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Abstract

A study on the quantum dynamics of the hydrogen molecule embedded in

the hollow cavity of a single-walled carbon nanotube is presented, taking into

account for the first time all six degrees of freedom of the confined molecule.

A set of initial eigenstates of the trapped H2 molecule are propagated for

500 fs using the State Average Multiconfigurational Time-dependent Hartree

approach. An initial linear momentum is added to the hydrogen molecule

in order to mimic high temperature behavior, forming an angle of 0◦ and

45◦ with respect to the nanotube’s axis; an additional propagation is carried

out without adding any extra momentum. The wave packet dynamics are

analyzed using projections and overlap functions in the appropriate degrees

of freedom. The study reveals little correlation between the translation of the

confined molecule along the nanotube and the remaining degrees of freedom.
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1. Introduction1

In the last few years the development of new storage devices for low-2

density gaseous species has become a field of intensive research. Their in-3

terest arises with two basic objectives in mind: to store large amounts of4

potential fuels in order to make their transport from the production centers5

feasible, and to capture known pollutants from the atmosphere to prevent,6

for instance, the greenhouse effect[1]. A paradigmatic case of potential fuel7

for the near future, due to its high efficiency and low impact in the envi-8

ronment, is hydrogen. Nanostructured materials, such as Carbon Nanotubes9

(CNT) or some Metal-organic Frameworks (MOFs) show the potential to10

be used for this purpose[1, 2, 3, 4]. A paradigmatic case is the research on11

hydrogen storage in nanostructured materials, such as Carbon Nanotubes12

(CNTs) or Metal-organic Frameworks (MOFs) [3, 5, 6, 7, 8, 9, 10, 11], given13

the potentiality of this gas a fuel for the near future. Due to its large econom-14

ical interest, the storage of hydrogen in nanostructured materials has been15

largely studied both theoretically and experimentally, specially in the last16

few years. The research carried out in this kind of systems has shown the17

effectiveness of some of these materials as storage devices. A collateral effect18

of gas adsorption in nanostructures is the distortion of the confined molecules19

at the molecular level when the cavities in which they are trapped are of the20

order of the nanometer. These distortions, which are changes of the elec-21

tronic structure and the dynamics of confined species, were first studied by22

Beenakker[12] et al in the middle 90s. In the early 2000s relevant studies of23

the hydrogen molecule in confining environments, including a quantum treat-24

ment of the nuclei, were carried out by Yildirim et al [7, 13, 14] in different25
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carbon structures. Gray and co–workers latter calculated the distortions in26

the rotation and translation of hydrogen in narrow carbon nanotubes using27

a four–dimensional model [15]. Lately, more complex studies have appeared28

on similar systems: the first 5–D quantum study of hydrogen in a carbon29

nanotube was carried out by one of us [16], and Bazic and co–workers have30

studied H2 confined in different nanostructures such as metal–organic frame-31

works (MOFs) and endofullerenes. More recently, we carried out a rigorous32

analysis of the hydrogen molecule confined in different carbon nanotubes33

correlating the eigenstates of the trapped molecule with those of the free34

molecule [17]. The importance of these studies lies in the fact that they35

would not only allow a better understanding of the affinity of the confined36

molecules by the adsorbent, but they may also allow the discovery of new po-37

tential applications for nanostructured materials. A particularly interesting38

example of these novel applications are quantum sieves, which allow the sepa-39

ration of isotopomers of a given molecule, like H2 and D2, due to the different40

Zero-point energy (ZPE) of molecules with different mass [18, 19, 20, 4]. Also,41

some investigations point to the possibility of controlling chemical reactions42

at the molecular level using nanostructured materials[21].43

Our aim in this work has been to go one step further with respect to44

previous simulations and carry out full dimensional (6D) propagations for a45

single hydrogen molecule confined in an (8,0) Single walled carbon nanotube.46

Unlike Refs [7, 15, 16, 17], the hydrogen molecule is here able to diffuse47

along the CNT axis. This is done in a fully quantum mechanical approach48

in order to gain insight of the quantum confinement effects at an intimate49

level. In spite of the number of studies in this kind of confined systems, to50
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our knowledge few have been made which take into account the diffusion51

of a molecule along a nanotube [22], and this is the first one to take into52

account all possible degrees of freedom of the adsorbate. In order to see53

the coupling between the degrees of freedom when a hydrogen molecule is54

diffusing along the nanotube we employ the following strategy. First, a set55

of functions is obtained simulating the eigenstates of a trapped H2 molecule.56

These eigenstates are then given a linear impulse along the nanotube axis57

with different impingement angles and propagated in time. The outcome of58

these propagations is analyzed using several tools based on wave functions59

projections and overlap functions to see whether the nature of the eigenstates60

is conserved when the confined wave packet travels along the nanotube axis.61

The work is therefore structured as follows. In Section 2 the model used62

to describe the system is presented. Then the relevant features of the com-63

putational tools are outlined in Section 3, focusing first on the Multicon-64

figurational Time-dependent Hartree approach. The remainder of Section 365

describes the procedure followed in the dynamics simulation: the preparation66

of the set of initial states, the simultaneous propagation and the description67

of the tools used to analyze them. The results of the study are discussed in68

Section 4 and our conclusions summarized in Section 5.69

2. Description of the model70

Our system of study (hereafter, H2@SWNT) consists on a single hydro-71

gen molecule confined in the hollow cavity of a (8,0) Single-walled Carbon72

Nanotube. We implemented a 6–dimensional (6D) Hamiltonian within the73

rigid nanotube approximation, that is, we take into account explicitly all de-74
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grees of freedom (DOFs) of the hydrogen molecule, but neglect the vibration75

of the carbon atoms. To obtain the structure of the nanotube, a geometrical76

optimization of its unit cell was carried out using a B3LYP functional and77

a 6-21G basis set with the Crystal09 software[23, 24] . The full nanotube78

is then represented by the concatenation of 20 unit cells, each one with a79

length of 8 bohr, in order to mimic an infinitely large structure and therefore80

minimize any edge effects.81

Regarding the hydrogen molecule, the six DOFs are chosen as the inter-82

nuclear H–H distance (ρ), the polar angle of the diatomic vector with respect83

to the nanotube’s axis (θ), the azimuthal angle (φ), and the Cartesian co-84

ordinates of the c.o.m. of the diatom (x,y and z, being z collinear with the85

nanotube’s axis) (Figure 1). The 6D Hamiltonian reads:86

Ĥ6D = − ~2

2µH2

(
∂2

∂ρ2
+

2

ρ

∂

∂ρ
+

1

ρ2
∂2

∂θ2
+

1

ρ2
1

sin2 θ

∂2

∂φ2

)
− ~2

2mH2

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+ V̂ (ρ, θ, φ, x, y, z), (1)

with µH2 and mH2 being respectively the reduced mass and the total mass of87

the hydrogen molecule. Hence, all degrees of freedom are explicitly defined88

and all couplings allowed.89

The potential energy term is a 6 dimensional function of the coordinates90

of the hydrogen molecule. Since the Van der Waals interactions are the ones91

ruling the behavior of the system, we represent the potential energy surface92

(PES) as a sum of Lennard–Jones pair potentials — as done in previous stud-93

ies on similar systems [15, 16, 17]—. Additionally, the covalent interaction94

between the hydrogen atoms is represented by a Morse potential [25]. The95
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PES then has the form:96

V̂6D = VH−H(ρ) + VC−H(ρ, θ, φ, x, y, z), (2)

V̂C−H(ρ, θ, φ, x, y, z) =
2∑
i=1

Nc∑
j=1

V LJ
i,j (dHi−Cj

), (3)

with parameters De = 0.1746 hartree, a = 1.0271 bohr−1 and Re = 1.4 bohrs97

for the Morse potential, and ε = 2.82 Å and σ = 0.0605 kcal/mol for the98

Lennard–Jones interaction. See Ref. [17] for a discussion about the suitability99

of these parameters.100

3. Simulation details101

3.1. Wave function representation102

The propagations have been carried out using the Multiconfigurational103

Time-dependent Hartree (MCTDH) approach[26, 27] . This method allows104

an efficient propagation of multidimensional wave packets due to the use of105

a two-layer representation for the wave functions: a relatively small basis106

set of time-dependent, low-dimensional basis functions, known as Single-107

Particle Functions (SPFs, ϕ
(k)
jk

(Qk, t)), which in turn are expanded in a time-108

independent basis of primitive functions. The Ansatz is then constructed as109

a sum of configurations, each one being a Hartree product of SPFs:110

Ψ(Q1, . . . , Qp, t) =

n1∑
j1=1

· · ·
np∑
jp=1

Aj1···jp(t)

p∏
k=1

ϕ
(k)
jk

(Qk, t). (4)

And the representation of the SPFs on the primitive basis of time-independent111

functions reads:112

ϕ
(k)
j (Qk) =

Nk∑
l=1

a
(k)
lj
χ
(k)
l (Qk), (5)
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where the χ functions are usually a Discrete Variable Representation (DVR)113

or Fast Fourier Transform (FFT) grid. Equation 4, in combination with the114

Dirac-Frenkel variational principle, yields a system of coupled equations of115

motion for the system which must be integrated to solve the dynamics of the116

problem. This two-layer approach allows an important decrease of the size117

of the matrices during the integration of the equations of motion.118

Another conceptual advantage of the MCTDH approach is that, since119

the wave function is represented as a sum of configurations, the correlation120

between the degrees of freedom is readily seen by the coefficients of the linear121

combination: for a separable system without correlation between the degrees122

of freedom, a single Hartree product would be enough to describe the whole123

system. This tool can therefore be used to analyze qualitatively the coupling124

between the degrees of freedom.125

In the present work we have used a particular variant of the MCTDH126

approach: the State Averaged MCTDH method (SA-MCTDH) developed by127

Manthe [28]. This scheme allows the simultaneous propagation of several128

independent wave packets under a orthogonality constraint in a way that,129

in general, this simultaneous propagation is more efficient than the propa-130

gation of the individual wave packets. This method is particularly useful to131

obtain nuclear eigenstates of a given system by successive application of the132

Boltzmann operator [28, 29]. In our calculations we have taken advantage133

of both particularities: the Boltzmann operator has been used to obtain a134

set of physically meaningful states, and these states are next propagated si-135

multaneously –this simultaneous propagation being more efficient than the136

individual propagation of multiple wave packets–.137
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In our model, each degree of freedom is represented by a set of 1D SPFs.138

The primitive basis sets, listed in Table 1, are chosen as a FFT equidistant139

grid for the ρ, φ, x, y and z DOFs. For the remaining degree of freedom (θ)140

the cot–DVR [30] is used in order to avoid a singularity in the 1
sin θ

term of141

the Hamiltonian (see Equation 1).142

Regarding the SPF basis two comments ought to be made. First, com-143

paring the size of the primitive and SPF basis, the computational saving144

introduced by MCTDH with respect to standard wave packet approaches is145

evident. Secondly, the degrees of freedom with more correlation require a146

higher SPFs basis in order to take all this effects into account. Thus, from147

our converged MCTDH basis it can be predicted that the most correlated148

DOFs are the x, y translations and the rotational coordinates while vibration149

remains essentially uncoupled in our simulations.150

Finally, a quartic complex absorbing potential (CAP) with length 4 Å151

has been added in the z coordinate in order to prevent any aliasing of the152

wave packet when it reaches the edge of the simulation grid.153

3.2. Initial state calculation154

Since solving the Time-dependent Schrödinger equation is an initial value155

problem, it is important to obtain physically meaningful initial states in order156

to extract correct information from a propagation. This initial state could157

be constructed, following the approach in Ref [22], as a direct product of the158

eigenstates of a free hydrogen molecule for the internal coordinates (ρ, θ and159

φ) and Gaussian functions for the c.o.m coordinates (x, y and z). However,160

as shown in a previous study[17], there are important deviations from this161

separable model when the hydrogen molecule is confined in a (8,0) CNT.162
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Table 1: Numerical details of the MCTDH wave function basis set: ni labels the SPF basis

set size, Ni the primitive basis set size, (qmin, qmax) correspond to the representation grid

edges and < qi >0 the initial position expectation value. Magnitudes are given in bohr or

radians, correspondingly.

qi ni qmin qmax Ni 〈qi〉0
ρ 2 0.5 5.0 32 1.41

θ 5 0.0 π 64 π/2

φ 6 0.0 2π 64 0.0

x 4 -3.5 3.5 32 0.0

y 4 -3.5 3.5 32 0.0

z 5 -18.0 18.0 128 -1.36

Therefore, in order to obtain more realistic initial states for the propagation,163

the initial states were calculated directly as eigenstates of the H2 confined164

molecule. Given that the potential is essentially unbound along z, a virtual165

harmonic potential was added in this degree of freedom, centered in the166

center of a unit cell, where the potential energy is a minimum (Fig 2). This167

potential allows us to artificially trap the gas molecule and obtain eigenstates,168

with only small dispersion along the z dimension but taking into account169

all possible distortions due to the effect of the confining potential and the170

coupling between the degrees of freedom. Based on the results of the 5D171

calculations on the same system found in Refs [16, 17], the force constant172

for the virtual trapping potential was chosen to be 200 cm−1, in a way that173

there were no excitations in the z coordinate for the first 10 excited states of174

the trapped system. The details on the SPF basis set used to compute these175

eigenstates is shown in the first column of Table 2. Note that due to the large176
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Table 2: Basis set size (ni) in the different degrees of freedom (qi) for the three calculations

in the present work: initial state calculation with trapping potential, and propagation of

a set of wave packets with α = 0◦ and α = 45◦ initial conditions.

Iterative Collinear α = 45◦

Diagonalization propagation propagation

qi ni ni ni

ρ 2 2 2

θ 4 5 5

φ 6 6 6

x 4 4 5

y 4 4 5

z 1 5 5

force constant used in the trapping potential, a single SPF can be used in the177

z coordinate. Employing this basis set, the SA-MCTDH scheme was applied178

to diagonalize the Boltzmann operator at a reference temperature of 300 K.179

After 20 iterations the energies of a total of 11 states were converged. These180

are all eigenstates significantly populated at 298 K according to a Boltzmann181

thermal distribution.182

3.3. Propagation of the initial states183

The states obtained as reported above have a very low initial linear mo-184

mentum in the z coordinate and are therefore not well suited for time propa-185

gation. In order to simulate the diffusion of the hydrogen molecule inside the186

nanotube, the linear momentum distribution of H2’s c.o.m in the z coordinate187

was shifted to match a mean value of 25.6 meV, with an indetermination of188
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9.39 meV. This energy value corresponding to the most probable kinetic en-189

ergy of a particle with mass mH2 following a Maxwell–Boltzmann distribution190

at a temperature of 298 K.191

Two sets of propagations were run with different impinging angles α be-192

tween the linear momentum vector and the nanotube axis: 0◦ and 45◦. For193

each set, the propagation of the set of initial wave packets was carried out194

simultaneously during a total of 500 fs. For angles α significantly larger than195

45◦, the repulsion coming from the nanotube walls proved to be too large for196

a satisfactory convergence of the calculation, and therefore no propagations197

were carried out beyond this limiting value.198

Although one may naively employ the same MCTDH basis employed in199

the eigenstate calculation, we expect distortions of the wave functions as200

it evolves along the nanotube axis. This will basically the case in the z201

coordinate where the potential energy landscape changes drastically but also202

in the x and y DOFs for the α = 45◦ case. For this reason the SPFs basis203

set used to generate the initial states was expanded in order to provide a204

flexible enough basis and allow for the convergence of the calculations. See in205

Table 2 the MCTDH basis set representation in the α = 0◦ (second column)206

and α = 45◦ (third column).207

3.4. Analysis of the wave packets208

The dynamics propagation of the H2@CNT eigenstates is studied follow-209

ing two different and complementary approaches. Since the direct obser-210

vation of the full wave function evolution is not possible due to the high211

dimensionality of the wave packets, the first tool at our disposal is the pro-212

jection onto relevant subspaces. This projection allows us to reduce the213
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dimensionality of the functions, yielding a result which can be plotted and214

visualized:215

| Ψ |2 (~r, t) = 〈Ψ(~R;~r, t) | Ψ(~R;~r, t)〉, (6)

where ~R and ~r represent the integrated and the projection subspaces, respec-216

tively.217

Through this method we are able to extract relevant information about218

particular degrees of freedom of the system, but on the other hand it may219

also cause the loss of detailed information regarding, for instance, the cou-220

pling between the different degrees of freedom. In order to overcome this221

limitation and be able to gain insight on the coupling and how energy is222

transferred among the DOFs, we have analyzed how the character of the H2223

initial eigenstates is conserved throughout the propagation, by calculating224

the overlap, θ(z), between the propagated functions, Ψ, and a set of static225

H2 eigenstates computed at several points along the nanotube axis, Φ:226

σ(z, t) = 〈Ψ(~R; z, t) | Φ(~R; z, t)〉 =

=

∫
Ψ(ρ, θ, φ, x, y, z, t)∗Φ(ρ, θ, φ, x, y, z, t)dρdθdφdxdy (7)

where ~R stands for the degrees of freedom taken into account for the over-227

lap. The Φ eigenstates are obtained following the same procedure described228

in Section 3.2 only the value of z0 in the trapping potential is changed. The229

overlap between the propagated wave packet and these reference functions230

tells us about the distortions of the wave packets when they travel along the231

nanotube: if a one-to-one correspondence between the wave packets and the232
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bound states was found, that would mean that there are no distortions of the233

eigenstates due to the propagation along the nanotube, and therefore that234

the coupling of the z DOF with the remaining 5 is negligible. Oppositely,235

a large coupling would lead to a strong mixing of states during the propa-236

gation. It should be mentioned that we calculate a partial overlap function,237

since we integrate only in the subspace complementary to the z DOF, and238

therefore the overlap will depend on the total value of the wave function in239

that point, thus allowing us to focus the analysis on the relevant areas of the240

propagated wave packet at each time step. This analysis is done at several241

points along the z coordinate to detect how the H2 states are distorted as242

they evolve along the nanotube.243

4. Discussion244

Employing the SA-MCTDH approach and the parameters details in Sec-245

tions 3.2 and 3.3 the first 11 eigenstates of the H2@SWCNT system were con-246

verged for a z value of the trapping potential, z = −1.36 bohr, corresponding247

to the center of a nanotube unit cell. The corresponding eigenenergies rel-248

ative to the ground state are listed in Table 3. The reported energy values249

are in complete agreement with those of previous 5D calculations shown in250

Refs [16, 17]. Table 3 also contains the energies of the eigenstate calculations251

at values of z = 0.73, 2.73, 4.73 and 6.74 bohr, corresponding to alternating252

minima and maxima. As expected, due to the small corrugation of the po-253

tential along the z coordinate, the eigenenergies calculated at several points254

of the nanotube present only minor differences among them in terms of en-255

ergy (tenths of wave numbers between calculations at maxima and minima).256
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Table 3: Computed eigenenergies (cm−1 units) of the H2@SWNT system with the H2

trapped with an harmonic potential centered at different points along the z coordinate.

Ground state energies given in the first row, energy increments given for the remaining of

states.

State ∆E (cm−1)

z = −1.36 z = 0.73 z = 2.73 z = 4.73 z = 6.74

0 2744 2798 2744 2798 2798

1 71 58 58 58 71

2 157 175 175 175 157

3 157 175 175 175 157

4 253 270 270 270 253

5 253 270 270 270 253

6 396 434 434 434 396

7 409 435 435 435 409

8 409 436 436 436 409

9 428 443 448 448 428

10 430 472 468 468 430

Note that the zero point energy for this eigenstates includes ∼ 200 cm−1
257

corresponding to the ZPE of the harmonic trapping potential added.258

As detailed in Section 3.3 the resulting initial eigenstates are next pre-259

pared for the time propagation. In order to do that, first a linear impulse is260

given in the z DOF and second the SPF basis of the MCTDH wave function is261

expanded. Two sets of propagation have been carried out here, one simulat-262

ing a set of confined H2 eigenstates traveling collinearly along the nanotube263

axis (α = 0◦) and an average thermal translational energy of 298 K, and264
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second set with same energy content but an impinging angle of α = 45◦. In265

both cases, the MCTDH wave function was propagated during 500 fs. In the266

case of the α = 0◦ propagation, the calculation implied 216 h of clocktime267

in a 12 core processor. For the α = 45◦ propagation, the required time was268

190 h.269

4.1. Projection analysis270

The projection of the wave packet sets on the z coordinate shows that the271

corrugation of the nanotube, even though it is quite small, has a deep effect272

on the dynamics of the system: the wave packet does not advance as it would273

for a free particle, even with a considerably high kinetic energy (26 meV),274

but has to overcome periodic potential barriers (∼ 8 meV) which give a275

clear structure to the function. As an illustrative example, Figure 3 displays276

four snapshots of the z-projection of the ground state wave packet for α = 0◦
277

at 0, 100, 200, and 500 fs superimposed to a schematic projection of the278

PES is also given (dashed line). The initially localized wave packet spreads279

as the propagation goes on, gaining structure due to the presence of the280

periodic potential. The projections also show that this propagation time is281

enough to separate the whole the wave packet in two fractions: the one which282

has enough energy to overcome the potential energy barrier created by the283

corrugation of the nanotube, and the one which does not have the necessary284

energy. The fraction of the wave packet trapped in the initial potential energy285

well can be estimated integrating over the region of the z coordinate which286

delimitates this well (from -3.34 to 0.74 bohr). In the case of the collinear287

ground state, we find that approximately a 23% of the initial wave packet288

remains trapped in the initial potential energy well after 500 fs. The amount289
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Table 4: Percentage of the probability density of the different wave packets that remains

in the initial potential energy well after 500 fs of propagation.

α = 0◦ α = 45◦

State % in well State % in well State % in well State % in well

0 23 5 26 0 36 5 41

1 20 6 32 1 32 6 37

2 27 7 28 2 43 7 36

3 27 8 28 3 43 8 40

4 26 9 33 4 42 9 35

of wave packet trapped after the propagation is related to the overall shape290

of the initial wave packet, since the probability distribution in the different291

coordinates will affect the potential felt by the whole hydrogen molecule292

(Table 4). This means that some wave packets, with a higher probability293

density in areas of the PES which are more strongly repulsive, will have294

to overcome higher potential barriers than others. In this respect, note for295

instance that the first excited state, whose wave function presents a node in296

the θ = π/2 plane, is the one with less fraction remaining trapped in the297

well. On the other hand, for other states with a high probability density in298

this region the fraction of wave function remaining in the well becomes much299

higher.300

Concerning the remaining coordinates of the system, the respective pro-301

jections show a very small variation in time, which points to a low coupling302

between the z coordinate and the other five DOFs. This is explained by303

the small corrugation of the potential along the carbon nanotube: unlike304
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the barrier posed for the rotation along θ and the confining potential in x305

and y, which are large enough to generate a coupling between the degrees306

of freedom [17], the changes of the PES in z are not strong enough. This307

lack of correlation is further confirmed by studying at the population of the308

last occupied natural SPF in the different DOFs as a function of time: we309

see clearly that the changes are of the order of 10−3, which is pretty much310

insignificant.311

Increasing the impinging angle to 45◦ changes significantly the outcome312

of the propagation to what the projection on the z coordinate is concerned.313

This projection is shown in Figure 4 together with the projection of the314

PES for 4 different time instants. As expected, since there is less effective315

linear momentum along the z coordinate, the amount of wave packet which316

remains trapped is significantly higher: around 36% for the ground state,317

and up to 43% for some excited states. Moreover, the distortions observed318

in the remaining degrees of freedom are much stronger in this case than in319

the previous one. The initial wave packet has a linear momentum partially320

pointing to the nanotube wall, and explores a region of the PES with much321

more corrugation along the z axis. In this new landscape, the correlation322

between the different degrees of freedom, mainly z, x and θ , is increased.323

In Figure 5 we can see the projection of the ground state wave packet with324

impinging angle 45 in the θ dimensions at four different time instants. These325

projections show how the probability distribution in θ changes in time due326

to the coupling with z.327
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4.2. Overlap study328

As discussed earlier, the projection of the projected wave packets in dif-329

ferent coordinates allows for an intuitive qualitative interpretation of the330

propagation, but misses more detailed information about the couplings be-331

tween the degrees of freedom and the energy exchange between them. This332

information can be obtained by comparing the projection of the wave packets333

at different times with a set of static eigenstates. This states are obtained334

using the same trapping potential as in Section 2.2, but centered at different335

z values.336

The overlap between the propagated wave packet and this set of static337

eigenstates is analyzed from two different points of view. In the first place,338

we focus our attention on how crossing a complete unit cell of the nanotube339

affects the wave packets. In order to do this, the static eigenstates are com-340

puted at z = 6.74 bohr, which is an equivalent point to the initial position of341

the wave packet (z = −1.36 bohr) in the neighboring unit cell. On the other342

hand, we are also interested on how the possible changes in the wave pack-343

ets are produced. To study this, we perform the same overlap calculation344

with static eigenstates corresponding to several points along the z coordinate.345

These analysis points were selected at the critical points of the unit cell, i.346

e. the potential maxima (z = 0.74 and 4.73 bohr) and minima (z = 2.73347

and 6.74 bohr). Through this approach we intend to see if the mixing occurs348

mainly in certain points along the nanotube, or if it is a gradual change.349

The changes on a wave packet after crossing a whole unit cell are shown350

in figures 6 and 7, where we show the overlap functions between the ground351

state wave packet and the most relevant elements of the set of static eigen-352
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states, computed at the point z = 6.74 bohr. Again, we take the ground state353

propagation as a representative case, and discuss the changes between the dif-354

ferent impinging angles, α = 0◦ and 45◦. Note that for both figures there is a355

clearly dominant overlap function, corresponding to the overlap between the356

wave packet and the reference function most similar to the initial state (up-357

per panels), while the overlap with other eigenstates is comparatively much358

smaller. This trend is maintained for all the initial states propagated, and359

confirms the idea of small coupling discussed in Section 4.1. However, in spite360

of this common trend, we find significant differences between the collinear361

and the α = 45◦ propagation. The first difference between the propagations362

carried out at different conditions is seen in the overall shape of the domi-363

nant overlap function. It is readily seen that the decrease on this function364

is much sharper for the α = 0◦ propagation. This is again related with the365

effective linear momentum along the z coordinate, which is higher for this366

initial configuration. Regarding the remaining overlap functions, the differ-367

ences between the collinear (α = 0◦) and the deviated (α = 45◦)propagations368

are even more noticeable. The collinear case presents almost no mixing of369

states in any of the states propagated, the most significant contributions370

arises from states 8 and 10 but in both cases is two orders of magnitudes371

smaller than the ground state contribution. This is in complete agreement372

with the observations made on the base of the projections in different degrees373

of freedom. On the other hand, in the α = 45◦ case there is a higher overlap374

between the wave packet and several other static eigenstates. In particular375

the 5th excited state at approximately 200 fs reaches a value comparable to376

the GS overlap. This indicates a higher dynamical coupling and exchange of377
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energy between the different degrees of freedom. Additionally, this coupling378

increases in time, as it can be seen by the fact that the main overlap function379

decreases, while the overlap with other states remains basically constant; t380

the final steps of the propagation, the proportion of mixed states reaches381

almost a 20%. These results are again consistent with the analysis of the382

projections of the wave packet.383

The second part of the overlap functions’ analysis, carried out at several384

points along the z coordinate of the nanotube, is shown in Figures 8 and 9,385

again, for the ground state with both impinging angles. There, the two386

most relevant overlap functions are plotted as a function of time for several387

z values (0.73, 2.73, 4.73 and 6.75 bohr). Note again the difference in scale:388

the primary overlap function (upper panel) is much more relevant than the389

secondary (lower panel). For the primary overlap, the changes in the function390

seem to be mainly related with the different shape of the wave packet when391

it crosses the different analysis points. However, if we take a look to the392

secondary overlap, we see a trend not noticed before: although the shape of393

the function is similar in all the analysis points, the overlaps at the points394

corresponding to a maximum in the PES (z = 0.73 and z = 4.73 bohr) are395

significantly higher than the ones computed in the minima (z = 2.73 and396

z = 6.74 bohr). Therefore, it could be argued that the positive gradients in397

the PES increase the mixing of states, whether the negative gradients favor398

a partial recovery of the initial properties of the wave packet. Therefore,399

for longer propagation times and farther analysis points, we should see an400

increase in the mixing of states, since as the wave packet travels through401

the nanotube, the cumulative effect of maxima and minima might blur the402
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properties of the initial state of the propagation.403

On the other hand, for the α = 45◦ propagation we see a different be-404

havior. This can be seen in Figure 9, which shows the two most important405

overlap functions for the ground state propagated with impinging angle of406

45◦. Note that for the final instants of the propagation the primary overlap407

function decreases, while the overlap with the 5th excited state, although408

oscillating, maintains its value. This is again prove of a higher coupling and409

mixing of states with respect to the collinearly diffusing H2. However, the410

maxima-minima pattern observed for the collinear propagation is not clear411

anymore, probably due to the fact that there is a strong coupling between the412

x and θ DOFs induced by the linear momentum added to the x dimension:413

since this changes the area of the PES explored by the wave packet, it may414

result in a different potential energy landscape in which the analysis points415

do not correspond to critical points anymore.416

Note that our simulations correspond to a high temperature frame. In417

these conditions, the kinetic energy of the molecules is, as we have already418

seen, enough to overcome the corrugation of the nanotube quite easily (even419

though not completely). Quantum confinement effects are known to be more420

noticeable at low temperatures [15, 18, 19]. In order to confirm this fact, we421

have tried to mimic an experimental setup which would allow to follow the422

diffusion of a single hydrogen molecule in the nanotube. This setup would423

use laser light to trap a molecule in a certain region of space (as does our424

virtual trapping potential). Then, once the laser would be turned off (we425

remove our trap), the molecule would evolve freely and diffuse. To reproduce426

computationally this experiment, we carried out a calculation letting the427

21



system evolve freely, without modifying the momentum of the individual428

wave packets. Therefore, the linear momentum of the initial functions is429

centered at 0 eV and the simulation would correspond to the free diffusion430

of an eigenstate. This simulation was carried out using the same basis set as431

for the collinear propagation with increased initial linear momentum.432

The analysis of this last propagation allows some final details of the inter-433

pretation previously presented to be discussed. Figures 10 and 11 correspond434

to the same analysis of the overlap functions as the one made for translation-435

ally excited wave packets: Figure 10 shows the main overlap functions for436

the propagation of the ground state at z = 6.74 bohr, and Figure 11 gathers437

the two main overlap functions at the same four analysis points presented438

before. Regarding Figure 10, we see that the shape of the main overlap func-439

tion differs significantly from those of Figures 6 and 7: it is much broader440

and starts to be relevant at larger time values. This is clearly a result of441

the smaller kinetic energy of the wave packet. This difference is even more442

noticeable when comparing the profiles of the overlap functions at different443

z points: whilst in the case of increased initial linear momentum the overall444

shape of the main overlap function seemed to decay smoothly, in Figure 11445

we see that it changes significantly. This shows again that the structure that446

the wave packets acquire during the propagation, as shown in Section 4.1, is447

much more important in this case. This is still more noticeable in some ex-448

cited states like the 9th. This fact makes difficult to establish a trend in the449

secondary overlap functions, but in general and comparing with the systems450

studied with different initial conditions, the coupling is significantly higher451

in this case than in the collinear propagation, although not as large as in the452
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α = 45◦ one (Fig. 10). This indicates that an increased initial linear mo-453

mentum helps the wave packet to overcome the barriers with enough kinetic454

energy, so that the coupling is less important. On the other hand, when the455

wave packet has no net initial linear momentum it explores areas with less456

kinetic energy, which are more affected by the potential, and therefore the457

coupling between the DOFs is stronger.458

5. Summary and conclusions459

In the present work we have presented a 6D study of the hydrogen460

molecule confined in Single-walled Carbon Nanotubes. The system is mod-461

eled within the rigid nanotube approach, taking into account the full coupling462

among all of hydrogen DOFs. The use of a virtual trapping potential to com-463

pute eigenstates highly localized in the z coordinate has provided a set of 11464

physically meaningful initial states for the propagation, and in full agreement465

with previous studies with 5D models [16, 17]. The simultaneous propaga-466

tion of these states using the SA-MCTDH approach has proved both efficient467

and rigorous.468

We have carried out three propagations with different initial conditions.469

In two of them we have added a linear momentum to the center of mass of470

the molecule to account for a translationally excited molecule, with average471

kinetic energy corresponding to 298 K. In one case, the initial momentum472

was directed along the z coordinate, in the other one, the momentum vector473

formed a 45◦ angle with the nanotube’s axis. Finally, a propagation was474

made without shifting the momentum distribution, in order to mimic an ex-475

perimental assembly of molecular hydrogen trapping by laser cooling. The476
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wave function projections of the three propagations reveal a probability den-477

sity structured in the z dimension, whereas the distortions on the remaining478

DOFs are very weak in comparison. This is taken as a first indication of479

the conservation throughout the propagation of the nature of each initial480

eigenstate. The complementary analysis relying on the calculation of the481

partial overlap between the propagated wave packet and sets of eigenstates482

calculated at different points along the carbon nanotube axis, allows us to483

quantify the coupling between the degrees of freedom, and shows that the484

wave packets with increased initial momentum collinear to the nanotube’s485

axis are the ones with the smallest coupling, whether the ones with an initial486

momentum directed partially towards the nanotube’s walls present a much487

higher mixing of states, although still not extremely high. The wave packets488

with zero group velocity lie somewhere in between the previous cases, show-489

ing that quantum effects are stronger at lower temperatures due to the lower490

kinetic energy of the particles.491

The low coupling, in agreement with studies on similar systems [22], sug-492

gests that a mean-field scheme could be used in this context. Its development493

would allow an improvement of the model by being able to find more com-494

plex and accurate potential energy surfaces and leaving the rigid nanotube495

approximation behind.496
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Figure 1: Scheme of the DOFs considered in the present work

z (bohr)

Figure 2: Representation of the projection of the PES in the z dimension (black) and the

virtual trapping potential (red).

30



V
 (
e
V
)

5
4
3
2
2

V
 (
e
V
)

5
4
3
2
2

V
 (
e
V
)

z (bohr)

5
4
3
2
2

5
4
3
2
2

Figure 3: Several snapshots of the propagation using the bound ground state as the initial

state, projected on the z coordinate. The wave packet gains structure as time advances.

Note the change of scale on the axis corresponding to the probability density.
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Figure 4: Snapshots of the projection of the ground state wave packet for t=0, 100, 200

and 500 fs on the z subspace.
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Figure 5: Projection on the θ subspace for the ground state wave packet at t=0, 25, 55

and 85 fs.
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Figure 6: Value of the overlap function of the lowest energy wave packet, with α =

0◦, with 10 reference functions at z = 6.74 bohr. Upper panel: main overlap function,

corresponding to the ground bound state. Lower panel: overlaps for the remaining relevant

overlap functions
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Figure 7: Value of the overlap function of the lowest energy wave packet, with α =

45◦, with 10 reference functions at z = 6.74 bohr. Upper panel: main overlap function,

corresponding to the ground bound state. Lower panel: overlaps of the remaining relevant

overlap functions.
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Figure 8: Value of the overlap function of the lowest energy wave packet, with α = 0◦,

at 4 different points along the z coordinate. Upper panel: most relevant overlap function

–see figure 6–. Lower panel: second most important overlap function.
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Figure 9: Value of the overlap function of the lowest energy wave packet, with α = 45◦,

at 4 different points along the z coordinate. Upper panel: most relevant overlap function

–see figure 7–. Lower panel: second most important overlap function.
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Figure 10: Value of the overlap function of the lowest energy wave packet with 0 group

velocity. Upper panel: primary overlap function, corresponding to the ground bound state.

Lower panel: relevant secondary overlap function corresponding the the 9th excited state.

Note the difference in the maximum of probability with respect to previous states with

increased initial linear momentum.
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Figure 11: Value of the overlap function of the lowest energy wave packet, with α = 45◦,

at 4 different points along the z coordinate.

39


