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Abstract

This	paper	presents	a	multi-agent	simulation	of	the	production	of	step-level	public	goods	in	social	networks.	In	previous	public	goods	experimental	research
the	design	of	the	sequence	ordering	of	decisions	have	been	limited	because	of	the	necessity	of	simplicity	taking	priority	over	realism,	which	means	they	never
accurately	reproduce	the	social	structure	that	constrains	the	available	information.	Multi-agent	simulation	can	help	us	to	overcome	this	limitation.	In	our	model,
agents	are	placed	in	230	different	networks	and	each	networks’	success	rates	are	analyzed.	We	find	that	some	network	attributes	-density	and	global	degree
centrality	and	heterogeneity-,	some	initial	parameters	of	the	strategic	situation	-the	provision	point-	and	some	agents’	attributes	-beliefs	about	the	probability
that	others	will	cooperate-,	all	have	a	significant	impact	on	the	success	rate.	Our	paper	is	the	first	approach	to	an	explanation	for	the	scalar	variant	of
production	of	public	goods	in	a	network	using	computational	simulation	methodology,	and	it	outlines	three	main	findings.	(1)	A	less	demanding	collective	effort
level	does	not	entail	more	success:	the	effort	should	neither	be	as	high	as	to	discourage	others,	nor	so	low	as	to	be	let	to	others.	(2)	More	informed	individuals
do	not	always	produce	a	better	social	outcome:	a	certain	degree	of	ignorance	about	other	agents’	previous	decisions	and	their	probability	of	cooperating	are
socially	useful	as	long	as	it	can	lead	to	contributions	that	would	not	have	occurred	otherwise.	(3)	Dense	horizontal	groups	are	more	likely	to	succeed	in	the
production	of	step-level	public	goods:	social	ties	provide	information	about	the	relevance	of	each	agent’s	individual	contribution.	This	simulation	demonstrates
the	explanatory	power	of	the	structural	properties	of	a	social	system	because	agents	with	the	same	decision	algorithm	produce	different	outcomes	depending
on	the	properties	of	their	social	network.
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	Introduction

1.1 Since	individual	rationality	can	lead	to	a	suboptimal	outcome,	a	collective	action	problem	emerges	in	the	production	process	of	public	goods	(Taylor	1987).
Several	characteristics	of	public	goods	explain	why	their	production	takes	the	form	of	a	"social	dilemma"	(Hardin	1982;	Olson	1965;	Taylor	1987):	a)	the	good	is
jointly	produced	by	the	contributions	of	the	individual	group	members,	but	typically	not	every	single	member's	contribution	is	required;	b)	contributions	are	costly
even	when	the	value	that	is	obtained	from	the	public	good	is	higher	than	the	individual	cost	of	the	contribution;	c)	once	the	good	is	produced,	it	will	be	available
to	all	members	of	the	group	since	excluding	non-contributing	members	from	its	enjoyment	is	difficult	or	costly;	d)	a	member's	usage	of	the	good	does	not
diminish	its	availability	to	other	members	(non-rivalness).	This	last	characteristic	is	very	infrequent,	and	here	we	will	consider	that	the	good	provides	an	equal
benefit	to	all	members	of	the	group.

1.2 The	production	of	public	goods	has	been	studied	extensively	through	the	following	experimental	design:	a)	a	group	of	individuals	receive	an	endowment	of	(e)
units	and	have	to	decide,	anonymously,	how	much	(x)	they	wish	to	contribute	to	a	common	pool;	b)	the	share	of	the	endowment	that	is	not	contributed	to	the
common	pool	(e-x)	retains	its	original	value,	while	the	share	that	is	contributed	is	multiplied	by	a	factor	c;	c)	the	common	pool	(∑x*c)	is	divided	in	equal	parts
among	all	the	members	of	the	group;	d)	factor	c	is	determined	such	that	it	would	be	better	for	each	player	to	keep	rather	than	contributing	a	unit,	but	it	would	be
worse	for	each	player	if	no	one	contributes	rather	than	if	everybody	contributes	all	their	endowments.

1.3 This	experimental	design	allows	for	countless	variations:	subjects	can	have	equal	or	unequal	endowments,	decisions	on	how	much	to	contribute	to	the	common
pool	can	be	binary	–to	contribute	all	or	not	to	contribute–	or	discrete	–to	contribute	a	fraction	of	e–,	etc.	The	variant	we	are	interested	in	specifies	a	different
production	function;	production	functions	make	the	level	of	production	of	a	good	dependent	on	the	contributions.	The	main	distinction	is	between	continuous	and

step-level	functions	(León	2010)[1].	In	economic	terms,	we	can	stipulate	that	either	the	good	has	a	price	by	unit	(continuous	good)	or	it	has	a	unique	price	that
has	to	be	reached	(step-level	good).

1.4 In	the	experimental	design	presented	above,	the	production	function	is	continuous.	Each	contribution	adds	to	the	production	of	the	good,	and	all	contributions
add	the	same	(it	is	a	linear	function).	However,	in	this	article	we	focus	on	public	goods	with	a	step-level	production	function.	These	"step-level	goods"	(SLG)	or
"lumpy	goods"	are	characterised	by	the	existence	of	a	provision	point:	a	minimum	of	contributions	is	needed	to	produce	the	public	good.	If	the	provision	point	is
reached,	the	good	is	produced;	if	the	point	is	not	reached,	the	good	is	not	produced	at	all.	The	basic	SLG	model	states	that	once	the	provision	point	is	reached

additional	contributions	do	not	generate	a	higher	level	of	production.	[2]

1.5 In	the	early	1980s,	Marwell	and	Ames	(1980),	Hardin	(1982),	Taylor	(1987)	and	Taylor	and	Ward	(1982)	highlighted	the	distinction	between	continuous	and
step-level	goods.	It	is	now	widely	accepted	that	public	goods	analysis	is	not	possible	without	explicitly	stating	the	kind	of	good	we	are	referring	to	(Kollock	1998:
189;	Komorita	and	Parks	1995;	Ledyard	1995;	Marwell	and	Oliver	1993:	24).

1.6 The	variation	of	the	production	function	we	introduce	in	our	MAB	experimental	design	is	one	of	the	most	interesting	possible	variations,	mainly	because	the
inclusion	of	a	provision	point	completely	changes	the	logic	of	the	situation.	In	truth,	the	variation	of	other	design	elements,	such	as	the	endowment	–
equitable/inequitable–,	the	type	of	distribution	–equitable/inequitable–,	the	type	of	decision	–binary/discrete–	can	have	a	significant	impact	on	the	results,	but	do
not	make	a	public	goods	game	any	different	to	an	n-person	prisoner's	dilemma.	The	introduction	of	a	provision	point	does	achieve	the	difference:	since	there	is

a	provision	point,	defection	is	no	longer	a	dominant	strategy	in	a	one-shot	game.[3]
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1.7 Collective	action	in	the	form	of	producing	a	step-level	public	good	is	rather	frequent.	For	example,	the	case	presented	by	Taylor	(1987)	regarding	an	election
with	two	options,	A	and	B,	on	a	committee	or	a	volunteer	assistance	parliament	in	which	there	are	two	parties:	a	majority	and	a	minority.	The	largest	party
prefers	option	A	to	B.	Which	majority	group	members	will	attend	the	session?	To	the	extent	that	attendance	is	voluntary	and	costly,	each	member	from	the
majority	group	would	prefer	that	other	members	of	his	group	attends	and	help	with	their	vote	to	elect	option	A.	Moreover,	in	this	situation,	a	greater	number	of
majority	members	than	minority	members	attending	is	enough,	but	beyond	that	point	further	attendees	of	the	majority	group	are	not	required	to	produce	the
"good":	winning	the	election.	Note	that	in	this	case	it	is	not	strictly	necessary	for	A	to	be	a	public	good,	but	the	logic	of	the	situation	is	exactly	what	we	model	in
this	paper.	Another	real	example	of	scalar	public	goods	would	be	the	following:	in	some	universities	and	colleges,	the	department's	budget	partially	depends	on
the	productivity	of	their	members,	measured	as	the	total	number	of	journal	papers	produced	by	the	department.	If	there	is	a	minimum	threshold	of	articles	to
obtain	the	additional	budget,	this	may	be	considered	a	scalar	public	good.	Apart	from	any	other	personal	benefit	of	publication,	each	member	of	the	department
has	to	establish	its	contribution	at	a	level	of	effort,	knowing	that	only	if	the	cumulative	efforts	reach	the	required	level	the	department	will	get	an	additional
amount	in	the	annual	budget.

1.8 An	experimental	design	for	studying	SLG	production	could	start	from	the	simple	model	outlined	above,	and	then	modify	the	third	characteristic	by	adding	a
minimum	amount	or	"provision	point"	required	for	the	good	to	be	produced.	The	first	experiments	with	this	type	of	design	were	conducted	by	van	de	Kragt	et	al.
(1983)	and	Rapoport	(1985,	1987,	1988,	1993).	In	this	paper	we	aim	to	computationally	replicate	a	variant	of	these	experiments.	The	paper	is	organised	as
follows.	First,	we	present	different	types	of	sequential	running	ordering	of	the	agents'	decisions	and	our	proposal	of	a	network-dependent	sequence
formalisation.	Second,	we	briefly	review	the	literature	on	social	networks	and	experimentation	in	public	goods.	Third,	we	present	an	agent-based	model	that
replicates	the	experimental	setting	(Miguel	2011).	Fourth,	we	present	the	results	of	different	simulations	and	the	discussion.

	A	Network-Dependent	Sequence	Ordering	Rule	for	the	Production	of	Public	Goods

2.1 The	literature	on	the	subject	suggests	that	the	decisions	of	experimental	subjects	in	SLG	experiments	are	very	sensitive	to	the	sequence	of	the	decisions	(Abele
and	Ehrhart	2005;	Erev	and	Rapoport	1990)	because	different	sequencing	implies	different	information	available	at	the	decision	moment.	Four	different	rules	for
determining	the	order	of	agents'	decision	sequencing	can	be	found	in	experimental	research	(Budescu	et	al.	1997):	(1)	the	"simultaneous	protocol",	where
subjects	have	no	information	about	the	one	another's	decisions;	(2)	the	"sequential	protocol",	where	subjects	have	complete	information	about	all	previous
decisions;	(3)	the	"positional	protocol",	where	a	subject	has	information	about	her	position	in	the	sequence	but	not	about	previous	decisions;	and	(4)	the
"cumulative	protocol",	where	the	subject	knows	the	quantity	of	the	contributions	made	before	her,	but	not	her	own	position	in	the	sequence.

2.2 In	laboratory	experiments,	all	these	sequencing	–or	running	order–	rules	have	been	limited	in	their	design	by	the	necessity	of	simplicity	taking	priority	over
realism,	and	can	therefore	result	in	unrealistic	assumptions	about	the	available	information	when	people	make	their	choices.	This	simplification	implies	a	higher
capacity	to	control	for	variables,	generating	cumulative	knowledge	about	factors	that	influence	behaviour.	The	lack	of	realism	inherent	in	these	sequencing	rules
does	not	necessarily	imply	a	lack	of	value	or	heuristic	utility.	Our	proposal	aims	to	elaborate	and	apply	a	new	rule	to	complement	the	existing	ones.

2.3 A	more	realistic	sequence	ordering	rule	should	represent	a	decisional	situation	where	individuals	are	embedded	in	a	relational	structure	that	constrains	the
available	information.	In	a	non-artificial	situation	of	public	goods	production,	individuals	typically	have	certain	local	knowledge	about	the	dimensions	of	their
group,	but	they	are	not	in	direct	contact	with	all	members.	In	other	words,	it	is	the	network	structure	that	determines	available	information	in	terms	of	what	others
think,	say	or	do.	That	is	why,	with	the	exception	of	experiments	by	Suri	and	Watts	(2001),	it	is	commonly	accepted	in	existing	literature	that	a	social	network's
topology,	or	more	specifically,	the	structural	properties	of	a	social	network	have	an	effect	on	the	level	of	contribution	to	collective	action.	Co-operative	behaviour
can	spread	in	a	network	due	to	such	mechanisms	as	mimicry	(Fowler	and	Christakis	2010)	or	social	comparison	(Zschache	2012),	but	in	this	paper	we	focus	on
the	role	played	by	the	use	of	local	information	on	the	decisions	of	adjacent	nodes.

2.4 An	experimental	set-up	aimed	at	reproducing	this	situation	would	be	too	complex	to	be	executed	in	a	laboratory,	so	we	instead	test	this	new	sequence	ordering
rule	within	a	computational	multi-agent	simulation	model.	This	solution	allow	us	to	avoid	the	trade-off	between	simplicity	and	realism	typical	for	laboratory
experiments,	and	substitute	it	for	a	trade-off	between	realism	in	some	aspects	–agents	will	be	embedded	in	a	network–	and	realism	in	others	–decisions	will	be
made	by	software	agents	not	by	real	people.	In	addition	to	the	aim	to	computationally	replicate	some	experimental	set-ups	of	the	reviewed	literature,	other
considerations	such	as	the	relative	advantage	in	terms	of	costs,	resources	and	time,	or	the	fact	that	the	simulation	can	predict	when	there	are	differences	in	the
parameters	that	describe	a	given	environment,	play	in	favour	of	the	use	of	ABM	research	methodology.

	The	Formal	Model	Description

3.1 In	this	section	we	outline	the	formal	model	to	be	computationally	implemented:

1.	 A	group	of	agents	N	=	{1,	…,n}	participates	in	a	public	goods	game.
2.	 Agents	know	the	size	of	the	group	–the	network–	they	belong	to.
3.	 Each	player	i	(i	∈	N)	receives	an	endowment	of	ei	units	(ei>0).	The	value	of	all	endowments	is	equal.
4.	 Each	agent	i	∈	N	decides	about	the	quantity	(xi)	from	the	set	X={0,	ei}	that	she	wishes	to	contribute	to	the	production	of	the	public	good.	Agent	i	must

make	a	binary	decision:	to	either	contribute	all	her	endowment	(xi=ei)	or	contribute	nothing	(xi=0).[4]

5.	 The	position	of	each	agent	in	the	sequence	of	decisions	is	randomly	determined.
6.	 Agents	are	placed	in	a	network,	g,	where	they	only	interact	with	some	members	of	N.	Network	g	is	constituted	by	symmetrical	links:	gij=gji.
7.	 Each	agent	i	∈	N	faces	a	set	of	adjacent	nodes	or	neighbours	Ni	⊂	N	with	which	she	is	connected.	Ni={j∈N	|	gij=1}.	The	number	of	i's	neighbours	is	ki	–i's

node	degree	centrality–.
8.	 If	gij=1	agent	j	will	know	xi	if	in	the	randomly	decided	sequence	(see	point	5)	xi	has	taken	place	before	xj,	and	vice	versa.
9.	 Agents	know	their	ki,	but	not	that	of	their	neighbours.	They	also	do	not	know	their	position	in	the	sequence	of	decisions	of	N,	although	they	know	their

position	in	the	sequence	of	decisions	of	Ni.
10.	 At	the	decision	moment	t,	each	agent	has	three	pieces	of	information	about	other	agents'	decisions:	a)	how	many	neighbours	have	made	decisions

previously	–B,	for	"Behaviours"	–;	b)	∑ j∈Nixj,t-1,	that	is,	how	many	adjacent	nodes	have	contributed	their	endowment	to	the	production	of	the	public	good

in	t-1	–C,	for	"Cooperators"–;	c)	how	many	agents	participate	in	the	network	about	whom	she	has	no	information,	n-ki.
11.	 There	exists	a	provision	point	(m)	known	by	all	agents,	0<m<∑i∈Nei.
12.	 If	∑i∈Nxi	≥	m,	each	agent	receives	a	payoff	r.	If	∑i∈Nxi	<	m,	the	good	is	not	produced	and	all	the	contributions	are	lost.
13.	 The	payoff	i	receives	if	the	group	reaches	the	provision	point	is	r	=	mc/n,	where	c	is	a	factor	known	to	all	agents,	such	that	ei	<	r.
14.	 The	final	payoff	(πi)	that	agent	i	receives	is	determined	by	the	following	payoff	function:
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(1)

3.2 In	our	model,	called	"NetCommons",	people	are	located	in	a	socio-matrix	that	constrains	the	available	information,	conditioning	the	decision	process.	Let	us
illustrate	two	different	decision	sequencing	orders	in	this	network	–the	sequence	of	decisions	in	the	matrix	follows	an	alphabetical	ordering–.

Diagram	1.	A	typical	decision	ordering	in	a	N=7
network

3.3 Agent	B	decides	knowing	the	decision	of	A	and	knowing	that	G	has	not	decided	yet.	Since	she	knows	her	position	in	the	sequence	of	decisions	of	NB	but	she
does	not	know	her	position	in	the	sequence	of	N	–see	point	9–,	agent	B	cannot	know	whether	C,	D,	E,	or	F	have	already	decided.	Similarly,	agent	C	decides
knowing	the	decision	of	A	and	knowing	that	E	and	D	have	not	decided	yet.	Since	she	knows	her	position	in	the	sequence	of	decisions	of	NC	but	she	does	not
know	her	position	in	the	sequence	of	N,	agent	C	cannot	know	whether	B,	F,	or	G	has	already	decided.	Each	individual	has	access	to	information	about	part	of
the	decisions	already	taken,	but	faces	uncertainty	with	respect	to	the	rest	of	the	past	and	future	decisions.

	Networks	and	Experimentation	on	Public	Goods

4.1 Moreno's	work	(1951)	is	often	referred	to	as	the	starting	point	of	social	network	analysis.	Only	in	the	last	20	years	has	network	analysis	been	applied	in
experimental	economics	–for	a	review,	see	Kosfeld	(2004).	These	studies	have	focused	mostly	on	coordination	networks,	buyer-seller	networks	and	network
formation.

4.2 Concerning	experimental	research	on	public	goods,	lab	experiments	considering	the	role	of	networks	are	scarce	–some	exceptions	are	Bonacich	1990;
Cárdenas	and	Jaramillo	2009;	Sonnemans	et	al.	2006;	Fowler	and	Christakis	2010–	and	available	research	usually	considers	networks	to	be	the	outcome	of	a
generative	process	rather	than	a	precondition	for	interaction.	Knigge	and	Buskens	(2010),	for	example,	presented	an	experiment	in	which	subjects	seek	to
establish	relationships	with	others	that	share	access	to	the	good	produced,	so	that	the	network	emerges	from	the	interactions.	This	paucity	of	network	analysis
in	the	context	of	laboratory	research	on	public	goods	is	surprising	as	the	consensus	is	that	overcoming	the	free-rider	problem	requires	establishing	some	form
of	interdependence	between	decisions	(Marwell	et	al.	1988).	The	relevance	of	social	ties	in	determining	participation	in	collective	action	was	pointed	out	a	long
time	ago	(Tilly	1978;	Oberschall	1973).	The	explanation	for	this	is	most	likely	the	technical	difficulties	of	reproducing	countless	specific	configurations	of
networks	in	a	laboratory	context.

4.3 Consistent	with	this,	the	main	contributions	to	understanding	the	relation	between	networks	and	public	goods	have	been	realised	outside	the	lab,	through
mathematical	models	and	simulations.	Novak	and	May	(1992)	were	the	first	to	study	the	dynamics	of	the	prisoner's	dilemma	when	agents	are	placed	in	a	two
dimensional	space	that	constrains	them	to	interact	with	their	neighbours.	Since	then,	the	social	location	of	the	agents	has	been	considered	a	key	element	to	be
modelled	in	theories	of	collective	action,	thus	opening	the	door	to	the	study	of	the	relationship	between	networks	and	public	goods.	Bramoullé	and	Kranton
(Bramoullé	2007)	were	the	first	to	present	a	network	model	of	public	goods,	while	other	authors	use	an	evolutionary	approach	to	public	goods	without	paying
attention	to	the	social	structure	(e.g.,Ye	et	al.	2011).	In	the	field	of	mathematical	and	computational	modelling,	as	in	experimental	research,	the	analysis	of	the
relationship	between	networks	and	public	goods	has	emphasised	the	analysis	of	reticular	dynamics,	i.e.	the	processes	of	networks	emergency.	Thus,	for
example,	Takács	et	al.	(2008)	and	Skyrms	and	Pemantle	(2000)	presented	models	in	which	the	participants	in	collective	action	can	strategically	review	their
relationships,	thus	generating	reticular	dynamics,	and	Bravo	et	al.	(2012)	claimed	that	the	endogenous	formation	of	the	network	is	even	more	important	for
cooperation	than	the	network	topology.	In	general,	these	models	are	part	of	a	broader	tradition,	studying	the	emergency	of	complex	networks	from	local
interactions,	such	as	models	in	Sutcliffe	et	al.	(2012)	and	Pujol	et	al.	(2005).

4.4 Table	1	summarises	the	differences	between	our	simulation	model	and	the	leading	models	on	networks	and	collective	action	in	literature.	As	can	be	seen,
NetCommons	is	the	first	simulation	model	of	SLG	production.	To	the	extent	that	the	logic	of	the	situation	is	completely	different	when	the	good	has	a	provision
point,	we	understand	that	the	original	contribution	of	this	article	is	that	it	will	be	the	first	to	explore	the	role	of	reticular	topology	on	the	success	of	collective	action
which	aims	to	produce	a	step-level	public	good.

Table	1:	NetCommons	compared	with	leading	models	of	networks	and	public	goods

Marwell	(1988) Gould	(1993) Chwe	(1999) NetCommons

Method Simulation	and
mathematical	model

Mathematical	model Mathematical	model Simulation

Agents Motivation	and
decisional	mechanism

Expected	utility
maximisation

Rationality	and
justice	norms

Probability	of	reaching
the	threshold

Expected	utility
maximisation

(criticality)
Decision	cost Considered Irrelevant Not	considered Considered
Endowment Different	for	each	agent Not	considered Not	considered Equal	for	all	agents

Reward Different	for	each	agent Not	considered Not	considered Equal	for	all	agents
Unconditional
contribution

Impossible Possible Impossible Impossible

Threshold No	threshold No	threshold Endogenous	and Exogenous	and
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precondition objective
Individual	efficacy Dependent	on	the

decision	of	the	group
Dependent	on

previous	decisions
Not	Dependent	on
previous	decisions

Dependent	on
previous	decisions

Networks Links Asymmetrical	and	direct Symmetrical	and
direct

Asymmetrical,	direct
and	indirect

Symmetrical	and
direct

Use	of	the	links Costly Not	costly Not	costly Not	costly
Agent's	knowledge	of

the	network
Agents	know	the

structure
Agents	know	their

neighbours
Agents	know	the

structure
Agents	know	their
neighbours	and	n

Information	obtained
in	the	network

Perfect	information Behaviours	and
predispositions

Others'	personal
thresholds

Others'	behaviours

Output Main	result Sum	of	contributions Sum	of	contributions Sum	of	contributions Success	rate

	The	Simulation	Model	Description

5.1 The	simulation	was	conducted	through	the	Netlogo	platform.	The	code	is	available	at	"CoMSES	Computational	Model	Library",	the	public	repository	of
OpenABM	Consortium,	http://www.openabm.org/model/2522/version/1/view	(Miguel	2011).	This	model	implements	the	formal	network-dependent	decision
sequence	ordering	outlined	in	the	previous	section.	However,	since	the	model	intends	to	capture	the	essential	traits	of	SLG	productions,	we	complete	here	the
specification	of	the	formal	model	by	including	four	elements:	(1)	the	agents'	decision	process;	(2)	the	initial	parameters;	(3)	the	network	properties;	and	(4)	the
dynamics	of	the	process	and	its	output.

How	agents	decide	in	the	model

5.2 In	the	NetCommons	model,	agents	are	assumed	to	be	self-interested	utility	maximisers.	Experiments	have	shown	that	subjects	who	repeatedly	face	a	public
goods	game	tend	to	act	in	accordance	with	the	predictions	of	rational	choice	theory	(Ledyard	1995).	Theoretical	predictions	from	our	simulation	can	be
considered	as	well-grounded	hypotheses	of	what	we	reasonably	expect	to	find	in	real	cases	(including	laboratory	experiments).	Moreover,	our	model	can	offer
some	practical	advice	on	the	most	effective	way	of	producing	a	public	good.	We	could	consider	prosocial	agents,	but	constructing	a	model	based	on	the	most
unfavourable	assumptions	regarding	the	production	of	public	goods	–with	self-interested	utility	maximiser	agents–	is	the	best	strategy.	Prosocial	agents	would
merely	raise	success	rates	–their	probability	of	cooperation	is	higher–.

5.3 To	model	decisions	we	shall	use	the	concept	of	self-efficacy	or	criticality,	and	its	formalisation	based	on	probability	theory.	In	the	context	of	the	production	of
SLG,	criticality	refers	to	the	condition	whereby	a	decision	is	necessary	and	sufficient	to	reach	the	provision	point.	In	NetCommons,	agents	have	the	cognitive
capacity	to	estimate	their	probability	of	being	critical.

5.4 When	an	agent	decides	whether	to	contribute	to	the	common	pool,	she	will	consider	the	provision	point	(m),	the	reward	that	she	expects	to	obtain	if	the	good	is
produced	(r),	the	cost	of	her	contribution	(x),	the	number	of	neighbours	that	have	previously	decided	(B),	and	the	number	of	neighbours	that	have	already
cooperated	(C).	Moreover,	the	decision	will	depend	on	her	belief	that	an	exact	number	of	m-1	will	contribute,	making	her	contribution	critical,	so	the	decision
ultimately	depends	on	the	probability	of	cooperation	agents	attribute	to	each	other	(p).

5.5 An	obvious	implication	for	the	NetCommons	model	is	that	an	agent	cannot	rationally	foresee	the	decisions	of	the	other	agents	at	the	moment	of	her	decision.
She	does	not	know	the	information	that	others	will	have	at	the	moment	of	their	decision,	since	she	does	not	know	which	other	agents	are	neighbours	or	what
information	they	receive	from	their	adjacent	links.	In	this	situation	of	uncertainty	regarding	others'	decisions,	the	rational	option	would	be	to	attribute	to	others	a
certain	probability	of	cooperation,	0≤	p≤1.	In	our	model,	we	integrate	a	homogeneity	assumption	(Rapoport	1985),	whereby	all	agents	attribute	the	same

probability	to	all	other	agents[5].

5.6 Taking	all	these	factors	into	account,	agents	will	find	themselves	in	one	of	the	following	six	exhaustive	and	mutually	exclusive	situations:

Situation	1:	The	number	of	neighbours	who	have	already	cooperated	is	equal	or	higher	than	the	provision	point.	In	this	case	the	public	good	will	be	produced
and	the	agent's	contribution	is	not	strictly	required.	A	rational	agent	will	not	cooperate	in	this	situation,	for	contributions	above	the	provision	point	have	no	effect
and	constitute	a	pure	loss	for	the	agent.

First	situation:	If	C≥m,	then	DO	NOT	cooperate.

Situation	2:	The	number	of	neighbours	that	have	already	cooperated	is	equal	to	the	provision	point	minus	one,	and	each	agent	believes	that	she	is	not	the	last
one	to	decide.	As	long	as	the	reward	is	higher	than	the	cost	of	contributing,	we	expect	the	agent's	cooperation	to	ensure	the	provision	point	is	reached.
However,	the	agent	also	takes	into	account	the	possibility	that	others	will	bear	the	cost	of	contribution,	in	which	case	she	can	retain	the	endowment	and	receive

a	share	of	the	reward	without	expending	the	cost.	In	this	situation,	an	agent's	cooperation	depends	on	her	belief	that	nobody	else	will	co-operate,	that	is	(1-p)n-B-

1,	because	only	in	this	case	is	her	contribution	critical.

Second	situation:	If	C=m-1	and	n-B>1,	then:	cooperate	if	r[1-(1-p)n-B-1]>e	DO	NOT	co-operate	if	r	[1-(1-p)n-B-1]≤e

Situation	3:	The	number	of	neighbours	who	have	already	co-operated	is	lower	than	the	provision	point	minus	one,	and	the	number	of	pending	decisions	is	equal
or	higher	than	the	number	of	contributions	needed	to	reach	the	provision	point.	In	this	case,	the	agent	has	to	calculate	her	probability	of	being	critical	by

considering	both	how	many	neighbours	have	not	decided	yet	and	how	many	strangers	are	in	the	network.[6]	Building	on	the	probabilistic	model	of	Rapoport
(1985),	which	has	been	widely	used	as	a	reference	model	for	calculating	"objective"	criticality	(Kerr	1989),	we	calculate	the	probability	of	being	critical,	Pm-C-1,
as	follows:

(2)

That	is,	the	probability	that	in	each	combination	of	n-B-1	players,	exactly	m-C-1	will	co-operate	and	the	rest	(n-B-m)	will	not.	This	would	make	her	contribution
critical.

Third	situation:	If	C<m-1	and	m-C≤n-B,	then:	co-operate	if	rPm-C-1>e.	DO	NOT	co-operate	if	rPm-C-1≤e

Situation	4:	The	agent's	contribution	is	critical	only	if	it	is	added	to	the	future	cooperation	of	all	the	agents	about	whom	she	has	no	information	–because	they
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have	not	decided	or	because	they	are	not	placed	in	adjacent	nodes.	This	requires	a	belief	that	she	is	not	the	last	one	deciding.

Fourth	situation:	If	1<n-B=m-C,	then:	co-operate	if	rpn-B>e	DO	NOT	co-operate	if	rpn-B≤e

Situation	5:	An	agent	faces	a	situation	in	which	the	number	of	instances	of	cooperation	needed	to	reach	m	is	higher	than	either	the	number	of	agents	that	have
not	yet	decided	or	those	about	whom	she	has	no	information.	In	this	case,	a	rational	agent	will	not	cooperate,	since	the	goal	is	unattainable	and	her	contribution
would	be	lost.

Fifth	situation:	If	m-C>n-B,	then	DO	NOT	cooperate.

Situation	6:	An	agent	finds	herself	in	a	situation	where	she	believes	that	she	is	the	last	one	to	decide,	and	only	one	more	contribution	is	needed	to	reach	m.

Given	ri>ei,	a	rational	agent	will	always	co-operate.[7]

Sixth	situation:	If	1=n-B=m-C,	then	cooperate.

The	initial	parameters	of	the	simulation

5.7 The	initial	parameters	in	NetCommons	are	almost	identical	to	those	used	in	the	pioneering	SLG	experiments	of	van	de	Kragt	et	al.	(1983):

m=3,	n=7,	p=0.5,	e=5,	r=15

In	the	van	de	Kragt	design,	there	was	no	p	parameter,	and	our	reward	(r)	is	slightly	higher	than	theirs	in	response	to	some	early	testing	of	NetCommons.
However,	the	quantity	of	r	is	not	arbitrary.	It	has	been	establish	inside	the	margins	that	leads	to	a	failure	in	the	production	of	the	good	when	decisions	are
simultaneous	(Rapoport	1985:	151).	To	illustrate	it,	in	a	simultaneous	protocol	with	the	parameters	m=3,	n=7,	p=0.5,	e=5,	rational	utility	maximisers	evaluate
their	probability	of	being	critical	as	Pm-1=	0,234.	If	their	decision	is	to	cooperate	only	when	rPm-1>e,	only	r=22	could	lead	them	to	cooperate.	The	same	is	also
true	for	a	cumulative	protocol.	If	the	network-dependent	decision	sequence	ordering	leads	to	success	where	the	simultaneous	and	the	cumulative	sequence
orderings	fail,	or	if	at	least	does	so	under	certain	well-specified	conditions,	we	could	conclude	that	working	in	a	network,	or	at	least	in	certain	networks,
facilitates	the	achievement	of	the	common	goal.	Under	equal	conditions	of	incentives	for	the	production	of	the	good,	the	network-dependent	sequence	ordering

would	not	only	be	more	realistic,	but	also	more	effective	than	the	simultaneous	and	the	cumulative	ordering	rules.[8]

Input	networks	properties

5.8 Multi-agent	simulation	not	only	allows	us	to	place	agents	in	a	network	structure	and	observe	the	results,	but	also	allows	us	to	compare	the	results	obtained	when
these	agents	are	placed	in	different	kinds	of	social	networks.	For	this	purpose,	we	have	built	–with	Ucinet	6.0	and	in	DL	format–	a	catalogue	of	symmetrical
networks	composed	by	7	nodes	and	with	different	densities	and	global	degree	centrality	and	heterogeneity.

5.9 Density	is	defined	as	the	ratio	of	the	number	of	ties	over	the	maximum	possible	number	of	ties	(Scott	2005).

(3)

where	l	is	the	number	of	ties	in	the	network.	The	value	of	density	oscillates	between	0,	when	no	node	is	linked,	and	1,	when	all	the	nodes	are	connected	with
each	other.	For	networks	with	n=7	and	only	one	component,	density	ranges	between	0.29	–for	a	network	with	the	shape	of	a	line–	and	1.	Density	is	one	of	the
structural	properties	of	networks	that	existing	literature	has	identified	as	relevant	due	to	its	impact	on	the	success	of	collective	action.	This	impact,	however,	is
far	from	clear	(Bravo	2008).	Authors	like	Takács	et	al.	(2008),	for	example,	have	noted	that	dense	networks	involve	more	information	and	greater	capacity	for
punishment,	which	fosters	cooperation.	However,	at	the	same	time,	high	density	can	provide	tools	to	resist	pressure	and	even	for	mutual	affirmation	of	defecting
behaviours.	Punishment	for	defection	may	be	reduced	precisely	because	some	neighbours	anticipate	future	interactions	that	they	do	not	want	to	compromise
(Gould	2003).	Also,	if	the	decision	to	contribute	depends	on	observed	behaviour	in	the	local	neighbourhood,	then	observing	non-co-operative	behaviour	can
stimulate	defection	(Gould	1993).

5.10 Given	a	certain	level	of	density,	it	is	possible	to	build	networks	with	different	global	degree	centrality	of	heterogeneity.	For	example,	a	network	with	a	density	of
0.52	can	be	composed	of	a	set	of	nodes	with	degrees	5,5,4,3,2,2,1	or	with	degrees	5,4,3,3,3,3,1	(among	many	other	possible	combinations).	We	used	Blau's
index	to	measure	heterogeneity.	In	symmetrical	networks	the	index	is	defined	as	follows:

(4)

5.11 The	networks	that	we	use	have	just	one	component;	all	nodes	are	directly	or	indirectly	connected	forming	a	single	structure.	This	is	for	two	main	reasons.	First,
as	a	matter	of	realism:	in	small	groups	(n	=	7)	the	likelihood	of	more	than	one	component	is	quite	low,	and	in	the	case	of	public	goods	the	population	could	be
seen	as	belonging	to	communities	that,	generally,	are	more	cohesive	the	smaller	they	are.	Second,	because	our	ultimate	interest	is	in	analysing	the	impact	of
reticular	properties	such	as	density	and	heterogeneity	in	the	success	or	failure	of	collective	action.	The	number	of	network	components	affects	these	indicators
and	therefore	must	be	experimentally	controlled	as	separate	from	the	set	of	analysed	variables.

5.12 Given	these	characteristics,	the	catalogue	is	composed	of	230	different	networks.[9]	This	set	is	exhaustive:	it	includes	all	the	possible	networks	with	n=7,
symmetrical	ties	and	only	one	component.	This	means	that	the	catalogue	contains	very	different	network	topologies:	small-world	networks,	scale-free	networks,
random	networks,	etc.	However,	the	aim	of	this	article	is	not	to	compare	the	differential	success	of	these	special	types	of	networks	but	to	explore	the	impact	of
reticular	properties	on	the	success	or	failure	of	the	production	of	SLGs.

Dynamics	of	the	process	and	outputs

5.13 The	previous	formal	model	description	section	specifies	the	dynamics	of	the	production	of	the	public	good,	and	corresponds	to	a	single	"turn"	in	the
NetCommons	simulation	model,	where	all	members	of	the	group	decide	one	after	another	resulting	either	in	the	provision	point	being	reached	(success)	or	not
(failure).

5.14 The	top-level	algorithm	for	the	model	is:

    
Create initial network (options: random network OR import-DLfile)
Unless maximum number of time steps (5000) has been reached, do:
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    Reset all agents' attributes
    Unless all agents have decided, eavh agent will:
        Scan neighborhood for counting deciders (B) and cooperators (C)
        Estimate the decision situation
        Make a decision about cooperation behaviour
        Record micro-decisional outcomes in a buffer-matrix
        Next agent
    Compute the turn macro-indicators from the buffer-matrix
    Update outputs and plotting
    Next turn
Stop simulation run 

5.15 The	final	result	of	a	turn	depends	on	the	sequence	of	decisions,	which,	as	stated	before,	is	randomly	decided	in	each	turn.	For	n=7,	the	number	of	all	possible
sequence	ordering	is	7!=5,040	for	each	different	network.	This	means	a	network	has	5,040	different	possible	results.	In	our	analysis	we	focus	on	the	success
rates	(SR)	of	each	network,	defined	as	the	number	of	successful	turns	–where	the	provision	point	is	reached–	over	the	total	number	of	realized	turns.	In	the	next
section	we	present	the	results	after	a	simulation	of	5,000	turns	for	each	network.

	Results	and	Discussion

6.1 In	this	section	we	discuss	two	different	types	of	results.	The	first	type	concerns	how	the	change	in	certain	initial	parameters	impacts	on	the	success	rate	(SR).
For	this	analysis	we	focus	on	a	single	network	("18_16.dl")	comprising	18	ties	and	a	heterogeneity	of	16%.	The	reason	for	selecting	this	particular	network	was
its	average	success	rate	(0.63)	which	allowed	us	to	better	analyse	the	impact	of	changes	in	the	initial	parameters.

6.2 The	second	type	of	results	relates	to	the	variability	in	success	rates	of	different	networks	as	a	function	of	their	structural	properties.	For	this	analysis	we	used	the
full	catalogue	of	230	networks.

The	stability	of	the	success	rate

6.3 If	there	exists	a	finite	number	of	possible	sequence	orderings	for	a	network,	and	if	the	results	of	a	particular	turn	do	not	affect	the	subsequent	turns,	a	success
rate	that	is	updated	after	each	turn	cannot	show	an	unstable	pattern.	As	the	simulation	is	running	turn	after	turn,	the	network	would	asymptotically	approach	the
average	success	rate	(SR)	produced	by	–hypothetically–	calculating	the	result	of	the	5,040	possible	sequences	of	the	network.	We	can	see	in	Figure	1,	with	this
stabilisation	evident,	the	updated	SR	after	each	turn	concludes.
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Figure	1.	Success	rate	of	the	network	"18_16"	(5000	rounds)

6.4 Two	remarks	should	be	made	here.	First,	the	fact	that	each	network	or	"social	unit"	has	its	own	success	rate	is	unsurprising	in	sociological	analysis.	Less
common	is	the	ability	to	identify	the	situational	mechanisms	–responsible	for	the	macro-micro	link–,	the	action-formation	mechanisms	–responsible	for	the	micro-
micro	link–	and	the	transformational	mechanisms	–responsible	for	the	micro-macro	link–	that	explain	how	individual	actions	jointly	produce	that	outcome
(Hedstrom	and	Swedberg	1996,	1998).	In	our	case,	the	simulation	allows	us	to	generate	and	analyse	the	35,000	individual	decisions	that	cause	this	rate,	and
moreover	specify	how	this	happens.

6.5 Second,	we	estimate	that	the	"18_16"	network	needs	212	rounds	to	stabilise	at	a	rate	within	a	±3%	margin	of	the	rate	obtained	after	5,000	rounds.	If	we	use	a
margin	of	±5%,	it	takes	the	simulation	100	rounds	to	achieve	stability.	In	both	cases,	it	is	an	excessive	number	of	rounds	to	be	reproduced	in	a	laboratory
experiment	with	human	subjects.	This	is	why	the	analysis	of	the	network-dependent	sequence	ordering	can	only	be	produced	through	a	multi-agent	simulation
or	a	mathematical	model.

The	effects	of	the	change	in	the	parameters

6.6 In	the	following	sections	we	present	some	results	of	analysing	the	effects	on	the	SR	of	different	relevant	parameters.	We	will	explore	three	spaces	of	parameters
in	turn:	the	provision	point	of	the	public	good	(m),	the	probability	of	cooperation	attributed	to	other	agents	(p),	and	two	structural	properties	of	the	networks
(density,	and	global	degree	heterogeneity).	In	all	three	cases	the	analytical	strategy	will	be	first	to	present	some	aggregate	or	macro-results,	and	then	analyse
the	detailed	records	to	establish	the	micro-foundations	explaining	these	results.

Changes	in	the	provision	point	(m)

Macroresults

6.7 After	5000	rounds,	the	success	rate	of	the	network	"18_16",	which	comprises	different	provision	points	while	keeping	the	rest	of	the	parameters	constant,
presents	the	following	distribution.

Figure	2.	Success	rates	of	the	network	"18_16"	with	different	provision	points
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6.8 In	this	analysis	we	do	not	consider	the	possibility	of	m=1:	this	particular	situation	does	not	constitute	a	collective	action	problem.	In	addition,	our	formalisation
0<m<∑i∈Nei	allows	us	to	dismiss	m=7	as	well,	because	this	situation	excludes	the	possibility	of	receiving	a	benefit	without	cost.

6.9 As	shown	by	Figure	2,	high	provision	points	generate	a	failure	of	100%.	The	lower	provision	point	m=2	is	more	successful,	but	this	one	in	turn	is	outperformed
by	the	intermediate	provision	point	m=3.	To	a	certain	degree	(m=3	in	our	case),	higher	SRs	are	achieved	the	more	people	collaborate.

Microfoundations

6.10 Table	2	allows	us	to	identify	the	explicative	micro-foundations	of	the	SRs	obtained	with	different	provision	points.

Table	2:	Number	of	decisions	depending	on	the	provision	point,	the	order	in	the	sequence,	the	situation	that	the	agent	faces,
and	the	type	of	decisions	made	(network	"18_16",	5000	rounds	for	each	provision	point)

Situation	1
C>=m

Situation	2
C=m-1	&	n-B>1

Situation	3
C<m-1	&	m-C=<n-B

Situation	4
C=m-n+B

Situation	5
m-C>n-B

m Order Def. Coop. Def. Coop. Def. Coop. Def. Coop. Def. Coop.

2 1 5000
2 5000
3 5000
4 4602 398
5 236 3902 862
6 21 838 3181 852 108
7 166 1393 2328 414 699

3 1 5000
2 5000
3 4163 837
4 3171 1829
5 2279 2476 245
6 25 1155 3239 463 118
7 65 4251 222 462

4 1 5000
2 5000
3 5000
4 4590 410
5 4143 624 233
6 3966 370 664
7 3644 665 691

Note:	Any	network	consisting	of	7	members	represents	a	total	of	7	decisions	each	round,	so	that	5000	rounds	involve	35000
choices.	Each	of	these	decisions	(a)	has	been	produced	in	a	sequence	order	within	the	round	(from	first	to	seventh,	the	last),
(b)	has	occurred	in	one	of	the	5	decision	situations,	and	(c)	has	been	whether	to	co-operate	or	not.	The	table	above	displays
the	absolute	frequency	cross-distribution	of	35,000	decisions,	accounting	for	the	three	variables	and	controlling	by	3	levels	of
provision	point	(m).

6.11 Table	2	shows	that	first	choices	are	always	produced	in	Situation	3	and	always	consist	of	a	defection,	independent	of	the	value	of	m.	The	explanation	of	SR
requires	clarification	of	how,	when	and	why	agents	start	to	cooperate.	In	Situation	3,	PmC1	indicates	that	(while	C=0)	with	a	low	B	no	agent	cooperates,	but	from
a	certain	threshold	in	B	values	onwards	agents	start	cooperating.	To	explain	why	this	happens	we	have	to	explore	the	three	components	of	the	criticality
calculus	(Formulae	2).	The	first	component,	the	binomial	coefficient	C(n-B-1,	m-C-1),	is	lower	the	higher	B	is.	In	these	first	rounds	in	which	nobody	cooperates,

the	second	component	(p	m-C-1)	is	constant	and	can	therefore	be	ignored.	The	last	component	((1-p)	n-B-m)	provides	the	key	to	understanding	the	underlying
mechanisms,	because	here	we	observe	that	the	higher	B	is,	the	higher	the	possibility	that	n-m	will	not	cooperate,	which	in	turn	increases	the	probability	of	the
agent's	criticality.

6.12 This	is	a	situational	mechanism	(Hedström	and	Swedberg	1998),	since	it	explains	at	which	moment	and	why	a	pioneering	cooperative	behaviour	–cooperation
that	is	believed	to	be	pioneering	by	the	agent–	is	triggered.	We	call	this	mechanism	the	pioneering	cooperation	trigger.	Once	this	mechanism	is	activated,	two
situations	can	occur.	In	some	cases,	pioneering	contributions	establish	the	conditions	for	other	agents	to	estimate	their	probability	of	being	critical	as	high,	and
therefore	they	decide	to	co-operate.	We	call	this	mechanism	the	speculative	cooperation	trigger.	In	other	cases,	having	relevant	information	concerning	previous
cooperation	directly	affects	an	agent's	belief	that	her	contribution	means	the	provision	point	is	reached	(although	she	cannot	be	sure	that	her	contribution	is
critical,	since	other	agents	could	bear	the	cost	of	the	contribution).	We	call	this	mechanism	the	effective	cooperation	trigger.

6.13 The	only	transformational	mechanism	that	explains	why	a	turn	concludes	successfully	is	the	mechanism	of	the	aggregation	of	individual	choices.	However,	this
mechanism	can	take	different	forms	depending	on	the	way	in	which	situational	mechanisms	that	trigger	pioneering,	speculative	and	effective	cooperation	are
activated.	Different	cumulative	processes	that	lead	to	success	explain	why	each	case	has	its	SR,	and	why	that	rate	is	different	in	each	case.

6.14 Further,	different	cumulative	processes	explain	why	a	network	with	m=2	achieves	a	specific	SR,	and	why	this	SR	is	lower	than	the	SR	produced	when	m=3.	The
key	to	understanding	this	difference	is	the	fact	that	the	threshold	of	B	values	which	activate	the	pioneering	cooperation	trigger	is	higher	in	networks	with	lower
provision	points.	Keeping	C=0,	m=2	requires	B=3	to	co-operate,	while	m=3	only	requires	B=2.
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6.15 This	outcome	is	explained	as	the	result	of	a	change	in	the	first	component	of	Pm-C-1.	Keeping	B	and	C	constant,	goods	with	a	higher	m	produce	a	higher	value
for	the	binomial	coefficient	C(n-B-1,	m-C-1),	which	in	turn	implies	that	the	criticality	estimation	favours	cooperation.	When	p=0.5,	the	probability	of	a	situation
with	1	cooperation	and	5	defections	is	equal	to	the	probability	of	situations	with	2	cooperations	and	4	defections.	However,	the	latter	is	more	likely	than	the
former	because	there	are	more	combinations	of	this	outcome.	In	other	words,	an	agent	is	more	likely	to	be	critical	when	the	number	of	contributions	needed	is
higher.

6.16 When	m=2,	starting	from	the	fourth	player	it	is	possible	that	someone	may	have	knowledge	of	B=3	and	then	decide	to	cooperate.	When	m=3,	the	same	process
starts	earlier,	but	now	it	only	takes	B=2	for	the	agent	to	co-operate.	This	means	that	when	m=3	pioneering	cooperation	is	triggered	earlier	than	when	m=2,	which
in	turn	induces	the	earlier	triggering	of	speculative	and	effective	cooperation.	In	the	case	of	m=3,	previous	cooperation	leads	either	to	speculative	cooperation	or
to	the	agents	finding	themselves	in	Situation	4	characterised	by	no	cooperation.	However,	since	the	balance	is	positive,	the	increase	in	speculative	cooperation
is	responsible	for	the	increasing	success	rate.	The	case	of	m=3	implies	an	early	triggering	of	pioneering	cooperation,	which	allows	a	subsequent	triggering	of
speculative	cooperation	sufficiently	high	for	the	provision	point	to	be	reached.	When	m=2,	pioneering	cooperation	is	triggered	at	a	later	point,	which	means
speculative	and	effective	cooperation	can	emerge	too	late	for	the	provision	point	to	be	reached.

6.17 SR	grows	from	m=2	to	m=3,	but	falls	from	m=3	to	m=4.	This	is	explained	because,	while	with	these	parameters	 B≤3	leads	to	a	defection,	in	contrast	to	when
m=3	the	pioneering	cooperation	trigger	is	not	activated.	In	this	situation,	agents	with	ki≤3	never	cooperate,	while	those	with	ki≥	3	either	face	Situation	3,	with	a
criticality	estimation	that	discourages	cooperation,	or	else	face	Situation	4,	where	the	criticality	calculus	always	leads	to	defection.	The	conditions	that	lead	to
cooperative	behaviour	are	never	met.

6.18 In	short,	the	explanation	of	the	different	success	rates	for	each	value	of	m	resembles	an	instance	of	path-dependence,	because	of	the	way	in	which	the
cumulative	process	of	contributions	takes	place.	Where	the	conditions	for	an	early	triggering	of	pioneering	cooperation	are	met,	the	subsequent	triggering	of
speculative	and	effective	cooperation	may	take	place	early	enough	for	the	provision	point	to	be	reached.	High	(m=3)	provision	points	trigger	pioneering
cooperation	earlier,	thus	generating	an	earlier	cascade	of	decisions	that	lead	to	the	production	of	the	public	good.	However,	provision	points	that	are	too	high
(m>3)	have	the	opposite	effect,	since	the	accumulation	of	defections	reduces	the	possibility	of	reaching	a	very	demanding	goal.	In	general,	agents	do	not	expect
to	be	critical	when	the	goal	is	easy,	because	they	believe	other	agents	will	likely	bear	the	cost,	nor	when	the	goal	is	very	demanding,	because	they	think	there
will	not	be	enough	other	agents	contributing.

Changes	in	the	probability	of	cooperation	attributed	to	other	agents	(p)

6.19 As	we	have	discussed	and	argued,	we	start	from	the	assumption	of	homogeneity	as	raised	by	Rapoport	(1985),	i.e.	all	agents	attribute	to	others	the	same
probability	of	cooperation	(p).	When	we	focus	on	analysing	the	role	of	the	structural	properties	of	the	network,	we	must	set	this	parameter	to	a	specific	value	to
run	simulations.	This	poses	a	problem,	because	for	a	rational	and	maximising-utility	agent,	there	is	no	reason	whatsoever	to	set	this	parameter	to	any	value.
Therefore,	if	all	possibilities	are	equally	likely	–and	the	agent	has	no	reason	to	believe	otherwise–,	the	Principle	of	Insufficient	Reason	suggests	that	we	set	the
parameter	to	p=0.5.	There	are	other	possibilities,	such	as	fixing	the	value	of	p	as	a	function	of	observed	behaviours	by	the	agent	in	his	neighbourhood,	but	to
attribute	to	those	who	have	not	yet	decided	a	cooperative	probability	dependent	on	the	behaviour	of	those	who	have	already	decided	seems	an	exercise	more
unreasonable	than	attributing	to	all	agents	an	equal	likelihood.	However,	ABM	allows	us	to	explore	the	breadth	of	possibilities	by	testing	for	possible	values	of	p,
and	that	is	precisely	what	we	do	in	the	next	section.

Macroresults

6.20 Figure	3	shows	that	the	belief	in	a	high	probability	that	other	agents	will	cooperate	has	the	same	effect	as	a	low	probability	(they	both	generate	a	low	SR),	while
intermediate	levels	of	trust	or	distrust	in	other	agents'	cooperation	produce	a	higher	SR.
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Figure	3.	Success	rate	of	network	"18_16"	depending	on	beliefs	about	the	probability	that	other	agents	will	co-operate	(5000	rounds	for	each	value	of	p)

Microfoundations

6.21 Table	3	helps	us	to	identify	the	explanatory	mechanisms	of	these	results.

Table	3:	Number	of	decisions	depending	on	the	probability	of	cooperation	attributed	to	other	agents,	the	order	in	the	sequence,
the	situation	that	the	agent	faces,	and	the	type	of	decisions	made	(network	"18_16",	5000	round	for	each	value	of	p)

Situation	1
C>=m

Situation	2
C=m-1	&	n-B>1

Situation	3
C<m-1	&	m-C=<n-B

Situation	4
C=m-n+B

Situation	5
m-C>n-B

P Order Def. Coop. Def. Coop. Def. Coop. Def. Coop. Def. Coop.

0.3 1 5000
2 5000
3 5000
4 5000
5 4765 235
6 4275 610 115
7 4274 726

0.4 1 5000
2 2835 2165
3 1579 3421
4 113 899 3988
5 15 575 302 4108
6 106 1343 3551
7 506 1875 2619

0.5 1 5000
2 5000
3 4131 869
4 3287 1713
5 2307 2432 261
6 29 1183 3194 480 114
7 72 4210 247 471

0.6 1 5000
2 5000
3 4200 800
4 3164 1836
5 2303 2508 189
6 19 1182 3186 485 128
7 69 4208 252 471

0.7 1 5000
2 5000
3 5000
4 4617 383
5 4148 626 226
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6 3927 367 598 108
7 3551 742 707

Note:	Any	network	consisting	of	7	members	represents	a	total	of	7	decisions	each	round,	so	that	5000	rounds	involve	35000
choices.	Each	of	these	decisions	(a)	has	been	produced	in	a	sequence	order	within	the	round	(from	first	to	last,	the	seventh),
(b)	has	occurred	in	one	of	the	5	decision	situations,	and	(c)	has	been	to	co-operate	or	not	co-operate.	The	table	above	displays
the	absolute	frequency	cross-distribution	of	35000	decisions,	accounting	for	the	three	variables	and	controlling	by	5	levels	of
cooperation	probability	attributed	to	others	(p).

6.22 Again,	the	key	to	explaining	the	differences	in	the	SR	lies	in	the	conditions	that	activate	the	trigger	mechanisms	of	pioneering	cooperation,	the	number	of
previous	decisions	(B)	necessary	for	an	agent	to	evaluate	her	own	probability	of	being	critical	as	sufficiently	high	to	cooperate.

6.23 For	this	explanation,	we	build	on	Figure	4.	This	figure	presents	the	mathematical	relation	between	B	(keeping	C=0)	and	the	probability	of	contributing	to	the
collective	action.	Ordinate	axis	represents	the	value	of	D(p)	for	each	of	the	possible	values	of	p,	where	D(p)=rPm-C-1−e	denotes	the	difference	between	the
expected	benefit	and	the	expected	cost.	When	D(p)	has	a	positive	value	the	agent	decides	to	cooperate,	while	she	decides	to	defect	when	D(p)	is	negative.

Figure	4.	Probability	of	being	critical	depending	on	the	probability	of	cooperation	attributed	to	other	agents	and	the	number	of	previous	decisions

6.24 Figure	4	shows	two	important	points.	First,	the	criticality	calculus	necessarily	has	an	inverted	U-shape	because,	while	the	first	component	of	Pm-C-1	is	constant,

the	remaining	two	are	negatively	correlated,	such	that	the	increase	of	pm-C-1	necessarily	implies	a	decrease	of	(1-p)	n-B-m	.	Second,	Figure	4	shows	that	the
values	of	B	that	lead	to	cooperation	are	dependent	on	the	values	of	p.	In	other	words,	Figure	4	holds	the	key	to	identifying	the	transformational	mechanisms	that
explain	the	results	of	Figure	3.

6.25 With	p=0.3,	there	is	no	possibility	for	pioneering	cooperation	to	be	triggered.	With	p=0.4,	however,	cooperation	becomes	possible	even	when	B=1	and	B=2.
Once	these	cooperations	are	produced,	speculative	and	effective	cooperation	can	be	triggered.	With	p=0.5	and	p=0.6	the	same	process	starts	at	a	later	point,
when	some	agents	know	that	B=2.	This	implies	that	in	some	cases	the	round	fails	because	the	triggering	of	speculative	cooperation	takes	place	too	late	(not
enough	contributions	are	produced	to	reach	the	provision	point).

6.26 With	p=0.7	the	SR	falls	to	0.0	because	here	a	minimum	of	B=3	is	necessary	for	the	triggering	of	pioneering	cooperation,	so	only	a	fraction	of	those	who	decide
in	the	fourth	or	a	higher	place	have	the	option	to	cooperate.	Moreover,	when	this	happens	some	of	the	agents	face	Situation	4,	which	again	implies	that	there
will	not	be	enough	contributions	for	the	provision	point	to	be	reached.
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6.27 In	short,	on	the	one	hand,	excessive	confidence	about	other	agents'	cooperation	increases	the	belief	that	it	is	improbable	that	enough	defections	will	be
produced	for	the	agent's	contribution	to	be	critical.	On	the	other	hand,	excessive	lack	of	confidence	about	other	agents'	cooperation	increases	the	belief	that	it	is
improbable	that	enough	contributions	will	be	produced	for	the	agent's	contribution	to	be	critical.	With	intermediate	values	of	p,	by	contrast,	the	number	of
previous	defections	for	triggering	pioneering	cooperation	is	low,	and	the	cascade	of	cooperation	starts	sufficiently	early	in	a	round	for	the	necessary
contributions	to	be	accumulated.

Success	rates	and	the	structural	properties	of	the	networks

6.28 In	this	section	we	present	the	results	obtained	for	the	230	networks	of	our	catalogue	and	we	try	to	identify	some	micro-foundations	of	those	results.

Macroresults

6.29 In	Table	4	we	present	OLS	regression	models	to	test	the	influence	of	two	structural	properties	of	the	networks	on	the	SR.	Since	the	relations	between	the
independent	variables	and	the	dependent	variable	have	an	exponential	character,	all	the	independent	variables	are	transformed	into	their	base-10	logarithm.

Figure	5.	Network	density	and	success	rate
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Figure	6.	Network	global	degree	heterogeneity	and	success	rate

6.30 Table	4	shows	that	model	B,	which	uses	the	base-10	logarithm	of	the	density	and	heterogeneity	as	independent	variables,	explains	84%	of	the	SR	variability.
Density	positively	correlates	with	SR	and	it	is	the	variable	with	the	highest	predictive	value.	Global	degree	heterogeneity	negatively	correlates	with	SR	and,
although	its	predictive	power	is	lower,	its	inclusion	results	in	a	model	with	a	better	fit.

Table	4:	Success	rate.	OLS	regression	models	(non-standardised	coefficients	and	standard	errors)

(A) (B)
Non-standardised
coefficients	and
standard	errors

Beta
Non-standardised
coefficients	and
standard	errors

Beta

Constant 1.271
(.022)***

3.781
(.260)***

LOG_DENSITY 2.114
(.076)***

.881 1.505
(.090)***

.627

LOG_HETEROGENEITY -2.195
(.227)***

-.361

N 227 227
Adjusted	R-square .775 .841

F 780.461*** 598.051***
R-square	change -- .066

F	change -- 93.787***

***	Significance	lower	or	equal	to	0.001

6.31 Tsukamoto	and	Shirayama	(2010)	presented	a	model	on	the	evolution	of	cooperation	in	complex	networks,	and	found	that	intermediate	values	of	heterogeneity
generate	maximum	cooperation.	In	the	same	vein,	Fu	et	al.	(2007)	presented	an	evolutionary	prisoner's	dilemma	on	a	network,	and	also	found	that	the
frequency	of	cooperation	is	highest	at	intermediate	levels	of	heterogeneity,	and	Yang	et	al.	(2012)	reached	the	same	conclusion	analysing	scale-free	networks.	It
seems,	therefore,	that	much	research	points	to	the	same	conclusion:	intermediate	values	of	heterogeneity	optimise	the	levels	of	cooperation.	However,	Fu	et	al.
(2007)	study	the	effect	of	heterogeneity	starting	from	a	network	with	a	given	homogeneity	and	then	adding	links	to	some	selected	nodes.	Thus,	it	is	not	only	the
heterogeneity	which	increases,	but	also	the	density.	Regression	model	B,	presented	in	Table	4,	allows	us	to	assess	the	net	impact	for	each	of	the	two
independent	variables.	In	our	case,	unlike	Fu	et	al.	(2007),	Tsukamoto	and	Shirayama	(2010),	and	Yang	et	al.	(2012),	we	find	that,	while	controlling	for	the
density,	heterogeneity	has	a	negative	relationship	with	the	rate	of	success.	The	difference	between	the	continuous	production	of	a	good,	such	as	that	modelled
by	Fu	et	al.,	Tsukamoto	and	Shirayama,	and	Yang	et	al.,	and	a	scalar	variant	–like	ours–	implies	a	difference	in	the	impact	of	the	independent	variables.

Microfoundations

6.32 To	discover	the	micro-foundations	that	explain	the	macro-results	outlined	in	Table	4,	we	analyse	agents'	decisions	in	relation	to	their	nodal	degree.	After	all,
networks	are	distinguished	in	terms	of	their	relational	structures,	resulting	from	the	difference	in	the	nodal	degree	of	the	agents.	Moreover,	agents	with	the	same
nodal	degree	behave	in	the	same	way,	independent	of	the	network	in	which	they	are	situated.

6.33 For	simplicity,	we	use	a	subset	of	8	networks	representatives	of	different	combinations	of	density	and	heterogeneity.	Figure	7	shows	the	percentage	of
cooperation	and	defections	of	agents	depending	on	their	nodal	degree.
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Figure	7.	Agents'	decisions	depending	on	their	node	degree	for	8	selected	networks	(5000	rounds	for	each	network,	280000	decisions	in	total)

6.34 The	relation	between	the	node	degree	and	the	probability	of	cooperation	has	an	inverted	U-shape,	although	the	probability	of	cooperation	generally	increases	for
higher	node	degrees.	The	higher	the	density	of	a	network,	the	higher	the	probability	that	a	sufficient	number	of	agents	contribute	to	the	production	of	the	public
good.

6.35 At	the	same	time,	the	higher	the	global	degree	of	heterogeneity,	the	higher	the	dispersion	in	the	nodal	degrees	of	the	agents.	In	this	case	we	can	find	more
agents	with	extremely	high	or	extremely	low	nodal	degrees	and	those	are	precisely	the	nodal	degrees	that	correspond	with	a	lower	probability	of	cooperation.
The	effect	of	heterogeneity	is	not	as	clear	as	the	effect	of	density:	while	a	high	heterogeneity	leads	to	fewer	contributions,	a	low	heterogeneity	leads	either	to
fewer	or	more	contributions	depending	on	the	mean	nodal	degree	of	the	network.

6.36 These	effects	of	density	and	heterogeneity	are	represented	in	Figures	5	and	6	above.	Given	that	the	influence	of	density	outweighs	that	of	heterogeneity,	the
reduction	in	SR	that	is	produced	by	an	increase	in	heterogeneity	will	be	lower	when	density	is	high;	this	explains	the	decelerative	shape	of	the	point	cloud	in
Figure	5.

6.37 The	influence	of	the	structural	properties	of	a	network	can	be	explained	by	the	different	probabilities	of	cooperation	of	agents	with	different	nodal	degrees.
However,	we	still	need	to	make	explicit	why	agents	with	different	nodal	degrees	have	different	probabilities	of	cooperation.

Table	5:	Number	of	decisions	depending	on	agents'	node	degree	(k)	and	the	situation	at	the	moment	of	decision,	for	8	selected
networks.

k Situation Defect Cooperate Total
%	row %	col. %	row %	col. %	row %	col.

1 Situation	3 100% 100% 100% 100%
Total 100% 100% 100% 100%

2 Situation	2 100% 8.7% 100% 2.9%
Situation	3 68.7% 100% 31.3% 91.3% 100% 97.1%

Total 66.7% 100% 33.3% 100% 100% 100%

3 Situation	1 100% 1.9% 100% 100%
Situation	2 100% 17.6% 100% 8.6%
Situation	3 55.3% 98.1% 44.7% 82.4% 100% 90.4%

Total 50.9% 100% 49.1% 100% 100% 100%

4 Situation	1 100% 4.8% 100% 2.1%
Situation	2 100% 17.7% 100% 9.9%
Situation	3 46.5% 90.1% 53.5% 82.3% 100% 85.7%
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Situation	4 100% 5.1% 100% 2.3%
Total 44.3% 100% 55.7% 100% 100% 100%

5 Situation	1 100% 15.5% 100% 7.2%
Situation	2 100% 25.6% 100% 13.7%
Situation	3 45.6% 71.6% 54.4% 74.4% 100% 73.1%
Situation	4 100% 100% 100% 4.7%
Situation	5 100% 2.8% 100% 1.3%

Total 46.6% 100% 53.4% 100% 100% 100%

6 Situation	1 100% 6.6% 100% 3.9%
Situation	2 100% 10.3% 100% 4.2%
Situation	3 46.1% 48.8% 53.9% 82.3% 100% 62.5%
Situation	4 81.1% 21.9% 18.9% 7.4% 100% 16,0%
Situation	5 100% 22.7% 100% 13.4%

Total 59.1% 100% 40.9% 100% 100% 100%

Note:	A	set	of	8	selected	networks	consisting	of	7	members	with	one	decision	each	per	round	and	5000	rounds	involves	a	total
of	280000	choices.	Each	of	these	decisions	(a)	has	occurred	in	one	of	the	5	decision	situations	and	(b)	has	been	to	co-operate
or	not	to	co-operate.	The	table	displays	both	the	row	and	column	percentage	cross-distribution	of	280000	decisions,
accounting	for	the	two	variables	and	controlling	by	6	levels	of	agents'	node	degree	(k).

6.38 Table	5	presents	behavioural	differences	as	a	function	of	agents'	node	degree	(k).	In	the	case	of	agents	with	ki	=1,	the	effective	cooperation	trigger	is	not
activated	because	m=3.	Pioneering	and	speculative	cooperation	will	not	be	triggered	either,	since	for	these	agents	B	and	C	only	have	values	0	or	1	and	no
combination	of	these	values	leads	to	a	criticality	calculus	favourable	to	cooperation.	Table	5	shows	that	agents	with	ki=1	are	always	in	the	same	situation	and
decide	in	favour	of	defection.	Given	the	large	number	of	agents	about	whom	they	have	no	information,	agents	consider	the	probability	of	their	contribution	being
critical	to	be	very	low.

6.39 For	agents	with	ki>1	the	range	of	possible	situations	is	broader,	which	favours	cooperation	in	some	cases.	For	example,	agents	with	ki=2	who	face	Situation	3
do	not	always	defect,	as	agents	with	ki=1	do.	In	fact,	the	combinations	B=2	&	C=1	and	B=2	&	C=0	favour	cooperation,	while	combinations	B=1	&	C=1,	B=1	&
C=0	and	B=0	&	C=0	lead	to	defection.	This	explains	why	agents	with	ki=2	in	Situation	3	co-operate	only	in	some	cases	(Table	5).	However,	agents	with	this
nodal	degree	may	also	face	Situation	2,	in	which	the	agent	believes	that	only	one	contribution	is	needed	to	reach	the	provision	point	and	cooperation	is	the
rational	decision.	In	other	words,	agents	with	ki=2	face	a	situation	where	both	speculative	cooperation	–when	the	combinations	of	B	and	C	hold–	and	effective
cooperation	can	be	triggered	–when	the	number	of	previous	cooperations	is	2,	that	is	m-1.	An	increase	in	the	nodal	degree	produces	a	broader	range	of	possible
situations	that	the	agent	faces,	some	of	which	favour	cooperation.

6.40 However,	the	case	of	ki=6	is	an	exception.	Figure	7	shows	that	the	probability	of	cooperation	decreases	for	these	agents.	Table	5	suggests	that	this	reduction	is
explained	by	the	relation	between	a	higher	ki	and	an	increased	proportion	of	occasions	in	which	agents	face	Situation	4	(C=m-n+B).	With	our	parameters	this
situation	is	produced	when	C=B-4.	This	occurs	in	three	situations:	with	C=0	&	B=4,	with	C=1	&	B=5,	and	with	C=2	&	B=6.	An	agent	with	ki=4	faces	only	one	of
these	situations	(C=0	&	B=4).	Agents	with	ki=5	and	ki=6	face	situations	C=0	&	B=4	and	C=1	&	B=5,	but	the	latter	has	a	higher	probability	of	encountering	a
combination	C=1	&	B=5	because	she	has	more	neighbours.	Defection	is	chosen	in	all	these	combinations	of	C	and	B.	As	long	as	the	majority	of	possible
combinations	of	C	and	B	in	Situation	4	lead	to	defection,	a	higher	ki	increases	the	relative	weight	of	these	combinations	in	these	situations.

6.41 In	short,	agents	that	are	linked	in	a	way	that	allows	them	to	obtain	significant	information	about	other	agents'	behaviour	are	aware	of	the	low	probability	that	the
provision	point	will	be	reached,	and	therefore	decide	not	to	contribute.	On	the	other	hand,	the	lack	of	information	that	characterises	the	less	connected	networks
favours	speculative	contributions.	When	ki=6	is	reached	the	possibility	for	triggering	speculative	cooperation	decreases.	Paradoxically,	in	this	case	we	found
that	constraining	the	level	of	information	generates	larger	social	benefits	–as	Elster	claims	(	1979,	2000)	–,	and	these	mechanisms	could	be	examined	at	a
detailed	level	by	means	of	computational	simulation.

	Conclusions	and	Further	Work

7.1 We	conclude	this	paper	by	highlighting	several	results	that	we	consider	especially	relevant.	Our	simulation	bears	witness	to	the	explanatory	power	of	the
structural	properties	of	a	social	system.	Rational	agents	with	an	identical	decision	algorithm	can	generate	very	different	social	outcomes	depending	on	the
relational	structure	in	which	they	are	embedded.

7.2 The	topology	or	structure	of	a	social	network	is	not	the	only	relevant	factor;	the	decision	sequence	ordering	is	also	essential.	An	important	aspect	of	the	decision
is	the	quantity	of	information	available	to	the	agent	at	the	moment	of	decision,	and	in	a	social	network	this	variable	depends	on	the	nodal	degree	of	the	agent
and	on	the	sequence	position	of	her	decision.	These	issues	can	be	addressed	through	the	analysis	of	dynamic	networks,	through	observation	or	simulation.

7.3 We	tend	to	think	that	the	lower	the	required	effort	level,	the	higher	the	probability	for	a	public	good	to	be	produced.	However,	our	research	suggests	that,	in	some
cases,	institutional	designers	should	balance	the	effort	level;	not	too	high	to	discourage,	nor	too	low	to	stimulate	a	defection	grounded	on	the	confidence	that
others	will	bear	the	cost.

7.4 The	results	of	our	simulation	runs	also	suggest	that	both	high	and	low	confidence	about	other	agents'	cooperation	can	have	a	negative	effect	on	the	probability
of	success	of	a	collective	action.	Intermediate	levels	of	confidence	seem	to	stimulate	more	cooperation	because	they	support	the	agent's	belief	that	her
contribution	is	relevant.

7.5 Social	groups	with	a	dense	structure	have	a	higher	probability	of	success	in	the	production	of	step-level	public	goods	because	neighbours	provide	useful
information	about	the	relevance	of	the	agent's	contribution.	However,	if	the	links	are	costly,	the	highest	number	of	links	does	not	necessarily	make	a	more
cohesive	group:	from	a	certain	degree	of	density	onwards,	the	probabilities	of	success	in	collective	action	do	not	change	significantly.

7.6 Groups	with	a	horizontal	structure	have	a	higher	probability	of	success	in	the	production	of	step-level	public	goods.	Poorly	connected	agents	have	little	useful
information	about	the	relevance	of	their	decision,	while	well-connected	agents	may	have	an	excess	of	information	such	that	they	may	be	aware	of	difficulties	that
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cannot	be	perceived	from	other	positions.	A	limitation	of	information	stimulates	agents	to	co-operate	because	they	ignore	certain	difficulties,	therefore	generating
a	socially	optimal	aggregate	effect.	In	other	words,	more	information	for	an	individual	does	not	always	generate	a	better	result	for	the	group.	This	conclusion	is	in
line	with	recent	findings	according	to	which	limited	information,	cognitive	or	social,	can	favour	the	evolution	of	cooperation;	for	example,	Horváth	et	al.	(2012)
have	shown	how	the	number	of	rounds	remembered	by	an	iterated	game	agent	does	not	monotonically	increase	the	likelihood	of	reaching	a	co-operative	state.

7.7 The	same	agents	that	fail	to	produce	the	public	good	in	a	simultaneous	or	cumulative	decision	sequence	ordering	could	succeed	when	they	are	situated	in
certain	networks,	with	relevant	implications	for	institutional	design	and	formulation	of	more	effective	social	policy	alternatives.

7.8 Once	we	have	proceeded	with	the	computational	replication	of	previous	laboratory	experiments,	our	next	goal	is	to	extend	the	model	and	the	study	with	further
ABM	possibilities.	For	instance,	in	future	versions	of	NetCommons	we	plan	to	include	a	new	agent	heterogeneity	assumption	regarding	expectations	of	others'
behaviour;	to	overcome	the	hypothesis	of	homogeneity	we	focus	on	certain	network	topology	types	and	we	introduce	network	size	as	a	parameter	under
scrutiny.
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	Notes

	1	Among	the	continuous	functions	there	are	also	important	differences	between	accelerating,	decelerating	and	linear	functions	(Heckathorn	1996;Linares	2007).

2	Taylor	(1987)	writes	that	when	we	are	interested	in	the	construction	of	a	bridge,	more	money	does	not	imply	more	bridges.	However,	extra	contributions	can
be	dedicated	to	making	a	better	bridge	(use	of	superior	materials	or	better	designs)	In	this	case,	we	would	have	a	"mixed"	form	public	good,	in	which	the	first
part	takes	the	form	of	a	SLG	followed	by	a	continuous	function	once	the	provision	point	is	reached.	In	experimental	terms,	this	has	been	made	concrete	in
different	"rebate	rules"	(Marks	and	Croson	1998).

3	Taylor	has	argued	(1987:	46)	that	lumpy	goods	are	often	best	modelled	by	the	Chicken	Game:	depending	on	the	expectations	regarding	the	contributions	of
other	gamers,	cooperation	may	be	the	preferred	option	for	a	rational	maximizing	utility	agent.

4	Some	models	have	demonstrated	the	positive	effect	on	cooperation	of	heterogeneity	with	regard	to	decisions	about	how	much	to	invest	(see,	e.g.,Cao	et	al.
2010;	Santos	et	al.	2008).	In	our	model,	however,	and	for	reasons	of	outcome	tractability,	all	agents	have	the	same	endowment	and	face	a	binary	decision	(fully
contribute	it	or	not	to	the	common	pool).

5	According	to	the	formalisation	of	our	model,	the	same	distribution	of	values	of	p	between	agents	of	a	given	network	would	entail	different	outcomes	depending
on	which	values	of	p	are	associated	with	agents	having	different	nodal	degrees.	Incorporating	the	assumption	of	heterogeneity	will	exponentially	increase	the
number	of	combinations	necessary	to	obtain	a	realistic	assessment	of	its	impact	on	the	success	rate.	Considering	also	that	our	ultimate	goal	is	to	test	the
relevance	of	the	structural	properties	of	the	network,	and	that	as	discussed	below	we	will	work	with	a	catalogue	of	230	networks,	it	seems	reasonable	to	choose
the	hypothesis	of	homogeneity	to	assure	the	analytical	tractability	of	the	model	outputs.

6	Regarding	the	latter,	this	situation	is	strategically	equivalent	to	a	simultaneous	decision.

7	In	NetCommons	this	sixth	situation	has	been	subsumed	in	Situation	4,	because	in	decisional	terms	the	result	is	the	same.

8	Comparing	the	"sequential	protocol"	ordering	and	our	network-dependent	sequence	ordering	is	beyond	the	scope	of	this	paper.	In	sequential	protocol	ordering
there	is	no	necessity	for	a	p	parameter,	because	agents	know	which	information	others	have	at	the	moment	of	their	decision.

9	To	gain	access	to	the	full	catalogue	of	networks	used	as	input,	please	contact	the	authors	directly.
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