
1 
 

An NMR-based metabolomics approach reveals a combined-

biomarkers model in a wine interventional trial with validation 

in free-living individuals of the PREDIMED study
 

 

Rosa Vázquez-Fresno
1,2

, Rafael Llorach
1,2*

, Mireia Urpi-Sarda
1,2

, Olha Khymenets
1,2

, Mònica 

Bulló
3,4

, Dolores Corella
4,5

,Montserrat Fitó
4,6

, Miguel Angel Martínez-González 
4,7

, Ramon 

Estruch
4,8

, Cristina Andres-Lacueva
1,2* 

 

1
Biomarkers and Nutrimetabolomic Lab. Nutrition and Food Science Department, XaRTA, INSA, 

Torribera Campus, Pharmacy Faculty, University of Barcelona, Av. Joan XXIII s/n, 08028 

Barcelona, Spain. 
2
INGENIO-CONSOLIDER Program, Fun-C-Food CSD2007-063, Ministry of 

Science and Innovation, Barcelona, Spain.
3
Human Nutrition Unit, Biochemistry and 

Biotechnology Department and Hospital Universitari de Sant Joan de Reus, Institut 

d‘Investigació Sanitària Pere Virgili, Universitat Rovira I Virgili, Reus, Spain. 
4
CIBER 

Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, 

Spain. 
5
Department of Preventive Medicine and Public Health, University of Valencia, Valencia, 

Spain.
 6

Cardiovascular Epidemiology Unit, Municipal Institute for Medical Research (IMIM), 

Barcelona, Spain. 
7
Department of Preventive Medicine and Public Health, University of Navarra, 

Pamplona, Spain.
8
Department of Internal Medicine, Hospital Clinic, Institut d’Investigacions 

Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain. 

 

*Correspondence: Cristina Andres-Lacueva, candres@ub.edu; and Rafael Llorach, 

rafallorach@ub.edu. Nutrition and Food Science Department, Pharmacy Faculty, University of 

Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain. Phone:+34.934034840. 

Fax:+34.934035931 
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ABSTRACT 

The development of robust biomarkers of consumption would improve the classification 

of participants with regard to their dietary exposure. In addition, validation of them in 

free-living individuals remains an important challenge. The aim of this study is to assess 

wine intake biomarkers using an NMR metabolomic approach to measure the utility of 

these biomarkers in a wine interventional study (WIS, n=56) and also to evaluate them in 

a free-living individuals (PREDIMED study, n=91). Nine metabolites showed a 

significantly higher presence in urinary excretion in the WIS after wine intake: five food 

metabolome metabolites (tartrate, ethyl glucuronide [EtG], 2,3-butanediol, mannitol, and 

ethanol); one related to the endogenous response to wine exposure (3-methyl-2-

oxovalerate) and three unidentified compounds. Receiver operating characteristic (ROC) 

curve for each single metabolite were evaluated and exhibited areas under the curves 

(AUC) between 67.4% - 86.3% when they were evaluated individually. Then, a logistic 

regression model was fitted to generate a combined-biomarkers model using these 

metabolites. The model generated which included tartrate-EtG, showed an AUC of 90.7% 

in WIS. Similarly, the AUC in the PREDIMED study, the biomarker model was  92.4%. 

Results showed that a model combining tartrate-EtG is more useful for evaluating 

exposure to wine than single biomarkers, both in interventional studies and 

epidemiological data. To our knowledge, this is the first time that a combined-biomarker 

model using an NMR platform in wine biomarkers’ research has been generated and 

reproduced in a free-living population. 
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Introduction 

The food metabolome is very complex and variable and could constitute an extremely 

useful source of information on the human diet Accurate characterization of the food 

metabolome should allow precise monitoring of dietary exposure and identification of 

foods that influence disease risk (Scalbert et al., 2014). Nowadays, evaluation of food 

intake is a big challenge, particularly if the relation between diet and health is taken into 

consideration. In this context, the moderate wine intake included in the Mediterranean 

food pattern has been related to some health benefits (Estruch, 2000). In addition, wine is 

of special interest in Mediterranean countries because it is a common constituent of the 

daily pattern of Mediterranean diets. Therefore, in the biomarker research field, studies 

testing biomarker exposure conducted in countries with a regular wine intake are an 

interesting focus for research. 

Metabolomics offers a conceptual breakthrough for biomarker discovery (Pujos-Guillot et 

al., 2013). NMR is a robust technique for metabolomic applications enabling the 

simultaneous detection of a wide range of structurally different metabolites. As it is a 

non-hypothesis-driven approach, this enables new biomarkers to be discovered in the 

field of food research (O'Sullivan et al., 2011). Several studies apply metabolomic 

approaches to identify novel dietary biomarkers (Llorach et al., 2012), while the number 

of metabolomics studies that use an ROC curve procedure is still very limited (<2% in the 

last 10 years) (Xia et al., 2013), and only a few are applied in food biomarker research 

(Lloyd et al., 2013). To date, robust NMR-based metabolomics has rarely been applied to 

identify new biomarkers of wine intake. However, two metabolomics studies have 

evaluated a mix of red wine and red grape juice extracts to assess the wine polyphenols in 

humans subjected to microbial metabolism by NMR analysis (Jacobs et al., 2008; van 

Dorsten et al., 2010).  

Traditionally, in nutrition a single biomarker has been used to define exposure to 

complex foods (e.g., red wine) or complex dietary patterns in interventional trials and/or 

a free-living population. However, in clinical research, the evaluation of a combination of 

several biomarkers by a logistic regression model is frequently applied. For instance, 

Hwa and co-workers demonstrated that a combination of more than one biomarker with a 

logistic regression model can improve the predictive sensitivity of breast cancer and 

lymph node metastatic status (Hwa et al., 2008). The goal of biomarker development in 

metabolomics is to create a predictive model from a collection of multiple compounds, 

which can be used to classify individuals into specific groups with optimal sensitivity and 

specificity (Xia et al., 2013). All this suggests a change in biomarker discovery research 

conventionally focused on a single biomarker, shifting towards a combination of 

biomarkers to assess dietary exposure. 

A few limited studies have been carried out to determine biomarkers of wine 

consumption in human individuals, reporting gallic acid, 4-O-methylgallic acids (Mennen 

et al., 2006), caffeic acid (Simonetti et al., 2001) and catechins (Donovan et al., 2002) as 

biomarkers of wine intake in interventional studies, with only resveratrol and resveratrol 

metabolites assessed in epidemiological data (Zamora-Ros et al., 2009).  Moreover, 

procyanidin metabolites derived from the microbiota are well described after wine 

polyphenol intake (Gonthier et al., 2003). In this context, human gut microbiota 

variability and the presence in other procyanidin dietary sources such as green tea (Roowi 
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et al., 2009), cocoa products (Urpi-Sarda et al., 2009b) or almond skin (Bartolomé et al., 

2010; Urpi-Sarda et al., 2009a), increase the variability between subjects and decrease the 

specificity of these metabolites as candidate biomarker of wine intake.  

The purpose of the present study is to identify wine intake biomarkers in the context of a 

Mediterranean wine interventional study using the robust and reproducible 
1
H-nuclear 

magnetic resonance spectroscopy analysis, and subsequently measure the utility of these 

biomarkers by evaluating them in a free-living independent Mediterranean sub-cohort. 

 

Materials and Methods 

Subjects and Study design 

Wine interventional study (WIS). Wine intervention study was a prospective, randomized, 

crossover and controlled trial (Chiva-Blanch et al., 2012). High-risk subjects aged ≥55 

years without documented CHD (CHD: ischemic heart disease—angina/recent or past 

myocardial infarction/previous or cerebral vascular accident, peripheral vascular disease) 

were recruited for the study. The subjects included had diabetes mellitus or more than 

three of the following CHD risk factors: tobacco smoking, hypertension, 

hypercholesterolemia, plasma LDL cholesterol ≥160 mg/dL, plasma HDL cholesterol 

<40 mg/dL, obesity (BMI (in kg/m2) ≥30), and/or a family history of premature CHD 

(first-line male relatives <55 years or females <65 years). Participants had to voluntarily 

give signed informed consent. Subjects with a previous history of CVD, any severe 

chronic disease, alcoholism, or other toxic abuse were excluded. The study was a 

prospective, randomized, crossover, and controlled trial. As a result of random computer-

generated selection, participants were asked to take either, 272mL/day of red wine 

(hereafter, RWA) (about 30g ethanol/day), 272mL/day of dealcoholized red wine 

(hereafter, RWD, polyphenols control), or 100mL/day of gin (hereafter, GIN, alcohol 

control), every day for 4 weeks (28 days). Twenty-four-hour urine samples were 

collected on the last day of each period as well as the basal time. All participants received 

all three interventions. To fulfil the objectives of the present study, we evaluated the 

urinary metabolome modifications from 56 participants between baseline and after 28 

days of red wine intake, analysed by 
1
H-NMR spectroscopy. 

PREDIMED sub-cohort study. A random subsample of participants in the PREDIMED 

study was used to test the WIS results. The PREDIMED study is a parallel-group, single-

blind, multicentre, randomized, controlled, 5-year feeding trial assessing the effects of the 

Mediterranean diet (MD) supplemented either with EVOO (MD+EVOO) or mixed nuts 

(MD+Nuts) on the primary prevention of CHD compared to advice on a low-fat diet 

(LFD). The participants from the present study had between 53 and 79 years of age and 

fulfilled more than three cardiovascular risk factors (current smoking, hypertension, 

hypercholesterolemia, body mass index (BMI) ≥25 kg/m
2
, or a family history of 

premature cardiovascular disease). Exclusion criteria were type 2 diabetes mellitus, 

cardiovascular disease, any severe chronic illness, drug or alcohol addiction, history of 

allergy, or intolerance to olive oil or nuts. The sub-cohort consisted of a random sample 

of 205 participants at high cardiovascular risk, recruited from the Barcelona and Valencia 

PREDIMED centres. Urinary metabolome was analysed at baseline (before to start the 

dietary intervention). The PREDIMED study design and 137-item validated food 

frequency questionnaire used have been reported elsewhere (Estruch et al., 2006; Estruch 

et al., 2013; Fernández-Ballart et al., 2010). Data reported included information on 
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drinking habits, such as amount, frequency and type of alcohol intake. The question ―how 

long ago did you consume your last glass of wine?‖ was also asked. 

Untargeted 
1
-NMR metabolomics analysis.  

Wine interventional study (WIS). A procedure based on previous published methodology 

(Vázquez-Fresno et al., 2012) was applied for the metabolomics analysis. The urine 

samples were thawed, vortexed, and centrifuged at 13 200 rpm for 5 min. The supernatant 

(600 µl) from each urine sample was mixed with an internal standard solution (120 µL, 

consisting of 0.1% TSP (3-(trimethylsilyl)-proprionate-2,2,3,3-d4, chemical shift 

reference), 2 mM of sodium azide (NaN3, bacteriostatic agent), and 1.5M KH2PO4 in 

99% deuterium water (D2O)).  

PREDIMED sub-cohort study. Briefly, the initial volume of urine from the sub-cohort 

study participants was 300 µl of urine sample diluted with 200 µl of H2O/D2O (8:2) and 

mixed with the internal standard solution. (120 µL, consisting of 0.1% TSP (3-

(trimethylsilyl)-proprionate-2,2,3,3-d4, chemical shift reference), 2 mM of sodium azide 

(NaN3, bacteriostatic agent), and 1.5M KH2PO4 in 99% deuterium water (D2O)). 

For both studies, the optimized pH of the buffer was set at 7.0, with a potassium 

deuteroxide (KOD) solution, to minimize variations in the chemical shifts of the NMR 

resonances. Mixture was transferred to a 5-mm NMR tube. The spectral data processed 

were intelligent bucketed in domains of 0.005 ppm (Sousa et al., 2013) and integrated 

using ACD/NMR Processor 12.0 software (Advanced Chemistry Development, Inc.). The 

spectral region between 4.75 and 5.00 ppm was excluded from the data set to avoid 

spectral interference from residual water. Significant unassigned compounds were further 

characterized using 2-D NMR experiments in 600 MHz Bruker Avance III: a previous 
1
H-NMR experiment, followed by a

1
H-

1
H homonuclear 'H/'H correlation spectroscopy 

(COSY) experiment. The 
1
H-NMR experiment was processed with 128 scans with a 

spectral width of 14 ppm, an acquisition time of 3.2 s and a relaxation delay of 3 s. In the 

COSY analysis, 512 x 1024 data points were collected and processed in a 1024 x 1024 

matrix using 48 scans per increment, a relaxation delay of 1.1s, an acquisition time of 

0.16s and 16 dummy scans. To exclude data points showing little variance across 

experimental conditions, data were interquartile range (IQR) filtered, and row-wise 

normalized by sum to reduce systematic bias during sample collection (Xia and Wishart, 

2011). 

Metabolite identification.  

Discriminant metabolites were identified using the Chenomx NMR Suite 7.5 (Chenomx 

Inc., Edmonton, Canada) library, by comparing NMR spectral data to those available in 

databases such as the Human Metabolome Database (HMDB; www.hmdb.ca), the 

Biological Magnetic Resonance Data Bank (BMRB, www.bmrb.wisc.edu) and the 

Madison Metabolomics Consortium Database (MMCD, mmcd.nmrfam.wisc.edu).  

 

Classification of the free-living population in the cohort study in terms of wine 

intake.  

The population from the cohort study (n=205) was stratified using food frequency 

questionnaires (FFQs) for non-wine consumers (0ml/d, n=69), intermittent wine 

consumers (<180 ml/d, n=87) and wine consumers (≥180ml/d, n=22), based on a daily 
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wine intake (Teissedre and Landrault, 2000). Wine consumers concern individuals that 

were drinking red, white, rosé or Muscat wine. No sparkling wines were considered. 

Non-wine consumers that drink other kinds of alcohol-containing beverages were 

excluded from the study (n=27). Besides, the intermittent wine consumers were not 

considered for the assessment of biomarkers of wine intake. Alcohol intake was assessed 

at baseline with a validated 137-item semi-quantitative food-frequency questionnaire 

(FFQ). In the validation study for the Spanish version of this questionnaire, the intra-class 

correlation coefficient between alcohol intake from the FFQ and repeated food records 

was 0.82 (Fernández-Ballart et al., 2010). The use of FFQ in metabolomics (Menni et al., 

2013)and the stratification of the cohort individuals by consumption is reported as being 

an effective strategy for discovering sensitive biomarkers of consumption (Pujos-Guillot 

et al., 2013). 

Because very few participants consumed wine on a daily basis, a skewed consumption 

frequency pattern emerged (Lloyd et al., 2013), resulting in a different number of samples 

in the sub-cohort study tested for each group. In this context, the receiver operating 

characteristic (ROC) curve is a non-parametric measure of biomarker utility and there is 

no need for the two distributions to have an equal number of individuals and equal 

variance (Xia et al., 2013). In the analysis of the last time of drinking wine, the 

population analysed were participants who consumed their last glass of wine the day 

before (n=53), between 2 and 3 days before (n=14), and up to 3 days (n=15) among the 

non-wine consumers group (n=69). Each group was compared individually with the non-

wine consumers group.  

Statistical analysis of potential biomarkers.  

The Mann-Whitney U test was used to explore differences in the NMR data to compare 

baseline and wine intake periods in the WIS, and in PREDIMED sub-cohort consumers 

and non-consumers. Significant metabolites from WIS study which were tested in ROC 

curve analysis were those previously found (Vázquez-Fresno et al., 2012) and those 

significant after Bonferroni correction. ROC curves for each metabolite that was 

statistically significant were calculated (each ROC curve was constructed using a 

dichotomous variable of wine consumption).Then, a logistic regression model was 

generated by forward stepwise selection procedures as previously described (Bahado-

Singh et al., 2012; Murabito et al., 2009). The area under the curve (AUC) was calculated 

and used to assess the adequacy of the prediction model in the WIS. Then, this model was 

evaluated in the sub-cohort PREDIMED study with the subsequent ROC analysis to test 

the accuracy of the model in the free-living population. Spearman’s rank correlation 

coefficient was calculated to estimate correlations between wine intake from FFQ and the 

combined model. The Mann-Whitney test was also applied in the analysis of ―last time of 

drinking wine‖ among the groups of consumers and the non-consumers. Mann-Whitney 

U test analysis and a logistic regression model were conducted using SPSS 20 and 

statistical significance was set at p<0.05. AUC  in ROC curve and p-value resulting from 

comparing AUCs were calculated with the pROC package from www.r-project.org 

(Robin et al., 2011). 

Results and Discussion 

Descriptive baseline characteristics of the participants from both studies are summarized 

in Online Resource 1. Composition of wine provided for WIS study is detailed in Online 

Resource 2.
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Table 1. Significant metabolites resulting from the analysis comparing the baseline values and the values after red wine intake (WIS study; 

n=56) and PREDIMED sub-cohort (epidemiological data, n=91) with the Mann-Whitney statistical test
1
. 

Biomarker 

NMR assignment WIS 
PREDIMED Sub-

cohort 
Metabolite information 

δ 
1
H-

1
H 

COSY
a
 

P P  

EtG 1.24 (t, J=7.10Hz) 

4.48 (d, J=7.97Hz) 

- 3.40x10-
11

 5.84x10
-9 

Ethanol metabolite (FM) 

Tartrate 4.35 (s) - 7.43x10
-11

 6.86x10
-8

 Wine compound (FM) 

Ethanol 1.19 (t, J=7.05Hz) - 2.97x10
-6

 0.008 Compound of alcohol-containing 

beverages (FM) 

2,3-butanediol 1.15 (d, J=5.90Hz) - 1.15x10
-6

 0.004 Wine compound (FM) 

3-methyl-2-oxovalerate 1.10 (d, J=6.36Hz) - 1.45x10
-4

 0.002 Branched-chain amino acid 

metabolites 

Mannitol 3.69 (dd, J=6.27Hz, 

11.93Hz) 

- 0.001 0.006 Wine compound (FM) 

U1 1.26 (t, J=7.21Hz) 4.171 1.37x10
-6

 7.24x10
-6

 - 

U2 0.85 (d, J=6.80Hz) 1.863 3.42x10
-6

 0.009 - 

U3 0.92 (d, J=6.58Hz) 1.867 1.42x10
-5

 0.01 - 

1
EtG: ethyl glucuronide; FM: food metabolome; δ: chemical shift, in parenthesis multiplicity and J-coupling. P<0.05 in Mann-Whitney test .

a
2D 

analysis from unidentified compounds. U: unassigned compound; WIS: wine interventional study, d: doublet; t: triplet; s: singlet, J= J-coupling 
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Detection of potential wine intake biomarkers.  

Statistically significant metabolites evaluated at baseline and after consumption of wine 

in the WIS study were food metabolome biomarkers related to wine (tartrate, ethyl 

glucuronide, 2,3 butanediol, alcohol and mannitol), the endogenous metabolite 3-methyl-

2-oxovalerate, and three unidentified compounds (U1, U2, U3). Two metabolites 

previously described associated with dealcoholized wine (Vázquez-Fresno et al., 2012) 

and derived from gut microbiota were hippurate and 4-hydroxyphenylacetate. These two 

metabolites were also tested with wine versus baseline participants showing no 

significant association after logistic regression analysis (p>0.05). Significant metabolites 

comparing the baseline values and the values after the intake of red wine in WIS 

(crossover intervention, n=56), and in the PREDIMED sub-cohort (epidemiological data, 

n=91), are presented in Table 1.  

The subsequent ROC curve analysis for each single metabolite revealed the best AUC for 

the ethyl glucuronide (EtG) (AUC=86.3%) and tartrate (AUC=85.7%) metabolites, 

followed by 2,3-butanediol (AUC=76.7%), ethanol signal (AUC=75.6%)and the 

unassigned metabolites U1 (AUC=76.5%), U2 (AUC=75.4%) and U3 (AUC=73.8%), 3-

methyl-2-oxovalerate (AUC=70.8%) and mannitol (AUC=69.9%). Sensitivity and 

specificity in each case were also determined (Online Resource 3). 

Combined biomarkers model in the wine intake study.  

Subsequently, to achieve greater accuracy with the potential wine biomarkers, the 

significant metabolites in the WIS study were subjected to a forward logistic regression 

analysis to create a model in order to optimally allocate each individual as a wine/non-

wine intake subject. The resulting model included tartrate and EtG biomarkers of wine 

intake. The ROC curves for tartrate and EtG within the model and separately are 

presented in Figure 1.  

 

 

Fig. 1 Receiver operating 

characteristic (ROC) curve 

analysis comparing the 

combined metabolite model 

to models for each metabolite 

alone, in the intervention 

WIS study after wine 

consumption. Area under the 

curve (AUC) is calculated for 

each case 
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Combined biomarkers model in the PREDIMED sub-cohort study.  

To assess the reproducibility our experimental findings, the resulting model for potential 

biomarkers of wine intake was tested in the sub-cohort of the PREDIMED study. A 

significant correlation of daily wine intake reported in PREDIMED study and the 

combined model (r=0.6, p<0.001) was observed. The result of the ROC curve analysis in 

this case, was a comparable and slightly greater AUC with very similar sensitivity and 

specificity to those obtained in the WIS. The ROC curves for the logistic regression in the 

WIS and the prediction of consumers and non-consumers from the free-living population 

are presented in Figure 2. The equation generated from the logistic regression and the 

AUCs from both the model in the WIS and the PREDIMED study with their sensitivity 

and specificity are shown in Table 2. A comparison between the curves was also made, 

and the results exhibited no statistical differences (p=0.7) between the both ROC curves. 

The similar AUC curve for both studies could be explained by the similar consumption of 

wine among the participants for both studies. The mean ± SD reported consumption of 

daily wine consumers (n=22) in the PREDIMED study was 343.07 ± 139.41 ml, while 

the WIS study participants’ consumption was fixed at 272ml/day. Figure 3 shows the 

distribution by boxplot analysis and the statistical significance of the metabolites that 

generated the model comparing both studies.  

 

 

Fig. 2 Receiver operating characteristic (ROC) curve analysis using model (a) in the 

intervention WIS study, and applying the same model to the PREDIMED sub-cohort 

study (b), with the AUC (CI) discriminating between wine consumers and non-wine 

consumers. Comparison between both curves, p=0.7 
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Table 2.Metabolites included in the logistic classification model from the Mann-Whitney 

test
1
.  

Regression model AUC (95% CI) Sensitivity (%) Specificity (%) 

Intervention study    

Metabolites 

(tartrate-EtG)
a 90.7 (84.5-96.4) 83.9 91.1 

Sub-cohort study    

Metabolites 

(tartrate-EtG)
a
 

92.4 (84.1-100) 90.9 92.8 

1
Equation of the model = -5.400 + (4.65x (δ EtG))+(2.315x (δ tartrate)). 

a
metabolites 

included in the model. AUC: area under the ROC curve. CI: confidence interval.  

 

 

 

 

Fig. 3 Box plot of urinary tartrate and ethyl glucuronide (EtG) at baseline and after wine 

intake in the WIS intervention study; and in wine and non-wine consumers from the sub-

cohort PREDIMED study.*p<0.001 

 

The additional information concerning to the last time that the participants consumed 

wine before urine collection (1day, between 2 and 3days and >3days), and the results of 

combined wine biomarkers (tartrate-EtG) comparing wine consumers and non-wine 

consumers, are presented in Figure 4. Statistically significant were the participants who 

had their last drink of wine one day before (1day) the urine collection (p=4x10
-11

) and 

between the second and third day (2-3days) (p=0.01), both compared with the non-wine 

consumers group. No differences were shown between non-wine consumers and 

consumers whose last glass of wine was reported more than 3 days before. Therefore, 

using these data the applied methodology could allow the detection of wine consumers up 

to 3 days after the last glass of wine consumed. 
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Fig. 4 Combined wine biomarkers model (tartrate-EtG) comparing consumers that 

consume their last glass of wine 1 day, between 2 and 3 days, and more than 3 days 

before the urine collection, between the non-wine consumers in the PREDIMED sub-

cohort. 
*
Mann-Whitney test (p<0.01) 

 

Biomarkers associated with wine exposure and classification of wine consumers in 

both WIS and PREDIMED studies 

The obtained results showed that several metabolites, both exogenous (food metabolome) 

and endogenous, were associated with wine consumers. Tartrate, 2,3-butanediol, ethanol, 

ethyl glucuronide and mannitol are described compounds present in wine (Liu, 2002; Son 

et al., 2009; Son et al., 2008), while 3-methyl-2-oxovalerateis a product of degradation of 

branched-chain amino acids. Elsewhere, in a previous work conducted by our group, 

hippurate and 4-hydroxyphenylacetate were significantly associated with consumers of 

dealcoholized wine (Vazquez-Fresno et al. 2012). This fact suggests a possible impact of 

ethanol on the metabolic pathways related to the excretion of both compounds. 

With regard to the AUC curves, the results show that wine and non-wine consumers can 

be classified with good accuracy using a combination of two biomarkers. One of them, 

tartrate, is the major acid in grapes and is also present in wine (Son et al., 2008). Even 

though tartrate is also used in the food industry as an additive (Bemrah et al., 2012), the 

amount present in wine is considerably higher (2-8g/L) in red wine (Pérez-Magariño and 

González-San José, 2004), white wine (Darias-Mart  n et al., 2000; López-Tamames et al., 

1996; Recamales et al., 2006), rosé (Salinas et al., 2005) and Muscatel wines (Roussis et 

al., 2005). In addition, some human studies have detected tartrate in urine after wine 

consumption (Heinzmann et al., 2011; Vázquez-Fresno et al., 2012). The other metabolite 

present in the model, ethyl glucuronide, is a metabolite of ethanol and has received much 
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recent attention as a sensitive and specific biological marker of acute ethanol 

consumption after intake of alcoholic beverages (Lande and Marin, 2013). In addition, 

the results demonstrated the good accuracy of the classification of wine consumers, in 

spite of including non-wine consumers who drink other kinds of alcohol-containing 

beverages in the non-consumer group.  

The combination of tartrate and ethyl glucuronide exhibited good accuracy in 

interventional data. Furthermore, our analysis of the epidemiological data showed good 

classification of wine consumers reported from the FFQs and confirmed by NMR urinary 

biomarker excretion. These results are in line with those published by Zamora-Ros et 

al.(Zamora-Ros et al., 2009) using an LC-MS/MS targeted approach. The authors showed 

that using resveratrol metabolites, instead of single resveratrol, could increase the ability 

to discriminate between wine consumers and non-wine consumers (Zamora-Ros et al., 

2009). Compared with NMR-based metabolomics studies, potential biomarkers of citrus 

consumption were evaluated in an interventional as well as in an epidemiological assay 

(Heinzmann et al., 2010), showing similar results in terms of accuracy to the model 

currently being used for wine intake.  

The use of the modelling process 

With regard to the modelling process, several studies have used this approach in 

metabolomics-based clinical biomarker investigation, obtaining a variety in terms of the 

number of biomarkers included. An NMR-based study on epithelial cancer detection 

(Odunsi et al., 2005) had a perfect-fitting model with an AUC=1.0 combining two 

signals. In this context, Bahado-Singh et al.(Bahado-Singh et al., 2012) reported that with 

three metabolites cases can be distinguished from controls. Altogether, these findings 

demonstrate that there are several results on combining biomarkers in a model, although 

it is important to find the simplest combination of metabolites that can produce a proper 

effective outcome (Xia et al., 2013). The development of robust food biomarkers has 

important goals aimed at providing better classification of individuals in terms of dietary 

exposure(Garcia-Aloy et al., 2014), and in turn this would improve assessment of the 

relationship between diet and chronic disease (O’Gorman et al., 2013). 

Detection times of biomarkers from the model 

The concentration of EtG in urine after a given dose of ethanol may vary considerably 

between, but also within, individuals as it is influenced by several factors besides the 

amount of alcohol consumed, such as urine dilution and time of voiding(Høiseth et al., 

2007). Detection times for EtG ranging from <24h to >90h were demonstrated after 

alcohol ingestion depending on the ethanol ingested(Beck et al., 2007). Our data reported 

a mean ± SD alcohol intake in the total wine consumers of 16.92 ± 19.85 g/day with a 

mean ± SD 78.25 ± 13.32 kg of body weight, therefore, a mean alcohol intake of 

0.22g/kg of body weight. Weinmann et al. confirmed by mass spectrometry that after 9 g 

of ethanol intake (0.16g/kg), EtG reached a maximum concentration at 8-10 h and is 

detectable over 30 h (Weinmann et al., 2004), this fact is in line with our results. 

Similarly other studies reported detection up to 48h (~0.5 g/kg)(Wojcik and Hawthorne, 

2007)and up to 130h (~5days) in extreme cases of alcohol intoxication (Helander et al., 

2009). 

Tartrate is reported excreted over 24h after acute intake of grape juice (Stalmach et al., 

2013). Further, Lord and co-workers reported urinary tartrate excretion after restricted 

tartrate intake and after ingestion of 280 mL of grape juice the day after (Lord et al., 

2005). As far as we know, there are no further studies testing tartrate excretion beyond 

the day after its consumption. In any case, the values of the combined model of tartrate-

EtG of consumers≥24h and <72h are in keeping with the kinetics results of studies 
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presented above (Helander et al., 2009; Stalmach et al., 2013; Weinmann et al., 2004; 

Wurst et al., 2006). 

 

Concluding remarks 

This study shows the potential for identifying wine intake biomarkers in interventional 

studies using an NMR-based metabolomics approach with good accuracy and 

reproducibility in free-living individuals. Also, these results confirm that a model 

combining tartrate and EtG is a better biomarker of exposure to wine than a single 

biomarker. Additionally, these combined wine biomarkers could be detected in urine 

between 2 -3 days after the last consumption of wine. To our knowledge, this is the first 

time that this strategy has been used with a model of combined biomarkers using an 

NMR-based metabolomics untargeted approach on biomarkers of wine intake. This is 

interesting for future studies using a robust metabolomic approach based on NMR 

technique to discriminate between individuals in terms of their dietary patterns in the 

search for new biomarkers and their association with health.  
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