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Abstract

We mapped current and future temperature suitability for malaria transmission in Africa using a published
model that incorporates nonlinear physiological responses to temperature of the mosquito vector Anopheles
gambiae and the malaria parasite Plasmodium falciparum. We found that a larger area of Africa currently
experiences the ideal temperature for transmission than previously supposed. Under future climate projections,
we predicted a modest increase in the overall area suitable for malaria transmission, but a net decrease in the
most suitable area. Combined with human population density projections, our maps suggest that areas with
temperatures suitable for year-round, highest-risk transmission will shift from coastal West Africa to the
Albertine Rift between the Democratic Republic of Congo and Uganda, whereas areas with seasonal trans-
mission suitability will shift toward sub-Saharan coastal areas. Mapping temperature suitability places im-
portant bounds on malaria transmissibility and, along with local level demographic, socioeconomic, and
ecological factors, can indicate where resources may be best spent on malaria control.
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Introduction

Malaria causes an estimated 584,000 deaths a year,
mostly due to Plasmodium falciparum and mostly in

sub-Saharan Africa (World Health Organization 2014). This
substantial health burden is anticipated to increase with
changing climate (Intergovernmental Panel on Climate
Change 2007a, Shuman 2010, Parham et al. 2015 and refer-
ences therein). Many factors impact malaria burden, in-
cluding climate, land use, socioeconomic conditions, and
intervention efforts ( Johnson et al. 2014). In particular, the

temperature sensitivity of mosquitoes and parasites limits the
transmission potential in a given location, and temperature
has been shown to be an important predictor of malaria in-
cidence in many areas (Pascual et al. 2006). Because insect
and parasite physiology constrain malaria transmission to
temperatures between 17�C and 34�C (Mordecai et al. 2013),
temperature places limits on the spatial and temporal dis-
tribution of malaria transmission. Climate-induced shifts
in distribution will impact the efficacy of intervention
and vector control efforts (Siraj et al. 2014). As a result,
accurately modeling how temperature limits transmission is
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essential to our understanding of the current and future dis-
tribution of malaria on the landscape (Snow et al. 1996).

Control measures can interrupt malaria transmission where
climate conditions are suitable (Gething et al. 2010), making
it difficult to predict climate suitability for transmission
using statistical models of observed malaria transmission
(human case data). An alternative is to use physiological (or
process-based) models of transmission that explicitly link
environmental drivers, in this case temperature, with trans-
mission potential, to build maps of suitability. Mordecai et al.
(2013) proposed a physiological model to assess the range of
temperatures most suitable for malaria transmission. Specifi-
cally, the model incorporated the thermal ecology of anophe-
line mosquitoes (particularly Anopheles gambiae, the major
vector of malaria in Africa) and P. falciparum, the major
malaria parasite. This model included biologically relevant
unimodal physiological responses of all entomological and
parasite life history traits to temperature, derived from em-
pirical data. Including these explicit thermal responses reduced
the predicted optimal temperature for malaria transmission by
6�C from previous model estimates—from 31�C to 25�C.
Additionally, the predicted lower bounds for transmission
decreased from around 20�C to 17�C, and the upper bounds

decreased from 40�C to 34�C (Mordecai et al. 2013). Model
predictions aligned closely with climate-matched field obser-
vations of the entomological inoculation rate (EIR, n = 122),
over a period of 40 years (Fig. 2 in Mordecai et al. 2013,).

These differences in temperature limits should alter pre-
dicted spatial patterns of malaria transmissibility as the cli-
mate changes. More specifically, this model alters predictions
of where climate both promotes and prevents transmission
(Lafferty 2009, Rohr et al. 2011). Process-based models gen-
erate suitability predictions that are independent of observed
prevalence data (rather than fitted to it) and not confounded
by control efforts or socioeconomic factors. Thus, this model
provides a baseline prediction for the impacts of temperature in
determining large-scale patterns of malaria transmissibility, to
which more local effects (e.g., water availability, topography,
or control measures) can be added to improve predictions.

On the basis of the Mordecai et al. (2013) model, we
mapped malaria temperature suitability, seasonality, and
transmission duration under current and predicted future
climate scenarios, incorporating restrictions on moisture
availability. We then combined these with human population
density estimates to emphasize changes in the relative risk of
changing temperatures to human populations living in areas

FIG. 1. Areas with mean monthly temperatures suitable for malaria transmission as predicted by the model of Mordecai
et al. (2013). Suitability is shown under the current climate (see Materials and Methods), on a blue–red scale, from too cold
for transmission (blue), through peak optimal transmission (white), to too hot for transmission (red). The aridity mask,
where the area is unsuitable for mosquito development, is shown in grey and centered on the Sahara desert. (Inset) The area
of land (in km2 · 106) in each month, within each quantile of transmission suitability, as described in the text.
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suitable for malaria transmission. We did not measure ab-
solute transmission risk because other factors, including so-
cioeconomic conditions, urbanization, and control measures,
affect the realized transmission rate (Gething et al. 2010). We
mapped the relative intensity of conditions for transmission,
because when conditions are highly suitable for transmission,
transmission rate may not strongly correlate with prevalence
(Beier et al. 1999) but will likely be mediated by human
exposure behavior.

Materials and Methods

Mapping thermal suitability

The Mordecai et al. (2013) model measured transmission
using R0, the number of secondary infections expected when
an infected individual enters a fully susceptible population.
The model is an extension of the classic Kermack–
McKendrick model, and R0 is given by:

R0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

Nr

a2bc exp( - l=PDR)

l

s

where N, human population size; a, per-mosquito biting rate,
or mean oviposition time-1. bc, vector competence; l, mos-

quito mortality rate; PDR, parasite development rate; and M,
mosquito population size (which is itself determined by
mosquito fecundity, development rate, and adult and egg/
juvenile survival). All vector and parasite traits are assumed
to depend on temperature and are modeled with hump-shaped
responses fit to laboratory data. Human population density
and human recovery rate (r) from malaria are assumed to be
temperature independent. When these are combined in the
model, the result is a prediction curve of how R0 should vary
across temperatures (Mordecai et al. 2013).

We describe the predicted proportion of optimal R0 using
quantiles capturing most (top 25%), high (25–50%), moder-
ate (50–75%), and marginal (75—100%) suitability. These
quantiles describe the proximity of temperatures to the op-
timal transmission temperature, i.e., the relative transmission
risk, which we refer to as relative R0. The top three quantiles
(0–75%) correspond to temperatures that promote malaria,
whereas the last (marginal) likely limits transmission. To
demonstrate the effects of nonlinear thermal responses, we
compared the results with models that used the thermal re-
sponses from a previous mechanistic transmission model
(Parham and Michael 2010).

The thermal response models were used to predict relative
R0 as a function of temperature and mapped onto temperature
at 0.01�C increments using a geographic WGS84 (decimal

FIG. 2. Duration of temperatures suitable for malaria transmission. Duration of malaria season is given as the number of
continuous months suitable for transmission, for the top 25% of suitability (most, a and b) and the full 100% range (suitable,
b and d), as predicted by the Mordecai et al. (2013) model, in current (a and b) and 2080 (c and d) climate conditions.
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degree) projection map of the African continent. Because
moisture availability also limits mosquito survival, we
masked areas that are too dry for too long for mosquitoes to
develop and survive, based on the Normalized Difference
Vegetation Index (NDVI), sensu Suzuki et al. (2006), (see
below). We then queried the map for suitability quantiles and
calculated their areas. We used the statistical program R (R
Core Team 2014) for our analyses; specifically, we used the
packages raster, sp, maptools, and rgdal to import and ma-
nipulate raster data as R objects, and rasterVis, lattice, latti-
ceExtra, and ColorSpace to create our visualizations.

Climate data

We used global monthly mean temperatures for the current
climatic period (to 2000), calculated at a 30 arcsec resolu-
tion from WorldClim (Hijmans et al. 2005), and clipped to the
African continent. For future climate predictions, we used
HadCM3 climate projections for 2020, 2050, and 2080 and
selected SRES A1B emission scenarios, downscaled using the
delta method (Ramirez and Jarvis 2008). The A1B scenario falls
in the center of projections of anthropogenic emissions and
makes a general assumption of continuing globalization (Inter-
governmental Panel on Climate Change 2007b), while avoiding
extremes. The delta method uses the long-term monthly mean
of temperature generated by the HadCM3 global climate model
to calculate anomalies for the generated time series (Ramirez
and Jarvis 2008), which are applied to higher-resolution tem-
perature surfaces from WorldClim. We chose this method for
its simplicity and sufficiency for continental level intermodel
comparison. We aggregated the 5 arcmin (*0.083�) data to
0.1� to match the data used to project the R0 models.

Aridity mask

We defined moisture availability using thresholds of
vegetation greenness, similar to the approach used by
Guerra et al. (2008) and following work by Suzuki et al.
(2006). Recent work by Baeza et al. (2011) has shown that
NDVI is a good predictor of malaria prevalence, typically
better than rainfall when irrigation levels are low to mod-
erate. Using NDVI allowed us to retain pockets of suitable
transmission conditions such as river tributaries or irrigated
land where transmission may be supported, while elimi-
nating areas that are too dry for too long to support mosquito
populations, regardless of temperature regime (Gething
et al. 2011, Guerra et al. 2008, 2010). Differences in rainfall
within sufficiently humid regions may impact transmission,
but NDVI has been shown to be a stronger predictor than
precipitation for large geographic areas (Baeza et al. 2011).
We created pixel-wise monthly mean NDVI values from the
USGS eMODIS product ( Jenkerson et al. 2010), using de-
kadal (10-day interval) data from 2001–2011 for the African
continent from the Famine Early Warning System Network
(FEWS NET) data portal (http://earlywarning.usgs.gov/
fews/africa/index.php), aggregated from 250 meters to 0.1 de-
gree resolution. We masked out pixels that did not have at least
two consecutive months of NDVI above 0.125; this is slightly
more conservative than the 0.1 limit of Suzuki et al. (2006).

Population risk projections

To estimate the population at risk for transmission, we
used population projection data for 2015 from the Gridded

Populations of the World (GPW) version 3.0 (CIESIN, 2005),
and the Global Rural Urban Mapping Project (GRUMP)
Urban extents layer (CIESIN, 2011). We resampled the pro-
jected malaria model and urban extents to the GPW resolution
(2.5 arcmin) using bilinear interpolation. To visualize the im-
pact of malaria shift and population density, we first scaled
malaria season duration (0–12 months) to a 0–1 scale and log-
transformed population density for ease of visualization. Ma-
laria transmission ceases to be a function of the environment in
high-density urban areas (Gething et al. 2011), so we excluded
these from our analysis with the GRUMP data by simply
masking out the areas described as urban extents.

Results

Current suitability

The seasonal changes in malaria transmission suitability as
maps of relative R0 for each month of the year are illustrated in
Figure 1. This is contrasted with an illustration of the same maps
generated for a previous model (Parham and Michael 2010; Fig.
S1) (Supplementary Data are available at www.liebertonline/
vbz/). We compared the land area in each suitability category
each month between the two models (Fig. 1, inset, and Fig. S1,
inset). The area currently containing the most suitable trans-
mission (top 25%) by month in the map of Mordecai et al.
(2013) ranges from 5.8 to 10.9 million km2 (Fig. 1, inset). In the
previous model, this ranged from 13,000 km2 to 4.9 million km2

(Fig. 1S); this difference is due to the large expanse of mod-
erate suitable temperatures captured in the new model.

Duration of the transmission season

Much of Africa is predicted to currently be at least mar-
ginally suitable for transmission year-round (Fig. 2b),
whereas much of Central Africa is in the most suitable
quantile year-round (Fig. 2a). This closely matches inde-
pendent predictions by Mapping Malaria Risk in Africa
(MARA) (Tanser et al. 2003) and Malaria Atlas Project
(MAP) (Gething et al. 2010, 2011).

Predicted future suitability

The area projected to be suitable for any level of malaria
transmission for one or more months modestly increased over
time in the Mordecai et al. (2013) model (Fig. 3). This differs
considerably from predictions from the prior model, which
predicts steady increase (Fig. S2). In contrast, current highly
suitable areas, such as central and western Africa (Fig. 4), are
predicted to become less suitable with warming.

In the future scenarios, the area with temperatures most
suitable for year-round (12 months) transmission contracted
(Fig. 2a vs. 2c). In particular, there was a reduction in the
total land area with temperatures suitable for high year-round
transmission. The hotspot of most suitable temperatures year
round shifted from central Africa to the Albertine Rift region in
the East, and to Angola, Gabon, and Cameroon in the West by
2080. Western Africa, particularly along the coast of Ghana,
ceased to have optimal temperatures for year-round trans-
mission. Future temperatures are predicted to promote a mix of
episodic most and high transmission due to warmer tempera-
tures exceeding the upper limit of 34�C for transmission. In
contrast, high seasonal transmission potential (4–8 months)
expanded throughout southern Africa and Madagascar (Fig. 2).
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Population risk mapping

Our population risk map highlights hotspots where high
population density overlaps with long season length with
most transmission potential (Fig. 4). Specifically, the current
year-round most suitable and densely populated Ghana coast
of western Africa was predicted to become more seasonal and
less suitable for transmission, whereas this high-density,
year-round, most suitable hotspot is predicted to shift to the
Albertine Rift border of Western Uganda (Fig. 4).

Discussion

Maps based on a model with realistic assumptions about
thermal physiology of anopheline mosquitoes made novel
predictions about the relationship between climate change
and malaria transmission suitability. Specifically, tempera-

tures across a large area of Africa are currently more suitable
for malaria transmission than previously estimated. Because
this revised optimal temperature (25�C) is much closer to
current temperature conditions across much of Africa, future
warming may reduce transmission suitability in regions
where transmission is currently high. Still, temperatures
across large parts of the continent will become more suitable
for transmission overall under future climate scenarios, and
the areas where low temperature completely prevents malaria
transmission will contract. These contrasting patterns arise
from the unimodal relationship between malaria transmission
and temperature.

Our map shows that most of Africa now has temperatures
suitable for malaria transmission to some degree through-
out the year. In fact, some regions are already beyond the
thermal optimum for transmission, particularly just south of
the Sahara (Figs. 1 and 2b). Suitability also varies seasonally
(Fig. 1)—in March through June, the total most suitable area
(top quantile) is smaller (Fig. 1, inset) because it is too hot in
the north (Fig. 1, red color in maps) and too cold in the south
(Fig. 1, blue color in maps). By contrast, much of the conti-
nent is most suitable from November through February.
Furthermore, the new maps capture the current observed
transmission in cooler regions where malaria is an ongoing
concern, such as the KwaZulu-Natal region of South Africa
(Kleinschmidt et al. 2001, Barnes et al. 2005). A map based
on previous linear thermal responses predicted that most re-
gions of Africa are currently cooler than optimum for trans-
mission, with transmissibility peaking in April (Fig. S1).

By incorporating empirical findings that malaria trans-
mission is optimal under moderate temperatures, and trans-
mission potential declines at hot temperatures, our model
generates nuanced predictions of current and future temper-
ature suitability. For example, although the model predicts a
small increase in the amount of geographic area with tem-
perature suitable for any transmission by 2080, it also pre-
dicts a reduction in the area with temperature most suitable
for transmission. Areas predicted to become newly suitable
for transmission could face challenges to vector control and
health infrastructure to mitigate increased transmission risk.
Moreover, some of these predicted areas also coincide with

FIG. 4. Potential population at risk for most suitable malaria transmission temperatures (top 25%), under current (a) 2020
(b), 2050 (c), and 2080 (d) climate projections, where risk is measured as a combined scale of change in transmission
suitability duration (0–12 months), scaled 0–1, and population density (log-transformed). Areas circumscribed in red
describe ‘‘hotspots’’ of coincident high population density and year-round most optimal transmission.

FIG. 3. The area of land on the African continent contained
within each quantile for temperature suitability for trans-
mission. Suitability area quantiles averaged across months are
shown as predicted by the Mordecai et al. (2013) model for
current and future (A1B) climate scenarios—2020, 2050, and
2080—as described in Methods and Materials.
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centers of high population density, such as Western Uganda,
suggesting large predicted geographic shifts in the number of
people living where conditions are most suitable for trans-
mission Africa.

Our seasonal duration model of the most suitable trans-
mission quantile was visually similar to the MARA map
(MARA/ARMA, 1999). In contrast, our 100% range map of
suitability predicts a much larger area of 12-month suitabil-
ity, because it captures all areas where malaria transmission is
not excluded for a full 12 months. Our map predictions differ
from the MARA map in several regions, specifically in the
Horn of Africa and in southern Africa; we find suitability
where it is not predicted by MARA. These differences almost
certainly reflect factors other than temperature, including
different assumptions about humidity. In the MARA model
specifications, full suitability in southern Africa (i.e., south of
8� latitude) was only achieved if an area experienced tem-
peratures above 6�C and 80 mm or more of rain for at least
5 months (Guerra 2007), a strict multivariate limit. This limit
is used to focus MARA maps on endemic malaria areas,
which is only a subset of what we considered.

Other recent maps that focus specifically on areas in Africa
suitable for epidemic (episodic) malaria (Grover-Kopec et al.
2005) match well with our predicted areas of lower trans-
mission (lower suitability, short season). Our current pre-
dictions (Fig. 2a) correspond broadly with current P.
falciparum parasite prevalence measured in children ages 2–
10 (see Fig. 2 in Noor et al. 2014). A temperature-only
suitability map based only on the duration of sporogony for P.
falciparum, developed by Guerra (2007) as a step in a larger
modeling process indicates that all of Africa could potentially
be suitable for the malaria parasite (see Fig. 6.6 in Guerra
2007), in line with our ‘‘marginally suitable’’ or largest range
limit. Our model also broadly corroborates predictions of
current and future A. gambiae range in Africa using an eco-
logical niche model (Peterson 2009). Because each malaria or
vector mapping project discussed used slightly different
criteria, we cannot expect these maps to correspond exactly.
Other approaches, such as those that rely on empirical
transmission data, could inadequately capture conditions that
influence transmission in areas with human populations that
are too small to sustain malaria or where data collection effort
is too low to capture intermittent transmission. The chal-
lenges in understanding why each approach results in dif-
ferent predicted patterns highlight the need to make the
mapping process more transparent across studies so they can
be compared more directly ( Johnson et al. 2014).

Our maps suggest that projected climate change could lead
to a large decrease in the population at highest risk for ma-
laria transmission. Future shifts in population density will
affect the distribution of people living where temperatures
are suitable for malaria transmission, and this distribution
might also respond directly to changes in climate or malaria
transmission. However, we emphasize that the Mordecai
et al. (2013) model predicts that optimum transmission
temperatures are cooler than in previous models. Given the
predicted geographic shifts of these moderate temperatures, it
is likely that the optimal transmission temperature and high
population density will continue to coincide. Finally, our
predicted transmission suitability under climate change is
limited to the predictive quality of the climate model we use;
understanding the importance of assumptions underlying

climate change scenarios would require repeating the ana-
lyses described here under different climate regimes.

We still need a better understanding of the behavior and
physiology of local mosquito and parasite populations and
their climate space. One thermal performance curve cannot
capture the full breadth of thermal response behavior of all
mosquito and parasite populations across Africa. Ectother-
mic populations differ in their responses to temperature
within species, due to adaptation of local populations to
prevailing local conditions (Angilletta et al. 2002), which
may affect their capability to cope with climatic change
(Sternberg and Thomas 2014). Moreover, the actual tem-
peratures that vectors and parasites experience can differ
considerably from standard weather station data (Cator et al.
2013), in part because mosquitoes can thermoregulate be-
haviorally (Blanford et al. 2009) and avoid extreme tem-
peratures (Kirby and Lindsay 2004). Temperature variation
(e.g., daily temperature variation) may also be important
for making more accurate local predictions, but we do not
expect it to affect our general predictions for relative suit-
ability. While daily fluctuations have been shown to affect
mosquito and parasite development (Paaijmans et al. 2010),
this occurs mostly at the tails (upper and lower boundaries) of
the range. Blanford et al. (2013) found that these temperature
variations averaged over a month performed just as well as
daily fluctuations for estimating biological rates. None-
theless, local studies on mosquito physiology and behavior,
combined with microclimatic measurements, will allow us to
determine how climate, climate variability, and climate ex-
tremes eventually affect disease transmission at a finer scale
(Altizer et al. 2013).

Our approach focuses on determining how temperature
impacts broad geographic patterns of malaria transmission
potential. Spatial regression models incorporating many
other environmental and socioeconomic covariates, such as
atmospheric humidity, rainfall, or bed-net availability, could
further enhance predictions at a local scale. Our model as-
sesses the direct influence of temperature on transmission
mechanistically. Thus, our results complement statistical mod-
els derived from field data to inform why malaria is excluded in
some regions and highly prevalent in others. It can also serve
as a baseline for predicting future suitability, as mechanistic
models are useful for predicting outside the range of current
data than traditional regression-based approaches (Rogers
and Randolph 2006, Bayarri et al. 2009). This framework
allows us to disentangle the effects of other important factors,
such as land use and disease control efforts (Gething et al.
2010), to better predict transmission risk in the field.

We note that the timescale at which climate change may
affect the distribution of suitability does not necessarily
match that of health intervention planning. However, this
suitability map can inform current allocation of intervention
under current climate conditions by highlighting areas that
perhaps were not previously identified as seasonally suitable
or by distinguishing endemic suitability and epidemic suit-
ability. Given that the types of intervention and control differ
in these contrasting scenarios, and that resistance can emerge
in more episodic areas, we think this map is of value to
planning. Most importantly, with accurate suitability pre-
dictions and appropriate planning for potential geographic
shifts in risk, an increase in transmission suitability does not
have to increase malaria cases.

CLIMATE CHANGE AND MALARIA 723



Acknowledgments

This work was conducted as a part of the Malaria and
Climate Change Working Group supported by the Luce
Environmental Science to Solutions Fellowship and the
National Center for Ecological Analysis and Synthesis, a
Center funded by the National Science Foundation (grant no.
EF-0553768), the University of California, Santa Barbara,
and the State of California. Greg Husak and Bobby Gramacy
provided input on data acquisition. E.A.M. was supported
by a National Science Foundation Postdoctoral Research
Fellowship in Biology (DBI-1202892). Any use of trade,
product, website, or firm names in this publication is for
descriptive purposes only and does not imply endorsement by
the US Government.

Author Disclosure Statement

No competing financial interests exist

References

Altizer S, Ostfeld RS, Johnson PTJ, Kutz S, et al. Climate
change and infectious diseases: From evidence to a predictive
framework. Science 2013; 341:514–519.

Angilletta MJ Jr, Niewiarowski PH, Navas CA. The evolution
of thermal physiology in ectotherms. J Therm Biol 2002; 27:
249–268.

Baeza A, Bouma MJ, Dobson AP, Dhiman R, et al. Climate
forcing and desert malaria: The effect of irrigation. Malar J
2011; 10:190.

Barnes KI, Durrheim DN, Little F, Jackson A, et al. Effect of
Artemether-Lumefantrine policy and improved vector control
on malaria burden in KwaZulu-Natal, South Africa. PLoS
Med 2005; 2:e330.

Bayarri, MJ, Berger JO, Calder ES, Dalbey K, et al. Using
statistical and computer models to quantify volcanic hazards.
Technometrics 2009; 51(4).

Beier JC, Killeen GF, Githure JI. Short report: Entomologic
inoculation rates and Plasmodium falciparum malaria prev-
alence in Africa. Am J Trop Med 1999; 61:109–113.

Blanford JI, Blanford S, Crane RG, Mann ME, et al. Implica-
tions of temperature variation for malaria parasite develop-
ment across Africa. Sci Rep 2013; 3:1300.

Blanford S, Read A, Thomas M. Thermal behaviour of Ano-
pheles stephensi in response to infection with malaria and
fungal entomopathogens. Malar J 2009; 8:72.

Cator LJ, Thomas S, Paaijmans KP, Ravishankaran S, et al.
Characterizing microclimate in urban malaria transmission
settings: A case study from Chennai, India. Malar J 2013;
12:1–10.

Center for International Earth Science Information Network
(CIESIN)/Columbia University, and Centro Internacional de
Agricultura Tropical (CIAT). GPWv3. Gridded Population of
the World, version 3 (GPWv3): Population Density Grid, Fu-
ture Estimates. 2005. http://sedac.ciesin.columbia.edu/data/set/
gpw-v3-population-density-future-estimates

Center for International Earth Science Information Network
(CIESIN)/Columbia University, International Food Policy
Research Institute (IFPRI). Global Rural-Urban Mapping
Project, Version 1 (GRUMPv1): Urban Extents Grid. 2011.
http://sedac.ciesin.columbia.edu/data/set/grump-v1-urban-
extents/

Gething PW, Smith DL, Patil AP, Tatem AJ, et al. Climate change
and the global malaria recession. Nature 2010; 465:342–345.

Gething PW, Van Boeckel TP, Smith DL, Guerra CA, et al.
Modelling the global constraints of temperature on transmis-
sion of Plasmodium falciparum and P. vivax. Parasit Vectors
2011; 4:92.

Grover-Kopec E, Kawano M, Klaver RW, Blumenthal B, et al.
An online operational rainfall-monitoring resource for epi-
demic malaria early warning systems in Africa. Malar J 2005;
4:6.

Guerra CA. Mapping the contemporary global distribution
limits of malaria using empirical data and expert opinion.
Dphil, University of Oxford, 2007.

Guerra CA, Gikandi PW, Tatem AJ, Noor AM, et al. The limits
and intensity of Plasmodium falciparum transmission: Im-
plications for malaria control and elimination worldwide.
PloS Med 2008; 5:300–311.

Guerra CA, Howes RE, Patil AP, Gething PW, et al. The
international limits and population at risk of Plasmodium
vivax transmission in 2009. PLoS Negl Trop Dis 2010;
4:e774.

Hijmans RJ, Cameron SE, Parra JL, Jones PG, et al. Very high
resolution interpolated climate surfaces for global land areas.
Int J Climatol 2005; 25:1965–1978.

Intergovernmental Panel on Climate Change (IPCC). Climate
Change 2007: Working Group II: Impacts, Adaptation and
Vulnerability, Section 8.4.1.2: Malaria, Dengue and Other
Infectious Diseases. Valencia, Spain, 2007a.

Intergovernmental Panel on Climate Change (IPCC). IPCC 4
Assessment Report: The AR4 Synthesis Report. IPCC AR4.
Valencia, Spain: Intergovernmental Panel on Climate Change.
2007b.

Jenkerson CB, Maiersperger TK, Schmidt GL. eMODIS: A
User-Friendly Data Source. Open File Rep 1055.US Geolo-
gical Survey, US Department of the Interior, 2010. Available
at http://pubs.er.usgs.gov/publication/ofr20101055/

Johnson LR, Lafferty KD, McNally A, Moprdecai E, et al.
Mapping the distribution of malaria: current approaches and
future directions. In: Analyzing and Modeling Spatial and
Temporal Dynamics of Infectious Diseases. John Wiley &
Sons, 2014:189—209.

Kirby MJ, Lindsay SW. Responses of adult mosquitoes of two
sibling species, Anopheles arabiensis and A. gambiae ss
(Diptera: Culicidae), to high temperatures. Bull Ent Res 2004;
94:441–448.

Kleinschmidt I, Sharp BL, Clarke GPY, Curtis B, et al. Use of
generalized linear mixed models in the spatial analysis of
small-area malaria incidence rates in KwaZulu Natal, South
Africa. Am J Epidemiol 2001; 153:1213–1221.

Lafferty KD. The ecology of climate change and infectious
diseases. Ecology 2009; 90:888–900.

MARA/ARMA. Towards an atlas of malaria risk in Africa: First
technical report of the MARA/ARMA Collaboration. First
Technical Report of the MARA/ARMA Collaboration. Durban,
South Africa; 1999.

Mordecai EA, Paaijmans KP, Johnson LR, Balzer C, et al.
Optimal temperature for malaria transmission is dramatically
lower than previously predicted. Ecol Lett 2013; 16:22–30.

Noor AM, Kinyoki DK, Mundia CW, Kabaria CW, et al. The
changing risk of Plasmodium falciparum malaria infection in
Africa: 2000–10: A spatial and temporal analysis of trans-
mission intensity. Lancet 2014; 383:1739–1747.

Paaijmans KP, Blanford S, Bell AS, Balnford JI, et al. Influ-
ence of climate on malaria transmission depends on daily
temperature variation. Proc Natl Acad Sci USA 2010; 107:
15135–15139.

724 RYAN ET AL.



Parham PE, Michael E. Modeling the effects of weather and
climate change on malaria transmission. Environ Health Persp
2010; 118:620–626.

Parham PE, Waldock K, Christophides GK, Edwin Michael E.
Climate change and vector-borne diseases of humans. Philos
Trans Roy Soc B 2015; 370:20140377.

Pascual M, Ahumada JA, Chaves LF, Rodo X, et al. Malaria
resurgence in the East African highlands: Temperature
trends revisited. Proc Natl Acad Sci USA 2006; 103:
5829–5834.

Peterson AT. Shifting suitability for malaria vectors across
Africa with warming climates. BMC Infect Dis 2009;
9:59.

R Core Team. R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical
Computing, 2014. Available at http://www.R-project.org/

Ramirez J, Jarvis A. High Resolution Statistically Downscaled
Future Climate Surfaces. International Center for Tropical
Agriculture (CIAT), 2008.

Rogers DJ, Randolph SE. Climate change and vector-borne
diseases. Adv Parasitol 2006: 62:345–381.

Rohr JR, Dobson AP, Johnson PTJ, Kilpatrick AM, et al.
Frontiers in climate change–disease research. Trends Ecol
Evol 2011; 26:270–277.

Shuman EK. Global climate change and infectious diseases.
New Engl J Med 2010; 362:1061–1063.

Siraj AS, Santos-Vega M, Bouma MJ, Yadeta D, et al. Altitu-
dinal changes in malaria incidence in highlands of Ethiopia
and Colombia. Science 2014; 343:1154–1158.

Snow RW, Marsh K, Le Sueur D. The need for maps of trans-
mission intensity to guide malaria control in Africa. Parasitol
Today 1996; 12:455–457.

Sternberg ED, Thomas MB. Local adaptation to temperature
and the implications for vector-borne diseases. Trends Para-
sitol 2014; 30:115–122.

Suzuki R, Xu J, Motoya K. Global analyses of satellite-derived
vegetation index related to climatological wetness and
warmth. Int J Climatol 2006; 26:425–438.

Tanser FC, Sharp B, le Sueur D. Potential effect of climate
change on malaria transmission in Africa. Lancet 2003; 362:
1792–1798.

World Health Organization (WHO). World Malaria Report
2014. Geneva: World Health Organization, 2014.

Address correspondence to:
Sadie J. Ryan

Department of Geography
3128 Turlington Hall
University of Florida

Gainesville, FL 32611-7315

E-mail: sjryan@ufl.edu

CLIMATE CHANGE AND MALARIA 725


