10
-5

 7.79 10
-4

  1.27 10
-4

 9.21 10
-3

  5.12 10
-5

 3.73 10
-3

 

30 5.13 10
-6

 3.34 10
-4

  2.17 10
-4

 1.41 10
-2

  1.29 10
-5

 8.39 10
-4

  7.12 10
-5

 4.64 10
-3

  1.05 10
-5

 6.85 10
-4

 

31 1.36 10
-6

 1.59 10
-4

  4.77 10
-5

 5.57 10
-3

  1.01 10
-5

 1.17 10
-3

  2.68 10
-4

 3.13 10
-2

  3.56 10
-5

 4.16 10
-3

 

32 2.38 10
-7

 4.19 10
-5

  9.03 10
-6

 1.59 10
-3

  1.52 10
-6

 2.67 10
-4

  1.14 10
-5

 2.01 10
-3

  6.32 10
-6

 1.11 10
-3

 

33 5.47 10
-7

 1.28 10
-4

  3.51 10
-5

 8.19 10
-3

  1.76 10
-6

 4.11 10
-4

  3.11 10
-6

 7.26 10
-4

 
 

0
 

0
 

35 1.95 10
-7

 4.25 10
-5

  9.43 10
-6

 2.06 10
-3

  9.38 10
-7

 2.05 10
-4

  1.22 10
-6

 2.67 10
-4

  6.38 10
-7

 1.39 10
-4

 



A105 
 

Station 

PFHxS 
 

PFOS 
 

PFOA 
 

PFNA 
 

PFDA 

Algae  Fecal  
 

Algae  Fecal  
 

Algae  Fecal  
 

Algae  Fecal  
 

Algae  Fecal  

37 1.09 10
-7

 3.97 10
-5

  3.55 10
-6

 1.29 10
-3

  6.48 10
-7

 2.36 10
-4

  1.33 10
-6

 4.84 10
-4

  4.78 10
-7

 1.74 10
-4

 

38 2.88 10
-7

 9.50 10
-5

  5.65 10
-6

 1.87 10
-3

  9.88 10
-7

 3.26 10
-4

  1.87 10
-6

 6.18 10
-4

  7.40 10
-7

 2.45 10
-4

 

39 1.73 10
-7

 5.27 10
-5

  5.58 10
-6

 1.70 10
-3

  9.12 10
-7

 2.78 10
-4

  1.98 10
-6

 6.04 10
-4

  1.30 10
-7

 3.97 10
-5

 

40 4.38 10
-7

 8.48 10
-5

  1.11 10
-5

 2.14 10
-3

  1.43 10
-6

 2.77 10
-4

  3.73 10
-6

 7.23 10
-4

  8.29 10
-7

 1.60 10
-4

 

41 9.48 10
-7

 1.11 10
-4

  2.04 10
-5

 2.39 10
-3

  3.42 10
-6

 4.01 10
-4

  9.17 10
-6

 1.08 10
-3

  1.75 10
-6

 2.05 10
-4

 

42 1.11 10
-6

 9.21 10
-5

  3.11 10
-5

 2.57 10
-3

  3.20 10
-6

 2.65 10
-4

  1.17 10
-5

 9.70 10
-4

  2.05 10
-6

 1.70 10
-4

 

43 6.41 10
-6

 2.53 10
-4

  1.32 10
-4

 5.21 10
-3

  1.43 10
-5

 5.65 10
-4

  2.17 10
-5

 8.55 10
-4

  4.65 10
-6

 1.83 10
-4

 

44 5.19 10
-6

 8.81 10
-5

  2.49 10
-4

 4.23 10
-3

  3.26 10
-5

 5.53 10
-4

  9.58 10
-5

 1.63 10
-3

  1.13 10
-5

 1.92 10
-4

 

46 6.77 10
-6

 8.24 10
-5

  9.79 10
-5

 1.19 10
-3

  4.70 10
-5

 5.72 10
-4

  5.46 10
-4

 6.65 10
-3

  1.55 10
-3

 1.89 10
-2

 

47 2.11 10
-6

 4.02 10
-5

  3.41 10
-5

 6.51 10
-4

  2.45 10
-5

 4.68 10
-4

  4.11 10
-4

 7.84 10
-3

  8.93 10
-4

 1.70 10
-2

 

49 1.02 10
-6

 4.07 10
-5

  1.64 10
-5

 6.54 10
-4

  9.50 10
-6

 3.80 10
-4

  4.44 10
-5

 1.77 10
-3

  8.43 10
-5

 3.37 10
-3

 

50 3.93 10
-7

 2.50 10
-5

  5.71 10
-6

 3.63 10
-4

  7.71 10
-6

 4.91 10
-4

  1.83 10
-4

 1.16 10
-2

  6.29 10
-4

 4.00 10
-2

 

52 2.46 10
-7

 2.03 10
-5

  7.85 10
-6

 6.46 10
-4

  2.44 10
-6

 2.01 10
-4

  1.52 10
-5

 1.25 10
-3

  5.30 10
-5

 4.36 10
-3

 

53 9.79 10
-7

 3.50 10
-5

  1.61 10
-5

 5.76 10
-4

  7.44 10
-6

 2.66 10
-4

  2.30 10
-5

 8.21 10
-4

  1.23 10
-5

 4.39 10
-4

 

55 1.67 10
-7

 1.51 10
-5

  4.39 10
-6

 3.98 10
-4

  1.21 10
-6

 1.09 10
-4

  4.47 10
-6

 4.05 10
-4

  1.35 10
-5

 1.22 10
-3

 

57 1.79 10
-7

 1.68 10
-5

  3.05 10
-6

 2.85 10
-4

  1.18 10
-6

 1.10 10
-4

  7.39 10
-6

 6.93 10
-4

  3.45 10
-5

 3.23 10
-3

 

58   
 

  
 

  
 

  
 

  

60 1.58 10
-7

 1.58 10
-5

  7.13 10
-6

 7.15 10
-4

  2.39 10
-6

 2.40 10
-4

  2.38 10
-5

 2.39 10
-3

  3.71 10
-5

 3.72 10
-3

 

63 2.16 10
-7

 1.77 10
-5

  9.15 10
-6

 7.49 10
-4

  1.95 10
-6

 1.59 10
-4

  4.18 10
-5

 3.42 10
-3

  4.92 10
-5

 4.03 10
-3

 

64 7.26 10
-7

 4.88 10
-5

  1.82 10
-5

 1.22 10
-3

  2.78 10
-6

 1.87 10
-4

  4.87 10
-5

 3.28 10
-3

  1.59 10
-4

 1.07 10
-2

 

66 3.26 10
-6

 1.00 10
-4

  1.32 10
-4

 4.06 10
-3

  2.17 10
-5

 6.69 10
-4

  1.64 10
-4

 5.05 10
-3

  2.01 10
-4

 6.18 10
-3

 

67 3.36 10
-6

 1.37 10
-4

  1.87 10
-4

 7.64 10
-3

  2.05 10
-5

 8.37 10
-4

  3.59 10
-4

 1.47 10
-2

  2.95 10
-3

 1.20 10
-1

 

70 2.06 10
-6

 2.34 10
-5

  9.52 10
-5

 1.08 10
-3

  3.91 10
-5

 4.44 10
-4

  9.16 10
-5

 1.04 10
-3

  7.00 10
-5

 7.95 10
-4

 

71 1.18 10
-6

 1.73 10
-5

  6.98 10
-5

 1.02 10
-3

  2.11 10
-5

 3.08 10
-4

  3.64 10
-5

 5.33 10
-4

  3.87 10
-5

 5.66 10
-4

 

74 6.48 10
-6

 4.35 10
-5

  3.22 10
-4

 2.16 10
-3

  1.30 10
-4

 8.76 10
-4

  1.90 10
-3

 1.27 10
-2

  1.09 10
-3

 7.33 10
-3

 

75 5.02 10
-6

 2.74 10
-5

  1.65 10
-4

 8.99 10
-4

  1.03 10
-4

 5.64 10
-4

  9.07 10
-4

 4.95 10
-3

  1.26 10
-3

 6.87 10
-3

 

77 3.53 10
-5

 1.51 10
-4

  1.25 10
-3

 5.32 10
-3

  3.45 10
-4

 1.47 10
-3

  5.79 10
-3

 2.47 10
-2

  1.85 10
-3

 7.88 10
-3

 



A106 
 

Station 

PFHxS 
 

PFOS 
 

PFOA 
 

PFNA 
 

PFDA 

Algae  Fecal  
 

Algae  Fecal  
 

Algae  Fecal  
 

Algae  Fecal  
 

Algae  Fecal  

78 1.51 10
-5

 8.22 10
-5

  4.86 10
-4

 2.65 10
-3

  2.38 10
-4

 1.30 10
-3

  5.59 10
-4

 3.05 10
-3

  6.29 10
-4

 3.43 10
-3

 

82 2.01 10
-6

 5.94 10
-5

  7.81 10
-5

 2.31 10
-3

  2.24 10
-5

 6.62 10
-4

  6.31 10
-5

 1.86 10
-3

  7.18 10
-5

 2.12 10
-3

 

84 1.80 10
-6

 3.17 10
-5

  1.39 10
-4

 2.44 10
-3

  3.24 10
-5

 5.69 10
-4

  3.44 10
-4

 6.05 10
-3

  1.14 10
-3

 2.00 10
-2

 

86    5.41 10
-5

 4.35 10
-3

  8.12 10
-6

 6.53 10
-4

 
 

2.81 10
-5

 2.26 10
-3

  7.48 10
-5

 6.01 10
-3

 

88 7.10 10
-7

 5.79 10
-5

  1.51 10
-5

 1.23 10
-3

  6.13 10
-6

 5.00 10
-4

  4.62 10
-5

 3.77 10
-3

  2.36 10
-4

 1.93 10
-2

 

90 1.42 10
-6

 3.41 10
-5

  1.56 10
-4

 3.76 10
-3

  2.49 10
-5

 6.01 10
-4

  4.03 10
-5

 9.70 10
-4

  1.06 10
-4

 2.55 10
-3

 

92 8.29 10
-6

 7.61 10
-5

  8.50 10
-4

 7.80 10
-3

  2.45 10
-4

 2.25 10
-3

  5.03 10
-4

 4.62 10
-3

  2.04 10
-3

 1.87 10
-2

 

94 1.35 10
-4

 1.07 10
-3

  6.32 10
-4

 5.02 10
-3

  1.62 10
-4

 1.29 10
-3

  4.55 10
-4

 3.62 10
-3

  8.02 10
-4

 6.37 10
-3

 

97 1.60 10
-6

 8.78 10
-5

  2.10 10
-5

 1.15 10
-3

  9.59 10
-6

 5.26 10
-4

  9.09 10
-5

 4.99 10
-3

  2.82 10
-4

 1.55 10
-2

 

99 6.84 10
-6

 3.70 10
-4

  4.82 10
-5

 2.61 10
-3

  2.12 10
-5

 1.15 10
-3

  5.75 10
-5

 3.11 10
-3

  1.73 10
-4

 9.39 10
-3

 

102 7.79 10
-6

 5.46 10
-4

  2.66 10
-5

 1.86 10
-3

  1.24 10
-5

 8.67 10
-4

  4.44 10
-5

 3.11 10
-3

  8.12 10
-5

 5.69 10
-3

 

103 2.73 10
-6

 2.03 10
-4

  1.41 10
-5

 1.05 10
-3

  7.89 10
-6

 5.87 10
-4

  3.81 10
-5

 2.83 10
-3

  1.68 10
-5

 1.25 10
-3

 

106 2.07 10
-6

 1.46 10
-4

  1.98 10
-5

 1.39 10
-3

  5.19 10
-6

 3.66 10
-4

  2.66 10
-5

 1.88 10
-3

  1.37 10
-5

 9.67 10
-4

 

107 9.21 10
-7

 8.70 10
-5

  1.53 10
-5

 1.44 10
-3

  4.31 10
-6

 4.07 10
-4

  2.05 10
-5

 1.94 10
-3

  5.84 10
-6

 5.51 10
-4

 

109 3.96 10
-6

 4.33 10
-4

  9.37 10
-6

 1.02 10
-3

  5.50 10
-6

 6.00 10
-4

  3.64 10
-5

 3.97 10
-3

  9.03 10
-6

 9.87 10
-4

 

110 6.02 10
-6

 2.73 10
-4

  3.24 10
-5

 1.46 10
-3

  1.36 10
-5

 6.17 10
-4

  3.06 10
-5

 1.38 10
-3

  3.91 10
-5

 1.77 10
-3

 

112 1.22 10
-6

 8.12 10
-5

  1.92 10
-5

 1.29 10
-3

  7.32 10
-6

 4.89 10
-4

  3.62 10
-5

 2.42 10
-3

  3.01 10
-5

 2.01 10
-3

 

113   
 

3.63 10
-5

 9.30 10
-4

  7.70 10
-6

 1.97 10
-4

 
 

   1.91 10
-5

 4.90 10
-4

 

114    3.14 10
-5

 1.12 10
-3

  2.52 10
-5

 9.01 10
-4

 
 

6.06 10
-5

 2.16 10
-3

  4.79 10
-5

 1.71 10
-3

 

116 2.18 10
-5

 3.98 10
-4

  8.13 10
-5

 1.48 10
-3

  2.64 10
-5

 4.81 10
-4

  1.00 10
-4

 1.83 10
-3

  2.10 10
-5

 3.83 10
-4

 

117 1.35 10
-5

 2.14 10
-4

 
 

2.87 10
-5

 4.56 10
-4

  9.96 10
-6

 1.58 10
-4

     7.57 10
-5

 1.20 10
-3

 

120 2.21 10
-6

 3.01 10
-5

  2.15 10
-5

 2.92 10
-4

  3.15 10
-5

 4.29 10
-4

  9.43 10
-5

 1.28 10
-3

  1.07 10
-4

 1.45 10
-3

 

121    1.07 10
-4

 9.59 10
-4

  6.78 10
-5

 6.07 10
-4

 
 

7.86 10
-6

 7.04 10
-5

 
 

  

123 1.03 10
-5

 3.98 10
-5

  6.02 10
-4

 2.32 10
-3

  1.77 10
-3

 6.81 10
-3

  1.76 10
-3

 6.80 10
-3

  3.82 10
-3

 1.47 10
-2

 

124 4.06 10
-5

 1.47 10
-4

  3.55 10
-4

 1.29 10
-3

  4.86 10
-4

 1.76 10
-3

  4.33 10
-4

 1.57 10
-3

  8.70 10
-4

 3.15 10
-3

 

125 1.82 10
-5

 7.80 10
-5

 
 

9.04 10
-4

 3.86 10
-3

  1.38 10
-4

 5.89 10
-4

    
 

  

128 2.27 10
-6

 2.72 10
-5

  9.12 10
-5

 1.10 10
-3

  6.85 10
-5

 8.23 10
-4

  1.55 10
-4

 1.86 10
-3

  9.81 10
-4

 1.18 10
-2

 



A107 
 

Station 

PFHxS 
 

PFOS 
 

PFOA 
 

PFNA 
 

PFDA 

Algae  Fecal  
 

Algae  Fecal  
 

Algae  Fecal  
 

Algae  Fecal  
 

Algae  Fecal  

129 6.97 10
-6

 7.11 10
-5

  1.83 10
-4

 1.86 10
-3

  1.25 10
-4

 1.28 10
-3

  2.13 10
-4

 2.17 10
-3

  6.96 10
-4

 7.10 10
-3

 

131 8.72 10
-6

 1.21 10
-4

  2.62 10
-4

 3.64 10
-3

  5.97 10
-5

 8.31 10
-4

  1.79 10
-4

 2.49 10
-3

 
 

  

132 3.90 10
-7

 1.03 10
-5

  1.25 10
-5

 3.29 10
-4

  2.81 10
-5

 7.42 10
-4

  5.55 10
-5

 1.46 10
-3

 
 

  

134 7.64 10
-8

 4.35 10
-6

  2.11 10
-6

 1.21 10
-4

  1.00 10
-5

 5.70 10
-4

  1.63 10
-5

 9.29 10
-4

  1.51 10
-6

 8.61 10
-5

 

135 3.47 10
-7

 2.58 10
-5

  2.49 10
-6

 1.85 10
-4

  6.86 10
-6

 5.10 10
-4

  1.22 10
-5

 9.03 10
-4

  2.11 10
-6

 1.57 10
-4

 

137 2.92 10
-7

 1.33 10
-5

  5.35 10
-6

 2.44 10
-4

  1.01 10
-5

 4.60 10
-4

  2.13 10
-5

 9.75 10
-4

  4.40 10
-6

 2.01 10
-4

 

138 2.95 10
-7

 1.78 10
-5

  2.86 10
-6

 1.73 10
-4

  6.67 10
-6

 4.03 10
-4

  1.12 10
-5

 6.74 10
-4

  3.24 10
-6

 1.95 10
-4

 

140 1.05 10
-7

 8.89 10
-6

  2.05 10
-6

 1.74 10
-4

  9.78 10
-7

 8.31 10
-5

  2.13 10
-6

 1.81 10
-4

  2.96 10
-6

 2.51 10
-4

 

141 8.84 10
-8

 8.42 10
-6

  1.25 10
-6

 1.19 10
-4

  3.93 10
-6

 3.74 10
-4

  6.71 10
-6

 6.39 10
-4

  5.83 10
-7

 5.55 10
-5

 

143    2.01 10
-6

 1.54 10
-4

  3.88 10
-6

 2.97 10
-4

 
 

1.16 10
-5

 8.83 10
-4

  2.14 10
-6

 1.64 10
-4

 

144 8.11 10
-8

 5.19 10
-6

  2.44 10
-6

 1.56 10
-4

  6.13 10
-6

 3.92 10
-4

  1.39 10
-5

 8.86 10
-4

  4.64 10
-6

 2.97 10
-4

 

146 2.02 10
-7

 8.79 10
-6

  1.04 10
-5

 4.53 10
-4

  2.13 10
-5

 9.29 10
-4

  3.44 10
-5

 1.50 10
-3

  6.21 10
-6

 2.71 10
-4

 

147 2.16 10
-7

 8.20 10
-6

  7.77 10
-6

 2.95 10
-4

  2.87 10
-5

 1.09 10
-3

  6.56 10
-5

 2.49 10
-3

  7.61 10
-6

 2.88 10
-4
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Table S5.1. Sampling: Ancillary data for water sample’s transects 

 

   
Initial  Final 

Station 
Volume 
filtered 

(L) 

Particles 
dry weight 

(g) 
Date 

Time 
(UTC) 

Longitude Latitude 
 

Date 
Time 
(UTC) 

Longitude Latitude 

1 169.50 0.3626 16/12/10 11:45 -9.564 35.195  16/12/10 21:10 -11.173 34.580 

0 192.00 0.3115 18/12/10 8:50 -15.158 31.823  18/12/10 22:10 -16.600 30.370 

4 165.60 0.3587 20/12/10 10:51 -19.102 28.311  20/12/10 22:13 -20.125 26.452 

6 240.88 0.3154 22/12/10 8:41 -22.247 23.255  22/12/10 21:24 -22.658 22.633 

8 211.11 0.3522 24/12/10 8:55 -24.316 20.260  24/12/10 18:30 -24.974 19.063 

10 345.21 0.6808 26/12/10 8:15 -26.005 14.519  26/12/10 22:08 -25.999 13.660 

12 391.30 0.2067 28/12/10 8:46 -25.994 9.563  28/12/10 21:15 -26.014 8.571 

14 259.26 0.3246 30/12/10 8:35 -26.033 5.012  30/12/10 20:15 -25.998 3.695 

16 277.96 0.4133 01/01/11 9:28 -26.019 0.269  01/01/11 20:05 -26.481 -1.140 

18 237.88 0.3146 03/01/11 9:31 -28.168 -4.780  03/01/11 20:45 -28.709 -5.954 

20 367.50 0.3023 05/01/11 9:00 -30.187 -9.125  05/01/11 18:20 -30.443 -13.443 

22 323.11 0.2686 07/01/11 9:43 -32.378 -13.735  07/01/11 20:40 -32.659 -14.263 

24 272.31 0.2502 09/01/11 9:01 -34.671 -18.399  09/01/11 22:12 -35.114 -19.369 

26 161.56 0.3467 11/01/11 9:45 -36.980 -23.002  11/01/11 20:50 -38.086 -23.374 

27 240.75 0.2512 18/01/11 13:45 -39.661 -23.694  19/01/11 12:28 -37.530 -24.104 

28 317.16 0.2969 19/01/11 14:36 -37.522 -24.105  20/01/11 12:00 -33.485 -24.789 

29 185.79 - 20/01/11 13:00 -33.443 -24.781  20/01/11 21:45 -31.647 -25.155 

30 249.90 0.2746 21/01/11 0:45 -31.070 -25.272  21/01/11 17:45 -30.049 -25.439 

34 170.87 0.3394 24/01/11 15:38 -21.148 -26.999  26/01/11 0:12 -16.224 -27.884 

37 355.70 0.4088 27/01/11 0:45 -10.446 -28.881  28/01/11 16:45 -7.588 -29.374 

41 68.73 0.3001 01/02/11 1:10 2.954 -31.172  01/02/11 19:00 4.913 -31.498 

42 148.18 0.2686 01/02/11 20:45 5.304 -31.555  02/02/11 21:37 8.036 -32.020 

43 147.93 0.401 02/02/11 23:08 8.349 -32.074  04/02/11 2:00 12.440 -32.754 

44 229.95 0.367 04/02/11 2:30 12.520 -32.769  04/02/11 20:00 13.463 -32.919 

45 214.25 0.2988 04/02/11 20:45 13.637 -32.951  05/02/11 18:30 16.751 -33.479 

0 118.67 0.393 12/02/11 7:58 20.976 -35.167  12/02/11 19:50 23.790 -35.099 

46 289.95 0.3184 14/02/11 6:25 27.543 -34.836  14/02/11 18:48 29.637 -34.596 

48 251.18 0.3367 16/02/11 5:30 33.709 -34.176  16/02/11 18:14 35.500 -33.998 

50 358.00 0.3585 18/02/11 5:25 39.880 -33.532  18/02/11 18:14 41.684 -33.369 

0 186.65 0.3491 20/02/11 4:00 54.284 -31.781  20/02/11 17:34 55.536 -31.495 

0 154.38 0.3047 22/02/11 6:00 58.943 -30.852  22/02/11 14:14 61.458 -30.053 

53 213.96 0.3418 25/02/11 3:00 63.247 -27.979  25/02/11 17:00 65.051 -27.899 

55 337.09 0.3422 27/02/11 4:24 69.420 -29.360  27/02/11 16:25 70.811 -29.333 

57 177.53 0.3404 01/03/11 3:03 76.079 -29.904  01/03/11 15:19 77.898 -29.879 

59 226.99 0.3134 03/03/11 3:07 82.624 -29.810  03/03/11 15:22 84.578 -29.777 

61 266.53 0.3278 05/03/11 2:55 89.466 -29.677  05/03/11 16:59 91.679 -29.666 

63 343.13 0.3118 07/03/11 1:36 96.400 -29.579  08/03/11 1:40 99.998 -29.905 

65 216.90 0.2707 09/03/11 2:00 103.311 -30.332  09/03/11 16:05 105.848 -30.635 

67 187.85 0.3392 11/03/11 0:10 110.179 -31.154  11/03/11 13:44 112.038 -31.361 

74 219.69 0.4088 24/03/11 0:25 110.180 -31.154  24/03/11 12:02 137.546 -39.648 
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Initial  Final 

Station 
Volume 
filtered 

(L) 

Particles 
dry weight 

(g) 
Date 

Time 
(UTC) 

Longitude Latitude 
 

Date 
Time 
(UTC) 

Longitude Latitude 

0 266.09 0.2869 09/04/11 0:30 156.778 -33.911  09/04/11 11:50 159.463 -33.985 

80 242.00 0.3548 17/04/11 22:12 177.743 -30.970  18/04/11 8:17 179.143 -28.406 

83 222.63 0.2935 21/04/11 19:14 -176.935 -20.602  22/04/11 6:51 -176.364 -19.796 

85 256.00 0.3054 23/04/11 20:08 -174.497 -15.889  24/04/11 5:50 -174.102 -15.038 

88 269.45 0.309 25/04/11 23:39 -172.736 -11.201  26/04/11 8:25 -172.560 -10.646 

92 319.32 0.3518 29/04/11 21:35 -169.462 -3.398  30/04/11 10:32 -168.669 -1.872 

95 206.91 0.3427 02/05/11 23:48 -165.403 4.622  03/05/11 9:40 -164.674 6.290 

98 242.86 0.3093 05/05/11 22:20 -162.259 11.921  06/05/11 9:40 -161.379 13.758 

104 271.17 0.2944 16/05/11 16:00 -150.360 21.066  17/05/11 6:30 -149.556 20.938 

106 270.44 0.2942 18/05/11 15:30 -145.208 20.344  19/05/11 4:42 -146.308 20.085 

108 207.28 0.2675 20/05/11 15:45 -138.966 19.279  21/05/11 3:11 -138.110 19.079 

110 196.26 0.3285 22/05/11 14:55 -133.262 18.053  23/05/11 7:30 -131.486 17.582 

112 197.44 0.2908 24/05/11 14:40 -127.569 16.624  25/05/11 4:30 -125.962 16.248 

114 300.72 0.2819 26/05/11 14:45 -121.996 15.311  27/05/11 4:37 -120.109 14.845 

116 255.68 0.3796 28/05/11 13:30 -115.768 13.771  29/05/11 4:00 -114.664 13.529 

118 211.57 0.3135 30/05/11 13:35 -110.393 12.497  31/05/11 3:06 -109.574 12.321 

121 283.11 0.3744 02/06/11 12:35 -102.447 10.757  03/06/11 2:10 -100.838 10.428 

124 262.15 0.4244 05/06/11 12:50 -93.148 8.760  06/06/11 1:00 -91.917 8.482 

126 257.84 0.3702 07/06/11 11:45 -87.960 7.224  08/06/11 1:00 -86.393 6.630 

0 219.00 0.2999 11/06/11 15:15 -78.946 9.779  12/06/11 3:35 -76.588 10.160 

129 224.57 0.3154 22/06/11 10:13 -69.291 15.075  22/06/11 23:36 -68.229 15.325 

0 258.22 0.3278 24/06/11 11:55 -63.363 16.415  25/06/11 1:04 -60.863 17.082 

133 198.50 0.3766 27/06/11 10:20 -55.160 19.020  27/06/11 23:40 -53.689 19.720 

136 244.82 0.3138 30/06/11 9:05 -47.785 21.731  30/06/11 23:40 -45.908 22.374 

138 246.74 0.3178 02/07/11 7:30 -41.908 23.736  02/07/11 22:45 -39.832 24.458 

140 290.41 0.3162 04/07/11 7:35 -35.268 26.111  04/07/11 23:00 -34.037 26.532 

142 251.45 0.2989 06/07/11 6:35 -29.671 27.981  06/07/11 21:43 -28.192 28.455 

144 177.06 0.2584 08/07/11 6:45 -23.691 29.967  08/07/11 21:27 -22.053 30.507 

146 249.09 0.2084 10/07/11 5:43 -17.262 32.083  10/07/11 20:20 -16.101 32.453 
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Table S5.2. Sampling: Ancillary data for Plankton samples 

Station Date 
Time  
(UTC) 

Longitude Latitude 
Total dry 
weight (g) 

Biomass 
(g m

-3
) 

1 16/12/10 11:45 -9.530 35.165 1.07 4.73 10-3 

0 19/12/10 8:50 -17.285 29.686 1.11 5.46 10-3 

6 22/12/10 8:41 -22.244 23.256 1.34 7.89 10-3 

8 24/12/10 8:55 -24.304 20.260 1.96 1.45 10-2 

10 26/12/10 8:15 -26.005 14.519 3.48 3.85 10-2 

12 28/12/10 8:46 -25.994 9.564 2.25 1.47 10-2 

14 30/12/10 8:35 -26.033 5.011 3.42 2.08 10-2 

16 01/01/11 9:28 -26.019 0.270 5.42 4.00 10-2 

18 03/01/11 9:31 -28.174 -4.773 1.94 1.04 10-2 

20 05/01/11 9:00 -30.189 -9.110 1.98 6.50 10-3 

22 07/01/11 9:43 -32.378 -13.729 1.57 5.79 10-3 

24 09/01/11 9:01 -34.675 -18.399 3.14 1.23 10-2 

26 11/01/11 9:45 -35.975 -21.090 0.74 2.35 10-3 

27 19/01/11 13:45 -36.223 -24.314 0.28 1.15 10-3 

28 20/01/11 14:36 -33.095 -24.852 0.17 1.15 10-3 

29 21/01/11 13:00 -30.131 -25.400 3.23 2.04 10-2 

30 22/01/11 0:45 -27.589 -25.863 3.11 1.96 10-2 

0 23/01/11 - -24.243 -26.424 2.10 1.16 10-2 

34 26/01/11 15:38 -14.789 -28.101 1.74 6.40 10-3 

37 30/01/11 0:45 -5.401 -29.687 0.32 1.81 10-3 
41 02/02/11 1:10 6.786 -31.772 3.73 3.00 10-2 
42 03/02/11 20:45 9.417 -32.104 2.19 1.38 10-2 
43 04/02/11 23:08 12.749 -32.791 2.13 1.05 10-2 

44 05/02/11 2:30 15.474 -33.297 0.27 3.93 10-3 

45 13/02/11 - 25.558 -35.139 2.03 2.00 10-2 

46 14/02/11 6:25 27.546 -34.837 4.01 2.15 10-2 

48 16/02/11 5:30 33.724 -34.172 2.32 1.25 10-2 

50 18/02/11 5:25 39.880 -33.532 0.15 9.73 10-4 

52 24/02/11 - 61.458 -30.053 2.21 1.00 10-2 

53 25/02/11 3:00 63.248 -27.976 0.19 8.42 10-4 

55 27/02/11 4:24 69.414 -29.363 0.87 5.51 10-3 

57 01/03/11 3:03 76.086 -29.906 1.80 1.06 10-2 

59 03/03/11 3:07 82.624 -29.810 1.82 1.08 10-2 

61 05/03/11 2:55 89.478 -29.681 0.86 6.32 10-3 

63 07/03/11 1:36 96.395 -29.582 1.71 1.16 10-2 

65 09/03/11 2:00 103.309 -30.333 1.82 1.34 10-2 

67 11/03/11 0:10 110.180 -31.154 3.65 1.79 10-2 

74 24/03/11 0:25 135.224 -39.225 1.00 1.04 10-2 

0 09/04/11 0:30 159.057 -33.976 0.41 7.29 10-3 

79 17/04/11 - 176.016 -34.056 1.89 1.12 10-2 

83 21/04/11 19:14 -177.417 -21.442 2.40 1.41 10-2 

85 23/04/11 20:08 -174.488 -15.903 0.60 3.39 10-3 
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Station Date 
Time  
(UTC) 

Longitude Latitude 
Total dry 
weight (g) 

Biomass 
(g m

-3
) 

88 26/04/11 23:39 -172.323 -9.460 0.81 4.54 10-3 

92 30/04/11 21:35 -168.357 -1.304 1.47 9.60 10-3 

95 03/05/11 23:48 -164.427 6.978 3.24 2.94 10-2 

98 06/05/11 22:20 -160.861 15.017 1.43 6.47 10-3 

103 16/05/11 16:00 -150.366 21.067 3.36 1.53 10-2 

105 18/05/11 15:30 -145.212 20.341 4.41 1.86 10-2 

106 19/05/11 - -141.617 19.902 2.09 9.15 10-3 

107 20/05/11 15:45 -138.966 19.279 3.05 1.28 10-2 

109 22/05/11 14:55 -133.262 18.057 3.35 1.58 10-2 

111 24/05/11 14:40 -127.627 16.617 4.04 1.91 10-2 

113 26/05/11 14:45 -121.995 15.311 4.46 1.95 10-2 

115 28/05/11 13:30 -115.775 13.760 5.76 3.08 10-2 

116 29/05/11 - -113.270 13.195 3.22 1.52 10-2 

117 30/05/11 13:35 -110.392 12.493 2.27 9.25 10-3 

118 31/05/11 - -108.046 11.992 4.23 3.11 10-2 

120 02/06/11 12:35 -102.448 10.757 2.23 1.58 10-2 

123 05/06/11 12:50 -93.148 8.764 4.41 3.47 10-2 

125 07/06/11 11:45 -87.947 7.221 4.61 3.88 10-2 

129 22/06/11 10:13 -69.289 15.073 3.43 1.68 10-2 

131 25/06/11 - -59.829 17.428 4.07 2.18 10-2 

133 27/06/11 10:20 -55.160 19.020 1.60 5.90 10-3 

136 28/06/11 - -52.629 20.013 1.79 6.81 10-3 

136 30/06/11 9:05 -47.790 21.742 1.02 4.02 10-3 

138 02/07/11 7:30 -41.912 23.736 1.24 7.80 10-3 

140 04/07/11 7:35 -35.274 26.111 0.16 8.79 10-4 

142 06/07/11 6:35 -29.673 27.983 0.46 2.71 10-3 

144 08/07/11 6:45 -23.693 29.966 1.75 7.95 10-3 

146 10/07/11 5:43 -17.260 32.088 1.26 6.78 10-3 
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Text S5.1. Materials and Methods 

Dissolved samples 

XAD-2 resin was extracted secuentialy with 200 mL of methanol (MeOH) and 300 

mL of dichloromethane (DClM) pumped contrariwise to the sampling direction 

flux, in order to facilitate the extraction and avoid preferent pathways. Both 

elutants were kept separated and were surrogate recovery spiked. After a rotary 

evaporator reduction, the MeOH fraction was liquid-liquid extracted with hexane 

(Hx, 30 mL) on a decanting funnel three times. Both phases were further purified 

over a anhidrous sulfate muffled open funnel; first the MeOH phase and the MeOH 

was discarded and then the Hx phase which was kept and additionally washed 

with Hx. This elutant was mixed with the DClM phase, reduced down to Hx and 

fractioned over an alumina column (3 g, 90% deactivated alumina with a 1 cm 

sulfate top layer, packed with Hx). Fractioning was set with 5 mL Hx for the the 

first fraction of alifatic compounds, 12 mL Hx/DClM (1:2) for the second fraction 

containing the aromatic compounds, and 15 mL MeOH/DClM (1:2) for other polar 

compounds. Fractions 1 and 2 were reduced under a gentle nigrogen stream and 

solvent changed to isooctane down to 100 uL. 

Particulate samples 

Filters containing the particulate samples were freeze dried, weighted and soxhlet 

extracted overnight with DClM/MeOH (2:1). The extract was concentrated on a 

rotary evaporator system and solvent changed to isooctane. Then, samples were 

further purified and fractioned over an alumina column (3 g, 90% deactivated 

alumina with a 1 cm sulfate top layer, packed with Hx). Fractioning was set with 6 

mL Hx for the the first fraction of alifatic compounds, 12 mL Hx/DClM (3:1) for the 

second fraction containing the aromatic compounds, 35 mL DClM for 

organophosphate esters on a third fraction, and a last fraction of 15 mL 

DClM/MeOH (2:1) for other products. Fractions 1, 2 and 3 were reduced under a 

gentle nitrogen stream and solvent changed to isooctane down to 100 uL. 

Plankton samples 

Plankton filters were freeze dried, weighted and soxhlet extracted overnight with 

DCl/Hex (1:1). Plankton samples were purified and fractioned over a combined 

silica and alumina column (top 1 cm sulphate, intermediate 5 g muffled neutral 

silica, and bottom 3 g, 90% deactivated alumina, packed with Hx). Fractioning was 

set with 25 mL Hx for the the first fraction of alifatic compounds, 40 mL Hx/DClM 

(3:1) for the second fraction containing the aromatic compounds, 20 mL 

DClM/Acetone (70:30) for organophosphate esters on a third fraction and a last 

fraction of 25 mL DClM/MeOH (2:1) for other polar compounds. Fractions 1, 2 and 

3 were reduced under a gentle nigrogen stream and solvent changed to isooctane 

down to 100 uL.  
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Table S5.3. Blanks (total pg per sample) and Surrogate recoveries (%) for 

particulate phase samples 

 

 

Mean 
laboratory 

blank 

Mean 
field 
blank 

 
Surrogate 
recovery 

 
(n=7) (n=4) 

 
(n=69) 

Naphthalene 0.154 0.165   

Dimethylnaphthalenes 0.057 0.053 

  Methylnaphthalenes 0.000 0.000 

  Acenaphtylene 0.038 0.045   

Acenaphtene 0.112 0.242   

Fluorene 0.095 0.295   

Dibenzothiophene 0.049 0.098   

Methyldibenzothiophenes 0.174 0.341   

Dimethyldibenzothiopenes 0.214 0.356   

Phenanthrene 0.433 1.016   

Methylphenantrenes 0.303 0.345   

Dimethylphenanthrenes 0.222 0.248   

Anthracene 0.047 0.049   

Fluoranthene 0.336 0.370   

Pyrene 0.130 0.173   

Methylpyrene 0.051 0.068   

Dimethylpyrene 0.000 0.085   

Benzo(ghi)fluoranthene 0.069 0.070   

Benzo(a)anthracene 0.134 0.201   

Chrysene 0.069 0.079   

Methylchrysenes 0.000 0.056   

Benzo(b+k)fluoranthenes 0.164 0.165 

  Benzo(e)pyrene 0.076 0.096 

  Benzo(a)pyrene 0.011 0.080 

  Perylene 0.097 0.101 Perylene D12 76.2 

Indeno(1,2,3-cd)pyrene 0.045 0.095 

  Dibenzo(a,h)anthracene 0.062 0.089 

  Benzo(ghi)perylene 0.058 0.095 

   

All samples have been surrogate recovery corrected by Perylene D12. 
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Table S5.4. Blanks (total pg per sample), Breakthroughs and Surrogate recoveries 

(%) for plankton samples 

 

 

Mean 
laboratory 

blank 

Mean 
field 
blank 

Mean 1st 
Breakthrough 

extraction 
 

Surrogate 
recovery 

 
(n=7) (n=4) (n=5) 

 
(n=71) 

Naphthalene 0.006 0.185 81.1   

Methylnaphthalenes 0.027 0.838 85.4 
  Dimethylnaphthalenes 0.012 0.942 96.0 
  Acenaphtylene 0.000 0.030 90.7 Acenaphtene D10 25.1 

Acenaphtene 0.013 0.418 99.0 
  Fluorene 0.004 0.069 91.7 
  Dibenzothiophene 0.000 0.000 100.0 
  Methyldibenzothiophenes 0.002 0.000 87.5 
  Dimethyldibenzothiopenes 0.000 0.000 93.7 
  Phenanthrene 0.015 0.264 97.4 Phenanthene D10 41.9 

Methylphenantrenes 0.004 0.196 97.0 
  Dimethylphenanthrenes 0.007 0.000 99.3 
  Anthracene 0.000 0.067 85.6 
  Fluoranthene 0.036 0.128 97.4 
  Pyrene 0.026 0.275 95.6 
  Methylpyrenes 0.000 0.000 100.0 
  Dimethylpyrenes 0.000 0.000 100.0 
  Benzo(ghi)fluoranthene 0.000 0.037 100.0 
  Benzo(a)anthracene 0.114 0.120 96.1 
  Chrysene 0.021 0.015 95.4 Chrysene D12 70.1 

Methylchrysenes 0.000 0.000 100.0 
  Benzo(b+k)fluoranthenes 0.120 0.000 94.2 
  Benzo(e)pyrene 0.000 0.078 93.3 
  Benzo(a)pyrene 0.000 0.000 100.0 
  Perylene 0.000 0.000 100.0 Perylene D12 102.4 

Indeno(1,2,3-cd)pyrene 0.071 0.000 100.0 
  Dibenzo(a,h)anthracene 0.281 0.000 100.0 
  Benzo(ghi)perylene 0.148 0.000 99.7 
   

 

All samples have been surrogate recovery corrected by the indicated deuterated standard. 
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Table S5.5. Particulate organic carbon (POC, μM) at surface (5 m depth) 

 

Station POC 

1 1.9 

0 1.7 

4 1.6 

6 1.7 

8 1.7 

10 2.2 

12 2.3 

14 2.4 

16 2.0 

18 2.3 

20 2.3 

22 1.5 

24 2.2 

26 2.5 

27 2.5 

28 2.5 

29 1.6 

30 3.4 

34 3.4 

37 1.8 

41 1.8 

42 1.7 

43 3.3 

44 4.3 

45 4.3 

0 6.1 

46 2.2 

48 1.6 

50 1.4 

0 1.3 

0 1.2 

53 2.4 

55 0.9 

57 0.9 

59 1.0 

61 0.9 

63 1.1 

65 4.4 

67 2.3 

74 2.4 

0 - 

80 2.2 

Station POC 

83 3.7 

85 2.7 

88 1.7 

92 1.4 

95 2.0 

98 1.4 

103 4.6 

105 1.6 

107 2.7 

109 2.4 

111 1.4 

113 1.3 

115 2.5 

117 1.9 

120 2.3 

123 4.9 

125 9.3 

0 2.3 

129 2.2 

0 1.7 

133 - 

136 2.0 

138 1.6 

140 1.7 

142 1.3 

144 1.8 

146 4.5 
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Table S5.6. Carbon, Nitrogen and estimated trophic position for plankton samples 

Station N biomass C biomass C:N d15N d13C 
Trophic 

position* 

 
(mg N m-3) (mg C m-3) (molar) (‰) (‰) 

 
1 

      
3 

      
6 

      
8 

      
10 1.56 6.43 4.81 4.95 -19.57 1.58 

12 
      

14 
      

16 
      

18 
      

20 
      

22 
      

24 
      

25 
      

27 
      

28 
      

29 2.78 11.66 4.88 1.92 -19.77 
 

30 
      

31 
      

35 1.09 4.30 4.60 5.87 -21.43 1.29 

37 
      

39 2.07 9.86 5.56 8.42 -18.34 1.57 

42 
      

43 
      

44 
      

45 2.77 10.89 4.58 6.55 -19.07 1.43 

46 2.13 8.46 4.64 4.92 -20.09 1.70 

48 1.11 5.65 5.94 4.38 -21.78 1.80 

50 0.50 2.46 5.81 4.85 -17.75 1.41 

52 1.90 7.19 4.43 4.68 -20.86 1.17 

53 2.32 9.09 4.57 3.75 -20.87 1.27 

55 1.47 5.50 4.37 4.76 -20.96 1.24 

57 1.71 6.64 4.54 5.59 -21.08 1.46 

59 1.07 4.39 4.78 8.86 -21.24 1.43 

61 1.88 7.42 4.60 6.59 -20.93 1.55 

63 1.54 6.14 4.64 8.19 -21.30 1.21 

65 1.88 6.96 4.32 3.53 -22.29 1.20 

67 1.40 5.86 4.88 3.92 -20.54 1.89 

74 2.24 8.72 4.54 12.61 -20.30 1.64 

4b1 
      

79 1.96 7.13 4.25 6.88 -20.69 1.31 

83 1.98 8.05 4.76 1.68 -19.88 1.66 

85 1.29 5.11 4.61 2.27 -19.08 1.44 
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Station N biomass C biomass C:N d15N d13C 
Trophic 

position* 

 
(mg N m-3) (mg C m-3) (molar) (‰) (‰) 

 
88 1.65 6.13 4.33 12.65 -19.33 1.72 

92 2.13 8.10 4.44 3.57 -19.42 1.57 

95 7.36 27.90 4.43 6.26 -19.83 1.70 

98 0.86 3.86 5.25 8.11 -19.48 1.88 

103 2.08 7.84 4.40 8.12 -20.36 1.42 

105 2.04 8.07 4.61 4.45 -20.36 1.60 

106 1.39 5.39 4.52 7.92 -20.81 1.45 

107 1.79 6.88 4.49 8.76 -20.92 1.52 

109 2.47 9.60 4.54 8.16 -20.40 1.65 

111 2.56 10.21 4.65 10.25 -20.80 1.91 

113 2.43 9.37 4.50 10.48 -20.91 1.68 

115 3.13 12.09 4.51 10.38 -21.01 1.45 

116 2.03 8.33 4.79 8.68 -21.76 2.12 

117 2.30 9.18 4.66 9.68 -20.62 1.50 

118 2.50 9.76 4.56 10.43 -20.59 1.76 

120 3.54 15.30 5.05 9.49 -19.32 1.50 

123 5.42 20.02 4.31 6.75 -21.45 1.63 

125 6.28 24.29 4.51 5.10 -21.34 1.80 

129 3.10 12.14 4.57 1.11 -18.50 1.73 

131 1.38 5.40 4.58 1.87 -18.97 1.66 

133 1.70 6.73 4.61 0.39 -19.25 1.49 

134 1.99 7.97 4.67 0.30 -18.52 1.56 

136 1.56 6.18 4.63 0.69 -19.36 1.32 

138 1.48 6.21 4.90 1.04 -19.24 1.77 

140 1.12 4.72 4.94 1.52 -20.41 1.64 

142 1.08 4.16 4.51 2.59 -21.33 1.44 

144 1.92 7.40 4.49 3.36 -21.44 1.66 

145 1.97 7.72 4.58 3.21 -21.76 1.70 

 

*Trophic position attends for the estimated TP of the plankton Fraction 500-1000 mm calculated by 

(δN15
500-1000 - δN15

40-200/3.4)-1.5. 
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Table S5.7. Organic carbon export from the surface mixed layer due to 

phytoplankton (FOC-Phyto), zooplankton pellets (FOC-Fecal) and total fluxes (FOC) (mgC m-

2day-1) 

 

Station FOCPhyto FOCFecal FOC 

1 5.92 26.61 32.53 

3 2.96 29.67 32.63 

6 5.36 43.10 48.45 

8 6.66 53.92 60.58 

10 10.97 79.32 90.29 

12 8.59 53.54 62.14 

14 13.67 68.05 81.72 

16 7.82 60.17 67.99 

18 1.18 55.16 56.35 

20 0.21 35.79 36.00 

22 0.15 30.60 30.75 

24 0.49 43.92 44.41 

25 0.75 43.42 44.16 

27 0.43 42.07 42.50 

28 0.38 35.40 35.78 

29 0.47 34.28 34.75 

30 0.53 34.63 35.16 

31 0.24 27.45 27.69 

34 0.10 21.18 21.28 

37 0.05 19.25 19.30 

41 0.21 24.16 24.36 

42 0.31 25.52 25.82 

43 0.79 31.31 32.10 

44 2.43 41.23 43.65 

45 54.30 198.96 253.26 

46 4.19 51.01 55.20 

48 1.17 41.44 42.61 

50 0.60 38.37 38.97 

52 0.25 20.81 21.06 

53 0.87 31.25 32.13 

55 0.21 19.01 19.22 

57 0.18 16.96 17.14 

59 0.15 16.07 16.22 

61 0.18 18.28 18.45 

63 0.19 15.44 15.63 

65 0.34 21.71 22.05 

67 0.98 39.81 40.79 

74 8.15 49.69 57.83 

4b1 6.29 52.28 58.56 

79 2.36 37.35 39.71 
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Station FOCPhyto FOCFecal FOC 

83 2.31 41.33 43.65 

85 1.00 38.23 39.23 

88 0.49 39.62 40.11 

92 10.59 97.14 107.73 

95 7.46 69.10 76.56 

98 0.62 33.67 34.30 

103 0.54 40.18 40.72 

105 0.36 38.43 38.79 

106 0.53 37.63 38.17 

107 0.39 36.94 37.33 

109 0.30 32.96 33.26 

111 0.46 33.09 33.55 

113 1.75 44.82 46.57 

115 2.02 51.62 53.64 

116 2.91 52.96 55.87 

117 3.56 56.49 60.04 

118 3.95 55.09 59.04 

120 3.53 48.01 51.54 

123 33.00 127.11 160.11 

125 21.84 93.34 115.18 

129 4.77 48.64 53.41 

131 3.34 46.50 49.84 

133 0.74 24.20 24.94 

134 0.37 20.85 21.22 

136 0.15 16.35 16.50 

138 0.24 14.19 14.43 

140 0.14 12.17 12.31 

142 0.21 15.32 15.53 

144 0.26 16.58 16.84 

146 0.64 28.07 28.71 
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Table S5.8. Dissolved phase measured PAHs concentrations (ng L-1) 
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1 0.132 0.575 1.15 0.016 0.542 0.555 0.132 0.118 0.099 0.888 0.339 0.123 0.088 0.237 0.278 0.035 0.018 0.013 0.019 0.017 0.006 0.006 0.007 0.004 0.000 0.019 0.031 0.023 5.47 

0 0.024 0.136 0.428 0.010 0.271 0.426 0.096 0.097 0.085 0.635 0.239 0.103 0.070 0.185 0.218 0.028 0.013 0.014 0.016 0.011 0.004 0.004 0.006 0.002 0.001 0.025 0.036 0.022 3.21 

4 0.031 0.117 0.313 0.013 0.189 0.571 0.102 0.106 0.093 0.723 0.312 0.126 0.057 0.247 0.280 0.033 0.013 0.013 0.026 0.013 0.005 0.003 0.006 0.001 0.001 0.025 0.037 0.009 3.47 

6 0.154 0.558 1.03 0.046 0.488 0.433 0.095 0.111 0.101 0.541 0.271 0.126 0.049 0.235 0.281 0.062 0.035 0.012 0.140 0.026 0.036 0.005 0.017 0.006 0.003 0.018 0.025 0.010 4.91 

8 0.000 0.000 0.017 0.024 0.007 0.000 0.007 0.009 0.012 0.000 0.000 0.000 0.000 0.001 0.001 0.034 0.052 0.000 0.004 0.000 0.007 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.180 

10 0.002 0.000 0.122 0.006 0.067 0.294 0.071 0.100 0.094 0.528 0.303 0.130 0.068 0.306 0.368 0.042 0.018 0.009 0.057 0.014 0.004 0.003 0.006 0.002 0.001 0.013 0.015 0.004 2.65 

12 0.001 0.017 0.109 0.042 0.034 0.148 0.094 0.088 0.084 0.316 0.251 0.106 0.062 0.236 0.303 0.040 0.020 0.052 0.008 0.018 0.012 0.002 0.008 0.003 0.001 0.012 0.014 0.006 2.09 

14 0.022 0.000 0.000 0.304 0.401 0.000 1.07 0.694 0.108 0.604 0.000 0.115 0.027 0.318 0.352 0.199 0.095 0.000 0.000 0.038 0.013 0.000 0.000 0.000 0.000 0.011 0.012 0.000 4.39 

16 0.000 0.000 0.000 0.911 0.090 0.000 1.73 0.629 0.137 0.326 0.000 0.044 0.000 0.000 0.000 0.267 0.000 0.000 0.082 0.021 0.044 0.000 0.000 0.050 0.000 0.000 0.000 0.000 4.34 

18 0.000 0.033 0.192 0.060 0.067 0.124 0.122 0.115 0.128 0.238 0.451 0.172 0.058 0.376 0.516 0.067 0.035 0.017 0.052 0.023 0.023 0.005 0.015 0.005 0.001 0.016 0.019 0.008 2.94 

20 0.000 0.001 0.008 0.001 0.006 0.048 0.015 0.049 0.061 0.129 0.156 0.089 0.014 0.216 0.276 0.032 0.013 0.010 0.023 0.011 0.003 0.003 0.006 0.001 0.001 0.037 0.048 0.010 1.27 

22 0.002 0.007 0.046 0.020 0.019 0.061 0.039 0.059 0.068 0.119 0.182 0.081 0.027 0.202 0.259 0.031 0.011 0.012 0.022 0.009 0.004 0.002 0.004 0.002 0.001 0.009 0.009 0.004 1.31 

24 0.000 0.010 0.000 0.000 0.428 0.000 0.301 0.114 0.000 0.000 0.000 0.000 0.109 0.000 0.023 0.198 0.155 0.000 0.000 0.000 0.070 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.41 

26 0.019 0.000 0.000 0.000 0.219 0.000 2.28 1.54 0.301 0.000 0.000 0.000 0.281 0.312 0.209 0.252 0.091 0.000 0.000 0.000 0.145 0.000 0.000 0.005 0.000 0.000 0.026 0.000 5.67 

27 0.011 0.130 0.163 0.005 0.028 0.123 0.035 0.100 0.128 0.303 0.347 0.241 0.042 0.414 0.495 0.138 0.138 0.023 0.066 0.080 0.138 0.012 0.060 0.019 0.002 0.021 0.020 0.013 3.29 

28 0.003 0.028 0.081 0.004 0.016 0.089 0.038 0.124 0.172 0.313 0.358 0.202 0.042 0.469 0.535 0.083 0.029 0.017 0.061 0.019 0.006 0.004 0.006 0.003 0.002 0.028 0.041 0.007 2.78 
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∑
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4
 P

A
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29 0.001 0.000 0.000 0.010 0.000 0.065 0.051 0.099 0.129 0.216 0.338 0.124 0.027 0.347 0.401 0.044 0.021 0.018 0.021 0.014 0.007 0.003 0.006 0.003 0.001 0.024 0.032 0.013 2.02 

30 0.008 0.041 0.087 0.004 0.017 0.048 0.018 0.057 0.074 0.147 0.170 0.098 0.027 0.225 0.229 0.041 0.020 0.007 0.025 0.015 0.016 0.003 0.009 0.003 0.001 0.015 0.015 0.004 1.42 

34 0.001 0.000 0.036 0.004 0.000 0.029 0.030 0.041 0.059 0.130 0.213 0.101 0.020 0.272 0.305 0.037 0.012 0.019 0.015 0.007 0.005 0.002 0.003 0.002 0.001 0.030 0.032 0.008 1.42 

41 0.010 0.052 0.197 0.011 0.016 0.198 0.100 0.214 0.225 0.526 0.568 0.302 0.074 0.699 0.715 0.111 0.082 0.045 0.048 0.043 0.063 0.008 0.032 0.011 0.007 0.085 0.096 0.033 4.57 

42 0.217 0.144 0.000 1.307 0.000 1.063 2.02 0.684 0.579 0.481 0.000 0.294 0.000 0.557 0.628 0.859 0.502 0.000 0.413 0.000 0.150 0.067 0.000 0.146 0.128 0.143 0.109 0.097 10.6 

43 0.000 1.77 1.19 0.000 0.000 1.15 1.52 0.000 0.000 0.082 0.000 0.298 0.000 0.127 0.127 0.112 0.000 0.000 0.149 0.000 0.048 0.151 0.000 0.187 0.000 0.286 0.255 0.203 7.65 

44 0.010 0.024 0.089 0.003 0.019 0.063 0.031 0.085 0.098 0.244 0.241 0.135 0.020 0.291 0.297 0.029 0.009 0.006 0.016 0.008 0.002 0.002 0.003 0.001 0.001 0.006 0.007 0.002 1.74 

45 0.003 0.007 0.028 0.000 0.005 0.013 0.007 0.024 0.039 0.054 0.069 0.052 0.005 0.098 0.102 0.013 0.005 0.003 0.003 0.004 0.002 0.001 0.002 0.000 0.001 0.007 0.011 0.002 0.559 

0 0.017 0.032 0.067 0.000 0.009 0.032 0.019 0.054 0.066 0.158 0.402 0.075 0.020 0.189 0.210 0.023 0.009 0.010 0.006 0.007 0.004 0.001 0.004 0.003 0.004 0.016 0.023 0.014 1.47 

46 0.000 0.054 0.151 0.000 0.000 0.000 0.154 0.160 0.000 0.000 0.000 0.000 0.000 0.055 0.077 0.445 0.142 0.000 0.493 0.000 0.107 0.000 0.000 0.000 0.000 0.014 0.000 0.009 1.86 

48 0.021 0.086 0.180 0.000 0.029 0.058 0.029 0.075 0.101 0.227 0.226 0.128 0.022 0.298 0.304 0.035 0.012 0.010 0.008 0.009 0.002 0.002 0.004 0.001 0.001 0.023 0.029 0.014 1.93 

50 0.001 0.010 0.026 0.000 0.002 0.027 0.020 0.064 0.079 0.174 0.216 0.109 0.018 0.271 0.275 0.032 0.010 0.006 0.013 0.008 0.002 0.002 0.003 0.001 0.001 0.009 0.014 0.004 1.40 

0 0.024 0.078 0.136 0.004 0.024 0.059 0.035 0.078 0.094 0.221 0.205 0.102 0.025 0.270 0.267 0.037 0.013 0.011 0.010 0.006 0.003 0.001 0.002 0.001 0.001 0.018 0.026 0.013 1.76 

0 0.012 0.041 0.119 0.005 0.000 0.044 0.041 0.071 0.101 0.161 0.164 0.101 0.025 0.235 0.239 0.039 0.013 0.013 0.009 0.006 0.005 0.001 0.003 0.001 0.002 0.030 0.036 0.009 1.53 

53 0.000 0.000 0.000 0.000 0.000 0.037 0.017 0.050 0.077 0.145 0.191 0.106 0.021 0.278 0.275 0.030 0.012 0.012 0.014 0.008 0.003 0.002 0.004 0.002 0.001 0.015 0.020 0.010 1.33 

55 0.032 0.095 0.174 0.003 0.039 0.064 0.033 0.075 0.097 0.247 0.229 0.115 0.028 0.292 0.318 0.033 0.010 0.007 0.010 0.009 0.002 0.003 0.004 0.003 0.001 0.008 0.010 0.004 1.94 

57 0.042 0.146 0.262 0.002 0.043 0.073 0.036 0.083 0.097 0.270 0.233 0.111 0.033 0.320 0.357 0.030 0.009 0.013 0.005 0.008 0.002 0.002 0.003 0.002 0.001 0.059 0.079 0.017 2.34 

59 0.007 0.024 0.069 0.002 0.015 0.064 0.028 0.070 0.079 0.209 0.199 0.104 0.019 0.251 0.285 0.034 0.009 0.020 0.008 0.006 0.002 0.001 0.003 0.001 0.001 0.144 0.170 0.032 1.86 
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∑
6

4
 P

A
H

s 

61 0.018 0.048 0.108 0.000 0.019 0.038 0.018 0.047 0.067 0.131 0.147 0.086 0.017 0.231 0.261 0.028 0.009 0.010 0.007 0.007 0.002 0.001 0.002 0.001 0.001 0.023 0.033 0.007 1.37 

63 0.023 0.078 0.173 0.003 0.037 0.087 0.037 0.088 0.103 0.288 0.250 0.131 0.027 0.319 0.348 0.032 0.009 0.010 0.008 0.006 0.002 0.001 0.002 0.001 0.001 0.020 0.030 0.010 2.12 

65 0.024 0.034 0.108 0.000 0.000 0.105 0.052 0.128 0.142 0.379 0.383 0.172 0.043 0.400 0.428 0.050 0.019 0.019 0.016 0.014 0.005 0.002 0.004 0.002 0.002 0.036 0.052 0.019 2.64 

67 0.129 0.337 0.550 0.000 0.087 0.119 0.062 0.146 0.177 0.454 0.402 0.207 0.056 0.548 0.598 0.051 0.017 0.021 0.008 0.013 0.004 0.003 0.005 0.002 0.002 0.083 0.096 0.033 4.21 

74 0.016 0.050 0.125 0.000 0.020 0.028 0.016 0.035 0.044 0.119 0.106 0.075 0.015 0.149 0.178 0.018 0.006 0.014 0.003 0.004 0.001 0.001 0.001 0.001 0.001 0.041 0.059 0.015 1.14 

0 0.012 0.038 0.098 0.000 0.017 0.026 0.018 0.044 0.063 0.136 0.128 0.075 0.014 0.203 0.276 0.024 0.007 0.007 0.004 0.007 0.002 0.002 0.003 0.001 0.001 0.025 0.033 0.008 1.27 

80 0.068 0.285 0.480 0.004 0.066 0.092 0.044 0.091 0.117 0.309 0.250 0.131 0.034 0.319 0.394 0.030 0.009 0.012 0.005 0.008 0.002 0.002 0.003 0.001 0.001 0.033 0.052 0.019 2.86 

83 0.033 0.090 0.293 0.002 0.046 0.108 0.052 0.131 0.166 0.386 0.359 0.189 0.045 0.484 0.568 0.047 0.013 0.018 0.017 0.012 0.003 0.003 0.005 0.002 0.001 0.032 0.048 0.016 3.17 

85 0.026 0.091 0.263 0.000 0.046 0.100 0.052 0.132 0.173 0.394 0.356 0.184 0.045 0.461 0.583 0.051 0.013 0.016 0.033 0.013 0.003 0.002 0.004 0.002 0.001 0.027 0.041 0.013 3.12 

88 0.030 0.085 0.301 0.000 0.053 0.105 0.055 0.136 0.182 0.408 0.365 0.197 0.043 0.502 0.643 0.055 0.013 0.016 0.049 0.013 0.003 0.003 0.005 0.002 0.001 0.030 0.046 0.014 3.36 

92 0.016 0.067 0.181 0.000 0.028 0.066 0.044 0.118 0.141 0.320 0.301 0.151 0.031 0.391 0.504 0.043 0.011 0.019 0.009 0.012 0.004 0.003 0.004 0.002 0.001 0.030 0.039 0.013 2.55 

95 0.024 0.070 0.171 0.000 0.031 0.065 0.043 0.120 0.148 0.325 0.336 0.176 0.033 0.461 0.574 0.046 0.012 0.023 0.009 0.014 0.003 0.004 0.006 0.002 0.002 0.081 0.100 0.037 2.91 

98 0.045 0.133 0.269 0.005 0.038 0.087 0.060 0.152 0.221 0.457 0.445 0.191 0.029 0.504 0.605 0.068 0.023 0.016 0.009 0.015 0.006 0.003 0.006 0.003 0.003 0.022 0.035 0.015 3.47 

103 0.019 0.057 0.118 0.003 0.047 0.083 0.032 0.068 0.081 0.250 0.202 0.091 0.017 0.232 0.260 0.032 0.010 0.011 0.012 0.007 0.002 0.002 0.003 0.001 0.001 0.022 0.029 0.008 1.70 

105 0.010 0.025 0.071 0.005 0.030 0.073 0.031 0.071 0.108 0.246 0.200 0.117 0.030 0.215 0.243 0.032 0.015 0.013 0.008 0.012 0.004 0.003 0.003 0.001 0.001 0.038 0.046 0.015 1.67 

107 0.013 0.054 0.124 0.003 0.042 0.077 0.029 0.071 0.097 0.235 0.215 0.127 0.027 0.230 0.261 0.033 0.011 0.015 0.007 0.008 0.003 0.001 0.003 0.002 0.001 0.048 0.063 0.020 1.82 

109 0.005 0.027 0.096 0.005 0.035 0.094 0.038 0.084 0.105 0.306 0.237 0.127 0.022 0.280 0.299 0.043 0.011 0.013 0.007 0.008 0.002 0.002 0.003 0.001 0.001 0.047 0.077 0.010 1.98 

111 0.005 0.031 0.089 0.004 0.032 0.081 0.032 0.073 0.085 0.261 0.202 0.106 0.024 0.240 0.268 0.028 0.008 0.018 0.005 0.006 0.002 0.001 0.003 0.001 0.001 0.050 0.068 0.019 1.75 
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∑
6

4
 P

A
H

s 

113 0.005 0.018 0.062 0.002 0.025 0.046 0.027 0.068 0.078 0.231 0.208 0.111 0.027 0.266 0.302 0.038 0.010 0.012 0.005 0.009 0.002 0.001 0.003 0.002 0.001 0.055 0.071 0.012 1.70 

115 0.003 0.017 0.075 0.004 0.018 0.083 0.040 0.096 0.110 0.300 0.252 0.129 0.033 0.302 0.341 0.046 0.025 0.015 0.007 0.008 0.003 0.001 0.003 0.001 0.002 0.013 0.037 0.009 1.97 

117 0.013 0.035 0.110 0.004 0.047 0.074 0.039 0.096 0.112 0.329 0.275 0.146 0.033 0.372 0.425 0.042 0.012 0.014 0.009 0.010 0.002 0.002 0.004 0.002 0.001 0.045 0.065 0.012 2.33 

120 0.016 0.045 0.128 0.003 0.043 0.080 0.046 0.109 0.120 0.361 0.312 0.160 0.042 0.425 0.475 0.045 0.012 0.015 0.007 0.011 0.002 0.003 0.004 0.002 0.001 0.043 0.060 0.011 2.58 

123 0.027 0.096 0.248 0.002 0.076 0.107 0.058 0.139 0.152 0.439 0.363 0.188 0.055 0.462 0.534 0.044 0.013 0.015 0.007 0.012 0.003 0.003 0.005 0.002 0.001 0.037 0.054 0.016 3.16 

125 0.065 0.197 0.389 0.006 0.100 0.124 0.067 0.173 0.208 0.478 0.462 0.242 0.052 0.603 0.703 0.062 0.017 0.017 0.010 0.015 0.004 0.004 0.006 0.003 0.002 0.048 0.079 0.030 4.17 

0 0.025 0.135 0.347 0.007 0.108 0.170 0.092 0.207 0.216 0.631 0.541 0.262 0.057 0.722 0.902 0.068 0.013 0.018 0.078 0.028 0.005 0.005 0.008 0.004 0.002 0.052 0.079 0.024 4.81 

129 0.001 0.000 0.000 0.004 0.000 0.080 0.052 0.114 0.084 0.406 0.286 0.151 0.036 0.434 0.540 0.063 0.022 0.019 0.026 0.020 0.004 0.003 0.005 0.002 0.001 0.028 0.035 0.013 2.43 

0 0.074 0.263 0.457 0.006 0.098 0.163 0.086 0.220 0.222 0.618 0.588 0.290 0.066 0.737 0.912 0.068 0.022 0.029 0.031 0.029 0.006 0.006 0.010 0.005 0.001 0.075 0.086 0.035 5.20 

133 0.005 0.062 0.131 0.008 0.039 0.065 0.035 0.098 0.126 0.275 0.274 0.137 0.030 0.378 0.460 0.039 0.012 0.015 0.012 0.013 0.003 0.004 0.005 0.002 0.001 0.027 0.037 0.011 2.30 

136 0.001 0.013 0.054 0.020 0.000 0.128 0.051 0.127 0.157 0.401 0.335 0.165 0.036 0.440 0.463 0.043 0.011 0.016 0.014 0.012 0.005 0.004 0.009 0.001 0.002 0.147 0.199 0.042 2.90 

138 0.001 0.011 0.059 0.017 0.000 0.126 0.054 0.132 0.152 0.397 0.339 0.168 0.045 0.468 0.474 0.060 0.013 0.036 0.011 0.013 0.007 0.004 0.007 0.002 0.001 0.305 0.344 0.064 3.31 

140 0.003 0.027 0.101 0.001 0.017 0.068 0.038 0.094 0.113 0.289 0.252 0.128 0.026 0.334 0.352 0.036 0.008 0.013 0.012 0.010 0.003 0.002 0.004 0.001 0.001 0.059 0.082 0.017 2.10 

142 0.016 0.185 0.348 0.002 0.065 0.098 0.043 0.104 0.116 0.345 0.281 0.130 0.030 0.345 0.360 0.030 0.008 0.014 0.006 0.010 0.002 0.003 0.004 0.001 0.001 0.058 0.082 0.015 2.70 

144 0.017 0.081 0.151 0.001 0.030 0.065 0.035 0.082 0.094 0.262 0.247 0.106 0.024 0.302 0.316 0.027 0.007 0.007 0.006 0.007 0.002 0.002 0.003 0.002 0.001 0.005 0.013 0.002 1.90 

146 0.019 0.175 0.393 0.004 0.066 0.123 0.049 0.109 0.117 0.376 0.303 0.142 0.041 0.350 0.356 0.027 0.007 0.009 0.006 0.009 0.003 0.002 0.003 0.002 0.001 0.011 0.018 0.003 2.73 
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Table S5.9. Particulate phase measured PAHs concentrations (ng gdw-1) 
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Σ
6

4
P

A
H

s 

1 2.20 0.666 0.000 0.747 2.40 4.66 3.35 7.37 5.70 8.29 4.82 3.05 0.353 2.07 2.90 0.152 0.680 0.756 1.07 0.908 0.229 2.19 1.79 0.971 0.636 0.339 0.472 1.22 60.0 

0 58.6 53.9 0.000 0.269 0.765 0.898 0.366 1.26 1.76 4.16 2.78 2.18 0.380 3.40 3.36 0.500 0.995 0.672 1.45 1.03 0.597 2.74 1.73 1.14 1.01 2.46 0.622 1.67 151 

4 1.98 0.082 0.000 0.214 0.520 0.840 0.514 1.71 1.92 3.05 2.18 1.70 0.192 1.89 3.65 0.166 0.799 0.410 0.886 0.665 0.270 1.13 1.00 0.622 0.469 1.31 0.384 0.923 29.5 

6 201 185 0.000 0.317 4.57 1.99 0.393 1.39 1.59 3.07 2.91 2.81 0.426 3.42 3.55 0.748 0.966 0.784 1.44 0.934 0.534 2.80 1.42 0.962 1.02 4.26 0.694 2.48 432 

8 129 120 0.000 0.560 2.35 2.20 0.725 2.48 2.79 4.13 4.16 3.80 0.436 2.87 3.53 0.682 1.63 0.651 1.09 0.885 0.804 2.82 1.13 0.846 1.03 4.72 0.506 2.36 299 

10 1.54 0.332 0.000 0.414 1.60 1.42 1.10 4.54 4.93 4.93 17.7 14.5 3.11 2.51 3.38 0.198 0.995 3.65 0.707 0.712 1.90 1.95 0.953 0.632 0.746 3.00 0.722 3.36 81.5 

12 3.48 0.572 0.000 0.599 2.76 5.09 1.45 5.19 6.17 8.09 11.6 16.9 1.07 6.38 7.66 0.729 1.88 10.1 1.71 1.36 12.0 4.17 3.11 1.97 2.84 8.63 0.690 1.70 128 

14 11.8 0.411 0.000 0.697 3.99 1.76 0.644 2.60 2.97 4.61 6.45 11.5 0.736 4.78 4.93 0.307 1.56 1.01 1.26 1.03 5.82 2.77 1.85 1.49 1.61 6.20 0.467 1.78 85.0 

16 1.44 0.233 0.000 0.353 0.840 1.25 0.545 2.07 8.45 3.46 5.85 14.9 0.651 5.04 5.58 0.156 3.28 0.610 2.27 1.58 4.14 4.91 3.22 2.85 1.68 6.80 0.599 4.34 87.1 

18 2.18 0.143 0.000 0.535 1.41 0.862 0.787 2.83 3.70 2.78 5.43 9.74 0.562 2.62 3.25 0.357 0.989 0.540 1.21 0.843 0.771 2.18 1.55 1.27 0.809 1.23 0.641 1.42 50.7 

20 0.082 0.061 0.000 0.262 1.03 0.539 0.374 1.38 2.28 2.26 5.53 5.25 0.688 2.78 3.13 0.269 0.900 0.521 1.05 0.731 0.661 2.10 1.43 1.05 0.841 0.693 0.623 1.30 37.8 

22 0.919 0.673 0.000 0.404 1.28 1.65 0.505 1.44 3.51 3.73 3.78 3.79 0.446 5.25 6.24 0.594 1.57 0.975 2.18 1.17 2.31 4.05 2.56 2.16 1.51 5.03 1.12 3.68 62.5 

24 2.75 0.331 0.000 0.427 1.39 1.03 0.653 1.81 1.77 2.75 2.94 2.76 0.391 2.58 2.26 0.399 0.802 3.52 1.27 0.707 0.473 2.29 1.37 1.12 0.926 1.05 0.597 1.11 39.5 

26 1.19 0.366 0.000 0.300 0.441 1.17 0.335 0.594 3.25 12.5 2.99 2.40 0.441 3.32 3.18 0.324 0.519 0.000 0.000 0.000 0.452 1.80 1.18 1.40 1.29 3.24 0.634 4.78 48.0 

27 1.40 0.282 0.000 0.734 5.05 1.37 0.597 1.23 1.45 10.6 6.05 8.05 0.987 4.06 3.99 0.427 0.796 0.761 2.03 1.45 0.698 2.96 1.92 1.61 0.969 0.662 0.678 1.28 62.0 

28 2.20 0.320 0.000 0.505 8.32 4.77 0.851 2.43 2.71 6.38 4.66 4.49 0.443 2.24 2.90 0.211 0.671 0.644 1.07 0.762 0.557 2.30 1.29 1.04 0.827 0.681 0.565 1.09 54.9 
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29 4.57 0.260 0.000 0.637 9.62 3.42 0.713 1.92 2.16 5.44 4.68 6.00 0.676 1.88 3.10 0.216 0.622 0.575 1.09 0.802 0.783 2.11 1.16 0.907 0.752 0.681 0.494 0.783 56.1 

30 6.93 0.200 0.000 0.770 10.9 2.07 0.575 1.41 1.62 4.50 4.70 7.50 0.908 1.52 3.31 0.220 0.573 0.505 1.11 0.841 1.01 1.92 1.03 0.779 0.677 0.680 0.423 0.479 57.2 

34 11.2 0.454 0.000 0.911 8.63 2.05 1.96 7.07 8.39 6.84 4.43 3.53 1.38 1.63 1.78 0.576 0.534 0.412 0.762 0.449 0.311 0.943 0.639 0.512 0.505 0.439 0.362 0.559 67.2 

 
1.59 0.252 0.000 0.775 5.31 4.29 6.29 30.2 35.0 14.1 11.5 8.00 1.19 1.93 2.75 0.162 0.598 0.294 0.844 0.388 0.544 1.03 1.02 0.325 0.328 1.59 0.447 2.29 133 

37 7.30 0.243 0.000 0.989 8.46 2.06 0.800 2.49 2.25 3.46 1.61 1.87 0.846 0.708 1.32 0.000 0.337 0.315 0.684 0.299 0.401 1.16 1.78 0.283 0.475 0.675 0.235 0.247 41.3 

41 0.503 0.554 0.000 0.180 1.17 0.139 0.000 0.547 0.319 0.124 0.000 0.511 0.186 0.000 0.000 0.000 0.104 0.000 0.000 0.000 0.000 1.70 0.000 0.282 0.000 1.07 0.000 0.367 7.75 

42 14.8 37.5 0.000 6.54 10.2 117 12.2 39.2 42.4 22.7 7.90 15.0 4.16 2.20 2.30 6.86 23.7 19.4 0.000 0.000 0.000 3.57 5.08 1.15 10.3 0.000 1.92 1.52 408 

43 2.57 0.284 0.000 0.204 1.91 5.35 0.243 0.654 0.764 3.24 2.67 2.41 0.229 1.62 1.42 0.229 0.435 0.294 0.703 0.516 0.322 1.32 0.763 0.592 0.466 0.355 0.374 0.679 30.6 

44 0.357 0.124 0.000 0.196 1.18 5.33 0.202 0.771 1.29 4.27 16.0 8.31 1.89 2.69 2.21 0.265 0.517 0.389 0.991 0.703 0.578 1.71 1.16 0.924 0.640 0.397 0.468 1.03 54.5 

45 1.13 0.365 0.000 0.321 0.817 7.59 0.975 3.25 4.92 5.23 6.16 5.97 0.779 2.34 2.26 0.206 0.781 0.000 0.000 0.000 0.756 1.58 1.34 1.33 1.20 1.69 0.519 1.66 53.2 

0 0.415 1.02 0.000 0.454 0.860 2.78 5.18 32.6 48.7 9.98 57.89 17.5 2.10 4.81 5.20 0.324 2.07 0.465 1.26 0.962 2.03 4.50 1.50 1.06 1.56 5.56 0.414 4.65 216 

46 29.9 13.0 0.000 49.3 170 187 191 668 635 350 397 260 23.3 226 192 10.0 41.6 33.2 114 94.3 35.5 273 179 1534 95.1 43.4 55.7 165 4690 

48 0.433 1.08 0.000 0.848 2.40 3.61 3.09 8.62 6.04 5.07 8.65 9.58 0.875 3.65 2.76 0.154 0.923 0.532 1.80 1.22 1.30 4.79 2.33 1.76 1.79 2.54 0.978 4.80 81.6 

50 40.8 333 0.000 8.42 22.3 36.31 29.2 70.7 78.4 18.8 14.0 0.000 6.05 0.000 0.000 0.000 0.000 0.000 0.000 7.24 0.000 2.97 0.000 4.42 5.35 3.08 0.000 4.73 686 

0 0.935 0.141 0.000 0.690 1.27 0.838 0.724 2.17 2.23 2.25 8.47 8.69 1.40 1.74 1.04 0.175 0.427 0.348 0.731 0.534 0.900 1.32 0.650 0.543 0.542 1.18 0.369 0.492 40.8 

0 36.7 33.3 0.000 0.482 0.491 11.8 2.64 15.6 15.5 1.02 1.98 0.000 0.488 5.42 5.12 0.000 13.2 0.000 13.5 7.08 0.000 6.65 4.57 3.96 5.35 0.711 1.21 4.19 191 

53 65.4 860 0.000 8.86 49.9 51.5 120 56.6 14.6 15.3 0.000 52.5 21.2 0.000 6.96 35.0 25.6 19.8 46.2 27.5 0.000 3.72 0.000 3.09 5.94 2.03 0.000 4.59 1500 

55 3.00 3.86 0.000 2.20 5.49 8.54 16.8 92.7 158 32.8 68.9 70.1 3.31 10.3 17.1 0.478 2.89 1.54 3.43 2.52 1.86 7.52 3.62 3.10 2.32 2.61 1.55 2.84 529 
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57 6.41 112 0.000 3.26 20.7 26.6 51.7 21.2 41.8 6.38 13.3 83.1 29.0 0.000 18.7 165 26.3 24.5 11.7 0.000 29.0 1.78 2.84 3.67 1.41 0.796 0.000 0.000 701 

59 474 96.7 0.000 18.5 0.000 40.1 383 136 66.3 91.2 97.6 201 64.3 0.000 11.1 4.36 0.000 25.3 7.40 7.29 0.000 8.94 0.000 3.73 0.000 3.16 2.75 0.000 1740 

61 26.0 30.8 0.000 0.390 0.000 2.10 6.35 6.44 5.94 6.69 14.0 7.01 2.20 2.06 1.58 0.000 1.33 0.382 0.763 1.06 0.950 1.57 0.414 0.468 1.08 3.12 0.429 1.39 125 

63 0.443 1.17 0.000 0.295 3.74 2.55 1.26 2.87 3.55 13.4 8.86 3.68 0.407 2.51 1.90 0.196 0.505 0.402 0.862 0.567 0.462 2.00 0.670 0.548 0.691 2.04 0.392 0.480 56.4 

65 0.260 1.36 0.000 0.217 1.87 2.11 2.21 7.14 11.8 30.0 26.3 14.8 0.547 6.65 5.65 0.297 0.708 0.475 0.905 0.548 0.539 1.11 0.648 0.502 0.672 1.14 0.454 0.543 119 

67 0.347 0.783 0.000 0.196 1.12 2.08 1.21 3.41 4.68 12.2 9.14 4.82 0.336 2.48 1.83 0.199 0.675 0.340 0.811 0.378 0.520 2.46 0.804 0.721 0.878 3.58 0.371 2.40 58.8 

74 0.652 0.428 0.000 0.143 0.404 0.967 0.327 1.13 2.10 2.62 1.71 1.31 0.755 1.51 1.09 0.141 0.583 0.239 0.522 0.295 0.445 1.29 0.764 0.744 0.747 2.33 0.271 1.95 25.5 

0 0.578 0.513 0.000 0.207 0.591 1.36 0.423 1.44 2.94 3.60 4.32 2.95 0.470 3.10 2.64 0.218 1.12 0.431 0.928 1.04 0.682 1.05 1.13 0.607 1.21 2.69 0.756 2.95 39.9 

80 0.679 0.673 0.000 0.181 0.277 1.57 0.501 2.03 3.61 4.32 3.17 2.02 0.369 2.44 1.88 0.183 0.672 0.325 0.877 0.501 0.512 6.22 2.17 0.546 1.05 2.02 0.399 1.79 41.0 

83 0.453 1.32 0.000 0.185 1.35 4.03 9.37 72.9 140 37.7 47.7 43.1 5.94 5.18 10.2 0.142 1.86 0.433 1.03 0.718 0.918 4.76 1.64 0.817 1.23 2.83 0.826 2.85 400 

85 0.364 0.578 0.000 0.371 0.367 2.58 3.51 16.4 21.4 19.6 8.66 5.51 0.515 2.54 2.67 0.149 0.907 0.351 0.696 0.506 0.443 5.22 1.96 0.397 1.27 1.86 0.804 4.03 104 

88 0.308 1.18 0.000 0.563 0.855 2.57 6.18 32.9 48.1 24.1 16.8 12.2 0.665 2.65 3.32 0.158 0.615 0.369 0.624 0.387 0.476 1.53 0.489 0.356 0.528 1.56 0.306 0.349 160 

92 0.092 0.528 0.000 0.452 0.478 2.30 2.92 9.59 10.5 13.0 5.53 4.13 0.399 2.04 2.31 0.154 0.526 0.361 0.744 0.518 0.869 1.81 0.632 0.516 0.632 1.05 0.283 0.438 62.7 

95 0.213 0.240 0.000 0.426 1.211 1.57 3.21 16.3 21.6 12.5 13.7 7.35 0.577 1.91 2.13 0.162 0.459 0.292 0.560 0.388 0.960 7.00 0.400 0.352 0.565 1.07 0.280 0.371 95.7 

98 0.204 0.284 0.000 0.275 0.404 2.49 9.65 61.1 107 27.6 33.4 30.7 0.688 3.81 7.91 0.149 1.35 0.401 0.789 0.580 0.534 1.53 0.624 0.552 0.651 0.990 0.394 0.550 295 

103 0.724 0.825 0.000 0.380 1.382 3.28 4.19 20.9 30.8 19.7 20.6 16.5 1.79 3.48 2.67 0.000 1.21 0.554 0.758 0.659 0.979 1.52 0.563 0.528 1.44 2.22 0.846 1.93 141 

105 0.755 0.598 0.000 0.375 0.742 4.40 10.5 54.4 71.7 23.0 21.2 13.8 0.766 2.99 3.51 0.193 1.21 0.499 0.930 0.658 0.533 1.57 0.663 0.535 0.939 2.10 0.764 1.89 221 

109 3.10 0.000 0.000 0.322 0.000 1.26 0.255 0.787 1.19 40.3 2.29 0.742 37.4 0.940 0.148 0.527 1.10 1.04 0.290 0.256 0.316 0.295 0.000 0.553 1.51 1.24 0.000 2.14 97.4 
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Σ
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111 0.021 0.187 0.000 0.165 0.290 0.377 0.400 1.99 2.45 1.41 3.04 1.76 0.254 2.08 1.36 0.202 0.536 0.353 0.801 0.456 0.420 0.790 0.618 0.480 0.956 1.91 0.396 1.36 25.1 

113 0.367 0.123 0.000 0.211 0.913 1.72 4.76 46.6 118 18.3 43.5 54.8 1.20 7.38 15.3 0.000 4.34 0.637 0.808 0.911 1.32 1.23 0.964 0.481 2.33 2.10 0.378 0.710 330 

115 0.415 0.341 0.000 0.155 0.453 0.461 0.619 3.85 6.01 1.77 5.25 3.76 0.246 2.35 1.75 0.143 0.722 0.618 0.650 0.427 0.481 2.08 0.714 0.623 1.06 0.819 0.537 1.32 37.6 

117 0.211 0.250 0.000 0.179 0.429 0.609 2.64 25.8 66.8 7.64 21.9 29.6 0.545 5.80 8.36 0.190 2.77 0.556 1.01 0.823 0.715 1.78 0.841 0.825 0.800 1.63 0.000 0.509 183 

120 0.425 0.393 0.000 0.200 0.564 1.20 0.680 2.36 2.23 4.42 5.38 3.17 0.400 2.19 1.80 0.143 0.486 0.321 0.785 0.481 0.557 1.96 1.19 0.586 1.20 0.820 0.641 2.88 37.4 

125 0.111 2.61 0.000 0.000 0.000 2.17 3.81 38.7 50.1 24.0 39.7 20.9 0.874 5.05 8.71 0.122 7.00 0.329 0.776 0.628 3.07 1.77 1.37 1.06 1.67 0.644 0.000 3.93 219 

129 0.130 0.706 0.000 0.000 0.672 3.49 2.44 17.3 18.3 18.6 15.3 9.53 0.605 2.69 2.23 0.198 0.667 0.000 0.679 0.870 0.809 1.43 1.04 0.556 1.78 1.42 0.607 2.03 104 

0 0.166 0.438 0.000 0.285 0.822 1.25 5.05 49.7 112 27.5 32.9 38.5 0.645 3.72 9.31 0.271 2.93 0.000 0.000 0.477 0.350 0.697 0.530 0.297 0.434 0.658 0.000 0.297 289 

133 0.384 0.147 0.000 0.313 1.57 1.24 3.06 16.3 20.9 13.6 15.9 11.7 0.732 2.54 2.18 0.182 0.553 1.13 0.893 0.893 0.620 1.12 0.605 0.616 0.693 0.484 0.301 0.398 98.9 

 
1.25 0.651 0.000 0.196 1.62 2.22 4.16 47.4 120 20.7 35.0 43.2 0.315 6.46 13.4 0.329 1.93 7.64 0.744 1.01 0.968 7.16 4.50 0.946 1.48 0.823 0.834 3.32 328 

136 0.924 0.063 0.000 0.328 1.31 1.34 5.44 49.6 110 25.4 49.0 48.7 1.79 6.54 10.0 0.249 1.61 0.000 1.04 0.495 0.939 1.37 0.608 0.638 0.645 0.612 0.367 0.573 319 

138 0.715 0.157 0.000 0.435 1.95 2.00 8.64 69.6 139 38.9 58.4 48.4 1.59 8.20 10.56 0.325 1.32 0.509 1.29 0.771 1.20 1.63 0.852 0.825 0.919 0.745 0.445 0.656 400 

140 0.329 0.150 0.000 0.416 2.29 1.79 3.77 23.8 36.7 17.8 29.4 20.6 1.65 3.681 4.19 0.244 0.531 0.471 1.38 0.854 1.10 2.00 1.11 0.969 1.03 0.631 0.367 0.686 158 

142 0.681 0.086 0.000 0.311 0.947 1.28 3.05 18.5 27.4 11.9 29.1 18.0 1.55 2.77 2.98 0.261 0.530 0.468 1.33 0.553 1.23 1.89 1.18 0.969 1.10 0.543 0.371 0.800 130 

144 0.496 0.833 0.000 0.327 1.44 2.48 3.35 17.8 22.1 11.0 15.6 8.48 1.14 2.62 2.39 0.176 0.748 0.580 0.982 1.44 0.788 1.53 0.785 0.500 0.000 1.30 0.953 1.25 101 

146 0.160 0.191 0.000 0.271 0.906 1.56 8.94 92.8 198 39.3 70.5 64.4 2.05 8.14 15.8 0.387 3.52 0.740 2.02 1.28 1.33 2.76 1.91 1.66 1.22 1.35 0.510 1.74 523 
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Figure S5.1. Relative abundance of PAHs in the particulate phase 
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Table S5.10. Plankton phase measured PAHs concentrations (ng gdw-1) 
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4P

A
H
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1 1.77 3.63 9.42 0.958 11.6 5.51 3.76 29.2 76.6 37.0 111 190 2.91 19.0 17.2 9.73 19.3 1.77 4.54 8.42 10.4 7.59 4.55 2.77 2.59 3.87 1.21 5.08 602 

3 0.818 1.31 4.12 0.389 8.97 4.60 2.34 14.2 21.4 19.8 29.1 28.4 1.46 8.53 6.61 1.67 3.19 0.526 1.84 2.57 2.21 4.12 2.20 1.35 0.839 1.41 0.677 1.97 177 

6 16.7 87.2 65.1 0.350 6.02 2.21 0.070 0.369 0.874 5.70 7.84 14.2 0.424 50.9 40.8 1.31 2.50 0.623 50.5 52.1 2.58 30.1 4.74 2.56 1.23 4.58 1.30 4.50 459 

8 34.6 26.0 40.3 0.707 19.5 5.58 0.000 32.6 10.8 72.5 98.0 32.9 0.342 33.7 15.8 0.262 0.753 0.163 0.261 12.3 0.505 9.66 0.441 0.222 0.165 0.216 0.244 2.72 451 

10 6.56 20.2 16.3 8.96 21.6 30.0 0.000 25.0 26.0 117 264 79.7 68.5 35.3 9.92 0.300 0.599 0.106 11.0 11.1 0.548 8.52 9.74 0.266 0.156 0.218 0.189 0.342 789 

12 14.1 27.3 49.1 6.21 25.3 26.7 0.000 0.179 0.226 95.3 97.3 22.0 20.0 10.1 8.02 0.334 0.451 0.125 0.219 0.225 0.237 9.76 0.325 0.248 0.253 0.000 0.272 0.088 434 

14 5.23 22.2 10.6 50.5 2.99 28.8 0.000 0.078 0.032 3.17 5.78 7.34 0.177 10.1 8.23 0.355 0.684 0.110 11.0 10.4 0.461 6.64 9.78 0.171 0.148 0.178 0.172 0.345 213 

16 0.283 0.397 1.69 0.214 3.09 0.614 0.000 0.029 0.000 0.984 0.879 1.10 0.119 0.768 0.213 0.092 0.246 0.051 0.108 0.204 0.250 0.628 0.276 0.119 0.103 0.107 0.137 0.197 13.1 

18 3.06 4.24 8.32 0.475 7.22 1.96 0.266 1.25 1.84 4.18 4.49 5.00 0.374 4.52 1.10 0.322 0.649 0.137 0.355 0.551 0.614 1.18 0.450 0.248 0.232 0.250 0.239 0.355 56.4 

20 0.500 0.598 1.47 0.102 0.987 0.793 0.281 1.71 2.35 3.83 5.00 4.30 0.330 7.86 0.861 0.194 0.427 0.134 0.378 0.479 0.413 1.47 0.589 0.329 0.320 0.329 0.295 0.420 37.2 

22 0.319 0.618 3.39 0.216 6.95 2.39 0.385 1.64 1.97 9.23 16.0 19.0 0.533 8.78 3.77 1.43 1.93 0.330 1.64 2.66 1.68 3.78 1.93 0.767 0.690 1.28 0.536 1.41 95.5 

24 0.205 0.436 2.22 0.201 4.08 1.10 1.10 11.3 108 7.34 38.9 284 2.23 4.34 8.84 14.7 44.1 1.95 2.63 9.14 21.3 3.82 3.15 0.926 0.421 1.69 0.467 3.96 583 

25 2.24 3.03 7.96 0.517 9.59 3.08 0.390 2.31 3.71 8.10 8.367 10.3 0.847 8.57 2.46 0.571 1.07 0.311 0.552 0.906 0.984 2.72 0.887 0.575 0.436 0.230 0.570 0.573 83.6 

27 57.7 117 96.6 2.94 90.7 28.9 1.55 6.13 6.30 32.0 25.1 14.3 3.72 9.64 5.92 2.00 3.45 1.30 2.00 3.35 3.83 7.57 3.99 1.92 1.39 0.196 0.000 1.17 574 

28 141 177 136 3.86 120 90.5 8.57 40.2 46.5 119 93.7 67.7 7.60 17.0 19.4 4.40 8.86 1.83 3.90 5.96 9.48 16.0 8.23 4.16 2.62 2.96 3.54 6.42 1270 

29 0.147 0.221 0.976 0.149 2.67 0.921 0.000 0.070 0.016 3.17 2.98 3.33 0.312 6.38 1.68 0.342 0.473 0.238 0.379 0.514 0.376 0.961 0.418 0.220 0.323 0.183 0.184 0.485 28.3 

30 1.65 3.50 6.50 0.107 1.98 1.16 0.147 0.879 1.39 2.86 3.36 2.68 0.328 9.51 0.721 0.206 0.247 0.076 0.226 0.233 0.219 0.636 0.214 0.211 0.154 0.086 0.132 0.150 40.8 
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31 1.64 4.83 8.59 0.079 2.22 1.82 0.000 0.032 0.029 4.26 5.37 6.97 0.435 7.63 5.70 0.805 1.37 0.535 0.601 1.14 2.54 1.19 0.786 0.350 0.303 0.303 0.281 1.35 62.4 

34 3.55 11.5 18.7 0.528 5.41 2.40 0.000 0.083 0.039 3.89 5.45 5.93 0.720 3.91 3.52 1.34 1.12 0.470 1.97 2.14 1.40 3.55 1.94 1.49 0.653 1.42 0.544 1.59 87.9 

37 176 128 63.2 1.00 58.1 17.4 1.047 4.66 5.80 29.4 26.2 24.2 2.50 11.7 8.26 1.86 3.46 1.05 2.90 5.82 4.43 11.2 4.79 2.23 1.66 2.90 1.95 3.42 744 

41 0.875 1.15 1.67 0.121 5.69 2.24 0.075 0.133 0.062 25.2 7.71 5.03 3.37 32.4 23.4 5.84 1.84 2.31 16.0 14.7 3.93 20.3 10.5 9.67 2.79 11.8 3.30 8.66 221 

42 7.53 23.3 47.1 0.319 8.42 18.3 0.089 0.740 1.11 23.8 16.3 40.8 1.92 8.59 9.57 3.44 8.33 1.72 2.98 6.75 9.06 6.30 3.39 1.52 0.472 2.95 0.840 4.44 266 

43 2.27 9.55 20.5 0.135 2.79 6.73 0.000 0.092 0.099 2.17 2.08 2.48 0.335 4.48 1.70 0.336 0.394 0.226 0.341 1.36 0.676 1.73 0.588 0.232 0.412 0.528 0.282 0.557 64.8 

44 117 72.6 30.9 0.766 20.8 9.05 0.527 3.78 5.90 24.1 20.9 22.3 2.83 12.2 8.51 1.58 4.69 1.12 1.65 3.06 4.64 8.95 3.05 1.89 1.41 0.464 1.88 2.06 473 

45 11.1 9.18 8.55 0.624 6.88 4.83 1.00 5.05 7.06 19.0 28.3 48.6 2.15 9.26 10.77 3.72 6.62 2.31 3.49 6.68 6.11 7.08 4.48 2.60 0.721 3.63 0.931 6.38 235 

46 1.14 1.38 2.60 0.124 4.45 0.960 0.105 0.576 1.04 2.75 2.94 6.31 0.386 1.33 0.936 0.360 1.04 0.168 0.396 0.995 0.819 1.22 0.519 0.273 0.240 0.468 0.150 0.498 35.2 

48 1.78 4.49 15.2 0.505 11.9 5.86 0.856 5.40 8.09 23.6 88.2 185 11.1 4.72 9.43 7.87 20.6 1.55 1.75 4.93 10.7 2.74 1.88 0.749 0.257 1.12 0.331 2.60 435 

50 14.9 24.4 33.2 1.31 20.4 3.69 0.000 2.76 1.72 18.3 12.7 9.64 6.00 9.41 3.77 0.940 1.24 1.43 2.13 2.19 2.35 19.5 7.17 6.04 3.89 0.000 5.19 4.12 231 

52 0.128 0.249 1.13 0.191 3.99 1.22 0.000 0.177 0.150 2.48 1.49 1.66 0.535 1.32 0.350 0.095 0.234 0.093 0.162 0.176 0.254 1.15 0.414 0.328 0.227 0.000 0.280 0.189 18.8 

53 1.95 6.35 25.9 2.25 39.1 18.8 1.76 10.1 11.8 59.3 50.0 32.2 5.53 7.48 6.86 1.43 1.80 0.970 1.98 2.01 1.73 10.6 2.87 2.27 1.92 0.000 2.42 1.16 313 

55 0.236 1.01 2.95 0.174 2.17 0.901 0.000 0.065 0.158 5.33 4.28 4.04 0.529 1.41 0.865 0.257 0.478 0.247 0.412 0.507 0.663 2.34 0.771 0.530 0.431 0.049 0.535 0.520 32.1 

57 0.254 0.306 1.33 0.115 3.15 0.705 0.000 0.027 0.058 1.85 1.51 1.13 0.261 0.467 0.304 0.134 0.154 0.092 0.149 0.186 0.250 1.12 0.327 0.200 0.210 0.000 0.254 0.076 14.9 

59 1.21 0.948 1.49 0.151 3.78 0.809 0.000 0.125 0.192 2.41 2.13 1.68 0.310 0.675 0.393 0.093 0.169 0.097 0.157 0.241 0.336 1.07 0.307 0.207 0.198 0.000 0.251 0.083 20.5 

61 2.23 7.52 28.2 0.829 40.7 8.60 0.000 0.412 0.189 13.8 15.3 21.6 2.52 2.20 2.10 1.49 5.25 0.504 0.988 1.79 4.43 3.94 2.08 0.713 0.537 0.592 0.680 1.39 172 

63 2.96 4.00 5.86 0.255 9.08 1.43 0.000 0.126 0.039 6.63 5.46 5.37 0.474 1.75 1.45 0.316 0.662 0.295 0.517 0.782 1.07 1.68 0.799 0.337 0.246 0.211 0.334 0.572 55.0 
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65 0.780 1.08 1.85 0.126 2.23 1.23 0.000 0.057 0.065 5.89 2.67 2.52 0.233 1.35 0.739 0.152 0.150 0.135 0.235 0.395 0.313 1.18 0.384 0.209 0.168 0.060 0.231 0.127 25.2 

67 0.577 1.26 4.87 0.395 3.17 4.61 0.000 0.104 0.141 1.81 1.48 1.34 0.333 0.948 0.206 0.135 0.123 0.051 0.127 0.127 0.164 0.644 0.182 0.416 0.468 0.301 0.279 0.067 24.8 

74 1.33 4.38 16.9 1.35 43.2 12.0 0.000 0.706 0.563 18.0 18.1 9.52 2.63 1.00 0.703 0.447 0.273 0.149 0.264 0.275 0.320 2.44 0.633 0.426 0.469 0.000 0.581 0.127 138 

4b1 0.102 2.00 8.98 0.705 10.7 5.38 0.171 0.866 1.65 32.6 28.4 39.4 1.54 13.4 8.95 2.19 4.42 2.01 3.19 7.97 4.92 8.17 4.26 2.40 1.12 2.25 1.34 3.19 202 

79 0.022 0.317 2.68 0.324 6.41 3.59 0.139 0.686 1.14 7.55 5.80 7.11 0.646 2.30 2.08 0.401 0.798 0.372 0.921 1.34 0.905 2.28 1.25 0.976 0.441 1.02 0.389 1.21 53.2 

83 0.683 0.824 1.63 0.161 2.83 0.627 0.166 0.604 0.797 4.82 1.71 1.92 0.268 6.23 11.9 0.091 0.235 0.991 0.171 0.266 0.226 0.850 0.396 0.232 0.157 0.023 0.175 0.349 40.0 

85 1.66 0.000 0.000 51.4 0.000 40.6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.40 2.61 0.000 0.000 5.57 0.000 0.000 0.000 26.2 0.000 0.000 5.07 0.000 0.000 2.95 138 

88 0.308 1.49 5.49 0.494 18.4 4.06 0.000 0.565 0.284 19.5 67.4 160 9.48 4.12 8.92 7.57 21.9 1.93 2.08 4.72 12.1 4.44 2.73 0.913 0.585 0.549 0.707 2.98 364 

92 1.44 2.80 7.66 0.490 13.4 4.49 0.583 2.84 4.38 10.6 9.29 16.8 1.45 5.00 2.62 1.03 2.93 0.836 1.96 3.01 6.21 4.37 2.25 1.12 0.516 1.58 0.687 2.37 114 

95 0.005 0.064 0.944 0.999 8.27 1.80 0.000 0.130 0.000 4.86 6.50 12.8 0.619 3.16 1.66 0.786 1.97 0.242 0.875 1.19 1.57 2.71 0.829 0.890 0.282 1.45 1.13 1.58 57.3 

98* 12.4 27.2 41.8 4.68 443 419 37.1 54.6 27.6 1040 238 144 119 1250 850 159 52.4 69.9 517 486 103 463 254 253 69.4 270 83.6 219 7710 

103 0.350 0.62 1.66 0.153 4.19 0.583 0.065 0.355 0.684 4.15 4.19 5.70 0.271 2.11 2.36 0.750 1.41 0.428 0.432 0.752 0.841 0.887 0.538 0.255 0.095 0.355 0.218 0.738 35.4 

105 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

106 3.84 4.05 7.03 0.484 13.5 3.39 0.136 0.843 1.13 9.70 8.25 9.89 0.743 3.58 2.36 0.494 1.13 0.318 0.567 1.11 1.73 1.92 0.840 0.403 0.448 0.157 0.440 0.468 82.0 

107 1.13 1.75 3.95 0.261 8.27 1.52 0.292 1.23 4.22 8.81 9.04 30.0 1.42 4.58 4.75 2.28 8.62 0.958 1.45 2.81 6.96 2.29 1.60 0.556 0.508 1.11 0.378 2.40 114 

109 0.174 1.01 3.74 0.164 6.45 0.916 0.121 0.574 0.733 3.90 3.92 5.95 0.418 4.55 1.10 0.290 0.784 0.134 0.214 0.632 0.912 0.809 0.348 0.217 0.097 0.107 0.182 0.260 38.9 

111 0.625 0.830 1.41 0.335 2.88 0.400 0.019 0.186 0.011 4.90 4.53 5.11 0.517 6.52 4.69 0.677 0.986 0.497 1.67 2.40 1.44 1.89 0.923 0.354 0.346 0.509 0.223 0.558 45.9 

113 0.234 0.262 0.645 0.052 1.60 0.249 0.008 0.153 0.026 1.16 0.950 1.22 0.216 9.35 0.233 0.054 0.167 0.055 0.094 0.151 0.258 0.431 0.136 0.108 0.068 0.000 0.124 0.064 18.3 
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115 0.258 0.415 0.884 0.080 2.08 0.377 0.000 0.088 0.184 0.657 0.664 0.967 0.098 2.69 0.169 0.042 0.126 0.042 0.053 0.080 0.171 0.320 0.093 0.060 0.058 0.000 0.081 0.045 11.0 

116 1.62 1.35 3.25 0.183 5.62 1.20 0.156 0.870 1.01 2.85 1.95 1.88 0.375 6.99 0.293 0.077 0.184 0.050 0.085 0.118 0.236 0.441 0.132 0.090 0.082 0.005 0.121 0.065 32.5 

117 0.408 0.552 1.01 0.067 1.53 0.163 0.000 0.275 0.393 1.03 1.33 2.29 0.257 4.42 0.520 0.108 0.376 0.081 0.156 0.218 0.462 0.611 0.216 0.217 0.119 0.007 0.162 0.113 17.4 

118 2.64 3.54 4.99 0.261 8.59 1.43 0.025 0.174 0.169 2.57 1.81 2.17 0.271 2.51 3.12 0.135 0.357 0.349 0.148 0.254 0.571 0.471 0.267 0.119 0.178 0.063 0.109 0.234 39.6 

120 0.563 1.06 2.19 0.066 1.85 0.368 0.037 0.213 0.220 9.21 7.16 6.56 0.191 4.78 1.24 0.184 0.372 0.172 0.177 0.848 0.515 0.962 0.317 0.182 0.160 0.064 0.234 0.140 40.5 

123 0.192 0.274 0.689 0.100 1.05 0.364 0.000 0.031 0.036 6.18 1.85 2.05 0.086 1.26 0.378 0.108 0.292 0.063 0.169 0.311 0.410 0.522 0.216 0.127 0.132 0.058 0.123 0.118 17.3 

125 0.569 0.529 0.750 0.075 1.40 0.312 0.000 0.070 0.109 2.15 3.43 7.41 0.400 0.810 0.913 0.538 2.20 0.202 0.391 0.628 1.85 0.729 0.494 0.235 0.114 0.132 0.130 0.434 27.5 

129 0.000 0.000 0.154 23.6 137 49.9 0.000 1.04 0.349 5.72 41.0 23.8 1.04 1.24 1.17 0.605 0.189 0.124 0.509 1.42 0.796 1.13 0.714 0.334 0.148 0.597 0.467 0.700 294 

131 0.181 0.801 3.37 0.146 4.85 1.55 0.154 0.761 1.13 10.6 3.68 4.19 0.378 2.43 1.52 0.217 0.623 0.200 0.547 1.17 0.886 1.13 0.661 0.197 0.133 0.272 0.184 0.381 42.5 

133 0.000 0.285 2.15 0.238 6.59 1.70 0.000 0.327 0.490 3.80 4.06 4.70 0.494 7.04 0.785 0.179 0.334 0.138 0.379 0.494 0.348 1.32 0.395 0.266 0.234 0.000 0.267 0.141 37.3 

134 2.50 5.78 13.0 0.259 10.7 1.82 0.419 2.30 1.71 7.94 4.63 4.53 0.903 7.99 0.806 0.179 0.370 0.115 0.171 0.283 0.389 0.855 0.229 0.167 0.183 0.000 0.363 0.084 70.6 

136 0.585 2.66 6.83 0.461 10.0 2.28 0.131 0.424 0.597 4.45 3.16 3.41 0.640 2.40 0.600 0.000 0.000 0.000 0.250 0.279 0.000 1.43 0.000 0.260 0.000 0.000 0.000 0.051 41.3 

138 3.86 3.23 4.64 0.332 10.2 2.01 0.026 0.514 0.835 6.44 4.72 3.66 0.697 2.17 0.851 0.224 0.550 0.144 0.293 0.310 1.15 1.57 0.365 0.325 0.280 0.618 0.443 0.555 53.9 

140 15.3 13.6 25.9 2.12 71.8 15.1 0.000 1.76 1.14 99.0 34.4 27.2 3.03 10.2 5.94 1.35 1.03 1.18 1.85 5.53 2.10 11.7 3.15 0.000 2.25 0.000 0.000 0.164 368 

142 2.42 2.48 4.87 0.413 11.1 3.37 0.000 0.798 0.579 15.6 9.34 9.01 1.10 4.99 2.24 0.689 0.367 0.281 0.705 0.748 0.576 3.73 0.853 0.644 0.753 0.000 0.000 0.000 79.7 

144 0.398 0.621 1.60 0.315 2.91 1.45 0.512 3.52 10.5 7.49 11.4 25.78 0.675 6.57 6.95 1.97 10.2 1.29 4.23 6.38 13.3 6.69 6.28 4.09 1.05 4.87 2.03 6.50 150 

145 0.273 0.599 1.58 0.116 2.17 1.00 0.000 0.108 0.160 2.16 1.19 1.31 0.214 0.963 0.393 0.183 0.387 0.135 0.324 0.514 0.808 1.52 0.592 0.330 0.276 0.000 0.000 0.137 17.8 

*Sample 98 has been diminished by 10 fold in graphics. 



A137 
 

Figure S5.2. Relative occurrence of individual PAHs in plankton per oceanic 

subbasin (%) 
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Figure S5.3. KOC in surface waters for some representative PAHs 
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Table S5.11. Slopes fitted to the field data of CPlankton versus Biomass 

 

 
m 

Naphthalene -1.59 

Dimethylnaphthalenes -1.32 

Methylnaphthalene -1.48 

Acenaphtylene -0.87 

Acenaphtene -0.88 

Fluorene -1.10 

Dibenzothiophene -1.46 

Methyldibenzothiophenes  -1.26 

Dimethyldibenzothiopenes  -1.29 

Phenanthrene -1.02 

Methylphenantrenes  -1.11 

Dimethylphenanthrenes  -1.03 

Anthracene -0.96 

Fluoranthene -1.20 

Pyrene -1.25 

Methylpyrenes  -1.14 

Dimethylpyrenes  -1.04 

Benzo(ghi)fluoranthene -0.98 

Benzo(a)anthracene -1.16 

Chrysene -1.19 

Methylchrysenes -0.94 

Benzo(b+k)fluoranthenes -1.15 

Benzo(e)pyrene -1.09 

Benzo(a)pyrene -1.08 

Perylene -1.11 

Indeno(1,2,3-cd)pyrene -1.10 

Dibenzo(a,h)anthracene -0.97 

Benzo(ghi)perylene -1.23 
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Table S5.12. Biological pump fluxes 
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1 0.134 0.713 0.275 0.073 0.875 0.417 0.285 2.21 5.79 2.80 8.36 14.4 0.221 1.44 1.30 0.736 1.46 0.134 0.344 0.637 0.784 0.574 0.344 0.210 0.196 0.293 0.091 0.385 

3 0.036 0.180 0.057 0.017 0.391 0.201 0.102 0.620 0.932 0.861 1.27 1.24 0.063 0.372 0.288 0.073 0.139 0.023 0.080 0.112 0.096 0.180 0.096 0.059 0.037 0.061 0.030 0.086 

6 0.964 3.76 5.04 0.020 0.348 0.128 0.004 0.021 0.050 0.329 0.453 0.823 0.025 2.94 2.36 0.076 0.144 0.036 2.92 3.01 0.149 1.74 0.274 0.148 0.071 0.264 0.075 0.260 

8 7.733 9.01 5.79 0.158 4.36 1.25 0.000 7.28 2.41 16.2 21.9 7.34 0.076 7.52 3.52 0.059 0.168 0.036 0.058 2.75 0.113 2.16 0.099 0.050 0.037 0.048 0.055 0.606 

10 0.776 1.93 2.39 1.06 2.55 3.55 0.000 2.95 3.07 13.8 31.3 9.43 8.09 4.17 1.17 0.035 0.071 0.012 1.30 1.31 0.065 1.01 1.15 0.031 0.018 0.026 0.022 0.040 

12 1.97 6.85 3.82 0.867 3.53 3.72 0.000 0.025 0.032 13.3 13.6 3.06 2.79 1.41 1.12 0.047 0.063 0.017 0.031 0.031 0.033 1.36 0.045 0.035 0.035 0.000 0.038 0.012 

14 0.943 1.92 4.01 9.11 0.539 5.19 0.000 0.014 0.006 0.571 1.04 1.32 0.032 1.83 1.48 0.064 0.123 0.020 1.99 1.87 0.083 1.20 1.76 0.031 0.027 0.032 0.031 0.062 

16 0.048 0.286 0.067 0.036 0.525 0.104 0.000 0.005 0.000 0.167 0.149 0.187 0.020 0.130 0.036 0.016 0.042 0.009 0.018 0.035 0.043 0.107 0.047 0.020 0.017 0.018 0.023 0.033 

18 0.065 0.177 0.090 0.010 0.154 0.042 0.006 0.026 0.039 0.089 0.096 0.106 0.008 0.096 0.023 0.007 0.014 0.003 0.008 0.012 0.013 0.025 0.010 0.005 0.005 0.005 0.005 0.008 

20 0.001 0.004 0.001 0.000 0.002 0.002 0.001 0.004 0.006 0.009 0.012 0.010 0.001 0.019 0.002 0.000 0.001 0.000 0.001 0.001 0.001 0.004 0.001 0.001 0.001 0.001 0.001 0.001 

22 0.000 0.005 0.001 0.000 0.010 0.003 0.001 0.002 0.003 0.013 0.023 0.027 0.001 0.013 0.005 0.002 0.003 0.000 0.002 0.004 0.002 0.005 0.003 0.001 0.001 0.002 0.001 0.002 

24 0.002 0.019 0.004 0.002 0.035 0.010 0.010 0.098 0.937 0.064 0.337 2.462 0.019 0.038 0.077 0.128 0.383 0.017 0.023 0.079 0.185 0.033 0.027 0.008 0.004 0.015 0.004 0.034 

25 0.006 0.023 0.009 0.001 0.027 0.009 0.001 0.007 0.011 0.023 0.024 0.029 0.002 0.024 0.007 0.002 0.003 0.001 0.002 0.003 0.003 0.008 0.003 0.002 0.001 0.001 0.002 0.002 

27 0.014 0.023 0.028 0.001 0.022 0.007 0.000 0.001 0.002 0.008 0.006 0.003 0.001 0.002 0.001 0.000 0.001 0.000 0.000 0.001 0.001 0.002 0.001 0.000 0.000 0.000 0.000 0.000 

28 0.132 0.127 0.166 0.004 0.113 0.085 0.008 0.038 0.044 0.112 0.088 0.063 0.007 0.016 0.018 0.004 0.008 0.002 0.004 0.006 0.009 0.015 0.008 0.004 0.002 0.003 0.003 0.006 

29 0.003 0.020 0.005 0.003 0.055 0.019 0.000 0.001 0.000 0.066 0.062 0.069 0.006 0.133 0.035 0.007 0.010 0.005 0.008 0.011 0.008 0.020 0.009 0.005 0.007 0.004 0.004 0.010 

30 0.037 0.147 0.079 0.002 0.045 0.026 0.003 0.020 0.031 0.064 0.076 0.060 0.007 0.214 0.016 0.005 0.006 0.002 0.005 0.005 0.005 0.014 0.005 0.005 0.003 0.002 0.003 0.003 

31 0.007 0.038 0.021 0.000 0.010 0.008 0.000 0.000 0.000 0.019 0.024 0.031 0.002 0.034 0.025 0.004 0.006 0.002 0.003 0.005 0.011 0.005 0.003 0.002 0.001 0.001 0.001 0.006 

34 0.012 0.064 0.039 0.002 0.018 0.008 0.000 0.000 0.000 0.013 0.019 0.020 0.002 0.013 0.012 0.005 0.004 0.002 0.007 0.007 0.005 0.012 0.007 0.005 0.002 0.005 0.002 0.005 
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37 0.062 0.022 0.045 0.000 0.020 0.006 0.000 0.002 0.002 0.010 0.009 0.008 0.001 0.004 0.003 0.001 0.001 0.000 0.001 0.002 0.002 0.004 0.002 0.001 0.001 0.001 0.001 0.001 

41 0.008 0.015 0.010 0.001 0.052 0.020 0.001 0.001 0.001 0.231 0.070 0.046 0.031 0.296 0.214 0.053 0.017 0.021 0.146 0.134 0.036 0.185 0.096 0.088 0.026 0.108 0.030 0.079 

42 0.014 0.085 0.042 0.001 0.015 0.033 0.000 0.001 0.002 0.043 0.029 0.074 0.003 0.015 0.017 0.006 0.015 0.003 0.005 0.012 0.016 0.011 0.006 0.003 0.001 0.005 0.002 0.008 

43 0.017 0.158 0.073 0.001 0.021 0.052 0.000 0.001 0.001 0.017 0.016 0.019 0.003 0.034 0.013 0.003 0.003 0.002 0.003 0.010 0.005 0.013 0.005 0.002 0.003 0.004 0.002 0.004 

44 4.50 1.19 2.80 0.030 0.802 0.350 0.020 0.146 0.228 0.930 0.807 0.862 0.109 0.469 0.329 0.061 0.181 0.043 0.064 0.118 0.179 0.345 0.118 0.073 0.055 0.018 0.073 0.080 

45 1.99 1.53 1.65 0.112 1.23 0.866 0.180 0.906 1.27 3.41 5.07 8.73 0.386 1.66 1.93 0.668 1.19 0.414 0.626 1.20 1.10 1.27 0.804 0.467 0.129 0.651 0.167 1.14 

46 0.022 0.050 0.026 0.002 0.085 0.018 0.002 0.011 0.020 0.053 0.056 0.121 0.007 0.025 0.018 0.007 0.020 0.003 0.008 0.019 0.016 0.023 0.010 0.005 0.005 0.009 0.003 0.010 

48 0.008 0.070 0.021 0.002 0.055 0.027 0.004 0.025 0.038 0.109 0.409 0.859 0.051 0.022 0.044 0.036 0.095 0.007 0.008 0.023 0.050 0.013 0.009 0.003 0.001 0.005 0.002 0.012 

50 0.006 0.014 0.010 0.001 0.009 0.002 0.000 0.001 0.001 0.008 0.005 0.004 0.003 0.004 0.002 0.000 0.001 0.001 0.001 0.001 0.001 0.008 0.003 0.003 0.002 0.000 0.002 0.002 

52 0.000 0.001 0.000 0.000 0.003 0.001 0.000 0.000 0.000 0.002 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

53 0.000 0.004 0.001 0.000 0.006 0.003 0.000 0.001 0.002 0.009 0.007 0.005 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 

55 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.002 0.002 0.002 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

57 0.000 0.001 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

59 0.001 0.001 0.001 0.000 0.003 0.001 0.000 0.000 0.000 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

61 0.001 0.008 0.002 0.000 0.011 0.002 0.000 0.000 0.000 0.004 0.004 0.006 0.001 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 

63 0.002 0.004 0.003 0.000 0.006 0.001 0.000 0.000 0.000 0.004 0.004 0.003 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 

65 0.001 0.002 0.001 0.000 0.003 0.001 0.000 0.000 0.000 0.007 0.003 0.003 0.000 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

67 0.003 0.026 0.007 0.002 0.017 0.025 0.000 0.001 0.001 0.010 0.008 0.007 0.002 0.005 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.003 0.001 0.002 0.003 0.002 0.001 0.000 

74 0.023 0.294 0.076 0.024 0.753 0.210 0.000 0.012 0.010 0.313 0.315 0.166 0.046 0.017 0.012 0.008 0.005 0.003 0.005 0.005 0.006 0.042 0.011 0.007 0.008 0.000 0.010 0.002 

4b1 0.001 0.094 0.021 0.007 0.112 0.056 0.002 0.009 0.017 0.341 0.297 0.412 0.016 0.140 0.094 0.023 0.046 0.021 0.033 0.083 0.051 0.085 0.045 0.025 0.012 0.024 0.014 0.033 

79 0.000 0.018 0.002 0.002 0.043 0.024 0.001 0.005 0.008 0.050 0.039 0.047 0.004 0.015 0.014 0.003 0.005 0.002 0.006 0.009 0.006 0.015 0.008 0.006 0.003 0.007 0.003 0.008 

83 0.005 0.012 0.006 0.001 0.021 0.005 0.001 0.004 0.006 0.035 0.013 0.014 0.002 0.045 0.087 0.001 0.002 0.007 0.001 0.002 0.002 0.006 0.003 0.002 0.001 0.000 0.001 0.003 

85 0.002 0.000 0.000 0.061 0.000 0.048 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.003 0.000 0.000 0.007 0.000 0.000 0.000 0.031 0.000 0.000 0.006 0.000 0.000 0.004 

88 0.000 0.004 0.001 0.000 0.012 0.003 0.000 0.000 0.000 0.013 0.044 0.104 0.006 0.003 0.006 0.005 0.014 0.001 0.001 0.003 0.008 0.003 0.002 0.001 0.000 0.000 0.000 0.002 

92 0.033 0.173 0.063 0.011 0.303 0.101 0.013 0.064 0.099 0.239 0.210 0.379 0.033 0.113 0.059 0.023 0.066 0.019 0.044 0.068 0.140 0.099 0.051 0.025 0.012 0.036 0.016 0.054 

95 0.000 0.013 0.001 0.014 0.117 0.025 0.000 0.002 0.000 0.069 0.092 0.181 0.009 0.045 0.023 0.011 0.028 0.003 0.012 0.017 0.022 0.038 0.012 0.013 0.004 0.020 0.016 0.022 

98 0.023 0.078 0.051 0.009 0.829 0.785 0.069 0.102 0.052 1.94 0.446 0.269 0.223 2.33 1.59 0.297 0.098 0.131 0.967 0.910 0.193 0.866 0.475 0.474 0.130 0.505 0.157 0.410 

103 0.001 0.003 0.001 0.000 0.008 0.001 0.000 0.001 0.001 0.008 0.008 0.011 0.001 0.004 0.004 0.001 0.003 0.001 0.001 0.001 0.002 0.002 0.001 0.000 0.000 0.001 0.000 0.001 

105 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

106 0.006 0.011 0.007 0.001 0.022 0.006 0.000 0.001 0.002 0.016 0.013 0.016 0.001 0.006 0.004 0.001 0.002 0.001 0.001 0.002 0.003 0.003 0.001 0.001 0.001 0.000 0.001 0.001 
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107 0.001 0.005 0.002 0.000 0.011 0.002 0.000 0.002 0.006 0.012 0.012 0.039 0.002 0.006 0.006 0.003 0.011 0.001 0.002 0.004 0.009 0.003 0.002 0.001 0.001 0.001 0.000 0.003 

109 0.000 0.003 0.001 0.000 0.006 0.001 0.000 0.001 0.001 0.003 0.003 0.005 0.000 0.004 0.001 0.000 0.001 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

111 0.001 0.002 0.001 0.001 0.004 0.001 0.000 0.000 0.000 0.008 0.007 0.008 0.001 0.010 0.007 0.001 0.002 0.001 0.003 0.004 0.002 0.003 0.001 0.001 0.001 0.001 0.000 0.001 

113 0.002 0.004 0.002 0.000 0.010 0.002 0.000 0.001 0.000 0.008 0.006 0.008 0.001 0.061 0.002 0.000 0.001 0.000 0.001 0.001 0.002 0.003 0.001 0.001 0.000 0.000 0.001 0.000 

115 0.002 0.008 0.004 0.001 0.019 0.003 0.000 0.001 0.002 0.006 0.006 0.009 0.001 0.025 0.002 0.000 0.001 0.000 0.000 0.001 0.002 0.003 0.001 0.001 0.001 0.000 0.001 0.000 

116 0.015 0.031 0.013 0.002 0.054 0.012 0.001 0.008 0.010 0.027 0.019 0.018 0.004 0.067 0.003 0.001 0.002 0.000 0.001 0.001 0.002 0.004 0.001 0.001 0.001 0.000 0.001 0.001 

117 0.003 0.007 0.004 0.000 0.010 0.001 0.000 0.002 0.003 0.007 0.009 0.015 0.002 0.029 0.003 0.001 0.002 0.001 0.001 0.001 0.003 0.004 0.001 0.001 0.001 0.000 0.001 0.001 

118 0.060 0.113 0.080 0.006 0.195 0.032 0.001 0.004 0.004 0.058 0.041 0.049 0.006 0.057 0.071 0.003 0.008 0.008 0.003 0.006 0.013 0.011 0.006 0.003 0.004 0.001 0.002 0.005 

120 0.004 0.014 0.007 0.000 0.012 0.002 0.000 0.001 0.001 0.060 0.047 0.043 0.001 0.031 0.008 0.001 0.002 0.001 0.001 0.006 0.003 0.006 0.002 0.001 0.001 0.000 0.002 0.001 

123 0.020 0.071 0.028 0.010 0.108 0.037 0.000 0.003 0.004 0.636 0.191 0.211 0.009 0.129 0.039 0.011 0.030 0.007 0.017 0.032 0.042 0.054 0.022 0.013 0.014 0.006 0.013 0.012 

125 0.036 0.047 0.033 0.005 0.088 0.020 0.000 0.004 0.007 0.135 0.215 0.465 0.025 0.051 0.057 0.034 0.139 0.013 0.025 0.039 0.116 0.046 0.031 0.015 0.007 0.008 0.008 0.027 

129 0.000 0.002 0.000 0.281 1.64 0.595 0.000 0.012 0.004 0.068 0.488 0.283 0.012 0.015 0.014 0.007 0.002 0.001 0.006 0.017 0.009 0.013 0.009 0.004 0.002 0.007 0.006 0.008 

131 0.004 0.082 0.019 0.004 0.118 0.038 0.004 0.018 0.027 0.257 0.089 0.102 0.009 0.059 0.037 0.005 0.015 0.005 0.013 0.029 0.022 0.028 0.016 0.005 0.003 0.007 0.004 0.009 

133 0.000 0.003 0.000 0.000 0.008 0.002 0.000 0.000 0.001 0.004 0.005 0.005 0.001 0.008 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 

134 0.001 0.007 0.003 0.000 0.006 0.001 0.000 0.001 0.001 0.004 0.003 0.003 0.001 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

136 0.000 0.001 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

138 0.002 0.002 0.002 0.000 0.005 0.001 0.000 0.000 0.000 0.003 0.003 0.002 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

140 0.001 0.001 0.001 0.000 0.003 0.001 0.000 0.000 0.000 0.005 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

142 0.001 0.001 0.001 0.000 0.003 0.001 0.000 0.000 0.000 0.004 0.002 0.002 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

144 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.002 0.005 0.004 0.006 0.013 0.000 0.003 0.003 0.001 0.005 0.001 0.002 0.003 0.007 0.003 0.003 0.002 0.001 0.002 0.001 0.003 

146 0.000 0.002 0.001 0.000 0.002 0.001 0.000 0.000 0.000 0.002 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.001 0.000 0.000 0.000 0.000 0.000 
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1 0.600 3.20 1.24 0.326 3.93 1.87 1.28 9.92 26.2 12.6 37.6 64.6 0.991 6.45 5.85 3.31 6.57 0.601 1.54 2.86 3.52 2.58 1.55 0.942 0.881 1.31 0.410 1.73 

3 0.358 1.80 0.571 0.170 3.92 2.01 1.03 6.22 9.34 8.64 12.7 12.4 0.636 3.73 2.89 0.729 1.39 0.230 0.806 1.13 0.967 1.80 0.961 0.590 0.367 0.615 0.296 0.860 

6 7.76 30.3 40.5 0.163 2.80 1.03 0.033 0.172 0.406 2.65 3.65 6.62 0.197 23.7 19.0 0.611 1.16 0.290 23.5 24.2 1.20 14.0 2.203 1.19 0.570 2.13 0.606 2.09 

8 62.6 72.9 46.9 1.28 35.3 10.1 0.000 58.9 19.5 131 177 59.4 0.618 60.9 28.5 0.474 1.36 0.294 0.471 22.3 0.913 17.5 0.797 0.401 0.298 0.390 0.442 4.91 

10 5.61 13.9 17.2 7.66 18.5 25.6 0.000 21.4 22.2 100 226 68.2 58.5 30.1 8.48 0.256 0.512 0.090 9.37 9.46 0.468 7.28 8.33 0.227 0.134 0.187 0.162 0.292 

12 12.2 42.7 23.8 5.40 22.0 23.2 0.000 0.155 0.197 82.9 84.7 19.1 17.4 8.81 6.97 0.290 0.393 0.109 0.191 0.195 0.206 8.49 0.283 0.216 0.220 0.000 0.237 0.077 

14 4.69 9.54 20.0 45.4 2.69 25.8 0.000 0.070 0.029 2.84 5.19 6.59 0.159 9.08 7.38 0.319 0.614 0.099 9.89 9.32 0.413 5.96 8.774 0.154 0.132 0.160 0.154 0.310 

16 0.370 2.20 0.518 0.279 4.04 0.803 0.000 0.038 0.000 1.29 1.15 1.44 0.156 1.00 0.279 0.120 0.321 0.067 0.141 0.267 0.327 0.820 0.360 0.156 0.134 0.139 0.179 0.257 

18 3.04 8.26 4.21 0.471 7.17 1.95 0.264 1.24 1.82 4.15 4.46 4.96 0.372 4.49 1.10 0.319 0.644 0.135 0.352 0.547 0.609 1.17 0.447 0.246 0.230 0.248 0.237 0.352 

20 0.206 0.605 0.247 0.042 0.407 0.327 0.116 0.706 0.968 1.58 2.06 1.77 0.136 3.24 0.355 0.080 0.176 0.055 0.156 0.197 0.171 0.605 0.243 0.136 0.132 0.136 0.122 0.173 

22 0.092 0.977 0.178 0.062 2.00 0.689 0.111 0.472 0.567 2.66 4.59 5.46 0.154 2.53 1.09 0.412 0.554 0.095 0.471 0.764 0.485 1.09 0.555 0.221 0.199 0.368 0.154 0.407 

24 0.160 1.73 0.341 0.157 3.19 0.859 0.859 8.84 84.5 5.74 30.4 222 1.75 3.40 6.91 11.5 34.5 1.52 2.06 7.15 16.7 2.99 2.46 0.724 0.329 1.33 0.365 3.10 

25 0.372 1.32 0.503 0.086 1.59 0.511 0.065 0.383 0.615 1.34 1.39 1.70 0.141 1.42 0.408 0.095 0.178 0.052 0.092 0.150 0.163 0.452 0.147 0.095 0.072 0.038 0.095 0.095 

27 1.34 2.24 2.72 0.068 2.11 0.671 0.036 0.142 0.146 0.744 0.584 0.331 0.087 0.224 0.138 0.046 0.080 0.030 0.046 0.078 0.089 0.176 0.093 0.045 0.032 0.005 0.000 0.027 

28 12.4 11.9 15.6 0.340 10.6 7.97 0.755 3.54 4.10 10.5 8.25 5.96 0.670 1.49 1.71 0.388 0.780 0.161 0.343 0.525 0.835 1.41 0.724 0.366 0.231 0.261 0.312 0.565 

29 0.222 1.48 0.334 0.225 4.04 1.39 0.000 0.106 0.024 4.80 4.50 5.04 0.472 9.66 2.54 0.518 0.715 0.360 0.573 0.778 0.569 1.45 0.632 0.333 0.488 0.278 0.278 0.733 

30 2.42 9.55 5.14 0.157 2.91 1.70 0.215 1.29 2.03 4.20 4.94 3.94 0.482 14.0 1.06 0.303 0.362 0.112 0.332 0.341 0.321 0.933 0.315 0.309 0.226 0.126 0.194 0.220 

31 0.849 4.438 2.50 0.041 1.14 0.941 0.000 0.017 0.015 2.20 2.77 3.60 0.225 3.94 2.94 0.416 0.706 0.277 0.310 0.589 1.31 0.616 0.406 0.181 0.156 0.156 0.145 0.697 

34 2.63 13.9 8.54 0.391 4.01 1.78 0.000 0.061 0.029 2.88 4.04 4.39 0.534 2.90 2.61 0.995 0.833 0.348 1.46 1.59 1.04 2.63 1.44 1.11 0.484 1.05 0.404 1.18 

37 22.4 8.04 16.2 0.128 7.39 2.22 0.133 0.593 0.737 3.73 3.34 3.08 0.318 1.49 1.05 0.236 0.440 0.133 0.368 0.740 0.563 1.42 0.609 0.284 0.211 0.369 0.247 0.435 
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41 0.939 1.79 1.23 0.130 6.10 2.40 0.080 0.142 0.066 27.1 8.26 5.39 3.61 34.72 25.1 6.26 1.98 2.48 17.1 15.7 4.22 21.7 11.2 10.4 2.99 12.6 3.53 9.28 

42 1.13 7.03 3.49 0.048 1.26 2.74 0.013 0.111 0.166 3.56 2.44 6.09 0.287 1.28 1.43 0.514 1.25 0.256 0.445 1.01 1.35 0.941 0.506 0.227 0.071 0.441 0.125 0.663 

43 0.689 6.21 2.90 0.041 0.846 2.04 0.000 0.028 0.030 0.659 0.630 0.751 0.102 1.36 0.517 0.102 0.120 0.069 0.104 0.413 0.205 0.526 0.178 0.070 0.125 0.160 0.085 0.169 

44 76.4 20.3 47.6 0.502 13.6 5.93 0.346 2.48 3.86 15.8 13.7 14.6 1.86 7.96 5.58 1.04 3.07 0.735 1.08 2.01 3.04 5.86 2.00 1.24 0.926 0.304 1.23 1.35 

45 7.29 5.62 6.04 0.410 4.52 3.18 0.658 3.32 4.64 12.5 18.6 32.0 1.42 6.08 7.08 2.45 4.35 1.52 2.29 4.39 4.01 4.66 2.95 1.71 0.474 2.39 0.612 4.19 

46 0.267 0.608 0.322 0.029 1.04 0.224 0.025 0.134 0.243 0.640 0.685 1.47 0.090 0.309 0.218 0.084 0.243 0.039 0.092 0.232 0.191 0.285 0.121 0.064 0.056 0.109 0.035 0.116 

48 0.293 2.50 0.737 0.083 1.95 0.963 0.141 0.887 1.33 3.88 14.5 30.5 1.82 0.777 1.55 1.29 3.38 0.254 0.288 0.810 1.759 0.451 0.309 0.123 0.042 0.183 0.054 0.428 

50 0.407 0.906 0.665 0.036 0.558 0.101 0.000 0.075 0.047 0.499 0.345 0.263 0.164 0.257 0.103 0.026 0.034 0.039 0.058 0.060 0.064 0.532 0.196 0.165 0.106 0.000 0.141 0.113 

52 0.007 0.059 0.013 0.010 0.209 0.064 0.000 0.009 0.008 0.130 0.078 0.087 0.028 0.069 0.018 0.005 0.012 0.005 0.008 0.009 0.013 0.060 0.022 0.017 0.012 0.000 0.015 0.010 

53 0.010 0.135 0.033 0.012 0.204 0.098 0.009 0.053 0.061 0.309 0.260 0.168 0.029 0.039 0.036 0.007 0.009 0.005 0.010 0.010 0.009 0.055 0.015 0.012 0.010 0.000 0.013 0.006 

55 0.008 0.102 0.034 0.006 0.075 0.031 0.000 0.002 0.005 0.183 0.147 0.139 0.018 0.049 0.030 0.009 0.016 0.008 0.014 0.017 0.023 0.080 0.026 0.018 0.015 0.002 0.018 0.018 

57 0.012 0.065 0.015 0.006 0.154 0.034 0.000 0.001 0.003 0.090 0.073 0.055 0.013 0.023 0.015 0.007 0.008 0.004 0.007 0.009 0.012 0.054 0.016 0.010 0.010 0.000 0.012 0.004 

59 0.086 0.106 0.067 0.011 0.268 0.057 0.000 0.009 0.014 0.171 0.151 0.119 0.022 0.048 0.028 0.007 0.012 0.007 0.011 0.017 0.024 0.076 0.022 0.015 0.014 0.000 0.018 0.006 

61 0.063 0.792 0.211 0.023 1.14 0.241 0.000 0.012 0.005 0.386 0.429 0.605 0.071 0.062 0.059 0.042 0.147 0.014 0.028 0.050 0.124 0.110 0.058 0.020 0.015 0.017 0.019 0.039 

63 0.156 0.308 0.210 0.013 0.478 0.075 0.000 0.007 0.002 0.349 0.287 0.283 0.025 0.092 0.076 0.017 0.035 0.016 0.027 0.041 0.056 0.088 0.042 0.018 0.013 0.011 0.018 0.030 

65 0.059 0.139 0.081 0.010 0.168 0.093 0.000 0.004 0.005 0.444 0.202 0.190 0.018 0.102 0.056 0.011 0.011 0.010 0.018 0.030 0.024 0.089 0.029 0.016 0.013 0.005 0.017 0.010 

67 0.126 1.07 0.277 0.087 0.694 1.01 0.000 0.023 0.031 0.396 0.325 0.294 0.073 0.208 0.045 0.030 0.027 0.011 0.028 0.028 0.036 0.141 0.040 0.091 0.103 0.066 0.061 0.015 

74 0.141 1.79 0.465 0.143 4.59 1.28 0.000 0.075 0.060 1.91 1.92 1.01 0.279 0.106 0.075 0.048 0.029 0.016 0.028 0.029 0.034 0.259 0.067 0.045 0.050 0.000 0.062 0.013 

4b1 0.009 0.781 0.174 0.061 0.927 0.468 0.015 0.075 0.143 2.84 2.47 3.43 0.134 1.16 0.779 0.190 0.384 0.175 0.277 0.693 0.428 0.711 0.370 0.209 0.098 0.196 0.116 0.277 

79 0.002 0.283 0.033 0.034 0.676 0.379 0.015 0.072 0.120 0.796 0.611 0.749 0.068 0.243 0.219 0.042 0.084 0.039 0.097 0.141 0.095 0.240 0.132 0.103 0.046 0.107 0.041 0.128 

83 0.089 0.213 0.108 0.021 0.370 0.082 0.022 0.079 0.104 0.630 0.224 0.250 0.035 0.813 1.56 0.012 0.031 0.129 0.022 0.035 0.029 0.111 0.052 0.030 0.020 0.003 0.023 0.046 

85 0.076 0.000 0.000 2.34 0.000 1.85 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.110 0.119 0.000 0.000 0.254 0.000 0.000 0.000 1.19 0.000 0.000 0.231 0.000 0.000 0.135 

88 0.016 0.290 0.079 0.026 0.974 0.215 0.000 0.030 0.015 1.03 3.57 8.46 0.501 0.218 0.472 0.400 1.16 0.102 0.110 0.250 0.642 0.235 0.144 0.048 0.031 0.029 0.037 0.158 

92 0.299 1.59 0.580 0.101 2.78 0.930 0.121 0.588 0.906 2.19 1.93 3.48 0.300 1.04 0.542 0.214 0.606 0.173 0.407 0.624 1.29 0.906 0.467 0.231 0.107 0.327 0.142 0.491 

95 0.001 0.124 0.008 0.131 1.08 0.236 0.000 0.017 0.000 0.637 0.852 1.68 0.081 0.413 0.218 0.103 0.258 0.032 0.115 0.156 0.206 0.354 0.109 0.117 0.037 0.189 0.148 0.207 

98 1.25 4.24 2.76 0.475 45.0 42.6 3.77 5.54 2.80 105 24.2 14.6 12.1 126 86.4 16.1 5.32 7.09 52.5 49.4 10.5 47.0 25.8 25.7 7.05 27.4 8.49 22.2 

103 0.049 0.233 0.087 0.022 0.590 0.082 0.009 0.050 0.096 0.584 0.589 0.803 0.038 0.297 0.332 0.106 0.198 0.060 0.061 0.106 0.118 0.125 0.076 0.036 0.013 0.050 0.031 0.104 

105 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

106 0.442 0.808 0.466 0.056 1.54 0.390 0.016 0.097 0.130 1.12 0.948 1.14 0.085 0.411 0.272 0.057 0.129 0.037 0.065 0.128 0.198 0.221 0.097 0.046 0.052 0.018 0.051 0.054 

107 0.140 0.490 0.216 0.032 1.03 0.188 0.036 0.153 0.523 1.09 1.12 3.72 0.176 0.568 0.589 0.282 1.07 0.119 0.180 0.348 0.862 0.284 0.198 0.069 0.063 0.137 0.047 0.298 
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109 0.017 0.365 0.098 0.016 0.629 0.089 0.012 0.056 0.072 0.380 0.382 0.580 0.041 0.444 0.107 0.028 0.076 0.013 0.021 0.062 0.089 0.079 0.034 0.021 0.009 0.010 0.018 0.025 

111 0.069 0.157 0.092 0.037 0.320 0.044 0.002 0.021 0.001 0.544 0.503 0.568 0.057 0.725 0.521 0.075 0.110 0.055 0.186 0.267 0.160 0.210 0.103 0.039 0.038 0.057 0.025 0.062 

113 0.039 0.108 0.044 0.009 0.268 0.042 0.001 0.026 0.004 0.194 0.159 0.204 0.036 1.57 0.039 0.009 0.028 0.009 0.016 0.025 0.043 0.072 0.023 0.018 0.011 0.000 0.021 0.011 

115 0.061 0.210 0.098 0.019 0.492 0.089 0.000 0.021 0.044 0.156 0.157 0.229 0.023 0.637 0.040 0.010 0.030 0.010 0.012 0.019 0.041 0.076 0.022 0.014 0.014 0.000 0.019 0.011 

116 0.282 0.565 0.235 0.032 0.978 0.210 0.027 0.151 0.175 0.496 0.340 0.328 0.065 1.22 0.051 0.013 0.032 0.009 0.015 0.021 0.041 0.077 0.023 0.016 0.014 0.001 0.021 0.011 

117 0.042 0.104 0.056 0.007 0.157 0.017 0.000 0.028 0.040 0.106 0.136 0.235 0.026 0.453 0.053 0.011 0.038 0.008 0.016 0.022 0.047 0.063 0.022 0.022 0.012 0.001 0.017 0.012 

118 0.834 1.58 1.12 0.082 2.72 0.452 0.008 0.055 0.053 0.812 0.572 0.686 0.086 0.793 0.986 0.043 0.113 0.110 0.047 0.080 0.181 0.149 0.085 0.038 0.056 0.020 0.035 0.074 

120 0.050 0.195 0.094 0.006 0.165 0.033 0.003 0.019 0.020 0.821 0.638 0.585 0.017 0.426 0.110 0.016 0.033 0.015 0.016 0.076 0.046 0.086 0.028 0.016 0.014 0.006 0.021 0.013 

123 0.076 0.273 0.109 0.040 0.417 0.144 0.000 0.012 0.014 2.45 0.734 0.813 0.034 0.498 0.150 0.043 0.116 0.025 0.067 0.123 0.163 0.207 0.086 0.050 0.052 0.023 0.049 0.047 

125 0.153 0.201 0.142 0.020 0.375 0.084 0.000 0.019 0.029 0.578 0.920 1.99 0.107 0.218 0.245 0.145 0.592 0.054 0.105 0.169 0.496 0.196 0.133 0.063 0.031 0.035 0.035 0.116 

129 0.000 0.019 0.000 2.87 16.7 6.06 0.000 0.127 0.042 0.695 4.98 2.89 0.126 0.150 0.142 0.073 0.023 0.015 0.062 0.173 0.097 0.138 0.087 0.041 0.018 0.072 0.057 0.085 

131 0.061 1.14 0.271 0.050 1.639 0.523 0.052 0.258 0.381 3.58 1.25 1.42 0.128 0.821 0.513 0.074 0.211 0.068 0.185 0.397 0.300 0.384 0.224 0.067 0.045 0.092 0.062 0.129 

133 0.000 0.082 0.011 0.009 0.252 0.065 0.000 0.013 0.019 0.145 0.155 0.180 0.019 0.269 0.030 0.007 0.013 0.005 0.014 0.019 0.013 0.051 0.015 0.010 0.009 0.000 0.010 0.005 

134 0.080 0.418 0.185 0.008 0.343 0.058 0.013 0.074 0.055 0.255 0.148 0.145 0.029 0.256 0.026 0.006 0.012 0.004 0.005 0.009 0.012 0.027 0.007 0.005 0.006 0.000 0.012 0.003 

136 0.011 0.131 0.051 0.009 0.191 0.044 0.003 0.008 0.011 0.085 0.060 0.065 0.012 0.046 0.011 0.000 0.000 0.000 0.005 0.005 0.000 0.027 0.000 0.005 0.000 0.000 0.000 0.001 

138 0.124 0.149 0.104 0.011 0.327 0.065 0.001 0.016 0.027 0.207 0.151 0.117 0.022 0.070 0.027 0.007 0.018 0.005 0.009 0.010 0.037 0.050 0.012 0.010 0.009 0.020 0.014 0.018 

140 0.062 0.105 0.055 0.009 0.292 0.062 0.000 0.007 0.005 0.403 0.140 0.111 0.012 0.042 0.024 0.005 0.004 0.005 0.008 0.023 0.009 0.048 0.013 0.000 0.009 0.000 0.000 0.001 

142 0.044 0.088 0.045 0.007 0.199 0.061 0.000 0.014 0.010 0.280 0.168 0.162 0.020 0.090 0.040 0.012 0.007 0.005 0.013 0.013 0.010 0.067 0.015 0.012 0.014 0.000 0.000 0.000 

144 0.013 0.051 0.020 0.010 0.093 0.046 0.016 0.113 0.335 0.240 0.364 0.826 0.022 0.211 0.223 0.063 0.327 0.041 0.136 0.204 0.426 0.214 0.201 0.131 0.034 0.156 0.065 0.208 

146 0.012 0.070 0.027 0.005 0.096 0.044 0.000 0.005 0.007 0.096 0.053 0.058 0.010 0.043 0.017 0.008 0.017 0.006 0.014 0.023 0.036 0.067 0.026 0.015 0.012 0.000 0.000 0.006 
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1 0.734 3.92 1.51 0.398 4.80 2.29 1.56 12.1 31.8 15.4 45.9 79.0 1.21 7.89 7.15 4.04 8.03 0.734 1.89 3.50 4.31 3.15 1.89 1.15 1.08 1.61 0.502 2.11 

3 0.393 1.98 0.628 0.187 4.32 2.21 1.13 6.84 10.3 9.50 14.0 13.7 0.700 4.10 3.18 0.801 1.53 0.253 0.886 1.24 1.06 1.98 1.06 0.649 0.403 0.676 0.326 0.946 

6 8.72 34.0 45.6 0.183 3.15 1.16 0.037 0.193 0.457 2.98 4.10 7.45 0.222 26.6 21.3 0.687 1.31 0.326 26.4 27.3 1.35 15.7 2.48 1.34 0.641 2.39 0.681 2.35 

8 70.3 81.9 52.6 1.44 39.6 11.3 0.000 66.2 21.9 147 199 66.8 0.694 68.4 32.0 0.533 1.53 0.331 0.530 25.0 1.03 19.6 0.896 0.451 0.335 0.438 0.496 5.52 

10 6.38 15.9 19.6 8.72 21.0 29.2 0.000 24.3 25.3 114 257 77.6 66.6 34.3 9.65 0.292 0.583 0.103 10.7 10.8 0.533 8.29 9.48 0.259 0.152 0.213 0.184 0.332 

12 14.2 49.5 27.6 6.27 25.5 26.9 0.000 0.180 0.228 96.2 98.3 22.2 20.2 10.2 8.09 0.337 0.456 0.126 0.221 0.227 0.239 9.85 0.328 0.250 0.256 0.000 0.275 0.089 

14 5.64 11.5 24.0 54.5 3.23 31.0 0.000 0.084 0.035 3.41 6.23 7.92 0.191 10.9 8.87 0.383 0.738 0.119 11.9 11.2 0.496 7.15 10.5 0.185 0.159 0.192 0.185 0.372 

16 0.418 2.49 0.586 0.315 4.57 0.907 0.000 0.043 0.000 1.45 1.30 1.63 0.176 1.13 0.315 0.136 0.363 0.076 0.159 0.302 0.370 0.927 0.407 0.176 0.151 0.158 0.203 0.290 

18 3.10 8.43 4.30 0.481 7.32 1.99 0.270 1.26 1.86 4.24 4.56 5.06 0.380 4.59 1.12 0.326 0.658 0.138 0.360 0.559 0.622 1.19 0.456 0.252 0.235 0.254 0.242 0.359 

20 0.208 0.608 0.248 0.042 0.410 0.329 0.116 0.710 0.974 1.59 2.08 1.78 0.137 3.26 0.357 0.080 0.177 0.056 0.157 0.199 0.171 0.608 0.244 0.136 0.133 0.136 0.122 0.174 

22 0.092 0.982 0.179 0.062 2.01 0.693 0.111 0.474 0.570 2.67 4.62 5.49 0.154 2.54 1.09 0.414 0.557 0.095 0.473 0.768 0.487 1.09 0.557 0.222 0.200 0.370 0.155 0.409 

24 0.162 1.75 0.344 0.159 3.23 0.869 0.869 8.94 85.4 5.81 30.7 225 1.77 3.43 6.99 11.7 34.9 1.54 2.08 7.23 16.8 3.02 2.49 0.732 0.333 1.34 0.369 3.13 

25 0.378 1.34 0.512 0.087 1.62 0.519 0.066 0.389 0.626 1.37 1.41 1.73 0.143 1.45 0.415 0.096 0.181 0.052 0.093 0.153 0.166 0.460 0.150 0.097 0.074 0.039 0.096 0.097 

27 1.36 2.27 2.75 0.069 2.13 0.678 0.036 0.144 0.148 0.751 0.590 0.335 0.087 0.226 0.139 0.047 0.081 0.031 0.047 0.079 0.090 0.178 0.094 0.045 0.033 0.005 0.000 0.028 

28 12.5 12.1 15.8 0.343 10.7 8.06 0.763 3.58 4.14 10.6 8.34 6.02 0.677 1.51 1.73 0.392 0.788 0.163 0.347 0.531 0.844 1.43 0.732 0.370 0.233 0.263 0.315 0.572 

29 0.225 1.50 0.339 0.229 4.09 1.41 0.000 0.107 0.024 4.86 4.56 5.11 0.478 9.79 2.57 0.525 0.725 0.365 0.581 0.789 0.577 1.47 0.641 0.337 0.495 0.281 0.282 0.743 

30 2.456 9.693 5.22 0.159 2.96 1.72 0.219 1.31 2.07 4.26 5.01 4.00 0.489 14.2 1.08 0.308 0.368 0.113 0.337 0.347 0.326 0.948 0.320 0.314 0.230 0.128 0.197 0.223 

31 0.856 4.476 2.52 0.041 1.15 0.949 0.000 0.017 0.015 2.22 2.80 3.63 0.227 3.97 2.97 0.419 0.712 0.279 0.313 0.594 1.32 0.621 0.409 0.182 0.158 0.158 0.146 0.703 

34 2.64 13.9 8.58 0.393 4.03 1.79 0.000 0.061 0.029 2.90 4.06 4.41 0.537 2.91 2.62 0.999 0.837 0.350 1.47 1.59 1.04 2.64 1.45 1.11 0.487 1.06 0.405 1.186 

37 22.5 8.06 16.3 0.128 7.41 2.22 0.134 0.594 0.739 3.74 3.35 3.09 0.319 1.49 1.05 0.237 0.441 0.134 0.369 0.742 0.564 1.42 0.610 0.284 0.212 0.370 0.248 0.436 



 

A147 
 

41 0.947 1.80 1.24 0.131 6.15 2.42 0.081 0.144 0.067 27.3 8.33 5.44 3.64 35.0 25.3 6.31 1.99 2.50 17.3 15.9 4.25 21.9 11.3 10.5 3.02 12.8 3.56 9.36 

42 1.14 7.11 3.53 0.048 1.27 2.77 0.013 0.112 0.168 3.60 2.47 6.17 0.291 1.30 1.45 0.520 1.26 0.259 0.450 1.02 1.37 0.952 0.512 0.230 0.071 0.446 0.127 0.671 

43 0.706 6.37 2.97 0.042 0.868 2.09 0.000 0.028 0.031 0.676 0.646 0.770 0.104 1.39 0.530 0.104 0.123 0.070 0.106 0.423 0.210 0.539 0.183 0.072 0.128 0.164 0.088 0.173 

44 80.9 21.5 50.4 0.532 14.4 6.28 0.366 2.63 4.09 16.7 14.5 15.9 1.96 8.43 5.90 1.10 3.25 0.778 1.14 2.13 3.22 6.21 2.12 1.31 0.981 0.322 1.31 1.43 

45 9.28 7.15 7.69 0.522 5.76 4.04 0.838 4.23 5.91 15.9 23.7 40.7 1.80 7.75 9.01 3.12 5.54 1.93 2.92 5.59 5.11 5.93 3.75 2.18 0.603 3.04 0.779 5.34 

46 0.289 0.658 0.348 0.031 1.12 0.242 0.027 0.145 0.263 0.693 0.742 1.59 0.097 0.335 0.236 0.091 0.263 0.042 0.100 0.251 0.207 0.309 0.131 0.069 0.060 0.118 0.038 0.126 

48 0.301 2.57 0.758 0.085 2.01 0.990 0.145 0.912 1.37 3.99 14.9 31.3 1.87 0.798 1.59 1.33 3.47 0.262 0.296 0.833 1.81 0.463 0.317 0.127 0.044 0.188 0.056 0.440 

50 0.413 0.920 0.675 0.036 0.567 0.102 0.000 0.077 0.048 0.506 0.351 0.267 0.166 0.261 0.104 0.026 0.034 0.040 0.059 0.061 0.065 0.540 0.199 0.167 0.108 0.000 0.144 0.114 

52 0.007 0.060 0.013 0.010 0.211 0.064 0.000 0.009 0.008 0.131 0.079 0.088 0.028 0.070 0.019 0.005 0.012 0.005 0.009 0.009 0.013 0.061 0.022 0.017 0.012 0.000 0.015 0.010 

53 0.010 0.139 0.034 0.012 0.209 0.101 0.009 0.054 0.063 0.318 0.268 0.172 0.030 0.040 0.037 0.008 0.010 0.005 0.011 0.011 0.009 0.057 0.015 0.012 0.010 0.000 0.013 0.006 

55 0.008 0.103 0.035 0.006 0.075 0.031 0.000 0.002 0.005 0.185 0.148 0.140 0.018 0.049 0.030 0.009 0.017 0.009 0.014 0.018 0.023 0.081 0.027 0.018 0.015 0.002 0.019 0.018 

57 0.013 0.065 0.015 0.006 0.155 0.035 0.000 0.001 0.003 0.091 0.074 0.056 0.013 0.023 0.015 0.007 0.008 0.005 0.007 0.009 0.012 0.055 0.016 0.010 0.010 0.000 0.013 0.004 

59 0.087 0.107 0.068 0.011 0.271 0.058 0.000 0.009 0.014 0.173 0.152 0.120 0.022 0.048 0.028 0.007 0.012 0.007 0.011 0.017 0.024 0.076 0.022 0.015 0.014 0.000 0.018 0.006 

61 0.063 0.800 0.213 0.023 1.15 0.243 0.000 0.012 0.005 0.390 0.433 0.611 0.071 0.062 0.059 0.042 0.149 0.014 0.028 0.051 0.126 0.112 0.059 0.020 0.015 0.017 0.019 0.039 

63 0.158 0.312 0.213 0.014 0.484 0.076 0.000 0.007 0.002 0.353 0.291 0.286 0.025 0.093 0.077 0.017 0.035 0.016 0.028 0.042 0.057 0.089 0.043 0.018 0.013 0.011 0.018 0.030 

65 0.060 0.142 0.082 0.010 0.171 0.094 0.000 0.004 0.005 0.451 0.205 0.193 0.018 0.103 0.057 0.012 0.011 0.010 0.018 0.030 0.024 0.091 0.029 0.016 0.013 0.005 0.018 0.010 

67 0.130 1.09 0.284 0.089 0.711 1.04 0.000 0.023 0.032 0.405 0.333 0.301 0.075 0.213 0.046 0.030 0.028 0.012 0.029 0.029 0.037 0.145 0.041 0.093 0.105 0.068 0.063 0.015 

74 0.164 2.09 0.541 0.167 5.35 1.49 0.000 0.087 0.070 2.22 2.23 1.18 0.325 0.124 0.087 0.055 0.034 0.018 0.033 0.034 0.040 0.301 0.078 0.053 0.058 0.000 0.072 0.016 

4b1 0.010 0.875 0.195 0.069 1.04 0.524 0.017 0.084 0.161 3.18 2.77 3.84 0.150 1.30 0.873 0.213 0.431 0.196 0.310 0.777 0.479 0.796 0.415 0.234 0.109 0.219 0.130 0.311 

79 0.002 0.300 0.036 0.036 0.719 0.402 0.016 0.077 0.128 0.846 0.650 0.796 0.072 0.258 0.233 0.045 0.089 0.042 0.103 0.150 0.101 0.255 0.140 0.109 0.049 0.114 0.044 0.136 

83 0.094 0.225 0.114 0.022 0.390 0.086 0.023 0.083 0.110 0.665 0.236 0.264 0.037 0.858 1.65 0.013 0.032 0.137 0.024 0.037 0.031 0.117 0.055 0.032 0.022 0.003 0.024 0.048 

85 0.078 0.000 0.000 2.40 0.000 1.90 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.113 0.122 0.000 0.000 0.261 0.000 0.000 0.000 1.226 0.000 0.000 0.238 0.000 0.000 0.138 

88 0.017 0.294 0.080 0.026 0.986 0.217 0.000 0.030 0.015 1.04 3.61 8.56 0.507 0.221 0.477 0.405 1.18 0.103 0.111 0.253 0.650 0.238 0.146 0.049 0.031 0.029 0.038 0.160 

92 0.332 1.76 0.643 0.112 3.09 1.03 0.134 0.652 1.01 2.43 2.14 3.86 0.333 1.15 0.601 0.237 0.672 0.192 0.451 0.692 1.43 1.005 0.518 0.257 0.119 0.362 0.158 0.544 

95 0.001 0.137 0.009 0.145 1.20 0.261 0.000 0.019 0.000 0.706 0.944 1.86 0.090 0.458 0.241 0.114 0.286 0.035 0.127 0.173 0.228 0.393 0.120 0.129 0.041 0.210 0.163 0.229 

98 1.28 4.32 2.81 0.484 45.8 43.4 3.84 5.64 2.85 107 24.6 14.9 12.3 129 87.9 16.4 5.42 7.22 53.4 50.3 10.7 47.9 26.3 26.2 7.18 27.9 8.65 22.6 

103 0.050 0.236 0.088 0.022 0.598 0.083 0.009 0.051 0.098 0.591 0.597 0.814 0.039 0.301 0.336 0.107 0.201 0.061 0.062 0.107 0.120 0.127 0.077 0.036 0.014 0.051 0.031 0.105 

105 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

106 0.448 0.819 0.472 0.056 1.57 0.395 0.016 0.098 0.132 1.13 0.961 1.15 0.087 0.417 0.276 0.058 0.131 0.037 0.066 0.130 0.201 0.224 0.098 0.047 0.052 0.018 0.051 0.055 

107 0.141 0.495 0.219 0.033 1.04 0.190 0.037 0.155 0.529 1.10 1.13 3.76 0.178 0.574 0.595 0.285 1.08 0.120 0.181 0.352 0.871 0.287 0.201 0.070 0.064 0.139 0.047 0.301 



 

A148 
 

109 0.017 0.368 0.099 0.016 0.635 0.090 0.012 0.056 0.072 0.383 0.386 0.585 0.041 0.448 0.108 0.029 0.077 0.013 0.021 0.062 0.090 0.080 0.034 0.021 0.010 0.011 0.018 0.026 

111 0.070 0.159 0.094 0.038 0.324 0.045 0.002 0.021 0.001 0.552 0.510 0.576 0.058 0.735 0.528 0.076 0.111 0.056 0.188 0.271 0.162 0.213 0.104 0.040 0.039 0.057 0.025 0.063 

113 0.041 0.112 0.046 0.009 0.278 0.043 0.001 0.027 0.005 0.201 0.166 0.212 0.038 1.63 0.041 0.009 0.029 0.010 0.016 0.026 0.045 0.075 0.024 0.019 0.012 0.000 0.022 0.011 

115 0.063 0.218 0.102 0.020 0.511 0.093 0.000 0.022 0.045 0.162 0.164 0.238 0.024 0.662 0.042 0.010 0.031 0.010 0.013 0.020 0.042 0.079 0.023 0.015 0.014 0.000 0.020 0.011 

116 0.297 0.596 0.248 0.034 1.03 0.221 0.029 0.160 0.185 0.523 0.359 0.346 0.069 1.28 0.054 0.014 0.034 0.009 0.016 0.022 0.043 0.081 0.024 0.017 0.015 0.001 0.022 0.012 

117 0.044 0.110 0.060 0.007 0.167 0.018 0.000 0.030 0.043 0.112 0.145 0.249 0.028 0.481 0.057 0.012 0.041 0.009 0.017 0.024 0.050 0.067 0.024 0.024 0.013 0.001 0.018 0.012 

118 0.893 1.69 1.20 0.088 2.91 0.484 0.009 0.059 0.057 0.870 0.613 0.735 0.092 0.850 1.06 0.046 0.121 0.118 0.050 0.086 0.193 0.160 0.091 0.040 0.060 0.021 0.037 0.079 

120 0.054 0.210 0.101 0.006 0.177 0.035 0.004 0.020 0.021 0.881 0.684 0.628 0.018 0.458 0.118 0.018 0.036 0.016 0.017 0.081 0.049 0.092 0.030 0.017 0.015 0.006 0.022 0.013 

123 0.096 0.344 0.137 0.050 0.525 0.182 0.000 0.016 0.018 3.09 0.924 1.02 0.043 0.627 0.189 0.054 0.146 0.032 0.084 0.156 0.205 0.261 0.108 0.063 0.066 0.029 0.061 0.059 

125 0.189 0.249 0.175 0.025 0.462 0.103 0.000 0.023 0.036 0.713 1.14 2.45 0.133 0.268 0.303 0.178 0.731 0.067 0.129 0.208 0.612 0.242 0.164 0.078 0.038 0.044 0.043 0.144 

129 0.000 0.021 0.000 3.15 18.3 6.66 0.000 0.139 0.047 0.763 5.46 3.17 0.139 0.165 0.155 0.081 0.025 0.016 0.068 0.190 0.106 0.151 0.095 0.045 0.020 0.080 0.062 0.093 

131 0.066 1.22 0.290 0.053 1.76 0.561 0.056 0.276 0.408 3.83 1.33 1.52 0.137 0.880 0.550 0.079 0.226 0.073 0.198 0.426 0.321 0.411 0.240 0.071 0.048 0.099 0.067 0.138 

133 0.000 0.085 0.011 0.009 0.260 0.067 0.000 0.013 0.019 0.150 0.160 0.185 0.019 0.277 0.031 0.007 0.013 0.005 0.015 0.019 0.014 0.052 0.016 0.010 0.009 0.000 0.011 0.006 

134 0.082 0.425 0.189 0.008 0.349 0.059 0.014 0.075 0.056 0.259 0.151 0.148 0.029 0.261 0.026 0.006 0.012 0.004 0.006 0.009 0.013 0.028 0.007 0.005 0.006 0.000 0.012 0.003 

136 0.011 0.132 0.051 0.009 0.193 0.044 0.003 0.008 0.012 0.086 0.061 0.066 0.012 0.046 0.012 0.000 0.000 0.000 0.005 0.005 0.000 0.028 0.000 0.005 0.000 0.000 0.000 0.001 

138 0.126 0.151 0.105 0.011 0.332 0.066 0.001 0.017 0.027 0.210 0.154 0.119 0.023 0.071 0.028 0.007 0.018 0.005 0.010 0.010 0.038 0.051 0.012 0.011 0.009 0.020 0.014 0.018 

140 0.063 0.107 0.056 0.009 0.296 0.062 0.000 0.007 0.005 0.408 0.142 0.112 0.012 0.042 0.024 0.006 0.004 0.005 0.008 0.023 0.009 0.048 0.013 0.000 0.009 0.000 0.000 0.001 

142 0.044 0.089 0.045 0.008 0.202 0.061 0.000 0.015 0.011 0.284 0.170 0.164 0.020 0.091 0.041 0.013 0.007 0.005 0.013 0.014 0.011 0.068 0.016 0.012 0.014 0.000 0.000 0.000 

144 0.013 0.052 0.020 0.010 0.095 0.047 0.017 0.114 0.341 0.244 0.370 0.839 0.022 0.214 0.226 0.064 0.333 0.042 0.138 0.208 0.433 0.218 0.204 0.133 0.034 0.159 0.066 0.211 

146 0.012 0.072 0.027 0.005 0.098 0.045 0.000 0.005 0.007 0.098 0.054 0.059 0.010 0.044 0.018 0.008 0.018 0.006 0.015 0.023 0.037 0.069 0.027 0.015 0.013 0.000 0.000 0.006 

 

 

 


