
 

Insights into the nucleolus of the assignment 
game 
 
 
 
F.Javier Martínez-de-Albéniz 
Carles Rafels 
Neus Ybern 

Col.lecció d’Economia E15/333  
 



 
UB Economics Working Papers 2015/333 

 
 

Insights into the nucleolus of the assignment 
game  

 
 
 
 

 
Abstract: We show  that the family of assignment  matrices which give rise to the 
same nucleolus form a compact join-semilattice with one maximal element, which is 
always a valuation (see p.43, Topkis (1998)). We give an explicit form of this valuation 
matrix. The above family is in general not a convex set, but path-connected, and we 
construct minimal elements of this family. We also analyze  the conditions to ensure 
that a given vector is the nucleolus of some assignment game. 

 
 
 
JEL Codes: C71. 
 
Keywords: Assignment game, core, nucleolus, semilattice.  

 
 
 
F. Javier Martínez-de-Albéniz 
Universitat de Barcelona 
 
Carles Rafels 
Universitat de Barcelona 
 
Neus Ybern 
Universitat Politècnica de Catalunya 
 

 

  
 
 
 

 
Acknowledgements: Financial support from research grant ECO2014-52340-P 
(Ministerio de Economía y Competitividad) is gratefully acknowledged, and from the 
Generalitat de Catalunya, through grant 2014SGR40. 
. 

 
 

ISSN 1136-8365 



1. Introduction

Combinatorial optimization games, also known as OR-games (Curiel, 1997;

Borm et al., 2001) analyze cooperative situations where the worth of a coalition of

players is the optimal result of a well-known operations research problem. Among

others we mention linear production games (Owen, 1975), minimum cost spanning

tree games (Granot and Huberman, 1981), inventory games (Hartman and Dror,

1996; Hartman et al., 2000; Meca et al. 2004), minimum coloring games (Deng

et al. 2000; Bietenhader and Okamoto, 2006), supply chain management games

(Nagarajan and Sošić, 2008).

Matching in graphs are combinatorial optimization problems. Because of its

importance they have been studied in depth (Lovász and Plummer, 1986; Korte

and Vygen, 2000). In a pioneering paper, Shapley and Shubik (1972) analyze the

bipartite graph case as a cooperative problem. It is called the assignment game.

The assignment game (Shapley and Shubik, 1972) is the cooperative viewpoint of

a two-sided market. There are two sides of the market, i.e. two disjoint sets of

agents, buyers and sellers, who can trade. The profits are collected in the edges of

the graph as the weights, or can be represented in a matrix, the assignment matrix.

The problem is that the maximal weight matching or the gain of the market is to

be shared fairly among the agents. The allocation of the optimal profit should be

such that no coalition has incentives to depart from the grand coalition and act on

its own. In doing so, a first game-theoretical analysis of cooperation focuses on the

core of the game. Shapley and Shubik show that the core of any assignment game

is always non-empty. It coincides with the set of solutions of the linear program,

dual to the classical optimal assignment problem. Assignment games have been

widely studied in the literature (Quint, 1991; Granot and Granot, 1992; Martı́nez-

de-Albéniz et al., 2011a, 2011b).
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Among other solutions, the nucleolus (Schmeidler, 1969) is a “fair” solution in

the general context of cooperative games. It is a unique core-selection that lexico-

graphically minimizes the excesses1 arranged in a nondecreasing way. The stan-

dard procedure for computing the nucleolus proceeds by solving a finite (but large)

number of related linear programs. As a solution concept, the nucleolus has been

analyzed and computed in many OR-games, for instance Okamoto (2008), Soly-

mosi et al. (2005), Kern and Paulusma (2003), Faigle et al. (1998), Granot et

al. (1996), Deng and Papadimitriou (1994), or Granot and Huberman (1981). An

interesting survey on the nucleolus and its computational complexity is given in

Greco et al. (2015).

For matching games, the general non-bipartite case, the complexity of the com-

putation of the nucleolus is still an open problem. Some special cases have been

studied, for instance, balanced matching games (Biró et al., 2011) or cardinality

matching games, with unitary weights (Kern and Paulusma, 2003). In all these

cases it is proved the nucleolus can be computed in polynomial time, what can be

viewed as a generalization of the first result with an algorithm for the computation

of the nucleolus of the assignment game, the bilateral case (Solymosi and Ragha-

van, 1994). Recently Martı́nez-de-Albéniz et al. (2013) provides a new procedure

to compute the nucleolus of the assignment game. From a geometric point of view,

Llerena and Núñez (2011) have characterized the nucleolus of a square assignment

game, essential for our purposes. Llerena et al. (2015) gives an axiomatic approach

of the nucleolus of the assignment game.

In this paper we focus on the structure of matrices, that is the weight system on

bipartite graphs, that give rise to the same nucleolus.

1Given a coalition S⊆N, and an allocation x∈RN the excess of a coalition is defined as e(S,x) :=

v(S)−∑i∈S xi. Note they can be considered as complaints.
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To illustrate the problem, consider the assignment matrix

A =

 8 6

4 4

 .

The worth to share is v∗= 12, and its nucleolus is (5,2,3,2)∈R2
+×R2

+, but matrix

B =

 8 4

0 4


has also the same nucleolus. Now we draw the core of the associated assignment

games and their nucleolus. We depict the projection on the buyers’ (first) coor-

dinates of the core of both games in Figure 1. The core of the first one C(wA)

is in dark shading and the second one C(wB) in light shading. From Llerena and

Núñez (2011) the nucleolus of matrix A is the unique core point such that the dis-

tances over some segments to the core’s walls are equal: A′N = NB′,C′N = ND′

and EN = NF . For matrix B we have AN = NB,CN = ND and EN = NF .
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Figure 1: Two cores with the same nucleolus, (5,2;3,2).
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From the above geometric illustration we may expect a large class of assign-

ment matrices sharing a given vector as their nucleolus.

The main contributions of the paper are the following:

• The family of matrices with the same nucleolus forms a join-semilattice, i.e.

closed by entry-wise maximum. The family has a unique maximum element

which is always a valuation matrix and we give its explicit form (Section 3).

• We show that the above family is a path-connected set, and give the precise

path. We construct some minimal elements of the family (Section 4).

• We give conditions to characterize the non-emptiness of the family, i.e. con-

ditions on a vector to be the nucleolus of some assignment game (Section

3).

2. Preliminaries and notation

An assignment market (M,M′,A) is defined to be two disjoint finite sets: M the

set of buyers and M′ the set of sellers, and a nonnegative matrix A = (ai j)i∈M, j∈M′

which represents the profit obtained by each mixed-pair (i, j) ∈M×M′. To distin-

guish the j-th seller from the j-th buyer we will write the former as j′ when needed.

The assignment market is called square whenever |M| = |M′| . Usually we denote

by m = |M| and m′ = |M′| . M+
m denotes the set of nonnegative square matrices with

m rows and columns, and M+
m×m′ the set of nonnegative matrices with m rows and

m′ columns.

Recall that M+
m×m′ forms a lattice with the usual ordering ≤ between matrices.

Given an ordered subset of matrices (F ,≤) ,F ⊆M+
m×m′ , we say matrix C ∈F

is a minimal element of (F ,≤) if there is no matrix D ∈ F , with D 6= C and
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D≤C. A matrix A ∈M+
m×m′ is a valuation matrix2 if for any i1, i2 ∈ {1, . . . ,m} and

j1, j2 ∈ {1, . . . ,m′} we have ai1 j1 +ai2 j2 = ai1 j2 +ai2 j1 .

A matching µ ⊆M×M′ between M and M′ is a bijection from M0⊆M to M′0⊆

M′ with |M0|= |M′0|= min{|M| , |M′|} . We write (i, j) ∈ µ as well as j = µ (i) or

i = µ−1 ( j). If for some buyer i ∈M there is no seller j ∈M′ satisfying (i, j) ∈ µ

we say buyer i is unmatched by µ and similarly for sellers. The set of all matchings

from M to M′ is represented by M (M,M′) . A matching µ ∈M (M,M′) is optimal

for (M,M′,A) if ∑(i, j)∈µ ai j ≥ ∑(i, j)∈µ ′ ai j for any µ ′ ∈M (M,M′) . We denote by

M ∗
A (M,M′) the set of all optimal matchings.

Shapley and Shubik (1972) associate any assignment market with a game in

coalitional form (M∪M′,wA) called the assignment game in which the worth of a

coalition formed by S ⊆ M and T ⊆ M′ is wA (S∪T ) = max
µ∈M (S,T )

∑(i, j)∈µ ai j, and

any coalition formed only by buyers or sellers has a worth of zero.

The main goal is to allocate the total worth among the agents, and one of the

prominent solutions for cooperative games is the core. Shapley and Shubik (1972)

prove that the core of the assignment game is always nonempty. Given an optimal

matching µ ∈M ∗
A (M,M′) , the core of the assignment game, C(wA), can be easily

described as the set of non-negative payoff vectors (x,y) ∈ RM
+ ×RM′

+ satisfying

xi + y j = ai j for all (i, j) ∈ µ, (1)

xi + y j ≥ ai j for all (i, j) ∈M×M′, (2)

and all agents unmatched by µ get a null payoff.

Now we define the nucleolus (Schmeidler, 1969) of an assignment game, tak-

ing into account that its core is always nonempty. The excess of a coalition /0 6=

R ⊆ M ∪M′ with respect to an allocation in the core, (x,y) ∈ C(wA), is defined

2Following Topkis (1998), a function is a valuation if it is submodular and supermodular.
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as e(R,(x,y)) := wA (R)−∑i∈R∩M xi−∑ j∈R∩M′ y j. By the bilateral nature of the

market, it is known that the only coalitions that matter are the individual and

mixed-pair ones. Given an allocation (x,y) ∈ C(wA), define the excess vector

θ (x,y) = (θk)k=1,...,r as the vector of individual and mixed-pair coalitions excesses

arranged in a non-increasing order, i.e. θ1 ≥ θ2 ≥ . . . ≥ θr. Then the nucleolus of

the game (M∪M′,wA) is the unique core allocation ν (wA) ∈C(wA) which mini-

mizes θ (x,y) with respect to the lexicographic order3 over the whole set of core

allocations. For ease of notation we will use, for A ∈ M+
m×m′ , ν (A) instead of

ν (wA) if no confusion arises.

Solymosi and Raghavan (1994) use the excess vector to describe an algorithm

to compute the nucleolus and Martı́nez-de-Albéniz et al. (2013) give a new pro-

cedure to compute it for any assignment game. Here, we use the characterization

of the nucleolus of a square assignment game of Llerena and Núñez (2011), see

also Llerena et al. (2015), to study some properties of the nucleolus. To this end

we define the maximum transfer from a coalition to another coalition. Given any

square assignment game (M∪M′,wA) , and two arbitrary coalitions of the same

cardinality /0 6= S⊆M and /0 6= T ⊆M′, with |S|= |T | we define

δ
A
S,T (x,y) := min

i∈S, j∈M′\T

{
xi,xi + y j−ai j

}
, (3)

δ
A
T,S (x,y) := min

j∈T,i∈M\S

{
y j,xi + y j−ai j

}
, (4)

for any core allocation (x,y) ∈C (wA).

The interpretation of expression (3) is the following: the largest same amount

that can be transferred from players in S to players in T with respect to the core

3The lexicographic order ≥lex on Rd is defined in the following way: x≥lex y, where x,y ∈ Rd ,

if x = y or if there exists 1≤ t ≤ d such that xk = yk for all 1≤ k < t and xt > yt .
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allocation (x,y) while remaining in the core, that is,

δ
A
S,T (x,y) = max

{
ε ≥ 0 |

(
x− ε1S,y+ ε1T ) ∈C (wA)

}
, (5)

where 1S and 1T represent the characteristic vectors4 associated with coalition S⊆

M and T ⊆M′, respectively.

Llerena and Núñez (2011) prove that the nucleolus of a square assignment

game is characterized as the unique core allocation (x,y) ∈C(wA) where

δ
A
S,T (x,y) = δ

A
T,S (x,y) (6)

for any /0 6= S ⊆M and /0 6= T ⊆M′ with |S|= |T |. In certain cases, the number of

equalities can be reduced. Indeed, note that if T 6= µ(S) for some µ ∈M ∗
A (M,M′) ,

then it holds δ A
S,T (x,y) = δ A

T,S (x,y) = 0. Therefore, for this characterization we

only have to check (6) for the cases T = µ(S) for some optimal matching µ ∈

M ∗
A (M,M′) and any /0 6= S⊆M, i.e.

δ
A
S,µ(S) (x,y) = δ

A
µ(S),S (x,y) , for any /0 6= S⊆M. (7)

3. Assignment games with the same nucleolus

Different assignment games may have the same nucleolus. As a simple illus-

trative example, matrices A,B ∈M+
2

A =

 2 0

0 2

 , and B =

 0 2

2 0

 . (8)

satisfy ν (A) = ν (B) = (1,1,1,1).

Notice also that matrices with the same nucleolus must have the same worth

for the grand coalition even if they do not have any optimal matching in common.

4Given S⊆ {1, . . . ,n} ,1S ∈ Rn is such that 1S
i = 1, if i ∈ S, and zero otherwise.
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We focus now on an interesting property of the family of assignment matrices that

share the same nucleolus: they form a join-semilattice. That is, given two matrices

with the same nucleolus, their maximum, defined entry-wise, has also the same

nucleolus5.

Theorem 3.1. Let A,A′ ∈ M+
m×m′ be two matrices sharing the same nucleolus,

ν (A) = ν (A′) ∈ RM
+ ×RM′

+ . Then, A∨A′ has the same nucleolus, i.e. ν (A∨A′) =

ν (A) = ν (A′) .

Proof. If m 6= m′, we add zero rows or columns to make the matrices square. It

is known that these rows or columns correspond to dummy players which obtain

zero payoff at any core allocation, and also in the nucleolus. Therefore we can

assume from now on that matrices are square. We have A,A′ ≤ A∨A′, and also

C(wA)∩C(wA′) 6= /0, since both games share the nucleolus. We claim

C(wA)∩C(wA′) =C(wA∨A′).

To see it, take any (x,y) ∈C(wA)∩C(wA′). It is clear xi +y j ≥max{ai j,a′i j} for all

(i, j) ∈M×M′. Then for any optimal matching µ of A∨A′ we have

wA∨A′(M∪M′) = ∑
(i, j)∈µ

max{ai j,a′i j} ≤

∑
(i, j)∈µ

[xi + y j] =wA(M∪M′) = wA′(M∪M′).

As a consequence wA∨A′(M∪M′) = wA(M∪M′) = wA′(M∪M′). Now it is easy to

see (x,y) ∈C(wA∨A′). The other inclusion is straightforward.

5This property also holds with respect to the core (Martı́nez-de-Albéniz et al., 2011a), but curi-

ously it is worth noting this property does not hold for the kernel, a set-solution defined by Davis

and Maschler (1965). This can be easily seen by using the above matrices. Note that the nucleolus

always belongs to the kernel, and Driessen (1998) proves that for assignment games, the kernel is

included in the core.
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Now to see ν (A) = ν (A′) = (x,y) is the nucleolus of wA∨A′ , just note that, for

all /0 6= S⊆M and /0 6= T ⊆M′ with |S|= |T |,

δ
A∨A′
S,T (x,y) = min

{
δ

A
S,T (x,y) ,δ

A′
S,T (x,y)

}
, and

δ
A∨A′
T,S (x,y) = min

{
δ

A
T,S (x,y) ,δ

A′
T,S (x,y)

}
.

As a consequence, since (x,y) is the nucleolus of wA and wA′ , we obtain the equality

δ A∨A′
S,T (x,y) = δ A∨A′

T,S (x,y) .

The previous result shows that the set of matrices with the same nucleolus is a

join-semilattice. Now we introduce the family of matrices with a given nucleolus

(x,y) ∈ RM
+ ×RM′

+ ,

Fν (x,y) :=
{

A ∈M+
m×m′ | ν (A) = (x,y)

}
.

In this section we prove that the above family of assignment matrices forms a

compact join-semilattice with a unique maximal element which is always a valua-

tion (Topkis, 1998).

Firstly notice that not any vector is a candidate to be a nucleolus. For instance,

the vector (3,2,1,4)∈R2
+×R2

+ can never be the nucleolus of any 2×2 assignment

game. For any candidate (x,y) ∈RM
+ ×RM′

+ with |M|= |M′|, to be the nucleolus of

an assignment game with matrix A ∈M+
m , by (6) it must satisfy

δ
A
M,M′ (x,y) = min

i∈M
{xi}= min

j∈M′

{
y j
}
= δ

A
M′,M (x,y) . (9)

In our case min{x1,x2}= 2 6= 1 = min{y1,y2} .

Moreover, let us see that condition (9) turns out to be a simple characterization

of the non-emptiness of the family Fν (x,y) if we deal with the square assignment

case |M|= |M′|. To see it, just define the square matrix V = (vi j)1≤i, j≤m defined by

vi j := xi + y j, for all (i, j) ∈M×M′ being (x,y) ∈ RM
+ ×RM′

+ with |M|= |M′| and
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min
i∈M
{xi}= min

j∈M′

{
y j
}
. Indeed, any matching is optimal in V and the vector (x,y) ∈

C(wV ). Therefore δV
S,T (x,y) = δV

T,S (x,y) = 0 for all /0 6= S⊆M and /0 6= T ⊆M′ with

|S| = |T |, and S 6= M. Moreover δV
M,M′ (x,y) = δV

M′,M (x,y) by assumption. Hence

we have ν (V ) = (x,y). Summarizing we have the following result.

Theorem 3.2 (Condition for the nucleolus in the square case). Let (x,y)∈RM
+×

RM′
+ be a vector, with |M|= |M′|. The following statements are equivalent:

1. Fν (x,y) 6= /0,

2. min
i∈M
{xi}= min

j∈M′

{
y j
}
.

To analyze the non-square case we need an important result relating the nu-

cleolus of a non-square assignment game with the nucleolus of a suitable square

assignment game, which will be used later. Its proof is in the Appendix. This is a

result of independent interest to deal with non-square assignment games, since the

usual approach is to add null rows or columns in order to make the matrix square.

Firstly we need some definitions.

Let A ∈M+
m×m′ be a non-square assignment matrix, with m = |M|< |M′|= m′,

and let µ ∈M ∗
A (M,M′) be an optimal matching. Define the vector aµ =

(
aµ

i

)
i∈M ∈

RM
+ by

aµ

i := max
j∈M′\µ(M)

{
ai j
}

for each buyer i ∈M, (10)

and define the square matrix Aµ ∈M+
m by

aµ

i j := max
{

0,ai j−aµ

i

}
, for (i, j) ∈M×µ (M) . (11)

Lemma 3.1. Let A ∈M+
m×m′ be a non-square assignment matrix, with |M|< |M′|,

and let µ ∈M ∗
A (M,M′) be an optimal matching. Let aµ ∈RM

+ and Aµ ∈M+
m be as

in (10) and (11), and let (x,y) ∈RM
+ ×RM′

+ and (x′,y′) ∈RM
+ ×Rµ(M)

+ be related by

x′i = xi−aµ

i , for i ∈M,

y′j = y j, for j ∈ µ(M), and y j = 0 for j ∈M′\µ (M) .
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Then (x,y) ∈C (wA) if and only if (x′,y′) ∈C (wAµ ) .

Moreover, ν (A) = (x,y) if and only if ν (Aµ) = (x′,y′).

Since it is well known that the nucleolus of a non-square assignment game

gives zero payoff to all non-optimally assigned players, then a candidate vector

must assign zero to some players. The next result is the precise necessary and

sufficient condition. Its proof is in the Appendix

Theorem 3.3 (Condition for the nucleolus in the non-square case). Let (x,y) ∈

RM
+ ×RM′

+ be a vector, with |M| < |M′|, and let Z0 =
{

j ∈M′ | y j = 0
}
. The fol-

lowing statements are equivalent:

1. Fν (x,y) 6= /0,

2. (a) there exists Z′0 ⊆ Z0 with |Z′0|= |M′|− |M|, and

(b) min
i∈M
{xi} ≥ min

j∈M′\Z′0

{
y j
}
.

Notice that from Theorem 3.2 and 3.3, the vector (3,2,1,4) ∈ R2
+×R2

+ can

never be the nucleolus of any 2×2 assignment game, but the vector (3,2,1,4,0) ∈

R2
+×R3

+ is the nucleolus of some assignment game, see (12).

Now we turn to the structure of the matrices that share the same nucleolus, and

describe its maximum element.

Theorem 3.4. The family of matrices with a given nucleolus Fν(x,y) forms a

compact set, where (x,y) ∈ RM
+ ×RM′

+ , |M| ≤ |M′| . Moreover, if it is nonempty, it

has a unique maximum element, which is described by the valuation matrix V ∈

Fν(x,y) given by

vi j =


xi + y j if i ∈M, and j ∈M′ \Z′0,

xi− min
j∈M′\Z′0

{
y j
}

if i ∈M, and j ∈ Z′0,
(12)

where Z′0 is any subset of Z0 =
{

j ∈M′ | y j = 0
}

with cardinality |Z′0|= |M′|−|M| .
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Proof. Let (x,y) ∈RM
+×RM′

+ be a vector with Fν(x,y) 6= /0. For each A ∈Fν(x,y)

consider the square matrix Ã which has (m′−m) zero rows, i.e. dummy buyers,

to make matrix A square. If m′ = m, Ã = A. Let us denote by M̃ the new set of

buyers associated to the assignment market Ã. This new assignment matrix Ã has an

extended nucleolus with zero payoffs to the added agents, namely ν(Ã) = (x,0;y) .

Now, let us see Fν(x,y) is a compact set, i.e. a bounded and closed subset of

M+
m×m′ . It is bounded since 0≤ ai j ≤ xi+y j for all (i, j)∈M×M′ and A∈Fν(x,y).

It is closed because the functions δ Ã
S,T (x,0;y) and δ Ã

T,S (x,0;y) are continuous in Ã

for all /0 6= S⊆ M̃, /0 6= T ⊆M′ and |S|= |T | , and they must satisfy (6).

Next we show that the given matrix V is the maximum element in Fν(x,y), i.e.

A≤V for all A ∈Fν(x,y). It should first be noted that V is well-defined because if

there exists different Z′0 they give the same matrix V. Furthermore, from the proof

of Theorems 3.2 and 3.3, we have already shown that the nucleolus of matrix V is

the vector (x,y) as well as V is a valuation matrix.

Let A ∈Fν(x,y) be a matrix, µ ∈M ∗
A (M,M′) be an optimal matching, and

Z′0 = M′\µ(M). Then Z′0 ⊆ Z0, |Z′0| = |M′| − |M| and let V be the matrix defined

in the statement. We have to prove vi j ≥ ai j for all (i, j) ∈M×M′. Clearly, since

(x,y) ∈ C (wA) , for i ∈ M and j ∈ M′\Z′0, we have vi j = xi + y j ≥ ai j. Now re-

call (10) and Lemma 3.1 and since µ is an optimal matching such that µ(M) =

M′\Z′0, we have (x′,y′) = ν(Aµ). Denote ε = δ Aµ

M,M′\Z′0
(x′,y′) = δ Aµ

M′\Z′0,M
(x′,y′) =

min
j∈M′\Z′0

{
y j
}
. Since (x′,y′)= ν(Aµ) and taking into account (5), we have

(
x′− ε1M,y′+ ε1M′\Z′0

)
∈

C (wAµ ) . Then for all i ∈M we have x′i−ε ≥ 0, that is, xi−ε ≥ aµ

i . From here, for

all i ∈M and j ∈ Z′0, we have vi j = xi− min
j∈M′\Z′0

{
y j
}
≥ aµ

i ≥ ai j. This finishes the

proof.
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4. Properties of the join-semilattice

It is interesting to point out that the family Fν(x,y) is not in general a convex

set. Just take the matrices in (8) and their midpoint.

Now we prove an interesting property. There is a continuous piecewise linear

path (maybe not unique) between any matrix in Fν(x,y) and its maximum element

V. From here it is clear that the family Fν(x,y) is a path-connected set.

Theorem 4.1. Let Fν(x,y) be a nonempty family of matrices with a given nucleo-

lus, where (x,y) ∈ RM
+ ×RM′

+ , |M| ≤ |M′| , and V ∈Fν(x,y) be its maximum given

in (12). Then for any A∈Fν(x,y) there exists an increasing piecewise linear path6

from A to V inside Fν(x,y).

As a consequence, Fν(x,y) is a path-connected set.

Proof. First we analyze the square case. We can assume |M| ≥ 2. Let it be A ∈

Fν(x,y). Let us define the following set, formed by the distances that appear in the

characterization of the nucleolus, see (6), except for the grand coalition,

∆(A) =
{

δ
A
S,T (x,y) |S⊆M,T ⊆M′, |S|= |T |,S 6= /0,M, and T 6= /0,M′

}
.

The elements of ∆(A) = {δ0,δ1, . . . ,δr} can be ordered increasingly: 0= δ0 < δ1 <

.. . < δr.

Note that for all (i, j) ∈M×M′ satisfying xi +y j−ai j /∈ ∆(A) we can raise the

worth of ai j to a0
i j in a way that xi + y j−a0

i j equals to the closest element in ∆(A),

and set a0
i j = ai j otherwise. The nucleolus of this new matrix A0 is also (x,y). We

may choose different increasing linear paths from A to A0.

6A path in X ⊆M+
m×m′ from A to B, A,B ∈X , is a continuous function f from the unit interval

I = [0,1] to X , i.e. f : [0,1]→X , with f (0) = A and f (1) = B. Moreover a subset X ⊆M+
m×m′ is

path-connected if for any two elements A,B ∈X there exists a path from A to B entirely contained

in X .
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Now we have a matrix A0 ∈ Fν(x,y) such that xi + y j − a0
i j ∈ ∆(A0) for all

(i, j) ∈ M×M′. Note that ∆(A0) = ∆(A) and if δ A
S,T (x,y) = δr, we have, for all

i ∈ S and j /∈ T, xi + y j−a0
i j = δr.

If r = 0, A0 =V and we are done. Otherwise, for all (i, j) ∈M×M′ such that

xi+y j−a0
i j = δr raise linearly a0

i j to a1
i j defined by the equality xi+y j−a1

i j = δr−1.

We obtain a new matrix A1 ∈Fν(x,y), defined for all i ∈M and j ∈M′ by

a1
i j =

 xi + y j−δr−1 if xi + y j−a0
i j = δr,

a0
i j otherwise.

We have ∆(A1)( ∆(A0).

Now, in a finite number of steps, proceed sequentially raising all entries until

for all (i, j) ∈ M×M′ we have xi + y j− ar
i j = 0. This is matrix V for the square

case.

For the non-square case, |M|< |M′| , let A ∈Fν(x,y), and let µ ∈M ∗
A (M,M′)

be an optimal matching. Notice first that matrix A can be modified without chang-

ing its nucleolus in the following way: for all (i, j) ∈ M× µ(M) if ai j < aµ

i then

raise these entries to aµ

i , see (10); for all (i, j) ∈M× (M′ \µ(M)) raise entries ai j

to aµ

i , and we do not modify the rest of entries. This new matrix A ∈ Fν(x,y)

and gives rise to the same square matrix Aµ ∈ M+
m , i.e. Aµ

= Aµ , see (11). The

relationship between A and Aµ is

aµ

i j = ai j−aµ

i for all (i, j) ∈M×µ(M). (13)

From Lemma 3.1 applied to matrix A we know ν
(
A
)
= ν (A) = (x,y) ∈ RM

+ ×

RM′
+ if and only if ν

(
Aµ
)
= (x′,y′) ∈RM

+ ×Rµ(M)
+ , with x′i = xi−aµ

i for i ∈M, and

y′j = y j for j ∈ µ(M).

We can apply the previous procedure for square matrices to obtain an increas-

ing piecewise linear path from Aµ to its maximum matrix in Fν(x′,y′). This path,
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applied to matrix A|M×µ(M)
, see (13), induces a path from A|M×µ(M)

to V|M×µ(M)
, where

V is the maximum of Fν(x,y).

Moreover, for (i, j)∈M×(M′\µ(M)) recall from (12) that vi j = xi− min
j∈µ(M)

{
y j
}
.

From Theorem 3.2 we know that min
i∈M
{x′i} = min

j∈µ(M)
{y′j} = min

j∈µ(M)

{
y j
}
, and then

for some i∗ ∈M we have x′i∗ = xi∗−aµ

i∗ = min
j∈µ(M)

{
y j
}
. That is, for i∗ ∈M we have

vi∗ j = aµ

i∗ for all j∈M′\µ(M). For any i 6= i∗ such that x′i >min
i∈M
{x′i} or equivalently

x′i = xi−aµ

i > min
i∈M
{x′i}= min

j∈µ(M)

{
y j
}
, that is aµ

i < xi− min
j∈µ(M)

{
y j
}
, we can raise

at the same time entries ai j = aµ

i to vi j = xi− min
j∈µ(M)

{
y j
}

without changing the

nucleolus, as the reader can check applying Lemma 3.1. This ends the proof.

Finally, with respect to the minimal elements of the semilattice (Fν(x,y),≤)

our next result reveals the existence of many of them. Basically we obtain a min-

imal matrix each time we fix an appropriate optimal matching. Notice that any

minimal matrix in the family has at least one optimal matching in common with

matrix V, the maximum element of the family. Therefore, it is natural to ask for a

minimal matrix whenever an optimal matching for matrix V has been fixed.

Curiously enough, not any optimal matching can be used. For instance, take the

nucleolus (x,y)= (0,3,2,0)∈R2
+×R2

+. Note that Fν(x,y) 6= /0. and min{x1,x2}=

0 = min{y1,y2}. The valuation matrix

V =

 2 0

5 3


has two optimal matchings. The first one, µ1 = {(1,1) ,(2,2)} cannot be preserved

if we look for minimality, but the second one µ2 = {(1,2) ,(2,1)} can. Indeed,

C =

 0 0

5 1


is the desired minimal matrix. Differences between both matchings are subtle and

they will be specified in the next definition.
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To go on, let (x,y) ∈ RM
+ ×RM′

+ with |M| ≤ |M′| such that Fν(x,y) 6= /0, and

let V ∈ Fν(x,y) be its maximum given in (12). We say that an optimal match-

ing µ ∈M ∗
V (M,M′) is a minimal-matrix compatible matching (m2-compatible) if

min
j∈µ(M)

{
y j
}
= 0 then there exists a buyer i∗ ∈ M such that xi∗ = min

i∈M
{xi} and his

optimal partner receives yµ(i∗) = min
j∈µ(M)

{
y j
}
= 0. The set of all m2-compatible

matchings is denoted by Mm (V ) .

Notice that in the square case, if min
i∈M
{xi} = min

j∈M′

{
y j
}
> 0, all matchings are

m2-compatible. As a consequence, m! minimal matrices may appear. A similar

result holds for the non-square case, as the next theorem implies.

Theorem 4.2 (Computation of a minimal matrix). Let Fν(x,y) be a nonempty

family of matrices with a given nucleolus, where (x,y)∈RM
+×RM′

+ and |M| ≤ |M′| .

Let V ∈Fν(x,y) be the maximum of the family.

For any minimal-matrix compatible matching µ ∈Mm (V ) there exists matrix

C ∈Fν(x,y) with µ ∈M ∗
C (M,M′) and C is minimal in (Fν(x,y),≤) . Moreover,

if |M| ≥ 3 then C 6=V whenever (x,y) is not the null vector.

Proof. For ease of the proof and w.l.o.g. we adopt the following normalization

conditions, maybe by reordering agents:

i. We assume x1 ≤ x2 ≤ ·· · ≤ xm.

ii. The original matching µ is in the main diagonal µ = {(1,1) , . . . ,(m,m)} .

Moreover, once i. and ii. have been achieved we also ask for an additional condi-

tion:

iii. If there exists i∗ ∈M such that xi∗ =min{x1, . . . ,xm} and yi∗ =min{y1, . . . ,ym},

then x1 = min{x1, . . . ,xm} and y1 = min{y1, . . . ,ym}.

Condition iii. has the following interpretation. If two optimally matched partners

receive minimum payoff among the matched agents of their side, it happens also

in the first place.
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Now we analyze the square case, |M|= |M′| . We define matrix C ∈M+
m by

cii = xi + yi for i = 1, . . . ,m,

ci1 = xi + y1− yi for i = 2, . . . ,m, and xi > yi,

c1 j = x1 + y j− x j for j = 2, . . . ,m, and x j < y j,

ci j = 0 otherwise.

Clearly the main diagonal is an optimal matching for C. Moreover the vector

(x,y) ∈C (wC) .

Now we prove ν (C) = (x,y) . For simplicity we write S′ instead of µ(S) for

S⊆M. Therefore, we prove δC
S,S′ (x,y) = δC

S′,S (x,y) for all /0 6= S⊆M, see (7).

Notice first that for i 6= j we have

xi + y j− ci j =


yi if j = 1 and xi > yi,

x j if i = 1 and x j < y j,

xi + y j otherwise.

Let /0 6= S⊆M be an arbitrary coalition. We distinguish two cases.

Case (a): Buyer i = 1 does not belong to the coalition S, i.e. 1 /∈ S. Then,

δ
C
S,S′ (x,y) = min

{
min
i∈S
{xi} , min

i∈S j/∈S′

{
xi + y j− ci j

}}
= min

{
min
i∈S
{xi} , min

i∈S, xi>yi
{yi}

}
= min

{
min
i∈S
{xi} ,min

j∈S′

{
y j
}}

.

Similarly,

δ
C
S′,S (x,y) = min

{
min
j∈S′

{
y j
}
,min

i∈S
{xi}

}
.

Case (b): Buyer i = 1 belongs to the coalition S, i.e. 1 ∈ S. Then,

δ
C
S,S′ (x,y) = min

{
min
i∈S
{xi} , min

i∈S j/∈S′

{
xi + y j− ci j

}}
= min

{
min
i∈S
{xi} , min

j/∈S′,x j<y j

{
x j
}}

= x1.
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Moreover, we have

δ
C
S′,S (x,y) = min

{
min
j∈S′

{
y j
}
, min

i/∈S j∈S′

{
xi + y j− ci j

}}
= min

{
min
j∈S′

{
y j
}
, min

i/∈S,yi<xi

{yi}
}
= min

j∈M′

{
y j
}
= x1.

To see the last but one equality, let j∗ ∈M′ be such that y j∗ = min j∈M′{y j}. Clearly

y j∗ = min j∈M′{y j} = min
i∈M
{xi} ≤ x j∗ . Then the only case we have to analyze is

y j∗ = x j∗ = x1. In this case, the normalization conditions imply y1 = y j∗ = x j∗ , and

the equality holds, since 1′ ∈ S′.

As a consequence, ν (C) = (x,y) .

It remains to prove matrix C is minimal in (Fν(x,y),≤) . Suppose on the con-

trary that there exists matrix D ∈M+
m ,D≤C,D 6=C and ν (D) = (x,y) .

First we claim that for any optimal matching µ ′ ∈M ∗
C (M,M′) , if xi > 0 and

yi > 0 then (i, i) ∈ µ ′. Indeed and since ν (C) = (x,y) ∈ C(wC), we know xk +

yµ ′(k) = ckµ ′(k) for any buyer k ∈ M and µ ′ an optimal matching of C. Now if

µ ′(i) 6= i′ and since xi > 0 we know that either i = 1 or µ ′(i) = 1′. If i = 1, by the

normalization conditions, we know xk > 0 for all k ∈ M and since c1µ ′(1) 6= 0 we

obtain c1µ ′(1) = x1+yµ ′(1)−xµ ′(1) and then xµ ′(1) = 0, a contradiction. If µ ′(i) = 1′

and since ci1 6= 0 we obtain ci1 = xi + y1 − yi and then yi = 0, a contradiction.

Therefore the claim holds.

Note now that all optimal matchings in D are optimal also in C, since D ≤ C

and they have the same nucleolus. We distinguish two possibilities and recall µ =

{(1,1) , . . . ,(m,m)} ∈M ∗
C (M,M′) .

(a) µ ∈M ∗
D (M,M′) , i.e. dii = cii for i = 1, . . . ,m. Since D 6= C there must

exist 0 ≤ di1 < ci1 or 0 ≤ d1 j < c1 j with i ≥ 2 or j ≥ 2. We analyze the

first case, and the other is left to the reader. From 0 ≤ di1 < ci1, we achieve

ci1 6= 0, i ≥ 2 and then xi > yi. Moreover by the definition of C, we have
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c1i = 0, which implies d1i = 0. Now

δ
D
{i},{i′}(x,y) =min

{
xi,min

k 6=i
{xi + yk−dik}

}
= min{xi,xi + y1−di1}, and

δ
D
{i′},{i}(x,y) =min

{
yi,min

k 6=i
{xk + yi−dki}

}
= yi,

but then we get xi + y1−di1 = yi, which implies ci1 = di1, a contradiction.

(b) µ /∈M ∗
D (M,M′) . Therefore there exists another matching µ ′ which is op-

timal, µ ′ ∈M ∗
D (M,M′) , and then µ ′ ∈M ∗

C (M,M′) . There exists i ∈ M,

µ ′(i) 6= µ(i) = i′ with 0 ≤ dii < cii, that is dii = cii− ε with ε > 0, and by

the claim, either xi > 0 and yi = 0 or xi = 0 and yi > 0. Notice that since µ is

an m2-compatible matching and the normalization conditions we have i≥ 2

and x1 = y1 = 0. We analyze the first case xi > 0 and yi = 0 and the second

case is similar. Now we claim µ ′(i) = 1′. If µ ′(i) 6= 1′ and being µ ′(i) 6= i′

and i≥ 2 we have ciµ ′(i) = 0, and then 0 = ciµ ′(i) < xi + yµ ′(i), contradicting

the optimality of µ ′, since ν(C) = (x,y).

Now we prove δ D
{i},{µ ′(i)}(x,y) 6= δ D

{µ ′(i)},{i}(x,y), for µ ′ ∈M ∗
D (M,M′) . Re-

call that µ ′(i) = 1′,d11 = c11 = x1 + y1 = 0 and dik = 0 for k 6= 1, i. Hence

δ
D
{i},{1′}(x,y) =min

{
xi,min

k 6=1
{xi + yk−dik}

}
= min{xi,ε}, and

δ
D
{1′},{i}(x,y) =min

{
y1,min

k 6=i
{xk + y1−dk1}

}
= y1 = 0,

and they are different, a contradiction with ν (D) = (x,y) .

Therefore matrix C is minimal.

Now we analyze the non-square case, |M|< |M′| . From the normalization con-

ditions x1 ≤ x2 ≤ ·· · ≤ xm, and µ = {(1,1) , . . . ,(m,m)} .
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We define matrix C ∈M+
m×m′ by

cii = xi + yi for i = 1, . . . ,m,

ci1 = xi + y1− yi for i = 2, . . . ,m, and xi > yi,

c1 j = x1 + y j− x j for j = 2, . . . ,m, and x j < y j,

c1m+1 = x1− min
j∈µ(M)

{y j}

ci j = 0 otherwise.

The proof that this is the desired matrix in the non-square case is similar to the

square case and can be found in the Appendix.

It is clear from the definition of matrix C that if (x,y) 6= (0,0) ∈RM
+ ×RM′

+ and

|M| ≥ 3 then C 6=V.

As a direct consequence of Theorems 4.1 and 4.2 we obtain an interesting result

on the cardinality of the family Fν(x,y).

Corollary 4.1. For any vector (x,y) ∈ RM
+ ×RM′

+ either

(a) Fν(x,y) = /0,

(b) Fν(x,y) is a singleton, or

(c) Fν(x,y) has a continuum of elements.

We have characterized when the family Fν(x,y) is non-empty, and from Theo-

rem 4.2 we know that for matrices with at least three agents in each side, the family

has an infinite number of elements, since a minimal matrix does not coincide with

the valuation matrix of the family and by the path-connectedness we can construct

an infinite number of matrices between them. If we want to look when the fam-

ily is a singleton, and apart the trivial cases of a sector having only one agent or

the original vector being the null vector, we must seek a 2× 2 case. It is easy to
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see that for the square case 2× 2 the only non-trivial case is given by the vector

(0,0,0,k)∈R2
+×R2

+ for k > 0 and its permutations. The proof is left to the reader,

but in this case for k > 0

Fν(0,0,0,k) =


 0 k

0 k

 .

5. Appendix

Proof of Lemma 3.1

Proof. Let A∈M+
m×m′ and let µ ∈M ∗

A (M,M′) . Without loss of generality, we can

assume that µ = {(1,1),(2,2), . . . ,(m,m)} is an optimal matching of matrix A.

We claim that µ is an optimal matching of Aµ , defined by (10) and (11). To see

it, consider any (x,y) ∈C(wA). Clearly xi ≥ aµ

i for all i ∈M, and then xi−aµ

i ≥ 0,

and (xi− aµ

i )+ y j ≥ 0, for all (i, j) ∈ M× µ(M). Moreover, for all (i, j) ∈ M×

µ(M), we have (xi−aµ

i )+ y j ≥ ai j−aµ

i , and therefore (xi−aµ

i )+ y j ≥ aµ

i j. Since

µ = {(1,1),(2,2), . . . ,(m,m)} is an optimal matching for A, then aii ≥ aµ

i for all

i ∈M, and we obtain (xi− aµ

i )+ yi = aii− aµ

i = aµ

ii , for all i ∈M. From this it is

easy to see our claim: for any µ ′ ∈M (M,µ(M)) ,

∑
(i, j)∈µ

aµ

i j =
m

∑
i=1

aµ

ii =
m

∑
i=1

(xi−aµ

i )+ yi = ∑
(i, j)∈µ ′

(xi−aµ

i )+ y j ≥ ∑
(i, j)∈µ ′

aµ

i j.

Define the following square matrix A0 ∈M+
m′ obtained from the original matrix

A by adding m′−m zero rows, that is m′−m dummy players, and let M0 = M∪

{m+1, . . . ,m′} be the new set of buyers and A0 =
(

a0
i j

)
1≤i, j≤m′

where

a0
i j =

 ai j if (i, j) ∈M×M′,

0 if (i, j) ∈ (M0\M)×M′.
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We know that the matching µ0 = µ ∪{(m+1,m+1) , . . . ,(m′,m′)} is optimal

for matrix A0, i.e. µ0 ∈M ∗
A0

(
M0,M′

)
.

For each (x,y) ∈ RM
+ ×RM′

+ denote now by
(
x0,y0

)
∈ RM0

+ ×RM′
+ the vector

defined by x0
k = xk if k ∈M and x0

k = 0 if k ∈M0\M and y0
k = yk if k ∈M′.

It is well-known that ν (A) = (x,y) if and only if ν
(
A0
)
=
(
x0,y0

)
.

We claim that (x,y) ∈ C(wA) if and only if
(
x0,y0

)
∈ C (wA0) , and also that

(x,y) ∈ C(wA) if and only if (x′,y′) ∈ C (wAµ ) , where the relationship between

their coordinates is x′i = xi− aµ

i for i ∈M, and y′j = y j for j ∈ µ(M). Notice that

y j = 0 for j ∈M′ \µ(M). This claim is immediate from the previous comments.

Take any (x,y) ∈C(wA) and let /0 6= S ⊆M be an arbitrary coalition. For ease

of notation we denote S′ = µ0(S) = µ(S). We obtain

δ
A0

S,S′
(
x0,y0)= min

i∈S j∈M′\S′

{
xi,xi + y j−ai j

}
=

since for j ∈M′ \µ(M) we have y j = 0, and (10)

= min
i∈S j∈µ(M)\S′

{
xi,xi + y j−ai j,xi−aµ

i

}
=

since xi ≥ xi−aµ

i for all i ∈ S,

= min
i∈S j∈µ(M)\S′

{
xi−aµ

i , [xi−aµ

i ]+ y j−ai j +aµ

i

}
=

whenever ai j ≤ aµ

i we have [xi−aµ

i ]+ y j−ai j +aµ

i ≥ [xi−aµ

i ],

= min
i∈S j∈µ(M)\S′

{
xi−aµ

i , [xi−aµ

i ]+ y j−aµ

i j

}
=

= δ
Aµ

S,S′
(
x′,y′

)
.

Similarly we obtain

δ
A0

S′,S
(
x0,y0)= δ

Aµ

S′,S
(
x′,y′

)
.
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Moreover, for any (x0,y0)∈C(wA0) and any /0 6= S⊆M0 such that S∩(M0\M) 6=

/0, we have

δ
A0

S,S′
(
x0,y0)= 0,

δ
A0

S′,S
(
x0,y0)= 0.

Now, by using (7), it is immediate to prove that ν (A) = (x,y), if and only if

ν (Aµ) = (x′,y′).

Proof of Theorem 3.3

Proof. To prove the ‘if’ part, let A ∈M+
m×m′ be a matrix and let (x,y) = ν (A) be

its nucleolus.

Let µ ∈M ∗
A (M,M′) be an optimal matching. Clearly, non-assigned sellers by

µ get zero payoffs in the nucleolus. Therefore, let Z′0 be the set of non-assigned

sellers by µ, i.e. Z′0 = M′ \µ(M).

Now apply Lemma 3.1 and ν (Aµ) = (x′,y′), with x′i = xi− aµ

i for i ∈M, and

y′j = y j for j ∈ µ(M) where vector aµ =
(
aµ

i

)
i∈M and matrix Aµ are defined as in

(10) and (11). Then, applying Theorem 3.2,

min
i∈M
{xi} ≥min

i∈M

{
xi−aµ

i

}
= min

j∈M′\Z′0

{
y j
}
.

This is condition 2.

To prove the converse implication we define matrix V ∈M+
m×m′ by

vi j :=


xi + y j if i ∈M, and j ∈M′ \Z′0,

xi− min
j∈M′\Z′0

{
y j
}

if i ∈M, and j ∈ Z′0.
(14)

Note that any matching between M and M′\Z′0 is optimal for V, i.e. M (M,M′ \Z′0)⊆

M ∗
V (M,M′) . This matrix V ∈M+

m×m′ is, in fact, a valuation matrix. The proof is

left to the reader.
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We must prove now that vector (x,y) is the nucleolus of this matrix V. By

Lemma 3.1, (x,y) = ν (V ) if and only if ν (V µ) = (x′,y′), with x′i = xi− vµ

i for

i ∈ M, and y′j = y j for j ∈ µ(M), for some µ ∈M (M,M′ \Z′0) . Indeed, all of

them are optimal.

By (10), vµ

i = xi− min
j∈M′\Z′0

{
y j
}

for all i∈M and then x′i = xi−vµ

i = min
j∈M′\Z′0

{
y j
}

for all i ∈M. Therefore matrix V µ satisfies, for all (i, j) ∈M× (M′ \Z′0),

vµ

i j = max
{

0,y j + min
j∈M′\Z′0

{
y j
}}

= y j + min
j∈M′\Z′0

{
y j
}
= x′i + y′j.

Since min
i∈M
{x′i}= min

i∈M

{
min

j∈M′\Z′0

{
y j
}}

= min
j∈M′\Z′0

{
y′j
}

and V µ is a square valuation

matrix, we obtain ν (V µ) = (x′,y′).

Proof of the non-square case in Theorem 4.2

Proof. Clearly the main diagonal is an optimal matching for C. Moreover ν (C) =

(x,y) . Indeed, apply Lemma 3.1 and notice that matrix Cµ is just the minimal

matrix already stated in the square case for the nucleolus (x′,y′) ∈ RM
+ ×Rµ(M)

+

defined by x′1 = min j∈µ(M){y j},x′i = xi for i = 2, . . . ,m and y′j = y j for j ∈ µ(M).

As a side effect Cµ is minimal in Fν(x′,y′).

To see that C is minimal, assume D∈M+
m×m′ ,D≤C,D 6=C and (x,y) = ν(wD).

Recall that all optimal matchings for D are also optimal for C. We distinguish two

cases.

(1) x1 = min
j∈µ(M)

{
y j
}
. Notice that d1m+1 = c1m+1 = 0. We are essentially in the

square case and we are done, D =C.

(2) x1 > min
j∈µ(M)

{
y j
}
. In this case we know xi > 0 for all i ∈M. Then, there are two

possibilities:

(2a) An optimal matching for D, µ ′ ∈M ∗
D (M,M′) satisfies µ ′(M) = µ(M).

By Lemma 3.1 the vector (x′,y′) ∈RM
+ ×Rµ(M)

+ defined by x′1 = x1−d1m+1,x′i = xi

for i = 2, . . . ,m and y′j = y j for all j ∈ µ(M) is the nucleolus of matrix Dµ ′ . This
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implies min
i∈M
{x′i}= min

j∈µ ′(M)
{y′j} or x1−d1m+1 = min

j∈µ ′(M)
{y′j}. Similarly x1−c1m+1 =

min
j∈µ(M)

{y′j}, but then d1m+1 = c1m+1. From here it is easy to see that Dµ ′ ≤ Cµ ,

both matrices share the same nucleolus (x′,y′) and Cµ is minimal in Fν(x′,y′).

Therefore Dµ ′ =Cµ .

Now we prove D =C. For i = 2, . . . ,m and j ∈ µ(M) it is obvious that di j = ci j,

since dµ ′

i j = di j and cµ

i j = ci j. To see d11 = c11, notice that d1µ ′(1) = c1µ ′(1) =

x1 + yµ ′(1) > 0 and this is only possible if µ ′(1) = 1′ by the definition of matrix C.

Now we analyze i= 1, j ∈ {2, . . . ,m} and c1 j 6= 0. In this case we have c1 j > c1m+1,

and then cµ

1 j > 0 and since Dµ ′ =Cµ we have dµ ′

1 j = cµ

1 j > 0. From here we deduce

d1 j−d1m+1 = c1 j− c1m+1 and d1 j = c1 j. The rest of entries are clearly equal.

(2b) All optimal matchings for D satisfy µ ′(M) 6= µ(M).

In this case there must exist an optimal matching µ ′ ∈ M ∗
D (M,M′) such that

µ ′(1) = m + 1 and µ ′(M \ {1}) ⊂ µ(M). This matching µ ′ is also optimal for

matrix C. Then d1m+1 = c1m+1 = x1 + ym+1 = x1, and min j∈µ(M){y j} = 0. Now,

since matching µ is m2-compatible and Condition iii., we get y1 = 0.

As a consequence c11 = c1m+1. We distinguish two cases.

(2b-1) There exists a buyer i ∈ {2, . . . ,m} such that µ ′(i) = 1′.

Since µ ′ is optimal for C all buyers different from 1 and i are matched equally by

µ ′ and µ and c11 + cii = ci1 + c1m+1. Therefore yi = 0 and by definition c1i = 0.

Now we apply Lemma 3.1 to matrix D. Firstly notice that dµ ′

k = 0 for all

k ∈ M,k 6= i, and dµ ′

i = dii. Moreover, min
k∈M

{
xk−dµ ′

k

}
= min

j∈µ ′(M)

{
y j
}
= 0, which

implies dii = xi. The nucleolus of Dµ ′ is (x′,y′)∈RM
+×Rµ ′(M)

+ with x′k = xk for k 6= i

and x′i = 0 and y′k = yk for k ∈ µ ′(M). Notice that for all k ∈ µ ′(M),k 6= (m+1)′,

we know dµ ′

1k = max{0,d1k−dµ ′

1 }= d1k.
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Then we get a contradiction:

δ
Dµ ′

{1},{(m+1)′}(x
′,y′) =min

{
x1, min

1≤k≤m,k 6=i
{x1 + yk−dµ ′

1k}
}

=min
{

x1, min
1≤k≤m,k 6=i

{x1 + yk−d1k}
}
= x1, and

δ
Dµ ′

{(m+1)′},{1}(x
′,y′) =min

{
ym+1, min

1≤k≤m,k 6=1
{xk + ym+1−dµ ′

k m+1}
}
= 0,

where we have used the fact that x1+yk−d1k ≥ x1+yk−c1k and if xk ≥ yk,c1k = 0

and if xk < yk,c1k = x1 + yk− xk. Also that ym+1 = 0.

The last case to analyze is the following one.

(2b-2) Seller j = 1 is unmatched by µ ′.

Since µ ′ is optimal for C all buyers different from 1 are matched equally by µ ′ and

µ. That is, matching µ ′ = {(1,m+1),(2,2), . . . ,(m,m)} . In this case d11 < c11 =

x1 since we are assuming matching µ is not optimal for D. Now we apply Lemma

3.1 to matrix D. Firstly notice that dµ ′

k = dk1 for all k ∈M, and the nucleolus of Dµ ′

is (x′,y′) ∈ RM
+ ×Rµ ′(M)

+ with x′k = xk− dk1 for k ∈M and y′k = yk for k ∈ µ ′(M).

Recall that x′1 = x1−d11 > 0.

This implies min
i∈M
{x′i}= min

j∈µ ′(M)
{y′j}= 0. Then there exists a buyer i∈{2, . . . ,m}

such that x′i = xi−di1 = 0. Thus, di1 = xi > 0 and ci1 ≥ di1 > 0. From the definition

of matrix C, we obtain yi = 0 and dii = xi. Therefore di1 = dii and matching

µ
′′ = {(1,m+1),(2,2), . . . ,(i−1, i−1),(i,1),(i+1, i+1), . . . ,(m,m)}

is optimal for D. We are in case (2b-1).
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